Sample records for dynamic stokes shift

  1. How to study picosecond solvation dynamics using fluorescent probes with small Stokes shifts

    NASA Astrophysics Data System (ADS)

    Silori, Yogita; Dey, Shivalee; De, Arijit K.

    2018-02-01

    Xanthene dyes have wide ranging applications as fluorescent probes in analytical, biochemical and medical contexts. Being cationic/anionic in nature, the solvation dynamics of xanthene dyes confined within a negatively/positively charged interface are very interesting. Unfortunately, the floppy structure and small Stokes shift render any xanthene dye unsuitable for use as a solvation probe. Using di-sodium fluorescein, we present our work on the picosecond solvation dynamics of bulk and confined water (at pH = 9.2). We also propose a new methodology for studying picosecond solvation dynamics using any fluorescent dye with a small Stokes shift. We discuss how scattering contributions can be effectively removed, and propose an alternative way of defining zero time of solvation. Finally, we demonstrate the tuning location of the probe within confinement.

  2. Photoswitchable red fluorescent protein with a large Stokes shift

    PubMed Central

    Piatkevich, Kiryl D.; English, Brian P.; Malashkevich, Vladimir N.; Xiao, Hui; Almo, Steven C.; Singer, Robert H.; Verkhusha, Vladislav V.

    2014-01-01

    SUMMARY Subclass of fluorescent proteins, large Stokes shift fluorescent proteins, is characterized by their increased spread between the excitation and emission maxima. Here we report a photoswitchable variant of a red fluorescent protein with a large Stokes shift, PSLSSmKate, which initially exhibits excitation/emission at 445/622 nm, but irradiation with violet light photoswitches PSLSSmKate into a common red form with excitation/emission at 573/621 nm. We characterize spectral, photophysical and biochemical properties of PSLSSmKate in vitro and in mammalian cells, and determine its crystal structure in the large Stokes shift form. Mass-spectrometry, mutagenesis and spectroscopic analysis of PSLSSmKate allow us to propose molecular mechanisms for the large Stokes shift, pH dependence and light-induced chromophore transformation. We demonstrate applicability of PSLSSmKate to superresolution PALM microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects. PMID:25242289

  3. Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tanping, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu; Kumar, Revati, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu

    2015-11-07

    We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaksmore » down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.« less

  4. Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675.

    PubMed

    Konold, Patrick E; Yoon, Eunjin; Lee, Junghwa; Allen, Samantha L; Chapagain, Prem P; Gerstman, Bernard S; Regmi, Chola K; Piatkevich, Kiryl D; Verkhusha, Vladislav V; Joo, Taiha; Jimenez, Ralph

    2016-08-04

    Far-red fluorescent proteins are critical for in vivo imaging applications, but the relative importance of structure versus dynamics in generating large Stokes-shifted emission is unclear. The unusually red-shifted emission of TagRFP675, a derivative of mKate, has been attributed to the multiple hydrogen bonds with the chromophore N-acylimine carbonyl. We characterized TagRFP675 and point mutants designed to perturb these hydrogen bonds with spectrally resolved transient grating and time-resolved fluorescence (TRF) spectroscopies supported by molecular dynamics simulations. TRF results for TagRFP675 and the mKate/M41Q variant show picosecond time scale red-shifts followed by nanosecond time blue-shifts. Global analysis of the TRF spectra reveals spectrally distinct emitting states that do not interconvert during the S1 lifetime. These dynamics originate from photoexcitation of a mixed ground-state population of acylimine hydrogen bond conformers. Strategically tuning the chromophore environment in TagRFP675 might stabilize the most red-shifted conformation and result in a variant with a larger Stokes shift.

  5. The small impact of various partial charge distributions in ground and excited state on the computational Stokes shift of 1-methyl-6-oxyquinolinium betaine in diverse water models

    NASA Astrophysics Data System (ADS)

    Heid, Esther; Harringer, Sophia; Schröder, Christian

    2016-10-01

    The influence of the partial charge distribution obtained from quantum mechanics of the solute 1-methyl-6-oxyquinolinium betaine in the ground- and first excited state on the time-dependent Stokes shift is studied via molecular dynamics computer simulation. Furthermore, the effect of the employed solvent model — here the non-polarizable SPC, TIP4P and TIP4P/2005 and the polarizable SWM4 water model — on the solvation dynamics of the system is investigated. The use of different functionals and calculation methods influences the partial charge distribution and the magnitude of the dipole moment of the solute, but not the orientation of the dipole moment. Simulations based on the calculated charge distributions show nearly the same relaxation behavior. Approximating the whole solute molecule by a dipole results in the same relaxation behavior, but lower solvation energies, indicating that the time scale of the Stokes shift does not depend on peculiarities of the solute. However, the SPC and TIP4P water models show too fast dynamics which can be ascribed to a too large diffusion coefficient and too low viscosity. The calculated diffusion coefficient and viscosity for the SWM4 and TIP4P/2005 models coincide well with experimental values and the corresponding relaxation behavior is comparable to experimental values. Furthermore we found that for a quantitative description of the Stokes shift of the applied system at least two solvation shells around the solute have to be taken into account.

  6. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain

    PubMed Central

    Lubatsch, Andreas; Frank, Regine

    2015-01-01

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes. PMID:26593237

  7. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain.

    PubMed

    Lubatsch, Andreas; Frank, Regine

    2015-11-23

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes.

  8. Approximate description of Stokes shifts in ICT fluorescence emission

    NASA Astrophysics Data System (ADS)

    Saielli, Giacomo; Braun, David; Polimeno, Antonino; Nordio, Pier Luigi

    1996-07-01

    The time-resolved emission spectrum of a dual fluorescent prototype system like DMABN is associated with an intramolecular adiabatic charge-transfer reaction and the simultaneous relaxation of the polarization coordinate describing the dynamic behaviour of the polar solvent. The dynamic Stokes shift of the frequency maximum of the long-wavelength emission band related to the charge-transfer (CT) state towards the red region is interpreted as a consequence of a kinetic pathway which deviates from steepest descent to the CT state, the rate-determining step being the solvent relaxation. The present stochastic treatment is based on the assumption that internal and solvent coordinates could be described separately, neglecting coupling elements in the case of slow solvent relaxation.

  9. A Surrogate for Debye-Waller Factors from Dynamic Stokes Shifts

    PubMed Central

    Zhong, Qin; Johnson, Jerainne; Aamer, Khaled A.; Tyagi, Madhusudan

    2011-01-01

    We show that the short-time behavior of time-resolved fluorescence Stokes shifts (TRSS) are similar to that of the intermediate scattering function obtained from neutron scattering at q near the peak in the static structure factor for glycerol. This allows us to extract a Debye-Waller (DW) factor analog from TRSS data at times as short as 1 ps in a relatively simple way. Using the time-domain relaxation data obtained by this method we show that DW factors evaluated at times ≥ 40 ps can be directly influenced by α relaxation and thus should be used with caution when evaluating relationships between fast and slow dynamics in glassforming systems. PMID:21701673

  10. Computational solvation dynamics of oxyquinolinium betaine linked to trehalose.

    PubMed

    Heid, Esther; Schröder, Christian

    2016-10-28

    Studying the changed water dynamics in the hydration layers of biomolecules is an important step towards fuller understanding of their function and mechanisms, but has shown to be quite difficult. The measurement of the time-dependent Stokes shift of a chromophore attached to the biomolecule is a promising method to achieve this goal, as published in Sajadi et al. [J. Phys. Chem. Lett., 5, 1845 (2014).] where trehalose was used as biomolecule, 1-methyl-6-oxyquinolinium betaine as chromophore, and water as solvent. An overall retardation of solvent molecules is then obtained by comparison of the linked system to the same system without trehalose, but contributions from different subgroups of solvent molecules, for example, molecules close to or far from trehalose, are unknown. The difficulty arising from these unknown contributions of retarded and possibly unretarded solvent molecules is overcome in this work by conducting computer simulations on this system and decomposing the overall signal into the contributions from various molecules at different locations. We performed non-equilibrium molecular dynamics simulation using a polarizable water model and a non-polarizable solute model and could reproduce the experimental time-dependent Stokes shift accurately for the linked trehalose-oxyquinolinium and the pure oxyquinolinium over a wide temperature range, indicating the correctness of our employed models. Decomposition of the shift into contributions from different solvent subgroups showed that the amplitude of the measured shift is made up only half by the desired retarded solvent molecules in the hydration layer, but to another half by unretarded bulk water, so that measured relaxation times of the overall Stokes shift are only a lower boundary for the true relaxation times in the hydration layer of trehalose. As a side effect, the results on the effect of trehalose on solvation dynamics contribute to the long standing debate on the range of influence of trehalose on water dynamics, the number of retarded solvent molecules, and the observed retardation factor when compared to bulk water.

  11. Computational solvation dynamics of oxyquinolinium betaine linked to trehalose

    NASA Astrophysics Data System (ADS)

    Heid, Esther; Schröder, Christian

    2016-10-01

    Studying the changed water dynamics in the hydration layers of biomolecules is an important step towards fuller understanding of their function and mechanisms, but has shown to be quite difficult. The measurement of the time-dependent Stokes shift of a chromophore attached to the biomolecule is a promising method to achieve this goal, as published in Sajadi et al. [J. Phys. Chem. Lett., 5, 1845 (2014).] where trehalose was used as biomolecule, 1-methyl-6-oxyquinolinium betaine as chromophore, and water as solvent. An overall retardation of solvent molecules is then obtained by comparison of the linked system to the same system without trehalose, but contributions from different subgroups of solvent molecules, for example, molecules close to or far from trehalose, are unknown. The difficulty arising from these unknown contributions of retarded and possibly unretarded solvent molecules is overcome in this work by conducting computer simulations on this system and decomposing the overall signal into the contributions from various molecules at different locations. We performed non-equilibrium molecular dynamics simulation using a polarizable water model and a non-polarizable solute model and could reproduce the experimental time-dependent Stokes shift accurately for the linked trehalose-oxyquinolinium and the pure oxyquinolinium over a wide temperature range, indicating the correctness of our employed models. Decomposition of the shift into contributions from different solvent subgroups showed that the amplitude of the measured shift is made up only half by the desired retarded solvent molecules in the hydration layer, but to another half by unretarded bulk water, so that measured relaxation times of the overall Stokes shift are only a lower boundary for the true relaxation times in the hydration layer of trehalose. As a side effect, the results on the effect of trehalose on solvation dynamics contribute to the long standing debate on the range of influence of trehalose on water dynamics, the number of retarded solvent molecules, and the observed retardation factor when compared to bulk water.

  12. Determination of Protein Surface Hydration by Systematic Charge Mutations

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Jia, Menghui; Qin, Yangzhong; Wang, Dihao; Pan, Haifeng; Wang, Lijuan; Xu, Jianhua; Zhong, Dongping; Dongping Zhong Collaboration; Jianhua Xu Collaboration

    Protein surface hydration is critical to its structural stability, flexibility, dynamics and function. Recent observations of surface solvation on picosecond time scales have evoked debate on the origin of such relatively slow motions, from hydration water or protein charged sidechains, especially with molecular dynamics simulations. Here, we used a unique nuclease with a single tryptophan as a local probe and systematically mutated neighboring three charged residues to differentiate the contributions from hydration water and charged sidechains. By mutations of alternative one and two and all three charged residues, we observed slight increases in the total tryptophan Stokes shifts with less neighboring charged residue(s) and found insensitivity of charged sidechains to the relaxation patterns. The dynamics is correlated with hydration water relaxation with the slowest time in a dense charged environment and the fastest time at a hydrophobic site. On such picosecond time scales, the protein surface motion is restricted. The total Stokes shifts are dominantly from hydration water relaxation and the slow dynamics is from water-driven relaxation, coupled with local protein fluctuations.

  13. Excitation laser energy dependence of surface-enhanced fluorescence showing plasmon-induced ultrafast electronic dynamics in dye molecules

    NASA Astrophysics Data System (ADS)

    Itoh, Tamitake; Yamamoto, Yuko S.; Tamaru, Hiroharu; Biju, Vasudevanpillai; Murase, Norio; Ozaki, Yukihiro

    2013-06-01

    We find unique properties accompanying surface-enhanced fluorescence (SEF) from dye molecules adsorbed on Ag nanoparticle aggregates, which generate surface-enhanced Raman scattering. The properties are observed in excitation laser energy dependence of SEF after excluding plasmonic spectral modulation in SEF. The unique properties are large blue shifts of fluorescence spectra, deviation of ratios between anti-Stokes SEF intensity and Stokes from those of normal fluorescence, super-broadening of Stokes spectra, and returning to original fluorescence by lower energy excitation. We elucidate that these properties are induced by electromagnetic enhancement of radiative decay rates exceeding the vibrational relaxation rates within an electronic excited state, which suggests that molecular electronic dynamics in strong plasmonic fields can be largely deviated from that in free space.

  14. Effect of electrostatic interaction on the location of molecular probe in polymer-surfactant supramolecular assembly: a solvent relaxation study.

    PubMed

    Singh, Prabhat K; Kumbhakar, Manoj; Pal, Haridas; Nath, Sukhendu

    2008-07-03

    Effect of electrostatic interaction on the location of a solubilized molecular probe with ionic character in a supramolecular assembly composed of a triblock copolymer, P123 ((ethylene oxide) 20-(propylene oxide) 70-(ethylene oxide) 20) and a cosurfactant cetyltrimethylammonium chloride (CTAC) in aqueous medium has been studied using steady-state and time-resolved fluorescence measurements. Coumarin-343 dye in its anionic form has been used as the molecular probe. In the absence of the surfactant, CTAC, the probe C343 prefers to reside at the surface region of the P123 micelle, showing a relatively less dynamic Stokes' shift, as a large part of the Stokes' shift is missed in the present measurements due to faster solvent relaxation at micellar surface region. As the concentration of CTAC is increased in the solution, the percentage of the total dynamic Stokes' shift observed from time-resolved measurements gradually increases until it reaches a saturation value. Observed results have been rationalized on the basis of the mixed micellar structure of the supramolecular assembly, where the hydrocarbon chain of the CTAC surfactant dissolves into the nonpolar poly(propylene oxide) (PPO) core of the P123 micelle and the positively charged headgroup of CTAC resides at the interfacial region between the central PPO core and the surrounding hydrated poly(ethylene oxide) (PEO) shell or the corona region. The electrostatic attraction between the anionic probe molecule and the positively charged surface of the PPO core developed by the presence of CTAC results in a gradual shift of the probe in the deeper region of the micellar corona region with an increase in the CTAC concentration, as clearly manifested from the solvation dynamics results.

  15. Existence of a Size-Dependent Stokes Shift in CsPbBr 3 Perovskite Nanocrystals

    DOE PAGES

    Brennan, Michael C.; Zinna, Jessica; Kuno, Masaru

    2017-05-31

    The existence of a size-dependent Stokes shift is observed in CsPbBr 3 perovskite nanocrystals for the first time. Stokes shifts range from ~100 to 30 meV for particles with edge lengths between ~4 and 12 nm, respectively.

  16. Existence of a Size-Dependent Stokes Shift in CsPbBr 3 Perovskite Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Michael C.; Zinna, Jessica; Kuno, Masaru

    The existence of a size-dependent Stokes shift is observed in CsPbBr 3 perovskite nanocrystals for the first time. Stokes shifts range from ~100 to 30 meV for particles with edge lengths between ~4 and 12 nm, respectively.

  17. Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster

    NASA Astrophysics Data System (ADS)

    Ammitzbøll Bogh, Sidsel; Carro-Temboury, Miguel R.; Cerretani, Cecilia; Swasey, Steven M.; Copp, Stacy M.; Gwinn, Elisabeth G.; Vosch, Tom

    2018-04-01

    In this paper we present a new near-IR emitting silver nanocluster (NIR-DNA-AgNC) with an unusually large Stokes shift between absorption and emission maximum (211 nm or 5600 cm-1). We studied the effect of viscosity and temperature on the steady state and time-resolved emission. The time-resolved results on NIR-DNA-AgNC show that the relaxation dynamics slow down significantly with increasing viscosity of the solvent. In high viscosity solution, the spectral relaxation stretches well into the nanosecond scale. As a result of this slow spectral relaxation in high viscosity solutions, a multi-exponential fluorescence decay time behavior is observed, in contrast to the more mono-exponential decay in low viscosity solution.

  18. Mediation of donor–acceptor distance in an enzymatic methyl transfer reaction

    PubMed Central

    Zhang, Jianyu; Kulik, Heather J.; Martinez, Todd J.; Klinman, Judith P.

    2015-01-01

    Enzymatic methyl transfer, catalyzed by catechol-O-methyltransferase (COMT), is investigated using binding isotope effects (BIEs), time-resolved fluorescence lifetimes, Stokes shifts, and extended graphics processing unit (GPU)-based quantum mechanics/molecular mechanics (QM/MM) approaches. The WT enzyme is compared with mutants at Tyr68, a conserved residue that is located behind the reactive sulfur of cofactor. Small (>1) BIEs are observed for an S-adenosylmethionine (AdoMet)-binary and abortive ternary complex containing 8-hydroxyquinoline, and contrast with previously reported inverse (<1) kinetic isotope effects (KIEs). Extended GPU-based computational studies of a ternary complex containing catecholate show a clear trend in ground state structures, from noncanonical bond lengths for WT toward solution values with mutants. Structural and dynamical differences that are sensitive to Tyr68 have also been detected using time-resolved Stokes shift measurements and molecular dynamics. These experimental and computational results are discussed in the context of active site compaction that requires an ionization of substrate within the enzyme ternary complex. PMID:26080432

  19. Frequency up-shift in the stimulated thermal scattering under two-photon absorption in liquids and colloids of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Smetanin, I. V.; Erokhin, A. I.; Baranov, A. N.

    2018-07-01

    We report the results of the experimental and theoretical study of stimulated temperature scattering in toluene and hexane solutions of Ag-nanoparticles, as well as in pure toluene in the two-photon absorption regime. A four-wave mixing scheme with two counter-propagating pump waves of the same frequency is utilised to demonstrate the lasing effect and the amplification of the backscattered anti-Stokes signal. For the first time, we have measured anti-Stokes spectral shifts which turn out to appreciably exceed the Rayleigh line widths in those liquids. It is shown that the amplification effect is provided predominantly by thermally induced coherent polarisation oscillations, while the dynamic interference temperature grating causes the formation of a self-induced optical cavity inside the interaction region.

  20. Phase-based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers.

    PubMed

    Bergman, Arik; Langer, Tomi; Tur, Moshe

    2017-03-06

    A novel technique combining Brillouin phase-shift measurements with Brillouin dynamic gratings (BDGs) reflectometry in polarization-maintaining fibers is presented here for the first time. While a direct measurement of the optical phase in standard BDG setups is impractical due to non-local phase contributions, their detrimental effect is reduced by ~4 orders of magnitude through the coherent addition of Stokes and anti-Stokes reflections from two counter-propagating BDGs in the fiber. The technique advantageously combines the high-spatial-resolution of BDGs reflectometry with the increased tolerance to optical power fluctuations of phasorial measurements, to enhance the performance of fiber-optic strain sensors. We demonstrate a distributed measurement (20cm spatial-resolution) of both static and dynamic (5kHz of vibrations at a sampling rate of 1MHz) strain fields acting on the fiber, in good agreement with theory and (for the static case) with the results of commercial reflectometers.

  1. The influence of mesoscopic confinement on the dynamics of imidazolium-based room temperature ionic liquids in polyether sulfone membranes.

    PubMed

    Thomaz, Joseph E; Bailey, Heather E; Fayer, Michael D

    2017-11-21

    The structural dynamics of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C n mimNTf 2 , n = 2, 4, 6, 10: ethyl-Emim; butyl-Bmim; hexyl-Hmim; decyl-Dmim) room temperature ionic liquids confined in the pores of polyether sulfone (PES 200) membranes with an average pore size of ∼350 nm and in the bulk liquids were studied. Time correlated single photon counting measurements of the fluorescence of the fluorophore coumarin 153 (C153) were used to observe the time-dependent Stokes shift (solvation dynamics). The solvation dynamics of C153 in the ionic liquids are multiexponential decays. The multiexponential functional form of the decays was confirmed as the slowest decay component of each bulk liquid matches the slowest component of the liquid dynamics measured by optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments, which is single exponential. The fact that the slowest component of the Stokes shift matches the OHD-OKE data in all four liquids identifies this component of the solvation dynamics as arising from the complete structural randomization of the liquids. Although the pores in the PES membranes are large, confinement on the mesoscopic length scale results in substantial slowing of the dynamics, a factor of ∼4, for EmimNTf 2 , with the effect decreasing as the chain length increases. By DmimNTf 2 , the dynamics are virtually indistinguishable from those in the bulk liquid. The rotation relaxation of C153 in the four bulk liquids was also measured and showed strong coupling between the C153 probe and its environment.

  2. The influence of mesoscopic confinement on the dynamics of imidazolium-based room temperature ionic liquids in polyether sulfone membranes

    NASA Astrophysics Data System (ADS)

    Thomaz, Joseph E.; Bailey, Heather E.; Fayer, Michael D.

    2017-11-01

    The structural dynamics of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (CnmimNTf2, n = 2, 4, 6, 10: ethyl—Emim; butyl—Bmim; hexyl—Hmim; decyl—Dmim) room temperature ionic liquids confined in the pores of polyether sulfone (PES 200) membranes with an average pore size of ˜350 nm and in the bulk liquids were studied. Time correlated single photon counting measurements of the fluorescence of the fluorophore coumarin 153 (C153) were used to observe the time-dependent Stokes shift (solvation dynamics). The solvation dynamics of C153 in the ionic liquids are multiexponential decays. The multiexponential functional form of the decays was confirmed as the slowest decay component of each bulk liquid matches the slowest component of the liquid dynamics measured by optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments, which is single exponential. The fact that the slowest component of the Stokes shift matches the OHD-OKE data in all four liquids identifies this component of the solvation dynamics as arising from the complete structural randomization of the liquids. Although the pores in the PES membranes are large, confinement on the mesoscopic length scale results in substantial slowing of the dynamics, a factor of ˜4, for EmimNTf2, with the effect decreasing as the chain length increases. By DmimNTf2, the dynamics are virtually indistinguishable from those in the bulk liquid. The rotation relaxation of C153 in the four bulk liquids was also measured and showed strong coupling between the C153 probe and its environment.

  3. Label-free pathological evaluation of grade 3 cancer using Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Sordillo, Peter P.; Alfano, R. R.

    2016-03-01

    In this study, Stokes shift spectroscopy (S3) is used for measuring the aggressiveness of malignant tumors. S3 is an optical tool which utilizes the difference between the emission wavelength (λem) and the absorption wavelength (λabs) (the Stokes shift) to give a fixed wavelength shift (Δλs).Our analysis of tumor samples using S3 shows grade 3 (high grade) cancers consistently have increased relative tryptophan content compared to grade 1 or 2 tumors. This technique may be a useful tool in the evaluation of a patient's cancer.

