Sample records for dynamic state-space model

  1. Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

    PubMed Central

    Sun, Xiaodian; Jin, Li; Xiong, Momiao

    2008-01-01

    It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286

  2. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    PubMed

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  3. Using Innovative Outliers to Detect Discrete Shifts in Dynamics in Group-Based State-Space Models

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Hamaker, Ellen L.; Allaire, Jason C.

    2009-01-01

    Outliers are typically regarded as data anomalies that should be discarded. However, dynamic or "innovative" outliers can be appropriately utilized to capture unusual but substantively meaningful shifts in a system's dynamics. We extend De Jong and Penzer's 1998 approach for representing outliers in single-subject state-space models to a…

  4. On dynamical systems approaches and methods in f ( R ) cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alho, Artur; Carloni, Sante; Uggla, Claes, E-mail: aalho@math.ist.utl.pt, E-mail: sante.carloni@tecnico.ulisboa.pt, E-mail: claes.uggla@kau.se

    We discuss dynamical systems approaches and methods applied to flat Robertson-Walker models in f ( R )-gravity. We argue that a complete description of the solution space of a model requires a global state space analysis that motivates globally covering state space adapted variables. This is shown explicitly by an illustrative example, f ( R ) = R + α R {sup 2}, α > 0, for which we introduce new regular dynamical systems on global compactly extended state spaces for the Jordan and Einstein frames. This example also allows us to illustrate several local and global dynamical systems techniquesmore » involving, e.g., blow ups of nilpotent fixed points, center manifold analysis, averaging, and use of monotone functions. As a result of applying dynamical systems methods to globally state space adapted dynamical systems formulations, we obtain pictures of the entire solution spaces in both the Jordan and the Einstein frames. This shows, e.g., that due to the domain of the conformal transformation between the Jordan and Einstein frames, not all the solutions in the Jordan frame are completely contained in the Einstein frame. We also make comparisons with previous dynamical systems approaches to f ( R ) cosmology and discuss their advantages and disadvantages.« less

  5. Finite element dynamic analysis of soft tissues using state-space model.

    PubMed

    Iorga, Lucian N; Shan, Baoxiang; Pelegri, Assimina A

    2009-04-01

    A finite element (FE) model is employed to investigate the dynamic response of soft tissues under external excitations, particularly corresponding to the case of harmonic motion imaging. A solid 3D mixed 'u-p' element S8P0 is implemented to capture the near-incompressibility inherent in soft tissues. Two important aspects in structural modelling of these tissues are studied; these are the influence of viscous damping on the dynamic response and, following FE-modelling, a developed state-space formulation that valuates the efficiency of several order reduction methods. It is illustrated that the order of the mathematical model can be significantly reduced, while preserving the accuracy of the observed system dynamics. Thus, the reduced-order state-space representation of soft tissues for general dynamic analysis significantly reduces the computational cost and provides a unitary framework for the 'forward' simulation and 'inverse' estimation of soft tissues. Moreover, the results suggest that damping in soft-tissue is significant, effectively cancelling the contribution of all but the first few vibration modes.

  6. Spike-Threshold Variability Originated from Separatrix-Crossing in Neuronal Dynamics

    PubMed Central

    Wang, Longfei; Wang, Hengtong; Yu, Lianchun; Chen, Yong

    2016-01-01

    The threshold voltage for action potential generation is a key regulator of neuronal signal processing, yet the mechanism of its dynamic variation is still not well described. In this paper, we propose that threshold phenomena can be classified as parameter thresholds and state thresholds. Voltage thresholds which belong to the state threshold are determined by the ‘general separatrix’ in state space. We demonstrate that the separatrix generally exists in the state space of neuron models. The general form of separatrix was assumed as the function of both states and stimuli and the previously assumed threshold evolving equation versus time is naturally deduced from the separatrix. In terms of neuronal dynamics, the threshold voltage variation, which is affected by different stimuli, is determined by crossing the separatrix at different points in state space. We suggest that the separatrix-crossing mechanism in state space is the intrinsic dynamic mechanism for threshold voltages and post-stimulus threshold phenomena. These proposals are also systematically verified in example models, three of which have analytic separatrices and one is the classic Hodgkin-Huxley model. The separatrix-crossing framework provides an overview of the neuronal threshold and will facilitate understanding of the nature of threshold variability. PMID:27546614

  7. Spike-Threshold Variability Originated from Separatrix-Crossing in Neuronal Dynamics.

    PubMed

    Wang, Longfei; Wang, Hengtong; Yu, Lianchun; Chen, Yong

    2016-08-22

    The threshold voltage for action potential generation is a key regulator of neuronal signal processing, yet the mechanism of its dynamic variation is still not well described. In this paper, we propose that threshold phenomena can be classified as parameter thresholds and state thresholds. Voltage thresholds which belong to the state threshold are determined by the 'general separatrix' in state space. We demonstrate that the separatrix generally exists in the state space of neuron models. The general form of separatrix was assumed as the function of both states and stimuli and the previously assumed threshold evolving equation versus time is naturally deduced from the separatrix. In terms of neuronal dynamics, the threshold voltage variation, which is affected by different stimuli, is determined by crossing the separatrix at different points in state space. We suggest that the separatrix-crossing mechanism in state space is the intrinsic dynamic mechanism for threshold voltages and post-stimulus threshold phenomena. These proposals are also systematically verified in example models, three of which have analytic separatrices and one is the classic Hodgkin-Huxley model. The separatrix-crossing framework provides an overview of the neuronal threshold and will facilitate understanding of the nature of threshold variability.

  8. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    NASA Astrophysics Data System (ADS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  9. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlapmore » with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.« less

  10. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    PubMed Central

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340

  11. Modeling T-cell activation using gene expression profiling and state-space models.

    PubMed

    Rangel, Claudia; Angus, John; Ghahramani, Zoubin; Lioumi, Maria; Sotheran, Elizabeth; Gaiba, Alessia; Wild, David L; Falciani, Francesco

    2004-06-12

    We have used state-space models to reverse engineer transcriptional networks from highly replicated gene expression profiling time series data obtained from a well-established model of T-cell activation. State space models are a class of dynamic Bayesian networks that assume that the observed measurements depend on some hidden state variables that evolve according to Markovian dynamics. These hidden variables can capture effects that cannot be measured in a gene expression profiling experiment, e.g. genes that have not been included in the microarray, levels of regulatory proteins, the effects of messenger RNA and protein degradation, etc. Bootstrap confidence intervals are developed for parameters representing 'gene-gene' interactions over time. Our models represent the dynamics of T-cell activation and provide a methodology for the development of rational and experimentally testable hypotheses. Supplementary data and Matlab computer source code will be made available on the web at the URL given below. http://public.kgi.edu/~wild/LDS/index.htm

  12. Dynamics of Entropy in Quantum-like Model of Decision Making

    NASA Astrophysics Data System (ADS)

    Basieva, Irina; Khrennikov, Andrei; Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu

    2011-03-01

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices. By using this equilibrium point Alice determines her mixed (i.e., probabilistic) strategy with respect to Bob. Thus our model is a model of thinking through decoherence of initially pure mental state. Decoherence is induced by interaction with memory and external environment. In this paper we study (numerically) dynamics of quantum entropy of Alice's state in the process of decision making. Our analysis demonstrates that this dynamics depends nontrivially on the initial state of Alice's mind on her own actions and her prediction state (for possible actions of Bob.)

  13. A model for rotorcraft flying qualities studies

    NASA Technical Reports Server (NTRS)

    Mittal, Manoj; Costello, Mark F.

    1993-01-01

    This paper outlines the development of a mathematical model that is expected to be useful for rotorcraft flying qualities research. A computer model is presented that can be applied to a range of different rotorcraft configurations. The algorithm computes vehicle trim and a linear state-space model of the aircraft. The trim algorithm uses non linear optimization theory to solve the nonlinear algebraic trim equations. The linear aircraft equations consist of an airframe model and a flight control system dynamic model. The airframe model includes coupled rotor and fuselage rigid body dynamics and aerodynamics. The aerodynamic model for the rotors utilizes blade element theory and a three state dynamic inflow model. Aerodynamics of the fuselage and fuselage empennages are included. The linear state-space description for the flight control system is developed using standard block diagram data.

  14. A "Kanes's Dynamics" Model for the Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Beech, Geoffrey

    1999-01-01

    Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state-space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop an state-space, analytical (algebraic) set of linearized equations of motion for ARIS.

  15. A "Kane's Dynamics" Model for the Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Beech, G. S.; Rao, N. N. S.; Rupert, J. K.; Kim, Y. K.

    2001-01-01

    Many microgravity space science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (International Standard Payload Rack (ISPR)) level. Effective model-based vibration isolation requires: (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop a state-space, analytical (algebraic) set of linearized equations of motion for ARIS.

  16. Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey

    2015-12-01

    The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.

  17. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    PubMed

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake: An Extended Kalman Filter Approach.

    PubMed

    Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan

    2014-03-01

    An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control. © 2014 Diabetes Technology Society.

  19. A solution for two-dimensional mazes with use of chaotic dynamics in a recurrent neural network model.

    PubMed

    Suemitsu, Yoshikazu; Nara, Shigetoshi

    2004-09-01

    Chaotic dynamics introduced into a neural network model is applied to solving two-dimensional mazes, which are ill-posed problems. A moving object moves from the position at t to t + 1 by simply defined motion function calculated from firing patterns of the neural network model at each time step t. We have embedded several prototype attractors that correspond to the simple motion of the object orienting toward several directions in two-dimensional space in our neural network model. Introducing chaotic dynamics into the network gives outputs sampled from intermediate state points between embedded attractors in a state space, and these dynamics enable the object to move in various directions. System parameter switching between a chaotic and an attractor regime in the state space of the neural network enables the object to move to a set target in a two-dimensional maze. Results of computer simulations show that the success rate for this method over 300 trials is higher than that of random walk. To investigate why the proposed method gives better performance, we calculate and discuss statistical data with respect to dynamical structure.

  20. Effect of Clustering Algorithm on Establishing Markov State Model for Molecular Dynamics Simulations.

    PubMed

    Li, Yan; Dong, Zigang

    2016-06-27

    Recently, the Markov state model has been applied for kinetic analysis of molecular dynamics simulations. However, discretization of the conformational space remains a primary challenge in model building, and it is not clear how the space decomposition by distinct clustering strategies exerts influence on the model output. In this work, different clustering algorithms are employed to partition the conformational space sampled in opening and closing of fatty acid binding protein 4 as well as inactivation and activation of the epidermal growth factor receptor. Various classifications are achieved, and Markov models are set up accordingly. On the basis of the models, the total net flux and transition rate are calculated between two distinct states. Our results indicate that geometric and kinetic clustering perform equally well. The construction and outcome of Markov models are heavily dependent on the data traits. Compared to other methods, a combination of Bayesian and hierarchical clustering is feasible in identification of metastable states.

  1. Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Youngsoo; Carlberg, Kevin Thomas

    Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over allmore » space and time in a weighted ℓ 2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.« less

  2. Modeling volatility using state space models.

    PubMed

    Timmer, J; Weigend, A S

    1997-08-01

    In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).

  3. Analysis of helicopter flight dynamics through modeling and simulation of primary flight control actuation system

    NASA Astrophysics Data System (ADS)

    Nelson, Hunter Barton

    A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.

  4. Path Flow Estimation Using Time Varying Coefficient State Space Model

    NASA Astrophysics Data System (ADS)

    Jou, Yow-Jen; Lan, Chien-Lun

    2009-08-01

    The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.

  5. Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system

    NASA Astrophysics Data System (ADS)

    Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun

    2018-05-01

    In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.

  6. Discrete-state representation of ion permeation coupled to fast gating in a model of ClC chloride channels: comparison to multi-ion continuous space Brownian dynamics simulations.

    PubMed

    Coalson, Rob D; Cheng, Mary Hongying

    2010-01-28

    A discrete-state model of chloride ion motion in a ClC chloride channel is constructed, following a previously developed multi-ion continuous space model of the same system (Cheng, M. H.; Mamonov, A. B.; Dukes, J. W.; Coalson, R. D. J. Phys. Chem. B 2007, 111, 5956) that included a simplistic representation of the fast gate in this channel. The reducibility of the many-body continuous space to the eight discrete-state model considered in the present work is examined in detail by performing three-dimensional Brownian dynamics simulations of each allowed state-to-state transition in order to extract the appropriate rate constant for this process, and then inserting the pairwise rate constants thereby obtained into an appropriate set of kinetic master equations. Experimental properties of interest, including the rate of Cl(-) ion permeation through the open channel and the average rate of closing of the fast gate as a function of bulk Cl(-) ion concentrations in the intracellular and extracellular electrolyte reservoirs are computed. Good agreement is found between the results obtained via the eight discrete-state model versus the multi-ion continuous space model, thereby encouraging continued development of the discrete-state model to include more complex behaviors observed experimentally in these channels.

  7. Dynamical Cognitive Models of Social Issues in Russia

    NASA Astrophysics Data System (ADS)

    Mitina, Olga; Abraham, Fred; Petrenko, Victor

    We examine and model dynamics in three areas of social cognition: (1) political transformations within Russia, (2) evaluation of political trends in other countries by Russians, and (3) evaluation of Russian stereotypes concerning women. We try to represent consciousness as vectorfields and trajectories in a cognitive state space. We use psychosemantic techniques that allow definition of the state space and the systematic construction of these vectorfields and trajectories and their portrait from research data. Then we construct models to fit them, using multiple regression methods to obtain linear differential equations. These dynamical models of social cognition fit the data quite well. (1) The political transformations were modeled by a spiral repellor in a two-dimensional space of a democratic-totalitarian factor and social depression-optimism factor. (2) The evaluation of alien political trends included a flow away from a saddle toward more stable and moderate political regimes in a 2D space, of democratic-totalitarian and unstable-stable cognitive dimensions. (3) The gender study showed expectations (attractors) for more liberated, emancipated roles for women in the future.

  8. State-Space Modeling of Dynamic Psychological Processes via the Kalman Smoother Algorithm: Rationale, Finite Sample Properties, and Applications

    ERIC Educational Resources Information Center

    Song, Hairong; Ferrer, Emilio

    2009-01-01

    This article presents a state-space modeling (SSM) technique for fitting process factor analysis models directly to raw data. The Kalman smoother via the expectation-maximization algorithm to obtain maximum likelihood parameter estimates is used. To examine the finite sample properties of the estimates in SSM when common factors are involved, a…

  9. A single-rate context-dependent learning process underlies rapid adaptation to familiar object dynamics.

    PubMed

    Ingram, James N; Howard, Ian S; Flanagan, J Randall; Wolpert, Daniel M

    2011-09-01

    Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual context, and are updated by a single-rate process.

  10. Addressing Dynamic Issues of Program Model Checking

    NASA Technical Reports Server (NTRS)

    Lerda, Flavio; Visser, Willem

    2001-01-01

    Model checking real programs has recently become an active research area. Programs however exhibit two characteristics that make model checking difficult: the complexity of their state and the dynamic nature of many programs. Here we address both these issues within the context of the Java PathFinder (JPF) model checker. Firstly, we will show how the state of a Java program can be encoded efficiently and how this encoding can be exploited to improve model checking. Next we show how to use symmetry reductions to alleviate some of the problems introduced by the dynamic nature of Java programs. Lastly, we show how distributed model checking of a dynamic program can be achieved, and furthermore, how dynamic partitions of the state space can improve model checking. We support all our findings with results from applying these techniques within the JPF model checker.

  11. Robustness of reduced-order multivariable state-space self-tuning controller

    NASA Technical Reports Server (NTRS)

    Yuan, Zhuzhi; Chen, Zengqiang

    1994-01-01

    In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.

  12. A black box optimization approach to parameter estimation in a model for long/short term variations dynamics of commodity prices

    NASA Astrophysics Data System (ADS)

    De Santis, Alberto; Dellepiane, Umberto; Lucidi, Stefano

    2012-11-01

    In this paper we investigate the estimation problem for a model of the commodity prices. This model is a stochastic state space dynamical model and the problem unknowns are the state variables and the system parameters. Data are represented by the commodity spot prices, very seldom time series of Futures contracts are available for free. Both the system joint likelihood function (state variables and parameters) and the system marginal likelihood (the state variables are eliminated) function are addressed.

  13. Loop-quantum-gravity vertex amplitude.

    PubMed

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  14. DSGRN: Examining the Dynamics of Families of Logical Models.

    PubMed

    Cummins, Bree; Gedeon, Tomas; Harker, Shaun; Mischaikow, Konstantin

    2018-01-01

    We present a computational tool DSGRN for exploring the dynamics of a network by computing summaries of the dynamics of switching models compatible with the network across all parameters. The network can arise directly from a biological problem, or indirectly as the interaction graph of a Boolean model. This tool computes a finite decomposition of parameter space such that for each region, the state transition graph that describes the coarse dynamical behavior of a network is the same. Each of these parameter regions corresponds to a different logical description of the network dynamics. The comparison of dynamics across parameters with experimental data allows the rejection of parameter regimes or entire networks as viable models for representing the underlying regulatory mechanisms. This in turn allows a search through the space of perturbations of a given network for networks that robustly fit the data. These are the first steps toward discovering a network that optimally matches the observed dynamics by searching through the space of networks.

  15. Enhanced sampling of molecular dynamics simulation of peptides and proteins by double coupling to thermal bath.

    PubMed

    Chen, Changjun; Huang, Yanzhao; Xiao, Yi

    2013-01-01

    Low sampling efficiency in conformational space is the well-known problem for conventional molecular dynamics. It greatly increases the difficulty for molecules to find the transition path to native state, and costs amount of CPU time. To accelerate the sampling, in this paper, we re-couple the critical degrees of freedom in the molecule to environment temperature, like dihedrals in generalized coordinates or nonhydrogen atoms in Cartesian coordinate. After applying to ALA dipeptide model, we find that this modified molecular dynamics greatly enhances the sampling behavior in the conformational space and provides more information about the state-to-state transition, while conventional molecular dynamics fails to do so. Moreover, from the results of 16 independent 100 ns simulations by the new method, it shows that trpzip2 has one-half chances to reach the naive state in all the trajectories, which is greatly higher than conventional molecular dynamics. Such an improvement would provide a potential way for searching the conformational space or predicting the most stable states of peptides and proteins.

  16. Comparisons of Four Methods for Estimating a Dynamic Factor Model

    ERIC Educational Resources Information Center

    Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R.

    2008-01-01

    Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…

  17. Self-optimized construction of transition rate matrices from accelerated atomistic simulations with Bayesian uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Swinburne, Thomas D.; Perez, Danny

    2018-05-01

    A massively parallel method to build large transition rate matrices from temperature-accelerated molecular dynamics trajectories is presented. Bayesian Markov model analysis is used to estimate the expected residence time in the known state space, providing crucial uncertainty quantification for higher-scale simulation schemes such as kinetic Monte Carlo or cluster dynamics. The estimators are additionally used to optimize where exploration is performed and the degree of temperature acceleration on the fly, giving an autonomous, optimal procedure to explore the state space of complex systems. The method is tested against exactly solvable models and used to explore the dynamics of C15 interstitial defects in iron. Our uncertainty quantification scheme allows for accurate modeling of the evolution of these defects over timescales of several seconds.

  18. Alpha-canonical form representation of the open loop dynamics of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, Almet; Eldem, Vasfi; Merrill, Walter C.; Guo, Ten-Huei

    1991-01-01

    A parameter and structure estimation technique for multivariable systems is used to obtain a state space representation of open loop dynamics of the space shuttle main engine in alpha-canonical form. The parameterization being used is both minimal and unique. The simplified linear model may be used for fault detection studies and control system design and development.

  19. A boundary PDE feedback control approach for the stabilization of mortgage price dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Sarno, D.

    2017-11-01

    Several transactions taking place in financial markets are dependent on the pricing of mortgages (loans for the purchase of residences, land or farms). In this article, a method for stabilization of mortgage price dynamics is developed. It is considered that mortgage prices follow a PDE model which is equivalent to a multi-asset Black-Scholes PDE. Actually it is a diffusion process evolving in a 2D assets space, where the first asset is the house price and the second asset is the interest rate. By applying semi-discretization and a finite differences scheme this multi-asset PDE is transformed into a state-space model consisting of ordinary nonlinear differential equations. For the local subsystems, into which the mortgage PDE is decomposed, it becomes possible to apply boundary-based feedback control. The controller design proceeds by showing that the state-space model of the mortgage price PDE stands for a differentially flat system. Next, for each subsystem which is related to a nonlinear ODE, a virtual control input is computed, that can invert the subsystem's dynamics and can eliminate the subsystem's tracking error. From the last row of the state-space description, the control input (boundary condition) that is actually applied to the multi-factor mortgage price PDE system is found. This control input contains recursively all virtual control inputs which were computed for the individual ODE subsystems associated with the previous rows of the state-space equation. Thus, by tracing the rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain the control input that should be applied to the mortgage price PDE system so as to assure that all its state variables will converge to the desirable setpoints. By showing the feasibility of such a control method it is also proven that through selected modification of the PDE boundary conditions the price of the mortgage can be made to converge and stabilize at specific reference values.

  20. Spectral functions of a time-periodically driven Falicov-Kimball model: Real-space Floquet dynamical mean-field theory study

    NASA Astrophysics Data System (ADS)

    Qin, Tao; Hofstetter, Walter

    2017-08-01

    We present a systematic study of the spectral functions of a time-periodically driven Falicov-Kimball Hamiltonian. In the high-frequency limit, this system can be effectively described as a Harper-Hofstadter-Falicov-Kimball model. Using real-space Floquet dynamical mean-field theory (DMFT), we take into account the interaction effects and contributions from higher Floquet bands in a nonperturbative way. Our calculations show a high degree of similarity between the interacting driven system and its effective static counterpart with respect to spectral properties. However, as also illustrated by our results, one should bear in mind that Floquet DMFT describes a nonequilibrium steady state, while an effective static Hamiltonian describes an equilibrium state. We further demonstrate the possibility of using real-space Floquet DMFT to study edge states on a cylinder geometry.

  1. Observing spatio-temporal dynamics of excitable media using reservoir computing

    NASA Astrophysics Data System (ADS)

    Zimmermann, Roland S.; Parlitz, Ulrich

    2018-04-01

    We present a dynamical observer for two dimensional partial differential equation models describing excitable media, where the required cross prediction from observed time series to not measured state variables is provided by Echo State Networks receiving input from local regions in space, only. The efficacy of this approach is demonstrated for (noisy) data from a (cubic) Barkley model and the Bueno-Orovio-Cherry-Fenton model describing chaotic electrical wave propagation in cardiac tissue.

  2. Formulation d'un modele mathematique par des techniques d'estimation de parametres a partir de donnees de vol pour l'helicoptere Bell 427 et l'avion F/A-18 servant a la recherches en aeroservoelasticite

    NASA Astrophysics Data System (ADS)

    Nadeau-Beaulieu, Michel

    In this thesis, three mathematical models are built from flight test data for different aircraft design applications: a ground dynamics model for the Bell 427 helicopter, a prediction model for the rotor and engine parameters for the same helicopter type and a simulation model for the aeroelastic deflections of the F/A-18. In the ground dynamics application, the model structure is derived from physics where the normal force between the helicopter and the ground is modelled as a vertical spring and the frictional force is modelled with static and dynamic friction coefficients. The ground dynamics model coefficients are optimized to ensure that the model matches the landing data within the FAA (Federal Aviation Administration) tolerance bands for a level D flight simulator. In the rotor and engine application, rotors torques (main and tail), the engine torque and main rotor speed are estimated using a state-space model. The model inputs are nonlinear terms derived from the pilot control inputs and the helicopter states. The model parameters are identified using the subspace method and are further optimised with the Levenberg-Marquardt minimisation algorithm. The model built with the subspace method provides an excellent estimate of the outputs within the FAA tolerance bands. The F/A-18 aeroelastic state-space model is built from flight test. The research concerning this model is divided in two parts. Firstly, the deflection of a given structural surface on the aircraft following a differential ailerons control input is represented by a Multiple Inputs Single Outputs linear model whose inputs are the ailerons positions and the structural surfaces deflections. Secondly, a single state-space model is used to represent the deflection of the aircraft wings and trailing edge flaps following any control input. In this case the model is made non-linear by multiplying model inputs into higher order terms and using these terms as the inputs of the state-space equations. In both cases, the identification method is the subspace method. Most fit coefficients between the estimated and the measured signals are above 73% and most correlation coefficient are higher than 90%.

  3. Parameter redundancy in discrete state-space and integrated models.

    PubMed

    Cole, Diana J; McCrea, Rachel S

    2016-09-01

    Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    PubMed

    Durstewitz, Daniel

    2017-06-01

    The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional) state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC) obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover relevant aspects of the nonlinear dynamics underlying observed neuronal time series, and directly link these to computational properties.

  5. Engineering Risk Assessment of Space Thruster Challenge Problem

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie

    2014-01-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.

  6. Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.

    PubMed

    Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C

    2017-07-01

    Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may have played a role in driving local dynamics. More generally, we demonstrated how state-space models can be used to test evidence for population spatial structure based on survey time-series data. Our study shows the importance of considering spatially structured dynamics, as the inferences from such an approach can lead to a different ecological understanding of the drivers of population declines, and fundamentally different management actions to restore populations. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  7. From Glass Formation to Icosahedral Ordering by Curving Three-Dimensional Space.

    PubMed

    Turci, Francesco; Tarjus, Gilles; Royall, C Patrick

    2017-05-26

    Geometric frustration describes the inability of a local molecular arrangement, such as icosahedra found in metallic glasses and in model atomic glass formers, to tile space. Local icosahedral order, however, is strongly frustrated in Euclidean space, which obscures any causal relationship with the observed dynamical slowdown. Here we relieve frustration in a model glass-forming liquid by curving three-dimensional space onto the surface of a 4-dimensional hypersphere. For sufficient curvature, frustration vanishes and the liquid "freezes" in a fully icosahedral structure via a sharp "transition." Frustration increases upon reducing the curvature, and the transition to the icosahedral state smoothens while glassy dynamics emerge. Decreasing the curvature leads to decoupling between dynamical and structural length scales and the decrease of kinetic fragility. This sheds light on the observed glass-forming behavior in Euclidean space.

  8. A Practical Approach to Implementing Real-Time Semantics

    NASA Technical Reports Server (NTRS)

    Luettgen, Gerald; Bhat, Girish; Cleaveland, Rance

    1999-01-01

    This paper investigates implementations of process algebras which are suitable for modeling concurrent real-time systems. It suggests an approach for efficiently implementing real-time semantics using dynamic priorities. For this purpose a proces algebra with dynamic priority is defined, whose semantics corresponds one-to-one to traditional real-time semantics. The advantage of the dynamic-priority approach is that it drastically reduces the state-space sizes of the systems in question while preserving all properties of their functional and real-time behavior. The utility of the technique is demonstrated by a case study which deals with the formal modeling and verification of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North Carolina, an automated verification tool in which the process algebra with dynamic priority is implemented. It turns out that the state space of the bus-protocol model is about an order of magnitude smaller than the one resulting from real-time semantics. The accuracy of the model is proved by applying model checking for verifying several mandatory properties of the bus protocol.

  9. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

    PubMed

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2016-04-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. State-space model with deep learning for functional dynamics estimation in resting-state fMRI

    PubMed Central

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2017-01-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. PMID:26774612

  11. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space

    PubMed Central

    Li, Kan; Príncipe, José C.

    2018-01-01

    This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime. PMID:29666568

  12. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space.

    PubMed

    Li, Kan; Príncipe, José C

    2018-01-01

    This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime.

  13. State Space Modeling of Time-Varying Contemporaneous and Lagged Relations in Connectivity Maps

    PubMed Central

    Molenaar, Peter C. M.; Beltz, Adriene M.; Gates, Kathleen M.; Wilson, Stephen J.

    2017-01-01

    Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. PMID:26546863

  14. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    PubMed

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  15. A Bayesian state-space formulation of dynamic occupancy models

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, M.

    2007-01-01

    Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by nondetection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and Win BUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site-specific heterogeneity in model parameters. The results indicate relatively low turnover and a stable distribution of Cerulean Warblers which is in contrast to analyses of counts of individuals from the same survey that indicate important declines. This discrepancy illustrates the inertia in occupancy relative to actual abundance. Furthermore, the model reveals a declining patch survival probability, and increasing turnover, toward the edge of the range of the species, which is consistent with metapopulation perspectives on the genesis of range edges. Given detection/non-detection data, dynamic occupancy models as described here have considerable potential for the study of distributions and range dynamics.

  16. Viewing hybrid systems as products of control systems and automata

    NASA Technical Reports Server (NTRS)

    Grossman, R. L.; Larson, R. G.

    1992-01-01

    The purpose of this note is to show how hybrid systems may be modeled as products of nonlinear control systems and finite state automata. By a hybrid system, we mean a network of consisting of continuous, nonlinear control system connected to discrete, finite state automata. Our point of view is that the automata switches between the control systems, and that this switching is a function of the discrete input symbols or letters that it receives. We show how a nonlinear control system may be viewed as a pair consisting of a bialgebra of operators coding the dynamics, and an algebra of observations coding the state space. We also show that a finite automata has a similar representation. A hybrid system is then modeled by taking suitable products of the bialgebras coding the dynamics and the observation algebras coding the state spaces.

  17. Assessment of type II diabetes mellitus using irregularly sampled measurements with missing data.

    PubMed

    Barazandegan, Melissa; Ekram, Fatemeh; Kwok, Ezra; Gopaluni, Bhushan; Tulsyan, Aditya

    2015-04-01

    Diabetes mellitus is one of the leading diseases in the developed world. In order to better regulate blood glucose in a diabetic patient, improved modelling of insulin-glucose dynamics is a key factor in the treatment of diabetes mellitus. In the current work, the insulin-glucose dynamics in type II diabetes mellitus can be modelled by using a stochastic nonlinear state-space model. Estimating the parameters of such a model is difficult as only a few blood glucose and insulin measurements per day are available in a non-clinical setting. Therefore, developing a predictive model of the blood glucose of a person with type II diabetes mellitus is important when the glucose and insulin concentrations are only available at irregular intervals. To overcome these difficulties, we resort to online sequential Monte Carlo (SMC) estimation of states and parameters of the state-space model for type II diabetic patients under various levels of randomly missing clinical data. Our results show that this method is efficient in monitoring and estimating the dynamics of the peripheral glucose, insulin and incretins concentration when 10, 25 and 50% of the simulated clinical data were randomly removed.

  18. Modelling the performance of the tapered artery heat pipe design for use in the radiator of the solar dynamic power system of the NASA Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Austin Lewis

    1988-01-01

    The paper presents a computer program developed to model the steady-state performance of the tapered artery heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station. The program solves six governing equations to ascertain which one is limiting the maximum heat transfer rate of the heat pipe. The present model appeared to be slightly better than the LTV model in matching the 1-g data for the standard 15-ft test heat pipe.

  19. A self-cognizant dynamic system approach for prognostics and health management

    NASA Astrophysics Data System (ADS)

    Bai, Guangxing; Wang, Pingfeng; Hu, Chao

    2015-03-01

    Prognostics and health management (PHM) is an emerging engineering discipline that diagnoses and predicts how and when a system will degrade its performance and lose its partial or whole functionality. Due to the complexity and invisibility of rules and states of most dynamic systems, developing an effective approach to track evolving system states becomes a major challenge. This paper presents a new self-cognizant dynamic system (SCDS) approach that incorporates artificial intelligence into dynamic system modeling for PHM. A feed-forward neural network (FFNN) is selected to approximate a complex system response which is challenging task in general due to inaccessible system physics. The trained FFNN model is then embedded into a dual extended Kalman filter algorithm to track down system dynamics. A recursive computation technique used to update the FFNN model using online measurements is also derived. To validate the proposed SCDS approach, a battery dynamic system is considered as an experimental application. After modeling the battery system by a FFNN model and a state-space model, the state-of-charge (SoC) and state-of-health (SoH) are estimated by updating the FFNN model using the proposed approach. Experimental results suggest that the proposed approach improves the efficiency and accuracy for battery health management.

  20. Steady-state kinetic modeling constrains cellular resting states and dynamic behavior.

    PubMed

    Purvis, Jeremy E; Radhakrishnan, Ravi; Diamond, Scott L

    2009-03-01

    A defining characteristic of living cells is the ability to respond dynamically to external stimuli while maintaining homeostasis under resting conditions. Capturing both of these features in a single kinetic model is difficult because the model must be able to reproduce both behaviors using the same set of molecular components. Here, we show how combining small, well-defined steady-state networks provides an efficient means of constructing large-scale kinetic models that exhibit realistic resting and dynamic behaviors. By requiring each kinetic module to be homeostatic (at steady state under resting conditions), the method proceeds by (i) computing steady-state solutions to a system of ordinary differential equations for each module, (ii) applying principal component analysis to each set of solutions to capture the steady-state solution space of each module network, and (iii) combining optimal search directions from all modules to form a global steady-state space that is searched for accurate simulation of the time-dependent behavior of the whole system upon perturbation. Importantly, this stepwise approach retains the nonlinear rate expressions that govern each reaction in the system and enforces constraints on the range of allowable concentration states for the full-scale model. These constraints not only reduce the computational cost of fitting experimental time-series data but can also provide insight into limitations on system concentrations and architecture. To demonstrate application of the method, we show how small kinetic perturbations in a modular model of platelet P2Y(1) signaling can cause widespread compensatory effects on cellular resting states.

  1. Modeling the Physics of Sliding Objects on Rotating Space Elevators and Other Non-relativistic Strings

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Knudsen, Steven

    2017-01-01

    We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.

  2. Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.

    PubMed

    Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar

    2012-01-01

    In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.

  3. Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit

    PubMed Central

    Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar

    2012-01-01

    In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586

  4. A Nonlinear Dynamical Systems based Model for Stochastic Simulation of Streamflow

    NASA Astrophysics Data System (ADS)

    Erkyihun, S. T.; Rajagopalan, B.; Zagona, E. A.

    2014-12-01

    Traditional time series methods model the evolution of the underlying process as a linear or nonlinear function of the autocorrelation. These methods capture the distributional statistics but are incapable of providing insights into the dynamics of the process, the potential regimes, and predictability. This work develops a nonlinear dynamical model for stochastic simulation of streamflows. In this, first a wavelet spectral analysis is employed on the flow series to isolate dominant orthogonal quasi periodic timeseries components. The periodic bands are added denoting the 'signal' component of the time series and the residual being the 'noise' component. Next, the underlying nonlinear dynamics of this combined band time series is recovered. For this the univariate time series is embedded in a d-dimensional space with an appropriate lag T to recover the state space in which the dynamics unfolds. Predictability is assessed by quantifying the divergence of trajectories in the state space with time, as Lyapunov exponents. The nonlinear dynamics in conjunction with a K-nearest neighbor time resampling is used to simulate the combined band, to which the noise component is added to simulate the timeseries. We demonstrate this method by applying it to the data at Lees Ferry that comprises of both the paleo reconstructed and naturalized historic annual flow spanning 1490-2010. We identify interesting dynamics of the signal in the flow series and epochal behavior of predictability. These will be of immense use for water resources planning and management.

  5. Quantum-like model of brain's functioning: decision making from decoherence.

    PubMed

    Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu; Basieva, Irina; Khrennikov, Andrei

    2011-07-21

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices (representing mental states). This equilibrium state determines Alice's mixed (i.e., probabilistic) strategy. We use a master equation in which quantum physics describes the process of decoherence as the result of interaction with environment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence is induced by the interaction with memory and the external mental environment. We study (numerically) the dynamics of quantum entropy of Alice's mental state in the process of decision making. We also consider classical entropy corresponding to Alice's choices. We introduce a measure of Alice's diffidence as the difference between classical and quantum entropies of Alice's mental state. We see that (at least in our model example) diffidence decreases (approaching zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like dynamics in the brain; especially roles played by lateral prefrontal cortex or/and orbitofrontal cortex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor.

    PubMed

    Prakash, J; Srinivasan, K

    2009-07-01

    In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.

  7. A High Performance Bayesian Computing Framework for Spatiotemporal Uncertainty Modeling

    NASA Astrophysics Data System (ADS)

    Cao, G.

    2015-12-01

    All types of spatiotemporal measurements are subject to uncertainty. With spatiotemporal data becomes increasingly involved in scientific research and decision making, it is important to appropriately model the impact of uncertainty. Quantitatively modeling spatiotemporal uncertainty, however, is a challenging problem considering the complex dependence and dataheterogeneities.State-space models provide a unifying and intuitive framework for dynamic systems modeling. In this paper, we aim to extend the conventional state-space models for uncertainty modeling in space-time contexts while accounting for spatiotemporal effects and data heterogeneities. Gaussian Markov Random Field (GMRF) models, also known as conditional autoregressive models, are arguably the most commonly used methods for modeling of spatially dependent data. GMRF models basically assume that a geo-referenced variable primarily depends on its neighborhood (Markov property), and the spatial dependence structure is described via a precision matrix. Recent study has shown that GMRFs are efficient approximation to the commonly used Gaussian fields (e.g., Kriging), and compared with Gaussian fields, GMRFs enjoy a series of appealing features, such as fast computation and easily accounting for heterogeneities in spatial data (e.g, point and areal). This paper represents each spatial dataset as a GMRF and integrates them into a state-space form to statistically model the temporal dynamics. Different types of spatial measurements (e.g., categorical, count or continuous), can be accounted for by according link functions. A fast alternative to MCMC framework, so-called Integrated Nested Laplace Approximation (INLA), was adopted for model inference.Preliminary case studies will be conducted to showcase the advantages of the described framework. In the first case, we apply the proposed method for modeling the water table elevation of Ogallala aquifer over the past decades. In the second case, we analyze the drought impacts in Texas counties in the past years, where the spatiotemporal dynamics are represented in areal data.

  8. Hamiltonian flow over saddles for exploring molecular phase space structures

    NASA Astrophysics Data System (ADS)

    Farantos, Stavros C.

    2018-03-01

    Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.

  9. Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach

    NASA Astrophysics Data System (ADS)

    Borrelli, Raffaele; Gelin, Maxim F.

    2016-12-01

    Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.

  10. Dynamic State Estimation of Terrestrial and Solar Plasmas

    NASA Astrophysics Data System (ADS)

    Kamalabadi, Farzad

    A pervasive problem in virtually all branches of space science is the estimation of multi-dimensional state parameters of a dynamical system from a collection of indirect, often incomplete, and imprecise measurements. Subsequent scientific inference is predicated on rigorous analysis, interpretation, and understanding of physical observations and on the reliability of the associated quantitative statistical bounds and performance characteristics of the algorithms used. In this work, we focus on these dynamic state estimation problems and illustrate their importance in the context of two timely activities in space remote sensing. First, we discuss the estimation of multi-dimensional ionospheric state parameters from UV spectral imaging measurements anticipated to be acquired the recently selected NASA Heliophysics mission, Ionospheric Connection Explorer (ICON). Next, we illustrate that similar state-space formulations provide the means for the estimation of 3D, time-dependent densities and temperatures in the solar corona from a series of white-light and EUV measurements. We demonstrate that, while a general framework for the stochastic formulation of the state estimation problem is suited for systematic inference of the parameters of a hidden Markov process, several challenges must be addressed in the assimilation of an increasing volume and diversity of space observations. These challenges are: (1) the computational tractability when faced with voluminous and multimodal data, (2) the inherent limitations of the underlying models which assume, often incorrectly, linear dynamics and Gaussian noise, and (3) the unavailability or inaccuracy of transition probabilities and noise statistics. We argue that pursuing answers to these questions necessitates cross-disciplinary research that enables progress toward systematically reconciling observational and theoretical understanding of the space environment.

  11. Efficient robust reconstruction of dynamic PET activity maps with radioisotope decay constraints.

    PubMed

    Gao, Fei; Liu, Huafeng; Shi, Pengcheng

    2010-01-01

    Dynamic PET imaging performs sequence of data acquisition in order to provide visualization and quantification of physiological changes in specific tissues and organs. The reconstruction of activity maps is generally the first step in dynamic PET. State space Hinfinity approaches have been proved to be a robust method for PET image reconstruction where, however, temporal constraints are not considered during the reconstruction process. In addition, the state space strategies for PET image reconstruction have been computationally prohibitive for practical usage because of the need for matrix inversion. In this paper, we present a minimax formulation of the dynamic PET imaging problem where a radioisotope decay model is employed as physics-based temporal constraints on the photon counts. Furthermore, a robust steady state Hinfinity filter is developed to significantly improve the computational efficiency with minimal loss of accuracy. Experiments are conducted on Monte Carlo simulated image sequences for quantitative analysis and validation.

  12. Unfolding and melting of DNA (RNA) hairpins: the concept of structure-specific 2D dynamic landscapes.

    PubMed

    Lin, Milo M; Meinhold, Lars; Shorokhov, Dmitry; Zewail, Ahmed H

    2008-08-07

    A 2D free-energy landscape model is presented to describe the (un)folding transition of DNA/RNA hairpins, together with molecular dynamics simulations and experimental findings. The dependence of the (un)folding transition on the stem sequence and the loop length is shown in the enthalpic and entropic contributions to the free energy. Intermediate structures are well defined by the two coordinates of the landscape during (un)zipping. Both the free-energy landscape model and the extensive molecular dynamics simulations totaling over 10 mus predict the existence of temperature-dependent kinetic intermediate states during hairpin (un)zipping and provide the theoretical description of recent ultrafast temperature-jump studies which indicate that hairpin (un)zipping is, in general, not a two-state process. The model allows for lucid prediction of the collapsed state(s) in simple 2D space and we term it the kinetic intermediate structure (KIS) model.

  13. State space modeling of time-varying contemporaneous and lagged relations in connectivity maps.

    PubMed

    Molenaar, Peter C M; Beltz, Adriene M; Gates, Kathleen M; Wilson, Stephen J

    2016-01-15

    Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. Published by Elsevier Inc.

  14. Modeling species occurrence dynamics with multiple states and imperfect detection

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture-recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics. ?? 2009 by the Ecological Society of America.

  15. Dynamic models for problems of species occurrence with multiple states

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture?recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics.

  16. Model reduction in a subset of the original states

    NASA Technical Reports Server (NTRS)

    Yae, K. H.; Inman, D. J.

    1992-01-01

    A model reduction method is investigated to provide a smaller structural dynamic model for subsequent structural control design. A structural dynamic model is assumed to be derived from finite element analysis. It is first converted into the state space form, and is further reduced by the internal balancing method. Through the co-ordinate transformation derived from the states that are deleted during reduction, the reduced model is finally expressed with the states that are members of the original states. Therefore, the states in the final reduced model represent the degrees of freedom of the nodes that are selected by the designer. The procedure provides a more practical implementation of model reduction for applications in which specific nodes, such as sensor and/or actuator attachment points, are to be retained in the reduced model. Thus, it ensures that the reduced model is under the same input and output condition as the original physical model. The procedure is applied to two simple examples and comparisons are made between the full and reduced order models. The method can be applied to a linear, continuous and time-invariant model of structural dynamics with nonproportional viscous damping.

  17. Transient modeling of the thermohydraulic behavior of high temperature heat pipes for space reactor applications

    NASA Technical Reports Server (NTRS)

    Hall, Michael L.; Doster, Joseph M.

    1986-01-01

    Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented.

  18. Dynamical initial-state model for relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chun; Schenke, Bjorn

    We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a uctuating time depending on sampled final rapidities. Energy is deposited in space-time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directlymore » from the initial state model, including net-baryon rapidity distributions, 2-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. Here, we also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation.« less

  19. Dynamical initial-state model for relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Schenke, Björn

    2018-02-01

    We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy-ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a fluctuating time depending on sampled final rapidities. Energy is deposited in space time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directly from the initial-state model, including net-baryon rapidity distributions, two-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. We also present the implementation of the model with 3+1-dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial-state model at proper times greater than the initial time for the hydrodynamic simulation.