  4. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δ λ = 10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.

  5. Time-Shifted Boundary Conditions Used for Navier-Stokes Aeroelastic Solver

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    1999-01-01

    Under the Advanced Subsonic Technology (AST) Program, an aeroelastic analysis code (TURBO-AE) based on Navier-Stokes equations is currently under development at NASA Lewis Research Center s Machine Dynamics Branch. For a blade row, aeroelastic instability can occur in any of the possible interblade phase angles (IBPA s). Analyzing small IBPA s is very computationally expensive because a large number of blade passages must be simulated. To reduce the computational cost of these analyses, we used time shifted, or phase-lagged, boundary conditions in the TURBO-AE code. These conditions can be used to reduce the computational domain to a single blade passage by requiring the boundary conditions across the passage to be lagged depending on the IBPA being analyzed. The time-shifted boundary conditions currently implemented are based on the direct-store method. This method requires large amounts of data to be stored over a period of the oscillation cycle. On CRAY computers this is not a major problem because solid-state devices can be used for fast input and output to read and write the data onto a disk instead of storing it in core memory.

  6. A New Thiosemicarbazone-Based Fluorescence "Turn-on" Sensor for Zn(2+) Recognition with a Large Stokes Shift and its Application in Live Cell Imaging.

    PubMed

    Tang, Lijun; Huang, Zhenlong; Zheng, Zhuxuan; Zhong, Keli; Bian, Yanjiang

    2016-09-01

    Selective fluorescence turn on Zn(2+) sensor with long-wavelength emission and a large Stokes shift is highly desirable in Zn(2+) sensing area. We reported herein the synthesis and Zn(2+) recognition properties of a new thiosemicarbazone-based fluorescent sensor L. L displays high selectivity and sensitivity toward Zn(2+) over other metal ions in DMSO-H2O (1:1, v/v, HEPES 10 mM, pH = 7.4) solution with a long-wavelength emission at 572 nm and a large Stokes shift of 222 nm. Confocal fluorescence microscopy experiments demonstrate that L is cell-permeable and capable of monitoring intracellular Zn(2+). Graphical Abstract We report a new thiosemicarbazone-based fluorescent sensor (L) for selective recognition of Zn(2+) with a long wavelength emission and a large Stokes shift.

  7. On the need of mode interpolation for data-driven Galerkin models of a transient flow around a sphere

    NASA Astrophysics Data System (ADS)

    Stankiewicz, Witold; Morzyński, Marek; Kotecki, Krzysztof; Noack, Bernd R.

    2017-04-01

    We present a low-dimensional Galerkin model with state-dependent modes capturing linear and nonlinear dynamics. Departure point is a direct numerical simulation of the three-dimensional incompressible flow around a sphere at Reynolds numbers 400. This solution starts near the unstable steady Navier-Stokes solution and converges to a periodic limit cycle. The investigated Galerkin models are based on the dynamic mode decomposition (DMD) and derive the dynamical system from first principles, the Navier-Stokes equations. A DMD model with training data from the initial linear transient fails to predict the limit cycle. Conversely, a model from limit-cycle data underpredicts the initial growth rate roughly by a factor 5. Key enablers for uniform accuracy throughout the transient are a continuous mode interpolation between both oscillatory fluctuations and the addition of a shift mode. This interpolated model is shown to capture both the transient growth of the oscillation and the limit cycle.

  8. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye.

    PubMed

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δλ=10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres

    NASA Astrophysics Data System (ADS)

    Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael

    2018-06-01

    Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.

  10. Photoswitchable red fluorescent protein with a large Stokes shift.

    PubMed

    Piatkevich, Kiryl D; English, Brian P; Malashkevich, Vladimir N; Xiao, Hui; Almo, Steven C; Singer, Robert H; Verkhusha, Vladislav V

    2014-10-23

    A subclass of fluorescent proteins (FPs), large Stokes shift (LSS) FP, are characterized by increased spread between excitation and emission maxima. We report a photoswitchable variant of a red FP with an LSS, PSLSSmKate, which initially exhibits excitation and emission at 445 and 622 nm, but violet irradiation photoswitches PSLSSmKate into a common red form with excitation and emission at 573 and 621 nm. We characterize spectral, photophysical, and biochemical properties of PSLSSmKate in vitro and in mammalian cells and determine its crystal structure in the LSS form. Mass spectrometry, mutagenesis, and spectroscopy of PSLSSmKate allow us to propose molecular mechanisms for the LSS, pH dependence, and light-induced chromophore transformation. We demonstrate the applicability of PSLSSmKate to superresolution photoactivated localization microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects.

  11. A long Stokes shift red fluorescent Ca2+ indicator protein for two-photon and ratiometric imaging

    PubMed Central

    Wu, Jiahui; Abdelfattah, Ahmed S.; Miraucourt, Loïs S.; Kutsarova, Elena; Ruangkittisakul, Araya; Zhou, Hang; Ballanyi, Klaus; Wicks, Geoffrey; Drobizhev, Mikhail; Rebane, Aleksander; Ruthazer, Edward S.; Campbell, Robert E.

    2016-01-01

    The introduction of calcium ion (Ca2+) indicators based on red fluorescent proteins (RFPs) has created new opportunities for multicolour visualization of intracellular Ca2+ dynamics. However, one drawback of these indicators is that they have optimal two-photon excitation outside the near-infrared window (650–1,000 nm) where tissue is most transparent to light. To address this shortcoming, we developed a long Stokes shift RFP-based Ca2+ indicator, REX-GECO1, with optimal two-photon excitation at <1,000 nm. REX-GECO1 fluoresces at 585 nm when excited at 480 nm or 910 nm by a one- or two-photon process, respectively. We demonstrate that REX-GECO1 can be used as either a ratiometric or intensiometric Ca2+ indicator in organotypic hippocampal slice cultures (one- and two-photon) and the visual system of albino tadpoles (two-photon). Furthermore, we demonstrate single excitation wavelength two-colour Ca2+ and glutamate imaging in organotypic cultures. PMID:25358432

  12. Characterization of vector stimulated Brillouin scattering gain over wide power range

    NASA Astrophysics Data System (ADS)

    Li, Yongqian; An, Qi; Li, Xiaojuan; Zhang, Lixin

    2017-07-01

    The wide range power dependence of vector stimulated Brillouin scattering (SBS) gain is theoretically and experimentally characterized by a mathematical model and measurement system based on the heterodyne pump-Stokes technique. The results show that SBS phase shift is much more tolerant of pump depletion than SBS amplitude gain, hence the performance improvement of the SBS-based distributed sensing system can be achieved by measuring the SBS phase shift spectrum. The discussion about the measured Brillouin spectrum width versus pump power at different Stokes powers reveals that the occurrence of nonnegligible pump depletion imposes a restriction on the determination of pump and Stokes powers in an SBS amplitude gain-based application system. The amplitude gain and phase shift of vector SBS gain increase with the increase of pump power and decrease with the increase of Stokes power, which indicates that the design strategy with smaller Stokes power and higher pump power is reasonable. And the measured center-asymmetry of the SBS phase shift spectrum is mainly caused by the nonlinear refractive index, which puts a limitation on the maximum pump power. The obtained results can provide a useful basis for the optimal design of practical vector SBS gain-based application systems.

  13. Study of human serum albumin structure by dynamic light scattering: two types of reactions under different pH and interaction with physiologically active compounds

    NASA Astrophysics Data System (ADS)

    Luik, A. I.; Naboka, Yu. N.; Mogilevich, S. E.; Hushcha, T. O.; Mischenko, N. I.

    1998-09-01

    The effect of pH and binding of ten physiologically active compounds (isoproterenol, yohimbine, propranolol, clonidine, phenylephrine, carbachol, tripeptide fMLP, diphenhydramine, chlorpromazine and atropine) on the molecular structure of human serum albumin (HSA) has been studied using the dynamic light scattering. It was found that albumin globule has the most compact configuration (Stokes diameter 59-62 Å) at physiological pH 7.4. The changes in pH, both increase to 8.0 and decrease to 5.4, result in the growth of globule size to 72-81 Å. At acidic shift of pH an additional peak arises in the correlation spectra caused by the light scattering on the structures with the Stokes diameters of 29-37 Å. Those conform to the sizes of the albumin subdomains. The indicated peak is not displayed at basic shift of pH. The interaction with propranolol, clonidine, phenylephrine, carbachol and tripeptide fMLP which hinder adenylate cyclase (AdC) and activate Ca-polyphosphoinositide (Ca-PPI) signaling system of a cell initiates structural rearrangements similar to acidic transitions. Isoproterenol, yohimbine diphenhydramine, chlorpromazine and atropine, which activate AdC and hinder Ca-PPI, cause conformational changes of HSA similar to basic transitions.

  14. Cascaded c-cut Nd:YVO4 self-Raman laser operation with a single 259 cm-1 shift

    NASA Astrophysics Data System (ADS)

    Guo, Junhong; Zhu, Haiyong; Duan, Yanmin; Xu, Changwen; Ruan, Xiukai; Cui, Guihua; Yan, Lifen

    2017-03-01

    A cascaded c-cut Nd:YVO4 crystal self-Raman operation was demonstrated with a Raman shift of 259 cm-1. The Stokes oscillation with a primary Raman shift of 890 cm-1 was suppressed and a cascaded self-Raman with a single Raman shift of 259 cm-1 was realized based on suitable coating design. At an incident pump power of 13.3 W, the second Stokes at 1129 nm was obtained as the main output laser and the output power was about 0.81 W. As the incident pump power increased, dual Stokes at 1129 and 1163 nm were obtained. A maximum output power of up to 1.0 W with a conversion efficiency of 6.7% was achieved at an incident pump power of 14.9 W and a pulse repetition frequency of 15 kHz.

  15. Localization length and intraband scattering of excitons in linear aggregates

    NASA Astrophysics Data System (ADS)

    Lemaistre, J. P.

    1999-07-01

    A theoretical model to describe the intraband scattering of excitons in linear aggregates of finite size which exhibit strong intermolecular interactions is presented. From the calculation of the aggregate eigenstates, the localization length of excitons is evaluated for various configurations featuring physical situations like trapping, edge effects, inclusion of diagonal and/or orientational disorders. The intraband scattering is studied by considering the exciton-phonon stochastic coupling induced by the thermal bath. This coupling creates local dynamical fluctuations in the site energies which are characterized by their amplitude ( Δ) and their correlation time ( τc). Expressions of scattering rates are provided and used in a Pauli master equation to calculate the time dependence of the eigenstates populations after initial excitation of the quasi exciton-band. It is shown that the time evolution of the lowest state population as well as the Stokes shift strongly depend on τc. Comparison of the theoretical results to time-resolved experiments performed on triaryl pyrylium salts allows us to interpret the observed Stokes shift and to derive an average value of the exciton-phonon correlation time.

  16. Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles.

    PubMed

    Kim, Dokyoon; Lee, Nohyun; Park, Yong Il; Hyeon, Taeghwan

    2017-01-18

    Several types of nanoparticle-based imaging probes have been developed to replace conventional luminescent probes. For luminescence imaging, near-infrared (NIR) probes are useful in that they allow deep tissue penetration and high spatial resolution as a result of reduced light absorption/scattering and negligible autofluorescence in biological media. They rely on either an anti-Stokes or a Stokes shift process to generate luminescence. For example, transition metal-doped semiconductor nanoparticles and lanthanide-doped inorganic nanoparticles have been demonstrated as anti-Stokes shift-based agents that absorb NIR light through two- or three-photon absorption process and upconversion process, respectively. On the other hand, quantum dots (QDs) and lanthanide-doped nanoparticles that emit in NIR-II range (∼1000 to ∼1350 nm) were suggested as promising Stokes shift-based imaging agents. In this topical review, we summarize and discuss the recent progress in the development of inorganic nanoparticle-based luminescence imaging probes working in NIR range.

  17. A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange.

    PubMed

    Ren, Yansong; Svensson, Per H; Ramström, Olof

    2018-05-22

    A multiresponsive enamine-based molecular switch is presented, in which forward/backward configurational rotation around the C=C bond could be precisely controlled by the addition of an acid/base or metal ions. Fluorescence turn-on/off effects and large Stokes shifts were observed while regulating the switching process with Cu II . The enamine functionality furthermore enabled double dynamic regimes, in which configurational switching could operate in conjunction with constitutional enamine exchange of the rotor part. This behavior was used to construct a prototypical dynamic covalent switch system through enamine exchange with primary amines. The dynamic exchange process could be readily turned on/off by regulating the switch status with pH. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Sean Patrick

    A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm -1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm -1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H 2/air flat flame.« less

  19. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.

    DOE PAGES

    Kearney, Sean Patrick

    2014-07-01

    A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm -1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm -1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H 2/air flat flame.« less

  20. Temperature dependence of sapphire fiber Raman scattering

    DOE PAGES

    Liu, Bo; Yu, Zhihao; Tian, Zhipeng; ...

    2015-04-27

    Anti-Stokes Raman scattering in sapphire fiber has been observed for the first time. Temperature dependence of Raman peaks’ intensity, frequency shift, and linewidth were also measured. Three anti-Stokes Raman peaks were observed at temperatures higher than 300°C in a 0.72-m-long sapphire fiber excited by a second-harmonic Nd YAG laser. The intensity of anti-Stokes peaks are comparable to that of Stokes peaks when the temperature increases to 1033°C. We foresee the combination of sapphire fiber Stokes and anti-Stokes measurement in use as a mechanism for ultrahigh temperature sensing.

  1. Single fiber temperature probe configuration using anti-Stokes luminescence from Cr:GdAlO3

    NASA Astrophysics Data System (ADS)

    Eldridge, Jeffrey I.

    2018-06-01

    Single-photon excitation of anti-Stokes-shifted emission from a thermographic phosphor allows operation of a luminescence decay-based single fiber temperature probe with negligible interference from background fiber-generated Raman scattering. While single fiber probe configurations for luminescence-based fiber optic thermometers offer advantages of simple design, compactness, and superior emission light collection efficiency, their effective use has been limited by interference from Raman scattering in the fiber probe and excitation delivery fiber that produces distortion of the luminescence decay that follows the excitation pulse. The near elimination of interference by background fiber-generated Raman scattering was demonstrated by incorporating a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor as the sensing element at the end of a single fiber luminescence decay-based thermometer and detecting anti-Stokes-shifted luminescence centered at 542 or 593 nm produced by 695 nm excitation. Measurements were performed using both silica (up to 1150 °C) and single-crystal YAG (up to 1200 °C) fiber-based thermometers. Selection of emission detection centered at 542 nm greatly benefited the YAG fiber probe measurements by practically eliminating detection of otherwise significant luminescence from Cr3+ impurities in the YAG fiber. For both the silica and YAG fiber probes, the relative benefit of adopting single-photon excitation of anti-Stokes-shifted luminescence was evaluated by comparison with results obtained by conventional 532 nm excitation of Stokes-shifted luminescence.

  2. Synthesis and photophysical properties of a series of cyclopenta[b]naphthalene solvatochromic fluorophores.

    PubMed

    Benedetti, Erica; Kocsis, Laura S; Brummond, Kay M

    2012-08-01

    The synthesis and photophysical properties of a series of naphthalene-containing solvatochromic fluorophores are described within. These novel fluorophores are prepared using a microwave-assisted dehydrogenative Diels-Alder reaction of styrene, followed by a palladium-catalyzed cross coupling reaction to install an electron donating amine group. The new fluorophores are structurally related to Prodan. Photophysical properties of the new fluorophores were studied and intriguing solvatochromic behavior was observed. For most of these fluorophores, high quantum yields (60-99%) were observed in methylene chloride in addition to large Stokes shifts (95-226 nm) in this same solvent. As the solvent polarity increased, so did the observed Stokes shift with one derivative displaying a Stokes shift of ~300 nm in ethanol. All fluorophore emission maxima, and nearly all absorption maxima were significantly red-shifted when compared to Prodan. Shifting the absorption and emission maxima of a fluorophore into the visible region increases its utility in biological applications. Moreover, the cyclopentane portion of the fluorophore structure provides an attachment point for biomolecules that will minimize disruptions of the photophysical properties.

  3. A high power diode-side-pumped Nd:YAG/BaWO4 Raman laser at 1103 nm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Xingyu; Liu, Zhaojun; Wang, Qingpu; Cong, Zhenhua; Zhang, Yuangeng; Wang, Weitao; Wu, Zhenguo; Zhang, Huaijin

    2013-04-01

    Pulsed operation at 1103 nm of a diode-side-pumped Nd:YAG laser with intracavity Raman shifting in BaWO4 is reported. The first Stokes wavelength at 1103 nm was generated by a Raman shift of 332 cm-1 from the fundamental wave (1064 nm). A maximum power at 1103 nm of 9.4 W was obtained for a diode pump power of 115 W at a pulse repetition rate of 15 kHz. The pump-to-Stokes conversion efficiency was up to 8.2%. When the output power at 1103 nm was over 7 W, a second Stokes line at 1145 nm was also observed in the experiment. Our research indicates that efficient Raman conversion can be realized by a Raman frequency shift at 332 cm-1 in BaWO4 Raman lasers.

  4. An organic dye with very large Stokes-shift and broad tunability of fluorescence: Potential two-photon probe for bioimaging and ultra-sensitive solid-state gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Tingchao; Tian, Xiaoqing; Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg

    Light-emitting nonlinear optical molecules, especially those with large Stokes shifts and broad tunability of their emission wavelength, have attracted considerable attention for various applications including biomedical imaging and fluorescent sensors. However, most fluorescent chromophores have only limited potential for such applications due to small Stokes shifts, narrow tunability of fluorescence emissions, and small optical nonlinearity in highly polar solvents. In this work, we demonstrate that a two-photon absorbing stilbene chromophore exhibits a large two-photon absorption action cross-section (ηδ = 320 GM) in dimethylsulfoxide (DMSO) and shows broad fluorescence tunability (125 nm) by manipulating the polarity of the surrounding medium. Importantly, a very large Stokesmore » shift of up to 227 nm is achieved in DMSO. Thanks to these features, this chromophore can be utilized as a two-photon probe for bioimaging applications and in an ultrasensitive solid-state gas detector.« less

  5. A facile method to prepare "green" nano-phosphors with a large Stokes-shift and solid-state enhanced photophysical properties based on surface-modified gold nanoclusters.

    PubMed

    Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T

    2017-12-15

    Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Four-wave parametric oscillation in sodium vapor by electromagnetically induced diffraction.

    PubMed

    Harada, Ken-ichi; Ogata, Minoru; Mitsunaga, Masaharu

    2007-05-01

    We have observed a novel type of parametric oscillation in sodium atomic vapor where four off-axis signal waves simultaneously build up under resonant and counterpropagating pump beams with elliptical beam profiles. The four waves, two of them Stokes shifted and the other two anti-Stokes shifted, have similar output powers of up to 10 mW with a conversion efficiency of 30% and are parametrically coupled by electromagnetically induced diffraction.

  7. Solvent relaxation of fluorescent labels as a new tool for the detection of polarity and rigidity changes in membranes

    NASA Astrophysics Data System (ADS)

    Hof, Martin; Hutterer, Rudi

    1998-04-01

    Since solvent relaxation (SR) exclusively depends on the physical properties of the dye environment, SR spectroscopy of defined located labels in amphiphilic assemblies accomplishes the characterisation of specific domains. The most accurate way to characterise SR is the determination of the time-dependent Stokes shift. The time course of the Stokes shift, expressed as a solvent relaxation time, gives information about both the rigidity and polarity of the dye environment. The absolute value of the Stokes shift following the excitation is correlated with the polarity of the probed region. The validity of this approach for the investigation of phospholipid bilayers is illustrated by listing the parameters influencing the SR kinetics of appropriate membrane labels: membrane curvature, percentage of phosphatidylserine (PS) in small unilamell vesicles (SUV), addition of Ca2+ ions, binding of vitamin-K dependent proteins, percentage of diether-lipids in phosphatidylcholine (PC)-vesicles, and temperature.

  8. Reduction of the Nonlinear Phase Shift Induced by Stimulated Brillouin Scattering for Bi-Directional Pumping Configuration System Using Particle Swarm Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Al-Asadi, H. A.

    2013-02-01

    We present a theoretical analysis of an additional nonlinear phase shift of backward Stokes wave based on stimulated Brillouin scattering in the system with a bi-directional pumping scheme. We optimize three parameters of the system: the numerical aperture, the optical loss and the pumping wavelength to minimize an additional nonlinear phase shift of backward Stokes waves due to stimulated Brillouin scattering. The optimization is performed with various Brillouin pump powers and the optical reflectivity values are based on the modern, global evolutionary computation algorithm, particle swarm optimization. It is shown that the additional nonlinear phase shift of backward Stokes wave varies with different optical fiber lengths, and can be minimized to less than 0.07 rad according to the particle swarm optimization algorithm for 5 km. The bi-directional pumping configuration system is shown to be efficient when it is possible to transmit the power output to advanced when frequency detuning is negative and delayed when it is positive, with the optimum values of the three parameters to achieve the reduction of an additional nonlinear phase shift.

  9. Parametric Raman crystalline anti-Stokes laser at 503 nm with collinear beam interaction at tangential phase matching

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.

    2017-07-01

    Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 μJ.

  10. Extended Stokes shift in fluorescent proteins: chromophore-protein interactions in a near-infrared TagRFP675 variant.

    PubMed

    Piatkevich, Kiryl D; Malashkevich, Vladimir N; Morozova, Kateryna S; Nemkovich, Nicolai A; Almo, Steven C; Verkhusha, Vladislav V

    2013-01-01

    Most GFP-like fluorescent proteins exhibit small Stokes shifts (10-45 nm) due to rigidity of the chromophore environment that excludes non-fluorescent relaxation to a ground state. An unusual near-infrared derivative of the red fluorescent protein mKate, named TagRFP675, exhibits the Stokes shift, which is 30 nm extended comparing to that of the parental protein. In physiological conditions, TagRFP675 absorbs at 598 nm and emits at 675 nm that makes it the most red-shifted protein of the GFP-like protein family. In addition, its emission maximum strongly depends on the excitation wavelength. Structures of TagRFP675 revealed the common DsRed-like chromophore, which, however, interacts with the protein matrix via an extensive network of hydrogen bonds capable of large flexibility. Based on the spectroscopic, biochemical, and structural analysis we suggest that the rearrangement of the hydrogen bond interactions between the chromophore and the protein matrix is responsible for the TagRFP675 spectral properties.