  20. Dynamical initial-state model for relativistic heavy-ion collisions

    DOE PAGES

    Shen, Chun; Schenke, Bjorn

    2018-02-15

    We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a uctuating time depending on sampled final rapidities. Energy is deposited in space-time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directlymore » from the initial state model, including net-baryon rapidity distributions, 2-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. Here, we also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation.« less

  1. Equivalent Dynamic Models.

    PubMed

    Molenaar, Peter C M

    2017-01-01

    Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.

  2. Interference in the classical probabilistic model and its representation in complex Hilbert space

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei Yu.

    2005-10-01

    The notion of a context (complex of physical conditions, that is to say: specification of the measurement setup) is basic in this paper.We show that the main structures of quantum theory (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present already in a latent form in the classical Kolmogorov probability model. However, this model should be considered as a calculus of contextual probabilities. In our approach it is forbidden to consider abstract context independent probabilities: “first context and only then probability”. We construct the representation of the general contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function (in particular, Schrödinger's dynamics) can be considered as Hilbert space projections of a realistic dynamics in a “prespace”. The basic condition for representing of the prespace-dynamics is the law of statistical conservation of energy-conservation of probabilities. In general the Hilbert space projection of the “prespace” dynamics can be nonlinear and even irreversible (but it is always unitary). Methods developed in this paper can be applied not only to quantum mechanics, but also to classical statistical mechanics. The main quantum-like structures (e.g., interference of probabilities) might be found in some models of classical statistical mechanics. Quantum-like probabilistic behavior can be demonstrated by biological systems. In particular, it was recently found in some psychological experiments.

  3. Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1996-01-01

    In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.

  4. A 4-cylinder Stirling engine computer program with dynamic energy equations

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1983-01-01

    A computer program for simulating the steady state and transient performance of a four cylinder Stirling engine is presented. The thermodynamic model includes both continuity and energy equations and linear momentum terms (flow resistance). Each working space between the pistons is broken into seven control volumes. Drive dynamics and vehicle load effects are included. The model contains 70 state variables. Also included in the model are piston rod seal leakage effects. The computer program includes a model of a hydrogen supply system, from which hydrogen may be added to the system to accelerate the engine. Flow charts are provided.

  5. State-space receptive fields of semicircular canal afferent neurons in the bullfrog

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.

    2001-01-01

    Receptive fields are commonly used to describe spatial characteristics of sensory neuron responses. They can be extended to characterize temporal or dynamical aspects by mapping neural responses in dynamical state spaces. The state-space receptive field of a neuron is the probability distribution of the dynamical state of the stimulus-generating system conditioned upon the occurrence of a spike. We have computed state-space receptive fields for semicircular canal afferent neurons in the bullfrog (Rana catesbeiana). We recorded spike times during broad-band Gaussian noise rotational velocity stimuli, computed the frequency distribution of head states at spike times, and normalized these to obtain conditional pdfs for the state. These state-space receptive fields quantify what the brain can deduce about the dynamical state of the head when a single spike arrives from the periphery. c2001 Elsevier Science B.V. All rights reserved.

  6. A Historical Perspective on Dynamics Testing at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Kvaternik, Raymond G.

    2000-01-01

    The history of structural dynamics testing research over the past four decades at the Langley Research Center of the National Aeronautics and Space Administration is reviewed. Beginning in the early sixties, Langley investigated several scale model and full-scale spacecraft including the NIMBUS and various concepts for Apollo and Viking landers. Langley engineers pioneered the use of scaled models to study the dynamics of launch vehicles including Saturn I, Saturn V, and Titan III. In the seventies, work emphasized the Space Shuttle and advanced test and data analysis methods. In the eighties, the possibility of delivering large structures to orbit by the Space Shuttle shifted focus towards understanding the interaction of flexible space structures with attitude control systems. Although Langley has maintained a tradition of laboratory-based research, some flight experiments were supported. This review emphasizes work that, in some way, advanced the state of knowledge at the time.

  7. A Historical Perspective on Dynamics Testing at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.

    2000-01-01

    The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.

  8. Method of performing computational aeroelastic analyses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A. (Inventor)

    2011-01-01

    Computational aeroelastic analyses typically use a mathematical model for the structural modes of a flexible structure and a nonlinear aerodynamic model that can generate a plurality of unsteady aerodynamic responses based on the structural modes for conditions defining an aerodynamic condition of the flexible structure. In the present invention, a linear state-space model is generated using a single execution of the nonlinear aerodynamic model for all of the structural modes where a family of orthogonal functions is used as the inputs. Then, static and dynamic aeroelastic solutions are generated using computational interaction between the mathematical model and the linear state-space model for a plurality of periodic points in time.

  9. Spin squeezing as an indicator of quantum chaos in the Dicke model.

    PubMed

    Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang

    2009-04-01

    We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.

  10. Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space

    PubMed Central

    Cui, Jin-Ming; Huang, Yun-Feng; Wang, Zhao; Cao, Dong-Yang; Wang, Jian; Lv, Wei-Min; Luo, Le; del Campo, Adolfo; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    The Kibble-Zurek mechanism is the paradigm to account for the nonadiabatic dynamics of a system across a continuous phase transition. Its study in the quantum regime is hindered by the requisite of ground state cooling. We report the experimental quantum simulation of critical dynamics in the transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can be probed with high accuracy using a single trapped ion. We test the Kibble-Zurek mechanism in the quantum regime in the momentum space and find the measured scaling of excitations is in accordance with the theoretical prediction. PMID:27633087

  11. A simplified dynamic model of the T700 turboshaft engine

    NASA Technical Reports Server (NTRS)

    Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.

    1992-01-01

    A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.

  12. Modelling, analyses and design of switching converters

    NASA Technical Reports Server (NTRS)

    Cuk, S. M.; Middlebrook, R. D.

    1978-01-01

    A state-space averaging method for modelling switching dc-to-dc converters for both continuous and discontinuous conduction mode is developed. In each case the starting point is the unified state-space representation, and the end result is a complete linear circuit model, for each conduction mode, which correctly represents all essential features, namely, the input, output, and transfer properties (static dc as well as dynamic ac small-signal). While the method is generally applicable to any switching converter, it is extensively illustrated for the three common power stages (buck, boost, and buck-boost). The results for these converters are then easily tabulated owing to the fixed equivalent circuit topology of their canonical circuit model. The insights that emerge from the general state-space modelling approach lead to the design of new converter topologies through the study of generic properties of the cascade connection of basic buck and boost converters.

  13. Identifying and correcting non-Markov states in peptide conformational dynamics

    NASA Astrophysics Data System (ADS)

    Nerukh, Dmitry; Jensen, Christian H.; Glen, Robert C.

    2010-02-01

    Conformational transitions in proteins define their biological activity and can be investigated in detail using the Markov state model. The fundamental assumption on the transitions between the states, their Markov property, is critical in this framework. We test this assumption by analyzing the transitions obtained directly from the dynamics of a molecular dynamics simulated peptide valine-proline-alanine-leucine and states defined phenomenologically using clustering in dihedral space. We find that the transitions are Markovian at the time scale of ≈50 ps and longer. However, at the time scale of 30-40 ps the dynamics loses its Markov property. Our methodology reveals the mechanism that leads to non-Markov behavior. It also provides a way of regrouping the conformations into new states that now possess the required Markov property of their dynamics.

  14. Dynamic Forms. Part 2; Application to Aircraft Guidance

    NASA Technical Reports Server (NTRS)

    Meyer, George; Smith, G. Allan

    1997-01-01

    The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of waypoints through which the aircraft trajectory must pass. The waypoints typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory that satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multidimensional, multiaxis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions are required to be smooth. The proposed guidance algorithm is based on the inversion of the pure feedback approximation, followed by correction for the effects of zero dynamics. The paper describes the structure and major modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.

  15. Geometric state space uncertainty as a new type of uncertainty addressing disparity in ';emergent properties' between real and modeled systems

    NASA Astrophysics Data System (ADS)

    Montero, J. T.; Lintz, H. E.; Sharp, D.

    2013-12-01

    Do emergent properties that result from models of complex systems match emergent properties from real systems? This question targets a type of uncertainty that we argue requires more attention in system modeling and validation efforts. We define an ';emergent property' to be an attribute or behavior of a modeled or real system that can be surprising or unpredictable and result from complex interactions among the components of a system. For example, thresholds are common across diverse systems and scales and can represent emergent system behavior that is difficult to predict. Thresholds or other types of emergent system behavior can be characterized by their geometry in state space (where state space is the space containing the set of all states of a dynamic system). One way to expedite our growing mechanistic understanding of how emergent properties emerge from complex systems is to compare the geometry of surfaces in state space between real and modeled systems. Here, we present an index (threshold strength) that can quantify a geometric attribute of a surface in state space. We operationally define threshold strength as how strongly a surface in state space resembles a step or an abrupt transition between two system states. First, we validated the index for application in greater than three dimensions of state space using simulated data. Then, we demonstrated application of the index in measuring geometric state space uncertainty between a real system and a deterministic, modeled system. In particular, we looked at geometric space uncertainty between climate behavior in 20th century and modeled climate behavior simulated by global climate models (GCMs) in the Coupled Model Intercomparison Project phase 5 (CMIP5). Surfaces from the climate models came from running the models over the same domain as the real data. We also created response surfaces from a real, climate data based on an empirical model that produces a geometric surface of predicted values in state space. We used a kernel regression method designed to capture the geometry of real data pattern without imposing shape assumptions a priori on the data; this kernel regression method is known as Non-parametric Multiplicative Regression (NPMR). We found that quantifying and comparing a geometric attribute in more than three dimensions of state space can discern whether the emergent nature of complex interactions in modeled systems matches that of real systems. Further, this method has potentially wider application in contexts where searching for abrupt change or ';action' in any hyperspace is desired.

  16. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching L.; Adams, Neil; Bedrossian, Nazareth; Valavani, Lena

    1993-01-01

    This paper demonstrates an approach to nonlinear control system design that uses linearization by state feedback to allow faster maneuvering of payloads by the Shuttle Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the nonlinear plant dynamics so that a linear controller can be designed for the SRMS. First a nonlinear design model was generated via SIMULINK. This design model included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo model, and linearized gearbox model. The current SRMS position hold controller was implemented on this system. Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The maneuver was simulated. Finally, higher bandwidth controllers were developed. Results of the new controllers were compared with the existing SRMS automatic control modes for the Space Station Freedom Mission Build 4 Payload extended on the SRMS.

  17. Cell transmission model of dynamic assignment for urban rail transit networks.

    PubMed

    Xu, Guangming; Zhao, Shuo; Shi, Feng; Zhang, Feilian

    2017-01-01

    For urban rail transit network, the space-time flow distribution can play an important role in evaluating and optimizing the space-time resource allocation. For obtaining the space-time flow distribution without the restriction of schedules, a dynamic assignment problem is proposed based on the concept of continuous transmission. To solve the dynamic assignment problem, the cell transmission model is built for urban rail transit networks. The priority principle, queuing process, capacity constraints and congestion effects are considered in the cell transmission mechanism. Then an efficient method is designed to solve the shortest path for an urban rail network, which decreases the computing cost for solving the cell transmission model. The instantaneous dynamic user optimal state can be reached with the method of successive average. Many evaluation indexes of passenger flow can be generated, to provide effective support for the optimization of train schedules and the capacity evaluation for urban rail transit network. Finally, the model and its potential application are demonstrated via two numerical experiments using a small-scale network and the Beijing Metro network.

  18. Sliding contact on the interface of elastic body and rigid surface using a single block Burridge-Knopoff model

    NASA Astrophysics Data System (ADS)

    Amireghbali, A.; Coker, D.

    2018-01-01

    Burridge and Knopoff proposed a mass-spring model to explore interface dynamics along a fault during an earthquake. The Burridge and Knopoff (BK) model is composed of a series of blocks of equal mass connected to each other by springs of same stiffness. The blocks also are attached to a rigid driver via another set of springs that pulls them at a constant velocity against a rigid substrate. They studied dynamics of interface for an especial case with ten blocks and a specific set of fault properties. In our study effects of Coulomb and rate-state dependent friction laws on the dynamics of a single block BK model is investigated. The model dynamics is formulated as a system of coupled nonlinear ordinary differential equations in state-space form which lends itself to numerical integration methods, e.g. Runge-Kutta procedure for solution. The results show that the rate and state dependent friction law has the potential of triggering dynamic patterns that are different from those under Coulomb law.

  19. Simple Deterministically Constructed Recurrent Neural Networks

    NASA Astrophysics Data System (ADS)

    Rodan, Ali; Tiňo, Peter

    A large number of models for time series processing, forecasting or modeling follows a state-space formulation. Models in the specific class of state-space approaches, referred to as Reservoir Computing, fix their state-transition function. The state space with the associated state transition structure forms a reservoir, which is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be potentially exploited by the reservoir-to-output readout mapping. The largely "black box" character of reservoirs prevents us from performing a deeper theoretical investigation of the dynamical properties of successful reservoirs. Reservoir construction is largely driven by a series of (more-or-less) ad-hoc randomized model building stages, with both the researchers and practitioners having to rely on a series of trials and errors. We show that a very simple deterministically constructed reservoir with simple cycle topology gives performances comparable to those of the Echo State Network (ESN) on a number of time series benchmarks. Moreover, we argue that the memory capacity of such a model can be made arbitrarily close to the proved theoretical limit.

  20. Quality-by-Design (QbD): An integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development.

    PubMed

    Wu, Huiquan; White, Maury; Khan, Mansoor A

    2011-02-28

    The aim of this work was to develop an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and design space development. A dynamic co-precipitation process by gradually introducing water to the ternary system of naproxen-Eudragit L100-alcohol was monitored at real-time in situ via Lasentec FBRM and PVM. 3D map of count-time-chord length revealed three distinguishable process stages: incubation, transition, and steady-state. The effects of high risk process variables (slurry temperature, stirring rate, and water addition rate) on both derived co-precipitation process rates and final chord-length-distribution were evaluated systematically using a 3(3) full factorial design. Critical process variables were identified via ANOVA for both transition and steady state. General linear models (GLM) were then used for parameter estimation for each critical variable. Clear trends about effects of each critical variable during transition and steady state were found by GLM and were interpreted using fundamental process principles and Nyvlt's transfer model. Neural network models were able to link process variables with response variables at transition and steady state with R(2) of 0.88-0.98. PVM images evidenced nucleation and crystal growth. Contour plots illustrated design space via critical process variables' ranges. It demonstrated the utility of integrated PAT approach for QbD development. Published by Elsevier B.V.

  1. Exhibit D modular design attitude control system study

    NASA Technical Reports Server (NTRS)

    Chichester, F.

    1984-01-01

    A dynamically equivalent four body approximation of the NASTRAN finite element model supplied for hybrid deployable truss to support the digital computer simulation of the ten body model of the flexible space platform that incorporates the four body truss model were investigated. Coefficients for sensitivity of state variables of the linearized model of the three axes rotational dynamics of the prototype flexible spacecraft were generated with respect to the model's parameters. Software changes required to accommodate addition of another rigid body to the five body model of the rotational dynamics of the prototype flexible spacecraft were evaluated.

  2. Random Testing and Model Checking: Building a Common Framework for Nondeterministic Exploration

    NASA Technical Reports Server (NTRS)

    Groce, Alex; Joshi, Rajeev

    2008-01-01

    Two popular forms of dynamic analysis, random testing and explicit-state software model checking, are perhaps best viewed as search strategies for exploring the state spaces introduced by nondeterminism in program inputs. We present an approach that enables this nondeterminism to be expressed in the SPIN model checker's PROMELA language, and then lets users generate either model checkers or random testers from a single harness for a tested C program. Our approach makes it easy to compare model checking and random testing for models with precisely the same input ranges and probabilities and allows us to mix random testing with model checking's exhaustive exploration of non-determinism. The PROMELA language, as intended in its design, serves as a convenient notation for expressing nondeterminism and mixing random choices with nondeterministic choices. We present and discuss a comparison of random testing and model checking. The results derive from using our framework to test a C program with an effectively infinite state space, a module in JPL's next Mars rover mission. More generally, we show how the ability of the SPIN model checker to call C code can be used to extend SPIN's features, and hope to inspire others to use the same methods to implement dynamic analyses that can make use of efficient state storage, matching, and backtracking.

  3. Dynamic physiological modeling for functional diffuse optical tomography

    PubMed Central

    Diamond, Solomon Gilbert; Huppert, Theodore J.; Kolehmainen, Ville; Franceschini, Maria Angela; Kaipio, Jari P.; Arridge, Simon R.; Boas, David A.

    2009-01-01

    Diffuse optical tomography (DOT) is a noninvasive imaging technology that is sensitive to local concentration changes in oxy- and deoxyhemoglobin. When applied to functional neuroimaging, DOT measures hemodynamics in the scalp and brain that reflect competing metabolic demands and cardiovascular dynamics. The diffuse nature of near-infrared photon migration in tissue and the multitude of physiological systems that affect hemodynamics motivate the use of anatomical and physiological models to improve estimates of the functional hemodynamic response. In this paper, we present a linear state-space model for DOT analysis that models the physiological fluctuations present in the data with either static or dynamic estimation. We demonstrate the approach by using auxiliary measurements of blood pressure variability and heart rate variability as inputs to model the background physiology in DOT data. We evaluate the improvements accorded by modeling this physiology on ten human subjects with simulated functional hemodynamic responses added to the baseline physiology. Adding physiological modeling with a static estimator significantly improved estimates of the simulated functional response, and further significant improvements were achieved with a dynamic Kalman filter estimator (paired t tests, n = 10, P < 0.05). These results suggest that physiological modeling can improve DOT analysis. The further improvement with the Kalman filter encourages continued research into dynamic linear modeling of the physiology present in DOT. Cardiovascular dynamics also affect the blood-oxygen-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI). This state-space approach to DOT analysis could be extended to BOLD fMRI analysis, multimodal studies and real-time analysis. PMID:16242967

  4. Strongly contracted canonical transformation theory

    NASA Astrophysics Data System (ADS)

    Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic

    2010-01-01

    Canonical transformation (CT) theory describes dynamic correlation in multireference systems with large active spaces. Here we discuss CT theory's intruder state problem and why our previous approach of overlap matrix truncation becomes infeasible for sufficiently large active spaces. We propose the use of strongly and weakly contracted excitation operators as alternatives for dealing with intruder states in CT theory. The performance of these operators is evaluated for the H2O, N2, and NiO molecules, with comparisons made to complete active space second order perturbation theory and Davidson-corrected multireference configuration interaction theory. Finally, using a combination of strongly contracted CT theory and orbital-optimized density matrix renormalization group theory, we evaluate the singlet-triplet gap of free base porphin using an active space containing all 24 out-of-plane 2p orbitals. Modeling dynamic correlation with an active space of this size is currently only possible using CT theory.

  5. Individual-based models for adaptive diversification in high-dimensional phenotype spaces.

    PubMed

    Ispolatov, Iaroslav; Madhok, Vaibhav; Doebeli, Michael

    2016-02-07

    Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can be introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Implications of tristability in pattern-forming ecosystems

    NASA Astrophysics Data System (ADS)

    Zelnik, Yuval R.; Gandhi, Punit; Knobloch, Edgar; Meron, Ehud

    2018-03-01

    Many ecosystems show both self-organized spatial patterns and multistability of possible states. The combination of these two phenomena in different forms has a significant impact on the behavior of ecosystems in changing environments. One notable case is connected to tristability of two distinct uniform states together with patterned states, which has recently been found in model studies of dryland ecosystems. Using a simple model, we determine the extent of tristability in parameter space, explore its effects on the system dynamics, and consider its implications for state transitions or regime shifts. We analyze the bifurcation structure of model solutions that describe uniform states, periodic patterns, and hybrid states between the former two. We map out the parameter space where these states exist, and note how the different states interact with each other. We further focus on two special implications with ecological significance, breakdown of the snaking range and complex fronts. We find that the organization of the hybrid states within a homoclinic snaking structure breaks down as it meets a Maxwell point where simple fronts are stationary. We also discover a new series of complex fronts between the uniform states, each with its own velocity. We conclude with a brief discussion of the significance of these findings for the dynamics of regime shifts and their potential control.

  7. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model.

    PubMed

    Papasavvas, Christoforos A; Wang, Yujiang; Trevelyan, Andrew J; Kaiser, Marcus

    2015-09-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics.

  8. A Subspace Approach to the Structural Decomposition and Identification of Ankle Joint Dynamic Stiffness.

    PubMed

    Jalaleddini, Kian; Tehrani, Ehsan Sobhani; Kearney, Robert E

    2017-06-01

    The purpose of this paper is to present a structural decomposition subspace (SDSS) method for decomposition of the joint torque to intrinsic, reflexive, and voluntary torques and identification of joint dynamic stiffness. First, it formulates a novel state-space representation for the joint dynamic stiffness modeled by a parallel-cascade structure with a concise parameter set that provides a direct link between the state-space representation matrices and the parallel-cascade parameters. Second, it presents a subspace method for the identification of the new state-space model that involves two steps: 1) the decomposition of the intrinsic and reflex pathways and 2) the identification of an impulse response model of the intrinsic pathway and a Hammerstein model of the reflex pathway. Extensive simulation studies demonstrate that SDSS has significant performance advantages over some other methods. Thus, SDSS was more robust under high noise conditions, converging where others failed; it was more accurate, giving estimates with lower bias and random errors. The method also worked well in practice and yielded high-quality estimates of intrinsic and reflex stiffnesses when applied to experimental data at three muscle activation levels. The simulation and experimental results demonstrate that SDSS accurately decomposes the intrinsic and reflex torques and provides accurate estimates of physiologically meaningful parameters. SDSS will be a valuable tool for studying joint stiffness under functionally important conditions. It has important clinical implications for the diagnosis, assessment, objective quantification, and monitoring of neuromuscular diseases that change the muscle tone.

  9. Real-time prediction of respiratory motion based on a local dynamic model in an augmented space

    NASA Astrophysics Data System (ADS)

    Hong, S.-M.; Jung, B.-H.; Ruan, D.

    2011-03-01

    Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.

  10. Real-time prediction of respiratory motion based on a local dynamic model in an augmented space.

    PubMed

    Hong, S-M; Jung, B-H; Ruan, D

    2011-03-21

    Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.

  11. Reduced size first-order subsonic and supersonic aeroelastic modeling

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1990-01-01

    Various aeroelastic, aeroservoelastic, dynamic-response, and sensitivity analyses are based on a time-domain first-order (state-space) formulation of the equations of motion. The formulation of this paper is based on the minimum-state (MS) aerodynamic approximation method, which yields a low number of aerodynamic augmenting states. Modifications of the MS and the physical weighting procedures make the modeling method even more attractive. The flexibility of constraint selection is increased without increasing the approximation problem size; the accuracy of dynamic residualization of high-frequency modes is improved; and the resulting model is less sensitive to parametric changes in subsequent analyses. Applications to subsonic and supersonic cases demonstrate the generality, flexibility, accuracy, and efficiency of the method.

  12. A new state space model for the NASA/JPL 70-meter antenna servo controls

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1987-01-01

    A control axis referenced model of the NASA/JPL 70-m antenna structure is combined with the dynamic equations of servo components to produce a comprehansive state variable (matrix) model of the coupled system. An interactive Fortran program for generating the linear system model and computing its salient parameters is described. Results are produced in a state variable, block diagram, and in factored transfer function forms to facilitate design and analysis by classical as well as modern control methods.

  13. Numerical Estimation of Balanced and Falling States for Constrained Legged Systems

    NASA Astrophysics Data System (ADS)

    Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H.

    2017-08-01

    Instability and risk of fall during standing and walking are common challenges for biped robots. While existing criteria from state-space dynamical systems approach or ground reference points are useful in some applications, complete system models and constraints have not been taken into account for prediction and indication of fall for general legged robots. In this study, a general numerical framework that estimates the balanced and falling states of legged systems is introduced. The overall approach is based on the integration of joint-space and Cartesian-space dynamics of a legged system model. The full-body constrained joint-space dynamics includes the contact forces and moments term due to current foot (or feet) support and another term due to altered contact configuration. According to the refined notions of balanced, falling, and fallen, the system parameters, physical constraints, and initial/final/boundary conditions for balancing are incorporated into constrained nonlinear optimization problems to solve for the velocity extrema (representing the maximum perturbation allowed to maintain balance without changing contacts) in the Cartesian space at each center-of-mass (COM) position within its workspace. The iterative algorithm constructs the stability boundary as a COM state-space partition between balanced and falling states. Inclusion in the resulting six-dimensional manifold is a necessary condition for a state of the given system to be balanced under the given contact configuration, while exclusion is a sufficient condition for falling. The framework is used to analyze the balance stability of example systems with various degrees of complexities. The manifold for a 1-degree-of-freedom (DOF) legged system is consistent with the experimental and simulation results in the existing studies for specific controller designs. The results for a 2-DOF system demonstrate the dependency of the COM state-space partition upon joint-space configuration (elbow-up vs. elbow-down). For both 1- and 2-DOF systems, the results are validated in simulation environments. Finally, the manifold for a biped walking robot is constructed and illustrated against its single-support walking trajectories. The manifold identified by the proposed framework for any given legged system can be evaluated beforehand as a system property and serves as a map for either a specified state or a specific controller's performance.

  14. Duality constructions from quantum state manifolds

    NASA Astrophysics Data System (ADS)

    Kriel, J. N.; van Zyl, H. J. R.; Scholtz, F. G.

    2015-11-01

    The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS 2 /CF T 1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et al. [1] the corresponding state manifold is seen to be exactly AdS 2 with a scalar curvature determined by the representation of the symmetry algebra. It is also shown that the dilaton field itself is given by the quantum mechanical expectation values of the dynamical symmetry generators and as a result exhibits dynamics equivalent to that of a conformal mechanical system.

  15. A dynamic model of Flo-Tron flowmeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cichy, M.; Bossio, R.B.

    1984-08-01

    The optimization of diagnostic equipment for reciprocating both internal and external combustion engines are deeply affected by suitability of simulation models. One of the most attractive and difficult diagnostic aspect deals with the fuel instantaneous mass flow rate measurement. A new model of the dynamic simulation of the Flo-Tron flowmeter, whose working principle is based on the hydraulic Wheatstone's bridge is then presented, dealing with the state space equations and bond-graph method.

  16. Cascading Failures as Continuous Phase-Space Transitions

    DOE PAGES

    Yang, Yang; Motter, Adilson E.

    2017-12-14

    In network systems, a local perturbation can amplify as it propagates, potentially leading to a large-scale cascading failure. We derive a continuous model to advance our understanding of cascading failures in power-grid networks. The model accounts for both the failure of transmission lines and the desynchronization of power generators and incorporates the transient dynamics between successive steps of the cascade. In this framework, we show that a cascade event is a phase-space transition from an equilibrium state with high energy to an equilibrium state with lower energy, which can be suitably described in a closed form using a global Hamiltonian-likemore » function. From this function, we show that a perturbed system cannot always reach the equilibrium state predicted by quasi-steady-state cascade models, which would correspond to a reduced number of failures, and may instead undergo a larger cascade. We also show that, in the presence of two or more perturbations, the outcome depends strongly on the order and timing of the individual perturbations. These results offer new insights into the current understanding of cascading dynamics, with potential implications for control interventions.« less

  17. Cascading Failures as Continuous Phase-Space Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Motter, Adilson E.

    In network systems, a local perturbation can amplify as it propagates, potentially leading to a large-scale cascading failure. We derive a continuous model to advance our understanding of cascading failures in power-grid networks. The model accounts for both the failure of transmission lines and the desynchronization of power generators and incorporates the transient dynamics between successive steps of the cascade. In this framework, we show that a cascade event is a phase-space transition from an equilibrium state with high energy to an equilibrium state with lower energy, which can be suitably described in a closed form using a global Hamiltonian-likemore » function. From this function, we show that a perturbed system cannot always reach the equilibrium state predicted by quasi-steady-state cascade models, which would correspond to a reduced number of failures, and may instead undergo a larger cascade. We also show that, in the presence of two or more perturbations, the outcome depends strongly on the order and timing of the individual perturbations. These results offer new insights into the current understanding of cascading dynamics, with potential implications for control interventions.« less

  18. MIMO model of an interacting series process for Robust MPC via System Identification.

    PubMed

    Wibowo, Tri Chandra S; Saad, Nordin

    2010-07-01

    This paper discusses the empirical modeling using system identification technique with a focus on an interacting series process. The study is carried out experimentally using a gaseous pilot plant as the process, in which the dynamic of such a plant exhibits the typical dynamic of an interacting series process. Three practical approaches are investigated and their performances are evaluated. The models developed are also examined in real-time implementation of a linear model predictive control. The selected model is able to reproduce the main dynamic characteristics of the plant in open-loop and produces zero steady-state errors in closed-loop control system. Several issues concerning the identification process and the construction of a MIMO state space model for a series interacting process are deliberated. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Modeling repetitive motions using structured light.

    PubMed

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  20. The Microgravity Vibration Isolation Mount: A Dynamic Model for Optimal Controller Design

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Tryggvason, Bjarni V.; DeCarufel, Jean; Townsend, Miles A.; Wagar, William O.

    1997-01-01

    Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design.

  1. Optimal region of latching activity in an adaptive Potts model for networks of neurons

    NASA Astrophysics Data System (ADS)

    Abdollah-nia, Mohammad-Farshad; Saeedghalati, Mohammadkarim; Abbassian, Abdolhossein

    2012-02-01

    In statistical mechanics, the Potts model is a model for interacting spins with more than two discrete states. Neural networks which exhibit features of learning and associative memory can also be modeled by a system of Potts spins. A spontaneous behavior of hopping from one discrete attractor state to another (referred to as latching) has been proposed to be associated with higher cognitive functions. Here we propose a model in which both the stochastic dynamics of Potts models and an adaptive potential function are present. A latching dynamics is observed in a limited region of the noise(temperature)-adaptation parameter space. We hence suggest noise as a fundamental factor in such alternations alongside adaptation. From a dynamical systems point of view, the noise-adaptation alternations may be the underlying mechanism for multi-stability in attractor-based models. An optimality criterion for realistic models is finally inferred.

  2. Dynamic Modeling and Control of Nuclear Reactors Coupled to Closed-Loop Brayton Cycle Systems using SIMULINK{sup TM}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Steven A.; Sanchez, Travis

    2005-02-06

    The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK{sup TM} (Simulink, 2004). SIMULINK{sup TM} is a development environment packaged with MatLab{sup TM} (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion componentsmore » such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK{sup TM} models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK{sup TM} modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)« less

  3. Thermal Analysis and Design of an Advanced Space Suit

    NASA Technical Reports Server (NTRS)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  4. Deconstructing field-induced ketene isomerization through Lagrangian descriptors.

    PubMed

    Craven, Galen T; Hernandez, Rigoberto

    2016-02-07

    The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.

  5. Modeling dynamic acousto-elastic testing experiments: validation and perspectives.

    PubMed

    Gliozzi, A S; Scalerandi, M

    2014-10-01

    Materials possessing micro-inhomogeneities often display a nonlinear response to mechanical solicitations, which is sensitive to the confining pressure acting on the sample. Dynamic acoustoelastic testing allows measurement of the instantaneous variations in the elastic modulus due to the change of the dynamic pressure induced by a low-frequency wave. This paper shows that a Preisach-Mayergoyz space based hysteretic multi-state elastic model provides an explanation for experimental observations in consolidated granular media and predicts memory and nonlinear effects comparable to those measured in rocks.

  6. On the importance of an accurate representation of the initial state of the system in classical dynamics simulations

    NASA Astrophysics Data System (ADS)

    García-Vela, A.

    2000-05-01

    A definition of a quantum-type phase-space distribution is proposed in order to represent the initial state of the system in a classical dynamics simulation. The central idea is to define an initial quantum phase-space state of the system as the direct product of the coordinate and momentum representations of the quantum initial state. The phase-space distribution is then obtained as the square modulus of this phase-space state. The resulting phase-space distribution closely resembles the quantum nature of the system initial state. The initial conditions are sampled with the distribution, using a grid technique in phase space. With this type of sampling the distribution of initial conditions reproduces more faithfully the shape of the original phase-space distribution. The method is applied to generate initial conditions describing the three-dimensional state of the Ar-HCl cluster prepared by ultraviolet excitation. The photodissociation dynamics is simulated by classical trajectories, and the results are compared with those of a wave packet calculation. The classical and quantum descriptions are found in good agreement for those dynamical events less subject to quantum effects. The classical result fails to reproduce the quantum mechanical one for the more strongly quantum features of the dynamics. The properties and applicability of the phase-space distribution and the sampling technique proposed are discussed.

  7. Physical Modeling of Microtubules Network

    NASA Astrophysics Data System (ADS)

    Allain, Pierre; Kervrann, Charles

    2014-10-01

    Microtubules (MT) are highly dynamic tubulin polymers that are involved in many cellular processes such as mitosis, intracellular cell organization and vesicular transport. Nevertheless, the modeling of cytoskeleton and MT dynamics based on physical properties is difficult to achieve. Using the Euler-Bernoulli beam theory, we propose to model the rigidity of microtubules on a physical basis using forces, mass and acceleration. In addition, we link microtubules growth and shrinkage to the presence of molecules (e.g. GTP-tubulin) in the cytosol. The overall model enables linking cytosol to microtubules dynamics in a constant state space thus allowing usage of data assimilation techniques.

  8. Quantification of causal couplings via dynamical effects: A unifying perspective

    NASA Astrophysics Data System (ADS)

    Smirnov, Dmitry A.

    2014-12-01

    Quantitative characterization of causal couplings from time series is crucial in studies of complex systems of different origin. Various statistical tools for that exist and new ones are still being developed with a tendency to creating a single, universal, model-free quantifier of coupling strength. However, a clear and generally applicable way of interpreting such universal characteristics is lacking. This work suggests a general conceptual framework for causal coupling quantification, which is based on state space models and extends the concepts of virtual interventions and dynamical causal effects. Namely, two basic kinds of interventions (state space and parametric) and effects (orbital or transient and stationary or limit) are introduced, giving four families of coupling characteristics. The framework provides a unifying view of apparently different well-established measures and allows us to introduce new characteristics, always with a definite "intervention-effect" interpretation. It is shown that diverse characteristics cannot be reduced to any single coupling strength quantifier and their interpretation is inevitably model based. The proposed set of dynamical causal effect measures quantifies different aspects of "how the coupling manifests itself in the dynamics," reformulating the very question about the "causal coupling strength."

  9. A low-order model of the equatorial ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Legnani, Roberto

    A low order model of the equatorial ocean-atmosphere coupled system is presented. The model atmosphere includes a hydrological cycle with cloud-radiation interaction. The model ocean is based on mixed layer dynamics with a parameterization of entrainment processes. The coupling takes place via transfer to momentum, sensible heat, latent heat and short wave and long wave radiation through the ocean surface. The dynamical formulation is that of the primitive equations of an equatorial beta-plane, with zonally periodic and meridionally infinite geometry. The system is expanded into the set of normal modes pertinent to the linear problem and severly truncated to a few modes; 54 degrees of freedom are retained. Some nonlinear terms of the equations are evaluated in physical space and then projected onto the functional space; other terms are evaluated directly in the functional space. Sensitivity tests to variations of the parameters are performed, and some results from 10-year initial value simulations are presented. The model is capable of supporting oscillations of different time scales, ranging from a few days to a few years; it prefers a particular zonally asymmetric state, but temporarily switches to a different (opposite) zonally asymmetric state in an event-like fashion.

  10. a Low-Order Model of the Equatorial Ocean-Atmosphere System.

    NASA Astrophysics Data System (ADS)

    Legnani, Roberto

    A low order model of the equatorial ocean-atmosphere coupled system is presented. The model atmosphere includes a hydrological cycle with cloud-radiation interaction. The model ocean is based on mixed layer dynamics with a parameterization of entrainment processes. The coupling takes place via transfer to momentum, sensible heat, latent heat and short -wave and long-wave radiation through the ocean surface. The dynamical formulation is that of the primitive equations of an equatorial beta-plane, with zonally periodic and meridionally infinite geometry. The system is expanded into the set of normal modes pertinent to the linear problem and severely truncated to a few modes; 54 degrees of freedom are retained. Some nonlinear terms of the equations are evaluated in physical space and then projected onto the functional space; other terms are evaluated directly in the functional space. Sensitivity tests to variations of the parameters are performed, and some results from 10-year initial value simulations are presented. The model is capable of supporting oscillations of different time scales, ranging from a few days to a few years; it prefers a particular zonally asymmetric state, but temporarily switches to a different (opposite) zonally asymmetric state in an event-like fashion.

  11. NASA/DOD (National Aeronautics and Space Administration/Department of Defense) Control/Structures Interaction Technology Conference (2nd) Held in Colorado Springs, Colorado on 17-19 November 1987.

    DTIC Science & Technology

    1988-06-01

    James McKelvy and Harold Tinsley *," . CONCEPTUAL DESIGN OF A SPACE STATION DYNAMIC SCALE MODEL ............. 87 Robert Letchworth, Paul E... CONCEPTUAL SYSTEM DESIGN FOR ANTENNA THERMAL AND DYNAMIC DISTORTION COMPENSATION USING A PHASED ARRAY FEED ................... 145 G. R. Sharp, R. J...to achieve somne desired state or trajectory. For conceptual purposes, however, an alternate view is useful in which the measurement reference against

  12. Performance and state-space analyses of systems using Petri nets

    NASA Technical Reports Server (NTRS)

    Watson, James Francis, III

    1992-01-01

    The goal of any modeling methodology is to develop a mathematical description of a system that is accurate in its representation and also permits analysis of structural and/or performance properties. Inherently, trade-offs exist between the level detail in the model and the ease with which analysis can be performed. Petri nets (PN's), a highly graphical modeling methodology for Discrete Event Dynamic Systems, permit representation of shared resources, finite capacities, conflict, synchronization, concurrency, and timing between state changes. By restricting the state transition time delays to the family of exponential density functions, Markov chain analysis of performance problems is possible. One major drawback of PN's is the tendency for the state-space to grow rapidly (exponential complexity) compared to increases in the PN constructs. It is the state space, or the Markov chain obtained from it, that is needed in the solution of many problems. The theory of state-space size estimation for PN's is introduced. The problem of state-space size estimation is defined, its complexities are examined, and estimation algorithms are developed. Both top-down and bottom-up approaches are pursued, and the advantages and disadvantages of each are described. Additionally, the author's research in non-exponential transition modeling for PN's is discussed. An algorithm for approximating non-exponential transitions is developed. Since only basic PN constructs are used in the approximation, theory already developed for PN's remains applicable. Comparison to results from entropy theory show the transition performance is close to the theoretic optimum. Inclusion of non-exponential transition approximations improves performance results at the expense of increased state-space size. The state-space size estimation theory provides insight and algorithms for evaluating this trade-off.

  13. Dynamic Vision for Control

    DTIC Science & Technology

    2009-02-05

    the best of our knowledge, the first approach to design a proper filter (observer) in the infinite - dimensional space of shapes (closed Jordan...curves). This is based on endowing the space with a Riemaimian (Sobolev) metric , then shooting geodesies from the current best estimate of the state...handing nuisance transformations and endowing the models with a

  14. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  15. A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2015-10-01

    In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, i.e. , internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature.

  16. A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI

    PubMed Central

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2015-01-01

    In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, i.e., internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature. PMID:27054199

  17. Instantaneous brain dynamics mapped to a continuous state space.

    PubMed

    Billings, Jacob C W; Medda, Alessio; Shakil, Sadia; Shen, Xiaohong; Kashyap, Amrit; Chen, Shiyang; Abbas, Anzar; Zhang, Xiaodi; Nezafati, Maysam; Pan, Wen-Ju; Berman, Gordon J; Keilholz, Shella D

    2017-11-15

    Measures of whole-brain activity, from techniques such as functional Magnetic Resonance Imaging, provide a means to observe the brain's dynamical operations. However, interpretation of whole-brain dynamics has been stymied by the inherently high-dimensional structure of brain activity. The present research addresses this challenge through a series of scale transformations in the spectral, spatial, and relational domains. Instantaneous multispectral dynamics are first developed from input data via a wavelet filter bank. Voxel-level signals are then projected onto a representative set of spatially independent components. The correlation distance over the instantaneous wavelet-ICA state vectors is a graph that may be embedded onto a lower-dimensional space to assist the interpretation of state-space dynamics. Applying this procedure to a large sample of resting-state and task-active data (acquired through the Human Connectome Project), we segment the empirical state space into a continuum of stimulus-dependent brain states. Upon observing the local neighborhood of brain-states adopted subsequent to each stimulus, we may conclude that resting brain activity includes brain states that are, at times, similar to those adopted during tasks, but that are at other times distinct from task-active brain states. As task-active brain states often populate a local neighborhood, back-projection of segments of the dynamical state space onto the brain's surface reveals the patterns of brain activity that support many experimentally-defined states. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. What to expect from dynamical modelling of galactic haloes - II. The spherical Jeans equation

    NASA Astrophysics Data System (ADS)

    Wang, Wenting; Han, Jiaxin; Cole, Shaun; More, Surhud; Frenk, Carlos; Schaller, Matthieu

    2018-06-01

    The spherical Jeans equation (SJE) is widely used in dynamical modelling of the Milky Way (MW) halo potential. We use haloes and galaxies from the cosmological Millennium-II simulation and hydrodynamical APOSTLE (A Project of Simulations of The Local Environment) simulations to investigate the performance of the SJE in recovering the underlying mass profiles of MW mass haloes. The best-fitting halo mass and concentration parameters scatter by 25 per cent and 40 per cent around their input values, respectively, when dark matter particles are used as tracers. This scatter becomes as large as a factor of 3 when using star particles instead. This is significantly larger than the estimated statistical uncertainty associated with the use of the SJE. The existence of correlated phase-space structures that violate the steady-state assumption of the SJE as well as non-spherical geometries is the principal source of the scatter. Binary haloes show larger scatter because they are more aspherical in shape and have a more perturbed dynamical state. Our results confirm that the number of independent phase-space structures sets an intrinsic limiting precision on dynamical inferences based on the steady-state assumption. Modelling with a radius-independent velocity anisotropy, or using tracers within a limited outer radius, result in significantly larger scatter, but the ensemble-averaged measurement over the whole halo sample is approximately unbiased.

  19. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model

    PubMed Central

    Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus

    2016-01-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics. PMID:26465514

  20. Recent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    2007-01-01

    Recent enhancements to the development of CFD-based unsteady aerodynamic and aeroelastic reduced-order models (ROMs) are presented. These enhancements include the simultaneous application of structural modes as CFD input, static aeroelastic analysis using a ROM, and matched-point solutions using a ROM. The simultaneous application of structural modes as CFD input enables the computation of the unsteady aerodynamic state-space matrices with a single CFD execution, independent of the number of structural modes. The responses obtained from a simultaneous excitation of the CFD-based unsteady aerodynamic system are processed using system identification techniques in order to generate an unsteady aerodynamic state-space ROM. Once the unsteady aerodynamic state-space ROM is generated, a method for computing the static aeroelastic response using this unsteady aerodynamic ROM and a state-space model of the structure, is presented. Finally, a method is presented that enables the computation of matchedpoint solutions using a single ROM that is applicable over a range of dynamic pressures and velocities for a given Mach number. These enhancements represent a significant advancement of unsteady aerodynamic and aeroelastic ROM technology.

  1. X-56A MUTT: Aeroservoelastic Modeling

    NASA Technical Reports Server (NTRS)

    Ouellette, Jeffrey A.

    2015-01-01

    For the NASA X-56a Program, Armstrong Flight Research Center has been developing a set of linear states space models that integrate the flight dynamics and structural dynamics. These high order models are needed for the control design, control evaluation, and test input design. The current focus has been on developing stiff wing models to validate the current modeling approach. The extension of the modeling approach to the flexible wings requires only a change in the structural model. Individual subsystems models (actuators, inertial properties, etc.) have been validated by component level ground tests. Closed loop simulation of maneuvers designed to validate the flight dynamics of these models correlates very well flight test data. The open loop structural dynamics are also shown to correlate well to the flight test data.