  11. All-solid-state, synchronously pumped, ultrafast BaWO4 Raman laser with long and short Raman shifts generating at 1180, 1225, and 1323 nm

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav; Ivleva, Lyudmila I.; Zverev, Petr G.; Smetanin, Sergei

    2017-12-01

    A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm - 1), but also additional (332cm - 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm - 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm - 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm - 1 line instead of 6.5ps for the 925cm - 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.

  12. Arylethynyl Substituted 9,lO-Anthraquinones: Tunable Stokes Shifts by Substitution and Solvent Polarity

    NASA Technical Reports Server (NTRS)

    Yang, Jinhua; Dass, Amala; Rawashdeh, Abdel-Monem M.; Sotiriou-Leventis, Chariklia; Panzner, Matthew J.; Tyson, Daniel S.; Kinder, James D.; Leventis, Nicholas

    2004-01-01

    2-Arylethynyl- and 2,6- and 2,7-diarylethynyl-substituted 9,lO-anthraquinones were synthesized via Sonogashira coupling reactions of 2-bromo-, 2,6-dibromo-, and 2,7-dibromo-9,10- anthraquinone with para-substituted phenylacetylenes. While the redox properties of those compounds are almost insensitive to substitution, their absorption maxima are linearly related to the Hammett constants with different slopes for electron donors and electron acceptors. ABI compounds are photoluminescent both in solution (quantum yields of emission <= 6 %), and as solids. The emission spectra have the characteristics of charge-transfer bands with large Stokes shifts (100-250 nm). The charge-transfer character of the emitting state is supported by large dipole moment differences between the ground and the excited state as concluded on the basis of molecular modeling and Lippert-Mataga correlations of the Stokes shifts with solvent polarity. Maximum Stokes shifts are attained by both electron-donating and -withdrawing groups. This is explained by a destabilization of the HOMO by electron donors and a stabilization of the LUMO by electron acceptors. X-ray crystallographic analysis of, for example, 2,7-bisphenylethynfl- 9,lO-anthraquinone reveals a monoclinic P21In space group and no indication for pi-overlap that would promote quenching, thus explaining emission from the solid state. Representative reduced forms of the title compounds were isolated as stable acetates of the corresponding dihydrs-9,10- anthraquinones. The emission of these compounds is blue-shifted relative to the parent oxidized forms and is attributed to internal transitions in the dihydro-9,lO-anthraquinone core.

  13. Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers.

    PubMed

    White, Richard T; Monro, Tanya M

    2011-06-15

    We report efficient cascaded Raman scattering of near-IR nanosecond pulses in large-core (65 μm diameter) As₂S₃ and As₂Se₃ optical fibers. Raman scattering dominates other spectral broadening mechanisms, such as four-wave mixing, modulation instability, and soliton dynamics, because the fibers have large normal group-velocity dispersion in the spectral range of interest. With ~2 ns pump pulses at a wavelength of 1.9 μm, four Stokes peaks, all with peak powers greater than 1 kW, have been measured.

  14. Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter.

    PubMed

    de Jong, Mathijs; Seijo, Luis; Meijerink, Andries; Rabouw, Freddy T

    2015-07-14

    Electronic transitions in luminescent molecules or centers in crystals couple to vibrations. This results in broadening of absorption and emission bands, as well as in the occurence of a Stokes shift EStokes. In principle, one can derive from EStokes the Huang-Rhys parameter S, which describes the microscopic details of the vibrational coupling and can be related to the equilibrium position offset ΔQe between the ground state and excited state. The commonly used textbook relations EStokes = (2S - 1)ℏω and EStokes = 2Sℏω are only approximately valid. In this paper we investigate how EStokes is related to S, taking into account the effects of a finite temperature. We show that in different ranges of temperature, different approximate relations between EStokes and S are appropriate. Moreover, we demonstrate that the difference between the barycenters of absorption and emission bands can be used to determine S in an unambiguous way. The position of the barycenter is, contrary to the Stokes shift, unaffected by temperature.

  15. Stokes shift spectroscopy for the early diagnosis of epithelial precancers in DMBA treated mouse skin carcinogenesis

    NASA Astrophysics Data System (ADS)

    Jeyasingh, Ebenezar; Singaravelu, Ganesan; Prakasarao, Aruna

    2018-02-01

    In this study, we aim to characterize the tissue transformation in dimethylbenz(a)anthracene (DMBA) treated mouse skin tumor model using stokes shift spectroscopy (SSS) technique for early detection of the neoplastic changes. Stokes shift (SS) spectra measured by scanning both excitation and emission wavelength simultaneously with a fixed wavelength of interval (Δλ=20 nm) in vivo from 33 DMBA treated animals and 6 control animals. The SS spectra of normal (n=6), hyperplasia (n=10), dysplasia (n=10), and WDSCC (n=13) of mice skin shows the distinct peaks around 300, 350, and 386 nm may be attributed to tryptophan, collagen, and NADH respectively. From the observed spectral differences and the ratio variables that resulted in better classification between groups, it is concluded that tryptophan, collagen, and NADH are the key fluorophores that undergo changes during tissue transformation process and hence they can be targeted as tumor markers for early neoplastic changes.

  16. Brain cancer probed by native fluorescence and stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2012-12-01

    Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).

  17. Quasi-self-trapped Frenkel-exciton near-UV luminescence with large Stokes shift in wide-bandgap Cs4PbCl6 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Yumeng; Fan, Baolu; Liu, Yuzhen; Li, Hongxia; Deng, Kaiming; Fan, Jiyang

    2018-04-01

    Inorganic lead halide perovskite nanocrystals (NCs) have attracted great interest owing to their superior luminescence and optoelectronic properties. In comparison to cubic CsPbX3 (X = Cl, Br, or I) that has visible luminescence, trigonal Cs4PbX6 has a much larger bandgap and distinct optical properties. Little has been known about the luminescence properties of the Cs4PbX6 NCs. In this study, we synthesize the well-crystallized Cs4PbCl6 NCs with sizes of 2.2-11.8 nm, which exhibit stable and near-UV luminescence (with a lifetime of 19.7-24.2 ns) with a remarkable quantum confinement effect at room temperature. In comparison to the negligible Stokes shift in the CsPbCl3 NCs, the Stokes shift of the Cs4PbCl6 NCs is very large (0.91 eV). The experimental results in combination with the first-principles calculations reveal that the near-UV luminescence of the Cs4PbCl6 NCs stems from the Frenkel excitons self-trapped in the isolated PbCl64- octahedrons. This is different from the CsPbCl3 NCs whose luminescence originates from the free Wannier excitons. The theoretical model based on the lattice relaxation is proposed to account for the large Stokes shift and its abnormal decrease with the decreasing particle size.

  18. Raman Shifting a Tunable ArF Excimer Laser to Wavelengths of 190 to 240 nm With a Forced Convection Raman Cell

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Tunable radiation, at ultraviolet wavelengths, is produced by Raman shifting a modified 285-mJ ArF excimer laser. Multiple Stokes outputs are observed in H2, CH4, D2, N2, SF6, and CF4 (20, 22, 53, 21, 2.1, and 0.35 percent, respectively). Numbers in parentheses are the first Stokes energy conversion efficiencies. We can access 70 percent of the frequency range 42000-52000 cm (exp -1) (190-240 nm) with Stokes energies that vary from 0.2 microJoule to 58 mJ inside the Raman cell. By using 110 mJ of pump energy and D 2 , the tunable first Stokes energy varies over the 29-58 mJ range as the wavelength is tuned over the 204-206 nm range. Dependence on input energy, gas pressure, He mixture fraction, and circulation of the gas in the forced convection Raman cell is discussed; Stokes conversion is also discussed for laser repetition rates from 1 to 100 Hz. An empirical equation is given to determine whether forced convection can improve outputs for a given repetition rate.

  19. Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity

    PubMed Central

    Shen, Yi; Chen, Yingche; Wu, Jiahui; Shaner, Nathan C.; Campbell, Robert E.

    2017-01-01

    MCherry, the Discosoma sp. mushroom coral-derived monomeric red fluorescent protein (RFP), is a commonly used genetically encoded fluorophore for live cell fluorescence imaging. We have used a combination of protein design and directed evolution to develop mCherry variants with low cytotoxicity to Escherichia coli and altered excitation and emission profiles. These efforts ultimately led to a long Stokes shift (LSS)-mCherry variant (λex = 460 nm and λem = 610 nm) and a red-shifted (RDS)-mCherry variant (λex = 600 nm and λem = 630 nm). These new RFPs provide insight into the influence of the chromophore environment on mCherry’s fluorescence properties, and may serve as templates for the future development of fluorescent probes for live cell imaging. PMID:28241009

  20. Quantum control and measurement of atomic spins in polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Deutsch, Ivan H.; Jessen, Poul S.

    2010-03-01

    Quantum control and measurement are two sides of the same coin. To affect a dynamical map, well-designed time-dependent control fields must be applied to the system of interest. To read out the quantum state, information about the system must be transferred to a probe field. We study a particular example of this dual action in the context of quantum control and measurement of atomic spins through the light-shift interaction with an off-resonant optical probe. By introducing an irreducible tensor decomposition, we identify the coupling of the Stokes vector of the light field with moments of the atomic spin state. This shows how polarization spectroscopy can be used for continuous weak measurement of atomic observables that evolve as a function of time. Simultaneously, the state-dependent light shift induced by the probe field can drive nonlinear dynamics of the spin, and can be used to generate arbitrary unitary transformations on the atoms. We revisit the derivation of the master equation in order to give a unified description of spin dynamics in the presence of both nonlinear dynamics and photon scattering. Based on this formalism, we review applications to quantum control, including the design of state-to-state mappings, and quantum-state reconstruction via continuous weak measurement on a dynamically controlled ensemble.

  1. Spectral grading and Gleason grading of malignant prostate tissue using Stokes shift spectra

    NASA Astrophysics Data System (ADS)

    Al Salhi, M.; Masilamani, V.; Rabah, D.; Farhat, K.; Liu, C. H.; Pu, Y.; Alfano, R. R.

    2012-01-01

    Gleason score is the most common method of grading the virulence of prostate malignancy and is based on the pathological assessment of morphology of cellular matrix. Since this involves the excision of the tissue, we are working on a new, minimally invasive, non contact, procedure of spectral diagnosis of prostate malignancy. In this preliminary in vitro study reported here, we have analyzed 27 tissue samples (normal control =7: benign=8: malignant =12) by Stokes' shift spectra (SSS) to establish a one- to- one correlation between spectral grading and Gleason grading.

  2. Full Stokes IQUV spectropolarimetry of AGB and post-AGB stars: probing surface magnetism and atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Lèbre, Agnès; Aurière, Michel; Fabas, Nicolas; Gillet, Denis; Josselin, Eric; Mathias, Philippe; Petit, Pascal

    2015-10-01

    Full Stokes spectropolarimetric observations of a Mira star (χ Cyg) and a RV Tauri star (R Sct) are presented and analyzed comparatively. From their Stokes V data (circular polarization), we report the detection of a weak magnetic field at the surface of these cool and evolved radially pulsating stars. For both stars, we analyse this detection in the framework of their complex atmospheric dynamics, with the possibility that shock waves may imprint an efficient compressive effect on the surface magnetic field. We also report strong Stokes U and Stokes Q signatures associated to metallic lines (as a global trend), those linear polarimetric features appear to be time variable along the pulsating phase. More surprising, in the Stokes U and Stokes Q data, we also detect signatures associated to individual metallic lines (such as Sr i 460.7 nm, Na D2 588.9 nm), that are known (from the solar case) to be easily polarizable in case of a global asymmetry at the photospheric level.

  3. Statistical-mechanical predictions and Navier-Stokes dynamics of two-dimensional flows on a bounded domain.

    PubMed

    Brands, H; Maassen, S R; Clercx, H J

    1999-09-01

    In this paper the applicability of a statistical-mechanical theory to freely decaying two-dimensional (2D) turbulence on a bounded domain is investigated. We consider an ensemble of direct numerical simulations in a square box with stress-free boundaries, with a Reynolds number that is of the same order as in experiments on 2D decaying Navier-Stokes turbulence. The results of these simulations are compared with the corresponding statistical equilibria, calculated from different stages of the evolution. It is shown that the statistical equilibria calculated from early times of the Navier-Stokes evolution do not correspond to the dynamical quasistationary states. At best, the global topological structure is correctly predicted from a relatively late time in the Navier-Stokes evolution, when the quasistationary state has almost been reached. This failure of the (basically inviscid) statistical-mechanical theory is related to viscous dissipation and net leakage of vorticity in the Navier-Stokes dynamics at moderate values of the Reynolds number.

  4. Dynamic and spectroscopic studies of nano-micelles comprising dye in water/ dioctyl sodium sulfosuccinate /decane droplet microemulsion at constant water content

    NASA Astrophysics Data System (ADS)

    Rahdar, Abbas; Almasi-Kashi, Mohammad

    2017-01-01

    In the present work, the dynamic and spectroscopic properties of water-in-decane dioctyl sodium sulfosuccinate (AOT) microemulsions comprising dye, Rhodamine B (RB), were studied by varying content of decane at the constant water content (W = 20), by using dynamic light scattering (DLS), UV/visible, and fluorescence techniques. The characterization results of DLS of AOT micelles showed that by decreasing concentration of Rhodamine B in the water/AOT/decane microemulsion, the inter-droplet interactions changed from attractive to repulsive as the mass fraction of nano-droplets (MFD) increased. A deviation in the absorption spectra of Rhodamine B from the Beer's law at the high Rhodamine B concentration (0.001) was observed in the AOT reversed micelles. The Quenching in the emission intensity of AOT droplets comprising Rhodamine B and red shift in λmax of fluorescence of dye was observed as a function of concentration of RB in AOT RMs. The Stokes shift of AOT droplets containing the high concentration of RB, increased with mass fraction of nano-droplet (MFD), whereas at the low Rhodamine B concentration, its variation remained constant up to MFD = 0.07, and then increased.

  5. New localized/delocalized emitting state of Eu 2+ in orange-emitting hexagonal EuAl 2O 4

    DOE PAGES

    Liu, Feng; Meltzer, Richard S.; Li, Xufan; ...

    2014-11-18

    Eu 2+-activated phosphors are being widely used in illuminations and displays. Some of these phosphors feature an extremely broad and red-shifted Eu 2+ emission band; however, convincing explanation of this phenomenon is lacking. Here we report a new localized/delocalized emitting state of Eu 2+ ions in a new hexagonal EuAl 2O 4 phosphor whose Eu 2+ luminescence exhibits a very large bandwidth and an extremely large Stokes shift. At 77 K, two luminescent sites responsible for 550 nm and 645 nm broadband emissions are recognized, while at room temperature only the 645 nm emission band emits. The 645 nm emissionmore » exhibits a typical radiative lifetime of 1.27 μs and an unusually large Stokes shift of 0.92 eV. We identify the 645 nm emission as originating from a new type of emitting state whose composition is predominantly that of localized 4f 65d character but which also contains a complementary component with delocalized conduction-band-like character. This investigation gives new insights into a unique type of Eu 2+ luminescence in solids whose emission exhibits both a very large bandwidth and an extremely large Stokes shift.« less

  6. A novel dicyanoisophorone based red-emitting fluorescent probe with a large Stokes shift for detection of hydrazine in solution and living cells

    NASA Astrophysics Data System (ADS)

    Lv, Hongshui; Sun, Haiyan; Wang, Shoujuan; Kong, Fangong

    2018-05-01

    A novel dicyanoisophorone based fluorescent probe HP was developed to detect hydrazine. Upon the addition of hydrazine, probe HP displayed turn-on fluorescence in the red region with a large Stokes shift (180 nm). This probe exhibited high selectivity and high sensitivity to hydrazine in solution. The detection limit of HP was found to be 3.26 ppb, which was lower than the threshold limit value set by USEPA (10 ppb). Moreover, the probe was successfully applied to detect hydrazine in different water samples and living cells.

  7. Dynamic Solvent Control of a Reaction in Ionic Deep Eutectic Solvents: Time-Resolved Fluorescence Measurements of Reactive and Nonreactive Dynamics in (Choline Chloride + Urea) Melts.

    PubMed

    Das, Anuradha; Biswas, Ranjit

    2015-08-06

    Dynamic fluorescence anisotropy and Stokes shift measurements of [f choline chloride + (1 - f) urea)] deep eutectic solvents at f = 0.33 and 0.40 have been carried out using a dipolar solute, coumarin 153 (C153), in the temperature range 298 ≤ T ≤ 333 K. Subsequently, measured time-dependent solvent response is utilized to investigate the dynamic solvent control on the measured rates of photoexcited intramolecular charge transfer (ICT) reactions of two molecules, 4-(1-azetidinyl)benzonitrile (P4C) and 4-(1-pyrrolidinyl)benzonitrile (P5C), occurring in these media. Measured average reaction time scales (⟨τ(rxn)⟩) exhibit the following dependence on average solvation times scales (⟨τ(s)⟩): ⟨τ(rxn)⟩ ∝ ⟨τ(s)⟩(α) with α = 0.5 and 0.35 for P4C and P5C, respectively. Such a strong dynamic solvent control of ⟨τ(rxn)⟩, particularly for P4C, is different from earlier observations with these ICT molecules in conventional molecular solvents. Excitation wavelength-dependent fluorescence emissions of C153 and trans-2-[4-(dimethylamino)styryl]-benzothiazole (DMASBT), which differ widely in average fluorescence lifetimes (⟨τ(life)⟩), suggest the presence of substantial spatial heterogeneity in these systems. Dynamic heterogeneity is reflected via the following fractional viscosity (η) dependences of ⟨τ(s)⟩ and ⟨τ(r)⟩ (⟨τ(r)⟩ being solute's average rotation time): ⟨τx⟩ ∝ (η/T)(p) with 0.7 ≤ p ≤ 0.9. Different correlations between ⟨τ(s)⟩ and ⟨τ(r)⟩ emerge at different temperature regimes, indicating variable frictional coupling at low and high temperatures. Estimated dynamic Stokes shifts in these media vary between ∼1200 and ∼1600 cm(-1), more than 50% of which possess a time scale much faster than the temporal resolution (∼75 ps) employed in these measurements. Estimated activation energy for η is closer to that for ⟨τ(r)⟩ than that for ⟨τ(s)⟩, suggesting ⟨τ(s)⟩ being more decoupled from η than ⟨τ(r)⟩.

  8. Time evolution of the eddy viscosity in two-dimensional navier-stokes flow

    PubMed

    Chaves; Gama

    2000-02-01

    The time evolution of the eddy viscosity associated with an unforced two-dimensional incompressible Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the eddy viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes negative eddy viscosity effects. In other words, this dynamics moves monotonically the initial negative eddy viscosity to positive values before relaxation due to viscous term occurs.

  9. Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macdougall, James, E-mail: jbm34@mail.fresnostate.edu; Singleton, Douglas, E-mail: dougs@csufresno.edu

    2014-04-15

    Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology ofmore » the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.« less

  10. CFD Approaches for Simulation of Wing-Body Stage Separation

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Gomez, Reynaldo J.; Scallion, William I.

    2004-01-01

    A collection of computational fluid dynamics tools and techniques are being developed and tested for application to stage separation and abort simulation for next-generation launch vehicles. In this work, an overset grid Navier-Stokes flow solver has been enhanced and demonstrated on a matrix of proximity cases and on a dynamic separation simulation of a belly-to-belly wing-body configuration. Steady cases show excellent agreement between Navier-Stokes results, Cartesian grid Euler solutions, and wind tunnel data at Mach 3. Good agreement has been obtained between Navier-Stokes, Euler, and wind tunnel results at Mach 6. An analysis of a dynamic separation at Mach 3 demonstrates that unsteady aerodynamic effects are not important for this scenario. Results provide an illustration of the relative applicability of Euler and Navier-Stokes methods to these types of problems.

  11. A deeper insight into an intriguing acetonitrile-water binary mixture: synergistic effect, dynamic Stokes shift, fluorescence correlation spectroscopy, and NMR studies.

    PubMed

    Koley, Somnath; Ghosh, Subhadip

    2016-11-30

    An insight study reveals the strong synergistic solvation behaviours from reporter dye molecules within the acetonitrile (ACN)-water (WT) binary mixture. Synergism of a binary mixture refers to some unique changes of the physical and thermodynamic properties of the solvent mixture, originating from the interactions among its cosolvents, which are absent within the pure cosolvents. Synergistic solvation of a binary mixture is likely to be fundamental for greater stabilization of an excited state solute dipole; at least to some extent greater as compared to one stabilized by any of its cosolvents alone. A dynamic Stokes shift due to the solvation of an excited dipole in the ACN-WT binary mixture is found to be highly relevant to the ground state physical properties of the solute molecule (polarity, hydrophilicity, acidity, etc.). Largely different solvation times in the ACN-WT mixture are observed from different dye molecules with widely varying polarities. However, earlier study shows that dye molecules, irrespective of their varying polarities, exhibit very similar solvation times within a pure solvent (J. Phys. Chem. B, 2014, 118, 7577-7785). On further study with fluorescence correlation spectroscopy (FCS) we observed that, unlike the translational diffusion coefficient (D t ) of a dye molecule within a pure solvent, which remains the same irrespective of the location of the dye molecule inside the solvent, a broad distribution among the D t values of a dye molecule is obtained from different locations within the ACN-WT binary mixture. Lastly our 1 H NMR study in the ACN-WT binary mixture shows the existence of strong hydrogen bond interactions among the cosolvents in the ACN-WT mixture.

  12. Dynamical transition, hydrophobic interface, and the temperature dependence of electrostatic fluctuations in proteins.

    PubMed

    Lebard, David N; Matyushov, Dmitry V

    2008-12-01

    Molecular dynamics simulations have revealed a dramatic increase, with increasing temperature, of the amplitude of electrostatic fluctuations caused by water at the active site of metalloprotein plastocyanin. The increased breadth of electrostatic fluctuations, expressed in terms of the reorganization energy of changing the redox state of the protein, is related to the formation of the hydrophobic protein-water interface, allowing large-amplitude collective fluctuations of the water density in the protein's first solvation shell. On top of the monotonic increase of the reorganization energy with increasing temperature, we have observed a spike at approximately 220 K also accompanied by a significant slowing of the exponential collective Stokes shift dynamics. In contrast to the local density fluctuations of the hydration-shell waters, these spikes might be related to the global property of the water solvent crossing the Widom line or undergoing a weak first-order transition.

  13. Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water.

    PubMed

    Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2017-12-11

    355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

  14. Onset of ice VII phase during ps laser pulse propagation through liquid water

    NASA Astrophysics Data System (ADS)

    Kumar, V. Rakesh; Kiran, P. Prem

    2017-01-01

    Water dominantly present in liquid state on earth gets transformed to crystalline polymorphs under different dynamic loading conditions. Out of different crystalline phases discovered till date, ice VII is observed to be stable over wide pressure (2-63 GPa) and temperature (>273 K) ranges. The formation of ice VII crystalline structure has been vastly reported during high pressure static compression using diamond anvil cell and propagation of high energy (>50 mJ/pulse) nanosecond laser pulse induced dynamic high pressures through liquid water. We present the onset of ice VII phase at low threshold of 2 mJ/pulse during 30 ps (532 nm, 10 Hz) laser pulse induced shock propagating through liquid water. Role of input pulse energy on the evolution of Stoke's and anti-Stoke's Raman shift of the dominant A1g mode of ice VII, filamentation, free-electrons, plasma shielding is presented. The H-bond network rearrangement, electron ion energy transfer time coinciding with the excitation pulse duration supported by the filamentation and plasma shielding of the ps laser pulses reduced the threshold of ice VII structure formation. Filamentation and the plasma shielding have shown the localized creation and sustenance of ice VII structure in liquid water over 3 mm length and 50 μm area of cross-section.

  15. Dynamic characteristics of a multi-wavelength Brillouin-Raman fiber laser assisted by multiple four-wave mixing processes in a ring cavity

    NASA Astrophysics Data System (ADS)

    Shirazi, M. R.; Mohamed Taib, J.; De La Rue, R. M.; Harun, S. W.; Ahmad, H.

    2015-03-01

    Dynamic characteristics of a multi-wavelength Brillouin-Raman fiber laser (MBRFL) assisted by four-wave mixing have been investigated through the development of Stokes and anti-Stokes lines under different combinations of Brillouin and Raman pump power levels and different Raman pumping schemes in a ring cavity. For a Stokes line of order higher than three, the threshold power was less than the saturation power of its last-order Stokes line. By increasing the Brillouin pump power, the nth order anti-Stokes and the (n+4)th order Stokes power levels were unexpectedly increased almost the same before the Stokes line threshold power. It was also found out that the SBS threshold reduction (SBSTR) depended linearly on the gain factor for the 1st and 2nd Stokes lines, as the first set. This relation for the 3rd and 4th Stokes lines as the second set, however, was almost linear with the same slope before SBSTR -6 dB, then, it approached to the linear relation in the first set when the gain factor was increased to 50 dB. Therefore, the threshold power levels of Stokes lines for a given Raman gain can be readily estimated only by knowing the threshold power levels in which there is no Raman amplification.

  16. Picosecond-Resolved Fluorescent Probes at Functionally Distinct Tryptophans within a Thermophilic Alcohol Dehydrogenase: Relationship of Temperature-Dependent Changes in Fluorescence to Catalysis

    PubMed Central

    2015-01-01

    Two single-tryptophan variants were generated in a thermophilic alcohol dehydrogenase with the goal of correlating temperature-dependent changes in local fluorescence with the previously demonstrated catalytic break at ca. 30 °C (Kohen et al., Nature1999, 399, 496). One tryptophan variant, W87in, resides at the active site within van der Waals contact of bound alcohol substrate; the other variant, W167in, is a remote-site surface reporter located >25 Å from the active site. Picosecond-resolved fluorescence measurements were used to analyze fluorescence lifetimes, time-dependent Stokes shifts, and the extent of collisional quenching at Trp87 and Trp167 as a function of temperature. A subnanosecond fluorescence decay rate constant has been detected for W87in that is ascribed to the proximity of the active site Zn2+ and shows a break in behavior at 30 °C. For the remainder of the reported lifetime measurements, there is no detectable break between 10 and 50 °C, in contrast with previously reported hydrogen/deuterium exchange experiments that revealed a temperature-dependent break analogous to catalysis (Liang et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9556). We conclude that the motions that lead to the rigidification of ht-ADH below 30 °C are likely to be dominated by global processes slower than the picosecond to nanosecond motions measured herein. In the case of collisional quenching of fluorescence by acrylamide, W87in and W167in behave in a similar manner that resembles free tryptophan in water. Stokes shift measurements, by contrast, show distinctive behaviors in which the active-site tryptophan relaxation is highly temperature-dependent, whereas the solvent-exposed tryptophan’s dynamics are temperature-independent. These data are concluded to reflect a significantly constrained environment surrounding the active site Trp87 that both increases the magnitude of the Stokes shift and its temperature-dependence. The results are discussed in the context of spatially distinct differences in enthalpic barriers for protein conformational sampling that may be related to catalysis. PMID:24892947

  17. Reduction of reabsorption effects in scintillators by employing solutes with large Stokes shifts

    DOEpatents

    Harrah, Larry A.; Renschler, Clifford L.

    1986-01-01

    In a radiation or high energy particle responsive system useful as a scintillator, and comprising, a first component which interacts with said radiation or high energy particle to emit photons in a certain first wavelength range; and at least one additional solute component which absorbs the photons in said first wavelength range and thereupon emits photons in another wavelength range higher than said first range; an improvement is provided wherein at least one of said components absorbs substantially no photons in said wavelength range in which it emits photons, due to a large Stokes shift caused by an excited state intramolecular rearrangement.

  18. Reduction of reabsorption effects in scintillators by employing solutes with large Stokes shifts

    DOEpatents

    Harrah, L.A.; Renschler, C.L.

    1984-08-01

    A radiation or high energy particle responsive system useful as a scintillator comprises, a first component which interacts with radiation or high energy particles to emit photons in a certain first wavelength range, and at least one additional solute component which absorbs the photons in said first wavelength range and thereupon emits photons in another wavelength range higher than said first range. An improvement is provided wherein at least one of said components absorbs substantially no photons in the wavelength range in which it emits photons, due to a large Stokes shift caused by an excited state intramolecular rearrangement.

  19. A new approach for white organic light-emitting diodes of single emitting layer using large stokes shift.

    PubMed

    Kim, Beomjin; Park, Youngil; Kim, Seungho; Lee, Younggu; Park, Jongwook

    2014-08-01

    DPPZ showed UV-Vis. and PL maximum values of 412 and 638 nm, meaning the large stokes shift. Blue host compound, TAT was synthesized and used for co-mixed white emission. TAT exhibited UV-Vis. and PL maximum values of 403 nm and 445 nm in film state. Thus, when two compounds are used as co-mixed emitter in OLED device, there is no energy transfer from blue emission of TAT to DPPZ due to large stokes shift of DPPZ. Based on the PL result, it is available to realize two-colored white in PL and EL spectra. As a result of this, two-mixed compounds showed vivid their own PL emission peaks of 449 and 631 nm in film state. Also, white OLED device using two-mixed compounds system was fabricated. EL spectrum shows 457 and 634 nm peaks and two separate EL peaks, respectively. As the operation voltage is increased from 7 to 11 V, EL spectrum does not change the peak shape and maximum wavelength values. EL performance of white device showed 0.29 cd/A, 0.14 lm/W, and CIE (0.325, 0.195) at 7 V.

  20. Mapping hydration dynamics and coupled water-protein fluctuations around a protein surface

    NASA Astrophysics Data System (ADS)

    Zhang, Luyuan; Wang, Lijuan; Kao, Ya-Ting; Qiu, Weihong; Yang, Yi; Okobiah, Oghaghare; Zhong, Dongping

    2009-03-01

    Elucidation of the molecular mechanism of water-protein interactions is critical to understanding many fundamental aspects of protein science, such as protein folding and misfolding and enzyme catalysis. We recently carried out a global mapping of protein-surface hydration dynamics around a globular α-helical protein apomyoglobin. The intrinsic optical probe tryptophan was employed to scan the protein surface one at a time by site-specific mutagenesis. With femtosecond resolution, we mapped out the dynamics of water-protein interactions with more than 20 mutants and for two states, native and molten globular. A robust bimodal distribution of time scales was observed, representing two types of water motions: local relaxation and protein-coupled fluctuations. The time scales show a strong correlation with the local protein structural rigidity and chemical identity. We also resolved two distinct contributions to the overall Stokes-shifts from the two time scales. These results are significant to understanding the role of hydration water on protein structural stability, dynamics and function.

  1. Ultrafast Solvation Dynamics and Vibrational Coherences of Halogenated Boron-Dipyrromethene Derivatives Revealed through Two-Dimensional Electronic Spectroscopy.

    PubMed

    Lee, Yumin; Das, Saptaparna; Malamakal, Roy M; Meloni, Stephen; Chenoweth, David M; Anna, Jessica M

    2017-10-18

    Boron-dipyrromethene (BODIPY) chromophores have a wide range of applications, spanning areas from biological imaging to solar energy conversion. Understanding the ultrafast dynamics of electronically excited BODIPY chromophores could lead to further advances in these areas. In this work, we characterize and compare the ultrafast dynamics of halogenated BODIPY chromophores through applying two-dimensional electronic spectroscopy (2DES). Through our studies, we demonstrate a new data analysis procedure for extracting the dynamic Stokes shift from 2DES spectra revealing an ultrafast solvent relaxation. In addition, we extract the frequency of the vibrational modes that are strongly coupled to the electronic excitation, and compare the results of structurally different BODIPY chromophores. We interpret our results with the aid of DFT calculations, finding that structural modifications lead to changes in the frequency, identity, and magnitude of Franck-Condon active vibrational modes. We attribute these changes to differences in the electron density of the electronic states of the structurally different BODIPY chromophores.

  2. Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers.

    PubMed

    Law, Pi-Cheng; Dragic, Peter D

    2010-08-30

    Boron co-doped germanosilicate fibers are investigated via the Brillouin light scattering technique using two wavelengths, 1534 nm and 1064 nm. Several fibers are investigated, including four drawn from the same preform but at different draw temperatures. The Stokes' shifts and the Brillouin spectral widths are found to increase with increasing fiber draw temperature. A frequency-squared law has adequately described the wavelength dependence of the Brillouin spectral width of conventional Ge-doped fibers. However, it is found that unlike conventional Ge-doped fibers these fibers do not follow the frequency-squared law. This is explained through a frequency-dependent dynamic viscosity that modifies this law.

  3. Picosecond vibrational spectroscopy of shocked energetic materials

    NASA Astrophysics Data System (ADS)

    Franken, Jens; Hambir, Selezion A.; Dlott, Dana D.

    1998-07-01

    The dynamic response of a thin film of the insensitive high explosive 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) to ultrafast shock compression has been investigated by picosecond coherent anti-Stokes Raman spectroscopy (CARS). Vibrational spectra were obtained in the 1200 cm-1 to 1450 cm-1 region with a time resolution on the order of 100 ps. The frequency shifts and widths of the two vibrational transitions in this region show an entirely different behavior when subjected to a shock load of about 5 GPa. An additional weak band at 1293 cm-1 appears temporarily while the shock front is within the NTO layer.

  4. Computed and Experimental Flutter/LCO Onset for the Boeing Truss-Braced Wing Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Scott, Robert C.; Funk, Christie J.; Allen, Timothy J.; Sexton, Bradley W.

    2014-01-01

    This paper presents high fidelity Navier-Stokes simulations of the Boeing Subsonic Ultra Green Aircraft Research truss-braced wing wind-tunnel model and compares the results to linear MSC. Nastran flutter analysis and preliminary data from a recent wind-tunnel test of that model at the NASA Langley Research Center Transonic Dynamics Tunnel. The simulated conditions under consideration are zero angle of attack, so that structural nonlinearity can be neglected. It is found that, for Mach number greater than 0.78, the linear flutter analysis predicts flutter onset dynamic pressure below the wind-tunnel test and that predicted by the Navier-Stokes analysis. Furthermore, the wind-tunnel test revealed that the majority of the high structural dynamics cases were wing limit cycle oscillation (LCO) rather than flutter. Most Navier-Stokes simulated cases were also LCO rather than hard flutter. There is dip in the wind-tunnel test flutter/LCO onset in the Mach 0.76-0.80 range. Conditions tested above that Mach number exhibited no aeroelastic instability at the dynamic pressures reached in the tunnel. The linear flutter analyses do not show a flutter/LCO dip. The Navier-Stokes simulations also do not reveal a dip; however, the flutter/LCO onset is at a significantly higher dynamic pressure at Mach 0.90 than at lower Mach numbers. The Navier-Stokes simulations indicate a mild LCO onset at Mach 0.82, then a more rapidly growing instability at Mach 0.86 and 0.90. Finally, the modeling issues and their solution related to the use of a beam and pod finite element model to generate the Navier-Stokes structure mode shapes are discussed.

  5. Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation.

    PubMed

    Guo, Changlei; Che, Kaijun; Cai, Zhiping; Liu, Shuai; Gu, Guoqiang; Chu, Chengxu; Zhang, Pan; Fu, Hongyan; Luo, Zhengqian; Xu, Huiying

    2015-11-01

    We experimentally demonstrate an ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation in a high-Q silica microsphere resonator. The threshold of the Brillouin microlaser is as low as 8 μW, which is close to the theoretical prediction. Moreover, the fifth-order Stokes line with a frequency shift up to 55 GHz is achieved with a coupled pump power of less than 0.6 mW. Benefiting from resonant wavelength shifts driven by thermal dynamics in the microsphere, we further realized tunable microwave signals with tuning ranges of 40 MHz at an 11 GHz band and 20 MHz at a 22 GHz band. To the best of our knowledge, it was the first attempt for tunable microwave source based on the whispering-gallery-mode Brillouin microlaser. Such a tunable microwave source from a cascaded Brillouin microlaser could find significant applications in aerospace, communication engineering, and metrology.

  6. Substantial Intramolecular Charge Transfer Induces Long Emission Wavelengths and Mega Stokes Shifts in 6-Aminocoumarins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaogang; Cole, Jacqueline M.; Xu, Zhaochao

    Coumarins are deployed in numerous bioimaging and biosensing applications. Among various coumarin derivatives, 6-aminocoumarins attract increasing attention for their red-shifted emissions, mega Stokes shifts, and significant solvatochromism. These spectral characteristics together with weak emission intensities have historically been ascribed to the formation of the twisted intramolecular charge transfer (TICT) state in 6-aminocoumarins. In this work, we demonstrate that it is actually substantial intramolecular charge transfer (ICT) that is responsible for these fluorescent properties. Based on this new understanding, we reanalyzed the sensing mechanism of a 6-aminocouarmin based fluorescent probe and obtained close agreement with experimental data. Lastly, our results leadmore » to a deeper understanding of the photophysics of 6-aminocoumarins and will inspire the rational development of novel fluorescent probes.« less

  7. Substantial Intramolecular Charge Transfer Induces Long Emission Wavelengths and Mega Stokes Shifts in 6-Aminocoumarins

    DOE PAGES

    Liu, Xiaogang; Cole, Jacqueline M.; Xu, Zhaochao

    2017-06-01

    Coumarins are deployed in numerous bioimaging and biosensing applications. Among various coumarin derivatives, 6-aminocoumarins attract increasing attention for their red-shifted emissions, mega Stokes shifts, and significant solvatochromism. These spectral characteristics together with weak emission intensities have historically been ascribed to the formation of the twisted intramolecular charge transfer (TICT) state in 6-aminocoumarins. In this work, we demonstrate that it is actually substantial intramolecular charge transfer (ICT) that is responsible for these fluorescent properties. Based on this new understanding, we reanalyzed the sensing mechanism of a 6-aminocouarmin based fluorescent probe and obtained close agreement with experimental data. Lastly, our results leadmore » to a deeper understanding of the photophysics of 6-aminocoumarins and will inspire the rational development of novel fluorescent probes.« less

  8. Structured optical vortices with broadband comb-like optical spectra in Yb:Y3Al5O12/YVO4 Raman microchip laser

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen

    2018-04-01

    Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.

  9. Influence of functional groups on the photophysical properties of dimethylamino chalcones as laser dyes

    NASA Astrophysics Data System (ADS)

    Ibnaouf, K. H.; Elzupir, A. O.; AlSalhi, M. S.; Alaamer, Abdulaziz S.

    2018-02-01

    In this report, a series of 3-(4-(Dimethylamino) phenyl)-1-(4,3 di-substituted phenyl)-(2E) - propen -1-one chalcones was synthesised and examined as optical materials. The influence of functional groups (FG) and solvents on their photophysical properties was investigated. These include absorption, fluorescence, Stokes shift, and amplified spontaneous emission (ASE). The absorption spectra of all compounds showed a wavelength band in the range 404-429 nm, whereas the fluorescence spectra exhibited a band at 470-535 nm. We found that the fluorescence intensity was inversely proportional to the concentration of chalcones. The FGs and solvents had an amazing effect on the photophysical properties of the synthesised materials. Unexpectedly, the electron withdrawing group showed a highly red shift, whereas the electron donating group exhibited a blue shift. Further, these compounds showed large Stokes shifts (up to 5800 cm-1). ASE was observed under pump pulse laser excitation, and the wavelengths were tuned from 509 to 566 nm.

  10. Frequency shift measurement in shock-compressed materials

    DOEpatents

    Moore, David S.; Schmidt, Stephen C.

    1985-01-01

    A method for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the shock front advancing through the sample, thereby minimizing adverse effects of refraction.

  11. Frequency shift measurement in shock-compressed materials

    DOEpatents

    Moore, D.S.; Schmidt, S.C.

    1984-02-21

    A method is disclosed for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the stock front advancing through the sample, thereby minimizing adverse effects of refraction.

  12. "Off-on" red-emitting fluorescent probes with large Stokes shifts for nitric oxide imaging in living cells.

    PubMed

    Chen, Jian-Bo; Zhang, Hui-Xian; Guo, Xiao-Feng; Wang, Hong; Zhang, Hua-Shan

    2013-09-01

    Fluorescent probes with larger Stokes shifts in the far-visible and near-infrared spectral region (600-900 nm) are more superior for cellular imaging and biological analysis due to avoiding light scattering interference, reducing autofluorescence from biological sample and encouraging deeper tissue penetration in vivo imaging. In this work, two bis-methoxyphenyl-BODIPY fluorescent probes for the detection of nitric oxide (NO) have been firstly synthesized. Under physiological conditions, these probes can react with NO to form the corresponding triazoles with 250- and 70-fold turn-on fluorescence emitting at 590 and 620 nm, respectively. Moreover, the triazole forms of these probes have large Stokes shifts of 38 nm, in contrast to 10 nm of existing BODIPY probes for NO. Excellent selectivity has been observed against other reactive oxygen/nitrogen species, ascorbic acid and biological matrix. After the evaluation of MTT assay, new fluorescent probes have been successfully applied to fluorescence imaging of NO released from RAW 264.7 macrophages by co-stimulation of lipopolysaccharide and interferon-γ. The experimental results indicate that our fluorescent probes can be powerful candidates for fluorescence imaging of NO due to the low background interference and high detection sensitivity.

  13. A new approach way for white organic light-emitting diodes based on single emitting layer and large stokes shift.

    PubMed

    Kim, Beomjin; Park, Youngil; Shin, Yunseop; Lee, Jiwon; Shin, Hwangyu; Park, Jongwook

    2014-07-01

    New red dopant, DPPZ based on porphyrin moiety was synthesized. DPPZ showed UV-Vis and PL maximum values of 412 and 638 nm, indicating the large stokes shift. New blue host compound, TATa was also synthesized and used for co-mixed white emission. TATa exhibited UV-Vis. and PL maximum values of 403 nm and 463 nm in film state. Thus, when two compounds are used as co-mixed emitter in OLED device, there is no energy transfer from blue emission of TATa to DPPZ due to large stokes shift of DPPZ. Based on the PL result, it is available to realize two-colored white in PL and EL spectra. As a result of this, two-mixed compounds showed vivid their own PL emission peaks of 466 and 638 nm in film state. Also, white OLED device using two-mixed compounds system was fabricated. EL spectrum shows 481 and 646 nm peaks and two separate EL peaks. As the operation voltage is increased from 8 to 11 V, EL spectrum does not change the peak shape and maximum wavelength values. EL performance of white device showed 0.041 cd/A, 0.018 Im/W, and CIE (0.457, 0.331) at 8 V.

  14. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  15. Three-dimensional poor man's Navier-Stokes equation: a discrete dynamical system exhibiting k(-5/3) inertial subrange energy scaling.

    PubMed

    McDonough, J M

    2009-06-01

    Outline of the derivation and mathematical and physical interpretations are presented for a discrete dynamical system known as the "poor man's Navier-Stokes equation." Numerical studies demonstrate that velocity fields produced by this dynamical system are similar to those seen in laboratory experiments and in detailed simulations, and they lead to scaling for the turbulence kinetic energy spectrum in accord with Kolmogorov K41 theory.

  16. Dynamics of three-tori in a periodically forced navier-stokes flow

    PubMed

    Lopez; Marques

    2000-07-31

    Three-tori solutions of the Navier-Stokes equations and their dynamics are elucidated by use of a global Poincare map. The flow is contained in a finite annular gap between two concentric cylinders, driven by the steady rotation and axial harmonic oscillations of the inner cylinder. The three-tori solutions undergo global bifurcations, including a new gluing bifurcation, associated with homoclinic and heteroclinic connections to unstable solutions (two-tori). These unstable two-tori act as organizing centers for the three-tori dynamics. A discrete space-time symmetry influences the dynamics.

  17. High speed magnetized flows in the quiet Sun

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Borrero, J. M.; Orozco Suárez, D.; Ruiz Cobo, B.

    2014-09-01

    Context. We analyzed spectropolarimetric data recorded with Hinode/SP in quiet-Sun regions located at the disk center. We found single-lobed Stokes V profiles showing highly blue- and red-shifted signals. Oftentimes both types of events appear to be related to each other. Aims: We aim to set constraints on the nature and physical causes of these highly Doppler-shifted signals, as well as to study their spatial distribution, spectropolarimetric properties, size, and rate of occurrence. Also, we plan to retrieve the variation of the physical parameters with optical depth through the photosphere. Methods: We have examined the spatial and polarimetric properties of these events using a variety of data from the Hinode spacecraft. We have also inferred the atmospheric stratification of the physical parameters by means of the inversion of the observed Stokes profiles employing the Stokes Inversion based on Response functions (SIR) code. Finally, we analyzed their evolution using a time series from the same instrument. Results: Blue-shifted events tend to appear over bright regions at the edge of granules, while red-shifted events are seen predominantly over dark regions on intergranular lanes. Large linear polarization signals can be seen in the region that connects them. The magnetic structure inferred from the time series revealed that the structure corresponds to a Ω-loop, with one footpoint always over the edge of a granule and the other inside an intergranular lane. The physical parameters obtained from the inversions of the observed Stokes profiles in both events show an increase with respect to the Harvard-Smithonian reference atmosphere in the temperature at log τ500 ∈ (-1, -3) and a strong magnetic field, B ≥ 1 kG, at the bottom of the atmosphere that quickly decreases upward until vanishing at log τ500 ≈ -2. In the blue-shifted events, the LOS velocities change from upflows at the bottom to downflows at the top of the atmosphere. Red-shifted events display the opposite velocity stratification. The change of sign in LOS velocity happens at the same optical depth in which the magnetic field becomes zero. Conclusions: The physical mechanism that best explains the inferred magnetic field configuration and flow motions is a siphon flow along an arched magnetic flux tube. Further investigation is required, however, as the expected features of a siphon flow cannot be unequivocally identified.