  2. Dynamical correlation effects on photoisomerization: Ab initio multiple spawning dynamics with MS-CASPT2 for a model trans-protonated Schiff base

    DOE PAGES

    Liu, Lihong; Liu, Jian; Martinez, Todd J.

    2015-12-17

    Here, we investigate the photoisomerization of a model retinal protonated Schiff base (trans-PSB3) using ab initio multiple spawning (AIMS) based on multi-state second order perturbation theory (MSPT2). Discrepancies between the photodynamical mechanism computed with three-root state-averaged complete active space self-consistent field (SA-3-CASSCF, which does not include dynamic electron correlation effects) and MSPT2 show that dynamic correlation is critical in this photoisomerization reaction. Furthermore, we show that the photodynamics of trans-PSB3 is not well described by predictions based on minimum energy conical intersections (MECIs) or minimum energy conical intersection (CI) seam paths. Instead, most of the CIs involved in the photoisomerizationmore » are far from MECIs and minimum energy CI seam paths. Thus, both dynamical nuclear effects and dynamic electron correlation are critical to understanding the photochemical mechanism.« less

  3. Microprocessor based implementation of attitude and shape control of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.

    1984-01-01

    The feasibility of off the shelf eight bit and 16 bit microprocessors to implement linear state variable feedback control laws and assessing the real time response to spacecraft dynamics is studied. The complexity of the dynamic model is described along with the appropriate software. An experimental setup of a beam, microprocessor system for implementing the control laws and the needed generalized software to implement any state variable feedback control system is included.

  4. DYGABCD: A program for calculating linear A, B, C, and D matrices from a nonlinear dynamic engine simulation

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.

    1978-01-01

    A digital computer program, DYGABCD, was developed that generates linearized, dynamic models of simulated turbofan and turbojet engines. DYGABCD is based on an earlier computer program, DYNGEN, that is capable of calculating simulated nonlinear steady-state and transient performance of one- and two-spool turbojet engines or two- and three-spool turbofan engines. Most control design techniques require linear system descriptions. For multiple-input/multiple-output systems such as turbine engines, state space matrix descriptions of the system are often desirable. DYGABCD computes the state space matrices commonly referred to as the A, B, C, and D matrices required for a linear system description. The report discusses the analytical approach and provides a users manual, FORTRAN listings, and a sample case.

  5. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity

    PubMed Central

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-01-01

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008

  6. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity.

    PubMed

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-05-23

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points.

  7. Coevolution of Glauber-like Ising dynamics and topology

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Fortunato, Santo; Castellano, Claudio

    2009-11-01

    We study the coevolution of a generalized Glauber dynamics for Ising spins with tunable threshold and of the graph topology where the dynamics takes place. This simple coevolution dynamics generates a rich phase diagram in the space of the two parameters of the model, the threshold and the rewiring probability. The diagram displays phase transitions of different types: spin ordering, percolation, and connectedness. At variance with traditional coevolution models, in which all spins of each connected component of the graph have equal value in the stationary state, we find that, for suitable choices of the parameters, the system may converge to a state in which spins of opposite sign coexist in the same component organized in compact clusters of like-signed spins. Mean field calculations enable one to estimate some features of the phase diagram.

  8. Spectral Factorization and Homogenization Methods for Modeling and Control of Flexible Structures.

    DTIC Science & Technology

    1986-12-15

    to the computation of hybrid, state-space modeling of an integrated space platform . Throughout this effort we have focused on the potential for...models can provide an effective tool for analysis of dynamics of vibrations and their effect on small angle motions for complex space platforms . In this... WIX 1 v .41(Ac 0 0o4 1 2.. 9 2% - L .0U V)V14IC Ma a * 9L 0 a soe - a a.. x m c 4. i.! 0~~~I W ** PMiscellaneous Routines• Power Series Expansion

  9. GARCH modelling of covariance in dynamical estimation of inverse solutions

    NASA Astrophysics Data System (ADS)

    Galka, Andreas; Yamashita, Okito; Ozaki, Tohru

    2004-12-01

    The problem of estimating unobserved states of spatially extended dynamical systems poses an inverse problem, which can be solved approximately by a recently developed variant of Kalman filtering; in order to provide the model of the dynamics with more flexibility with respect to space and time, we suggest to combine the concept of GARCH modelling of covariance, well known in econometrics, with Kalman filtering. We formulate this algorithm for spatiotemporal systems governed by stochastic diffusion equations and demonstrate its feasibility by presenting a numerical simulation designed to imitate the situation of the generation of electroencephalographic recordings by the human cortex.

  10. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task.

    PubMed

    Kinjo, Ken; Uchibe, Eiji; Doya, Kenji

    2013-01-01

    Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.

  11. Hamilton's Equations with Euler Parameters for Rigid Body Dynamics Modeling. Chapter 3

    NASA Technical Reports Server (NTRS)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A combination of Euler parameter kinematics and Hamiltonian mechanics provides a rigid body dynamics model well suited for use in strongly nonlinear problems involving arbitrarily large rotations. The model is unconstrained, free of singularities, includes a general potential energy function and a minimum set of momentum variables, and takes an explicit state space form convenient for numerical implementation. The general formulation may be specialized to address particular applications, as illustrated in several three dimensional example problems.

  12. State Estimation of International Space Station Centrifuge Rotor With Incomplete Knowledge of Disturbance Inputs

    NASA Technical Reports Server (NTRS)

    Sullivan, Michael J.

    2005-01-01

    This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS) thruster disturbances. A Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used to model both the effect of the rotor imbalance and the 155 thrusters on the CR relative motion measurement. The sinusoidal disturbance states compensate for the lack of the availability of plant inputs for use in the Kalman filter. Testing confirms that complete disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to show that increased estimator operational bandwidth can be achieved through the expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo analysis shows the varying levels of robustness against defined plant/filter uncertainty variations.

  13. Three dimensional modelling of earthquake rupture cycles on frictional faults

    NASA Astrophysics Data System (ADS)

    Simpson, Guy; May, Dave

    2017-04-01

    We are developing an efficient MPI-parallel numerical method to simulate earthquake sequences on preexisting faults embedding within a three dimensional viscoelastic half-space. We solve the velocity form of the elasto(visco)dynamic equations using a continuous Galerkin Finite Element Method on an unstructured pentahedral mesh, which thus permits local spatial refinement in the vicinity of the fault. Friction sliding is coupled to the viscoelastic solid via rate- and state-dependent friction laws using the split-node technique. Our coupled formulation employs a picard-type non-linear solver with a fully implicit, first order accurate time integrator that utilises an adaptive time step that efficiently evolves the system through multiple seismic cycles. The implementation leverages advanced parallel solvers, preconditioners and linear algebra from the Portable Extensible Toolkit for Scientific Computing (PETSc) library. The model can treat heterogeneous frictional properties and stress states on the fault and surrounding solid as well as non-planar fault geometries. Preliminary tests show that the model successfully reproduces dynamic rupture on a vertical strike-slip fault in a half-space governed by rate-state friction with the ageing law.

  14. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    NASA Astrophysics Data System (ADS)

    Xavier, Marcelo A.; Trimboli, M. Scott

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models.

  15. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Rowe, D. L.

    2002-04-01

    Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.

  16. Dynamic Regimes of El Niño Southern Oscillation and Influenza Pandemic Timing

    PubMed Central

    Oluwole, Olusegun Steven Ayodele

    2017-01-01

    El Niño southern oscillation (ENSO) dynamics has been shown to drive seasonal influenza dynamics. Severe seasonal influenza epidemics and the 2009–2010 pandemic were coincident with chaotic regime of ENSO dynamics. ENSO dynamics from 1876 to 2016 were characterized to determine if influenza pandemics are coupled to chaotic regimes. Time-varying spectra of southern oscillation index (SOI) and sea surface temperature (SST) were compared. SOI and SST were decomposed to components using the algorithm of noise-assisted multivariate empirical mode decomposition. The components were Hilbert transformed to generate instantaneous amplitudes and phases. The trajectories and attractors of components were characterized in polar coordinates and state space. Influenza pandemics were mapped to dynamic regimes of SOI and SST joint recurrence of annual components. State space geometry of El Niños lagged by influenza pandemics were characterized and compared with other El Niños. Timescales of SOI and SST components ranged from sub-annual to multidecadal. The trajectories of SOI and SST components and the joint recurrence of annual components were dissipative toward chaotic attractors. Periodic, quasi-periodic, and chaotic regimes were present in the recurrence of trajectories, but chaos–chaos transitions dominated. Influenza pandemics occurred during chaotic regimes of significantly low transitivity dimension (p < 0.0001). El Niños lagged by influenza pandemics had distinct state space geometry (p < 0.0001). Chaotic dynamics explains the aperiodic timing, and varying duration and strength of El Niños. Coupling of all influenza pandemics of the past 140 years to chaotic regimes of low transitivity indicate that ENSO dynamics drives influenza pandemic dynamics. Forecasts models from ENSO dynamics should compliment surveillance for novel influenza viruses. PMID:29218303

  17. [A dynamic model of the extravehicular (correction of extravehicuar) activity space suit].

    PubMed

    Yang, Feng; Yuan, Xiu-gan

    2002-12-01

    Objective. To establish a dynamic model of the space suit base on the particular configuration of the space suit. Method. The mass of the space suit components, moment of inertia, mobility of the joints of space suit, as well as the suit-generated torques, were considered in this model. The expressions to calculate the moment of inertia were developed by simplifying the geometry of the space suit. A modified Preisach model was used to mathematically describe the hysteretic torque characteristics of joints in a pressurized space suit, and it was implemented numerically basing on the observed suit parameters. Result. A dynamic model considering mass, moment of inertia and suit-generated torques was established. Conclusion. This dynamic model provides some elements for the dynamic simulation of the astronaut extravehicular activity.

  18. Dynamics for a 2-vertex quantum gravity model

    NASA Astrophysics Data System (ADS)

    Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.

    2010-12-01

    We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.

  19. Oscillators that sync and swarm.

    PubMed

    O'Keeffe, Kevin P; Hong, Hyunsuk; Strogatz, Steven H

    2017-11-15

    Synchronization occurs in many natural and technological systems, from cardiac pacemaker cells to coupled lasers. In the synchronized state, the individual cells or lasers coordinate the timing of their oscillations, but they do not move through space. A complementary form of self-organization occurs among swarming insects, flocking birds, or schooling fish; now the individuals move through space, but without conspicuously altering their internal states. Here we explore systems in which both synchronization and swarming occur together. Specifically, we consider oscillators whose phase dynamics and spatial dynamics are coupled. We call them swarmalators, to highlight their dual character. A case study of a generalized Kuramoto model predicts five collective states as possible long-term modes of organization. These states may be observable in groups of sperm, Japanese tree frogs, colloidal suspensions of magnetic particles, and other biological and physical systems in which self-assembly and synchronization interact.

  20. Multi-model predictive control based on LMI: from the adaptation of the state-space model to the analytic description of the control law

    NASA Astrophysics Data System (ADS)

    Falugi, P.; Olaru, S.; Dumur, D.

    2010-08-01

    This article proposes an explicit robust predictive control solution based on linear matrix inequalities (LMIs). The considered predictive control strategy uses different local descriptions of the system dynamics and uncertainties and thus allows the handling of less conservative input constraints. The computed control law guarantees constraint satisfaction and asymptotic stability. The technique is effective for a class of nonlinear systems embedded into polytopic models. A detailed discussion of the procedures which adapt the partition of the state space is presented. For the practical implementation the construction of suitable (explicit) descriptions of the control law are described upon concrete algorithms.

  1. ACOSS Three (Active Control of Space Structures). Phase I.

    DTIC Science & Technology

    1980-05-01

    their assorted pitfalls, programs such as NASTRAN, SPAR, ASTRO , etc., are never-the-less the primary tools for generating dynamical models of...proofs and additional details, see Ref [*] Consider the system described in state-space form by: Dynamics: X = FX + Gu Sensors: y = HX = (F +GCH)X (1...input u and output y = Fx + Gu (6) y = Hx+Du (7) The input-output transfer function is given by y = (H(sI- F)-1G +D)u (8) or y(s) _ 1 N u(s) A(s) E

  2. Constraining Centennial-Scale Ecosystem-Climate Interactions with a Pre-colonial Forest Reconstruction across the Upper Midwest and Northeastern United States

    NASA Astrophysics Data System (ADS)

    Matthes, J. H.; Dietze, M.; Fox, A. M.; Goring, S. J.; McLachlan, J. S.; Moore, D. J.; Poulter, B.; Quaife, T. L.; Schaefer, K. M.; Steinkamp, J.; Williams, J. W.

    2014-12-01

    Interactions between ecological systems and the atmosphere are the result of dynamic processes with system memories that persist from seconds to centuries. Adequately capturing long-term biosphere-atmosphere exchange within earth system models (ESMs) requires an accurate representation of changes in plant functional types (PFTs) through time and space, particularly at timescales associated with ecological succession. However, most model parameterization and development has occurred using datasets than span less than a decade. We tested the ability of ESMs to capture the ecological dynamics observed in paleoecological and historical data spanning the last millennium. Focusing on an area from the Upper Midwest to New England, we examined differences in the magnitude and spatial pattern of PFT distributions and ecotones between historic datasets and the CMIP5 inter-comparison project's large-scale ESMs. We then conducted a 1000-year model inter-comparison using six state-of-the-art biosphere models at sites that bridged regional temperature and precipitation gradients. The distribution of ecosystem characteristics in modeled climate space reveals widely disparate relationships between modeled climate and vegetation that led to large differences in long-term biosphere-atmosphere fluxes for this region. Model simulations revealed that both the interaction between climate and vegetation and the representation of ecosystem dynamics within models were important controls on biosphere-atmosphere exchange.

  3. A Knowledge Discovery from POS Data using State Space Models

    NASA Astrophysics Data System (ADS)

    Sato, Tadahiko; Higuchi, Tomoyuki

    The number of competing-brands changes by new product's entry. The new product introduction is endemic among consumer packaged goods firm and is an integral component of their marketing strategy. As a new product's entry affects markets, there is a pressing need to develop market response model that can adapt to such changes. In this paper, we develop a dynamic model that capture the underlying evolution of the buying behavior associated with the new product. This extends an application of a dynamic linear model, which is used by a number of time series analyses, by allowing the observed dimension to change at some point in time. Our model copes with a problem that dynamic environments entail: changes in parameter over time and changes in the observed dimension. We formulate the model with framework of a state space model. We realize an estimation of the model using modified Kalman filter/fixed interval smoother. We find that new product's entry (1) decreases brand differentiation for existing brands, as indicated by decreasing difference between cross-price elasticities; (2) decreases commodity power for existing brands, as indicated by decreasing trend; and (3) decreases the effect of discount for existing brands, as indicated by a decrease in the magnitude of own-brand price elasticities. The proposed framework is directly applicable to other fields in which the observed dimension might be change, such as economic, bioinformatics, and so forth.

  4. k-space image correlation to probe the intracellular dynamics of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bouzin, M.; Sironi, L.; Chirico, G.; D'Alfonso, L.; Inverso, D.; Pallavicini, P.; Collini, M.

    2016-04-01

    The collective action of dynein, kinesin and myosin molecular motors is responsible for the intracellular active transport of cargoes, vesicles and organelles along the semi-flexible oriented filaments of the cytoskeleton. The overall mobility of the cargoes upon binding and unbinding to motor proteins can be modeled as an intermittency between Brownian diffusion in the cell cytoplasm and active ballistic excursions along actin filaments or microtubules. Such an intermittent intracellular active transport, exhibited by star-shaped gold nanoparticles (GNSs, Gold Nanostars) upon internalization in HeLa cancer cells, is investigated here by combining live-cell time-lapse confocal reflectance microscopy and the spatio-temporal correlation, in the reciprocal Fourier space, of the acquired image sequences. At first, the analytical theoretical framework for the investigation of a two-state intermittent dynamics is presented for Fourier-space Image Correlation Spectroscopy (kICS). Then simulated kICS correlation functions are employed to evaluate the influence of, and sensitivity to, all the kinetic and dynamic parameters the model involves (the transition rates between the diffusive and the active transport states, the diffusion coefficient and drift velocity of the imaged particles). The optimal procedure for the analysis of the experimental data is outlined and finally exploited to derive whole-cell maps for the parameters underlying the GNSs super-diffusive dynamics. Applied here to the GNSs subcellular trafficking, the proposed kICS analysis can be adopted for the characterization of the intracellular (super-) diffusive dynamics of any fluorescent or scattering biological macromolecule.

  5. Survivability of Deterministic Dynamical Systems

    PubMed Central

    Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen

    2016-01-01

    The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955

  6. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks.

    PubMed

    Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M

    2017-05-01

    Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).

  7. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks

    PubMed Central

    Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M.

    2017-01-01

    Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. PMID:28566513

  8. Structural model for fluctuations in financial markets

    NASA Astrophysics Data System (ADS)

    Anand, Kartik; Khedair, Jonathan; Kühn, Reimer

    2018-05-01

    In this paper we provide a comprehensive analysis of a structural model for the dynamics of prices of assets traded in a market which takes the form of an interacting generalization of the geometric Brownian motion model. It is formally equivalent to a model describing the stochastic dynamics of a system of analog neurons, which is expected to exhibit glassy properties and thus many metastable states in a large portion of its parameter space. We perform a generating functional analysis, introducing a slow driving of the dynamics to mimic the effect of slowly varying macroeconomic conditions. Distributions of asset returns over various time separations are evaluated analytically and are found to be fat-tailed in a manner broadly in line with empirical observations. Our model also allows us to identify collective, interaction-mediated properties of pricing distributions and it predicts pricing distributions which are significantly broader than their noninteracting counterparts, if interactions between prices in the model contain a ferromagnetic bias. Using simulations, we are able to substantiate one of the main hypotheses underlying the original modeling, viz., that the phenomenon of volatility clustering can be rationalized in terms of an interplay between the dynamics within metastable states and the dynamics of occasional transitions between them.

  9. Dynamic Modeling of ALS Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  10. Abnormal Sleep/Wake Dynamics in Orexin Knockout Mice

    PubMed Central

    Diniz Behn, Cecilia G.; Klerman, Elizabeth B.; Mochizuki, Takatoshi; Lin, Shih-Chieh; Scammell, Thomas E.

    2010-01-01

    Study Objectives: Narcolepsy with cataplexy is caused by a loss of orexin (hypocretin) signaling, but the physiologic mechanisms that result in poor maintenance of wakefulness and fragmented sleep remain unknown. Conventional scoring of sleep cannot reveal much about the process of transitioning between states or the variations within states. We developed an EEG spectral analysis technique to determine whether the state instability in a mouse model of narcolepsy reflects abnormal sleep or wake states, faster movements between states, or abnormal transitions between states. Design: We analyzed sleep recordings in orexin knockout (OXKO) mice and wild type (WT) littermates using a state space analysis technique. This non-categorical approach allows quantitative and unbiased examination of sleep/wake states and state transitions. Measurements and Results: OXKO mice spent less time in deep, delta-rich NREM sleep and in active, theta-rich wake and instead spent more time near the transition zones between states. In addition, while in the midst of what should be stable wake, OXKO mice initiated rapid changes into NREM sleep with high velocities normally seen only in transition regions. Consequently, state transitions were much more frequent and rapid even though the EEG progressions during state transitions were normal. Conclusions: State space analysis enables visualization of the boundaries between sleep and wake and shows that narcoleptic mice have less distinct and more labile states of sleep and wakefulness. These observations provide new perspectives on the abnormal state dynamics resulting from disrupted orexin signaling and highlight the usefulness of state space analysis in understanding narcolepsy and other sleep disorders. Citation: Diniz Behn CG; Klerman EB; Mochizuki T; Lin S; Scammell TE. Abnormal sleep/wake dynamics in orexin knockout mice. SLEEP 2010;33(3):297-306. PMID:20337187

  11. On the Origin of Time and the Universe

    NASA Astrophysics Data System (ADS)

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje; Tze, Chia-Hsiung

    We present a novel solution to the low entropy and arrow of time puzzles of the initial state of the universe. Our approach derives from the physics of a specific generalization of Matrix theory put forth in earlier work as the basis for a quantum theory of gravity. The particular dynamical state space of this theory, the infinite-dimensional analogue of the Fubini-Study metric over a complex nonlinear Grassmannian, has recently been studied by Michor and Mumford. The geodesic distance between any two points on this space is zero. Here we show that this mathematical result translates to a description of a hot, zero entropy state and an arrow of time after the Big Bang. This is modeled as a far from equilibrium, large fluctuation driven, "freezing by heating" metastable ordered phase transition of a nonlinear dissipative dynamical system.

  12. Hierarchical random cellular neural networks for system-level brain-like signal processing.

    PubMed

    Kozma, Robert; Puljic, Marko

    2013-09-01

    Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Final Report from The University of Texas at Austin for DEGAS: Dynamic Global Address Space programming environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erez, Mattan; Yelick, Katherine; Sarkar, Vivek

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. Our approach is to provide an efficient and scalable programming model that can be adapted to application needs through the use of dynamic runtime features and domain-specific languages for computational kernels. We address the following technical challenges: Programmability: Rich set of programming constructs based on a Hierarchical Partitioned Global Address Space (HPGAS) model, demonstrated in UPC++. Scalability: Hierarchical locality control, lightweight communication (extended GASNet), and ef- ficient synchronization mechanisms (Phasers). Performance Portability:more » Just-in-time specialization (SEJITS) for generating hardware-specific code and scheduling libraries for domain-specific adaptive runtimes (Habanero). Energy Efficiency: Communication-optimal code generation to optimize energy efficiency by re- ducing data movement. Resilience: Containment Domains for flexible, domain-specific resilience, using state capture mechanisms and lightweight, asynchronous recovery mechanisms. Interoperability: Runtime and language interoperability with MPI and OpenMP to encourage broad adoption.« less

  14. V-SUIT Model Validation Using PLSS 1.0 Test Results

    NASA Technical Reports Server (NTRS)

    Olthoff, Claas

    2015-01-01

    The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination with implications for the future development of other PLSS models in V-SUIT.

  15. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  16. Quantum signature of chaos and thermalization in the kicked Dicke model

    NASA Astrophysics Data System (ADS)

    Ray, S.; Ghosh, A.; Sinha, S.

    2016-09-01

    We study the quantum dynamics of the kicked Dicke model (KDM) in terms of the Floquet operator, and we analyze the connection between chaos and thermalization in this context. The Hamiltonian map is constructed by suitably taking the classical limit of the Heisenberg equation of motion to study the corresponding phase-space dynamics, which shows a crossover from regular to chaotic motion by tuning the kicking strength. The fixed-point analysis and calculation of the Lyapunov exponent (LE) provide us with a complete picture of the onset of chaos in phase-space dynamics. We carry out a spectral analysis of the Floquet operator, which includes a calculation of the quasienergy spacing distribution and structural entropy to show the correspondence to the random matrix theory in the chaotic regime. Finally, we analyze the thermodynamics and statistical properties of the bosonic sector as well as the spin sector, and we discuss how such a periodically kicked system relaxes to a thermalized state in accordance with the laws of statistical mechanics.

  17. Quantum signature of chaos and thermalization in the kicked Dicke model.

    PubMed

    Ray, S; Ghosh, A; Sinha, S

    2016-09-01

    We study the quantum dynamics of the kicked Dicke model (KDM) in terms of the Floquet operator, and we analyze the connection between chaos and thermalization in this context. The Hamiltonian map is constructed by suitably taking the classical limit of the Heisenberg equation of motion to study the corresponding phase-space dynamics, which shows a crossover from regular to chaotic motion by tuning the kicking strength. The fixed-point analysis and calculation of the Lyapunov exponent (LE) provide us with a complete picture of the onset of chaos in phase-space dynamics. We carry out a spectral analysis of the Floquet operator, which includes a calculation of the quasienergy spacing distribution and structural entropy to show the correspondence to the random matrix theory in the chaotic regime. Finally, we analyze the thermodynamics and statistical properties of the bosonic sector as well as the spin sector, and we discuss how such a periodically kicked system relaxes to a thermalized state in accordance with the laws of statistical mechanics.

  18. An introduction to chaotic and random time series analysis

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1989-01-01

    The origin of chaotic behavior and the relation of chaos to randomness are explained. Two mathematical results are described: (1) a representation theorem guarantees the existence of a specific time-domain model for chaos and addresses the relation between chaotic, random, and strictly deterministic processes; (2) a theorem assures that information on the behavior of a physical system in its complete state space can be extracted from time-series data on a single observable. Focus is placed on an important connection between the dynamical state space and an observable time series. These two results lead to a practical deconvolution technique combining standard random process modeling methods with new embedded techniques.

  19. A stochastic regulator for integrated communication and control systems. I - Formulation of control law. II - Numerical analysis and simulation

    NASA Technical Reports Server (NTRS)

    Liou, Luen-Woei; Ray, Asok

    1991-01-01

    A state feedback control law for integrated communication and control systems (ICCS) is formulated by using the dynamic programming and optimality principle on a finite-time horizon. The control law is derived on the basis of a stochastic model of the plant which is augmented in state space to allow for the effects of randomly varying delays in the feedback loop. A numerical procedure for synthesizing the control parameters is then presented, and the performance of the control law is evaluated by simulating the flight dynamics model of an advanced aircraft. Finally, recommendations for future work are made.

  20. Structure of the low-lying positive parity states in the proton-neutron symplectic model

    NASA Astrophysics Data System (ADS)

    Ganev, H. G.

    2018-05-01

    The proton-neutron symplectic model with Sp(12, R) dynamical symmetry is applied for the simultaneous description of the microscopic structure of the low-lying states of the ground state, γ and β bands in 166 Er. For this purpose, the model Hamiltonian is diagonalized in the space of stretched states by exploiting the SUp (3) ⊗ SUn (3) symmetry-adapted basis. The theoretical predictions are compared with experiment and some other microscopic collective models, like the one-component Sp(6, R) symplectic and pseudo-SU(3) models. A good description of the energy levels of the three bands under consideration, as well as the enhanced intraband B(E2) transition strengths between the states of the ground and γ bands is obtained without the use of effective charges. The results show the presence of a good SU(3) dynamical symmetry. It is also shown that, in contrast to the Sp(6, R) case, the lowest excited bands, e.g., the β and γ bands, naturally appear together with the ground state band within a single Sp(12, R) irreducible representation.

  1. Point process modeling and estimation: Advances in the analysis of dynamic neural spiking data

    NASA Astrophysics Data System (ADS)

    Deng, Xinyi

    2016-08-01

    A common interest of scientists in many fields is to understand the relationship between the dynamics of a physical system and the occurrences of discrete events within such physical system. Seismologists study the connection between mechanical vibrations of the Earth and the occurrences of earthquakes so that future earthquakes can be better predicted. Astrophysicists study the association between the oscillating energy of celestial regions and the emission of photons to learn the Universe's various objects and their interactions. Neuroscientists study the link between behavior and the millisecond-timescale spike patterns of neurons to understand higher brain functions. Such relationships can often be formulated within the framework of state-space models with point process observations. The basic idea is that the dynamics of the physical systems are driven by the dynamics of some stochastic state variables and the discrete events we observe in an interval are noisy observations with distributions determined by the state variables. This thesis proposes several new methodological developments that advance the framework of state-space models with point process observations at the intersection of statistics and neuroscience. In particular, we develop new methods 1) to characterize the rhythmic spiking activity using history-dependent structure, 2) to model population spike activity using marked point process models, 3) to allow for real-time decision making, and 4) to take into account the need for dimensionality reduction for high-dimensional state and observation processes. We applied these methods to a novel problem of tracking rhythmic dynamics in the spiking of neurons in the subthalamic nucleus of Parkinson's patients with the goal of optimizing placement of deep brain stimulation electrodes. We developed a decoding algorithm that can make decision in real-time (for example, to stimulate the neurons or not) based on various sources of information present in population spiking data. Lastly, we proposed a general three-step paradigm that allows us to relate behavioral outcomes of various tasks to simultaneously recorded neural activity across multiple brain areas, which is a step towards closed-loop therapies for psychological diseases using real-time neural stimulation. These methods are suitable for real-time implementation for content-based feedback experiments.

  2. Encoding dependence in Bayesian causal networks

    USDA-ARS?s Scientific Manuscript database

    Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...

  3. Dynamical and Mechanistic Reconstructive Approaches of T Lymphocyte Dynamics: Using Visual Modeling Languages to Bridge the Gap between Immunologists, Theoreticians, and Programmers

    PubMed Central

    Thomas-Vaslin, Véronique; Six, Adrien; Ganascia, Jean-Gabriel; Bersini, Hugues

    2013-01-01

    Dynamic modeling of lymphocyte behavior has primarily been based on populations based differential equations or on cellular agents moving in space and interacting each other. The final steps of this modeling effort are expressed in a code written in a programing language. On account of the complete lack of standardization of the different steps to proceed, we have to deplore poor communication and sharing between experimentalists, theoreticians and programmers. The adoption of diagrammatic visual computer language should however greatly help the immunologists to better communicate, to more easily identify the models similarities and facilitate the reuse and extension of existing software models. Since immunologists often conceptualize the dynamical evolution of immune systems in terms of “state-transitions” of biological objects, we promote the use of unified modeling language (UML) state-transition diagram. To demonstrate the feasibility of this approach, we present a UML refactoring of two published models on thymocyte differentiation. Originally built with different modeling strategies, a mathematical ordinary differential equation-based model and a cellular automata model, the two models are now in the same visual formalism and can be compared. PMID:24101919

  4. Dynamics of aquatic ecosystems and models under toxicant stress: State space analysis, covariance structure, and ecological risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.R.; Bartell, S.M.

    1988-06-01

    The state of an ecosystem at any time t may be characterized by a multidimensional state vector x(t). Changes in state are represented by the trajectory traced out by x(t) over time. The effects of toxicant stress are summarized by the displacement of a perturbed state vector, x/sub p/(t), relative to an appropriate control, x/sub c/(t). Within a multivariate statistical framework, the response of an ecosystem to perturbation is conveniently quantified by the distance separating x/sub p/(t) from x/sub c/(t) as measured by a Mahalanobis metric. Use of the Mahalanobis metric requires that the covariance matrix associated with the controlmore » state vector be estimated. State space displacement analysis was applied to data on the response of aquatic microcosms and outdoor ponds to alkylphenols. Dose-response relationships were derived using calculated state space separations as integrated measures of the ecological effects of toxicant exposure. Inspection of the data also revealed that the covariance structure varied both with time and with toxicant exposure, suggesting that analysis of such changes might be a useful tool for probing control mechanisms underlying ecosystem dynamics. 90 refs., 53 figs., 9 tabs.« less

  5. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, MA; Trimboli, MS

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggestmore » significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.« less

  6. On nodes and modes in resting state fMRI

    PubMed Central

    Friston, Karl J.; Kahan, Joshua; Razi, Adeel; Stephan, Klaas Enno; Sporns, Olaf

    2014-01-01

    This paper examines intrinsic brain networks in light of recent developments in the characterisation of resting state fMRI timeseries — and simulations of neuronal fluctuations based upon the connectome. Its particular focus is on patterns or modes of distributed activity that underlie functional connectivity. We first demonstrate that the eigenmodes of functional connectivity – or covariance among regions or nodes – are the same as the eigenmodes of the underlying effective connectivity, provided we limit ourselves to symmetrical connections. This symmetry constraint is motivated by appealing to proximity graphs based upon multidimensional scaling. Crucially, the principal modes of functional connectivity correspond to the dynamically unstable modes of effective connectivity that decay slowly and show long term memory. Technically, these modes have small negative Lyapunov exponents that approach zero from below. Interestingly, the superposition of modes – whose exponents are sampled from a power law distribution – produces classical 1/f (scale free) spectra. We conjecture that the emergence of dynamical instability – that underlies intrinsic brain networks – is inevitable in any system that is separated from external states by a Markov blanket. This conjecture appeals to a free energy formulation of nonequilibrium steady-state dynamics. The common theme that emerges from these theoretical considerations is that endogenous fluctuations are dominated by a small number of dynamically unstable modes. We use this as the basis of a dynamic causal model (DCM) of resting state fluctuations — as measured in terms of their complex cross spectra. In this model, effective connectivity is parameterised in terms of eigenmodes and their Lyapunov exponents — that can also be interpreted as locations in a multidimensional scaling space. Model inversion provides not only estimates of edges or connectivity but also the topography and dimensionality of the underlying scaling space. Here, we focus on conceptual issues with simulated fMRI data and provide an illustrative application using an empirical multi-region timeseries. PMID:24862075

  7. System modelling for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Diaz-Aguiló, Marc; Grynagier, Adrien; Rais, Boutheina

    LISA Pathfinder is the technology demonstrator for LISA, a space-borne gravitational waves observatory. The goal of the mission is to characterise the dynamics of the LISA Technology Package (LTP) to prove that on-board experimental conditions are compatible with the de-tection of gravitational waves. The LTP is a drag-free dynamics experiment which includes a control loop with sensors (interferometric and capacitive), actuators (capacitive actuators and thrusters), controlled disturbances (magnetic coils, heaters) and which is subject to various endogenous or exogenous noise sources such as infrared pressure or solar wind. The LTP experiment features new hardware which was never flown in space. The mission has a tight operation timeline as it is constrained to about 100 days. It is therefore vital to have efficient and precise means of investigation and diagnostics to be used during the on-orbit operations. These will be conducted using the LTP Data Analysis toolbox (LTPDA) which allows for simulation, parameter identification and various analyses (covariance analysis, state estimation) given an experimental model. The LTPDA toolbox therefore contains a series of models which are state-space representations of each component in the LTP. The State-Space Models (SSM) are objects of a state-space class within the LTPDA toolbox especially designed to address all the requirements of this tool. The user has access to a set of linear models which represent every satellite subsystem; the models are available in different forms representing 1D, 2D and 3D systems, each with settable symbolic and numeric parameters. To limit the possible errors, the models can be automatically linked to produce composite systems and closed-loops of the LTP. Finally, for the sake of completeness, accuracy and maintainability of the tool, the models contain all the physical information they mimic (i.e. variable units, description of parameters, description of inputs/outputs, etc). Models developed for this work include the fixed-point linearized equations of motion for the LTP and the linear models for sensors and actuators with their noise modelling blocks issued from the analysis of the individual actuators. The drag-free controller model includes the dis-crete delays expected in the hardware. In this work we briefly describe the software architecture, in order to concentrate then on the physical description of the models. This is supported by an overview of different user scenarios and some examples of model analysis that highlight the advantages of this high-level programming engineering toolbox for space mission data analysis and calibration.

  8. The Sustainable Development of Space: Astro-environmental and dynamical considerations

    NASA Astrophysics Data System (ADS)

    Boley, Aaron; Byers, Michael; Russell, Sara

    2018-04-01

    The sustainable development of space is a global (and exo-global) challenge that is not limited by borders or research disciplines. Sustainable development is "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". While the development of space brings new economic and scientific possibilities, it also carries significant political, legal, and technical uncertainties. For example, the rapidly increasing accessibility of space is motivating states to unilaterally adopt legislation for the new era of space use, which may have significant unintended consequences, such as increased risks to space assets, disputes among state as well as non-state actors, and changes to unique astro-environments. Any policy or legal position must be informed by the dynamical and astrophysical realities of space use, creating complex and interwoven challenges. Here, we explore several of these potential challenges related to astro-environmentalism, space minining operations, and the associated dynamics.

  9. Chimera states in a Hodgkin-Huxley model of thermally sensitive neurons

    NASA Astrophysics Data System (ADS)

    Glaze, Tera A.; Lewis, Scott; Bahar, Sonya

    2016-08-01

    Chimera states occur when identically coupled groups of nonlinear oscillators exhibit radically different dynamics, with one group exhibiting synchronized oscillations and the other desynchronized behavior. This dynamical phenomenon has recently been studied in computational models and demonstrated experimentally in mechanical, optical, and chemical systems. The theoretical basis of these states is currently under active investigation. Chimera behavior is of particular relevance in the context of neural synchronization, given the phenomenon of unihemispheric sleep and the recent observation of asymmetric sleep in human patients with sleep apnea. The similarity of neural chimera states to neural "bump" states, which have been suggested as a model for working memory and visual orientation tuning in the cortex, adds to their interest as objects of study. Chimera states have been demonstrated in the FitzHugh-Nagumo model of excitable cells and in the Hindmarsh-Rose neural model. Here, we demonstrate chimera states and chimera-like behaviors in a Hodgkin-Huxley-type model of thermally sensitive neurons both in a system with Abrams-Strogatz (mean field) coupling and in a system with Kuramoto (distance-dependent) coupling. We map the regions of parameter space for which chimera behavior occurs in each of the two coupling schemes.

  10. Space charge effects for multipactor in coaxial lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorolla, E., E-mail: eden.sorolla@xlim.fr; Sounas, A.; Mattes, M.

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  11. Dynamic Modelling Of A SCARA Robot

    NASA Astrophysics Data System (ADS)

    Turiel, J. Perez; Calleja, R. Grossi; Diez, V. Gutierrez

    1987-10-01

    This paper describes a method for modelling industrial robots that considers dynamic approach to manipulation systems motion generation, obtaining the complete dynamic model for the mechanic part of the robot and taking into account the dynamic effect of actuators acting at the joints. For a four degree of freedom SCARA robot we obtain the dynamic model for the basic (minimal) configuration, that is, the three degrees of freedom that allow us to place the robot end effector in a desired point, using the Lagrange Method to obtain the dynamic equations in matrix form. The manipulator is considered to be a set of rigid bodies inter-connected by joints in the form of simple kinematic pairs. Then, the state space model is obtained for the actuators that move the robot joints, uniting the models of the single actuators, that is, two DC permanent magnet servomotors and an electrohydraulic actuator. Finally, using a computer simulation program written in FORTRAN language, we can compute the matrices of the complete model.

  12. Space of states in operator BFV-formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batalin, I.A.; Tyutin, I.V.

    1993-05-15

    The dynamically adequate Fock realization of the extended space of asymptotic states is given within the framework of the operator BFV-formalism and of the Dirac quantization scheme as well. Physical subspace is picked out and established to be naturally isomorphic to the Dirac space of states. The formal mechanism (unitary [var epsilon]-limit), by means of which the operator BFV-dynamics reduces to the Dirac one, is studied. 10 refs.

  13. Particle Tracing Modeling with SHIELDS

    NASA Astrophysics Data System (ADS)

    Woodroffe, J. R.; Brito, T. V.; Jordanova, V. K.

    2017-12-01

    The near-Earth inner magnetosphere, where most of the nation's civilian and military space assets operate, is an extremely hazardous region of the space environment which poses major risks to our space infrastructure. Failure of satellite subsystems or even total failure of a spacecraft can arise for a variety of reasons, some of which are related to the space environment: space weather events like single-event-upsets and deep dielectric charging caused by high energy particles, or surface charging caused by low to medium energy particles; other space hazards are collisions with natural or man-made space debris, or intentional hostile acts. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons on both macro- and microscale. These challenging problems are addressed using a team of world-class experts and state-of-the-art physics-based models and computational facilities. We present first results of a coupled BATS-R-US/RAM-SCB/Particle Tracing Model to evaluate particle fluxes in the inner magnetosphere. We demonstrate that this setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere.

  14. Dynamics modeling and periodic control of horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Stol, Karl Alexander

    2001-07-01

    The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that periodic control is capable of reducing cyclic blade bending moments while regulating speed but that optimal performance requires additional sensor information. Periodic control is also the only design found that could successfully control the yaw alignment although blade loads are increased as a consequence. When speed regulation is the only performance objective then a time-invariant state-space design or PID is appropriate.

  15. Dynamic Simulation of 1D Cellular Automata in the Active aTAM.

    PubMed

    Jonoska, Nataša; Karpenko, Daria; Seki, Shinnosuke

    2015-07-01

    The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location.

  16. Dynamic Simulation of 1D Cellular Automata in the Active aTAM

    PubMed Central

    Jonoska, Nataša; Karpenko, Daria; Seki, Shinnosuke

    2016-01-01

    The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location. PMID:27789918

  17. A new class of enhanced kinetic sampling methods for building Markov state models

    NASA Astrophysics Data System (ADS)

    Bhoutekar, Arti; Ghosh, Susmita; Bhattacharya, Swati; Chatterjee, Abhijit

    2017-10-01

    Markov state models (MSMs) and other related kinetic network models are frequently used to study the long-timescale dynamical behavior of biomolecular and materials systems. MSMs are often constructed bottom-up using brute-force molecular dynamics (MD) simulations when the model contains a large number of states and kinetic pathways that are not known a priori. However, the resulting network generally encompasses only parts of the configurational space, and regardless of any additional MD performed, several states and pathways will still remain missing. This implies that the duration for which the MSM can faithfully capture the true dynamics, which we term as the validity time for the MSM, is always finite and unfortunately much shorter than the MD time invested to construct the model. A general framework that relates the kinetic uncertainty in the model to the validity time, missing states and pathways, network topology, and statistical sampling is presented. Performing additional calculations for frequently-sampled states/pathways may not alter the MSM validity time. A new class of enhanced kinetic sampling techniques is introduced that aims at targeting rare states/pathways that contribute most to the uncertainty so that the validity time is boosted in an effective manner. Examples including straightforward 1D energy landscapes, lattice models, and biomolecular systems are provided to illustrate the application of the method. Developments presented here will be of interest to the kinetic Monte Carlo community as well.

  18. Model and on-orbit study of the International space station contamination processes by jets of its orientation thrusters

    NASA Astrophysics Data System (ADS)

    Yarygin, V. N.; Gerasimov, Yu I.; Krylov, A. N.; Prikhodko, V. G.; Skorovarov, A. Yu; Yarygin, I. V.

    2017-11-01

    The main objective of this paper is to describe the current state of research for the problem of the International Space Station contamination by plumes of its orientation thrusters. Results of experiments carried out at the Institute of Thermophysics SB RAS modeling space vehicles orientation thruster’s plumes are presented and experimental setup is discussed. A novel approach to reduction of contamination by thrusters with the help of special gas-dynamic protective devices mounted at the exit part of the nozzle is suggested. The description and results of on-orbit experiment at the International Space Station are given. Results show good agreement for model and on-orbit experiments validating our approach.

  19. Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium states. The mathematical frameworks we consider are the following: (A) statistical or information-theoretic models of relaxation; (B) small-scale and rarefied gas dynamics (i.e., kinetic models for the Boltzmann equation); (C) rational extended thermodynamics, macroscopic nonequilibrium thermodynamics, and chemical kinetics; (D) mesoscopic nonequilibrium thermodynamics, continuum mechanics with fluctuations; and (E) quantum statistical mechanics, quantum thermodynamics, mesoscopic nonequilibrium quantum thermodynamics, and intrinsic quantum thermodynamics.

  20. Analysis of propulsion system dynamics in the validation of a high-order state space model of the UH-60

    NASA Technical Reports Server (NTRS)

    Kim, Frederick D.

    1992-01-01

    Frequency responses generated from a high-order linear model of the UH-60 Black Hawk have shown that the propulsion system influences significantly the vertical and yaw dynamics of the aircraft at frequencies important to high-bandwidth control law designs. The inclusion of the propulsion system comprises the latest step in the development of a high-order linear model of the UH-60 that models additionally the dynamics of the fuselage, rotor, and inflow. A complete validation study of the linear model is presented in the frequency domain for both on-axis and off-axis coupled responses in the hoverflight condition, and on-axis responses for forward speeds of 80 and 120 knots.

  1. Closed Loop System Identification with Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  2. Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, W. J., E-mail: williamjglover@gmail.com

    2014-11-07

    State averaged complete active space self-consistent field (SA-CASSCF) is a workhorse for determining the excited-state electronic structure of molecules, particularly for states with multireference character; however, the method suffers from known issues that have prevented its wider adoption. One issue is the presence of discontinuities in potential energy surfaces when a state that is not included in the state averaging crosses with one that is. In this communication I introduce a new dynamical weight with spline (DWS) scheme that mimics SA-CASSCF while removing energy discontinuities due to unweighted state crossings. In addition, analytical gradients for DWS-CASSCF (and other dynamically weightedmore » schemes) are derived for the first time, enabling energy-conserving excited-state ab initio molecular dynamics in instances where SA-CASSCF fails.« less

  3. Abnormal sleep/wake dynamics in orexin knockout mice.

    PubMed

    Diniz Behn, Cecilia G; Klerman, Elizabeth B; Mochizuki, Takatoshi; Lin, Shih-Chieh; Scammell, Thomas E

    2010-03-01

    Narcolepsy with cataplexy is caused by a loss of orexin (hypocretin) signaling, but the physiologic mechanisms that result in poor maintenance of wakefulness and fragmented sleep remain unknown. Conventional scoring of sleep cannot reveal much about the process of transitioning between states or the variations within states. We developed an EEG spectral analysis technique to determine whether the state instability in a mouse model of narcolepsy reflects abnormal sleep or wake states, faster movements between states, or abnormal transitions between states. We analyzed sleep recordings in orexin knockout (OXKO) mice and wild type (WT) littermates using a state space analysis technique. This non-categorical approach allows quantitative and unbiased examination of sleep/wake states and state transitions. OXKO mice spent less time in deep, delta-rich NREM sleep and in active, theta-rich wake and instead spent more time near the transition zones between states. In addition, while in the midst of what should be stable wake, OXKO mice initiated rapid changes into NREM sleep with high velocities normally seen only in transition regions. Consequently, state transitions were much more frequent and rapid even though the EEG progressions during state transitions were normal. State space analysis enables visualization of the boundaries between sleep and wake and shows that narcoleptic mice have less distinct and more labile states of sleep and wakefulness. These observations provide new perspectives on the abnormal state dynamics resulting from disrupted orexin signaling and highlight the usefulness of state space analysis in understanding narcolepsy and other sleep disorders.

  4. Quasi-equilibria in reduced Liouville spaces.

    PubMed

    Halse, Meghan E; Dumez, Jean-Nicolas; Emsley, Lyndon

    2012-06-14

    The quasi-equilibrium behaviour of isolated nuclear spin systems in full and reduced Liouville spaces is discussed. We focus in particular on the reduced Liouville spaces used in the low-order correlations in Liouville space (LCL) simulation method, a restricted-spin-space approach to efficiently modelling the dynamics of large networks of strongly coupled spins. General numerical methods for the calculation of quasi-equilibrium expectation values of observables in Liouville space are presented. In particular, we treat the cases of a time-independent Hamiltonian, a time-periodic Hamiltonian (with and without stroboscopic sampling) and powder averaging. These quasi-equilibrium calculation methods are applied to the example case of spin diffusion in solid-state nuclear magnetic resonance. We show that there are marked differences between the quasi-equilibrium behaviour of spin systems in the full and reduced spaces. These differences are particularly interesting in the time-periodic-Hamiltonian case, where simulations carried out in the reduced space demonstrate ergodic behaviour even for small spins systems (as few as five homonuclei). The implications of this ergodic property on the success of the LCL method in modelling the dynamics of spin diffusion in magic-angle spinning experiments of powders is discussed.

  5. Self-consistent chaos in a mean-field Hamiltonian model of fluids and plasmas

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Firpo, Marie-Christine

    2002-11-01

    We present a mean-field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas. In plasmas, the model describes the self-consistent evolution of electron holes and clumps in phase space. In fluids, the model describes the dynamics of vortices with negative and positive circulation in shear flows. The mean-field nature of the system makes it a tractable model to study the dynamics of large degrees-of-freedom, coupled Hamiltonian systems. Here we focus in the role of self-consistent chaos in the formation and destruction of phase space coherent structures. Numerical simulations in the finite N and in the Narrow kinetic limit (where N is the number of particles) show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles, and show that the N = 2 limit has a family of rotating integrable solutions described by a one degree-of-freedom nontwist Hamiltonian. The coherence of the dipole is explained in terms of a parametric resonance between the rotation frequency of the macroparticles and the oscillation frequency of the self-consistent mean field. For a class of initial conditions, the mean field exhibits a self-consistent, elliptic-hyperbolic bifurcation that leads to the destruction of the dipole and violent mixing of the phase space.

  6. The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems

    PubMed Central

    Innes, Clinton; Anand, Madhur; Bauch, Chris T.

    2013-01-01

    Forest-grassland mosaic ecosystems can exhibit alternative stables states, whereby under the same environmental conditions, the ecosystem could equally well reside either in one state or another, depending on the initial conditions. We develop a mathematical model that couples a simplified forest-grassland mosaic model to a dynamic model of opinions about conservation priorities in a population, based on perceptions of ecosystem rarity. Weak human influence increases the region of parameter space where alternative stable states are possible. However, strong human influence precludes bistability, such that forest and grassland either co-exist at a single, stable equilibrium, or their relative abundance oscillates. Moreover, a perturbation can shift the system from a stable state to an oscillatory state. We conclude that human-environment interactions can qualitatively alter the composition of forest-grassland mosaic ecosystems. The human role in such systems should be viewed as dynamic, responsive element rather than as a fixed, unchanging entity. PMID:24048359

  7. Data driven discrete-time parsimonious identification of a nonlinear state-space model for a weakly nonlinear system with short data record

    NASA Astrophysics Data System (ADS)

    Relan, Rishi; Tiels, Koen; Marconato, Anna; Dreesen, Philippe; Schoukens, Johan

    2018-05-01

    Many real world systems exhibit a quasi linear or weakly nonlinear behavior during normal operation, and a hard saturation effect for high peaks of the input signal. In this paper, a methodology to identify a parsimonious discrete-time nonlinear state space model (NLSS) for the nonlinear dynamical system with relatively short data record is proposed. The capability of the NLSS model structure is demonstrated by introducing two different initialisation schemes, one of them using multivariate polynomials. In addition, a method using first-order information of the multivariate polynomials and tensor decomposition is employed to obtain the parsimonious decoupled representation of the set of multivariate real polynomials estimated during the identification of NLSS model. Finally, the experimental verification of the model structure is done on the cascaded water-benchmark identification problem.

  8. Decentralized control algorithms of a group of vehicles in 2D space

    NASA Astrophysics Data System (ADS)

    Pshikhopov, V. K.; Medvedev, M. Y.; Fedorenko, R. V.; Gurenko, B. V.

    2017-02-01

    The problem of decentralized control of group of robots, described by kinematic and dynamic equations of motion in the plane, is considered. Group performs predetermined rectangular area passing at a fixed speed, keeping the line and a uniform distribution. The environment may contain a priori unknown moving or stationary obstacles. Decentralized control algorithms, based on the formation of repellers in the state space of robots, are proposed. These repellers form repulsive forces generated by dynamic subsystems that extend the state space of robots. These repulsive forces are dynamic functions of distances and velocities of robots in the area of operation of the group. The process of formation of repellers allows to take into account the dynamic properties of robots, such as the maximum speed and acceleration. The robots local control law formulas are derived based on positionally-trajectory control method, which allows to operate with non-linear models. Lyapunov function in the form of a quadratic function of the state variables is constructed to obtain a nonlinear closed-loop control system. Due to the fact that a closed system is decomposed into two independent subsystems Lyapunov function is also constructed as two independent functions. Numerical simulation of the motion of a group of five robots is presented. In this simulation obstacles are presented by the boundaries of working area and a movable object of a given radius, moving rectilinear and uniform. Obstacle speed is comparable to the speeds of the robots in a group. The advantage of the proposed method is ensuring the stability of the trajectories and consideration of the limitations on the speed and acceleration at the trajectory planning stage. Proposed approach can be used for more general robots' models, including robots in the three-dimensional environment.

  9. Combined state and parameter identification of nonlinear structural dynamical systems based on Rao-Blackwellization and Markov chain Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Abhinav, S.; Manohar, C. S.

    2018-03-01

    The problem of combined state and parameter estimation in nonlinear state space models, based on Bayesian filtering methods, is considered. A novel approach, which combines Rao-Blackwellized particle filters for state estimation with Markov chain Monte Carlo (MCMC) simulations for parameter identification, is proposed. In order to ensure successful performance of the MCMC samplers, in situations involving large amount of dynamic measurement data and (or) low measurement noise, the study employs a modified measurement model combined with an importance sampling based correction. The parameters of the process noise covariance matrix are also included as quantities to be identified. The study employs the Rao-Blackwellization step at two stages: one, associated with the state estimation problem in the particle filtering step, and, secondly, in the evaluation of the ratio of likelihoods in the MCMC run. The satisfactory performance of the proposed method is illustrated on three dynamical systems: (a) a computational model of a nonlinear beam-moving oscillator system, (b) a laboratory scale beam traversed by a loaded trolley, and (c) an earthquake shake table study on a bending-torsion coupled nonlinear frame subjected to uniaxial support motion.

  10. A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.

    PubMed

    Kim, Joo H; Roberts, Dustyn

    2015-09-01

    Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Assessment of current state of the art in modeling techniques and analysis methods for large space structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1983-01-01

    Advances in continuum modeling, progress in reduction methods, and analysis and modeling needs for large space structures are covered with specific attention given to repetitive lattice trusses. As far as continuum modeling is concerned, an effective and verified analysis capability exists for linear thermoelastic stress, birfurcation buckling, and free vibration problems of repetitive lattices. However, application of continuum modeling to nonlinear analysis needs more development. Reduction methods are very effective for bifurcation buckling and static (steady-state) nonlinear analysis. However, more work is needed to realize their full potential for nonlinear dynamic and time-dependent problems. As far as analysis and modeling needs are concerned, three areas are identified: loads determination, modeling and nonclassical behavior characteristics, and computational algorithms. The impact of new advances in computer hardware, software, integrated analysis, CAD/CAM stems, and materials technology is also discussed.

  12. Identification of Computational and Experimental Reduced-Order Models

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Hong, Moeljo S.; Bartels, Robert E.; Piatak, David J.; Scott, Robert C.

    2003-01-01

    The identification of computational and experimental reduced-order models (ROMs) for the analysis of unsteady aerodynamic responses and for efficient aeroelastic analyses is presented. For the identification of a computational aeroelastic ROM, the CFL3Dv6.0 computational fluid dynamics (CFD) code is used. Flutter results for the AGARD 445.6 Wing and for a Rigid Semispan Model (RSM) computed using CFL3Dv6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are computed using the CFL3Dv6.0 code and transformed into state-space form. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is then used to rapidly compute aeroelastic transients, including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly. For the identification of experimental unsteady pressure ROMs, results are presented for two configurations: the RSM and a Benchmark Supercritical Wing (BSCW). Both models were used to acquire unsteady pressure data due to pitching oscillations on the Oscillating Turntable (OTT) system at the Transonic Dynamics Tunnel (TDT). A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the unsteady pressure impulse responses. The identified impulse responses are then used to predict the pressure responses due to pitching oscillations at several frequencies. Comparisons with the experimental data are then presented.

  13. Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Cosme, Jayson G.

    2018-04-01

    We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.

  14. A Financial Market Model Incorporating Herd Behaviour.

    PubMed

    Wray, Christopher M; Bishop, Steven R

    2016-01-01

    Herd behaviour in financial markets is a recurring phenomenon that exacerbates asset price volatility, and is considered a possible contributor to market fragility. While numerous studies investigate herd behaviour in financial markets, it is often considered without reference to the pricing of financial instruments or other market dynamics. Here, a trader interaction model based upon informational cascades in the presence of information thresholds is used to construct a new model of asset price returns that allows for both quiescent and herd-like regimes. Agent interaction is modelled using a stochastic pulse-coupled network, parametrised by information thresholds and a network coupling probability. Agents may possess either one or two information thresholds that, in each case, determine the number of distinct states an agent may occupy before trading takes place. In the case where agents possess two thresholds (labelled as the finite state-space model, corresponding to agents' accumulating information over a bounded state-space), and where coupling strength is maximal, an asymptotic expression for the cascade-size probability is derived and shown to follow a power law when a critical value of network coupling probability is attained. For a range of model parameters, a mixture of negative binomial distributions is used to approximate the cascade-size distribution. This approximation is subsequently used to express the volatility of model price returns in terms of the model parameter which controls the network coupling probability. In the case where agents possess a single pulse-coupling threshold (labelled as the semi-infinite state-space model corresponding to agents' accumulating information over an unbounded state-space), numerical evidence is presented that demonstrates volatility clustering and long-memory patterns in the volatility of asset returns. Finally, output from the model is compared to both the distribution of historical stock returns and the market price of an equity index option.

  15. Caviton dynamics in strong Langmuir turbulence

    NASA Astrophysics Data System (ADS)

    Dubois, Don; Rose, Harvey A.; Russell, David

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound samping the turbulent energy is dominantly in nonlinear caviton excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation collapse burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that free Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.

  16. Caviton dynamics in strong Langmuir turbulence

    NASA Astrophysics Data System (ADS)

    DuBois, Don; Rose, Harvey A.; Russell, David

    1990-01-01

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear "caviton" excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that "free" Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.

  17. Inference of Gene Regulatory Networks Incorporating Multi-Source Biological Knowledge via a State Space Model with L1 Regularization

    PubMed Central

    Hasegawa, Takanori; Yamaguchi, Rui; Nagasaki, Masao; Miyano, Satoru; Imoto, Seiya

    2014-01-01

    Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in the field of systems biology. Currently, there are two main approaches in GRN analysis using time-course observation data, namely an ordinary differential equation (ODE)-based approach and a statistical model-based approach. The ODE-based approach can generate complex dynamics of GRNs according to biologically validated nonlinear models. However, it cannot be applied to ten or more genes to simultaneously estimate system dynamics and regulatory relationships due to the computational difficulties. The statistical model-based approach uses highly abstract models to simply describe biological systems and to infer relationships among several hundreds of genes from the data. However, the high abstraction generates false regulations that are not permitted biologically. Thus, when dealing with several tens of genes of which the relationships are partially known, a method that can infer regulatory relationships based on a model with low abstraction and that can emulate the dynamics of ODE-based models while incorporating prior knowledge is urgently required. To accomplish this, we propose a method for inference of GRNs using a state space representation of a vector auto-regressive (VAR) model with L1 regularization. This method can estimate the dynamic behavior of genes based on linear time-series modeling constructed from an ODE-based model and can infer the regulatory structure among several tens of genes maximizing prediction ability for the observational data. Furthermore, the method is capable of incorporating various types of existing biological knowledge, e.g., drug kinetics and literature-recorded pathways. The effectiveness of the proposed method is shown through a comparison of simulation studies with several previous methods. For an application example, we evaluated mRNA expression profiles over time upon corticosteroid stimulation in rats, thus incorporating corticosteroid kinetics/dynamics, literature-recorded pathways and transcription factor (TF) information. PMID:25162401

  18. The Shock and Vibration Digest. Volume 18, Number 7

    DTIC Science & Technology

    1986-07-01

    long-term dynamic irregularity of a soluble Los Alamos, NM, July 21-23, 1981 quantum mechanical model known as the Jaynes - Cummings model . The analysis...substructure models are obtained % substructure computation can be performed by approximating each state space vector as a independently of the other...Non- and rotational residual flexibilities at the inter- linear joint behavior is modeled by an equivalent face. Data were taken in the form of

  19. Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.

    PubMed

    Banerjee, Rahul; Cukier, Robert I

    2014-03-20

    Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ significantly for the pathway analysis.

  20. Space Suit Thermal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.

    1998-01-01

    The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.

  1. REVIEWS OF TOPICAL PROBLEMS: Nonlinear dynamics of the brain: emotion and cognition

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail I.; Muezzinoglu, M. K.

    2010-07-01

    Experimental investigations of neural system functioning and brain activity are standardly based on the assumption that perceptions, emotions, and cognitive functions can be understood by analyzing steady-state neural processes and static tomographic snapshots. The new approaches discussed in this review are based on the analysis of transient processes and metastable states. Transient dynamics is characterized by two basic properties, structural stability and information sensitivity. The ideas and methods that we discuss provide an explanation for the occurrence of and successive transitions between metastable states observed in experiments, and offer new approaches to behavior analysis. Models of the emotional and cognitive functions of the brain are suggested. The mathematical object that represents the observed transient brain processes in the phase space of the model is a structurally stable heteroclinic channel. The possibility of using the suggested models to construct a quantitative theory of some emotional and cognitive functions is illustrated.

  2. The frequency response of dynamic friction: Enhanced rate-and-state models

    NASA Astrophysics Data System (ADS)

    Cabboi, A.; Putelat, T.; Woodhouse, J.

    2016-07-01

    The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10-50 N), of sliding speeds (1-10 mm/s) and frequencies (100-2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.

  3. A Stochastic Dynamic Programming Model With Fuzzy Storage States Applied to Reservoir Operation Optimization

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Jamshid; Mahdizadeh, Kourosh; Afshar, Abbas

    2004-08-01

    Application of stochastic dynamic programming (SDP) models to reservoir optimization calls for state variables discretization. As an important variable discretization of reservoir storage volume has a pronounced effect on the computational efforts. The error caused by storage volume discretization is examined by considering it as a fuzzy state variable. In this approach, the point-to-point transitions between storage volumes at the beginning and end of each period are replaced by transitions between storage intervals. This is achieved by using fuzzy arithmetic operations with fuzzy numbers. In this approach, instead of aggregating single-valued crisp numbers, the membership functions of fuzzy numbers are combined. Running a simulated model with optimal release policies derived from fuzzy and non-fuzzy SDP models shows that a fuzzy SDP with a coarse discretization scheme performs as well as a classical SDP having much finer discretized space. It is believed that this advantage in the fuzzy SDP model is due to the smooth transitions between storage intervals which benefit from soft boundaries.

  4. Late time cosmological dynamics with a nonminimal extension of the mimetic matter scenario

    NASA Astrophysics Data System (ADS)

    Hosseinkhan, N.; Nozari, K.

    2018-02-01

    We investigate an extension of mimetic gravity in which mimetic matter is nonminimally coupled to the Ricci scalar. We derive the background field equations and show that, as the minimal case, the nonminimal mimetic matter can behave as dark matter or dark energy. By adopting some well-known potentials, we study the dynamics of the scale factor and the equation of state parameter in detail. As the effective mimetic dark energy, this model explains the late time cosmic acceleration and its equation of state parameter crosses the phantom divide. We extend our analysis to the dynamical system approach and the phase space trajectories of the model. We obtain an attractor line which corresponds to the late time cosmic acceleration. By comparing this nonminimal mimetic matter scenario with observational data for the LCDM, we show that the confidence levels of this model overlap with those of Planck 2015 TT, TE, EE + Low P + Lensing + BAO data in the LCDM model.

  5. Cognitive engineering models in space systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1992-01-01

    NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.

  6. Overview of the SHIELDS Project at LANL

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, D.; Vernon, L.; Woodroffe, J. R.; Toth, G.; Welling, D. T.; Yu, Y.; Birn, J.; Thomsen, M. F.; Borovsky, J.; Denton, M.; Albert, J.; Horne, R. B.; Lemon, C. L.; Markidis, S.; Young, S. L.

    2015-12-01

    The near-Earth space environment is a highly dynamic and coupled system through a complex set of physical processes over a large range of scales, which responds nonlinearly to driving by the time-varying solar wind. Predicting variations in this environment that can affect technologies in space and on Earth, i.e. "space weather", remains a big space physics challenge. We present a recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program that is developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to specify the dynamics of the hot (keV) particles (the seed population for the radiation belts) on both macro- and micro-scale, including important physics of rapid particle injection and acceleration associated with magnetospheric storms/substorms and plasma waves. This challenging problem is addressed using a team of world-class experts in the fields of space science and computational plasma physics and state-of-the-art models and computational facilities. New data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed in addition to physics-based models. This research will provide a framework for understanding of key radiation belt drivers that may accelerate particles to relativistic energies and lead to spacecraft damage and failure. The ability to reliably distinguish between various modes of failure is critically important in anomaly resolution and forensics. SHIELDS will enhance our capability to accurately specify and predict the near-Earth space environment where operational satellites reside.

  7. Five degrees of freedom linear state-space representation of electrodynamic thrust bearings

    NASA Astrophysics Data System (ADS)

    Van Verdeghem, J.; Kluyskens, V.; Dehez, B.

    2017-09-01

    Electrodynamic bearings can provide stable and contactless levitation of rotors while operating at room temperatures. Depending solely on passive phenomena, specific models have to be developed to study the forces they exert and the resulting rotordynamics. In recent years, models allowing us to describe the axial dynamics of a large range of electrodynamic thrust bearings have been derived. However, these bearings being devised to be integrated into fully magnetic suspensions, the existing models still suffer from restrictions. Indeed, assuming the spin speed as varying slowly, a rigid rotor is characterised by five independent degrees of freedom whereas early models only considered the axial degree. This paper presents a model free of the previous limitations. It consists in a linear state-space representation describing the rotor's complete dynamics by considering the impact of the rotor axial, radial and angular displacements as well as the gyroscopic effects. This set of ten equations depends on twenty parameters whose identification can be easily performed through static finite element simulations or quasi-static experimental measurements. The model stresses the intrinsic decoupling between the axial dynamics and the other degrees of freedom as well as the existence of electrodynamic angular torques restoring the rotor to its nominal position. Finally, a stability analysis performed on the model highlights the presence of two conical whirling modes related to the angular dynamics, namely the nutation and precession motions. The former, whose intrinsic stability depends on the ratio between polar and transverse moments of inertia, can be easily stabilised through external damping whereas the latter, which is stable up to an instability threshold linked to the angular electrodynamic cross-coupling stiffness, is less impacted by that damping.

  8. Ecological change points: The strength of density dependence and the loss of history.

    PubMed

    Ponciano, José M; Taper, Mark L; Dennis, Brian

    2018-05-01

    Change points in the dynamics of animal abundances have extensively been recorded in historical time series records. Little attention has been paid to the theoretical dynamic consequences of such change-points. Here we propose a change-point model of stochastic population dynamics. This investigation embodies a shift of attention from the problem of detecting when a change will occur, to another non-trivial puzzle: using ecological theory to understand and predict the post-breakpoint behavior of the population dynamics. The proposed model and the explicit expressions derived here predict and quantify how density dependence modulates the influence of the pre-breakpoint parameters into the post-breakpoint dynamics. Time series transitioning from one stationary distribution to another contain information about where the process was before the change-point, where is it heading and how long it will take to transition, and here this information is explicitly stated. Importantly, our results provide a direct connection of the strength of density dependence with theoretical properties of dynamic systems, such as the concept of resilience. Finally, we illustrate how to harness such information through maximum likelihood estimation for state-space models, and test the model robustness to widely different forms of compensatory dynamics. The model can be used to estimate important quantities in the theory and practice of population recovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Specification of the Surface Charging Environment with SHIELDS

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.

    2016-12-01

    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.

  10. Charting epilepsy by searching for intelligence in network space with the help of evolving autonomous agents.

    PubMed

    Ohayon, Elan L; Kalitzin, Stiliyan; Suffczynski, Piotr; Jin, Frank Y; Tsang, Paul W; Borrett, Donald S; Burnham, W McIntyre; Kwan, Hon C

    2004-01-01

    The problem of demarcating neural network space is formidable. A simple fully connected recurrent network of five units (binary activations, synaptic weight resolution of 10) has 3.2 *10(26) possible initial states. The problem increases drastically with scaling. Here we consider three complementary approaches to help direct the exploration to distinguish epileptic from healthy networks. [1] First, we perform a gross mapping of the space of five-unit continuous recurrent networks using randomized weights and initial activations. The majority of weight patterns (>70%) were found to result in neural assemblies exhibiting periodic limit-cycle oscillatory behavior. [2] Next we examine the activation space of non-periodic networks demonstrating that the emergence of paroxysmal activity does not require changes in connectivity. [3] The next challenge is to focus the search of network space to identify networks with more complex dynamics. Here we rely on a major available indicator critical to clinical assessment but largely ignored by epilepsy modelers, namely: behavioral states. To this end, we connected the above network layout to an external robot in which interactive states were evolved. The first random generation showed a distribution in line with approach [1]. That is, the predominate phenotypes were fixed-point or oscillatory with seizure-like motor output. As evolution progressed the profile changed markedly. Within 20 generations the entire population was able to navigate a simple environment with all individuals exhibiting multiply-stable behaviors with no cases of default locked limit-cycle oscillatory motor behavior. The resultant population may thus afford us a view of the architectural principles demarcating healthy biological networks from the pathological. The approach has an advantage over other epilepsy modeling techniques in providing a way to clarify whether observed dynamics or suggested therapies are pointing to computational viability or dead space.

  11. Low dimensional worm-holes

    NASA Astrophysics Data System (ADS)

    Samardzija, Nikola

    1995-01-01

    A simple three dimensional physical model is proposed to qualitatively address a particular type of dynamics evolving on toroidal structures. In the phase space this dynamics creates appearance of a worm-hole through which a chaotic, quasiperiodic and periodic behaviors are formed. An intriguing topological property of such a system is that it possesses no steady state solutions. As such, it opens some interesting questions in the bifurcation theory. The model also offers a novel qualitative tool for explaining some recently reported experimental and simulation results observed in physics, chemistry and biology.

  12. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-07

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion ismore » treated on the same footing.« less

  13. Space Shuttle propulsion performance reconstruction from flight data

    NASA Technical Reports Server (NTRS)

    Rogers, Robert M.

    1989-01-01

    The aplication of extended Kalman filtering to estimating Space Shuttle Solid Rocket Booster (SRB) performance, specific impulse, from flight data in a post-flight processing computer program. The flight data used includes inertial platform acceleration, SRB head pressure, and ground based radar tracking data. The key feature in this application is the model used for the SRBs, which represents a reference quasi-static internal ballistics model normalized to the propellant burn depth. Dynamic states of mass overboard and propellant burn depth are included in the filter model to account for real-time deviations from the reference model used. Aerodynamic, plume, wind and main engine uncertainties are included.

  14. Langley's CSI evolutionary model: Phase O

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.

  15. Modelling machine ensembles with discrete event dynamical system theory

    NASA Technical Reports Server (NTRS)

    Hunter, Dan

    1990-01-01

    Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).

  16. Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.

    PubMed

    Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L

    2017-10-01

    The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic encephalopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Stochastic Adaptive Estimation and Control.

    DTIC Science & Technology

    1994-10-26

    Marcus, "Language Stability and Stabilizability of Discrete Event Dynamical Systems ," SIAM Journal on Control and Optimization, 31, September 1993...in the hierarchical control of flexible manufacturing systems ; in this problem, the model involves a hybrid process in continuous time whose state is...of the average cost control problem for discrete- time Markov processes. Our exposition covers from finite to Borel state and action spaces and

  18. Elimination of spiral waves in a locally connected chaotic neural network by a dynamic phase space constraint.

    PubMed

    Li, Yang; Oku, Makito; He, Guoguang; Aihara, Kazuyuki

    2017-04-01

    In this study, a method is proposed that eliminates spiral waves in a locally connected chaotic neural network (CNN) under some simplified conditions, using a dynamic phase space constraint (DPSC) as a control method. In this method, a control signal is constructed from the feedback internal states of the neurons to detect phase singularities based on their amplitude reduction, before modulating a threshold value to truncate the refractory internal states of the neurons and terminate the spirals. Simulations showed that with appropriate parameter settings, the network was directed from a spiral wave state into either a plane wave (PW) state or a synchronized oscillation (SO) state, where the control vanished automatically and left the original CNN model unaltered. Each type of state had a characteristic oscillation frequency, where spiral wave states had the highest, and the intra-control dynamics was dominated by low-frequency components, thereby indicating slow adjustments to the state variables. In addition, the PW-inducing and SO-inducing control processes were distinct, where the former generally had longer durations but smaller average proportions of affected neurons in the network. Furthermore, variations in the control parameter allowed partial selectivity of the control results, which were accompanied by modulation of the control processes. The results of this study broaden the applicability of DPSC to chaos control and they may also facilitate the utilization of locally connected CNNs in memory retrieval and the exploration of traveling wave dynamics in biological neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation.

    PubMed

    Reagan, Andrew J; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.

  20. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation

    PubMed Central

    Reagan, Andrew J.; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M.

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth’s weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction. PMID:26849061

  1. Relaxation processes in a low-order three-dimensional magnetohydrodynamics model

    NASA Technical Reports Server (NTRS)

    Stribling, Troy; Matthaeus, William H.

    1991-01-01

    The time asymptotic behavior of a Galerkin model of 3D magnetohydrodynamics (MHD) has been interpreted using the selective decay and dynamic alignment relaxation theories. A large number of simulations has been performed that scan a parameter space defined by the rugged ideal invariants, including energy, cross helicity, and magnetic helicity. It is concluded that time asymptotic state can be interpreted as a relaxation to minimum energy. A simple decay model, based on absolute equilibrium theory, is found to predict a mapping of initial onto time asymptotic states, and to accurately describe the long time behavior of the runs when magnetic helicity is present. Attention is also given to two processes, operating on time scales shorter than selective decay and dynamic alignment, in which the ratio of kinetic to magnetic energy relaxes to values 0(1). The faster of the two processes takes states initially dominant in magnetic energy to a state of near-equipartition between kinetic and magnetic energy through power law growth of kinetic energy. The other process takes states initially dominant in kinetic energy to the near-equipartitioned state through exponential growth of magnetic energy.

  2. Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment

    NASA Astrophysics Data System (ADS)

    Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.

    2009-11-01

    The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.

  3. Exploring Ackermann and LQR stability control of stochastic state-space model of hexacopter equipped with robotic arm

    NASA Astrophysics Data System (ADS)

    Ibrahim, I. N.; Akkad, M. A. Al; Abramov, I. V.

    2018-05-01

    This paper discusses the control of Unmanned Aerial Vehicles (UAVs) for active interaction and manipulation of objects. The manipulator motion with an unknown payload was analysed concerning force and moment disturbances, which influence the mass distribution, and the centre of gravity (CG). Therefore, a general dynamics mathematical model of a hexacopter was formulated where a stochastic state-space model was extracted in order to build anti-disturbance controllers. Based on the compound pendulum method, the disturbances model that simulates the robotic arm with a payload was inserted into the stochastic model. This study investigates two types of controllers in order to study the stability of a hexacopter. A controller based on Ackermann’s method and the other - on the linear quadratic regulator (LQR) approach - were presented. The latter constitutes a challenge for UAV control performance especially with the presence of uncertainties and disturbances.

  4. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining

    PubMed Central

    Truccolo, Wilson

    2017-01-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics (“order parameters”) inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. PMID:28336305

  5. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    PubMed

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  6. On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state

    NASA Astrophysics Data System (ADS)

    Androsov, Alexey; Nerger, Lars; Schnur, Reiner; Schröter, Jens; Albertella, Alberta; Rummel, Reiner; Savcenko, Roman; Bosch, Wolfgang; Skachko, Sergey; Danilov, Sergey

    2018-05-01

    General ocean circulation models are not perfect. Forced with observed atmospheric fluxes they gradually drift away from measured distributions of temperature and salinity. We suggest data assimilation of absolute dynamical ocean topography (DOT) observed from space geodetic missions as an option to reduce these differences. Sea surface information of DOT is transferred into the deep ocean by defining the analysed ocean state as a weighted average of an ensemble of fully consistent model solutions using an error-subspace ensemble Kalman filter technique. Success of the technique is demonstrated by assimilation into a global configuration of the ocean circulation model FESOM over 1 year. The dynamic ocean topography data are obtained from a combination of multi-satellite altimetry and geoid measurements. The assimilation result is assessed using independent temperature and salinity analysis derived from profiling buoys of the AGRO float data set. The largest impact of the assimilation occurs at the first few analysis steps where both the model ocean topography and the steric height (i.e. temperature and salinity) are improved. The continued data assimilation over 1 year further improves the model state gradually. Deep ocean fields quickly adjust in a sustained manner: A model forecast initialized from the model state estimated by the data assimilation after only 1 month shows that improvements induced by the data assimilation remain in the model state for a long time. Even after 11 months, the modelled ocean topography and temperature fields show smaller errors than the model forecast without any data assimilation.

  7. Steady and transient sliding under rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Putelat, Thibaut; Dawes, Jonathan H. P.

    2015-05-01

    The physics of dry friction is often modelled by assuming that static and kinetic frictional forces can be represented by a pair of coefficients usually referred to as μs and μk, respectively. In this paper we re-examine this discontinuous dichotomy and relate it quantitatively to the more general, and smooth, framework of rate-and-state friction. This is important because it enables us to link the ideas behind the widely used static and dynamic coefficients to the more complex concepts that lie behind the rate-and-state framework. Further, we introduce a generic framework for rate-and-state friction that unifies different approaches found in the literature. We consider specific dynamical models for the motion of a rigid block sliding on an inclined surface. In the Coulomb model with constant dynamic friction coefficient, sliding at constant velocity is not possible. In the rate-and-state formalism steady sliding states exist, and analysing their existence and stability enables us to show that the static friction coefficient μs should be interpreted as the local maximum at very small slip rates of the steady state rate-and-state friction law. Next, we revisit the often-cited experiments of Rabinowicz (J. Appl. Phys., 22:1373-1379, 1951). Rabinowicz further developed the idea of static and kinetic friction by proposing that the friction coefficient maintains its higher and static value μs over a persistence length before dropping to the value μk. We show that there is a natural identification of the persistence length with the distance that the block slips as measured along the stable manifold of the saddle point equilibrium in the phase space of the rate-and-state dynamics. This enables us explicitly to define μs in terms of the rate-and-state variables and hence link Rabinowicz's ideas to rate-and-state friction laws. This stable manifold naturally separates two basins of attraction in the phase space: initial conditions in the first one lead to the block eventually stopping, while in the second basin of attraction the sliding motion continues indefinitely. We show that a second definition of μs is possible, compatible with the first one, as the weighted average of the rate-and-state friction coefficient over the time the block is in motion.

  8. Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover.

    PubMed

    Faruque, Imraan; Sean Humbert, J

    2010-05-21

    This paper presents a reduced-order model of longitudinal hovering flight dynamics for dipteran insects. The quasi-steady wing aerodynamics model is extended by including perturbation states from equilibrium and paired with rigid body equations of motion to create a nonlinear simulation of a Drosophila-like insect. Frequency-based system identification tools are used to identify the transfer functions from biologically inspired control inputs to rigid body states. Stability derivatives and a state space linear system describing the dynamics are also identified. The vehicle control requirements are quantified with respect to traditional human pilot handling qualities specification. The heave dynamics are found to be decoupled from the pitch/fore/aft dynamics. The haltere-on system revealed a stabilized system with a slow (heave) and fast subsidence mode, and a stable oscillatory mode. The haltere-off (bare airframe) system revealed a slow (heave) and fast subsidence mode and an unstable oscillatory mode, a modal structure in agreement with CFD studies. The analysis indicates that passive aerodynamic mechanisms contribute to stability, which may help explain how insects are able to achieve stable locomotion on a very small computational budget. Copyright (c) 2010. Published by Elsevier Ltd.

  9. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, W. L.

    1982-01-01

    Mathematical models to be used in the control system design were developed. A computer program, which takes aerodynamic and structural data for the ARW-2 aircraft and converts these data into state space models suitable for use in modern control synthesis procedures, was developed. Reduced order models of inboard and outboard control surface actuator dynamics and a second order vertical wind gust model were developed. An analysis of the rigid body motion of the ARW-2 was conducted. The deletion of the aerodynamic lag states in the rigid body modes resulted in more accurate values for the eigenvalues associated with the plunge and pitch modes than were obtainable if the lag states were retained.

  10. Interactive Macroeconomics

    NASA Astrophysics Data System (ADS)

    Di Guilmi, Corrado; Gallegati, Mauro; Landini, Simone

    2017-04-01

    Preface; List of tables; List of figures, 1. Introduction; Part I. Methodological Notes and Tools: 2. The state space notion; 3. The master equation; Part II. Applications to HIA Based Models: 4. Financial fragility and macroeconomic dynamics I: heterogeneity and interaction; 5. Financial fragility and macroeconomic Dynamics II: learning; Part III. Conclusions: 6. Conclusive remarks; Part IV. Appendices and Complements: Appendix A: Complements to Chapter 3; Appendix B: Solving the ME to solve the ABM; Appendix C: Specifying transition rates; Index.

  11. Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo

    NASA Astrophysics Data System (ADS)

    Schön, Thomas B.; Svensson, Andreas; Murray, Lawrence; Lindsten, Fredrik

    2018-05-01

    Probabilistic modeling provides the capability to represent and manipulate uncertainty in data, models, predictions and decisions. We are concerned with the problem of learning probabilistic models of dynamical systems from measured data. Specifically, we consider learning of probabilistic nonlinear state-space models. There is no closed-form solution available for this problem, implying that we are forced to use approximations. In this tutorial we will provide a self-contained introduction to one of the state-of-the-art methods-the particle Metropolis-Hastings algorithm-which has proven to offer a practical approximation. This is a Monte Carlo based method, where the particle filter is used to guide a Markov chain Monte Carlo method through the parameter space. One of the key merits of the particle Metropolis-Hastings algorithm is that it is guaranteed to converge to the "true solution" under mild assumptions, despite being based on a particle filter with only a finite number of particles. We will also provide a motivating numerical example illustrating the method using a modeling language tailored for sequential Monte Carlo methods. The intention of modeling languages of this kind is to open up the power of sophisticated Monte Carlo methods-including particle Metropolis-Hastings-to a large group of users without requiring them to know all the underlying mathematical details.

  12. Entanglement and the three-dimensionality of the Bloch ball

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masanes, Ll., E-mail: ll.masanes@gmail.com; Müller, M. P.; Pérez-García, D.

    2014-12-15

    We consider a very natural generalization of quantum theory by letting the dimension of the Bloch ball be not necessarily three. We analyze bipartite state spaces where each of the components has a d-dimensional Euclidean ball as state space. In addition to this, we impose two very natural assumptions: the continuity and reversibility of dynamics and the possibility of characterizing bipartite states by local measurements. We classify all these bipartite state spaces and prove that, except for the quantum two-qubit state space, none of them contains entangled states. Equivalently, in any of these non-quantum theories, interacting dynamics is impossible. Thismore » result reveals that “existence of entanglement” is the requirement with minimal logical content which singles out quantum theory from our family of theories.« less

  13. Model Adaptation in Parametric Space for POD-Galerkin Models

    NASA Astrophysics Data System (ADS)

    Gao, Haotian; Wei, Mingjun

    2017-11-01

    The development of low-order POD-Galerkin models is largely motivated by the expectation to use the model developed with a set of parameters at their native values to predict the dynamic behaviors of the same system under different parametric values, in other words, a successful model adaptation in parametric space. However, most of time, even small deviation of parameters from their original value may lead to large deviation or unstable results. It has been shown that adding more information (e.g. a steady state, mean value of a different unsteady state, or an entire different set of POD modes) may improve the prediction of flow with other parametric states. For a simple case of the flow passing a fixed cylinder, an orthogonal mean mode at a different Reynolds number may stabilize the POD-Galerkin model when Reynolds number is changed. For a more complicated case of the flow passing an oscillatory cylinder, a global POD-Galerkin model is first applied to handle the moving boundaries, then more information (e.g. more POD modes) is required to predicate the flow under different oscillatory frequencies. Supported by ARL.

  14. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  15. Girsanov reweighting for path ensembles and Markov state models

    NASA Astrophysics Data System (ADS)

    Donati, L.; Hartmann, C.; Keller, B. G.

    2017-06-01

    The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.

  16. Nonlinear quantum Rabi model in trapped ions

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-Hang; Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Chen, Xi; Solano, Enrique

    2018-02-01

    We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.

  17. Conformational free energy modeling of druglike molecules by metadynamics in the WHIM space.

    PubMed

    Spiwok, Vojtěch; Hlat-Glembová, Katarína; Tvaroška, Igor; Králová, Blanka

    2012-03-26

    Protein-ligand affinities can be significantly influenced not only by the interaction itself but also by conformational equilibrium of both binding partners, free ligand and free protein. Identification of important conformational families of a ligand and prediction of their thermodynamics is important for efficient ligand design. Here we report conformational free energy modeling of nine small-molecule drugs in explicitly modeled water by metadynamics with a bias potential applied in the space of weighted holistic invariant molecular (WHIM) descriptors. Application of metadynamics enhances conformational sampling compared to unbiased molecular dynamics simulation and allows to predict relative free energies of key conformations. Selected free energy minima and one example of transition state were tested by a series of unbiased molecular dynamics simulation. Comparison of free energy surfaces of free and target-bound Imatinib provides an estimate of free energy penalty of conformational change induced by its binding to the target. © 2012 American Chemical Society

  18. Effects of model complexity and priors on estimation using sequential importance sampling/resampling for species conservation

    USGS Publications Warehouse

    Dunham, Kylee; Grand, James B.

    2016-01-01

    We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.

  19. Cluster-based control of a separating flow over a smoothly contoured ramp

    NASA Astrophysics Data System (ADS)

    Kaiser, Eurika; Noack, Bernd R.; Spohn, Andreas; Cattafesta, Louis N.; Morzyński, Marek

    2017-12-01

    The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. The proposed closed-loop control framework addresses a key issue of model-based control: The actuation effect often results from slow dynamics of strongly nonlinear interactions which the flow reveals at timescales much longer than the prediction horizon of any model. Hence, we employ a probabilistic approach based on a cluster-based discretization of the Liouville equation for the evolution of the probability distribution. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a control-dependent Markov model. This Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is determined. We examine how the approach can be used to improve the open-loop actuation in a separating flow dominated by Kelvin-Helmholtz shedding. For this purpose, the feature space, in which the model is learned, and the admissible control inputs are tailored to strongly oscillatory flows.

  20. Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrennikov, Andrei

    2010-08-15

    One of the crucial differences between mathematical models of classical and quantum mechanics (QM) is the use of the tensor product of the state spaces of subsystems as the state space of the corresponding composite system. (To describe an ensemble of classical composite systems, one uses random variables taking values in the Cartesian product of the state spaces of subsystems.) We show that, nevertheless, it is possible to establish a natural correspondence between the classical and the quantum probabilistic descriptions of composite systems. Quantum averages for composite systems (including entangled) can be represented as averages with respect to classical randommore » fields. It is essentially what Albert Einstein dreamed of. QM is represented as classical statistical mechanics with infinite-dimensional phase space. While the mathematical construction is completely rigorous, its physical interpretation is a complicated problem. We present the basic physical interpretation of prequantum classical statistical field theory in Sec. II. However, this is only the first step toward real physical theory.« less

  1. Chaos control in delayed phase space constructed by the Takens embedding theory

    NASA Astrophysics Data System (ADS)

    Hajiloo, R.; Salarieh, H.; Alasty, A.

    2018-01-01

    In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.

  2. Quantitative Diagnosis of Continuous-Valued, Stead-State Systems

    NASA Technical Reports Server (NTRS)

    Rouquette, N.

    1995-01-01

    Quantitative diagnosis involves numerically estimating the values of unobservable parameters that best explain the observed parameter values. We consider quantitative diagnosis for continuous, lumped- parameter, steady-state physical systems because such models are easy to construct and the diagnosis problem is considerably simpler than that for corresponding dynamic models. To further tackle the difficulties of numerically inverting a simulation model to compute a diagnosis, we propose to decompose a physical system model in terms of feedback loops. This decomposition reduces the dimension of the problem and consequently decreases the diagnosis search space. We illustrate this approach on a model of thermal control system studied in earlier research.

  3. Dynamics of beta-amyloid peptide in cholesterol superlattice domain

    NASA Astrophysics Data System (ADS)

    Smirnov, Anton; Zhu, Qing; Vaughn, Mark; Khare, Rajesh; Cheng, K.