  18. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOEpatents

    Moore, David S.; Schmidt, Stephen C.

    1985-01-01

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  19. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOEpatents

    Moore, D.S.; Schmidt, S.C.

    1983-12-16

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  20. A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems

    NASA Technical Reports Server (NTRS)

    Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.

    1991-01-01

    An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.

  1. Synchronous Bioimaging of Intracellular pH and Chloride Based on LSS Fluorescent Protein.

    PubMed

    Paredes, Jose M; Idilli, Aurora I; Mariotti, Letizia; Losi, Gabriele; Arslanbaeva, Lyaysan R; Sato, Sebastian Sulis; Artoni, Pietro; Szczurkowska, Joanna; Cancedda, Laura; Ratto, Gian Michele; Carmignoto, Giorgio; Arosio, Daniele

    2016-06-17

    Ion homeostasis regulates critical physiological processes in the living cell. Intracellular chloride concentration not only contributes in setting the membrane potential of quiescent cells but it also plays a role in modulating the dynamic voltage changes during network activity. Dynamic chloride imaging demands new tools, allowing faster acquisition rates and correct accounting of concomitant pH changes. Joining a long-Stokes-shift red-fluorescent protein to a GFP variant with high sensitivity to pH and chloride, we obtained LSSmClopHensor, a genetically encoded fluorescent biosensor optimized for the simultaneous chloride and pH imaging and requiring only two excitation wavelengths (458 and 488 nm). LSSmClopHensor allowed us to monitor the dynamic changes of intracellular pH and chloride concentration during seizure like discharges in neocortical brain slices. Only cells with tightly controlled resting potential revealed a narrow distribution of chloride concentration peaking at about 5 and 8 mM, in neocortical neurons and SK-N-SH cells, respectively. We thus showed that LSSmClopHensor represents a new versatile tool for studying the dynamics of chloride and proton concentration in living systems.

  2. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-01

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  3. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics.

    PubMed

    Karlin, Iliya V; Tomboulides, Ananias G; Frouzakis, Christos E; Ansumali, Santosh

    2006-09-01

    An alternative approach, the kinetically reduced local Navier-Stokes (KRLNS) equations for the grand potential and the momentum, is proposed for the simulation of low Mach number flows. The Taylor-Green vortex flow is considered in the KRLNS framework, and compared to the results of the direct numerical simulation of the incompressible Navier-Stokes equations. The excellent agreement between the KRLNS equations and the incompressible nonlocal Navier-Stokes equations for this nontrivial time-dependent flow indicates that the former is a viable alternative for computational fluid dynamics at low Mach numbers.

  4. Cascaded a-cut Nd:YVO4 self-Raman with second-Stokes laser at 1313 nm

    NASA Astrophysics Data System (ADS)

    Xie, Zhi; Duan, Yanmin; Guo, Junhong; Huang, Xiaohong; Yan, Lifen; Zhu, Haiyong

    2017-11-01

    A diode-end-pumped, acousto-optic Q-switched second-Stokes self-Raman laser at 1313 nm was demonstrated in a common a-cut Nd:YVO4 crystal, with the primary Raman shift of 890 cm-1. At the incident pump power of 17.1 W, the maximum average output power up to 2.51 W and pulse width of 5 ns for second-Stokes were obtained with the pulse repetition frequency of 50 kHz. The slope efficiency and conversion efficiency with respect to the incident pump power are about 23.7% and 14.7%. The efficient output should be attributed to suitable transmittance of the output coupler used.

  5. Combined aerodynamic and structural dynamic problem emulating routines (CASPER): Theory and implementation

    NASA Technical Reports Server (NTRS)

    Jones, William H.

    1985-01-01

    The Combined Aerodynamic and Structural Dynamic Problem Emulating Routines (CASPER) is a collection of data-base modification computer routines that can be used to simulate Navier-Stokes flow through realistic, time-varying internal flow fields. The Navier-Stokes equation used involves calculations in all three dimensions and retains all viscous terms. The only term neglected in the current implementation is gravitation. The solution approach is of an interative, time-marching nature. Calculations are based on Lagrangian aerodynamic elements (aeroelements). It is assumed that the relationships between a particular aeroelement and its five nearest neighbor aeroelements are sufficient to make a valid simulation of Navier-Stokes flow on a small scale and that the collection of all small-scale simulations makes a valid simulation of a large-scale flow. In keeping with these assumptions, it must be noted that CASPER produces an imitation or simulation of Navier-Stokes flow rather than a strict numerical solution of the Navier-Stokes equation. CASPER is written to operate under the Parallel, Asynchronous Executive (PAX), which is described in a separate report.

  6. Alpha models for rotating Navier-Stokes equations in geophysics with nonlinear dispersive regularization

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik

    Three dimensional (3D) Navier-Stokes-alpha equations are considered for uniformly rotating geophysical fluid flows (large Coriolis parameter f = 2O). The Navier-Stokes-alpha equations are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-Stokes-alpha equations and the uniform convergence of these solutions to those of the original 3D rotating Navier-Stokes equations for large Coriolis parameters f as alpha → 0. Methods are based on fast singular oscillating limits and results are obtained for periodic boundary conditions for all domain aspect ratios, including the case of three wave resonances which yields nonlinear "2½-dimensional" limit resonant equations for f → 0. The existence and global regularity of solutions of limit resonant equations is established, uniformly in alpha. Bootstrapping from global regularity of the limit equations, the existence of a regular solution of the full 3D rotating Navier-Stokes-alpha equations for large f for an infinite time is established. Then, the uniform convergence of a regular solution of the 3D rotating Navier-Stokes-alpha equations (alpha ≠ 0) to the one of the original 3D rotating NavierStokes equations (alpha = 0) for f large but fixed as alpha → 0 follows; this implies "shadowing" of trajectories of the limit dynamical systems by those of the perturbed alpha-dynamical systems. All the estimates are uniform in alpha, in contrast with previous estimates in the literature which blow up as alpha → 0. Finally, the existence of global attractors as well as exponential attractors is established for large f and the estimates are uniform in alpha.

  7. Fluorophotometric determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants with carbon dots via Stokes shift.

    PubMed

    Lavkush Bhaisare, Mukesh; Pandey, Sunil; Shahnawaz Khan, M; Talib, Abou; Wu, Hui-Fen

    2015-01-01

    A new and facile method for the determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants is proposed in this article. Carbon dots exhibited substantial fluorescence and therefore enhanced the sensitivity of this evaluation. Understanding the formation of surfactant micelles is vital for the applications of biomedicine such as drug fabrication and smart molecular vehicles in delivering therapeutic dosage to various molecular sites. The fluorescence property of carbon dots was utilized for the first time to estimate the critical micelle concentration of surfactants. The central concept of the approach is based on the Stokes shift determination of a system composed of constant amount of carbon dots with varying concentrations of ionic and non-ionic surfactants. The synthesized carbon dots were characterized by FTIR, TEM, XRD, Raman, UV, and fluorescence spectroscope. The carbon dots were excited at 280 nm so as to obtain maximum emission for the Stokes shift measurement. The CMC value of cetyltrimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS), Triton X-100, dodecyldimethyl(3-sulfopropyl)ammonium hydroxide (SB-12) evaluated by this approach was found to be 0.98, 7.3, 0.19, and 3.5mM, respectively. The signals of spectra were assigned and explained in terms of both electron transitions between specific molecular orbital and the interaction with solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Two-pulse control of Raman scattering in liquid methanol: The dominance of classical nonlinear optical effects

    NASA Astrophysics Data System (ADS)

    Spanner, Michael; Brumer, Paul

    2006-02-01

    Experimental results on adaptive feedback control of transient (i.e., nonimpulsive) Stokes emission in liquid methanol [Pearson and Bucksbaum, Phys. Rev. Lett. 92, 243003 (2004)] are analyzed. In the experiment, a pump pulse comprising two frequency-shifted Gaussian pulses was used to control the ratio of two Stokes emission lines by varying the relative phase ϕL between the pulses. Extending the theory of stimulated Raman scattering to accommodate two coupled levels, we show that control of this type is possible, in the strongly driven regime, using Raman coupling alone. Control via variation of ϕL is shown to also result from self- and cross-phase-modulation of the pump and Stokes pulses as well as via the focused-beam geometry of the pump pulse. In all cases, the general control mechanism is nonlinear optical modulation between the pump and the Stokes pulse; no coherent quantum interference effects are involved. Finally, although the vibrational populations are affected by the same control mechanisms that affect the Stokes spectra, the ratio of the Stokes spectra peak heights does not directly reflect the ratio of the level populations, as was assumed in the experiment.

  9. Generation of 1.3 μm and 1.5 μm high-energy Raman radiations in α-BaTeMo2O9 crystals

    NASA Astrophysics Data System (ADS)

    Liu, Shande; Zhang, Junjie; Gao, Zeliang; Wei, Lei; Zhang, Shaojun; He, Jingliang; Tao, Xutang

    2014-02-01

    The generations of high energy 2nd- and 3rd-order stimulated Raman scattering lasers based on the α-BaTeMo2O9 crystal were demonstrated for the first time. The Raman gain coefficient has been compared with that of the YVO4 crystal. A maximum total Stokes radiation energy of 27.3 mJ was obtained, containing 20.1 mJ 2nd-order Stokes energy at 1318 nm, together with 7.2 mJ 3rd-order Stokes energy at 1497 nm, giving an overall conversion efficiency of 35.9% and a slope efficiency of 54.5%. With an optical coating design, a total 3rd- and 4th-order Stokes energy of 16.5 mJ was generated. The maximum energy for 4th-order Stokes radiation at 1731 nm was 2 mJ. The pulse durations for the 2nd-, 3rd-, and 4th-order Stokes shift were 10 ns, 8.6 ns, and 5.2 ns, respectively. Our experimental results show that the α-BTM crystal is a promising Raman crystal for the generations of eye-safe radiations.

  10. Onset of ice VII phase during ps laser pulse propagation through liquid water

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Vaddapally, Rakesh Kumar; Acrhem Team

    2015-06-01

    Water dominantly present in liquid state on earth gets transformed to crystalline polymorphs under different dynamic loading conditions. Out of 15 different crystalline phases discovered till date, ice VII is observed to be stable over wide pressure (2-63 GPa) and temperature (>273 K) ranges. We present the onset of ice VII phase at low threshold of 2 mJ/pulse during 30 ps (532 nm, 10 Hz) laser pulse induced shock propagating through liquid water. Role of input pulse energy on the evolution of Stoke's and anti-Stoke's Raman shift of the dominant A1g mode of ice VII, filamentation, free-electrons, plasma shielding is presented. The H-bond network rearrangement, electron ion energy transfer time coinciding with the excitation pulse duration supported by the filamentation and plasma shielding of the ps laser pulses reduced the threshold of ice VII structure formation. Filamentation and the plasma shielding have shown the localized creation and sustenance of ice VII structure in liquid water over 3 mm length and 50 μm area of cross-section. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.

  11. Bis-pyridinium quadrupolar derivatives. High Stokes shift selective probes for bio-imaging

    NASA Astrophysics Data System (ADS)

    Salice, Patrizio; Versari, Silvia; Bradamante, Silvia; Meinardi, Francesco; Macchi, Giorgio; Pagani, Giorgio A.; Beverina, Luca

    2013-11-01

    We describe the design, synthesis and characterization of five high Stokes shift quadrupolar heteroaryl compounds suitable as fluorescent probes in bio-imaging. In particular, we characterize the photophysical properties and the intracellular localization in Human Umbilical Vein Endothelial Cells (HUVEC) and Human Mesenchymal Stem Cells (HMSCs) for each dye. We show that, amongst all of the investigated derivatives, the 2,5-bis[1-(4-N-methylpyridinium)ethen-2-yl)]- N-methylpyrrole salt is the best candidates as selective mitochondrial tracker. Finally, we recorded the full emission spectrum of the most performing - exclusively mitochondrial selective - fluorescent probe directly from HUVEC stained cells. The emission spectrum collected from the stained mitochondria shows a remarkably more pronounced vibronic structure with respect to the emission of the free fluorophore in solution.

  12. Scaling Relations and Self-Similarity of 3-Dimensional Reynolds-Averaged Navier-Stokes Equations.

    PubMed

    Ercan, Ali; Kavvas, M Levent

    2017-07-25

    Scaling conditions to achieve self-similar solutions of 3-Dimensional (3D) Reynolds-Averaged Navier-Stokes Equations, as an initial and boundary value problem, are obtained by utilizing Lie Group of Point Scaling Transformations. By means of an open-source Navier-Stokes solver and the derived self-similarity conditions, we demonstrated self-similarity within the time variation of flow dynamics for a rigid-lid cavity problem under both up-scaled and down-scaled domains. The strength of the proposed approach lies in its ability to consider the underlying flow dynamics through not only from the governing equations under consideration but also from the initial and boundary conditions, hence allowing to obtain perfect self-similarity in different time and space scales. The proposed methodology can be a valuable tool in obtaining self-similar flow dynamics under preferred level of detail, which can be represented by initial and boundary value problems under specific assumptions.

  13. Calculation of concentration fields of high-inertia aerosol particles in the flow past a cylindrical fibre

    NASA Astrophysics Data System (ADS)

    Zaripov, T. S.; Gilfanov, A. K.; Zaripov, S. K.; Rybdylova, O. D.; Sazhin, S. S.

    2018-01-01

    The behaviour of high-inertia aerosol particles’ concentration fields in stationary gas suspension flows around a cylinder is investigated using a numerical solution to the Navier-Stokes equations and the fully Lagrangian approach for four Stokes numbers (Stk = 0.1, 1, 4, 10) and three Reynolds numbers (Re = 1, 10, 100). It has been shown that the points of maximum particle concentration along each trajectory shift downstream both when Stk and/or Re increase.

  14. On the validity of Stokes-Einstein and Stokes-Einstein-Debye relations in ionic liquids and ionic-liquid mixtures.

    PubMed

    Köddermann, Thorsten; Ludwig, Ralf; Paschek, Dietmar

    2008-09-15

    Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations in the neat ionic liquid (IL) [C(2)mim][NTf(2)] and IL/chloroform mixtures are studied by means of molecular dynamics (MD) simulations. For this purpose, we simulate the translational diffusion coefficients of the cations and anions, the rotational correlation times of the C(2)--H bond in the cation C(2)mim(+), and the viscosities of the whole system. We find that the SE and SED relations are not valid for the pure ionic liquid, nor for IL/chloroform mixtures down to the miscibility gap (at 50 wt % IL). The deviations from both relations could be related to dynamical heterogeneities described by the non-Gaussian parameter alpha(t). If alpha(t) is close to zero, at a concentration of 1 wt % IL in chloroform, both relations become valid. Then, the effective radii and volumes calculated from the SE and SED equations can be related to the structures found in the MD simulations, such as aggregates of ion pairs. Overall, similarities are observed between the dynamical properties of supercooled water and those of ionic liquids.

  15. Navier-Stokes-Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity

    NASA Astrophysics Data System (ADS)

    Di Plinio, Francesco; Giorgini, Andrea; Pata, Vittorino; Temam, Roger

    2018-04-01

    We consider a Navier-Stokes-Voigt fluid model where the instantaneous kinematic viscosity has been completely replaced by a memory term incorporating hereditary effects, in presence of Ekman damping. Unlike the classical Navier-Stokes-Voigt system, the energy balance involves the spatial gradient of the past history of the velocity rather than providing an instantaneous control on the high modes. In spite of this difficulty, we show that our system is dissipative in the dynamical systems sense and even possesses regular global and exponential attractors of finite fractal dimension. Such features of asymptotic well-posedness in absence of instantaneous high modes dissipation appear to be unique within the realm of dynamical systems arising from fluid models.

  16. Ultrafast photoinduced dynamics of the 3,6-diaminoacridinium derivative ATTO 465 in solution.

    PubMed

    Arden-Jacob, Jutta; Drexhage, Karl-Heinz; Druzhinin, Sergey I; Ekimova, Maria; Flender, Oliver; Lenzer, Thomas; Oum, Kawon; Scholz, Mirko

    2013-02-14

    The excited state dynamics of the dye ATTO 465, a well-known fluorescence marker for biological applications, have been characterized in various solvents including THF, ethanol, methanol, water and the highly polar protic ionic liquid 2-hydroxyethylammonium formate (2-OH-EAF) by combining results from time-correlated single-photon counting (TCSPC) and ultrafast pump-supercontinuum probe (PSCP) spectroscopy as well as steady-state absorption and fluorescence. In water, 2-OH-EAF and two fluorinated alcohols, there is a pronounced blue-shift and broadening of the S(0) → S(1) absorption band and also a larger Stokes shift than in the other solvents, indicating a particular influence of hydrogen-bonding interactions. S(1) lifetimes from TCSPC at 25 °C range from 3.3 ns to 5.6 ns. An unusual increase in the S(1) lifetime with temperature is observed for ethanol and methanol, however water behaves in the opposite way. The behavior can be tentatively explained by a solvent- and temperature-dependent "proximity effect", where coupling of the close-lying S(1) and S(2) states influences the intramolecular relaxation rate of the dye. In addition, temperature-dependent complex equilibria of ATTO 465 with solvent molecules may influence the measured lifetimes. Several excited-state absorption (ESA) transitions are identified in the PSCP spectra, which are in good agreement with the position of the UV bands in the steady-state absorption spectra. Small shifts of the stimulated emission and ESA bands are consistent with solvation dynamics in the excited electronic state. An additional ~16 ps component in water, visible over the entire spectral range, is tentatively ascribed to a fast IC channel which is accessed by a fraction of ATTO 465 molecules.

  17. Aeroelastic Analyses of the SemiSpan SuperSonic Transport (S4T) Wind Tunnel Model at Mach 0.95

    NASA Technical Reports Server (NTRS)

    Hur, Jiyoung

    2014-01-01

    Detailed aeroelastic analyses of the SemiSpan SuperSonic Transport (S4T) wind tunnel model at Mach 0.95 with a 1.75deg fixed angle of attack are presented. First, a numerical procedure using the Computational Fluids Laboratory 3-Dimensional (CFL3D) Version 6.4 flow solver is investigated. The mesh update method for structured multi-block grids was successfully applied to the Navier-Stokes simulations. Second, the steady aerodynamic analyses with a rigid structure of the S4T wind tunnel model are reviewed in transonic flow. Third, the static analyses were performed for both the Euler and Navier-Stokes equations. Both the Euler and Navier-Stokes equations predicted a significant increase of lift forces, compared to the results from the rigid structure of the S4T wind-tunnel model, over various dynamic pressures. Finally, dynamic aeroelastic analyses were performed to investigate the flutter condition of the S4T wind tunnel model at the transonic Mach number. The condition of flutter was observed at a dynamic pressure of approximately 75.0-psf for the Navier-Stokes simulations. However, it was observed that the flutter condition occurred a dynamic pressure of approximately 47.27-psf for the Euler simulations. Also, the computational efficiency of the aeroelastic analyses for the S4T wind tunnel model has been assessed.

  18. Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.

    PubMed

    Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M

    2008-09-15

    Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.

  19. Relationships for electron-vibrational coupling in conjugated π organic systems

    NASA Astrophysics Data System (ADS)

    O'Neill, L.; Lynch, P.; McNamara, M.; Byrne, H. J.

    2005-06-01

    A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such structure property relationships in terms of materials design are discussed.

  20. A rapid and selective fluorescent probe with a large Stokes shift for the detection of hydrogen sulfide.

    PubMed

    Chen, Song; Hou, Peng; Wang, Jing; Fu, Shuang; Liu, Lei

    2018-05-28

    We have successfully developed a new green-emitting H 2 S fluorescence probe employing a 2,4-dinitrophenyl ether moiety as the sensing group based on 3'-formyl-4'-hydroxybiphenyl-4-carbonitrile. This probe displayed a rapid (2 min), sensitive (the detection limit was 0.18 μM) and selective with a large Stokes shift (183 nm) in response to H 2 S, which was beneficial for fluorescence sensing and cell imaging studies. Moreover, this probe can qualitatively and quantitatively detect H 2 S with a good linearity (R 2  = 0.9991). Importantly, this probe had been used for the detection of H 2 S in living MDA-MB-231 cells with good performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Noninvasive diagnosis of oral cancer by Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Ebenezar, Jeyasingh; Ganesan, Singaravelu; Aruna, Prakasrao; Muralinaidu, Radhakrishnan

    2014-03-01

    The objective of this study is to evaluate the diagnostic potential of stokes shift (SS) spectroscopy (S3) for normal, precancer and cancerous oral lesions in vivo. The SS spectra were recorded in the 250 - 650 nm spectral range by simultaneously scanning both the excitation and emission wavelengths while keeping a fixed wavelength interval Δλ=20 nm between them. Characteristic, highly resolved peaks and significant spectral differences between normal and different pathological oral lesions observed around 300, 355, 395, and 420 nm which are attributed to tryptophan, collagen, and NADH respectively. Using S3 technique one can obtain the key fluorophores in a single scan and hence they can be targeted as a tumor markers in this study. In order to quantify the altered spectral differences between normal and different pathological oral lesions are verified by different ratio parameters.

  2. Luminescent and thermochromic properties of tellurium(IV) halide complexes with cesium

    NASA Astrophysics Data System (ADS)

    Sedakova, T. V.; Mirochnik, A. G.

    2016-02-01

    The spectral-luminescent and thermochromic properties of complex compounds of the composition Cs2TeHal6 (Hal = Cl, Br, I) are studied. The interrelation between the geometric structure and spectral-luminescent properties is studied using the example on complex compounds of tellurium(IV) halides with cesium. The Stokes shift and the luminescence intensity of Te(IV) ions with island octahedral coordination are found to depend on the position of the A band in the luminescence excitation spectra, the diffuse reflection, and the energy of the luminescent 3 P 1 → 1 S 0 transition of the tellurium(IV) ion. The maximum luminescence intensity and the minimum Stokes shift at 77 and 300 K are observed for Cs2TeCl6. The geometrical and electronic factors responsible for luminescence intensification in Te(IV) complexes under study are analyzed.

  3. Optical properties of trinuclear metal chalcogenolate complexes - room temperature NIR fluorescence in [Cu2Ti(SPh)6(PPh3)2].