    2006-10-01

    Presence of beta-amyloid peptide (beta-A) plagues in membranes of neuron cells is a clinical signature of Alzheimer disease. The onset of beta-A peptide aggregation occurs via a conformational transition from an alpha-helix state to a beta-sheet state. A gradual build-up of beta-A content in the neuronal extracellular space is another characteristic of the beta-A plague formation. Hypothetically, both the pathological conformation and the predominant localization of the beta-A can be a result of specific dynamic characteristics of the interphase between cellular membrane and extracellular milieu. In this study, the beta-A interphase problem has been investigated using a virtual membrane model implemented on the base of GROMACS molecular dynamics simulation package. The detailed folding pattern of beta-A has been examined using a novice interphase model comprised of a cholesterol supperlattice membrane and two water layers.

  4. Dynamic analysis of Space Shuttle/RMS configuration using continuum approach

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.

    1994-01-01

    The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.

  5. Development of a restricted state space stochastic differential equation model for bacterial growth in rich media.

    PubMed

    Møller, Jan Kloppenborg; Bergmann, Kirsten Riber; Christiansen, Lasse Engbo; Madsen, Henrik

    2012-07-21

    In the present study, bacterial growth in a rich media is analysed in a Stochastic Differential Equation (SDE) framework. It is demonstrated that the SDE formulation and smoothened state estimates provide a systematic framework for data driven model improvements, using random walk hidden states. Bacterial growth is limited by the available substrate and the inclusion of diffusion must obey this natural restriction. By inclusion of a modified logistic diffusion term it is possible to introduce a diffusion term flexible enough to capture both the growth phase and the stationary phase, while concentration is restricted to the natural state space (substrate and bacteria non-negative). The case considered is the growth of Salmonella and Enterococcus in a rich media. It is found that a hidden state is necessary to capture the lag phase of growth, and that a flexible logistic diffusion term is needed to capture the random behaviour of the growth model. Further, it is concluded that the Monod effect is not needed to capture the dynamics of bacterial growth in the data presented. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Space power technology into the 21st century

    NASA Technical Reports Server (NTRS)

    Faymon, K. A.; Fordyce, J. S.

    1984-01-01

    This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.

  7. Space power technology into the 21st Century

    NASA Technical Reports Server (NTRS)

    Faymon, K. A.; Fordyce, J. S.

    1983-01-01

    The space power systems of the early 21st century are discussed. The capabilities which are anticipated to evolve from today's state of the art and the technology development programs presently in place or planned for the remainder of the century are emphasized. The power system technologies considered include: solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include: nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state of the art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned Earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and Earth to space and space to space transportation systems. The various space power/energy system technologies which are anticipated to be operational by the early 21st century are matched to these missions.

  8. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    PubMed Central

    Tse, Peter W.; Wang, Dong

    2017-01-01

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions. PMID:28216586

  9. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics.

    PubMed

    Tse, Peter W; Wang, Dong

    2017-02-14

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  10. Inferring Time-Varying Network Topologies from Gene Expression Data

    PubMed Central

    2007-01-01

    Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in order to account for different cellular states affecting the interactions amongst genes. In this work, we present an approach, regime-SSM, to understand gene regulatory networks within such a dynamic setting. The approach uses a clustering method based on these underlying dynamics, followed by system identification using a state-space model for each learnt cluster—to infer a network adjacency matrix. We finally indicate our results on the mouse embryonic kidney dataset as well as the T-cell activation-based expression dataset and demonstrate conformity with reported experimental evidence. PMID:18309363

  11. Inferring time-varying network topologies from gene expression data.

    PubMed

    Rao, Arvind; Hero, Alfred O; States, David J; Engel, James Douglas

    2007-01-01

    Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in order to account for different cellular states affecting the interactions amongst genes. In this work, we present an approach, regime-SSM, to understand gene regulatory networks within such a dynamic setting. The approach uses a clustering method based on these underlying dynamics, followed by system identification using a state-space model for each learnt cluster--to infer a network adjacency matrix. We finally indicate our results on the mouse embryonic kidney dataset as well as the T-cell activation-based expression dataset and demonstrate conformity with reported experimental evidence.

  12. The results of a limited study of approaches to the design, fabrication, and testing of a dynamic model of the NASA IOC space station. Executive summary

    NASA Technical Reports Server (NTRS)

    Brooks, George W.

    1985-01-01

    The options for the design, construction, and testing of a dynamic model of the space station were evaluated. Since the definition of the space station structure is still evolving, the Initial Operating Capacity (IOC) reference configuration was used as the general guideline. The results of the studies treat: general considerations of the need for and use of a dynamic model; factors which deal with the model design and construction; and a proposed system for supporting the dynamic model in the planned Large Spacecraft Laboratory.

  13. Simplifying the complexity of a coupled carbon turnover and pesticide degradation model

    NASA Astrophysics Data System (ADS)

    Marschmann, Gianna; Erhardt, André H.; Pagel, Holger; Kügler, Philipp; Streck, Thilo

    2016-04-01

    The mechanistic one-dimensional model PECCAD (PEsticide degradation Coupled to CArbon turnover in the Detritusphere; Pagel et al. 2014, Biogeochemistry 117, 185-204) has been developed as a tool to elucidate regulation mechanisms of pesticide degradation in soil. A feature of this model is that it integrates functional traits of microorganisms, identifiable by molecular tools, and physicochemical processes such as transport and sorption that control substrate availability. Predicting the behavior of microbially active interfaces demands a fundamental understanding of factors controlling their dynamics. Concepts from dynamical systems theory allow us to study general properties of the model such as its qualitative behavior, intrinsic timescales and dynamic stability: Using a Latin hypercube method we sampled the parameter space for physically realistic steady states of the PECCAD ODE system and set up a numerical continuation and bifurcation problem with the open-source toolbox MatCont in order to obtain a complete classification of the dynamical system's behaviour. Bifurcation analysis reveals an equilibrium state of the system entirely controlled by fungal kinetic parameters. The equilibrium is generally unstable in response to small perturbations except for a small band in parameter space where the pesticide pool is stable. Time scale separation is a phenomenon that occurs in almost every complex open physical system. Motivated by the notion of "initial-stage" and "late-stage" decomposers and the concept of r-, K- or L-selected microbial life strategies, we test the applicability of geometric singular perturbation theory to identify fast and slow time scales of PECCAD. Revealing a generic fast-slow structure would greatly simplify the analysis of complex models of organic matter turnover by reducing the number of unknowns and parameters and providing a systematic mathematical framework for studying their properties.

  14. Autonomous Space Object Catalogue Construction and Upkeep Using Sensor Control Theory

    NASA Astrophysics Data System (ADS)

    Moretti, N.; Rutten, M.; Bessell, T.; Morreale, B.

    The capability to track objects in space is critical to safeguard domestic and international space assets. Infrequent measurement opportunities, complex dynamics and partial observability of orbital state makes the tracking of resident space objects nontrivial. It is not uncommon for human operators to intervene with space tracking systems, particularly in scheduling sensors. This paper details the development of a system that maintains a catalogue of geostationary objects through dynamically tasking sensors in real time by managing the uncertainty of object states. As the number of objects in space grows the potential for collision grows exponentially. Being able to provide accurate assessment to operators regarding costly collision avoidance manoeuvres is paramount; the accuracy of which is highly dependent on how object states are estimated. The system represents object state and uncertainty using particles and utilises a particle filter for state estimation. Particle filters capture the model and measurement uncertainty accurately, allowing for a more comprehensive representation of the state’s probability density function. Additionally, the number of objects in space is growing disproportionally to the number of sensors used to track them. Maintaining precise positions for all objects places large loads on sensors, limiting the time available to search for new objects or track high priority objects. Rather than precisely track all objects our system manages the uncertainty in orbital state for each object independently. The uncertainty is allowed to grow and sensor data is only requested when the uncertainty must be reduced. For example when object uncertainties overlap leading to data association issues or if the uncertainty grows to beyond a field of view. These control laws are formulated into a cost function, which is optimised in real time to task sensors. By controlling an optical telescope the system has been able to construct and maintain a catalogue of approximately 100 geostationary objects.

  15. Dynamic wave field synthesis: enabling the generation of field distributions with a large space-bandwidth product.

    PubMed

    Kamau, Edwin N; Heine, Julian; Falldorf, Claas; Bergmann, Ralf B

    2015-11-02

    We present a novel approach for the design and fabrication of multiplexed computer generated volume holograms (CGVH) which allow for a dynamic synthesis of arbitrary wave field distributions. To achieve this goal, we developed a hybrid system that consists of a CGVH as a static element and an electronically addressed spatial light modulator as the dynamic element. We thereby derived a new model for describing the scattering process within the inhomogeneous dielectric material of the hologram. This model is based on the linearization of the scattering process within the Rytov approximation and incorporates physical constraints that account for voxel based laser-lithography using micro-fabrication of the holograms in a nonlinear optical material. In this article we demonstrate that this system basically facilitates a high angular Bragg selectivity on the order of 1°. Additionally, it allows for a qualitatively low cross-talk dynamic synthesis of predefined wave fields with a much larger space-bandwidth product (SBWP ≥ 8.7 × 10(6)) as compared to the current state of the art in computer generated holography.

  16. A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2015-01-01

    Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning Multivariate Time Series (MTS). However, in general, it is difficult to set the dimension of an LDS's hidden state space. A small number of hidden states may not be able to model the complexities of a MTS, while a large number of hidden states can lead to overfitting. In this paper, we study learning methods that impose various regularization penalties on the transition matrix of the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1) automatically shut down LDSs' spurious and unnecessary dimensions, and consequently, address the problem of choosing the optimal number of hidden states; (2) prevent the overfitting problem given a small amount of MTS data; and (3) support accurate MTS forecasting. To learn the regularized LDS from data we incorporate a second order cone program and a generalized gradient descent method into the Maximum a Posteriori framework and use Expectation Maximization to obtain a low-rank transition matrix of the LDS model. We propose two priors for modeling the matrix which lead to two instances of our rLDS. We show that our rLDS is able to recover well the intrinsic dimensionality of the time series dynamics and it improves the predictive performance when compared to baselines on both synthetic and real-world MTS datasets.

  17. Dynamics of cavitons in strong Langmuir turbulence

    NASA Astrophysics Data System (ADS)

    Dubois, D. F.; Rose, Harvey A.; Russell, David

    Recent studies of Langmuir turbulence as described by Zakharov's model will be reviewed. For parameters of interest in laser-plasma experiments and for ionospheric hf heating experiments a significant fraction of the turbulent energy is in nonlinear caviton excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful hf waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that free Langmuir waves are emitted in the caviton collapse process. Observations and theoretical considerations also imply that when the pump frequency is slightly lower than the ambient electron plasma frequency cavitons may evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.

  18. Phenotypic models of evolution and development: geometry as destiny.

    PubMed

    François, Paul; Siggia, Eric D

    2012-12-01

    Quantitative models of development that consider all relevant genes typically are difficult to fit to embryonic data alone and have many redundant parameters. Computational evolution supplies models of phenotype with relatively few variables and parameters that allows the patterning dynamics to be reduced to a geometrical picture for how the state of a cell moves. The clock and wavefront model, that defines the phenotype of somitogenesis, can be represented as a sequence of two discrete dynamical transitions (bifurcations). The expression-time to space map for Hox genes and the posterior dominance rule are phenotypes that naturally follow from computational evolution without considering the genetics of Hox regulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology.

    PubMed

    Bittig, Arne T; Uhrmacher, Adelinde M

    2017-01-01

    Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.

  20. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction.

    PubMed

    Casey, M

    1996-08-15

    Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.

  1. Equation of State and Viscosity of Tantalum and Iron from First Principles

    NASA Astrophysics Data System (ADS)

    Miljacic, Ljubomir; Demers, Steven; van de Walle, Axel

    2011-03-01

    To understand and model at continuum level the high-energy-density dynamic response in transition metals like Tantalum and Iron, as it arises in hypervelocity impact experiments, an accurate prediction of the underlying thermodynamic and kinetic properties for a range of temperatures and pressures is of critical importance. The relevant time scale of atomic motion in a dense gas, liquid, and solid is accessible with ab-initio Molecular Dynamics (MD) simulations. We calculate EoS for Ta and Fe via Thermodynamical Integration in 2D (V,T) phase space throughout different single and two-component phases. To reduce the ab-initio demand in selected regions of the space, we fit available gas-liquid data to the Peng-Robinson model and treat the solid phase within the Boxed-quasi-harmonic approximation. In the fluid part of the 2D phase space, we calculate shear viscosity via Green-Kubo relations, as time integration of the stress autocorrelation function.

  2. Wave-Particle Interactions in the Earth's Radiation Belts: Recent Advances and Unprecedented Future Opportunities

    NASA Astrophysics Data System (ADS)

    Li, W.

    2017-12-01

    In the collisionless heliospheric plasmas, wave-particle interaction is a fundamental physical process in transferring energy and momentum between particles with different species and energies. This presentation focuses on one of the important wave-particle interaction processes: interaction between whistler-mode waves and electrons. Whistler-mode waves have frequencies between proton and electron cyclotron frequency and are ubiquitously present in the heliospheric plasmas including solar wind and planetary magnetospheres. I use Earth's Van Allen radiation belt as "local space laboratory" to discuss the role of whistler-mode waves in energetic electron dynamics using multi-satellite observations, theory and modeling. I further discuss solar wind drivers leading to energetic electron dynamics in the Earth's radiation belts, which is critical in predicting space weather that has broad impacts on our technological systems and society. At last, I discuss the unprecedented future opportunities of exploring space science using multi-satellite observations and state-of-the-art theory and modeling.

  3. An opinion-driven behavioral dynamics model for addictive behaviors

    NASA Astrophysics Data System (ADS)

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.

    2015-04-01

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual's behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. This has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.

  4. Restoration of rhythmicity in diffusively coupled dynamical networks.

    PubMed

    Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen

    2015-07-15

    Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.

  5. Linear State-Space Representation of the Dynamics of Relative Motion, Based on Restricted Three Body Dynamics

    NASA Technical Reports Server (NTRS)

    Luquette,Richard J.; Sanner, Robert M.

    2004-01-01

    Precision Formation Flying is an enabling technology for a variety of proposed space-based observatories, including the Micro-Arcsecond X-ray Imaging Mission (MAXIM) , the associated MAXIM pathfinder mission, Stellar Imager (SI) and the Terrestrial Planet Finder (TPF). An essential element of the technology is the control algorithm, requiring a clear understanding of the dynamics of relative motion. This paper examines the dynamics of relative motion in the context of the Restricted Three Body Problem (RTBP). The natural dynamics of relative motion are presented in their full nonlinear form. Motivated by the desire to apply linear control methods, the dynamics equations are linearized and presented in state-space form. The stability properties are explored for regions in proximity to each of the libration points in the Earth/Moon - Sun rotating frame. The dynamics of relative motion are presented in both the inertial and rotating coordinate frames.

  6. Multi-scale genetic dynamic modelling I : an algorithm to compute generators.

    PubMed

    Kirkilionis, Markus; Janus, Ulrich; Sbano, Luca

    2011-09-01

    We present a new approach or framework to model dynamic regulatory genetic activity. The framework is using a multi-scale analysis based upon generic assumptions on the relative time scales attached to the different transitions of molecular states defining the genetic system. At micro-level such systems are regulated by the interaction of two kinds of molecular players: macro-molecules like DNA or polymerases, and smaller molecules acting as transcription factors. The proposed genetic model then represents the larger less abundant molecules with a finite discrete state space, for example describing different conformations of these molecules. This is in contrast to the representations of the transcription factors which are-like in classical reaction kinetics-represented by their particle number only. We illustrate the method by considering the genetic activity associated to certain configurations of interacting genes that are fundamental to modelling (synthetic) genetic clocks. A largely unknown question is how different molecular details incorporated via this more realistic modelling approach lead to different macroscopic regulatory genetic models which dynamical behaviour might-in general-be different for different model choices. The theory will be applied to a real synthetic clock in a second accompanying article (Kirkilioniset al., Theory Biosci, 2011).

  7. Investigation of space shuttle vehicle 140C configuration orbiter (model 16-0) wheel well pressure loads in the Rockwell International 7.75 x 11 foot wind tunnel (OA143)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1975-01-01

    Experimental aerodynamic investigations were conducted on a sting mounted .0405-scale representation of the 140C outer mold line space shuttle orbiter configuration in the Rockwell International 7.75 x 11.00 foot low speed wind tunnel. The primary test objectives were to define the orbiter wheel well pressure loading and its effects on landing gear thermal insulation and to investigate the pressure environment experienced by both the horizontal flight nose probe and air vent door probes. Steady state and dynamic pressure values were recorded in the orbiter nose gear well, left main landing gear well, horizontal flight nose probe, and both left and right air vent door probe. All steady state pressure levels were measured by Statham differential pressure transducers while dynamic pressure levels were recorded by Kulite high frequency response pressure sensors.

  8. Optimal Stabilization of Social Welfare under Small Variation of Operating Condition with Bifurcation Analysis

    NASA Astrophysics Data System (ADS)

    Chanda, Sandip; De, Abhinandan

    2016-12-01

    A social welfare optimization technique has been proposed in this paper with a developed state space based model and bifurcation analysis to offer substantial stability margin even in most inadvertent states of power system networks. The restoration of the power market dynamic price equilibrium has been negotiated in this paper, by forming Jacobian of the sensitivity matrix to regulate the state variables for the standardization of the quality of solution in worst possible contingencies of the network and even with co-option of intermittent renewable energy sources. The model has been tested in IEEE 30 bus system and illustrious particle swarm optimization has assisted the fusion of the proposed model and methodology.

  9. Improved treatment of optics in the Lindquist-Wheeler models

    NASA Astrophysics Data System (ADS)

    Clifton, Timothy; Ferreira, Pedro G.; O'Donnell, Kane

    2012-01-01

    We consider the optical properties of Lindquist-Wheeler (LW) models of the Universe. These models consist of lattices constructed from regularly arranged discrete masses. They are akin to the Wigner-Seitz construction of solid state physics, and result in a dynamical description of the large-scale Universe in which the global expansion is given by a Friedmann-like equation. We show that if these models are constructed in a particular way then the redshifts of distant objects, as well as the dynamics of the global space-time, can be made to be in good agreement with the homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) solutions of Einstein’s equations, at the level of ≲3% out to z≃2. Angular diameter and luminosity distances, on the other hand, differ from those found in the corresponding FLRW models, while being consistent with the “empty beam” approximation, together with the shearing effects due to the nearest masses. This can be compared with the large deviations found from the corresponding FLRW values obtained in a previous study that considered LW models constructed in a different way. We therefore advocate the improved LW models we consider here as useful constructions that appear to faithfully reproduce both the dynamical and observational properties of space-times containing discrete masses.

  10. Control Law Design in a Computational Aeroelasticity Environment

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.

    2003-01-01

    A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.

  11. Does the diffusion dark matter-dark energy interaction model solve cosmological puzzles?

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander

    2016-08-01

    We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter (ρd m ,0a-3(t )) is modified by an additive ɛ (t )=γ t a-3(t ) to the form ρd m=ρd m ,0a-3(t )+ɛ (t ). We reduced this model to the autonomous dynamical system and investigate it using dynamical system methods. This system possesses a two-dimensional invariant submanifold on which the dark matter-dark energy (DM-DE) interaction can be analyzed on the phase plane. The state variables are density parameter for matter (dark and visible) and parameter δ characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical system belongs to a general class of jungle type of cosmologies represented by coupled cosmological models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is a global attractor for all trajectories in the phase space and there are two repellers: the Einstein-de Sitter universe and the de Sitter universe state dominating by the diffusion effects. We distinguish in the phase space trajectories, which become in good agreement with the data. They should intersect a rectangle with sides of Ωm ,0∈[0.2724 ,0.3624 ] , δ ∈[0.0000 ,0.0364 ] at the 95% CL. Our model could solve some of the puzzles of the Λ CDM model, such as the coincidence and fine-tuning problems. In the context of the coincidence problem, our model can explain the present ratio of ρm to ρd e, which is equal 0.457 6-0.0831+0.1109 at a 2 σ confidence level.

  12. Control law synthesis and optimization software for large order aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Pototzky, A.; Noll, Thomas

    1989-01-01

    A flexible aircraft or space structure with active control is typically modeled by a large-order state space system of equations in order to accurately represent the rigid and flexible body modes, unsteady aerodynamic forces, actuator dynamics and gust spectra. The control law of this multi-input/multi-output (MIMO) system is expected to satisfy multiple design requirements on the dynamic loads, responses, actuator deflection and rate limitations, as well as maintain certain stability margins, yet should be simple enough to be implemented on an onboard digital microprocessor. A software package for performing an analog or digital control law synthesis for such a system, using optimal control theory and constrained optimization techniques is described.

  13. Stochastic inference with spiking neurons in the high-conductance state

    NASA Astrophysics Data System (ADS)

    Petrovici, Mihai A.; Bill, Johannes; Bytschok, Ilja; Schemmel, Johannes; Meier, Karlheinz

    2016-10-01

    The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro. Based on a propagation of the membrane autocorrelation across spike bursts, we provide an analytical derivation of the neural activation function that holds for a large parameter space, including the high-conductance state. On this basis, we show how an ensemble of leaky integrate-and-fire neurons with conductance-based synapses embedded in a spiking environment can attain the correct firing statistics for sampling from a well-defined target distribution. For recurrent networks, we examine convergence toward stationarity in computer simulations and demonstrate sample-based Bayesian inference in a mixed graphical model. This points to a new computational role of high-conductance states and establishes a rigorous link between deterministic neuron models and functional stochastic dynamics on the network level.

  14. First stage of LISA data processing. II. Alternative filtering dynamic models for LISA

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Heinzel, Gerhard; Danzmann, Karsten

    2015-08-01

    Space-borne gravitational wave detectors, such as (e)LISA, are designed to operate in the low-frequency band (mHz to Hz), where there is a variety of gravitational wave sources of great scientific value [arXiv:1305.5720 and S. Babak et al., Classical Quantum Gravity 28, 114001 (2011)]. To achieve the extraordinary sensitivity of these detectors, the precise synchronization of the clocks on the separate spacecraft and the accurate determination of the interspacecraft distances are important ingredients. In our previous paper [Y. Wang et al., Phys. Rev. D 90, 064016 (2014)], we have described a hybrid-extend Kalman filter with a full state vector to do this job. In this paper, we explore several different state vectors and their corresponding (phenomenological) dynamic models to reduce the redundancy in the full state vector, to accelerate the algorithm, and to make the algorithm easily extendable to more complicated scenarios.

  15. A Financial Market Model Incorporating Herd Behaviour

    PubMed Central

    2016-01-01

    Herd behaviour in financial markets is a recurring phenomenon that exacerbates asset price volatility, and is considered a possible contributor to market fragility. While numerous studies investigate herd behaviour in financial markets, it is often considered without reference to the pricing of financial instruments or other market dynamics. Here, a trader interaction model based upon informational cascades in the presence of information thresholds is used to construct a new model of asset price returns that allows for both quiescent and herd-like regimes. Agent interaction is modelled using a stochastic pulse-coupled network, parametrised by information thresholds and a network coupling probability. Agents may possess either one or two information thresholds that, in each case, determine the number of distinct states an agent may occupy before trading takes place. In the case where agents possess two thresholds (labelled as the finite state-space model, corresponding to agents’ accumulating information over a bounded state-space), and where coupling strength is maximal, an asymptotic expression for the cascade-size probability is derived and shown to follow a power law when a critical value of network coupling probability is attained. For a range of model parameters, a mixture of negative binomial distributions is used to approximate the cascade-size distribution. This approximation is subsequently used to express the volatility of model price returns in terms of the model parameter which controls the network coupling probability. In the case where agents possess a single pulse-coupling threshold (labelled as the semi-infinite state-space model corresponding to agents’ accumulating information over an unbounded state-space), numerical evidence is presented that demonstrates volatility clustering and long-memory patterns in the volatility of asset returns. Finally, output from the model is compared to both the distribution of historical stock returns and the market price of an equity index option. PMID:27007236

  16. Geometric analysis of pathways dynamics: Application to versatility of TGF-β receptors.

    PubMed

    Samal, Satya Swarup; Naldi, Aurélien; Grigoriev, Dima; Weber, Andreas; Théret, Nathalie; Radulescu, Ovidiu

    2016-11-01

    We propose a new geometric approach to describe the qualitative dynamics of chemical reactions networks. By this method we identify metastable regimes, defined as low dimensional regions of the phase space close to which the dynamics is much slower compared to the rest of the phase space. These metastable regimes depend on the network topology and on the orders of magnitude of the kinetic parameters. Benchmarking of the method on a computational biology model repository suggests that the number of metastable regimes is sub-exponential in the number of variables and equations. The dynamics of the network can be described as a sequence of jumps from one metastable regime to another. We show that a geometrically computed connectivity graph restricts the set of possible jumps. We also provide finite state machine (Markov chain) models for such dynamic changes. Applied to signal transduction models, our approach unravels dynamical and functional capacities of signalling pathways, as well as parameters responsible for specificity of the pathway response. In particular, for a model of TGFβ signalling, we find that the ratio of TGFBR2 to TGFBR1 receptors concentrations can be used to discriminate between metastable regimes. Using expression data from the NCI60 panel of human tumor cell lines, we show that aggressive and non-aggressive tumour cell lines function in different metastable regimes and can be distinguished by measuring the relative concentrations of receptors of the two types. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  18. Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding

    PubMed Central

    Tajima, Satohiro; Yanagawa, Toru; Fujii, Naotaka; Toyoizumi, Taro

    2015-01-01

    Brain-wide interactions generating complex neural dynamics are considered crucial for emergent cognitive functions. However, the irreducible nature of nonlinear and high-dimensional dynamical interactions challenges conventional reductionist approaches. We introduce a model-free method, based on embedding theorems in nonlinear state-space reconstruction, that permits a simultaneous characterization of complexity in local dynamics, directed interactions between brain areas, and how the complexity is produced by the interactions. We demonstrate this method in large-scale electrophysiological recordings from awake and anesthetized monkeys. The cross-embedding method captures structured interaction underlying cortex-wide dynamics that may be missed by conventional correlation-based analysis, demonstrating a critical role of time-series analysis in characterizing brain state. The method reveals a consciousness-related hierarchy of cortical areas, where dynamical complexity increases along with cross-area information flow. These findings demonstrate the advantages of the cross-embedding method in deciphering large-scale and heterogeneous neuronal systems, suggesting a crucial contribution by sensory-frontoparietal interactions to the emergence of complex brain dynamics during consciousness. PMID:26584045

  19. Fault Gauge Numerical Simulation : Dynamic Rupture Propagation and Local Energy Partitioning

    NASA Astrophysics Data System (ADS)

    Mollon, G.

    2017-12-01

    In this communication, we present dynamic simulations of the local (centimetric) behaviour of a fault filled with a granular gauge submitted to dynamic rupture. The numerical tool (Fig. 1) combines classical Discrete Element Modelling (albeit with the ability to deal with arbitrary grain shapes) for the simualtion of the gauge, and continuous modelling for the simulation of the acoustic waves emission and propagation. In a first part, the model is applied to the simulation of steady-state shearing of the fault under remote displacement boudary conditions, in order to observe the shear accomodation at the interface (R1 cracks, localization, wear, etc.). It also makes it possible to fit to desired values the Rate and State Friction properties of the granular gauge by adapting the contact laws between grains. Such simulations provide quantitative insight in the steady-state energy partitionning between fracture, friction and acoustic emissions as a function of the shear rate. In a second part, the model is submitted to dynamic rupture. For that purpose, the fault is elastically preloaded just below rupture, and a displacement pulse is applied at one end of the sample (and on only one side of the fault). This allows to observe the propagation of the instability along the fault and the interplay between this propagation and the local granular phenomena. Energy partitionning is then observed both in space and time.

  20. Dynamics and Self-consistent Chaos in a Mean Field Hamiltonian Model

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, Diego

    We study a mean field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas in the finite N and N-> infty kinetic limit (where N is the number of particles). The linear stability of equilibria in the kinetic model is studied as well as the initial value problem including Landau damping . Numerical simulations show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles and show that the N=2 limit has a family of rotating integrable solutions that provide an accurate description of the dynamics. We discuss the role of self-consistent Hamiltonian chaos in the formation of coherent structures, and discuss a mechanism of "violent" mixing caused by a self-consistent elliptic-hyperbolic bifurcation in phase space.

  1. A versatile zero ripple topology

    NASA Astrophysics Data System (ADS)

    Capel, A.; Spruyt, H.; Weinberg, A.; O'Sullivan, D.; Crausaz, A.

    A lightweight and efficient converter topology is described that presents zero ripple current on both input and output terminals simultaneously. The static and dynamic analyses are performed by using state representation with the current-injected method. A hardware application suitable for a Space Station battery conditioner is presented as a validation of the theoretical model.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  3. Mapping quantum-classical Liouville equation: projectors and trajectories.

    PubMed

    Kelly, Aaron; van Zon, Ramses; Schofield, Jeremy; Kapral, Raymond

    2012-02-28

    The evolution of a mixed quantum-classical system is expressed in the mapping formalism where discrete quantum states are mapped onto oscillator states, resulting in a phase space description of the quantum degrees of freedom. By defining projection operators onto the mapping states corresponding to the physical quantum states, it is shown that the mapping quantum-classical Liouville operator commutes with the projection operator so that the dynamics is confined to the physical space. It is also shown that a trajectory-based solution of this equation can be constructed that requires the simulation of an ensemble of entangled trajectories. An approximation to this evolution equation which retains only the Poisson bracket contribution to the evolution operator does admit a solution in an ensemble of independent trajectories but it is shown that this operator does not commute with the projection operators and the dynamics may take the system outside the physical space. The dynamical instabilities, utility, and domain of validity of this approximate dynamics are discussed. The effects are illustrated by simulations on several quantum systems.

  4. A continuum model for dynamic analysis of the Space Station

    NASA Technical Reports Server (NTRS)

    Thomas, Segun

    1989-01-01

    Dynamic analysis of the International Space Station using MSC/NASTRAN had 1312 rod elements, 62 beam elements, 489 nodes and 1473 dynamic degrees of freedom. A realtime, man-in-the-loop simulation of such a model is impractical. This paper discusses the mathematical model for realtime dynamic simulation of the Space Station. Several key questions in structures and structural dynamics are addressed. First, to achieve a significant reduction in the number of dynamic degrees of freedom, a continuum equivalent representation of the Space Station truss structure which accounted for the unsymmetry of the basic configuration and resulted in the coupling of extensional and transverse deformation, is developed. Next, dynamic equations for the continuum equivalent of the Space Station truss structure are formulated using a matrix version of Kane's dynamical equations. Flexibility is accounted for by using a theory that accommodates extension, bending in two principal planes and shear displacement. Finally, constraint equations suitable for dynamic analysis of flexible bodies with closed loop configuration are developed and solution of the resulting system of equations is based on the zero eigenvalue theorem.

  5. Experimental study of the dynamics of a ruby laser pumped by a CW argon-ion laser

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Lin, W. P.; Lawandy, N. M.

    1989-01-01

    A study of the dynamics of a ruby laser pumped by a CW argon-ion laser is presented. The ruby laser is predominantly stable but has two accessible unstable states. One state exhibits chaotic output, while the other results in regular self-pulsing. The conditions needed for instability are discussed and homodyne spectra and temporal maps of the phase-space attractors are obtained. In addition, a numerical simulation of nonlinear beam propagation in ruby is presented that shows that strong deviations from plane-wave behavior exist, and that transverse effects must be incorporated into theoretical models of the instability.

  6. GPC-Based Stable Reconfigurable Control

    NASA Technical Reports Server (NTRS)

    Soloway, Don; Shi, Jian-Jun; Kelkar, Atul

    2004-01-01

    This paper presents development of multi-input multi-output (MIMO) Generalized Pre-dictive Control (GPC) law and its application to reconfigurable control design in the event of actuator saturation. A Controlled Auto-Regressive Integrating Moving Average (CARIMA) model is used to describe the plant dynamics. The control law is derived using input-output description of the system and is also related to the state-space form of the model. The stability of the GPC control law without reconfiguration is first established using Riccati-based approach and state-space formulation. A novel reconfiguration strategy is developed for the systems which have actuator redundancy and are faced with actuator saturation type failure. An elegant reconfigurable control design is presented with stability proof. Several numerical examples are presented to demonstrate the application of various results.

  7. Modeling Elevation and Aspect Controls on Emerging Ecohydrologic Processes and Ecosystem Patterns Using the Component-based Landlab Framework

    NASA Astrophysics Data System (ADS)

    Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.

    2014-12-01

    Topography plays a commanding role on the organization of ecohydrologic processes and resulting vegetation patterns. In southwestern United States, climate conditions lead to terrain aspect- and elevation-controlled ecosystems, with mesic north-facing and xeric south-facing vegetation types; and changes in biodiversity as a function of elevation from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations and ridge tops. These observed patterns have been attributed to differences in topography-mediated local soil moisture availability, micro-climatology, and life history processes of plants that control chances of plant establishment and survival. While ecohydrologic models represent local vegetation dynamics in sufficient detail up to sub-hourly time scales, plant life history and competition for space and resources has not been adequately represented in models. In this study we develop an ecohydrologic cellular automata model within the Landlab component-based modeling framework. This model couples local vegetation dynamics (biomass production, death) and plant establishment and competition processes for resources and space. This model is used to study the vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. Processes that lead to observed plant types across the landscape are examined by initializing the domain with randomly assigned plant types and systematically changing model parameters that couple plant response with soil moisture dynamics. Climate perturbation experiments are conducted to examine the plant response in space and time. Understanding the inherently transient ecohydrologic systems is critical to improve predictions of climate change impacts on ecosystems.

  8. Failing States as Epidemiologic Risk Zones: Implications for Global Health Security.

    PubMed

    Hirschfeld, Katherine

    Failed states commonly experience health and mortality crises that include outbreaks of infectious disease, violent conflict, reductions in life expectancy, and increased infant and maternal mortality. This article draws from recent research in political science, security studies, and international relations to explore how the process of state failure generates health declines and outbreaks of infectious disease. The key innovation of this model is a revised definition of "the state" as a geographically dynamic rather than static political space. This makes it easier to understand how phases of territorial contraction, collapse, and regeneration interrupt public health programs, destabilize the natural environment, reduce human security, and increase risks of epidemic infectious disease and other humanitarian crises. Better understanding of these dynamics will help international health agencies predict and prepare for future health and mortality crises created by failing states.

  9. Spatial and temporal synchrony in reptile population dynamics in variable environments.

    PubMed

    Greenville, Aaron C; Wardle, Glenda M; Nguyen, Vuong; Dickman, Chris R

    2016-10-01

    Resources are seldom distributed equally across space, but many species exhibit spatially synchronous population dynamics. Such synchrony suggests the operation of large-scale external drivers, such as rainfall or wildfire, or the influence of oasis sites that provide water, shelter, or other resources. However, testing the generality of these factors is not easy, especially in variable environments. Using a long-term dataset (13-22 years) from a large (8000 km(2)) study region in arid Central Australia, we tested firstly for regional synchrony in annual rainfall and the dynamics of six reptile species across nine widely separated sites. For species that showed synchronous spatial dynamics, we then used multivariate follow a multivariate auto-regressive state-space (MARSS) models to predict that regional rainfall would be positively associated with their populations. For asynchronous species, we used MARSS models to explore four other possible population structures: (1) populations were asynchronous, (2) differed between oasis and non-oasis sites, (3) differed between burnt and unburnt sites, or (4) differed between three sub-regions with different rainfall gradients. Only one species showed evidence of spatial population synchrony and our results provide little evidence that rainfall synchronizes reptile populations. The oasis or the wildfire hypotheses were the best-fitting models for the other five species. Thus, our six study species appear generally to be structured in space into one or two populations across the study region. Our findings suggest that for arid-dwelling reptile populations, spatial and temporal dynamics are structured by abiotic events, but individual responses to covariates at smaller spatial scales are complex and poorly understood.

  10. Quantum anharmonic oscillator plus delta-function potential: a molecular view of pairing formation and breaking in the coordinate space

    NASA Astrophysics Data System (ADS)

    Sumaryada, Tony; Maha Putra, Bima; Pramudito, Sidikrubadi

    2017-05-01

    We propose an alternative way to describe the pairing formation and breaking via a quantum anharmonic oscillator with a delta-function potential model. Unlike BCS theory, which describes the pairing formation in the momentum space, this model works in the coordinate space and is able to give a molecular view of pairing formation and breaking in the coordinate space. By exploring the dynamical interplay between the intrinsic factor (dissociation energy) and external factor (pairing strength) of this system additional information was gained, including the critical pairing strength and critical scattering length, which might relate to the BCS-BEC crossover phenomena and halo state formation. Although only the energetic aspect of pairing is described by this model, its simplicity and pedagogical steps might help undergraduate students to understand the pairing problem in a simple way.

  11. Examining the evidence for dynamical dark energy.

    PubMed

    Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin

    2012-10-26

    We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.

  12. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.

  13. Development of Reduced-Order Models for Aeroelastic and Flutter Prediction Using the CFL3Dv6.0 Code

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bartels, Robert E.

    2002-01-01

    A reduced-order model (ROM) is developed for aeroelastic analysis using the CFL3D version 6.0 computational fluid dynamics (CFD) code, recently developed at the NASA Langley Research Center. This latest version of the flow solver includes a deforming mesh capability, a modal structural definition for nonlinear aeroelastic analyses, and a parallelization capability that provides a significant increase in computational efficiency. Flutter results for the AGARD 445.6 Wing computed using CFL3D v6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are then computed using the CFL3Dv6 code and transformed into state-space form. Important numerical issues associated with the computation of the impulse responses are presented. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is used to rapidly compute aeroelastic transients including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly.

  14. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method.

    PubMed

    Molloy, Kevin; Shehu, Amarda

    2013-01-01

    Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.

  15. Stochastic analysis of surface roughness models in quantum wires

    NASA Astrophysics Data System (ADS)

    Nedjalkov, Mihail; Ellinghaus, Paul; Weinbub, Josef; Sadi, Toufik; Asenov, Asen; Dimov, Ivan; Selberherr, Siegfried

    2018-07-01

    We present a signed particle computational approach for the Wigner transport model and use it to analyze the electron state dynamics in quantum wires focusing on the effect of surface roughness. Usually surface roughness is considered as a scattering model, accounted for by the Fermi Golden Rule, which relies on approximations like statistical averaging and in the case of quantum wires incorporates quantum corrections based on the mode space approach. We provide a novel computational approach to enable physical analysis of these assumptions in terms of phase space and particles. Utilized is the signed particles model of Wigner evolution, which, besides providing a full quantum description of the electron dynamics, enables intuitive insights into the processes of tunneling, which govern the physical evolution. It is shown that the basic assumptions of the quantum-corrected scattering model correspond to the quantum behavior of the electron system. Of particular importance is the distribution of the density: Due to the quantum confinement, electrons are kept away from the walls, which is in contrast to the classical scattering model. Further quantum effects are retardation of the electron dynamics and quantum reflection. Far from equilibrium the assumption of homogeneous conditions along the wire breaks even in the case of ideal wire walls.

  16. Genetic Algorithm-Guided, Adaptive Model Order Reduction of Flexible Aircrafts

    NASA Technical Reports Server (NTRS)

    Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter; Brenner, Martin J.

    2017-01-01

    This paper presents a methodology for automated model order reduction (MOR) of flexible aircrafts to construct linear parameter-varying (LPV) reduced order models (ROM) for aeroservoelasticity (ASE) analysis and control synthesis in broad flight parameter space. The novelty includes utilization of genetic algorithms (GAs) to automatically determine the states for reduction while minimizing the trial-and-error process and heuristics requirement to perform MOR; balanced truncation for unstable systems to achieve locally optimal realization of the full model; congruence transformation for "weak" fulfillment of state consistency across the entire flight parameter space; and ROM interpolation based on adaptive grid refinement to generate a globally functional LPV ASE ROM. The methodology is applied to the X-56A MUTT model currently being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies indicate that X-56A ROM with less than one-seventh the number of states relative to the original model is able to accurately predict system response among all input-output channels for pitch, roll, and ASE control at various flight conditions. The GA-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The adaptive refinement allows selective addition of the grid points in the parameter space where flight dynamics varies dramatically to enhance interpolation accuracy without over-burdening controller synthesis and onboard memory efforts downstream. The present MOR framework can be used by control engineers for robust ASE controller synthesis and novel vehicle design.

  17. Homoclinic Bifurcation in an SIQR Model for Childhood Diseases

    NASA Astrophysics Data System (ADS)

    Wu, Lih-Ing; Feng, Zhilan

    2000-11-01

    We consider a system of ODEs which describes the transmission dynamics of childhood diseases. A center manifold reduction at a bifurcation point has the normal form x‧=y, y‧=axy+bx2y+O(4), indicating a bifurcation of codimension greater than two. A three-parameter unfolding of the normal form is studied to capture possible complex dynamics of the original system which is subjected to certain constraints on the state space due to biological considerations. It is shown that the perturbed system produces homoclinic bifurcation.

  18. Transition records of stationary Markov chains.

    PubMed

    Naudts, Jan; Van der Straeten, Erik

    2006-10-01

    In any Markov chain with finite state space the distribution of transition records always belongs to the exponential family. This observation is used to prove a fluctuation theorem, and to show that the dynamical entropy of a stationary Markov chain is linear in the number of steps. Three applications are discussed. A known result about entropy production is reproduced. A thermodynamic relation is derived for equilibrium systems with Metropolis dynamics. Finally, a link is made with recent results concerning a one-dimensional polymer model.

  19. Effective connectivity: Influence, causality and biophysical modeling

    PubMed Central

    Valdes-Sosa, Pedro A.; Roebroeck, Alard; Daunizeau, Jean; Friston, Karl

    2011-01-01

    This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments. PMID:21477655

  20. Lotka-Volterra competition models for sessile organisms.

    PubMed

    Spencer, Matthew; Tanner, Jason E

    2008-04-01

    Markov models are widely used to describe the dynamics of communities of sessile organisms, because they are easily fitted to field data and provide a rich set of analytical tools. In typical ecological applications, at any point in time, each point in space is in one of a finite set of states (e.g., species, empty space). The models aim to describe the probabilities of transitions between states. In most Markov models for communities, these transition probabilities are assumed to be independent of state abundances. This assumption is often suspected to be false and is rarely justified explicitly. Here, we start with simple assumptions about the interactions among sessile organisms and derive a model in which transition probabilities depend on the abundance of destination states. This model is formulated in continuous time and is equivalent to a Lotka-Volterra competition model. We fit this model and a variety of alternatives in which transition probabilities do not depend on state abundances to a long-term coral reef data set. The Lotka-Volterra model describes the data much better than all models we consider other than a saturated model (a model with a separate parameter for each transition at each time interval, which by definition fits the data perfectly). Our approach provides a basis for further development of stochastic models of sessile communities, and many of the methods we use are relevant to other types of community. We discuss possible extensions to spatially explicit models.

  1. Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System

    NASA Astrophysics Data System (ADS)

    Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir

    2010-11-01

    Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.

  2. Neural-genetic synthesis for state-space controllers based on linear quadratic regulator design for eigenstructure assignment.

    PubMed

    da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira

    2010-04-01

    Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.

  3. Three-strategy N-person snowdrift game incorporating loners

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Zheng, Da-Fang; Xu, C.; Hui, P. M.

    2017-02-01

    The N-person snowdrift game is generalized to incorporate a third strategy. In addition to the cooperative C and non-cooperative D strategies, a strategy L representing a loner behavior is introduced. Agents taking on the L strategy (L-agents) do not contribute to the game as the C-agents do but they do not take advantage of the C-agents. Instead, they would rather settle with a fixed payoff L. Dynamical equations governing the time evolution of the frequencies of the strategies in a well-mixed population are derived. The dynamics and the frequencies of the steady state reveal the rich behavior resulting from the interplay between the payoff r, which promotes the non-cooperative behavior, and L. Detailed studies on how a system evolves indicated that the steady state could be an AllL, AllC, or C+D state, depending on the parameters r, L, and group size N. In contrast, only a C+D state results for r > 0 and an AllC state is possible only at r = 0 without the strategy L. With the strategy L, the AllC phase occupies a finite, though tiny, region of the r- L parameter space. The L-agents play an important role in the dynamics leading to the AllC phase. They help eliminate the D strategy in the transient and later only to be replaced by the C strategy. Phase diagrams in the r- L space are presented for different values of N. The strategy L plays two roles. It leads to an AllL phase and helps give an AllC phase. An algorithm for simulating the model numerically is described and validated. The algorithm will be useful in studying our model in various structured populations.

  4. An algebra-based method for inferring gene regulatory networks.

    PubMed

    Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard

    2014-03-26

    The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network. Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html.

  5. Short-time dynamics of 2-thiouracil in the light absorbing S{sub 2}(ππ{sup ∗}) state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jie; Zhang, Teng-shuo; Xue, Jia-dan

    2015-11-07

    Ultrahigh quantum yields of intersystem crossing to the lowest triplet state T{sub 1} are observed for 2-thiouracils (2TU), which is in contrast to the natural uracils that predominantly exhibit ultrafast internal conversion to the ground state upon excitation to the singlet excited state. The intersystem crossing mechanism of 2TU has recently been investigated using second-order perturbation methods with a high-level complete-active space self-consistent field. Three competitive nonadiabatic pathways to the lowest triplet state T{sub 1} from the initially populated singlet excited state S{sub 2} were proposed. We investigate the initial decay dynamics of 2TU from the light absorbing excited statesmore » using resonance Raman spectroscopy, time-dependent wave-packet theory in the simple model, and complete-active space self-consistent field (CASSCF) and time dependent-Becke’s three-parameter exchange and correlation functional with the Lee-Yang-Parr correlation functional (TD-B3LYP) calculations. The obtained short-time structural dynamics in easy-to-visualize internal coordinates were compared with the CASSCF(16,11) predicted key nonadiabatic decay routes. Our results indicate that the predominant decay pathway initiated at the Franck-Condon region is toward the S{sub 2}/S{sub 1} conical intersection point and S{sub 2}T{sub 3} intersystem crossing point, but not toward the S{sub 2}T{sub 2} intersystem crossing point.« less

  6. Modelling of piezoelectric actuator dynamics for active structural control

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W.; Chung, Walter H.; Von Flotow, Andreas

    1990-01-01

    The paper models the effects of dynamic coupling between a structure and an electrical network through the piezoelectric effect. The coupled equations of motion of an arbitrary elastic structure with piezoelectric elements and passive electronics are derived. State space models are developed for three important cases: direct voltage driven electrodes, direct charge driven electrodes, and an indirect drive case where the piezoelectric electrodes are connected to an arbitrary electrical circuit with embedded voltage and current sources. The equations are applied to the case of a cantilevered beam with surface mounted piezoceramics and indirect voltage and current drive. The theoretical derivations are validated experimentally on an actively controlled cantilevered beam test article with indirect voltage drive.

  7. Eyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks

    PubMed Central

    Vanvinckenroye, Amaury; Vandewalle, Gilles; Chellappa, Sarah L.

    2016-01-01

    Functional and effective connectivity of cortical areas are essential for normal brain function under different behavioral states. Appropriate cortical activity during sleep and wakefulness is ensured by the balanced activity of excitatory and inhibitory circuits. Ultimately, fast, millisecond cortical rhythmic oscillations shape cortical function in time and space. On a much longer time scale, brain function also depends on prior sleep-wake history and circadian processes. However, much remains to be established on how the brain operates at the neuronal level in humans during sleep and wakefulness. A key limitation of human neuroscience is the difficulty in isolating neuronal excitation/inhibition drive in vivo. Therefore, computational models are noninvasive approaches of choice to indirectly access hidden neuronal states. In this review, we present a physiologically driven in silico approach, Dynamic Causal Modelling (DCM), as a means to comprehend brain function under different experimental paradigms. Importantly, DCM has allowed for the understanding of how brain dynamics underscore brain plasticity, cognition, and different states of consciousness. In a broader perspective, noninvasive computational approaches, such as DCM, may help to puzzle out the spatial and temporal dynamics of human brain function at different behavioural states. PMID:26885400

  8. A robust computational technique for model order reduction of two-time-scale discrete systems via genetic algorithms.

    PubMed

    Alsmadi, Othman M K; Abo-Hammour, Zaer S

    2015-01-01

    A robust computational technique for model order reduction (MOR) of multi-time-scale discrete systems (single input single output (SISO) and multi-input multioutput (MIMO)) is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA) with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements of B, C, and D matrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach.

  9. Predictability of Circulation Transitions (Observed and Modeled): Non-diffusive Dynamics, Markov Chains and Error Growth.

    NASA Astrophysics Data System (ADS)

    Straus, D. M.

    2006-12-01

    The transitions between portions of the state space of the large-scale flow is studied from daily wintertime data over the Pacific North America region using the NCEP reanalysis data set (54 winters) and very large suites of hindcasts made with the COLA atmospheric GCM with observed SST (55 members for each of 18 winters). The partition of the large-scale state space is guided by cluster analysis, whose statistical significance and relationship to SST is reviewed (Straus and Molteni, 2004; Straus, Corti and Molteni, 2006). The determination of the global nature of the flow through state space is studied using Markov Chains (Crommelin, 2004). In particular the non-diffusive part of the flow is contrasted in nature (small data sample) and the AGCM (large data sample). The intrinsic error growth associated with different portions of the state space is studied through sets of identical twin AGCM simulations. The goal is to obtain realistic estimates of predictability times for large-scale transitions that should be useful in long-range forecasting.

  10. Density-based clustering: A 'landscape view' of multi-channel neural data for inference and dynamic complexity analysis.

    PubMed

    Baglietto, Gabriel; Gigante, Guido; Del Giudice, Paolo

    2017-01-01

    Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data, are the development of efficient and informative representations of the time series derived from multiple neural recordings, and the extraction of information about the connectivity structure of the underlying neural network from the recorded neural activities. In the present paper we show that state-space clustering can provide an easy and effective option for reducing the dimensionality of multiple neural time series, that it can improve inference of synaptic couplings from neural activities, and that it can also allow the construction of a compact representation of the multi-dimensional dynamics, that easily lends itself to complexity measures. We apply a variant of the 'mean-shift' algorithm to perform state-space clustering, and validate it on an Hopfield network in the glassy phase, in which metastable states are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we show that the neural states identified as clusters' centroids offer a parsimonious parametrization of the synaptic matrix, which allows a significant improvement in inferring the synaptic couplings from the neural activities. Moving to the more realistic case of a multi-modular spiking network, with spike-frequency adaptation inducing history-dependent effects, we propose a procedure inspired by Boltzmann learning, but extending its domain of application, to learn inter-module synaptic couplings so that the spiking network reproduces a prescribed pattern of spatial correlations; we then illustrate, in the spiking network, how clustering is effective in extracting relevant features of the network's state-space landscape. Finally, we show that the knowledge of the cluster structure allows casting the multi-dimensional neural dynamics in the form of a symbolic dynamics of transitions between clusters; as an illustration of the potential of such reduction, we define and analyze a measure of complexity of the neural time series.

  11. GDSCalc: A Web-Based Application for Evaluating Discrete Graph Dynamical Systems

    PubMed Central

    Elmeligy Abdelhamid, Sherif H.; Kuhlman, Chris J.; Marathe, Madhav V.; Mortveit, Henning S.; Ravi, S. S.

    2015-01-01

    Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools. PMID:26263006

  12. GDSCalc: A Web-Based Application for Evaluating Discrete Graph Dynamical Systems.

    PubMed

    Elmeligy Abdelhamid, Sherif H; Kuhlman, Chris J; Marathe, Madhav V; Mortveit, Henning S; Ravi, S S

    2015-01-01

    Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools.

  13. Reduced nonlinear prognostic model construction from high-dimensional data

    NASA Astrophysics Data System (ADS)

    Gavrilov, Andrey; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander

    2017-04-01

    Construction of a data-driven model of evolution operator using universal approximating functions can only be statistically justified when the dimension of its phase space is small enough, especially in the case of short time series. At the same time in many applications real-measured data is high-dimensional, e.g. it is space-distributed and multivariate in climate science. Therefore it is necessary to use efficient dimensionality reduction methods which are also able to capture key dynamical properties of the system from observed data. To address this problem we present a Bayesian approach to an evolution operator construction which incorporates two key reduction steps. First, the data is decomposed into a set of certain empirical modes, such as standard empirical orthogonal functions or recently suggested nonlinear dynamical modes (NDMs) [1], and the reduced space of corresponding principal components (PCs) is obtained. Then, the model of evolution operator for PCs is constructed which maps a number of states in the past to the current state. The second step is to reduce this time-extended space in the past using appropriate decomposition methods. Such a reduction allows us to capture only the most significant spatio-temporal couplings. The functional form of the evolution operator includes separately linear, nonlinear (based on artificial neural networks) and stochastic terms. Explicit separation of the linear term from the nonlinear one allows us to more easily interpret degree of nonlinearity as well as to deal better with smooth PCs which can naturally occur in the decompositions like NDM, as they provide a time scale separation. Results of application of the proposed method to climate data are demonstrated and discussed. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510

  14. Dynamic Ground Effect for a Cranked Arrow Wing Airplane

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    1997-01-01

    Flight-determined ground effect characteristics for an F-16XL airplane are presented and correlated with wind tunnel predictions and similar flight results from other aircraft. Maneuvers were conducted at a variety of flightpath angles. Conventional ground effect flight test methods were used, with the exception that space positioning data were obtained using the differential global positioning system (DGPS). Accuracy of the DGPS was similar to that of optical tracking methods, but it was operationally more attractive. The dynamic flight determined lift and drag coefficient increments were measurably lower than steady-state wind-tunnel predictions. This relationship is consistent with the results of other aircraft for which similar data are available. Trends in the flight measured lift increments caused by ground effect as a function of flightpath angle were evident but weakly correlated. An engineering model of dynamic ground effect was developed based on linear aerodynamic theory and super-positioning of flows. This model was applied to the F-16XL data set and to previously published data for an F-15 airplane. In both cases, the model provided an engineering estimate of the ratio between the steady-state and dynamic data sets.

  15. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching LO

    1993-01-01

    This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.

  16. Analysis of a semiclassical model for rotational transition probabilities. [in highly nonequilibrium flow of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Yoshikawa, K. K.

    1975-01-01

    A semiclassical model proposed by Pearson and Hansen (1974) for computing collision-induced transition probabilities in diatomic molecules is tested by the direct-simulation Monte Carlo method. Specifically, this model is described by point centers of repulsion for collision dynamics, and the resulting classical trajectories are used in conjunction with the Schroedinger equation for a rigid-rotator harmonic oscillator to compute the rotational energy transition probabilities necessary to evaluate the rotation-translation exchange phenomena. It is assumed that a single, average energy spacing exists between the initial state and possible final states for a given collision.

  17. Near infrared spectroscopy based monitoring of extraction processes of raw material with the help of dynamic predictive modeling

    NASA Astrophysics Data System (ADS)

    Wang, Haixia; Suo, Tongchuan; Wu, Xiaolin; Zhang, Yue; Wang, Chunhua; Yu, Heshui; Li, Zheng

    2018-03-01

    The control of batch-to-batch quality variations remains a challenging task for pharmaceutical industries, e.g., traditional Chinese medicine (TCM) manufacturing. One difficult problem is to produce pharmaceutical products with consistent quality from raw material of large quality variations. In this paper, an integrated methodology combining the near infrared spectroscopy (NIRS) and dynamic predictive modeling is developed for the monitoring and control of the batch extraction process of licorice. With the spectra data in hand, the initial state of the process is firstly estimated with a state-space model to construct a process monitoring strategy for the early detection of variations induced by the initial process inputs such as raw materials. Secondly, the quality property of the end product is predicted at the mid-course during the extraction process with a partial least squares (PLS) model. The batch-end-time (BET) is then adjusted accordingly to minimize the quality variations. In conclusion, our study shows that with the help of the dynamic predictive modeling, NIRS can offer the past and future information of the process, which enables more accurate monitoring and control of process performance and product quality.

  18. Status of DSMT research program

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.

    1991-01-01

    The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.

  19. Correlation of ground tests and analyses of a dynamically scaled Space Station model configuration

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Edighoffer, Harold H.; Mcgowan, Paul E.

    1993-01-01

    Verification of analytical models through correlation with ground test results of a complex space truss structure is demonstrated. A multi-component, dynamically scaled space station model configuration is the focus structure for this work. Previously established test/analysis correlation procedures are used to develop improved component analytical models. Integrated system analytical models, consisting of updated component analytical models, are compared with modal test results to establish the accuracy of system-level dynamic predictions. Design sensitivity model updating methods are shown to be effective for providing improved component analytical models. Also, the effects of component model accuracy and interface modeling fidelity on the accuracy of integrated model predictions is examined.

  20. Canonical formalism for modelling and control of rigid body dynamics.

    PubMed

    Gurfil, P

    2005-12-01

    This paper develops a new paradigm for stabilization of rigid-body dynamics. The state-space model is formulated using canonical elements, known as the Serret-Andoyer (SA) variables, thus far scarcely used for engineering applications. The main feature of the SA formalism is the reduction of the dynamics via the underlying symmetry stemming from conservation of angular momentum and rotational kinetic energy. The controllability of the system model is examined using the notion of accessibility, and is shown to be accessible from all points. Based on the accessibility proof, two nonlinear asymptotic feedback stabilizers are developed: a damping feedback is designed based on the Jurdjevic-Quinn method, and a Hamiltonian controller is derived by using the Hamiltonian as a natural Lyapunov function for the closed-loop dynamics. It is shown that the Hamiltonian control is both passive and inverse optimal with respect to a meaningful performance index. The performance of the new controllers is examined and compared using simulations of realistic scenarios from the satellite attitude dynamics field.

  1. Review of game theory applications for situation awareness

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Shen, Dan; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    Game theoretical methods have been used for spectral awareness, space situational awareness (SSA), cyber situational awareness (CSA), and Intelligence, Surveillance, and Reconnaissance situation awareness (ISA). Each of these cases, awareness is supported by sensor estimation for assessment and the situation is determined from the actions of multiple players. Game theory assumes rational actors in a defined scenario; however, variations in social, cultural and behavioral factors include the dynamic nature of the context. In a dynamic data-driven application system (DDDAS), modeling must include both the measurements but also how models are used by different actors with different priorities. In this paper, we highlight the applications of game theory by reviewing the literature to determine the current state of the art and future needs. Future developments would include building towards knowledge awareness with information technology (e.g., data aggregation, access, indexing); multiscale analysis (e.g., space, time, and frequency), and software methods (e.g., architectures, cloud computing, protocols).

  2. Is the Voter Model a Model for Voters?

    NASA Astrophysics Data System (ADS)

    Fernández-Gracia, Juan; Suchecki, Krzysztof; Ramasco, José J.; San Miguel, Maxi; Eguíluz, Víctor M.

    2014-04-01

    The voter model has been studied extensively as a paradigmatic opinion dynamics model. However, its ability to model real opinion dynamics has not been addressed. We introduce a noisy voter model (accounting for social influence) with recurrent mobility of agents (as a proxy for social context), where the spatial and population diversity are taken as inputs to the model. We show that the dynamics can be described as a noisy diffusive process that contains the proper anisotropic coupling topology given by population and mobility heterogeneity. The model captures statistical features of U.S. presidential elections as the stationary vote-share fluctuations across counties and the long-range spatial correlations that decay logarithmically with the distance. Furthermore, it recovers the behavior of these properties when the geographical space is coarse grained at different scales—from the county level through congressional districts, and up to states. Finally, we analyze the role of the mobility range and the randomness in decision making, which are consistent with the empirical observations.

  3. Scalable approximate policies for Markov decision process models of hospital elective admissions.

    PubMed

    Zhu, George; Lizotte, Dan; Hoey, Jesse

    2014-05-01

    To demonstrate the feasibility of using stochastic simulation methods for the solution of a large-scale Markov decision process model of on-line patient admissions scheduling. The problem of admissions scheduling is modeled as a Markov decision process in which the states represent numbers of patients using each of a number of resources. We investigate current state-of-the-art real time planning methods to compute solutions to this Markov decision process. Due to the complexity of the model, traditional model-based planners are limited in scalability since they require an explicit enumeration of the model dynamics. To overcome this challenge, we apply sample-based planners along with efficient simulation techniques that given an initial start state, generate an action on-demand while avoiding portions of the model that are irrelevant to the start state. We also propose a novel variant of a popular sample-based planner that is particularly well suited to the elective admissions problem. Results show that the stochastic simulation methods allow for the problem size to be scaled by a factor of almost 10 in the action space, and exponentially in the state space. We have demonstrated our approach on a problem with 81 actions, four specialities and four treatment patterns, and shown that we can generate solutions that are near-optimal in about 100s. Sample-based planners are a viable alternative to state-based planners for large Markov decision process models of elective admissions scheduling. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Einstein's steady-state theory: an abandoned model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  5. Augmented Reality for Close Quarters Combat

    ScienceCinema

    None

    2018-01-16

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  6. Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data

    ERIC Educational Resources Information Center

    Yang, Manshu; Chow, Sy-Miin

    2010-01-01

    Facial electromyography (EMG) is a useful physiological measure for detecting subtle affective changes in real time. A time series of EMG data contains bursts of electrical activity that increase in magnitude when the pertinent facial muscles are activated. Whereas previous methods for detecting EMG activation are often based on deterministic or…

  7. Phase Transitions and Scaling in Systems Far from Equilibrium

    NASA Astrophysics Data System (ADS)

    Täuber, Uwe C.

    2017-03-01

    Scaling ideas and renormalization group approaches proved crucial for a deep understanding and classification of critical phenomena in thermal equilibrium. Over the past decades, these powerful conceptual and mathematical tools were extended to continuous phase transitions separating distinct nonequilibrium stationary states in driven classical and quantum systems. In concordance with detailed numerical simulations and laboratory experiments, several prominent dynamical universality classes have emerged that govern large-scale, long-time scaling properties both near and far from thermal equilibrium. These pertain to genuine specific critical points as well as entire parameter space regions for steady states that display generic scale invariance. The exploration of nonstationary relaxation properties and associated physical aging scaling constitutes a complementary potent means to characterize cooperative dynamics in complex out-of-equilibrium systems. This review describes dynamic scaling features through paradigmatic examples that include near-equilibrium critical dynamics, driven lattice gases and growing interfaces, correlation-dominated reaction-diffusion systems, and basic epidemic models.

  8. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2014-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  9. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  10. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.

  11. Landslide Hazard from Coupled Inherent and Dynamic Probabilities

    NASA Astrophysics Data System (ADS)

    Strauch, R. L.; Istanbulluoglu, E.; Nudurupati, S. S.

    2015-12-01

    Landslide hazard research has typically been conducted independently from hydroclimate research. We sought to unify these two lines of research to provide regional scale landslide hazard information for risk assessments and resource management decision-making. Our approach couples an empirical inherent landslide probability, based on a frequency ratio analysis, with a numerical dynamic probability, generated by combining subsurface water recharge and surface runoff from the Variable Infiltration Capacity (VIC) macro-scale land surface hydrologic model with a finer resolution probabilistic slope stability model. Landslide hazard mapping is advanced by combining static and dynamic models of stability into a probabilistic measure of geohazard prediction in both space and time. This work will aid resource management decision-making in current and future landscape and climatic conditions. The approach is applied as a case study in North Cascade National Park Complex in northern Washington State.

  12. Bayesian estimation of dynamic matching function for U-V analysis in Japan

    NASA Astrophysics Data System (ADS)

    Kyo, Koki; Noda, Hideo; Kitagawa, Genshiro

    2012-05-01

    In this paper we propose a Bayesian method for analyzing unemployment dynamics. We derive a Beveridge curve for unemployment and vacancy (U-V) analysis from a Bayesian model based on a labor market matching function. In our framework, the efficiency of matching and the elasticities of new hiring with respect to unemployment and vacancy are regarded as time varying parameters. To construct a flexible model and obtain reasonable estimates in an underdetermined estimation problem, we treat the time varying parameters as random variables and introduce smoothness priors. The model is then described in a state space representation, enabling the parameter estimation to be carried out using Kalman filter and fixed interval smoothing. In such a representation, dynamic features of the cyclic unemployment rate and the structural-frictional unemployment rate can be accurately captured.

  13. An abstract approach to evaporation models in rarefied gas dynamics

    NASA Astrophysics Data System (ADS)

    Greenberg, W.; van der Mee, C. V. M.

    1984-03-01

    Strong evaporation models involving 1D stationary problems with linear self-adjoint collision operators and solutions in abstract Hilbert spaces are investigated analytically. An efficient algorithm for locating the transition from existence to nonexistence of solutions is developed and applied to the 1D and 3D BGK model equations and the 3D BGK model in moment form, demonstrating the nonexistence of stationary evaporation states with supersonic drift velocities. Applications to similar models in electron and phonon transport, radiative transfer, and neutron transport are suggested.

  14. Community Coordinated Modeling Center (CCMC): Using innovative tools and services to support worldwide space weather scientific communities and networks

    NASA Astrophysics Data System (ADS)

    Mendoza, A. M.; Bakshi, S.; Berrios, D.; Chulaki, A.; Evans, R. M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Maddox, M. M.; Mays, M. L.; Mullinix, R. E.; Ngwira, C. M.; Patel, K.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.

    2012-12-01

    Community Coordinated Modeling Center (CCMC) was established to enhance basic solar terrestrial research and to aid in the development of models for specifying and forecasting conditions in the space environment. In achieving this goal, CCMC has developed and provides a set of innovative tools varying from: Integrated Space Weather Analysis (iSWA) web -based dissemination system for space weather information, Runs-On-Request System providing access to unique collection of state-of-the-art solar and space physics models (unmatched anywhere in the world), Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and recently Mobile apps (iPhone/Android) to view space weather data anywhere to the scientific community. The number of runs requested and the number of resulting scientific publications and presentations from the research community has not only been an indication of the broad scientific usage of the CCMC and effective participation by space scientists and researchers, but also guarantees active collaboration and coordination amongst the space weather research community. Arising from the course of CCMC activities, CCMC also supports community-wide model validation challenges and research focus group projects for a broad range of programs such as the multi-agency National Space Weather Program, NSF's CEDAR (Coupling, Energetics and Dynamics of Atmospheric Regions), GEM (Geospace Environment Modeling) and Shine (Solar Heliospheric and INterplanetary Environment) programs. In addition to performing research and model development, CCMC also supports space science education by hosting summer students through local universities; through the provision of simulations in support of classroom programs such as Heliophysics Summer School (with student research contest) and CCMC Workshops; training next generation of junior scientists in space weather forecasting; and educating the general public about the importance and impacts of space weather effects. Although CCMC is organizationally comprised of United States federal agencies, CCMC services are open to members of the international science community and encourages interagency and international collaboration. In this poster, we provide an overview of using Community Coordinated Modeling Center (CCMC) tools and services to support worldwide space weather scientific communities and networks.;

  15. QAARM: quasi-anharmonic autoregressive model reveals molecular recognition pathways in ubiquitin

    PubMed Central

    Savol, Andrej J.; Burger, Virginia M.; Agarwal, Pratul K.; Ramanathan, Arvind; Chennubhotla, Chakra S.

    2011-01-01

    Motivation: Molecular dynamics (MD) simulations have dramatically improved the atomistic understanding of protein motions, energetics and function. These growing datasets have necessitated a corresponding emphasis on trajectory analysis methods for characterizing simulation data, particularly since functional protein motions and transitions are often rare and/or intricate events. Observing that such events give rise to long-tailed spatial distributions, we recently developed a higher-order statistics based dimensionality reduction method, called quasi-anharmonic analysis (QAA), for identifying biophysically-relevant reaction coordinates and substates within MD simulations. Further characterization of conformation space should consider the temporal dynamics specific to each identified substate. Results: Our model uses hierarchical clustering to learn energetically coherent substates and dynamic modes of motion from a 0.5 μs ubiqutin simulation. Autoregressive (AR) modeling within and between states enables a compact and generative description of the conformational landscape as it relates to functional transitions between binding poses. Lacking a predictive component, QAA is extended here within a general AR model appreciative of the trajectory's temporal dependencies and the specific, local dynamics accessible to a protein within identified energy wells. These metastable states and their transition rates are extracted within a QAA-derived subspace using hierarchical Markov clustering to provide parameter sets for the second-order AR model. We show the learned model can be extrapolated to synthesize trajectories of arbitrary length. Contact: ramanathana@ornl.gov; chakracs@pitt.edu PMID:21685101

  16. Evolved Design, Integration, and Test of a Modular, Multi-Link, Spacecraft-Based Robotic Manipulator

    DTIC Science & Technology

    2016-06-01

    of the MATLAB code, the SPART model [24]. The portions of the SPART model relevant to this thesis are contained in (Appendices E –P). While the SPART...the kinematics and the dynamics of the system must be modeled and simulated numerically to understand how the system will behave for a given number... simulators with multiple-link robotic arms has been ongoing. B . STATE OF THE ART 1. An Overarching Context Space-based manipulators and the experimental

  17. Development of a Linear Stirling Model with Varying Heat Inputs

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2007-01-01

    The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC s non-linear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.

  18. Development of a Linear Stirling System Model with Varying Heat Inputs

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2007-01-01

    The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC's nonlinear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.

  19. Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model

    NASA Astrophysics Data System (ADS)

    Hazan, Aurélien

    2017-05-01

    We show that a steady-state stock-flow consistent macro-economic model can be represented as a Constraint Satisfaction Problem (CSP). The set of solutions is a polytope, which volume depends on the constraints applied and reveals the potential fragility of the economic circuit, with no need to study the dynamics. Several methods to compute the volume are compared, inspired by operations research methods and the analysis of metabolic networks, both exact and approximate. We also introduce a random transaction matrix, and study the particular case of linear flows with respect to money stocks.

  20. Mathematical modeling of control subsystems for CELSS: Application to diet

    NASA Technical Reports Server (NTRS)

    Waleh, Ahmad; Nguyen, Thoi K.; Kanevsky, Valery

    1991-01-01

    The dynamic control of a Closed Ecological Life Support System (CELSS) in a closed space habitat is of critical importance. The development of a practical method of control is also a necessary step for the selection and design of realistic subsystems and processors for a CELSS. Diet is one of the dynamic factors that strongly influences, and is influenced, by the operational states of all major CELSS subsystems. The problems of design and maintenance of a stable diet must be obtained from well characterized expert subsystems. The general description of a mathematical model that forms the basis of an expert control program for a CELSS is described. The formulation is expressed in terms of a complete set of time dependent canonical variables. System representation is dynamic and includes time dependent storage buffers. The details of the algorithm are described. The steady state results of the application of the method for representative diets made from wheat, potato, and soybean are presented.

  1. Dynamics of entanglement in expanding quantum fields

    NASA Astrophysics Data System (ADS)

    Berges, Jürgen; Floerchinger, Stefan; Venugopalan, Raju

    2018-04-01

    We develop a functional real-time approach to computing the entanglement between spatial regions for Gaussian states in quantum field theory. The entanglement entropy is characterized in terms of local correlation functions on space-like Cauchy hypersurfaces. The framework is applied to explore an expanding light cone geometry in the particular case of the Schwinger model for quantum electrodynamics in 1+1 space-time dimensions. We observe that the entanglement entropy becomes extensive in rapidity at early times and that the corresponding local reduced density matrix is a thermal density matrix for excitations around a coherent field with a time dependent temperature. Since the Schwinger model successfully describes many features of multiparticle production in e + e - collisions, our results provide an attractive explanation in this framework for the apparent thermal nature of multiparticle production even in the absence of significant final state scattering.

  2. Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems.

    PubMed

    Tang, Ying; Yuan, Ruoshi; Ma, Yian

    2013-01-01

    Dynamical behaviors of the competitive Lotka-Volterra system even for 3 species are not fully understood. In this paper, we study this problem from the perspective of the Lyapunov function. We construct explicitly the Lyapunov function using three examples of the competitive Lotka-Volterra system for the whole state space: (1) the general 2-species case, (2) a 3-species model, and (3) the model of May-Leonard. The basins of attraction for these examples are demonstrated, including cases with bistability and cyclical behavior. The first two examples are the generalized gradient system, where the energy dissipation may not follow the gradient of the Lyapunov function. In addition, under a new type of stochastic interpretation, the Lyapunov function also leads to the Boltzmann-Gibbs distribution on the final steady state when multiplicative noise is added.

  3. Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems

    NASA Astrophysics Data System (ADS)

    Tang, Ying; Yuan, Ruoshi; Ma, Yian

    2013-01-01

    Dynamical behaviors of the competitive Lotka-Volterra system even for 3 species are not fully understood. In this paper, we study this problem from the perspective of the Lyapunov function. We construct explicitly the Lyapunov function using three examples of the competitive Lotka-Volterra system for the whole state space: (1) the general 2-species case, (2) a 3-species model, and (3) the model of May-Leonard. The basins of attraction for these examples are demonstrated, including cases with bistability and cyclical behavior. The first two examples are the generalized gradient system, where the energy dissipation may not follow the gradient of the Lyapunov function. In addition, under a new type of stochastic interpretation, the Lyapunov function also leads to the Boltzmann-Gibbs distribution on the final steady state when multiplicative noise is added.

  4. Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.

    PubMed

    Gao, Zhifan; Xiong, Huahua; Liu, Xin; Zhang, Heye; Ghista, Dhanjoo; Wu, Wanqing; Li, Shuo

    2017-04-01

    The dynamics of the carotid artery wall has been recognized as a valuable indicator to evaluate the status of atherosclerotic disease in the preclinical stage. However, it is still a challenge to accurately measure this dynamics from ultrasound images. This paper aims at developing an elasticity-based state-space approach for accurately measuring the two-dimensional motion of the carotid artery wall from the ultrasound imaging sequences. In our approach, we have employed a linear elasticity model of the carotid artery wall, and converted it into the state space equation. Then, the two-dimensional motion of carotid artery wall is computed by solving this state-space approach using the H ∞ filter and the block matching method. In addition, a parameter training strategy is proposed in this study for dealing with the parameter initialization problem. In our experiment, we have also developed an evaluation function to measure the tracking accuracy of the motion of the carotid artery wall by considering the influence of the sizes of the two blocks (acquired by our approach and the manual tracing) containing the same carotid wall tissue and their overlapping degree. Then, we have compared the performance of our approach with the manual traced results drawn by three medical physicians on 37 healthy subjects and 103 unhealthy subjects. The results have showed that our approach was highly correlated (Pearson's correlation coefficient equals 0.9897 for the radial motion and 0.9536 for the longitudinal motion), and agreed well (width the 95% confidence interval is 89.62 µm for the radial motion and 387.26 µm for the longitudinal motion) with the manual tracing method. We also compared our approach to the three kinds of previous methods, including conventional block matching methods, Kalman-based block matching methods and the optical flow. Altogether, we have been able to successfully demonstrate the efficacy of our elasticity-model based state-space approach (EBS) for more accurate tracking of the 2-dimensional motion of the carotid artery wall, towards more effective assessment of the status of atherosclerotic disease in the preclinical stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics.

    PubMed

    Koons, David N; Colchero, Fernando; Hersey, Kent; Gimenez, Olivier

    2015-06-01

    Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semiarid environments experiencing climate change. To address these issues for bison in southern Utah, USA, we applied a Bayesian state-space model to a 72-yr time series of abundance counts. While accounting for known harvest (as well as live removal) from the population, we found that the bison population in southern Utah exhibited a strong potential to grow from low density (β0 = 0.26; Bayesian credible interval based on 95% of the highest posterior density [BCI] = 0.19-0.33), and weak but statistically significant density dependence (β1 = -0.02, BCI = -0.04 to -0.004). Early spring temperatures also had strong positive effects on population growth (Pfat1 = 0.09, BCI = 0.04-0.14), much more so than precipitation and other temperature-related variables (model weight > three times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early spring temperature could have a greater relative effect on equilibrium abundance than either harvest or. the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife management policies and planning.

  6. Local and global dynamics of Ramsey model: From continuous to discrete time.

    PubMed

    Guzowska, Malgorzata; Michetti, Elisabetta

    2018-05-01

    The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.

  7. Local and global dynamics of Ramsey model: From continuous to discrete time

    NASA Astrophysics Data System (ADS)

    Guzowska, Malgorzata; Michetti, Elisabetta

    2018-05-01

    The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.

  8. The consciousness state space (CSS)—a unifying model for consciousness and self

    PubMed Central

    Berkovich-Ohana, Aviva; Glicksohn, Joseph

    2014-01-01

    Every experience, those we are aware of and those we are not, is embedded in a subjective timeline, is tinged with emotion, and inevitably evokes a certain sense of self. Here, we present a phenomenological model for consciousness and selfhood which relates time, awareness, and emotion within one framework. The consciousness state space (CSS) model is a theoretical one. It relies on a broad range of literature, hence has high explanatory and integrative strength, and helps in visualizing the relationship between different aspects of experience. Briefly, it is suggested that all phenomenological states fall into two categories of consciousness, core and extended (CC and EC, respectively). CC supports minimal selfhood that is short of temporal extension, its scope being the here and now. EC supports narrative selfhood, which involves personal identity and continuity across time, as well as memory, imagination and conceptual thought. The CSS is a phenomenological space, created by three dimensions: time, awareness and emotion. Each of the three dimensions is shown to have a dual phenomenological composition, falling within CC and EC. The neural spaces supporting each of these dimensions, as well as CC and EC, are laid out based on the neuroscientific literature. The CSS dynamics include two simultaneous trajectories, one in CC and one in EC, typically antagonistic in normal experiences. However, this characteristic behavior is altered in states in which a person experiences an altered sense of self. Two examples are laid out, flow and meditation. The CSS model creates a broad theoretical framework with explanatory and unificatory power. It constructs a detailed map of the consciousness and selfhood phenomenology, which offers constraints for the science of consciousness. We conclude by outlining several testable predictions raised by the CSS model. PMID:24808870

  9. Quantum trajectory phase transitions in the micromaser.

    PubMed

    Garrahan, Juan P; Armour, Andrew D; Lesanovsky, Igor

    2011-08-01

    We study the dynamics of the single-atom maser, or micromaser, by means of the recently introduced method of thermodynamics of quantum jump trajectories. We find that the dynamics of the micromaser displays multiple space-time phase transitions, i.e., phase transitions in ensembles of quantum jump trajectories. This rich dynamical phase structure becomes apparent when trajectories are classified by dynamical observables that quantify dynamical activity, such as the number of atoms that have changed state while traversing the cavity. The space-time transitions can be either first order or continuous, and are controlled not just by standard parameters of the micromaser but also by nonequilibrium "counting" fields. We discuss how the dynamical phase behavior relates to the better known stationary-state properties of the micromaser.

  10. Group theoretical quantization of isotropic loop cosmology

    NASA Astrophysics Data System (ADS)

    Livine, Etera R.; Martín-Benito, Mercedes

    2012-06-01

    We achieve a group theoretical quantization of the flat Friedmann-Robertson-Walker model coupled to a massless scalar field adopting the improved dynamics of loop quantum cosmology. Deparemetrizing the system using the scalar field as internal time, we first identify a complete set of phase space observables whose Poisson algebra is isomorphic to the su(1,1) Lie algebra. It is generated by the volume observable and the Hamiltonian. These observables describe faithfully the regularized phase space underlying the loop quantization: they account for the polymerization of the variable conjugate to the volume and for the existence of a kinematical nonvanishing minimum volume. Since the Hamiltonian is an element in the su(1,1) Lie algebra, the dynamics is now implemented as SU(1, 1) transformations. At the quantum level, the system is quantized as a timelike irreducible representation of the group SU(1, 1). These representations are labeled by a half-integer spin, which gives the minimal volume. They provide superselection sectors without quantization anomalies and no factor ordering ambiguity arises when representing the Hamiltonian. We then explicitly construct SU(1, 1) coherent states to study the quantum evolution. They not only provide semiclassical states but truly dynamical coherent states. Their use further clarifies the nature of the bounce that resolves the big bang singularity.

  11. Dynamic loading and stress life analysis of permanent space station modules

    NASA Astrophysics Data System (ADS)

    Anisimov, A. V.; Krokhin, I. A.; Likhoded, A. I.; Malinin, A. A.; Panichkin, N. G.; Sidorov, V. V.; Titov, V. A.

    2016-11-01

    Some methodological approaches to solving several key problems of dynamic loading and structural strength analysis of Permanent Space Station (PSS)modules developed on the basis of the working experience of Soviet and Russian PSS and the International Space station (ISS) are presented. The solutions of the direct and semi-inverse problems of PSS structure dynamics are mathematically stated. Special attention is paid to the use of the results of ground structural strength tests of space station modules and the data on the actual flight actions on the station and its dynamic responses in the orbital operation regime. The procedure of determining the dynamics and operation life parameters of elements of the PSS modules is described.

  12. Concurrent processing simulation of the space station

    NASA Technical Reports Server (NTRS)

    Gluck, R.; Hale, A. L.; Sunkel, John W.

    1989-01-01

    The development of a new capability for the time-domain simulation of multibody dynamic systems and its application to the study of a large angle rotational maneuvers of the Space Station is described. The effort was divided into three sequential tasks, which required significant advancements of the state-of-the art to accomplish. These were: (1) the development of an explicit mathematical model via symbol manipulation of a flexible, multibody dynamic system; (2) the development of a methodology for balancing the computational load of an explicit mathematical model for concurrent processing; and (3) the implementation and successful simulation of the above on a prototype Custom Architectured Parallel Processing System (CAPPS) containing eight processors. The throughput rate achieved by the CAPPS operating at only 70 percent efficiency, was 3.9 times greater than that obtained sequentially by the IBM 3090 supercomputer simulating the same problem. More significantly, analysis of the results leads to the conclusion that the relative cost effectiveness of concurrent vs. sequential digital computation will grow substantially as the computational load is increased. This is a welcomed development in an era when very complex and cumbersome mathematical models of large space vehicles must be used as substitutes for full scale testing which has become impractical.

  13. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions.

    PubMed

    Smirnova, Olga A; Cucinotta, Francis A

    2018-02-01

    A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framework of the developed dynamical model for various scenarios of space radiation exposure, are compared with the corresponding results, computed by the commonly used linear model. It is revealed that the developed dynamical model along with the linear model can be applied to estimate ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions in the range of applicability of the latter. In turn, the developed dynamical model is capable of predicting the ERR for leukemia among astronauts for the irradiation regimes beyond the applicability range of the linear model in emergency cases. As a supplement to the estimations of cancer incidence and death (REIC and REID) (Cucinotta et al., 2013, 2017), the developed dynamical model for the assessment of the ERR for leukemia can be employed on the pre-mission design phase for, e.g., the optimization of the regimes of astronaut's additional shielding in the course of interplanetary space missions. The developed model can also be used on the phase of the real-time responses during the space mission to make the decisions on the operational application of appropriate countermeasures to minimize the risks of occurrences of leukemia, especially, for emergency cases. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  14. Dynamics of a quantum spin liquid beyond integrability: The Kitaev-Heisenberg-Γ model in an augmented parton mean-field theory

    NASA Astrophysics Data System (ADS)

    Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich

    2018-04-01

    We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.

  15. Local dynamics and spatiotemporal chaos. The Kuramoto- Sivashinsky equation: A case study

    NASA Astrophysics Data System (ADS)

    Wittenberg, Ralf Werner

    The nature of spatiotemporal chaos in extended continuous systems is not yet well-understood. In this thesis, a model partial differential equation, the Kuramoto- Sivashinsky (KS) equation ut+uxxxx+uxx+uux =0 on a large one-dimensional periodic domain, is studied analytically, numerically, and through modeling to obtain a more detailed understanding of the observed spatiotemporally complex dynamics. In particular, with the aid of a wavelet decomposition, the relevant dynamical interactions are shown to be localized in space and scale. Motivated by these results, and by the idea that the attractor on a large domain may be understood via attractors on smaller domains, a spatially localized low- dimensional model for a minimal chaotic box is proposed. A (de)stabilized extension of the KS equation has recently attracted increased interest; for this situation, dissipativity and analyticity areproven, and an explicit shock-like solution is constructed which sheds light on the difficulties in obtaining optimal bounds for the KS equation. For the usual KS equation, the spatiotemporally chaotic state is carefully characterized in real, Fourier and wavelet space. The wavelet decomposition provides good scale separation which isolates the three characteristic regions of the dynamics: large scales of slow Gaussian fluctuations, active scales containing localized interactions of coherent structures, and small scales. Space localization is shown through a comparison of various correlation lengths and a numerical experiment in which different modes are uncoupled to estimate a dynamic interaction length. A detailed picture of the contributions of different scales to the spatiotemporally complex dynamics is obtained via a Galerkin projection of the KS equation onto the wavelet basis, and an extensive series of numerical experiments in which different combinations of wavelet levels are eliminated or forced. These results, and a formalism to derive an effective equation for periodized subsystems externally forced from a larger system, motivate various models for spatially localized forced systems. There is convincing evidence that short periodized systems, internally forced at the largest scales, form a minimal model for the observed extensively chaotic dynamics in larger domains.

  16. Detecting dynamical boundaries from kinematic data in biomechanics

    NASA Astrophysics Data System (ADS)

    Ross, Shane D.; Tanaka, Martin L.; Senatore, Carmine

    2010-03-01

    Ridges in the state space distribution of finite-time Lyapunov exponents can be used to locate dynamical boundaries. We describe a method for obtaining dynamical boundaries using only trajectories reconstructed from time series, expanding on the current approach which requires a vector field in the phase space. We analyze problems in musculoskeletal biomechanics, considered as exemplars of a class of experimental systems that contain separatrix features. Particular focus is given to postural control and balance, considering both models and experimental data. Our success in determining the boundary between recovery and failure in human balance activities suggests this approach will provide new robust stability measures, as well as measures of fall risk, that currently are not available and may have benefits for the analysis and prevention of low back pain and falls leading to injury, both of which affect a significant portion of the population.

  17. Effects of rail dynamics and friction characteristics on curve squeal

    NASA Astrophysics Data System (ADS)

    Ding, B.; Squicciarini, G.; Thompson, D. J.

    2016-09-01

    Curve squeal in railway vehicles is an instability mechanism that arises in tight curves under certain running and environmental conditions. In developing a model the most important elements are the characterisation of friction coupled with an accurate representation of the structural dynamics of the wheel. However, the role played by the dynamics of the rail is not fully understood and it is unclear whether this should be included in a model or whether it can be safely neglected. This paper makes use of previously developed time domain and frequency domain curve squeal models to assess whether the presence of the rail and the falling characteristics of the friction force can modify the instability mechanisms and the final response. For this purpose, the time-domain model has been updated to include the rail dynamics in terms of its state space representation in various directions. Frequency domain and time domain analyses results show that falling friction is not the only reason for squeal and rail dynamics can play an important role, especially under constant friction conditions.

  18. Phase Space Tweezers for Tailoring Cavity Fields by Quantum Zeno Dynamics

    NASA Astrophysics Data System (ADS)

    Raimond, J. M.; Sayrin, C.; Gleyzes, S.; Dotsenko, I.; Brune, M.; Haroche, S.; Facchi, P.; Pascazio, S.

    2010-11-01

    We discuss an implementation of quantum Zeno dynamics in a cavity quantum electrodynamics experiment. By performing repeated unitary operations on atoms coupled to the field, we restrict the field evolution in chosen subspaces of the total Hilbert space. This procedure leads to promising methods for tailoring nonclassical states. We propose to realize “tweezers” picking a coherent field at a point in phase space and moving it towards an arbitrary final position without affecting other nonoverlapping coherent components. These effects could be observed with a state-of-the-art apparatus.