    PubMed

    Kühn, Michael; Lebedkin, Sergei; Weigend, Florian; Eichhöfer, Andreas

    2017-01-31

    The optical properties of four isostructural trinuclear chalcogenolato bridged metal complexes [Cu 2 Sn(SPh) 6 (PPh 3 ) 2 ], [Cu 2 Sn(SePh) 6 (PPh 3 ) 2 ], [Ag 2 Sn(SPh) 6 (PPh 3 ) 2 ] and [Cu 2 Ti(SPh) 6 (PPh 3 ) 2 ] have been investigated by absorption and photoluminescence spectroscopy and time-dependent density functional theory (TDDFT) calculations. All copper-tin compounds demonstrate near-infrared (NIR) phosphorescence at ∼900-1100 nm in the solid state at low temperature, which is nearly absent at ambient temperature. Stokes shifts of these emissions are found to be unusually large with values of about 1.5 eV. The copper-titanium complex [Cu 2 Ti(SPh) 6 (PPh 3 ) 2 ] also shows luminescence in the NIR at 1090 nm but with a much faster decay (τ ∼ 10 ns at 150 K) and a much smaller Stokes shift (ca. 0.3 eV). Even at 295 K this fluorescence is found to comprise a quantum yield as high as 9.5%. The experimental electronic absorption spectra well correspond to the spectra simulated from the calculated singlet transitions. In line with the large Stokes shifts of the emission spectra the calculations reveal for the copper-tin complexes strong structural relaxation of the excited triplet states whereas those effects are found to be much smaller in the case of the copper-titanium complex.

  4. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.

    PubMed

    Fouxon, Itzhak; Oz, Yaron

    2008-12-31

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.

  5. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals.

    PubMed

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-22

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I-III-VI semiconductor nanocrystals (NCs), such as CuInS 2 and AgInS 2 . However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS 2 and AgInS 2 /ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS 2 and AgInS 2 /ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility [Formula: see text] of AgInS 2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  6. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements.

    PubMed

    Zhou, Dengwang; Dong, Yongkang; Wang, Benzhang; Jiang, Taofei; Ba, Dexin; Xu, Pengbai; Zhang, Hongying; Lu, Zhiwei; Li, Hui

    2017-02-06

    We present a slope-assisted BOTDA system based on the vector stimulated Brillouin scattering (SBS) and frequency-agile technique (FAT) for the wide-strain-range dynamic measurement. A dimensionless coefficient K defined as the ratio of Brillouin phase-shift to gain is employed to demodulate the strain of the fiber, and it is immune to the power fluctuation of pump pulse and has a linear relation of the frequency detuning for the continuous pump and Stokes waves. For a 30ns-square pump pulse, the available frequency span of the K spectrum can reach up to 200MHz, which is larger than fourfold of 48MHz-linewidth of Brillouin gain spectrum. For a single-slope assisted BOTDA, dynamic strain measurement with the maximum strain of 2467.4με and the vibration frequency components of 10.44Hz and 20.94Hz is obtained. For a multi-slope-assisted BOTDA, dynamic measurement with the strain variation up to 5372.9με and the vibration frequency components of 5.58Hz and 11.14Hz is achieved by using FAT to extend the strain range.

  7. Numerical modeling of Stokes flows over a superhydrophobic surface containing gas bubbles

    NASA Astrophysics Data System (ADS)

    Ageev, A. I.; Golubkina, I. V.; Osiptsov, A. N.

    2017-10-01

    This paper continues the numerical modeling of Stokes flows near cavities of a superhydrophobic surface, occupied by gas bubbles, based on the Boundary Element Method (BEM). The aim of the present study is to estimate the friction reduction (pressure drop) in a microchannel with a bottom superhydrophobic surface, the texture of which is formed by a periodic system of striped rectangular microcavities containing compressible gas bubbles. The model proposed takes into account the streamwise variation of the bubble shift into the cavities, caused by the longitudinal pressure gradient in the channel flow. The solution for the macroscopic (averaged) flow in the microchannel, constructed using an effective slip boundary condition on the superhydrophobic bottom wall, is matched with the solution of the Stokes problem at the microscale of a single cavity containing a gas bubble. The 2D Stokes problems of fluid flow over single cavities containing curved phase interfaces with the condition of zero shear stress are reduced to the boundary integral equations which are solved using the BEM method.

  8. p-Euler equations and p-Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  9. Sedimentation of Inertialess Particles in Stokes Flows

    NASA Astrophysics Data System (ADS)

    Höfer, Richard M.

    2018-05-01

    We investigate the sedimentation of a cloud of rigid, spherical particles of identical radii under gravity in a Stokes fluid. Both inertia and rotation of particles are neglected. We consider the homogenization limit of many small particles in the case of a dilute system in which interactions between particles are still important. In the relevant time scale, we rigorously prove convergence of the dynamics to the solution of a macroscopic equation. This macroscopic equation resembles the Stokes equations for a fluid of variable density subject to gravitation.

  10. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  11. Controlling upconversion nanocrystals for emerging applications

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Shi, Bingyang; Jin, Dayong; Liu, Xiaogang

    2015-11-01

    Lanthanide-doped upconversion nanocrystals enable anti-Stokes emission with pump intensities several orders of magnitude lower than required by conventional nonlinear optical techniques. Their exceptional properties, namely large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, have led to a diversity of applications. Here, we review upconversion nanocrystals from the perspective of fundamental concepts and examine the technical challenges in relation to emission colour tuning and luminescence enhancement. In particular, we highlight the advances in functionalization strategies that enable the broad utility of upconversion nanocrystals for multimodal imaging, cancer therapy, volumetric displays and photonics.

  12. Navier-Stokes dynamics on a differential one-form

    NASA Astrophysics Data System (ADS)

    Story, Troy L.

    2006-11-01

    After transforming the Navier-Stokes dynamic equation into a characteristic differential one-form on an odd-dimensional differentiable manifold, exterior calculus is used to construct a pair of differential equations and tangent vector(vortex vector) characteristic of Hamiltonian geometry. A solution to the Navier-Stokes dynamic equation is then obtained by solving this pair of equations for the position x^k and the conjugate to the position bk as functions of time. The solution bk is shown to be divergence-free by contracting the differential 3-form corresponding to the divergence of the gradient of the velocity with a triple of tangent vectors, implying constraints on two of the tangent vectors for the system. Analysis of the solution bk shows it is bounded since it remains finite as | x^k | ->,, and is physically reasonable since the square of the gradient of the principal function is bounded. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian is obtained.

  13. Well-posed two-temperature constitutive equations for stable dense fluid shock waves using molecular dynamics and generalizations of Navier-Stokes-Fourier continuum mechanics.

    PubMed

    Hoover, Wm G; Hoover, Carol G

    2010-04-01

    Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of far-from-equilibrium states.

  14. Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmanabhan, T.

    2011-02-15

    It has been known for several decades that Einstein's field equations, when projected onto a null surface, exhibit a structure very similar to the nonrelativistic Navier-Stokes equation. I show that this result arises quite naturally when gravitational dynamics is viewed as an emergent phenomenon. Extremizing the spacetime entropy density associated with the null surfaces leads to a set of equations which, when viewed in the local inertial frame, becomes identical to the Navier-Stokes equation. This is in contrast to the usual description of the Damour-Navier-Stokes equation in a general coordinate system, in which there appears a Lie derivative rather thanmore » a convective derivative. I discuss this difference, its importance, and why it is more appropriate to view the equation in a local inertial frame. The viscous force on fluid, arising from the gradient of the viscous stress-tensor, involves the second derivatives of the metric and does not vanish in the local inertial frame, while the viscous stress-tensor itself vanishes so that inertial observers detect no dissipation. We thus provide an entropy extremization principle that leads to the Damour-Navier-Stokes equation, which makes the hydrodynamical analogy with gravity completely natural and obvious. Several implications of these results are discussed.« less

  15. A Zero-Dimensional Organic Seesaw-Shaped Tin Bromide with Highly Efficient Strongly Stokes-Shifted Deep-Red Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chenkun; Lin, Haoran; Shi, Hongliang

    The synthesis and characterization is reported of (C 9NH 20) 2SnBr 4, a novel organic metal halide hybrid with a zero-dimensional (0D) structure, in which individual seesaw-shaped tin (II) bromide anions (SnBr 4 2-) are co-crystallized with 1-butyl-1-methylpyrrolidinium cations (C 9NH 20 +). Upon photoexcitation, the bulk crystals exhibit a highly efficient broadband deep-red emission peaked at 695 nm, with a large Stokes shift of 332 nm and a high quantum efficiency of around 46 %. Furthermore, the unique photophysical properties of this hybrid material are attributed to two major factors: 1) the 0D structure allowing the bulk crystals tomore » exhibit the intrinsic properties of individual SnBr 4 2- species, and 2) the seesaw structure then enables a pronounced excited state structural deformation as confirmed by density functional theory (DFT) calculations.« less

  16. Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.

    PubMed

    Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi

    2018-05-03

    We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.

  17. NIR-emitting benzothiazolium cyanines with an enhanced stokes shift for mitochondria imaging in live cells.

    PubMed

    Abeywickrama, Chathura S; Baumann, Hannah J; Alexander, Nicolas; Shriver, Leah P; Konopka, Michael; Pang, Yi

    2018-05-09

    A series of benzothiazolium-based hemicyanines (3a-3f) have been synthesized. Evaluation of their photophysical properties shows that they exhibit improved photophysical characteristics. In comparison with the available commercial MitoTrackers, the new probes revealed an enhanced Stokes shift (Δλ ∼ 80 nm) and minimized aggregation for increased sensitivity. The synthesized probes are found to exhibit excellent selectivity for mitochondrial staining in an oligodendrocyte cell line. Probes show almost no fluorescence in aqueous environments, while the fluorescence is increased by ∼10-fold in organic solvents, making it possible for mitochondrial imaging without the need for post-staining washing. Since the absorption peaks of probes are close to the laser wavelengths of 561 and 640 nm on a commercial confocal microscope, e.g.3a exhibits λabs ∼ 620 nm and λem ∼ 702 nm, they could be useful probes for mitochondrial tracking in live cells.

  18. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift.

    PubMed

    Şen, Esra; Meral, Kadem; Atılgan, Serdar

    2016-01-11

    The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor-acceptor system. In this respect, a series of donor-acceptor architectures of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor-acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation-induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo-Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non-emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy-transfer processes, namely, FRET and DRET, in one polarity-sensitive donor-acceptor pair system. The accuracy of the dark-emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ping-Pong Energy Transfer in a Boron Dipyrromethane Containing Pt(II)-Schiff Base Complex: Synthesis, Photophysical Studies, and Anti-Stokes Shift Increase in Triplet-Triplet Annihilation Upconversion.

    PubMed

    Razi, Syed S; Koo, Yun Hee; Kim, Woojae; Yang, Wenbo; Wang, Zhijia; Gobeze, Habtom; D'Souza, Francis; Zhao, Jianzhang; Kim, Dongho

    2018-05-07

    A boron dipyrromethane (BDP)-containing Pt(II)-Schiff base complex (Pt-BDP), showing ping-pong singlet-triplet energy transfer, was synthesized, and the detailed photophysical properties were investigated using various steady-state and time-resolved transient spectroscopies. Femtosecond/nanosecond transient absorption spectroscopies demonstrated that, upon selective excitation of the BDP unit in Pt-BDP at 490 nm, Förster resonance energy transfer from the BDP unit to the Pt(II) coordination center occurred (6.7 ps), accompanied by an ultrafast intersystem crossing at the Pt(II) coordination center (<1 ps) and triplet-triplet energy transfer back to the BDP moiety (148 ps). These processes generated a triplet state localized at BDP, and the lifetime was 103.2 μs, much longer than the triplet-state lifetime of Pt-Ph (3.5 μs), a complex without the BDP moiety. Finally, Pt-BDP was used as a triplet photosensitizer for triplet-triplet annihilation (TTA) upconversion through selective excitation of the BDP unit or the Pt(II) coordination center at lower excitation energy. An upconversion quantum yield of up to 10% was observed with selective excitation of the BDP moiety, and a large anti-Stokes shift of 0.65 eV was observed upon excitation of the lower-energy band of the Pt(II) coordination center. We propose that using triplet photosensitizers with the ping-pong energy-transfer process may become a useful method for increasing the anti-Stokes shift of TTA upconversion.

  20. Navier-Stokes, dynamics and aeroelastic computations for vortical flows, buffet and flutter applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1993-01-01

    Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.

  1. CARS module for multimodal microscopy

    NASA Astrophysics Data System (ADS)

    Zadoyan, Ruben; Baldacchini, Tommaso; Carter, John; Kuo, Chun-Hung; Ocepek, David

    2011-03-01

    We describe a stand alone CARS module allowing upgrade of a two-photon microscope with CARS modality. The Stokes beam is generated in a commercially available photonic crystal fiber (PCF) using fraction of the power of femtosecond excitation laser. The output of the fiber is optimized for broadband CARS at Stokes shifts in 2900cm-1 region. The spectral resolution in CARS signal is 50 cm-1. It is achieved by introducing a bandpass filter in the pump beam. The timing between the pump and Stokes pulses is preset inside the module and can be varied. We demonstrate utility of the device on examples of second harmonic, two-photon fluorescence and CARS images of several biological and non-biological samples. We also present results of studies where we used CARS modality to monitor in real time the process of fabrication of microstructures by two-photon polymerization.

  2. Multi-wavelength Praseodymium fiber laser using stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Aidit, S. N.; Tiu, Z. C.

    2018-02-01

    A multi-wavelength Brillouin Praseodymium fiber laser (MWBPFL) operating at 1300 nm region is demonstrated based on the hybrid scheme by utilizing Brillouin gain medium and Praseodymium-doped fluoride fiber as linear gain medium. A 15 μm air gap is incorporated into the cavity to allow the switching of Brillouin frequency spacing from double to single spacing. Under the Brillouin pump of 8 dBm and the 1020 nm pump power of 567.2 mW, 36 Stokes lines with a wavelength spacing of 0.16 nm and 24 Stokes lines with a wavelength spacing of 0.08 nm are achieved. The wavelength tunability of 8 nm is realized for both MWBPFLs by shifting the Brillouin pump wavelength. The MWBPFLs exhibit an excellent stability in the number of generated Stokes and power level over one-hour period.

  3. Drifting solutions with elliptic symmetry for the compressible Navier-Stokes equations with density-dependent viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Hongli, E-mail: kaixinguoan@163.com; Yuen, Manwai, E-mail: nevetsyuen@hotmail.com

    2014-05-15

    In this paper, we investigate the analytical solutions of the compressible Navier-Stokes equations with dependent-density viscosity. By using the characteristic method, we successfully obtain a class of drifting solutions with elliptic symmetry for the Navier-Stokes model wherein the velocity components are governed by a generalized Emden dynamical system. In particular, when the viscosity variables are taken the same as Yuen [M. W. Yuen, “Analytical solutions to the Navier-Stokes equations,” J. Math. Phys. 49, 113102 (2008)], our solutions constitute a generalization of that obtained by Yuen. Interestingly, numerical simulations show that the analytical solutions can be used to explain the driftingmore » phenomena of the propagation wave like Tsunamis in oceans.« less

  4. Modified Finite Particle Methods for Stokes problems

    NASA Astrophysics Data System (ADS)

    Montanino, A.; Asprone, D.; Reali, A.; Auricchio, F.

    2018-04-01

    The Modified Finite Particle Method (MFPM) is a numerical method belonging to the class of meshless methods, nowadays widely investigated due to their characteristic of being capable to easily model large deformation and fluid-dynamic problems. Here we use the MFPM to approximate the Stokes problem. Since the classical formulation of the Stokes problem may lead to pressure spurious oscillations, we investigate alternative formulations and focus on how MFPM discretization behaves in those situations. Some of the investigated formulations, in fact, do not enforce strongly the incompressibility constraint, and therefore an important issue of the present work is to verify if the MFPM is able to correctly reproduce the incompressibility in those cases. The numerical results show that for the formulations in which the incompressibility constraint is properly satisfied from a numerical point of view, the expected second-order is achieved, both in static and in dynamic problems.

  5. Transport properties and Stokes-Einstein relation in Al-rich liquid alloys

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2016-06-01

    We use ab initio molecular dynamics simulations to study the transport properties and the validity of the Stokes-Einstein relation in Al-rich liquid alloys with Ni, Cu, and Zn as alloying elements. First, we show that the composition and temperature dependence of their transport properties present different behaviors, which can be related to their local structural ordering. Then, we evidence that the competition between the local icosahedral ordering and the local chemical ordering may cause the breakdown of the Stokes-Einstein relation even in the liquid phase. We demonstrate that this breakdown can be captured by entropy-scaling relationships developed by Rosenfeld and using the two-body excess entropy. Our findings provide a unique framework to study the relation between structure, thermodynamics, and dynamics in metallic melts and pave the way towards the explanation of various complex transport properties in metallic melts.

  6. Dual Dynamically Orthogonal approximation of incompressible Navier Stokes equations with random boundary conditions

    NASA Astrophysics Data System (ADS)

    Musharbash, Eleonora; Nobile, Fabio

    2018-02-01

    In this paper we propose a method for the strong imposition of random Dirichlet boundary conditions in the Dynamical Low Rank (DLR) approximation of parabolic PDEs and, in particular, incompressible Navier Stokes equations. We show that the DLR variational principle can be set in the constrained manifold of all S rank random fields with a prescribed value on the boundary, expressed in low rank format, with rank smaller then S. We characterize the tangent space to the constrained manifold by means of a Dual Dynamically Orthogonal (Dual DO) formulation, in which the stochastic modes are kept orthonormal and the deterministic modes satisfy suitable boundary conditions, consistent with the original problem. The Dual DO formulation is also convenient to include the incompressibility constraint, when dealing with incompressible Navier Stokes equations. We show the performance of the proposed Dual DO approximation on two numerical test cases: the classical benchmark of a laminar flow around a cylinder with random inflow velocity, and a biomedical application for simulating blood flow in realistic carotid artery reconstructed from MRI data with random inflow conditions coming from Doppler measurements.

  7. Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins.

    PubMed

    Ast, Cindy; Foret, Jessica; Oltrogge, Luke M; De Michele, Roberto; Kleist, Thomas J; Ho, Cheng-Hsun; Frommer, Wolf B

    2017-09-05

    Sensitivity, dynamic and detection range as well as exclusion of expression and instrumental artifacts are critical for the quantitation of data obtained with fluorescent protein (FP)-based biosensors in vivo. Current biosensors designs are, in general, unable to simultaneously meet all these criteria. Here, we describe a generalizable platform to create dual-FP biosensors with large dynamic ranges by employing a single FP-cassette, named GO-(Green-Orange) Matryoshka. The cassette nests a stable reference FP (large Stokes shift LSSmOrange) within a reporter FP (circularly permuted green FP). GO- Matryoshka yields green and orange fluorescence upon blue excitation. As proof of concept, we converted existing, single-emission biosensors into a series of ratiometric calcium sensors (MatryoshCaMP6s) and ammonium transport activity sensors (AmTryoshka1;3). We additionally identified the internal acid-base equilibrium as a key determinant of the GCaMP dynamic range. Matryoshka technology promises flexibility in the design of a wide spectrum of ratiometric biosensors and expanded in vivo applications.Single fluorescent protein biosensors are susceptible to expression and instrumental artifacts. Here Ast et al. describe a dual fluorescent protein design whereby a reference fluorescent protein is nested within a reporter fluorescent protein to control for such artifacts while preserving sensitivity and dynamic range.

  8. 16.7 W 885 nm diode-side-pumped actively Q-switched Nd:YAG/YVO4 intracavity Raman laser at 1176 nm

    NASA Astrophysics Data System (ADS)

    Jiang, Pengbo; Zhang, Guizhong; Liu, Jian; Ding, Xin; Sheng, Quan; Yu, Xuanyi; Sun, Bing; Shi, Rui; Wu, Liang; Wang, Rui; Yao, Jianquan

    2017-11-01

    We proposed and experimentally demonstrated the generation of high-power 1176 nm Stokes wave by frequency shifting of a 885 nm diode-side-pumped Nd:YAG laser using a YVO4 crystal in a Z-shaped cavity configuration. Employing the 885 nm diode-side-pumped scheme and the Z-shaped cavity, for the first time to our knowledge, we realized the thermal management effectively, achieving excellent 1176 nm Stokes wave consequently. With an incident pump power of ~190.0 W, a maximum average output power of 16.7 W was obtained at the pulse repetition frequency of 10 kHz. The pulse duration and spectrum linewidth of the Stokes wave at the maximum output power were 20.3 ns and ~0.08 nm, respectively.

  9. High-order Stokes generation in a KTP Raman laser pumped by a passively Q-switched ND:YLF laser

    NASA Astrophysics Data System (ADS)

    Wang, Maorong; Zhong, Kai; Mei, Jialin; Guo, Shibei; Xu, Degang; Yao, Jianquan

    2015-12-01

    High-order Stokes wave was observed in an x-cut KTP crystal based on stimulated Raman scattering (SRS) pumped by a passively Q-switched Nd:YLF laser with a Cr4+:YAG saturable absorber. Output spectra including the fundamental wave at 1047 nm and six Stokes wavelengths at 1077 nm, 1110 nm, 1130 nm, 1143 nm, 1164 nm, 1180 nm based on two Raman frequency shift at 267.4 cm-1 and 693.0 cm-1 were obtained simultaneously. We also detected green light generation with output power of 12 mW from self frequency mixing in the KTP crystal. The maximum total output power reached 452 mW at the repetition frequency of 8.1 kHz, corresponding to the optical-to-optical conversion efficiency of 4.61% and pump-to-Raman conversion efficiency of 3.6%.

  10. An L-band multi-wavelength Brillouin-erbium fiber laser with switchable frequency spacing

    NASA Astrophysics Data System (ADS)

    Zhou, Xuefang; Hu, Kongwen; Wei, Yizhen; Bi, Meihua; Yang, Guowei

    2017-01-01

    In this paper, a novel L-band multi-wavelength Brillouin-erbium fiber laser consisting of two ring cavities is proposed and demonstrated. The frequency spacing can be switched, corresponding to the single and double Brillouin frequency shifts, by toggling the optical switch. Under a 980 nm pump power of 600 mw, and a Brillouin pump power of 4 mW and wavelength of 1599.4 nm, up to 16 Stokes signals with a frequency spacing of 0.089 nm and 5 Stokes signals with double spacing of 0.178 nm are generated. A wavelength tunability of 15 nm (1593 nm  -  1608 nm) is realized for both frequency spacings. The fluctuation of Stokes signals for both single and double Brillouin spacing regimes in the proposed setup is less than 1.5 dB throughout a 30 min time span.

  11. A Navier-Stokes phase-field crystal model for colloidal suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Praetorius, Simon, E-mail: simon.praetorius@tu-dresden.de; Voigt, Axel, E-mail: axel.voigt@tu-dresden.de

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  12. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation.

    PubMed

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-11-25

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.

  13. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    PubMed

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  14. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.

    PubMed

    Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan

    2014-11-14

    Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.