  19. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  20. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  1. Adaptive servo control for umbilical mating

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1988-01-01

    Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed.

  2. Molecular Dynamics of Flexible Polar Cations in a Variable Confined Space: Toward Exceptional Two-Step Nonlinear Optical Switches.

    PubMed

    Xu, Wei-Jian; He, Chun-Ting; Ji, Cheng-Min; Chen, Shao-Li; Huang, Rui-Kang; Lin, Rui-Biao; Xue, Wei; Luo, Jun-Hua; Zhang, Wei-Xiong; Chen, Xiao-Ming

    2016-07-01

    The changeable molecular dynamics of flexible polar cations in the variable confined space between inorganic chains brings about a new type of two-step nonlinear optical (NLO) switch with genuine "off-on-off" second harmonic generation (SHG) conversion between one NLO-active state and two NLO-inactive states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. State-space models’ dirty little secrets: even simple linear Gaussian models can have estimation problems

    NASA Astrophysics Data System (ADS)

    Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer M.; Derocher, Andrew E.; Lewis, Mark A.; Jonsen, Ian D.; Mills Flemming, Joanna

    2016-05-01

    State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety of statistical distributions. Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-estimation problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter estimates of a SSM describing the movement of polar bears (Ursus maritimus) result in overestimating their energy expenditure. We suggest potential solutions, but show that it often remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading results and we urge ecologists to assess whether the parameters can be estimated accurately before drawing ecological conclusions from their results.

  4. Quasi-dynamic earthquake fault systems with rheological heterogeneity

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.

    2009-12-01

    Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.

  5. Variational Koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Nüske, Feliks; Paul, Fabian; Klus, Stefan; Koltai, Péter; Noé, Frank

    2017-04-01

    Markov state models (MSMs) and master equation models are popular approaches to approximate molecular kinetics, equilibria, metastable states, and reaction coordinates in terms of a state space discretization usually obtained by clustering. Recently, a powerful generalization of MSMs has been introduced, the variational approach conformation dynamics/molecular kinetics (VAC) and its special case the time-lagged independent component analysis (TICA), which allow us to approximate slow collective variables and molecular kinetics by linear combinations of smooth basis functions or order parameters. While it is known how to estimate MSMs from trajectories whose starting points are not sampled from an equilibrium ensemble, this has not yet been the case for TICA and the VAC. Previous estimates from short trajectories have been strongly biased and thus not variationally optimal. Here, we employ the Koopman operator theory and the ideas from dynamic mode decomposition to extend the VAC and TICA to non-equilibrium data. The main insight is that the VAC and TICA provide a coefficient matrix that we call Koopman model, as it approximates the underlying dynamical (Koopman) operator in conjunction with the basis set used. This Koopman model can be used to compute a stationary vector to reweight the data to equilibrium. From such a Koopman-reweighted sample, equilibrium expectation values and variationally optimal reversible Koopman models can be constructed even with short simulations. The Koopman model can be used to propagate densities, and its eigenvalue decomposition provides estimates of relaxation time scales and slow collective variables for dimension reduction. Koopman models are generalizations of Markov state models, TICA, and the linear VAC and allow molecular kinetics to be described without a cluster discretization.

  6. An opinion-driven behavioral dynamics model for addictive behaviors

    DOE PAGES

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; ...

    2015-04-08

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual’s behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Additionally, individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters providemore » targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. Furthermore, this has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.« less

  7. A flatness-based control approach to drug infusion for cardiac function regulation

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Zervos, Nikolaos; Melkikh, Alexey

    2016-12-01

    A new control method based on differential flatness theory is developed in this article, aiming at solving the problem of regulation of haemodynamic parameters, Actually control of the cardiac output (volume of blood pumped out by heart per unit of time) and of the arterial blood pressure is achieved through the administered infusion of cardiovascular drugs, such as dopamine and sodium nitroprusside. Time delays between the control inputs and the system's outputs are taken into account. Using the principle of dynamic extension, which means that by considering certain control inputs and their derivatives as additional state variables, a state-space description for the heart's function is obtained. It is proven that the dynamic model of the heart is a differentially flat one. This enables its transformation into a linear canonical and decoupled form, for which the design of a stabilizing feedback controller becomes possible. The proposed feedback controller is of proven stability and assures fast and accurate tracking of the reference setpoints by the outputs of the heart's dynamic model. Moreover, by using a Kalman Filter-based disturbances' estimator, it becomes possible to estimate in real-time and compensate for the model uncertainty and external perturbation inputs that affect the heart's model.

  8. The quest for solvable multistate Landau-Zener models

    DOE PAGES

    Sinitsyn, Nikolai A.; Chernyak, Vladimir Y.

    2017-05-24

    Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. Additionally, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.

  9. A Real Space Cellular Automaton Laboratory

    NASA Astrophysics Data System (ADS)

    Rozier, O.; Narteau, C.

    2013-12-01

    Investigations in geomorphology may benefit from computer modelling approaches that rely entirely on self-organization principles. In the vast majority of numerical models, instead, points in space are characterised by a variety of physical variables (e.g. sediment transport rate, velocity, temperature) recalculated over time according to some predetermined set of laws. However, there is not always a satisfactory theoretical framework from which we can quantify the overall dynamics of the system. For these reasons, we prefer to concentrate on interaction patterns using a basic cellular automaton modelling framework, the Real Space Cellular Automaton Laboratory (ReSCAL), a powerful and versatile generator of 3D stochastic models. The objective of this software suite released under a GNU license is to develop interdisciplinary research collaboration to investigate the dynamics of complex systems. The models in ReSCAL are essentially constructed from a small number of discrete states distributed on a cellular grid. An elementary cell is a real-space representation of the physical environment and pairs of nearest neighbour cells are called doublets. Each individual physical process is associated with a set of doublet transitions and characteristic transition rates. Using a modular approach, we can simulate and combine a wide range of physical, chemical and/or anthropological processes. Here, we present different ingredients of ReSCAL leading to applications in geomorphology: dune morphodynamics and landscape evolution. We also discuss how ReSCAL can be applied and developed across many disciplines in natural and human sciences.

  10. Supervised chaos genetic algorithm based state of charge determination for LiFePO4 batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Yanqing

    2018-04-01

    LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.

  11. Perpetual extraction of work from a nonequilibrium dynamical system under Markovian feedback control

    NASA Astrophysics Data System (ADS)

    Kosugi, Taichi

    2013-09-01

    By treating both control parameters and dynamical variables as probabilistic variables, we develop a succinct theory of perpetual extraction of work from a generic classical nonequilibrium system subject to a heat bath via repeated measurements under a Markovian feedback control. It is demonstrated that a problem for perpetual extraction of work in a nonequilibrium system is reduced to a problem of Markov chain in the higher-dimensional phase space. We derive a version of the detailed fluctuation theorem, which was originally derived for classical nonequilibrium systems by Horowitz and Vaikuntanathan [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.061120 82, 061120 (2010)], in a form suitable for the analyses of perpetual extraction of work. Since our theory is formulated for generic dynamics of probability distribution function in phase space, its application to a physical system is straightforward. As simple applications of the theory, two exactly solvable models are analyzed. The one is a nonequilibrium two-state system and the other is a particle confined to a one-dimensional harmonic potential in thermal equilibrium. For the former example, it is demonstrated that the observer on the transitory steps to the stationary state can lose energy and that work larger than that achieved in the stationary state can be extracted. For the latter example, it is demonstrated that the optimal protocol for the extraction of work via repeated measurements can differ from that via a single measurement. The validity of our version of the detailed fluctuation theorem, which determines the upper bound of the expected work in the stationary state, is also confirmed for both examples. These observations provide useful insights into exploration for realistic modeling of a machine that extracts work from its environment.

  12. Nonlinear dynamics of the magnetosphere and space weather

    NASA Technical Reports Server (NTRS)

    Sharma, A. Surjalal

    1996-01-01

    The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.

  13. Rat behavior in maze after flight aboard Kosmos-690 biosatellite. [Effects of space flight factors (acceleration, vibration, and weightlessness) on. gamma. -radioinduced behavioral changes in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livshits, N.N.; Apanasenko, Z.I.; Kuznetsova, M.A.

    1978-10-26

    It was previously demonstrated that radiobiological effects can change appreciably in space flights. However, there is no information in the known literature concerning the effects of inflight radiation on higher nervous activity (HNA). Yet this is an important question, since mental efficiency depends largely on the state of HNA. It was established in model laboratory experiments that dynamic factors (acceleration and vibration) modify the effect of radiation on HNA. For this reason, it was necessary to investigate the effect on HNA of radiation combined with the factors occurring in space flights.

  14. Computer simulation of multigrid body dynamics and control

    NASA Technical Reports Server (NTRS)

    Swaminadham, M.; Moon, Young I.; Venkayya, V. B.

    1990-01-01

    The objective is to set up and analyze benchmark problems on multibody dynamics and to verify the predictions of two multibody computer simulation codes. TREETOPS and DISCOS have been used to run three example problems - one degree-of-freedom spring mass dashpot system, an inverted pendulum system, and a triple pendulum. To study the dynamics and control interaction, an inverted planar pendulum with an external body force and a torsional control spring was modeled as a hinge connected two-rigid body system. TREETOPS and DISCOS affected the time history simulation of this problem. System state space variables and their time derivatives from two simulation codes were compared.

  15. DREISS: Using State-Space Models to Infer the Dynamics of Gene Expression Driven by External and Internal Regulatory Networks.

    PubMed

    Wang, Daifeng; He, Fei; Maslov, Sergei; Gerstein, Mark

    2016-10-01

    Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A subsystem's gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally-e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the "state" and "control" in the model refer to its own (internal) and another subsystem's (external) gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model's parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with evolutionarily ancient functions (e.g. the ribosomal proteins), in contrast to those with more recently evolved functions (e.g., cell-cell communication). This suggests that despite striking morphological differences, some fundamental embryonic-developmental processes are still controlled by ancient regulatory systems.

  16. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics

    PubMed Central

    Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth

    2016-01-01

    Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts. PMID:27124275

  17. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.

    PubMed

    Maximova, Tatiana; Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth; Shehu, Amarda

    2016-04-01

    Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.

  18. Phase space barriers and dividing surfaces in the absence of critical points of the potential energy: Application to roaming in ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauguière, Frédéric A. L., E-mail: frederic.mauguiere@bristol.ac.uk; Collins, Peter, E-mail: peter.collins@bristol.ac.uk; Wiggins, Stephen, E-mail: stephen.wiggins@mac.com

    We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori, it is possible to define phase space dividing surfaces that are analogous to the dividing surfaces governing transition from reactants to products near a critical point of the potential energy surface. We investigate the problem of capture of an atom by a diatomic molecule and show that a normally hyperbolic invariant manifold exists at large atom-diatom distances, away from any critical points on the potential. This normally hyperbolic invariantmore » manifold is the anchor for the construction of a dividing surface in phase space, which defines the outer or loose transition state governing capture dynamics. We present an algorithm for sampling an approximate capture dividing surface, and apply our methods to the recombination of the ozone molecule. We treat both 2 and 3 degrees of freedom models with zero total angular momentum. We have located the normally hyperbolic invariant manifold from which the orbiting (outer) transition state is constructed. This forms the basis for our analysis of trajectories for ozone in general, but with particular emphasis on the roaming trajectories.« less

  19. QCD and Light-Front Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equalmore » light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.« less

  20. Inferring phenomenological models of Markov processes from data

    NASA Astrophysics Data System (ADS)

    Rivera, Catalina; Nemenman, Ilya

    Microscopically accurate modeling of stochastic dynamics of biochemical networks is hard due to the extremely high dimensionality of the state space of such networks. Here we propose an algorithm for inference of phenomenological, coarse-grained models of Markov processes describing the network dynamics directly from data, without the intermediate step of microscopically accurate modeling. The approach relies on the linear nature of the Chemical Master Equation and uses Bayesian Model Selection for identification of parsimonious models that fit the data. When applied to synthetic data from the Kinetic Proofreading process (KPR), a common mechanism used by cells for increasing specificity of molecular assembly, the algorithm successfully uncovers the known coarse-grained description of the process. This phenomenological description has been notice previously, but this time it is derived in an automated manner by the algorithm. James S. McDonnell Foundation Grant No. 220020321.

  1. High-autonomy control of space resource processing plants

    NASA Technical Reports Server (NTRS)

    Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue

    1993-01-01

    A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.

  2. Phase diagram and quench dynamics of the cluster-XY spin chain

    NASA Astrophysics Data System (ADS)

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  3. Application of importance sampling to the computation of large deviations in nonequilibrium processes.

    PubMed

    Kundu, Anupam; Sabhapandit, Sanjib; Dhar, Abhishek

    2011-03-01

    We present an algorithm for finding the probabilities of rare events in nonequilibrium processes. The algorithm consists of evolving the system with a modified dynamics for which the required event occurs more frequently. By keeping track of the relative weight of phase-space trajectories generated by the modified and the original dynamics one can obtain the required probabilities. The algorithm is tested on two model systems of steady-state particle and heat transport where we find a huge improvement from direct simulation methods.

  4. Phase diagram and quench dynamics of the cluster-XY spin chain.

    PubMed

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  5. Spatial self-organization in hybrid models of multicellular adhesion

    NASA Astrophysics Data System (ADS)

    Bonforti, Adriano; Duran-Nebreda, Salva; Montañez, Raúl; Solé, Ricard

    2016-10-01

    Spatial self-organization emerges in distributed systems exhibiting local interactions when nonlinearities and the appropriate propagation of signals are at work. These kinds of phenomena can be modeled with different frameworks, typically cellular automata or reaction-diffusion systems. A different class of dynamical processes involves the correlated movement of agents over space, which can be mediated through chemotactic movement or minimization of cell-cell interaction energy. A classic example of the latter is given by the formation of spatially segregated assemblies when cells display differential adhesion. Here, we consider a new class of dynamical models, involving cell adhesion among two stochastically exchangeable cell states as a minimal model capable of exhibiting well-defined, ordered spatial patterns. Our results suggest that a whole space of pattern-forming rules is hosted by the combination of physical differential adhesion and the value of probabilities modulating cell phenotypic switching, showing that Turing-like patterns can be obtained without resorting to reaction-diffusion processes. If the model is expanded allowing cells to proliferate and die in an environment where diffusible nutrient and toxic waste are at play, different phases are observed, characterized by regularly spaced patterns. The analysis of the parameter space reveals that certain phases reach higher population levels than other modes of organization. A detailed exploration of the mean-field theory is also presented. Finally, we let populations of cells with different adhesion matrices compete for reproduction, showing that, in our model, structural organization can improve the fitness of a given cell population. The implications of these results for ecological and evolutionary models of pattern formation and the emergence of multicellularity are outlined.

  6. Multicoordination Control Strategy Performance in Hybrid Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzini, Paolo; Bryden, Kenneth M.; Tucker, David

    This paper evaluates a state-space methodology of a multi-input multi-output (MIMO) control strategy using a 2 × 2 tightly coupled scenario applied to a physical gas turbine fuel cell hybrid power system. A centralized MIMO controller was preferred compared to a decentralized control approach because previous simulation studies showed that the coupling effect identified during the simultaneous control of the turbine speed and cathode airflow was better minimized. The MIMO controller was developed using a state-space dynamic model of the system that was derived using first-order transfer functions empirically obtained through experimental tests. The controller performance was evaluated in termsmore » of disturbance rejection through perturbations in the gas turbine operation, and setpoint tracking maneuver through turbine speed and cathode airflow steps. The experimental results illustrate that a multicoordination control strategy was able to mitigate the coupling of each actuator to each output during the simultaneous control of the system, and improved the overall system performance during transient conditions. On the other hand, the controller showed different performance during validation in simulation environment compared to validation in the physical facility, which will require a better dynamic modeling of the system for the implementation of future multivariable control strategies.« less

  7. Multicoordination Control Strategy Performance in Hybrid Power Systems

    DOE PAGES

    Pezzini, Paolo; Bryden, Kenneth M.; Tucker, David

    2018-04-11

    This paper evaluates a state-space methodology of a multi-input multi-output (MIMO) control strategy using a 2 × 2 tightly coupled scenario applied to a physical gas turbine fuel cell hybrid power system. A centralized MIMO controller was preferred compared to a decentralized control approach because previous simulation studies showed that the coupling effect identified during the simultaneous control of the turbine speed and cathode airflow was better minimized. The MIMO controller was developed using a state-space dynamic model of the system that was derived using first-order transfer functions empirically obtained through experimental tests. The controller performance was evaluated in termsmore » of disturbance rejection through perturbations in the gas turbine operation, and setpoint tracking maneuver through turbine speed and cathode airflow steps. The experimental results illustrate that a multicoordination control strategy was able to mitigate the coupling of each actuator to each output during the simultaneous control of the system, and improved the overall system performance during transient conditions. On the other hand, the controller showed different performance during validation in simulation environment compared to validation in the physical facility, which will require a better dynamic modeling of the system for the implementation of future multivariable control strategies.« less

  8. On neural networks in identification and control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Hyland, David C.

    1993-01-01

    This paper presents a discussion of the applicability of neural networks in the identification and control of dynamic systems. Emphasis is placed on the understanding of how the neural networks handle linear systems and how the new approach is related to conventional system identification and control methods. Extensions of the approach to nonlinear systems are then made. The paper explains the fundamental concepts of neural networks in their simplest terms. Among the topics discussed are feed forward and recurrent networks in relation to the standard state-space and observer models, linear and nonlinear auto-regressive models, linear, predictors, one-step ahead control, and model reference adaptive control for linear and nonlinear systems. Numerical examples are presented to illustrate the application of these important concepts.

  9. Mass balances for a biological life support system simulation model

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1987-01-01

    Design decisions to aid the development of future space based biological life support systems (BLSS) can be made with simulation models. The biochemistry stoichiometry was developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady state system with wheat as the sole food source. The large scale dynamics of a materially closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multifood systems and more complex biochemical dynamics while maintaining whole system closure as a focus.

  10. Technical note: Simultaneous fully dynamic characterization of multiple input–output relationships in climate models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.

    We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less

  11. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy

    PubMed Central

    Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela

    2016-01-01

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development. DOI: http://dx.doi.org/10.7554/eLife.14770.001 PMID:27288545

  12. Technical note: Simultaneous fully dynamic characterization of multiple input–output relationships in climate models

    DOE PAGES

    Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.; ...

    2017-02-17

    We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less

  13. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory.

    PubMed

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tomé, W A

    2011-04-07

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.

  14. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  15. Stability analysis of an implicitly defined labor market model

    NASA Astrophysics Data System (ADS)

    Mendes, Diana A.; Mendes, Vivaldo M.

    2008-06-01

    Until very recently, the pervasive existence of models exhibiting well-defined backward dynamics but ill-defined forward dynamics in economics and finance has apparently posed no serious obstacles to the analysis of their dynamics and stability, despite the problems that may arise from possible erroneous conclusions regarding theoretical considerations and policy prescriptions from such models. A large number of papers have dealt with this problem in the past by assuming the existence of symmetry between forward and backward dynamics, even in the case when the map cannot be invertible either forward or backwards. However, this procedure has been seriously questioned over the last few years in a series of papers dealing with implicit difference equations and inverse limit spaces. This paper explores the search and matching labor market model developed by Bhattacharya and Bunzel [J. Bhattacharya, H. Bunzel, Chaotic Planning Solution in the Textbook Model of Equilibrium Labor Market Search and Matching, Mimeo, Iowa State University, 2002; J. Bhattacharya, H. Bunzel, Economics Bulletin 5 (19) (2003) 1-10], with the following objectives in mind: (i) to show that chaotic dynamics may still be present in the model for acceptable parameter values, (ii) to clarify some open questions related with the admissible dynamics in the forward looking setting, by providing a rigorous proof of the existence of cyclic and chaotic dynamics through the application of tools from symbolic dynamics and inverse limit theory.

  16. Two-dimensional relativistic space charge limited current flow in the drift space

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.

    2014-04-01

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  17. Effective control of complex turbulent dynamical systems through statistical functionals.

    PubMed

    Majda, Andrew J; Qi, Di

    2017-05-30

    Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are ubiquitous among complex systems in science and engineering, including climate, material, and neural science. Control of these complex systems is a grand challenge, for example, in mitigating the effects of climate change or safe design of technology with fully developed shear turbulence. Control of flows in the transition to turbulence, where there is a small dimension of instabilities about a basic mean state, is an important and successful discipline. In complex turbulent dynamical systems, it is impossible to track and control the large dimension of instabilities, which strongly interact and exchange energy, and new control strategies are needed. The goal of this paper is to propose an effective statistical control strategy for complex turbulent dynamical systems based on a recent statistical energy principle and statistical linear response theory. We illustrate the potential practical efficiency and verify this effective statistical control strategy on the 40D Lorenz 1996 model in forcing regimes with various types of fully turbulent dynamics with nearly one-half of the phase space unstable.

  18. Research on Equivalent Tests of Dynamics of On-orbit Soft Contact Technology Based on On-Orbit Experiment Data

    NASA Astrophysics Data System (ADS)

    Yang, F.; Dong, Z. H.; Ye, X.

    2018-05-01

    Currently, space robots have been become a very important means of space on-orbit maintenance and support. Many countries are taking deep research and experiment on this. Because space operation attitude is very complicated, it is difficult to model them in research lab. This paper builds up a complete equivalent experiment framework according to the requirement of proposed space soft-contact technology. Also, this paper carries out flexible multi-body dynamics parameters verification for on-orbit soft-contact mechanism, which combines on-orbit experiment data, the built soft-contact mechanism equivalent model and flexible multi-body dynamics equivalent model that is based on KANE equation. The experiment results approve the correctness of the built on-orbit soft-contact flexible multi-body dynamics.

  19. State-of-charge estimation in lithium-ion batteries: A particle filter approach

    NASA Astrophysics Data System (ADS)

    Tulsyan, Aditya; Tsai, Yiting; Gopaluni, R. Bhushan; Braatz, Richard D.

    2016-11-01

    The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex for standard estimation and control applications. This article presents an original algorithm for state-of-charge estimation using the P2D model. Partial differential equations are discretized using implicit stable algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model (consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncertainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial coordinates independently is developed. This algorithm circumvents the degeneracy problems associated with high-dimensional state estimation and avoids the repetitive solution of implicit equations by defining a 'tether' particle. The approach is illustrated through extensive simulations.

  20. Wigner's quantum phase-space current in weakly-anharmonic weakly-excited two-state systems

    NASA Astrophysics Data System (ADS)

    Kakofengitis, Dimitris; Steuernagel, Ole

    2017-09-01

    There are no phase-space trajectories for anharmonic quantum systems, but Wigner's phase-space representation of quantum mechanics features Wigner current J . This current reveals fine details of quantum dynamics —finer than is ordinarily thought accessible according to quantum folklore invoking Heisenberg's uncertainty principle. Here, we focus on the simplest, most intuitive, and analytically accessible aspects of J. We investigate features of J for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical systems which are weakly-excited. We establish that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft, and odd potentials. We stress connections between each other and the harmonic case. We show that their Wigner current fieldline patterns can be characterised by J's discrete stagnation points, how these arise and how a quantum system's dynamics is constrained by the stagnation points' topological charge conservation. We additionally show that quantum dynamics in phase space, in the case of vanishing Planck constant ℏ or vanishing anharmonicity, does not pointwise converge to classical dynamics.

  1. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.

    PubMed

    Asif, M Salman; Hamilton, Lei; Brummer, Marijn; Romberg, Justin

    2013-09-01

    Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensation-another recently proposed recovery algorithm for dynamic magnetic resonance imaging. . Copyright © 2012 Wiley Periodicals, Inc.

  2. Quasispecies in population of compositional assemblies.

    PubMed

    Gross, Renan; Fouxon, Itzhak; Lancet, Doron; Markovitch, Omer

    2014-12-30

    The quasispecies model refers to information carriers that undergo self-replication with errors. A quasispecies is a steady-state population of biopolymer sequence variants generated by mutations from a master sequence. A quasispecies error threshold is a minimal replication accuracy below which the population structure breaks down. Theory and experimentation of this model often refer to biopolymers, e.g. RNA molecules or viral genomes, while its prebiotic context is often associated with an RNA world scenario. Here, we study the possibility that compositional entities which code for compositional information, intrinsically different from biopolymers coding for sequential information, could show quasispecies dynamics. We employed a chemistry-based model, graded autocatalysis replication domain (GARD), which simulates the network dynamics within compositional molecular assemblies. In GARD, a compotype represents a population of similar assemblies that constitute a quasi-stationary state in compositional space. A compotype's center-of-mass is found to be analogous to a master sequence for a sequential quasispecies. Using single-cycle GARD dynamics, we measured the quasispecies transition matrix (Q) for the probabilities of transition from one center-of-mass Euclidean distance to another. Similarly, the quasispecies' growth rate vector (A) was obtained. This allowed computing a steady state distribution of distances to the center of mass, as derived from the quasispecies equation. In parallel, a steady state distribution was obtained via the GARD equation kinetics. Rewardingly, a significant correlation was observed between the distributions obtained by these two methods. This was only seen for distances to the compotype center-of-mass, and not to randomly selected compositions. A similar correspondence was found when comparing the quasispecies time dependent dynamics towards steady state. Further, changing the error rate by modifying basal assembly joining rate of GARD kinetics was found to display an error catastrophe, similar to the standard quasispecies model. Additional augmentation of compositional mutations leads to the complete disappearance of the master-like composition. Our results show that compositional assemblies, as simulated by the GARD formalism, portray significant attributes of quasispecies dynamics. This expands the applicability of the quasispecies model beyond sequence-based entities, and potentially enhances validity of GARD as a model for prebiotic evolution.

  3. Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models

    NASA Astrophysics Data System (ADS)

    Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas

    2017-02-01

    A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally, locally and un-identifiable model classes, and then to model updating of a two degree-of-freedom nonlinear structure with Duffing nonlinearities in its interstory force-deflection relationship.

  4. A Bayesian state-space approach for damage detection and classification

    NASA Astrophysics Data System (ADS)

    Dzunic, Zoran; Chen, Justin G.; Mobahi, Hossein; Büyüköztürk, Oral; Fisher, John W.

    2017-11-01

    The problem of automatic damage detection in civil structures is complex and requires a system that can interpret collected sensor data into meaningful information. We apply our recently developed switching Bayesian model for dependency analysis to the problems of damage detection and classification. The model relies on a state-space approach that accounts for noisy measurement processes and missing data, which also infers the statistical temporal dependency between measurement locations signifying the potential flow of information within the structure. A Gibbs sampling algorithm is used to simultaneously infer the latent states, parameters of the state dynamics, the dependence graph, and any changes in behavior. By employing a fully Bayesian approach, we are able to characterize uncertainty in these variables via their posterior distribution and provide probabilistic estimates of the occurrence of damage or a specific damage scenario. We also implement a single class classification method which is more realistic for most real world situations where training data for a damaged structure is not available. We demonstrate the methodology with experimental test data from a laboratory model structure and accelerometer data from a real world structure during different environmental and excitation conditions.

  5. Structural and practical identifiability analysis of S-system.

    PubMed

    Zhan, Choujun; Li, Benjamin Yee Shing; Yeung, Lam Fat

    2015-12-01

    In the field of systems biology, biological reaction networks are usually modelled by ordinary differential equations. A sub-class, the S-systems representation, is a widely used form of modelling. Existing S-systems identification techniques assume that the system itself is always structurally identifiable. However, due to practical limitations, biological reaction networks are often only partially measured. In addition, the captured data only covers a limited trajectory, therefore data can only be considered as a local snapshot of the system responses with respect to the complete set of state trajectories over the entire state space. Hence the estimated model can only reflect partial system dynamics and may not be unique. To improve the identification quality, the structural and practical identifiablility of S-system are studied. The S-system is shown to be identifiable under a set of assumptions. Then, an application on yeast fermentation pathway was conducted. Two case studies were chosen; where the first case is based on a larger state trajectories and the second case is based on a smaller one. By expanding the dataset which span a relatively larger state space, the uncertainty of the estimated system can be reduced. The results indicated that initial concentration is related to the practical identifiablity.

  6. A computational proof of concept of a machine-intelligent artificial pancreas using Lyapunov stability and differential game theory.

    PubMed

    Greenwood, Nigel J C; Gunton, Jenny E

    2014-07-01

    This study demonstrated the novel application of a "machine-intelligent" mathematical structure, combining differential game theory and Lyapunov-based control theory, to the artificial pancreas to handle dynamic uncertainties. Realistic type 1 diabetes (T1D) models from the literature were combined into a composite system. Using a mixture of "black box" simulations and actual data from diabetic medical histories, realistic sets of diabetic time series were constructed for blood glucose (BG), interstitial fluid glucose, infused insulin, meal estimates, and sometimes plasma insulin assays. The problem of underdetermined parameters was side stepped by applying a variant of a genetic algorithm to partial information, whereby multiple candidate-personalized models were constructed and then rigorously tested using further data. These formed a "dynamic envelope" of trajectories in state space, where each trajectory was generated by a hypothesis on the hidden T1D system dynamics. This dynamic envelope was then culled to a reduced form to cover observed dynamic behavior. A machine-intelligent autonomous algorithm then implemented game theory to construct real-time insulin infusion strategies, based on the flow of these trajectories through state space and their interactions with hypoglycemic or near-hyperglycemic states. This technique was tested on 2 simulated participants over a total of fifty-five 24-hour days, with no hypoglycemic or hyperglycemic events, despite significant uncertainties from using actual diabetic meal histories with 10-minute warnings. In the main case studies, BG was steered within the desired target set for 99.8% of a 16-hour daily assessment period. Tests confirmed algorithm robustness for ±25% carbohydrate error. For over 99% of the overall 55-day simulation period, either formal controller stability was achieved to the desired target or else the trajectory was within the desired target. These results suggest that this is a stable, high-confidence way to generate closed-loop insulin infusion strategies. © 2014 Diabetes Technology Society.

  7. Topology of Collisionless Relaxation

    NASA Astrophysics Data System (ADS)

    Pakter, Renato; Levin, Yan

    2013-04-01

    Using extensive molecular dynamics simulations we explore the fine-grained phase space structure of systems with long-range interactions. We find that if the initial phase space particle distribution has no holes, the final stationary distribution will also contain a compact simply connected region. The microscopic holes created by the filamentation of the initial distribution function are always restricted to the outer regions of the phase space. In general, for complex multilevel distributions it is very difficult to a priori predict the final stationary state without solving the full dynamical evolution. However, we show that, for multilevel initial distributions satisfying a generalized virial condition, it is possible to predict the particle distribution in the final stationary state using Casimir invariants of the Vlasov dynamics.

  8. Emulating a flexible space structure: Modeling

    NASA Technical Reports Server (NTRS)

    Waites, H. B.; Rice, S. C.; Jones, V. L.

    1988-01-01

    Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work.

  9. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Das, Trishna

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24more » bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.« less

  10. Soybean Yield and Heterodera glycines Population Dynamics as Affected by Cultural Practices in Major Production Areas of the United States and Canada

    USDA-ARS?s Scientific Manuscript database

    Little information is available on the interactive effects of tillage and row spacing on yield of soybean and population dynamics of H. glycines. This study investigated the effects of rotation of soybean and corn, tillage, row spacing, and cultivar on yield of soybean and population dynamics of H. ...

  11. Nonlinear modeling of chaotic time series: Theory and applications

    NASA Astrophysics Data System (ADS)

    Casdagli, M.; Eubank, S.; Farmer, J. D.; Gibson, J.; Desjardins, D.; Hunter, N.; Theiler, J.

    We review recent developments in the modeling and prediction of nonlinear time series. In some cases, apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases, it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifying and quantifying low-dimensional chaotic behavior. During the past few years, methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics, and human speech.

  12. An IBM PC-based math model for space station solar array simulation

    NASA Technical Reports Server (NTRS)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  13. FISHER INFORMATION OF DYNAMIC REGIME TRANSITIONS IN ECOLOGICAL SYSTEMS

    EPA Science Inventory

    Ecosystems often exhibit transitions between multiple dynamic regimes (or steady states). As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neighborhood of the current regime, or ?flip? into the neighborhood ...

  14. Dynamic large eddy simulation: Stability via realizability

    NASA Astrophysics Data System (ADS)

    Mokhtarpoor, Reza; Heinz, Stefan

    2017-10-01

    The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynamically adjust to changing flow conditions, which is known to be highly beneficial. For example, this avoids the use of empirical, case dependent approximations (like damping functions). Ideally, dynamic LES should be local in physical space (without involving artificial clipping parameters), and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades. We address these questions by performing dynamic LES of periodic hill flow including separation at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is that it is possible to design LES that has the desired properties. It requires physical consistency: a PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic energy in the LES calculation. LES models that do not honor such physical consistency can become unstable. We do not find support for the previous assumption that long-term correlations of negative dynamic model parameters are responsible for instability. Instead, we concluded that instability is caused by the stable spatial organization of significant unphysical states, which are represented by wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applicability of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky model) is discussed.

  15. Granger causality revisited

    PubMed Central

    Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir

    2014-01-01

    This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817

  16. A LAMMPS implementation of volume-temperature replica exchange molecular dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Liang-Chun; Kuo, Jer-Lai

    2015-04-01

    A driver module for executing volume-temperature replica exchange molecular dynamics (VTREMD) was developed for the LAMMPS package. As a patch code, the VTREMD module performs classical molecular dynamics (MD) with Monte Carlo (MC) decisions between MD runs. The goal of inserting the MC step was to increase the breadth of sampled configurational space. In this method, states receive better sampling by making temperature or density swaps with their neighboring states. As an accelerated sampling method, VTREMD is particularly useful to explore states at low temperatures, where systems are easily trapped in local potential wells. As functional examples, TIP4P/Ew and TIP4P/2005 water models were analyzed using VTREMD. The phase diagram in this study covered the deeply supercooled regime, and this test served as a suitable demonstration of the usefulness of VTREMD in overcoming the slow dynamics problem. To facilitate using the current code, attention was also paid on how to optimize the exchange efficiency by using grid allocation. VTREMD was useful for studying systems with rough energy landscapes, such as those with numerous local minima or multiple characteristic time scales.

  17. Investigation of different modeling approaches for computational fluid dynamics simulation of high-pressure rocket combustors

    NASA Astrophysics Data System (ADS)

    Ivancic, B.; Riedmann, H.; Frey, M.; Knab, O.; Karl, S.; Hannemann, K.

    2016-07-01

    The paper summarizes technical results and first highlights of the cooperation between DLR and Airbus Defence and Space (DS) within the work package "CFD Modeling of Combustion Chamber Processes" conducted in the frame of the Propulsion 2020 Project. Within the addressed work package, DLR Göttingen and Airbus DS Ottobrunn have identified several test cases where adequate test data are available and which can be used for proper validation of the computational fluid dynamics (CFD) tools. In this paper, the first test case, the Penn State chamber (RCM1), is discussed. Presenting the simulation results from three different tools, it is shown that the test case can be computed properly with steady-state Reynolds-averaged Navier-Stokes (RANS) approaches. The achieved simulation results reproduce the measured wall heat flux as an important validation parameter very well but also reveal some inconsistencies in the test data which are addressed in this paper.

  18. Generalized thermodynamic relations for a system experiencing heat and mass diffusion in the far-from-equilibrium realm based on steepest entropy ascent.

    PubMed

    Li, Guanchen; von Spakovsky, Michael R

    2016-09-01

    This paper presents a nonequilibrium thermodynamic model for the relaxation of a local, isolated system in nonequilibrium using the principle of steepest entropy ascent (SEA), which can be expressed as a variational principle in thermodynamic state space. The model is able to arrive at the Onsager relations for such a system. Since no assumption of local equilibrium is made, the conjugate fluxes and forces are intrinsic to the subspaces of the system's state space and are defined using the concepts of hypoequilibrium state and nonequilibrium intensive properties, which describe the nonmutual equilibrium status between subspaces of the thermodynamic state space. The Onsager relations are shown to be a thermodynamic kinematic feature of the system independent of the specific details of the micromechanical dynamics. Two kinds of relaxation processes are studied with different constraints (i.e., conservation laws) corresponding to heat and mass diffusion. Linear behavior in the near-equilibrium region as well as nonlinear behavior in the far-from-equilibrium region are discussed. Thermodynamic relations in the equilibrium and near-equilibrium realm, including the Gibbs relation, the Clausius inequality, and the Onsager relations, are generalized to the far-from-equilibrium realm. The variational principle in the space spanned by the intrinsic conjugate fluxes and forces is expressed via the quadratic dissipation potential. As an application, the model is applied to the heat and mass diffusion of a system represented by a single-particle ensemble, which can also be applied to a simple system of many particles. Phenomenological transport coefficients are also derived in the near-equilibrium realm.

  19. Parachute dynamics and stability analysis. [using nonlinear differential equations of motion

    NASA Technical Reports Server (NTRS)

    Ibrahim, S. K.; Engdahl, R. A.

    1974-01-01

    The nonlinear differential equations of motion for a general parachute-riser-payload system are developed. The resulting math model is then applied for analyzing the descent dynamics and stability characteristics of both the drogue stabilization phase and the main descent phase of the space shuttle solid rocket booster (SRB) recovery system. The formulation of the problem is characterized by a minimum number of simplifying assumptions and full application of state-of-the-art parachute technology. The parachute suspension lines and the parachute risers can be modeled as elastic elements, and the whole system may be subjected to specified wind and gust profiles in order to assess their effects on the stability of the recovery system.

  20. Tracking interface and common curve dynamics for two-fluid flow in porous media

    DOE PAGES

    Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...

    2016-04-29

    Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less

  1. Transition Manifolds of Complex Metastable Systems: Theory and Data-Driven Computation of Effective Dynamics.

    PubMed

    Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof

    2018-01-01

    We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.

  2. Dynamic Model and Experimental Validation of a PEM Fuel Cell System

    NASA Astrophysics Data System (ADS)

    Nassif, Younane; Godoy, Emmanuel; Bethoux, Olivier; Roche, Ivan

    Fuel cells are expected to become a challenging technology in terms of efficiency, and fitting the emission reduction schedules [Lemons, J. Power Sources, 29:251, 1] for the automotive application. Their fundamental component consists of two electrodes separated by a membrane. Fuel cells convert chemical energy into electrical energy while producing water and heat. To not disturb the transportation of the reactant gas, a proper membrane hydration needs to be maintained. Two different conditions can occur facing an inadequate water balance which decreases the performance of the stack. An insufficient removal of the accumulated water causes water flooding, decreasing reactant transport rate. Similarly, excessive water removal dries the membrane. To monitor the amount of water inside the cell, dynamic model based on the mass conservation principles and thermodynamic properties is developed in the form of nonlinear state space representation. Fick's law and Maxwell-Stefan model are used to describe multicomponent diffusion. Darcy's law is used to define the porous medium permeability. To demonstrate the accuracy of the proposed model, obtained results are compared with measured data at steady states operation mode. Investigation of the steady-state behavior is discussed in this paper.

  3. Equilibrium points of the tilted perfect fluid Bianchi VIh state space

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, Pantelis S.

    2005-05-01

    We present the full set of evolution equations for the spatially homogeneous cosmologies of type VIh filled with a tilted perfect fluid and we provide the corresponding equilibrium points of the resulting dynamical state space. It is found that only when the group parameter satisfies h > -1 a self-similar solution exists. In particular we show that for h > -{1/9} there exists a self-similar equilibrium point provided that γ ∈ ({2(3+sqrt{-h})/5+3sqrt{-h}},{3/2}) whereas for h < -{frac 19} the state parameter belongs to the interval γ ∈(1,{2(3+sqrt{-h})/5+3sqrt{-h}}). This family of new exact self-similar solutions belongs to the subclass nαα = 0 having non-zero vorticity. In both cases the equilibrium points have a six-dimensional stable manifold and may act as future attractors at least for the models satisfying nαα = 0. Also we give the exact form of the self-similar metrics in terms of the state and group parameter. As an illustrative example we provide the explicit form of the corresponding self-similar radiation model (γ = {frac 43}), parametrised by the group parameter h. Finally we show that there are no tilted self-similar models of type III and irrotational models of type VIh.

  4. Dynamic modeling and parameter estimation of a radial and loop type distribution system network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun Qui; Heng Chen; Girgis, A.A.

    1993-05-01

    This paper presents a new identification approach to three-phase power system modeling and model reduction taking power system network as multi-input, multi-output (MIMO) processes. The model estimate can be obtained in discrete-time input-output form, discrete- or continuous-time state-space variable form, or frequency-domain impedance transfer function matrix form. An algorithm for determining the model structure of this MIMO process is described. The effect of measurement noise on the approach is also discussed. This approach has been applied on a sample system and simulation results are also presented in this paper.

  5. Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations.

    PubMed

    Brown, Paul A; Messina, Michael

    2016-03-03

    We present a simple computational algorithm that allows for the inclusion of memory friction in a quantum dynamics simulation of a small, quantum, primary system coupled to many atoms in the surroundings. We show how including a memory friction operator, F̂, in the primary quantum system's Hamiltonian operator builds memory friction into the dynamics of the primary quantum system. We show that, in the harmonic, semi-classical limit, this friction operator causes the classical phase-space centers of a wavepacket to evolve exactly as if it were a classical particle experiencing memory friction. We also show that this friction operator can be used to include memory friction in the quantum dynamics of an anharmonic primary system. We then generalize the algorithm so that it can be used to treat a primary quantum system that is evolving, non-adiabatically on two coupled potential energy surfaces, i.e., a model that can be used to model H atom transfer, for example. We demonstrate this approach's computational ease and flexibility by showing numerical results for both harmonic and anharmonic primary quantum systems in the single surface case. Finally, we present numerical results for a model of non-adiabatic H atom transfer between a reactant and product state that includes memory friction on one or both of the non-adiabatic potential energy surfaces and uncover some interesting dynamical effects of non-memory friction on the H atom transfer process.

  6. Momentum space view of the ultrafast dynamics of surface photocurrents on topological insulators

    NASA Astrophysics Data System (ADS)

    Kuroda, K.; Reimann, J.; Güdde, J.; Höfer, U.

    2017-02-01

    The Dirac-cone surface states of topological insulators are characterized by a chiral spin texture in k-space with the electron spin locked to its parallel momentum. Mid-infrared pump pulses can induce spin-polarized photocurrents in such a topological surface state by optical transitions between the occupied and unoccupied part of the Dirac cone. We monitor the ultrafast dynamics of the corresponding asymmetric electron population in momentum space directly by time- and angle-resolved two-photon photoemission (2PPE). The elastic scattering times of 2.5 ps deduced for Sb2Te3 corresponds to a mean-fee path of 0.75 μm in real space.

  7. Dynamics from a mathematical model of a two-state gas laser

    NASA Astrophysics Data System (ADS)

    Kleanthous, Antigoni; Hua, Tianshu; Manai, Alexandre; Yawar, Kamran; Van Gorder, Robert A.

    2018-05-01

    Motivated by recent work in the area, we consider the behavior of solutions to a nonlinear PDE model of a two-state gas laser. We first review the derivation of the two-state gas laser model, before deriving a non-dimensional model given in terms of coupled nonlinear partial differential equations. We then classify the steady states of this system, in order to determine the possible long-time asymptotic solutions to this model, as well as corresponding stability results, showing that the only uniform steady state (the zero motion state) is unstable, while a linear profile in space is stable. We then provide numerical simulations for the full unsteady model. We show for a wide variety of initial conditions that the solutions tend toward the stable linear steady state profiles. We also consider traveling wave solutions, and determine the unique wave speed (in terms of the other model parameters) which allows wave-like solutions to exist. Despite some similarities between the model and the inviscid Burger's equation, the solutions we obtain are much more regular than the solutions to the inviscid Burger's equation, with no evidence of shock formation or loss of regularity.