  15. Euler/Navier-Stokes calculations of transonic flow past fixed- and rotary-wing aircraft configurations

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Agarwal, R. K.

    1989-01-01

    Computational fluid dynamics has an increasingly important role in the design and analysis of aircraft as computer hardware becomes faster and algorithms become more efficient. Progress is being made in two directions: more complex and realistic configurations are being treated and algorithms based on higher approximations to the complete Navier-Stokes equations are being developed. The literature indicates that linear panel methods can model detailed, realistic aircraft geometries in flow regimes where this approximation is valid. As algorithms including higher approximations to the Navier-Stokes equations are developed, computer resource requirements increase rapidly. Generation of suitable grids become more difficult and the number of grid points required to resolve flow features of interest increases. Recently, the development of large vector computers has enabled researchers to attempt more complex geometries with Euler and Navier-Stokes algorithms. The results of calculations for transonic flow about a typical transport and fighter wing-body configuration using thin layer Navier-Stokes equations are described along with flow about helicopter rotor blades using both Euler/Navier-Stokes equations.

  16. Optimization of an intracavity Q-switched solid-state second order Raman laser

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiong; Fu, Xihong; Peng, Hangyu; Zhang, Jun; Qin, Li; Ning, Yongqiang

    2017-01-01

    In this paper, the model of an intracavity Q-switched second order Raman laser is established, the characteristics of the output 2nd Stokes are simulated. The dynamic balance mechanism among intracavity conversion rates of stimulated emission, first order Raman and second order Raman is obtained. Finally, optimization solutions for increasing output 2nd Stokes pulse energy are proposed.

  17. The 3D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Mizukami, M.; Saunders, J. D.

    1995-01-01

    The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a three-dimensional (3D) Navier-Stokes flow solver. A two-equation turbulence model, and a porous bleed model based on unchoked bleed hole discharge coefficients were used. Comparisons were made with experimental data, inviscid theory, and two-dimensional Navier-Stokes analyses. The main objective was to gain insight into the inlet fluid dynamics. Examination of the computational results along with the experimental data suggest that the cowl shock-sidewall boundary layer interaction near the leading edge caused a substantial separation in the wind tunnel inlet model. As a result, the inlet performance may have been compromised by increased spillage and higher bleed mass flow requirements. The internal flow contained substantial waves that were not in the original inviscid design. 3D effects were fairly minor for this inlet at on-design conditions. Navier-Stokes analysis appears to be an useful tool for gaining insight into the inlet fluid dynamics. It provides a higher fidelity simulation of the flowfield than the original inviscid design, by taking into account boundary layers, porous bleed, and their interactions with shock waves.

  18. Atomistic tight-binding computations of the structural and optical properties of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2018-05-01

    A study of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals is carried out using atomistic tight-binding theory and the configuration interaction method to provide information for applications in bioimaging, biolabeling, display devices and near-infrared electronic instruments. The calculations yield the dependences of the internal and external passivated shells on the natural behaviours of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals. The reduction of the optical band gaps is observed with increasing numbers of monolayers in the external ZnS shell due to quantum confinement. Interestingly, the optical band gaps of CdTe/CdS/ZnS core/shell/shell nanocrystals are greater than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. In the presence of an external ZnS-coated shell, electron-hole wave function overlaps, oscillation strengths, ground-state exchange energies and Stokes shift are improved, whereas ground-state coulomb energies and fine-structure splitting are reduced. The oscillation strengths, Stokes shift and fine-structure splitting are reduced with the increase in external ZnS shell thickness. The oscillation strengths, Stokes shift and fine-structure splitting of CdTe/CdS/ZnS core/shell/shell nanocrystals are larger than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. Reduction of the atomistic electron-hole interactions is observed with increasing external ZnS shell size. The strong electron-hole interactions are more probed in CdTe/CdS/ZnS core/shell/shell nanocrystals than in CdTe/CdSe/ZnS core/shell/shell nanocrystals.

  19. Breakdown of the Stokes-Einstein Relation for the Rotational Diffusivity of Polymer Grafted Nanoparticles in Polymer Melts.

    PubMed

    Maldonado-Camargo, Lorena; Rinaldi, Carlos

    2016-11-09

    We report observations of breakdown of the Stokes-Einstein relation for the rotational diffusivity of polymer-grafted spherical nanoparticles in polymer melts. The rotational diffusivity of magnetic nanoparticles coated with poly(ethylene glycol) dispersed in poly(ethylene glycol) melts was determined through dynamic magnetic susceptibility measurements of the collective rotation of the magnetic nanoparticles due to imposed time-varying magnetic torques. These measurements clearly demonstrate the existence of a critical molecular weight for the melt polymer, below which the Stokes-Einstein relation accurately describes the rotational diffusivity of the polymer-grafted nanoparticles and above which the Stokes-Einstein relation ceases to apply. This critical molecular weight was found to correspond to a chain contour length that approximates the hydrodynamic diameter of the nanoparticles.

  20. Solvent effects on the Raman spectra of the isolated carbon-hydrogen stretches of cyclohexane-d11: A molecular dynamics simulation study of liquid and supercritical solvation

    NASA Astrophysics Data System (ADS)

    Frankland, Sarah-Jane Victoria

    Molecular dynamics simulations of solvent effects on the Raman spectra of isotopically isolated C-H stretches of cyclohexane-d11 were performed in liquids and supercritical CO2. The red spectral shifts from the gas phase origin were derived three different ways: (1) from the Lennard-Jones force on the normal coordinate of the vibration; (2) from this force with an additional term to account for the polarizabilily change on excitation, and (3) as an empirical difference potential between the v = 0 and v = 1 state of the hydrogen atom involved in the vibration. Model 3 was successfully parametrized to reproduce the experimental spectral shifts and linewidths. The simulated lineshapes from these models were homogeneously broadened from gas to liquid densities primarily by collisions of nearby solvent molecules with the solute. Both the simulations and isolated binary collision theory showed the density dependence of the linewidth to be related to that of the collision rate. Two additional projects were done which use Monte-Carlo algorithms involving two molecules. In the first project 1:1 complexes of solute and solvent were formed at the potential surface minima such that the geometries of conformers, energies of formation, and electronic spectral shifts could be studied. Complexes between 7- azaindole, indole, carbazole, and 1-azacarbazole and hydrogen-bonding solvents were most stable when the solvent was hydrogen-bonded at the solute N-H site. The energies of formation compared well with values obtained from ab initio calculations. Complexes of coumarins 102 and 153 and fluorinated alcohols showed the more stable conformers to have the alcohols bound at the coumarin carbonyl group. In the second project, one solvent molecule was randomly placed around the solute molecule in order to simplify bulk liquid simulation to only two molecules. This approximation was rised to show that the dynamic Stokes shift of coumarin 153 in over 30 solvents correlates with the permanent charge distribution of the solvent.

  1. Effect of cation size at Gd and Al site on ce energy levels in Gd3(GaAl)5O12 sintered pellets

    NASA Astrophysics Data System (ADS)

    Tyagi, Mohit; Meng, Fang; Darby, Kaitlyn; Koschan, Merry; Melcher, C. L.

    2013-02-01

    Radioluminescence and reflectivity measurements performed on sintered powder pellets of garnet compositions R3GaxAl5-xO12 (where R: Lu, Gd, Sc, Y) have shown that replacing "R" in these compositions with ions of larger radius shifts the excited 5d states of Ce to lower energy, while increased ionic radius at Ga/Al sites shifts these levels to higher energy. Stokes shifts were also calculated and results were verified by comparing the performance of the pellets with that of single crystals.

  2. Brownian dynamics without Green's functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delong, Steven; Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Usabiaga, Florencio Balboa

    2014-04-07

    We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics simulations of confined particle suspensions. Unlike traditional methods which employ analytical Green's functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating finite-volume Stokes solver to generate the action of the response functions “on the fly.” Importantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic interactions among the suspended particles, as well as the stochastic terms necessary to generate the hydrodynamically correlated Brownian motion, can be generated by solving the steady Stokes equations numerically only once per time step. Thismore » is accomplished by including a stochastic contribution to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably, we propose a random finite difference approach to approximating the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical and existing computational results, we numerically demonstrate the ability of the FIB method to accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.« less

  3. A large stokes-shifted fluorescent dye synthesized as a new probe for the determination of protein.

    PubMed

    Lin, Dayong; Fei, Xuening; Li, Ran; Gu, Yingchun; Tang, Yalin; Zhou, Jianguo; Zhang, Baolian

    2016-07-01

    A novel fluorescent dye, 1-(2-hydroxyethyl)-4-((E)-2-(3-benzothiazol-2yl-9-ethyl-carbazole-3yl)vinyl) pyridinium bromide, was synthesized for determination of protein and its structure was characterized by (1)H NMR. Photophysics of the new probe in different solvents has been delineated in this paper, the new fluorescent molecular dye exhibited a large stokes-shifted and fluorescence quantum yields in organic solvent. The photostability and thermostability of the new dye were also studied and the results suggested the stable was excellent. The interactions of the dye with bovine serum albumin (BSA) , Human serumal bumin (HSA) and calf thymus deoxyribonucleic acid (ctDNA) were studied by fluorescence and absorption spectroscopy. The binding constant for BSA, HSA and DNA were calculated to be 8.91 × 10(7), 1.86 × 10(6) and 2.9 × 10(4), respectively. The experimental results indicated a potential value of the new dye for biomarker.

  4. Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives.

    PubMed

    Gao, Meng; Tang, Ben Zhong

    2017-10-27

    Fluorescent sensors with advantages of excellent sensitivity, rapid response, and easy operation are emerging as powerful tools in environmental monitoring, biological research, and disease diagnosis. However, conventional fluorophores featured with π-planar structures usually suffer from serious self-quenching in the aggregated state, poor photostability, and small Stokes' shift. In contrast to conventional aggregation-caused quenching (ACQ) fluorophores, the newly emerged aggregation-induced emission fluorogens (AIEgens) are featured with high emission efficiency in the aggregated state, which provide unique opportunities for various sensing applications with advantages of high signal-to-noise ratio, strong photostability, and large Stokes' shift. In this review, we will first briefly give an introduction of the AIE concept and the turn-on sensing principles. Then, we will discuss the recent examples of AIE sensors according to types of analytes. Finally, we will give a perspective on the future developments of AIE sensors. We hope this review will inspire more endeavors to devote to this emerging world.

  5. Near-Infrared Fluorescent Turn-on Probe with a Remarkable Large Stokes Shift for Imaging Selenocysteine in Living Cells and Animals.

    PubMed

    Feng, Weiyong; Li, Meixing; Sun, Yao; Feng, Guoqiang

    2017-06-06

    Selenocysteine (Sec) is the 21st naturally occurring amino acid and has emerged as an important sensing target in recent years. However, fluorescent detection of Sec in living systems is challenging. To date, very few fluorescent Sec probes have been reported and most of them respond fluorescence to Sec in the visible region. In this paper, a very promising near-infrared fluorescent probe for Sec was developed. This probe works in aqueous solution over a wide pH range under mild conditions and can be used for rapid, highly selective and sensitive detection of Sec with significant near-infrared fluorescent turn-on signal changes. In addition, it features a remarkable large Stokes shift (192 nm) and a low detection limit (60 nM) for Sec with a wide linear range (0-70 μM). Moreover, this probe can be conveniently used to detect Sec in serum samples, living cells, and animals, indicating it holds great promise for biological applications.

  6. Single Benzene Green Fluorophore: Solid-State Emissive, Water-Soluble, and Solvent- and pH-Independent Fluorescence with Large Stokes Shifts.

    PubMed

    Beppu, Teruo; Tomiguchi, Kosuke; Masuhara, Akito; Pu, Yong-Jin; Katagiri, Hiroshi

    2015-06-15

    Benzene is the simplest aromatic hydrocarbon with a six-membered ring. It is one of the most basic structural units for the construction of π conjugated systems, which are widely used as fluorescent dyes and other luminescent materials for imaging applications and displays because of their enhanced spectroscopic signal. Presented herein is 2,5-bis(methylsulfonyl)-1,4-diaminobenzene as a novel architecture for green fluorophores, established based on an effective push-pull system supported by intramolecular hydrogen bonding. This compound demonstrates high fluorescence emission and photostability and is solid-state emissive, water-soluble, and solvent- and pH-independent with quantum yields of Φ=0.67 and Stokes shift of 140 nm (in water). This architecture is a significant departure from conventional extended π-conjugated systems based on a flat and rigid molecular design and provides a minimum requirement for green fluorophores comprising a single benzene ring. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis and spectral characterization of environmentally responsive fluorescent deoxycytidine analogs

    PubMed Central

    Elmehriki, Adam AH; Suchý, Mojmír; Chicas, Kirby J; Wojciechowski, Filip; Hudson, Robert HE

    2014-01-01

    Herein, we describe the synthesis and spectroscopic properties of five novel pyrrolodeoxycytidine analogs, and the related 5-(1-pyrenylethynyl)-2’-deoxycytidine analog; as well as fluorescence characterization of 5-(p-methoxyphenylethynyl)-2’-deoxyuridine. Within this series of compounds, rigidification of the structure from 6-phenylpyrrolodeoxycytidine to 5,6-benzopyrroldeoxycytidine made remarkable improvement of the fluorescence quantum yield (Φ ~1, EtOH) and substantially increased the Stokes shift. Exchange of the phenyl group of 6-phenylpyrrolodeoxycytidine for other heterocycles (benzofuryl or indolyl) produced an increase in the extinction coefficient at the excitation wavelength while preserving high quantum yields. The steady-state fluorescence response to the environment was determined by sensitivity of Stokes shift to solvent polarity. The effect of solvent polarity on fluorescence emission intensity was concurrently examined and showed that 5,6-benzopyrrolodeoxycytidine is highly sensitive to the presence of water. On the other hand, the previously synthesized 5-(p-methoxyphenylethynyl)-2’-deoxyuridine was found to be sensitive to solvent viscosity indicating molecular rotor behavior. PMID:25483932

  8. Tryptophan as key biomarker to detect gastrointestinal tract cancer using non-negative biochemical analysis of native fluorescence and Stokes Shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Leana; Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; He, Yong; Pu, Yang; Nguyen, Thien An; Alfano, Robert R.

    2015-03-01

    The objective of this study was to find out the emission spectral fingerprints for discrimination of human colorectal and gastric cancer from normal tissue in vitro by applying native fluorescence. The native fluorescence (NFL) and Stokes shift spectra of seventy-two human cancerous and normal colorectal (colon, rectum) and gastric tissues were analyzed using three selected excitation wavelengths (e.g. 300 nm, 320 nm and 340 nm). Three distinct biomarkers, tryptophan, collagen and reduced nicotinamide adenine dinucleotide hydrate (NADH), were found in the samples of cancerous and normal tissues from eighteen subjects. The spectral profiles of tryptophan exhibited a sharp peak in cancerous colon tissues under a 300 nm excitation when compared with normal tissues. The changes in compositions of tryptophan, collagen, and NADH were found between colon cancer and normal tissues under an excitation of 300 nm by the non-negative basic biochemical component analysis (BBCA) model.

  9. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guoping, E-mail: guoping.lin@femto-st.fr; Diallo, Souleymane; Saleh, Khaldoun

    2014-12-08

    We report the observation of stimulated Brillouin scattering and lasing at 1550 nm in barium fluoride (BaF{sub 2}) crystal. Brillouin lasing was achieved with ultra-high quality (Q) factor monolithic whispering gallery mode mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from 8.2 GHz up to 49 GHz have been generated through cascaded Brillouin lasing. BaF{sub 2} resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.

  10. Theory of spin-conserving excitation of the N-V(-) center in diamond.

    PubMed

    Gali, Adam; Janzén, Erik; Deák, Péter; Kresse, Georg; Kaxiras, Efthimios

    2009-10-30

    The negatively charged nitrogen-vacancy defect in diamond is an important atomic-scale structure that can be used as a qubit in quantum computing and as a marker in biomedical applications. Its usefulness relies on the ability to optically excite electrons between well-defined gap states, which requires a clear and detailed understanding of the relevant states and excitation processes. Here we show that by using hybrid density-functional-theory calculations in a large supercell we can reproduce the zero-phonon line and the Stokes and anti-Stokes shifts, yielding a complete picture of the spin-conserving excitation of this defect.

  11. Raman analysis of phonon modes in a short period AlN/GaN superlattice

    NASA Astrophysics Data System (ADS)

    Sarkar, Ketaki; Datta, Debopam; Gosztola, David J.; Shi, Fengyuan; Nicholls, Alan; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    AlN/GaN-based optoelectronic devices have been the subject of intense research underlying the commercialization of efficient devices. Areas of considerable interest are the study of their lattice dynamics, phonon transport, and electron-phonon interactions specific to the interface of these heterostructures which results in additional optical phonon modes known as interface phonon modes. In this study, the framework of the dielectric continuum model (DCM) has been used to compare and analyze the optical phonon modes obtained from experimental Raman scattering measurements on AlN/GaN short-period superlattices. We have observed the localized E2(high), A1(LO) and the E1(TO) modes in superlattice measurements at frequencies shifted from their bulk values. To the best of our knowledge, the nanostructures used in these studies are among the smallest yielding useful Raman signatures for the interface modes. In addition, we have also identified an additional spread of interface phonon modes in the TO range resulting from the superlattice periodicity. The Raman signature contribution from the underlying AlxGa1-xN ternary has also been observed and analyzed. A temperature calibration was done based on Stokes/anti-Stokes ratio of A1(LO) using Raman spectroscopy in a broad operating temperature range. Good agreement between the experimental results and theoretically calculated calibration plot predicted using Bose-Einstein statistics was obtained.

  12. Gravitational Agglomeration of Post-HCDA LMFBR Nonspherical Aerosols.

    DTIC Science & Technology

    1980-12-01

    equations for two particle motions are developed . A computer program NGCEFF is constructed., the Navier-Stokes equation is solved by the finite difference...dynamic equations for two particle motions are developed . A computer program NGCEFF I is constructed, the Navier-Stokes equation is solved by the...spatial inhomogeneities for the aerosol. Thus, following an HCDA, an aerosol mixture of sodium compounds, fuel and core structural materials will

  13. Stoke's and anti-Stoke's characteristics of anaerobic and aerobic bacterias at excitation of fluorescence by low-intensity red light: I. Research of anaerobic bacterias

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-04-01

    Biopsy or photo dynamic therapy of tumors are usually investigated by fluorescent diagnostics methods. Information on modified method of fluorescence diagnostics of inflammatory diseases is represented in this research. Anaerobic micro organisms are often the cause of these pathological processes. These micro organisms also accompany disbiotic processes in intestines.

  14. Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon

    NASA Astrophysics Data System (ADS)

    Anderson, Mitchell D.; Tarrago Velez, Santiago; Seibold, Kilian; Flayac, Hugo; Savona, Vincenzo; Sangouard, Nicolas; Galland, Christophe

    2018-06-01

    We propose and demonstrate a versatile technique to measure the lifetime of the one-phonon Fock state using two-color pump-probe Raman scattering and spectrally resolved, time-correlated photon counting. Following pulsed laser excitation, the n =1 phonon Fock state is probabilistically prepared by projective measurement of a single Stokes photon. The detection of an anti-Stokes photon generated by a second, time-delayed laser pulse probes the phonon population with subpicosecond time resolution. We observe strongly nonclassical Stokes-anti-Stokes correlations, whose decay maps the single phonon dynamics. Our scheme can be applied to any Raman-active vibrational mode. It can be modified to measure the lifetime of n ≥1 Fock states or the phonon quantum coherences through the preparation and detection of two-mode entangled vibrational states.

  15. Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon.

    PubMed

    Anderson, Mitchell D; Tarrago Velez, Santiago; Seibold, Kilian; Flayac, Hugo; Savona, Vincenzo; Sangouard, Nicolas; Galland, Christophe

    2018-06-08

    We propose and demonstrate a versatile technique to measure the lifetime of the one-phonon Fock state using two-color pump-probe Raman scattering and spectrally resolved, time-correlated photon counting. Following pulsed laser excitation, the n=1 phonon Fock state is probabilistically prepared by projective measurement of a single Stokes photon. The detection of an anti-Stokes photon generated by a second, time-delayed laser pulse probes the phonon population with subpicosecond time resolution. We observe strongly nonclassical Stokes-anti-Stokes correlations, whose decay maps the single phonon dynamics. Our scheme can be applied to any Raman-active vibrational mode. It can be modified to measure the lifetime of n≥1 Fock states or the phonon quantum coherences through the preparation and detection of two-mode entangled vibrational states.

  16. Some recent applications of Navier-Stokes codes to rotorcraft

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1992-01-01

    Many operational limitations of helicopters and other rotary-wing aircraft are due to nonlinear aerodynamic phenomena incuding unsteady, three-dimensional transonic and separated flow near the surfaces and highly vortical flow in the wakes of rotating blades. Modern computational fluid dynamics (CFD) technology offers new tools to study and simulate these complex flows. However, existing Euler and Navier-Stokes codes have to be modified significantly for rotorcraft applications, and the enormous computational requirements presently limit their use in routine design applications. Nevertheless, the Euler/Navier-Stokes technology is progressing in anticipation of future supercomputers that will enable meaningful calculations to be made for complete rotorcraft configurations.

  17. Mean effects of turbulence on elliptic instability in fluids.

    PubMed

    Fabijonas, Bruce R; Holm, Darryl D

    2003-03-28

    Elliptic instability in fluids is discussed in the context of the Lagrangian-averaged Navier-Stokes-alpha (LANS-alpha) turbulence model. This model preserves the Craik-Criminale (CC) family of solutions consisting of a columnar eddy and a Kelvin wave. The LANS-alpha model is shown to preserve elliptic instability. However, the model shifts the critical stability angle. This shift increases (decreases) the maximum growth rate for long (short) waves. It also introduces a band of stable CC solutions for short waves.

  18. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation

    PubMed Central

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-01-01

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761

  19. Nonlinear travelling waves in rotating Hagen–Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Pier, Benoît; Govindarajan, Rama

    2018-03-01

    The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.

  20. Synthesis, spectral behaviour and photophysics of donor-acceptor kind of chalcones: Excited state intramolecular charge transfer and fluorescence quenching studies

    NASA Astrophysics Data System (ADS)

    Pannipara, Mehboobali; Asiri, Abdullah M.; Alamry, Khalid A.; Arshad, Muhammad N.; El-Daly, Samy A.