  8. The black hole interior and the type II Weyl fermions

    NASA Astrophysics Data System (ADS)

    Zubkov, M. A.

    2018-03-01

    It was proposed recently that the black hole may undergo a transition to the state, where inside the horizon the Fermi surface is formed that reveals an analogy with the recently discovered type II Weyl semimetals. In this scenario, the low energy effective theory outside of the horizon is the Standard Model, which describes excitations that reside near a certain point P(0) in momentum space of the hypothetical unified theory. Inside the horizon the low energy physics is due to the excitations that reside at the points in momentum space close to the Fermi surface. We argue that those points may be essentially distant from P(0) and, therefore, inside the black hole the quantum states are involved in the low energy dynamics that are not described by the Standard Model. We analyze the consequences of this observation for the physics of the black holes and present the model based on the direct analogy with the type II Weyl semimetals, which illustrates this pattern.

  9. Path-space variational inference for non-equilibrium coarse-grained systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmandaris, Vagelis, E-mail: harman@uoc.gr; Institute of Applied and Computational Mathematics; Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirelymore » data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.« less

  10. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    NASA Technical Reports Server (NTRS)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  11. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method

    PubMed Central

    2013-01-01

    Background Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. Methods We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Results and conclusions Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers. PMID:24565158

  12. Occupant-vehicle dynamics and the role of the internal model

    NASA Astrophysics Data System (ADS)

    Cole, David J.

    2018-05-01

    With the increasing need to reduce time and cost of vehicle development there is increasing advantage in simulating mathematically the dynamic interaction of a vehicle and its occupant. The larger design space arising from the introduction of automated vehicles further increases the potential advantage. The aim of the paper is to outline the role of the internal model hypothesis in understanding and modelling occupant-vehicle dynamics, specifically the dynamics associated with direction and speed control of the vehicle. The internal model is the driver's or passenger's understanding of the vehicle dynamics and is thought to be employed in the perception, cognition and action processes of the brain. The internal model aids the estimation of the states of the vehicle from noisy sensory measurements. It can also be used to optimise cognitive control action by predicting the consequence of the action; thus model predictive control (MPC) theory provides a foundation for modelling the cognition process. The stretch reflex of the neuromuscular system also makes use of the prediction of the internal model. Extensions to the MPC approach are described which account for: interaction with an automated vehicle; robust control; intermittent control; and cognitive workload. Further work to extend understanding of occupant-vehicle dynamic interaction is outlined. This paper is based on a keynote presentation given by the author to the 13th International Symposium on Advanced Vehicle Control (AVEC) conference held in Munich, September 2016.

  13. A computational kinetic model of diffusion for molecular systems.

    PubMed

    Teo, Ivan; Schulten, Klaus

    2013-09-28

    Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10-100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.

  14. Dynamic Sensorimotor Planning during Long-Term Sequence Learning: The Role of Variability, Response Chunking and Planning Errors

    PubMed Central

    Verstynen, Timothy; Phillips, Jeff; Braun, Emily; Workman, Brett; Schunn, Christian; Schneider, Walter

    2012-01-01

    Many everyday skills are learned by binding otherwise independent actions into a unified sequence of responses across days or weeks of practice. Here we looked at how the dynamics of action planning and response binding change across such long timescales. Subjects (N = 23) were trained on a bimanual version of the serial reaction time task (32-item sequence) for two weeks (10 days total). Response times and accuracy both showed improvement with time, but appeared to be learned at different rates. Changes in response speed across training were associated with dynamic changes in response time variability, with faster learners expanding their variability during the early training days and then contracting response variability late in training. Using a novel measure of response chunking, we found that individual responses became temporally correlated across trials and asymptoted to set sizes of approximately 7 bound responses at the end of the first week of training. Finally, we used a state-space model of the response planning process to look at how predictive (i.e., response anticipation) and error-corrective (i.e., post-error slowing) processes correlated with learning rates for speed, accuracy and chunking. This analysis yielded non-monotonic association patterns between the state-space model parameters and learning rates, suggesting that different parts of the response planning process are relevant at different stages of long-term learning. These findings highlight the dynamic modulation of response speed, variability, accuracy and chunking as multiple movements become bound together into a larger set of responses during sequence learning. PMID:23056630

  15. An algebra-based method for inferring gene regulatory networks

    PubMed Central

    2014-01-01

    Background The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. Results This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network. Conclusions Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html. PMID:24669835

  16. Local Approximation and Hierarchical Methods for Stochastic Optimization

    NASA Astrophysics Data System (ADS)

    Cheng, Bolong

    In this thesis, we present local and hierarchical approximation methods for two classes of stochastic optimization problems: optimal learning and Markov decision processes. For the optimal learning problem class, we introduce a locally linear model with radial basis function for estimating the posterior mean of the unknown objective function. The method uses a compact representation of the function which avoids storing the entire history, as is typically required by nonparametric methods. We derive a knowledge gradient policy with the locally parametric model, which maximizes the expected value of information. We show the policy is asymptotically optimal in theory, and experimental works suggests that the method can reliably find the optimal solution on a range of test functions. For the Markov decision processes problem class, we are motivated by an application where we want to co-optimize a battery for multiple revenue, in particular energy arbitrage and frequency regulation. The nature of this problem requires the battery to make charging and discharging decisions at different time scales while accounting for the stochastic information such as load demand, electricity prices, and regulation signals. Computing the exact optimal policy becomes intractable due to the large state space and the number of time steps. We propose two methods to circumvent the computation bottleneck. First, we propose a nested MDP model that structure the co-optimization problem into smaller sub-problems with reduced state space. This new model allows us to understand how the battery behaves down to the two-second dynamics (that of the frequency regulation market). Second, we introduce a low-rank value function approximation for backward dynamic programming. This new method only requires computing the exact value function for a small subset of the state space and approximate the entire value function via low-rank matrix completion. We test these methods on historical price data from the PJM Interconnect and show that it outperforms the baseline approach used in the industry.

  17. Specification of the near-Earth space environment with SHIELDS

    DOE PAGES

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard; ...

    2017-11-26

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less

  18. Specification of the near-Earth space environment with SHIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less

  19. A thermostatted kinetic theory model for event-driven pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Bianca, Carlo; Mogno, Caterina

    2018-06-01

    This paper is devoted to the modeling of the pedestrian dynamics by means of the thermostatted kinetic theory. Specifically the microscopic interactions among pedestrians and an external force field are modeled for simulating the evacuation of pedestrians from a metro station. The fundamentals of the stochastic game theory and the thermostatted kinetic theory are coupled for the derivation of a specific mathematical model which depicts the time evolution of the distribution of pedestrians at different exits of a metro station. The perturbation theory is employed in order to establish the stability analysis of the nonequilibrium stationary states in the case of a metro station consisting of two exits. A general sensitivity analysis on the initial conditions, the magnitude of the external force field and the number of exits is presented by means of numerical simulations which, in particular, show how the asymptotic distribution and the convergence time are affected by the presence of an external force field. The results show how, in evacuation conditions, the interaction dynamics among pedestrians can be negligible with respect to the external force. The important role of the thermostat term in allowing the reaching of the nonequilibrium stationary state is stressed out. Research perspectives are underlined at the end of paper, in particular for what concerns the derivation of frameworks that take into account the definition of local external actions and the introduction of the space and velocity dynamics.

  20. Locally optimal control under unknown dynamics with learnt cost function: application to industrial robot positioning

    NASA Astrophysics Data System (ADS)

    Guérin, Joris; Gibaru, Olivier; Thiery, Stéphane; Nyiri, Eric

    2017-01-01

    Recent methods of Reinforcement Learning have enabled to solve difficult, high dimensional, robotic tasks under unknown dynamics using iterative Linear Quadratic Gaussian control theory. These algorithms are based on building a local time-varying linear model of the dynamics from data gathered through interaction with the environment. In such tasks, the cost function is often expressed directly in terms of the state and control variables so that it can be locally quadratized to run the algorithm. If the cost is expressed in terms of other variables, a model is required to compute the cost function from the variables manipulated. We propose a method to learn the cost function directly from the data, in the same way as for the dynamics. This way, the cost function can be defined in terms of any measurable quantity and thus can be chosen more appropriately for the task to be carried out. With our method, any sensor information can be used to design the cost function. We demonstrate the efficiency of this method through simulating, with the V-REP software, the learning of a Cartesian positioning task on several industrial robots with different characteristics. The robots are controlled in joint space and no model is provided a priori. Our results are compared with another model free technique, consisting in writing the cost function as a state variable.

  1. Stochastic modelling of intermittency.

    PubMed

    Stemler, Thomas; Werner, Johannes P; Benner, Hartmut; Just, Wolfram

    2010-01-13

    Recently, methods have been developed to model low-dimensional chaotic systems in terms of stochastic differential equations. We tested such methods in an electronic circuit experiment. We aimed to obtain reliable drift and diffusion coefficients even without a pronounced time-scale separation of the chaotic dynamics. By comparing the analytical solutions of the corresponding Fokker-Planck equation with experimental data, we show here that crisis-induced intermittency can be described in terms of a stochastic model which is dominated by state-space-dependent diffusion. Further on, we demonstrate and discuss some limits of these modelling approaches using numerical simulations. This enables us to state a criterion that can be used to decide whether a stochastic model will capture the essential features of a given time series. This journal is © 2010 The Royal Society

  2. Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making

    PubMed Central

    Seamans, Jeremy K.; Durstewitz, Daniel

    2011-01-01

    A common theoretical view is that attractor-like properties of neuronal dynamics underlie cognitive processing. However, although often proposed theoretically, direct experimental support for the convergence of neural activity to stable population patterns as a signature of attracting states has been sparse so far, especially in higher cortical areas. Combining state space reconstruction theorems and statistical learning techniques, we were able to resolve details of anterior cingulate cortex (ACC) multiple single-unit activity (MSUA) ensemble dynamics during a higher cognitive task which were not accessible previously. The approach worked by constructing high-dimensional state spaces from delays of the original single-unit firing rate variables and the interactions among them, which were then statistically analyzed using kernel methods. We observed cognitive-epoch-specific neural ensemble states in ACC which were stable across many trials (in the sense of being predictive) and depended on behavioral performance. More interestingly, attracting properties of these cognitively defined ensemble states became apparent in high-dimensional expansions of the MSUA spaces due to a proper unfolding of the neural activity flow, with properties common across different animals. These results therefore suggest that ACC networks may process different subcomponents of higher cognitive tasks by transiting among different attracting states. PMID:21625577

  3. Multi-Spacecraft Data Assimilation and Reanalysis During the THEMIS and Van Allen Probes Era

    NASA Astrophysics Data System (ADS)

    Kellerman, A. C.; Shprits, Y.; Kondrashov, D. A.; Podladchikova, T.; Drozdov, A.; Subbotin, D.

    2013-12-01

    Earth's radiation belts are a dynamic system, controlled by competition between source, acceleration, loss and transport of particles. Solar wind pressure enhancements and outward transport are responsible for loss of electrons to the magnetopause, while wave-particle interactions inside the magnetosphere, driven by solar wind pressure and velocity variations, may lead to acceleration and radial diffusion of 10's of keV to MeV energy electrons, and pitch-angle scattering loss to the atmosphere. An understanding of the mechanisms behind the observed dynamics is critical to accurate modeling and hence forecasting of radiation belt conditions, important for design, and protection of our space-borne assets. The Versatile Electron Radiation Belt (VERB) model solves the Fokker-Planck diffusion equation in three dimensional invariant coordinates, which allows one to more effectively separate adiabatic and non-adiabatic changes in the radiation belt electron population. The model includes geomagnetic storm intensity dependent parameterizations of the following dominant magnetospheric waves: day- and night-side chorus, plasmaspheric hiss (in the inner magnetosphere and inside the plume region), lightning and anthropogenic generated waves, and electro-magnetic ion cyclotron (EMIC) waves, also inside of plasmaspheric plumes. The model is used to forecast the future state of the radiation belt electron population, while real-time data may be used to update the current state of the belts through assimilation with the model. The Kalman filter provides a computationally inexpensive method to assimilate data with a model, while taking into account the errors associated with each. System identification is performed to determine the model and observational bias and errors. The Kalman filter outputs an optimal estimate of the actual system state and the Kalman-gain weighted corrections (innovation) may be used to identify systematic differences between data and the model. Careful consideration of the innovation vector may lead to a new physical understanding of the radiation belt system, which can later be used to improve our model forecasts. In the current study, we explore the radiation belt dynamics of the current era including data from the THEMIS, Van Allen Probes, GPS satellites, Akebono, NOAA and Cluster spacecraft. Intercalibration is performed between spacecraft on an individual energy channel basis, and in invariant coordinates. The global reanalysis allows an unprecedented analysis of the source-acceleration-transport-loss relationship in Earth's radiation belts. This analysis is used to refine our model capabilities, and to prepare the 3-D reanalysis for real-time data. The global 3-D reanalysis is an important step towards full-scale modeling and operational forecasting of this dynamic region of space.

  4. Are genetically robust regulatory networks dynamically different from random ones?

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Rikvold, Per Arne

    We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed approximation to give erroneous predictions about the model's phase diagram.

  5. Quantum morphogenesis: A variation on Thom's catastrophe theory

    NASA Astrophysics Data System (ADS)

    Aerts, Dirk; Czachor, Marek; Gabora, Liane; Kuna, Maciej; Posiewnik, Andrzej; Pykacz, Jarosław; Syty, Monika

    2003-05-01

    Noncommutative propositions are characteristic of both quantum and nonquantum (sociological, biological, and psychological) situations. In a Hilbert space model, states, understood as correlations between all the possible propositions, are represented by density matrices. If systems in question interact via feedback with environment, their dynamics is nonlinear. Nonlinear evolutions of density matrices lead to the phenomenon of morphogenesis that may occur in noncommutative systems. Several explicit exactly solvable models are presented, including “birth and death of an organism” and “development of complementary properties.”

  6. Simulator of Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Clare, Loren; Jennings, Esther; Gao, Jay; Segui, John; Kwong, Winston

    2005-01-01

    Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) is a suite of software tools that simulates the behaviors of communication networks to be used in space exploration, and predict the performance of established and emerging space communication protocols and services. MACHETE consists of four general software systems: (1) a system for kinematic modeling of planetary and spacecraft motions; (2) a system for characterizing the engineering impact on the bandwidth and reliability of deep-space and in-situ communication links; (3) a system for generating traffic loads and modeling of protocol behaviors and state machines; and (4) a system of user-interface for performance metric visualizations. The kinematic-modeling system makes it possible to characterize space link connectivity effects, including occultations and signal losses arising from dynamic slant-range changes and antenna radiation patterns. The link-engineering system also accounts for antenna radiation patterns and other phenomena, including modulations, data rates, coding, noise, and multipath fading. The protocol system utilizes information from the kinematic-modeling and link-engineering systems to simulate operational scenarios of space missions and evaluate overall network performance. In addition, a Communications Effect Server (CES) interface for MACHETE has been developed to facilitate hybrid simulation of space communication networks with actual flight/ground software/hardware embedded in the overall system.

  7. Dynamics Sampling in Transition Pathway Space.

    PubMed

    Zhou, Hongyu; Tao, Peng

    2018-01-09

    The minimum energy pathway contains important information describing the transition between two states on a potential energy surface (PES). Chain-of-states methods were developed to efficiently calculate minimum energy pathways connecting two stable states. In the chain-of-states framework, a series of structures are generated and optimized to represent the minimum energy pathway connecting two states. However, multiple pathways may exist connecting two existing states and should be identified to obtain a full view of the transitions. Therefore, we developed an enhanced sampling method, named as the direct pathway dynamics sampling (DPDS) method, to facilitate exploration of a PES for multiple pathways connecting two stable states as well as addition minima and their associated transition pathways. In the DPDS method, molecular dynamics simulations are carried out on the targeting PES within a chain-of-states framework to directly sample the transition pathway space. The simulations of DPDS could be regulated by two parameters controlling distance among states along the pathway and smoothness of the pathway. One advantage of the chain-of-states framework is that no specific reaction coordinates are necessary to generate the reaction pathway, because such information is implicitly represented by the structures along the pathway. The chain-of-states setup in a DPDS method greatly enhances the sufficient sampling in high-energy space between two end states, such as transition states. By removing the constraint on the end states of the pathway, DPDS will also sample pathways connecting minima on a PES in addition to the end points of the starting pathway. This feature makes DPDS an ideal method to directly explore transition pathway space. Three examples demonstrate the efficiency of DPDS methods in sampling the high-energy area important for reactions on the PES.

  8. Properties of planetary fluids at high pressure and temperature

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Hamilton, D. C.; Holmes, N. C.; Radousky, H. B.; Ree, F. H.; Ross, M.; Young, D. A.; Nicol, M.

    1987-01-01

    In order to derive models of the interiors of Uranus, Neptune, Jupiter and Saturn, researchers studied equations of state and electrical conductivities of molecules at high dynamic pressures and temperatures. Results are given for shock temperature measurements of N2 and CH4. Temperature data allowed demonstration of shock induced cooling in the the transition region and the existence of crossing isotherms in P-V space.

  9. Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness: dynamical systems theory of gene expressions under cell-cell interaction explains mutational robustness of differentiated cells and suggests how cancer cells emerge.

    PubMed

    Kaneko, Kunihiko

    2011-06-01

    Here I present and discuss a model that, among other things, appears able to describe the dynamics of cancer cell origin from the perspective of stable and unstable gene expression profiles. In identifying such aberrant gene expression profiles as lying outside the normal stable states attracted through development and normal cell differentiation, the hypothesis explains why cancer cells accumulate mutations, to which they are not robust, and why these mutations create a new stable state far from the normal gene expression profile space. Such cells are in strong contrast with normal cell types that appeared as an attractor state in the gene expression dynamical system under cell-cell interaction and achieved robustness to noise through evolution, which in turn also conferred robustness to mutation. In complex gene regulation networks, other aberrant cellular states lacking such high robustness are expected to remain, which would correspond to cancer cells. Copyright © 2011 WILEY Periodicals, Inc.

  10. Exploring the Internal Dynamics of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Watkins, Laura L.; van der Marel, Roeland; Bellini, Andrea; Luetzgendorf, Nora; HSTPROMO Collaboration

    2018-01-01

    Exploring the Internal Dynamics of Globular ClustersThe formation histories and structural properties of globular clusters are imprinted on their internal dynamics. Energy equipartition results in velocity differences for stars of different mass, and leads to mass segregation, which results in different spatial distributions for stars of different mass. Intermediate-mass black holes significantly increase the velocity dispersions at the centres of clusters. By combining accurate measurements of their internal kinematics with state-of-the-art dynamical models, we can characterise both the velocity dispersion and mass profiles of clusters, tease apart the different effects, and understand how clusters may have formed and evolved.Using proper motions from the Hubble Space Telescope Proper Motion (HSTPROMO) Collaboration for a set of 22 Milky Way globular clusters, and our discrete dynamical modelling techniques designed to work with large, high-quality datasets, we are studying a variety of internal cluster properties. We will present the results of theoretical work on simulated clusters that demonstrates the efficacy of our approach, and preliminary results from application to real clusters.

  11. Modelling Watershed and Estuarine Controls on Salt Marsh Distributions

    NASA Astrophysics Data System (ADS)

    Yousefi Lalimi, F.; Marani, M.; Murray, A. B.; D'Alpaos, A.

    2017-12-01

    The formation and evolution of tidal platforms have been extensively studied through observations and models, describing landform dynamics as a result of the local interactions and feedbacks among hydrodynamics, vegetation, and sediment transport. However, existing work mainly focuses on individual marsh platforms and, possibly, their immediate surrounding, such that the influence and controls on marsh dynamics of inland areas (through fluvial inputs) and of exchanges with the ocean have not been comprehensively and simultaneously accounted for. Here, we develop and use a process-based model to evaluate the relative role of watershed, estuarine, and ocean controls on salt marsh accretionary and depositional/erosional dynamics and define how these factors interact to determine salt marsh resilience to environmental change at the whole-estuary scale. Our results, in line with previous work, show that no stable equilibrium exists for the erosional dynamics of the marsh/tidal flat boundary. In addition, we find that under some circumstances, vertical accretion/erosion dynamics can lead to transitions between salt marsh and tidal flat equilibrium states that occur much more rapidly than marsh/tidal flat boundary erosion or accretion could. We further define, in the multidimensional space of estuarine-scale morphodynamic forcings, the basins of attractions leading to marsh-dominated and tidal-flat-dominated estuaries. The relatively slow dynamics asymptotically leading to marsh- or tidal-flat- dominance in many cases suggest that estuaries are likely to be found, at any given time, in a transition state dictated by temporal variations in environmental forcings.

  12. Imaging the dynamics of free-electron Landau states

    PubMed Central

    Schattschneider, P.; Schachinger, Th.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Bliokh, K. Y.; Nori, Franco

    2014-01-01

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions. PMID:25105563

  13. Variable input observer for state estimation of high-rate dynamics

    NASA Astrophysics Data System (ADS)

    Hong, Jonathan; Cao, Liang; Laflamme, Simon; Dodson, Jacob

    2017-04-01

    High-rate systems operating in the 10 μs to 10 ms timescale are likely to experience damaging effects due to rapid environmental changes (e.g., turbulence, ballistic impact). Some of these systems could benefit from real-time state estimation to enable their full potential. Examples of such systems include blast mitigation strategies, automotive airbag technologies, and hypersonic vehicles. Particular challenges in high-rate state estimation include: 1) complex time varying nonlinearities of system (e.g. noise, uncertainty, and disturbance); 2) rapid environmental changes; 3) requirement of high convergence rate. Here, we propose using a Variable Input Observer (VIO) concept to vary the input space as the event unfolds. When systems experience high-rate dynamics, rapid changes in the system occur. To investigate the VIO's potential, a VIO-based neuro-observer is constructed and studied using experimental data collected from a laboratory impact test. Results demonstrate that the input space is unique to different impact conditions, and that adjusting the input space throughout the dynamic event produces better estimations than using a traditional fixed input space strategy.

  14. Topics in Modeling of Cochlear Dynamics: Computation, Response and Stability Analysis

    NASA Astrophysics Data System (ADS)

    Filo, Maurice G.

    This thesis touches upon several topics in cochlear modeling. Throughout the literature, mathematical models of the cochlea vary according to the degree of biological realism to be incorporated. This thesis casts the cochlear model as a continuous space-time dynamical system using operator language. This framework encompasses a wider class of cochlear models and makes the dynamics more transparent and easier to analyze before applying any numerical method to discretize space. In fact, several numerical methods are investigated to study the computational efficiency of the finite dimensional realizations in space. Furthermore, we study the effects of the active gain perturbations on the stability of the linearized dynamics. The stability analysis is used to explain possible mechanisms underlying spontaneous otoacoustic emissions and tinnitus. Dynamic Mode Decomposition (DMD) is introduced as a useful tool to analyze the response of nonlinear cochlear models. Cochlear response features are illustrated using DMD which has the advantage of explicitly revealing the spatial modes of vibrations occurring in the Basilar Membrane (BM). Finally, we address the dynamic estimation problem of BM vibrations using Extended Kalman Filters (EKF). Due to the limitations of noninvasive sensing schemes, such algorithms are inevitable to estimate the dynamic behavior of a living cochlea.

  15. Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth

    NASA Astrophysics Data System (ADS)

    Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda

    2017-04-01

    Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.

  16. Continuous measurement of an atomic current

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Yang, D.; Zoller, P.

    2017-04-01

    We are interested in dynamics of quantum many-body systems under continuous observation, and its physical realizations involving cold atoms in lattices. In the present work we focus on continuous measurement of atomic currents in lattice models, including the Hubbard model. We describe a Cavity QED setup, where measurement of a homodyne current provides a faithful representation of the atomic current as a function of time. We employ the quantum optical description in terms of a diffusive stochastic Schrödinger equation to follow the time evolution of the atomic system conditional to observing a given homodyne current trajectory, thus accounting for the competition between the Hamiltonian evolution and measurement back action. As an illustration, we discuss minimal models of atomic dynamics and continuous current measurement on rings with synthetic gauge fields, involving both real space and synthetic dimension lattices (represented by internal atomic states). Finally, by "not reading" the current measurements the time evolution of the atomic system is governed by a master equation, where—depending on the microscopic details of our CQED setups—we effectively engineer a current coupling of our system to a quantum reservoir. This provides interesting scenarios of dissipative dynamics generating "dark" pure quantum many-body states.

  17. Three examples of quantum dynamics on the half-line with smooth bouncing

    NASA Astrophysics Data System (ADS)

    Almeida, C. R.; Bergeron, H.; Gazeau, J.-P.; Scardua, A. C.

    2018-05-01

    This article is an introductory presentation of the quantization of the half-plane based on affine coherent states (ACS). The half-plane carries a natural affine symmetry, i.e. it is a homogeneous space for the 1d-affine group, and it is viewed as the phase space for the dynamics of a positive physical quantity evolving with time. Its affine symmetry is preserved due to the covariance of this type of quantization. We promote the interest of such a procedure for transforming a classical model into a quantum one, since the singularity at the origin is systematically removed, and the arbitrariness of boundary conditions for the Schrödinger operator can be easily overcome. We explain some important mathematical aspects of the method. Three elementary examples of applications are presented, the quantum breathing of a massive sphere, the quantum smooth bouncing of a charged sphere, and a smooth bouncing of "dust" sphere as a simple model of quantum Newtonian cosmology.

  18. United States Air Force Academy get-away-special flexible beam experiment

    NASA Technical Reports Server (NTRS)

    Bubb, Keith W.; Lamberson, Steven E.; Lash, Thomas A.

    1989-01-01

    The Department of Astronautics at the United States Air Force Academy is currently planning to fly an experiment in a NASA Get-Away-Special (GAS) canister. The experiment was named the flex beam experiment. The primary technical objective of the flex beam experiment is to measure the damping of a thin beam in the vacuum and zero G environment of space. By measuring the damping in space, it is hoped to determine the amount of damping the beam normally experiences due to the gravitational forces present on Earth. This will allow validation of models which predict the dynamics of thin beams in the space environment. The experiment will also allow the Academy to develop and improve its ability to perform experiments within the confines of a NASA GAS canister. Several experiments, of limited technical difficulty, were flown by the Academy. More complex experiments are currently planned and it is hoped to learn techniques with each space shuttle flight.

  19. Transition Manifolds of Complex Metastable Systems

    NASA Astrophysics Data System (ADS)

    Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof

    2018-04-01

    We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.

  20. Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species

    DOE PAGES

    Norell, Jesper; Jay, Raphael M.; Hantschmann, Markus; ...

    2018-02-20

    Here, we describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L 3-edge RIXS in the ferricyanide complex Fe(CN) 6 3-, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject themore » presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.« less

  1. Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norell, Jesper; Jay, Raphael M.; Hantschmann, Markus

    Here, we describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L 3-edge RIXS in the ferricyanide complex Fe(CN) 6 3-, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject themore » presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.« less

  2. Eigenstates and dynamics of Hooke's atom: Exact results and path integral simulations

    NASA Astrophysics Data System (ADS)

    Gholizadehkalkhoran, Hossein; Ruokosenmäki, Ilkka; Rantala, Tapio T.

    2018-05-01

    The system of two interacting electrons in one-dimensional harmonic potential or Hooke's atom is considered, again. On one hand, it appears as a model for quantum dots in a strong confinement regime, and on the other hand, it provides us with a hard test bench for new methods with the "space splitting" arising from the one-dimensional Coulomb potential. Here, we complete the numerous previous studies of the ground state of Hooke's atom by including the excited states and dynamics, not considered earlier. With the perturbation theory, we reach essentially exact eigenstate energies and wave functions for the strong confinement regime as novel results. We also consider external perturbation induced quantum dynamics in a simple separable case. Finally, we test our novel numerical approach based on real-time path integrals (RTPIs) in reproducing the above. The RTPI turns out to be a straightforward approach with exact account of electronic correlations for solving the eigenstates and dynamics without the conventional restrictions of electronic structure methods.

  3. DDDAS for space applications

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Pham, Khanh D.; Shen, Dan; Chen, Genshe

    2018-05-01

    The dynamic data-driven applications systems (DDDAS) paradigm is meant to inject measurements into the execution model for enhanced systems performance. One area off interest in DDDAS is for space situation awareness (SSA). For SSA, data is collected about the space environment to determine object motions, environments, and model updates. Dynamically coupling between the data and models enhances the capabilities of each system by complementing models with data for system control, execution, and sensor management. The paper overviews some of the recent developments in SSA made possible from DDDAS techniques which are for object detection, resident space object tracking, atmospheric models for enhanced sensing, cyber protection, and information management.

  4. An evaluation of behavior inferences from Bayesian state-space models: A case study with the Pacific walrus

    USGS Publications Warehouse

    Beatty, William; Jay, Chadwick V.; Fischbach, Anthony S.

    2016-01-01

    State-space models offer researchers an objective approach to modeling complex animal location data sets, and state-space model behavior classifications are often assumed to have a link to animal behavior. In this study, we evaluated the behavioral classification accuracy of a Bayesian state-space model in Pacific walruses using Argos satellite tags with sensors to detect animal behavior in real time. We fit a two-state discrete-time continuous-space Bayesian state-space model to data from 306 Pacific walruses tagged in the Chukchi Sea. We matched predicted locations and behaviors from the state-space model (resident, transient behavior) to true animal behavior (foraging, swimming, hauled out) and evaluated classification accuracy with kappa statistics (κ) and root mean square error (RMSE). In addition, we compared biased random bridge utilization distributions generated with resident behavior locations to true foraging behavior locations to evaluate differences in space use patterns. Results indicated that the two-state model fairly classified true animal behavior (0.06 ≤ κ ≤ 0.26, 0.49 ≤ RMSE ≤ 0.59). Kernel overlap metrics indicated utilization distributions generated with resident behavior locations were generally smaller than utilization distributions generated with true foraging behavior locations. Consequently, we encourage researchers to carefully examine parameters and priors associated with behaviors in state-space models, and reconcile these parameters with the study species and its expected behaviors.

  5. Control of nonlinear flexible space structures

    NASA Astrophysics Data System (ADS)

    Shi, Jianjun

    With the advances made in computer technology and efficiency of numerical algorithms over last decade, the MPC strategies have become quite popular among control community. However, application of MPC or GPC to flexible space structure control has not been explored adequately in the literature. The work presented in this thesis primarily focuses on application of GPC to control of nonlinear flexible space structures. This thesis is particularly devoted to the development of various approximate dynamic models, design and assessment of candidate controllers, and extensive numerical simulations for a realistic multibody flexible spacecraft, namely, Jupiter Icy Moons Orbiter (JIMO)---a Prometheus class of spacecraft proposed by NASA for deep space exploratory missions. A stable GPC algorithm is developed for Multi-Input-Multi-Output (MIMO) systems. An end-point weighting (penalty) is used in the GPC cost function to guarantee the nominal stability of the closed-loop system. A method is given to compute the desired end-point state from the desired output trajectory. The methodologies based on Fake Algebraic Riccati Equation (FARE) and constrained nonlinear optimization, are developed for synthesis of state weighting matrix. This makes this formulation more practical. A stable reconfigurable GPC architecture is presented and its effectiveness is demonstrated on both aircraft as well as spacecraft model. A representative in-orbit maneuver is used for assessing the performance of various control strategies using various design models. Different approximate dynamic models used for analysis include linear single body flexible structure, nonlinear single body flexible structure, and nonlinear multibody flexible structure. The control laws evaluated include traditional GPC, feedback linearization-based GPC (FLGPC), reconfigurable GPC, and nonlinear dissipative control. These various control schemes are evaluated for robust stability and robust performance in the presence of parametric uncertainties and input disturbances. Finally, the conclusions are made with regard to the efficacy of these controllers and potential directions for future research.

  6. Metastable state en route to traveling-wave synchronization state

    NASA Astrophysics Data System (ADS)

    Park, Jinha; Kahng, B.

    2018-02-01

    The Kuramoto model with mixed signs of couplings is known to produce a traveling-wave synchronized state. Here, we consider an abrupt synchronization transition from the incoherent state to the traveling-wave state through a long-lasting metastable state with large fluctuations. Our explanation of the metastability is that the dynamic flow remains within a limited region of phase space and circulates through a few active states bounded by saddle and stable fixed points. This complex flow generates a long-lasting critical behavior, a signature of a hybrid phase transition. We show that the long-lasting period can be controlled by varying the density of inhibitory/excitatory interactions. We discuss a potential application of this transition behavior to the recovery process of human consciousness.

  7. NASA Aerosciences Activities to Support Human Space Flight

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  8. Modelling the performance of the monogroove with screen heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Austin Lewis

    1987-01-01

    A computer code to model the steady-state performance of a monogroove heat pipe for the NASA Space Station is presented, including the effects on heat pipe performance of a screen in the evaporator section which deals with transient surges in the heat input. Errors in a previous code have been corrected, and the new code adds additional loss terms in order to model several different working fluids. Good agreement with existing performance curves is obtained. From a preliminary evaluation of several of the radiator design parameters it is found that an optimum fin width could be achieved but that structural considerations limit the thickness of the fin to a value above optimum.

  9. Data-assisted reduced-order modeling of extreme events in complex dynamical systems

    PubMed Central

    Koumoutsakos, Petros

    2018-01-01

    The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN) architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM) regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more significant in regions associated with extreme events, where data is sparse. PMID:29795631

  10. Data-assisted reduced-order modeling of extreme events in complex dynamical systems.

    PubMed

    Wan, Zhong Yi; Vlachas, Pantelis; Koumoutsakos, Petros; Sapsis, Themistoklis

    2018-01-01

    The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN) architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM) regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more significant in regions associated with extreme events, where data is sparse.

  11. State-space reduction and equivalence class sampling for a molecular self-assembly model.

    PubMed

    Packwood, Daniel M; Han, Patrick; Hitosugi, Taro

    2016-07-01

    Direct simulation of a model with a large state space will generate enormous volumes of data, much of which is not relevant to the questions under study. In this paper, we consider a molecular self-assembly model as a typical example of a large state-space model, and present a method for selectively retrieving 'target information' from this model. This method partitions the state space into equivalence classes, as identified by an appropriate equivalence relation. The set of equivalence classes H, which serves as a reduced state space, contains none of the superfluous information of the original model. After construction and characterization of a Markov chain with state space H, the target information is efficiently retrieved via Markov chain Monte Carlo sampling. This approach represents a new breed of simulation techniques which are highly optimized for studying molecular self-assembly and, moreover, serves as a valuable guideline for analysis of other large state-space models.

  12. Transient sensitivities of sea ice export through the Canadian Arctic Archipelago inferred from a coupled ocean/sea-ice adjoint model

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Losch, M.; Menemenlis, D.; Campin, J.; Hill, C.

    2008-12-01

    The sensitivity of sea-ice export through the Canadian Arctic Archipelago (CAA), measured in terms of its solid freshwater export through Lancaster Sound, to changes in various elements of the ocean and sea-ice state, and to elements of the atmospheric forcing fields through time and space is assessed by means of a coupled ocean/sea-ice adjoint model. The adjoint model furnishes full spatial sensitivity maps (also known as Lagrange multipliers) of the export metric to a variety of model variables at any chosen point in time, providing the unique capability to quantify major drivers of sea-ice export variability. The underlying model is the MIT ocean general circulation model (MITgcm), which is coupled to a Hibler-type dynamic/thermodynamic sea-ice model. The configuration is based on the Arctic face of the ECCO3 high-resolution cubed-sphere model, but coarsened to 36-km horizontal grid spacing. The adjoint of the coupled system has been derived by means of automatic differentiation using the software tool TAF. Finite perturbation simulations are performed to check the information provided by the adjoint. The sea-ice model's performance in the presence of narrow straits is assessed with different sea-ice lateral boundary conditions. The adjoint sensitivity clearly exposes the role of the model trajectory and the transient nature of the problem. The complex interplay between forcing, dynamics, and boundary condition is demonstrated in the comparison between the different calculations. The study is a step towards fully coupled adjoint-based ocean/sea-ice state estimation at basin to global scales as part of the ECCO efforts.

  13. Spatiotemporal pH dynamics in concentration polarization near ion-selective membranes.

    PubMed

    Andersen, Mathias B; Rogers, David M; Mai, Junyu; Schudel, Benjamin; Hatch, Anson V; Rempe, Susan B; Mani, Ali

    2014-07-08

    We present a detailed analysis of the transient pH dynamics for a weak, buffered electrolyte subject to voltage-driven transport through an ion-selective membrane. We show that pH fronts emanate from the concentration polarization zone next to the membrane and that these propagating fronts change the pH in the system several units from its equilibrium value. The analysis is based on a 1D model using the unsteady Poisson-Nernst-Planck equations with nonequilibrium chemistry and without assumptions of electroneutrality or asymptotically thin electric double layers. Nonequilibrium chemical effects, especially for water splitting, are shown to be important for the dynamical and spatiotemporal evolution of the pH fronts. Nonetheless, the model also shows that at steady state the assumption of chemical equilibrium can still lead to good approximations of the global pH distribution. Moreover, our model shows that the transport of the hydronium ion in the extended space charge region is governed by a balance between electromigration and water self-ionization. On the basis of this observation, we present a simple model showing that the net flux of the hydronium ion is proportional to the length of the extended space charge region and the water self-ionization rate. To demonstrate these effects in practice, we have adopted the experiment of Mai et al. (Mai, J.; Miller, H.; Hatch, A. V. Spatiotemporal Mapping of Concentration Polarization Induced pH Changes at Nanoconstrictions. ACS Nano 2012, 6, 10206) as a model problem, and by including the full chemistry and transport, we show that the present model can capture the experimentally observed pH fronts. Our model can, among other things, be used to predict and engineer pH dynamics, which can be essential to the performance of membrane-based systems for biochemical separation and analysis.

  14. Helicopter flight dynamics simulation with a time-accurate free-vortex wake model

    NASA Astrophysics Data System (ADS)

    Ribera, Maria

    This dissertation describes the implementation and validation of a coupled rotor-fuselage simulation model with a time-accurate free-vortex wake model capable of capturing the response to maneuvers of arbitrary amplitude. The resulting model has been used to analyze different flight conditions, including both steady and transient maneuvers. The flight dynamics model is based on a system of coupled nonlinear rotor-fuselage differential equations in first-order, state-space form. The rotor model includes flexible blades, with coupled flap-lag-torsion dynamics and swept tips; the rigid body dynamics are modeled with the non-linear Euler equations. The free wake models the rotor flow field by tracking the vortices released at the blade tips. Their behavior is described by the equations of vorticity transport, which is approximated using finite differences, and solved using a time-accurate numerical scheme. The flight dynamics model can be solved as a system of non-linear algebraic trim equations to determine the steady state solution, or integrated in time in response to pilot-applied controls. This study also implements new approaches to reduce the prohibitive computational costs associated with such complex models without losing accuracy. The mathematical model was validated for trim conditions in level flight, turns, climbs and descents. The results obtained correlate well with flight test data, both in level flight as well as turning and climbing and descending flight. The swept tip model was also found to improve the trim predictions, particularly at high speed. The behavior of the rigid body and the rotor blade dynamics were also studied and related to the aerodynamic load distributions obtained with the free wake induced velocities. The model was also validated in a lateral maneuver from hover. The results show improvements in the on-axis prediction, and indicate a possible relation between the off-axis prediction and the lack of rotor-body interaction aerodynamics. The swept blade model improves both the on-axis and off-axis response. An axial descent though the vortex ring state was simulated. As theǒrtex ring" goes through the rotor, the unsteady loads produce large attitude changes, unsteady flapping, fluctuating thrust and an increase in power required. A roll reversal maneuver was found useful in understanding the cross-couplings effects found in rotorcraft, specifically the effect of the aerodynamic loading on the rotor orientation and the off-axis response.

  15. Three-Dimensional Multiscale Modeling of Dendritic Spacing Selection During Al-Si Directional Solidification

    NASA Astrophysics Data System (ADS)

    Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Gibbs, John W.; Karma, Alain

    2015-08-01

    We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. We focus on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues for investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.

  16. Traveling waves in a spatially-distributed Wilson-Cowan model of cortex: From fronts to pulses

    NASA Astrophysics Data System (ADS)

    Harris, Jeremy D.; Ermentrout, Bard

    2018-04-01

    Wave propagation in excitable media has been studied in various biological, chemical, and physical systems. Waves are among the most common evoked and spontaneous organized activity seen in cortical networks. In this paper, we study traveling fronts and pulses in a spatially-extended version of the Wilson-Cowan equations, a neural firing rate model of sensory cortex having two population types: Excitatory and inhibitory. We are primarily interested in the case when the local or space-clamped dynamics has three fixed points: (1) a stable down state; (2) a saddle point with stable manifold that acts as a threshold for firing; (3) an up state having stability that depends on the time scale of the inhibition. In the case when the up state is stable, we look for wave fronts, which transition the media from a down to up state, and when the up state is unstable, we are interested in pulses, a transient increase in firing that returns to the down state. We explore the behavior of these waves as the time and space scales of the inhibitory population vary. Some interesting findings include bistability between a traveling front and pulse, fronts that join the down state to an oscillation or spatiotemporal pattern, and pulses which go through an oscillatory instability.

  17. Exactly solvable quantum cosmologies from two killing field reductions of general relativity

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Smolin, Lee

    1989-11-01

    An exact and, possibly, general solution to the quantum constraints is given for the sector of general relativity containing cosmological solutions with two space-like, commuting, Killing fields. The dynamics of these model space-times, which are known as Gowdy space-times, is formulated in terms of Ashtekar's new variables. The quantization is done by using the recently introduced self-dual and loop representations. On the classical phase space we find four explicit physical observables, or constants of motion, which generate a GL(2) symmetry group on the space of solutions. In the loop representations we find that a complete description of the physical state space, consisting of the simultaneous solutions to all of the constraints, is given in terms of the equivalence classes, under Diff(S1), of a pair of densities on the circle. These play the same role that the link classes play in the loop representation solution to the full 3+1 theory. An infinite dimensional algebra of physical observables is found on the physical state space, which is a GL(2) loop algebra. In addition, by freezing the local degrees of freedom of the model, we find a finite dimensional quantum system which describes a set of degenerate quantum cosmologies on T3 in which the length of one of the S1's has gone to zero, while the area of the remaining S1×S1 is quantized in units of the Planck area. The quantum kinematics of this sector of the model is identical to that of a one-plaquette SU(2) lattice gauge theory.

  18. Calculations of kaonic nuclei based on chiral meson-baryon amplitudes

    NASA Astrophysics Data System (ADS)

    Gazda, Daniel; Mareš, Jiří

    2013-09-01

    In-medium KbarN scattering amplitudes developed within a chirally motivated coupled-channel model are used to construct K- nuclear potentials for calculations of K- nuclear quasi-bound states. Self-consistent evaluations yield K- potential depths -Re VK(ρ0) of order 100 MeV. Dynamical polarization effects and two-nucleon KbarNN→YN absorption modes are discussed. The widths ΓK of allK- nuclear quasi-bound states are comparable or even larger than the corresponding binding energies BK, exceeding considerably the energy level spacing.

  19. Application of Modern Control Design Methodologies to a Multi-Segmented Deformable Mirror System

    DTIC Science & Technology

    1991-05-23

    state matrices, and the state equations are X= Ax + Bu (2.3) y = Cm + Du (2.4) The only dynamics modeled are associated with the six segment phasing...relationship between the L 2 and H2 spaces, the vector H2 norm can be found from the application of Parseval’s Theorem to Equation 3.1, yielding V112...of this minimization problem can be found using Riccati equations {1]. ’With a slight abuse of notation, time domain functions and frequency domain

  20. Control-oriented reduced order modeling of dipteran flapping flight

    NASA Astrophysics Data System (ADS)

    Faruque, Imraan

    Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs.

Top