    2015-02-01

    The spectral and photophysical properties of two chalcones containing electron donating and accepting groups with intramolecular charge transfer characteristics were synthesized and characterized by 1H NMR, 13C NMR and X-ray crystallography. Both compounds show very strong solvent polarity dependent changes in their photophysical characteristics, namely, remarkable red shift in the emission spectra with increasing solvent polarity, large change in Stokes shift, significant reduction in the fluorescence quantum yield; indicating that the fluorescence states of these compounds are of intramolecular charge transfer (ICT) character. The solvent effect on the photophysical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment, fluorescence spectra, and fluorescence quantum yield of both compounds have been investigated comprehensively. For both dyes, Lippert-Mataga and Reichardt's correlations were used to estimate the difference between the excited and ground state dipole moments (Δμ). The interactions of dyes with colloidal silver nanoparticles (Ag NPs) were also studied in ethanol using steady state fluorescence quenching measurements. The fluorescence quenching data reveal that dynamic quenching and energy transfer play a major role in the fluorescence quenching of dyes by Ag NPs.

  1. Energy exchange analysis in droplet dynamics via the Navier-Stokes-Cahn-Hilliard model

    NASA Astrophysics Data System (ADS)

    Espath, L. F. R.; Sarmiento, A. F.; Vignal, P.; Varga, B. O. N.; Cortes, A. M. A.; Dalcin, L.; Calo, V. M.

    2016-06-01

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq assumption. We physically interpret each quantity involved in the energy exchange to further insight into the model. Highly resolved simulations involving density-driven flows and merging of droplets allow us to analyze these energy budgets. In particular, we focus on the energy exchanges when droplets merge, and describe flow features relevant to this phenomenon. By comparing our numerical simulations to analytical predictions and experimental results available in the literature, we conclude that modeling droplet dynamics within the framework of NSCH equations is a sensible approach worth further research.

  2. Naphthalene based AIE active stimuli-responsive material as rewritable media for temporary communication

    NASA Astrophysics Data System (ADS)

    Pannipara, Mehboobali; Al-Sehemi, Abdullah G.; Kalam, Abul; Asiri, Abdullah M.

    2017-10-01

    Organic molecules having extended π-conjugated moieties is useful for creating 'dynamic' functional materials by modulating the photophysical properties and molecular packing through non-covalent interactions. Herein, we report the photoluminescence properties of a luminogen, NBA, exhibiting aggregation-induced emission (AIE) characteristics, synthesized by Knoevenagel condensation reaction between 2-Hydroxy naphthaldehyde and malononitrile. NBA emits strongly upon aggregation and in solid state with large Stokes shift whereas it is non emissive in pure solvents. The aggregation induced emission behavior of the compound was carried out in DMSO (good solvent)-water mixture (poor solvent) with water fraction (fw) ranging from 0% to 98%. The AIE property of the luminogen were further exploited for fabricating rewritable fluorescent paper substrates that found applications in security printing and data storage where the written images or letters stored on the filter paper are invisible under normal light.

  3. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.

    PubMed

    Vorobev, Anatoliy

    2010-11-01

    We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentration. The quasicompressibility of the governing equations brings a short time-scale (quasiacoustic) process that may not affect the slow dynamics but may significantly complicate the numerical treatment. Using the multiple-scale method we separate the physical processes occurring on different time scales and, ultimately, derive the equations with the filtered-out quasiacoustics. The derived equations represent the Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. This approximation can be further employed as a universal theoretical model for an analysis of slow thermodynamic and hydrodynamic evolution of the multiphase systems with strongly evolving and diffusing interfacial boundaries, i.e., for the processes involving dissolution/nucleation, evaporation/condensation, solidification/melting, polymerization, etc.

  4. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    NASA Astrophysics Data System (ADS)

    Landgrebe, Anton J.

    1987-03-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  5. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    NASA Technical Reports Server (NTRS)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  6. General dynamical density functional theory for classical fluids.

    PubMed

    Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim

    2012-09-21

    We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.

  7. Solving Navier-Stokes equations on a massively parallel processor; The 1 GFLOP performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saati, A.; Biringen, S.; Farhat, C.

    This paper reports on experience in solving large-scale fluid dynamics problems on the Connection Machine model CM-2. The authors have implemented a parallel version of the MacCormack scheme for the solution of the Navier-Stokes equations. By using triad floating point operations and reducing the number of interprocessor communications, they have achieved a sustained performance rate of 1.42 GFLOPS.

  8. Comment on linewidths and shifts in the Stokes-Raman Q branch of D2 in He

    NASA Technical Reports Server (NTRS)

    Green, Sheldon; Blackmore, Robert; Monchick, Louis

    1989-01-01

    Collision-induced widths and shifts for Raman Q-branch transitions of D2 in He were calculated from S matrices obtained with converged close coupling scattering calculations on an accurate theoretical interaction potential. Results agree well with experimental values. Discrepancies between experimental line shifts and theoretical values from an earlier study (Blackmore et al., 1988) are traced to a computational error in that work. The effects of vibrational inelasticity and of centrifugal distortion on energy levels and on potential matrix elements, all of which were ignored in the earlier study, are explicitly considered here and found to be small.

  9. Device and method for noresonantly Raman shifting ultraviolet radiation

    DOEpatents

    Loree, Thomas R.; Barker, Dean L.

    1979-01-01

    A device and method for nonresonantly Raman shifting broad band uv excimer laser radiation, which enhances preselected Stokes signals by varying the pressure of the Raman scattering medium, the focal interaction length of the incident radiation within the Raman scattering medium and its power density level. Gaseous molecular H.sub.2, D.sub.2, CH.sub.4 (methane), HD and mixes thereof, and liquid N.sub.2 are used as the Raman scattering medium to frequency shift the outputs of high power KrF and ArF lasers. A cable fed discharge with an unstable resonant cavity configuration is utilized to produce the output laser power levels required for operation.

  10. Experimental and CFD modeling of fluid mixing in sinusoidal microchannels with different phase shift between side walls

    NASA Astrophysics Data System (ADS)

    Khosravi Parsa, Mohsen; Hormozi, Faramarz

    2014-06-01

    In the present work, a passive model of a micromixer with sinusoidal side walls, a convergent-divergent cross section and a T-shape entrance was experimentally fabricated and modeled. The main aim of this modeling was to conduct a study on the Dean and separation vortices created inside the sinusoidal microchannels with a convergent-divergent cross section. To fabricate the microchannels, CO2 laser micromachining was utilized and the fluid mixing pattern is observed using a digital microscope imaging system. Also, computational fluid dynamics was applied with the finite element method to solve Navier-Stokes equations and the diffusion-convection mode in inlet Reynolds numbers of 0.2-75. Numerically obtained results were in reasonable agreement with experimental data. According to the previous studies, phase shift and wavelength of side walls are important parameters in designing sinusoidal microchannels. An increase of phase shift between side walls of microchannels leads the cross section being convergent-divergent. Results also show that at an inlet Reynolds number of <20 the molecular diffusion is the dominant mixing factor and the mixing index extent is nearly identical in all designs. For higher inlet Reynolds numbers (>20), secondary flow is the main factor of mixing. Noticeably, mixing index drastically depends on phase shift (ϕ) and wavelength of side walls (λ) such that the best mixing can be observed in ϕ = 3π/4 and at a wavelength to amplitude ratio of 3.3. Likewise, the maximum pressure drop is reported at ϕ = π. Therefore, the sinusoidal microchannel with phase shifts between π/2 and 3π/4 is the best microchannel for biological and chemical analysis, for which a mixing index value higher than 90% and a pressure drop less than 12 kPa is reported.

  11. A comparative study of the spectral, fluorometric properties and photostability of natural curcumin, iron- and boron- complexed curcumin

    NASA Astrophysics Data System (ADS)

    Mohammed, Fatima; Rashid-Doubell, Fiza; Cassidy, Seamas; Henari, Fryad

    2017-08-01

    Curcumin is a yellow phenolic compound with a wide range of reported biological effects. However, two main obstacles hinder the use of curcumin therapeutically, namely its poor bioavailability and photostability. We have synthesized two curcumin complexes, the first a boron curcumin complex (B-Cur2) and the second an iron (Fe-Cur3) complex of curcumin. Both derivatives showed high fluorescence efficiency (quantum yield) and greater photostability in solution. The improved photostability could be attributed to the coordination structures and the removal of β-diketone group from curcumin. The fluorescence and ultra violet/visible absorption spectra of curcumin, B-Cur2 and Fe-Cur3 all have a similar spectral pattern when dissolved in the same organic solvent. However, a shift towards a lower wavelength was observed when moving from polar to non-polar solvents, possibly due to differences in solvent polarity. A plot of Stokes' shift vs the orientation polarity parameter (Δf) or vs the solvent polarity parameter (ET 30) showed an improved correlation between the solvent polarity parameter than with the orientation polarity parameter and indicating that the red shift observed could be due to hydrogen-bonding between the solvent molecules. A similar association was obtained when Stokes' shift was replaced by maximum synchronous fluorescence. Both B-Cur2 and Fe-Cur3 had larger quantum yields than curcumin, suggesting they may be good candidates for medical imaging and in vitro studies.

  12. Excited-State Conformational/Electronic Responses of Saddle-Shaped N,N'-Disubstituted-Dihydrodibenzo[a,c]phenazines: Wide-Tuning Emission from Red to Deep Blue and White Light Combination.

    PubMed

    Zhang, Zhiyun; Wu, Yu-Sin; Tang, Kuo-Chun; Chen, Chi-Lin; Ho, Jr-Wei; Su, Jianhua; Tian, He; Chou, Pi-Tai

    2015-07-08

    A tailored strategy is utilized to modify 5,10-dimethylphenazine (DMP) to donor-acceptor type N,N'-disubstituted-dihydrodibenzo[a,c]phenazines. The representative compounds DMAC (N,N'-dimethyl), DPAC (N,N'-diphenyl), and FlPAC (N-phenyl-N'-fluorenyl) reveal significant nonplanar distortions (i.e., a saddle shape) and remarkably large Stokes-shifted emission independent of the solvent polarity. For DPAC and FlPAC with higher steric hindrance on the N,N'-substituents, normal Stokes-shifted emission also appears, for which the peak wavelength reveals solvent-polarity dependence. These unique photophysical behaviors are rationalized by electronic configuration coupled conformation changes en route to the geometry planarization in the excited state. This proposed mechanism is different from the symmetry rule imposed to explain the anomalously long-wavelength emission for DMP and is firmly supported by polarity-, viscosity-, and temperature-dependent steady-state and nanosecond time-resolved spectroscopy. Together with femtosecond early dynamics and computational simulation of the reaction energy surfaces, the results lead us to establish a sequential, three-step kinetics. Upon electronic excitation of N,N'-disubstituted-dihydrodibenzo[a,c]phenazines, intramolecular charge-transfer takes place, followed by the combination of polarization stabilization and skeletal motion toward the planarization, i.e., elongation of the π-delocalization over the benzo[a,c]phenazines moiety. Along the planarization, DPAC and FlPAC encounter steric hindrance raised by the N,N'-disubstitutes, resulting in a local minimum state, i.e., the intermediate. The combination of initial charge-transfer state, intermediate, and the final planarization state renders the full spectrum of interest and significance in their anomalous photophysics. Depending on rigidity, the N,N'-disubstituted-dihydrodibenzo[a,c]phenazines exhibit multiple emissions, which can be widely tuned from red to deep blue and even to white light generation upon optimization of the surrounding media.

  13. New conformal mapping for adaptive resolving of the complex singularities of Stokes wave

    PubMed Central

    Dyachenko, Sergey A.; A. Silantyev, Denis

    2017-01-01

    A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced. PMID:28690418

  14. New conformal mapping for adaptive resolving of the complex singularities of Stokes wave.

    PubMed

    Lushnikov, Pavel M; Dyachenko, Sergey A; A Silantyev, Denis

    2017-06-01

    A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced.

  15. Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy.

    PubMed

    Mu, Tingkui; Pacheco, Shaun; Chen, Zeyu; Zhang, Chunmin; Liang, Rongguang

    2017-02-13

    In this paper, the design and experimental demonstration of a snapshot linear-Stokes imaging spectropolarimeter (SLSIS) is presented. The SLSIS, which is based on division-of-focal-plane polarimetry with four parallel linear polarization channels and integral field spectroscopy with numerous slit dispersive paths, has no moving parts and provides video-rate Stokes-vector hyperspectral datacubes. It does not need any scanning in the spectral, spatial or polarization dimension and offers significant advantages of rapid reconstruction without heavy computation during post-processing. The principle and the experimental setup of the SLSIS are described in detail. The image registration, Stokes spectral reconstruction and calibration procedures are included, and the system is validated using measurements of tungsten light and a static scene. The SLSIS's snapshot ability to resolve polarization spectral signatures is demonstrated using measurements of a dynamic scene.

  16. Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy

    PubMed Central

    Mu, Tingkui; Pacheco, Shaun; Chen, Zeyu; Zhang, Chunmin; Liang, Rongguang

    2017-01-01

    In this paper, the design and experimental demonstration of a snapshot linear-Stokes imaging spectropolarimeter (SLSIS) is presented. The SLSIS, which is based on division-of-focal-plane polarimetry with four parallel linear polarization channels and integral field spectroscopy with numerous slit dispersive paths, has no moving parts and provides video-rate Stokes-vector hyperspectral datacubes. It does not need any scanning in the spectral, spatial or polarization dimension and offers significant advantages of rapid reconstruction without heavy computation during post-processing. The principle and the experimental setup of the SLSIS are described in detail. The image registration, Stokes spectral reconstruction and calibration procedures are included, and the system is validated using measurements of tungsten light and a static scene. The SLSIS’s snapshot ability to resolve polarization spectral signatures is demonstrated using measurements of a dynamic scene. PMID:28191819

  17. Navier-Stokes calculations of scramjet-nozzle-afterbody flowfields

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1991-01-01

    A comprehensive computational fluid dynamics effort was conducted from 1987 to 1990 to properly design a nozzle and lower aft end of a generic hypersonic vehicle powered by a scramjet engine. The interference of the exhaust on the control surfaces of the vehicle can have adverse effects on its stability. Two-dimensional Navier-Stokes computations were performed, where the exhaust gas was assumed to be air behaving as a perfect gas. Then the exhaust was simulated by a mixture of Freon-12 and argon, which required solving the Navier-Stokes equations for four species: (nitrogen, oxygen, Freon-12, and argon). This allowed gamma to be a field variable during the mixing of the multispecies gases. Two different mixing models were used and comparisons between them as well as the perfect gas air calculations were made to assess their relative merits. Finally, the three dimensional Navier-Stokes computations were made for the full-span scramjet nozzle afterbody module.

  18. Navier-Stokes calculations of scramjet-nozzle-afterbody flowfields

    NASA Astrophysics Data System (ADS)

    Baysal, Oktay

    1991-07-01

    A comprehensive computational fluid dynamics effort was conducted from 1987 to 1990 to properly design a nozzle and lower aft end of a generic hypersonic vehicle powered by a scramjet engine. The interference of the exhaust on the control surfaces of the vehicle can have adverse effects on its stability. Two-dimensional Navier-Stokes computations were performed, where the exhaust gas was assumed to be air behaving as a perfect gas. Then the exhaust was simulated by a mixture of Freon-12 and argon, which required solving the Navier-Stokes equations for four species: (nitrogen, oxygen, Freon-12, and argon). This allowed gamma to be a field variable during the mixing of the multispecies gases. Two different mixing models were used and comparisons between them as well as the perfect gas air calculations were made to assess their relative merits. Finally, the three dimensional Navier-Stokes computations were made for the full-span scramjet nozzle afterbody module.

  19. Investigations of coherent anti-Stokes Raman spectroscopy /CARS/ for combustion diagnostics

    NASA Technical Reports Server (NTRS)

    Eckbreth, A. C.; Hall, R. J.; Shirley, J. A.

    1979-01-01

    Investigations of coherent anti-Stokes Raman spectroscopy (CARS) in a variety of flames are presented. Thermometry has received the primary emphasis in these studies, but species spectral and sensitivity studies will also be described. CARS is generated by mixing a 10 pps, frequency-doubled neodymium 'pump' laser with a spectrally broadband, laser-pumped, Stokes-shifted dye laser. This approach obviates the requirement to frequency scan the dye laser and generates the entire CARS spectrum with each pulse permitting, in principle, instantaneous measurements of medium properties. CARS spectra of N2, CO, O2, H2O, CO2 and CH4 in flames will be presented. In general these spectra exhibit very good agreement with computer synthesized spectra and permit measurements of temperature and species concentration. To illustrate the applicability of CARS to practical combustion diagnostics, CARS signatures from N2 have been employed to map the temperature field throughout a small, luminous, highly sooting propane diffusion flame

  20. Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing.

    PubMed

    Baumgartl, Martin; Gottschall, Thomas; Abreu-Afonso, Javier; Díez, Antonio; Meyer, Tobias; Dietzek, Benjamin; Rothhardt, Manfred; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas

    2012-09-10

    An environmentally-stable low-repetition rate fiber oscillator is developed to produce narrow-bandwidth pulses with several tens of picoseconds duration. Based on this oscillator an alignment-free all-fiber laser for multi-photon microscopy is realized using in-fiber frequency conversion based on four-wave-mixing. Both pump and Stokes pulses for coherent anti-Stokes Raman scattering (CARS) microscopy are readily available from one fiber end, intrinsically overlapped in space and time, which drastically simplifies the experimental handling for the user. The complete laser setup is mounted on a home-built laser scanning microscope with small footprint. High-quality multimodal microscope images of biological tissue are presented probing the CH-stretching resonance of lipids at an anti-Stokes Raman-shift of 2845 cm(-1) and second-harmonic generation of collagen. Due to its simplicity, compactness, maintenance-free operation, and ease-of-use the presented low-cost laser is an ideal source for bio-medical applications outside laser laboratories and in particular inside clinics.

  1. Communication: Fast dynamics perspective on the breakdown of the Stokes-Einstein law in fragile glassformers

    NASA Astrophysics Data System (ADS)

    Puosi, F.; Pasturel, A.; Jakse, N.; Leporini, D.

    2018-04-01

    The breakdown of the Stokes-Einstein (SE) law in fragile glassformers is examined by Molecular-Dynamics simulations of atomic liquids and polymers and consideration of the experimental data concerning the archetypical ortho-terphenyl glassformer. All the four systems comply with the universal scaling between the viscosity (or the structural relaxation) and the Debye-Waller factor ⟨u2⟩, the mean square amplitude of the particle rattling in the cage formed by the surrounding neighbors. It is found that the SE breakdown is scaled in a master curve by a reduced ⟨u2⟩. Two approximated expressions of the latter, with no and one adjustable parameter, respectively, are derived.

  2. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  3. A zwitterionic squaraine dye with a large Stokes shift for in vivo and site-selective protein sensing.

    PubMed

    Xu, Yongqian; Liu, Qin; Li, Xiaopeng; Wesdemiotis, Chrys; Pang, Yi

    2012-11-28

    A novel squaraine dye (SQ) exhibits improved fluorescence response toward protein detection by incorporation of a zwitterionic structure. With the aid of a dansylamide (DNSA) substituent, the new probe (DNSA-SQ) exhibits remarkable selectivity in binding to site I (a specific substructure in protein).

  4. Charge Transport in Nonaqueous Liquid Electrolytes: A Paradigm Shift

    DTIC Science & Technology

    2015-05-18

    that provide inadequate descriptions of experimental data, often using empirical equations whose fitting parameters have no physical significance...provide inadequate descriptions of experimental data, often using empirical equations whose fitting parameters have no physical significance...Ea The hydrodynamic model, utilizing the Stokes equation describes isothermal conductivity, self-diffusion coefficient, and the dielectric

  5. Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging.

    PubMed

    Zhang, Jinfeng; Chen, Rui; Zhu, Zelin; Adachi, Chihaya; Zhang, Xiaohong; Lee, Chun-Sing

    2015-12-02

    Fluorescent organic nanoparticles based on small molecules have been regarded as promising candidates for bioimaging in recent years. In this study, we report a highly stable near-infrared (NIR) fluorescent organic nanoprobes based on nanoparticles of an anthraquinone derivate with strong aggregation-induced emission (AIE) characteristics and a large Stokes shift (>175 nm). These endow the nanoprobe with high fluorescent brightness and high signal-to-noise ratio. On the other hand, the nanoprobe also shows low cytotoxicity, good stability over a wide pH range, superior resistance against photodegradation and photobleaching comparing to typical commercial fluorescent organic dyes such as fluorescein sodium. Endowed with such merits in term of optical performance, biocompatibility, and stability, the nanoprobe is demonstrated to be an ideal fluorescent probe for noninvasive long-term cellular tracing and imaging applications. As an example, it is shown that strong red fluorescence from the nanoprobe can still be clearly observed in A549 human lung cancer cells after incubation for six generations over 15 days.

  6. Settling equivalence of detrital minerals and grain-size dependence of sediment composition

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni

    2008-08-01

    This study discusses the laws which govern sediment deposition, and consequently determine size-dependent compositional variability. A theoretical approach is substantiated by robust datasets on major Alpine, Himalayan, and African sedimentary systems. Integrated (bulk-petrography, heavy-mineral, X-ray powder diffraction) multiple-window analyses at 0.25ϕ to 0.50ϕ sieve interval of eighty-five fluvial, beach, and eolian-dune samples, ranging from very fine silt to coarse sand, document homologous intrasample compositional trends, revealed by systematic concentration of denser grains in finer-grained fractions (“size-density sorting”). These trends are explained by the settling-equivalence principle, stating that detrital minerals are deposited together if their settling velocity is the same. Settling of silt is chiefly resisted by fluid viscosity, and Stokes' law predicts that size differences between detrital minerals in ϕ units (“size shifts”) are half the difference between the logarithms of their submerged densities. Settling of pebbles is chiefly resisted by turbulence effects, and the Impact law predicts double size shifts than Stokes' law. Settling of sand is resisted by both viscosity and turbulence, the settling-equivalence formula is complex, and size shifts increase - with increasing settling velocity and grain size - from those predicted by Stokes' law to those predicted by the Impact law. In wind-laid sands, size shifts match those predicted by the Impact law; size-density sorting is thus greater than in water-laid fine sands. New analytical, graphical, and statistical techniques for rigorous settling-equivalence analysis of terrigenous sediments are illustrated. Deviations associated with non-spherical shape, density anomalies, inheritance from source rocks, or mixing of detrital species with contrasting provenance and different size distribution are also tentatively assessed. Such integrated theoretical and experimental approach allows us to mathematically predict intrasample compositional variability of water-laid and wind-laid sediments, once the density of detrital components is known.

  7. Influence of electrolytes on the microenvironment of F127 triblock copolymer micelles: a solvation and rotational dynamics study of coumarin dyes.

    PubMed

    Kumbhakar, Manoj; Ganguly, Rajib

    2007-04-19

    Dynamic Stokes' shift and fluorescence anisotropy measurements of coumarin 153 (C153) and coumarin 151 (C151) as fluorescence probes have been carried out to understand the influence of electrolytes (NaCl and LiCl) on the hydration behavior of aqueous (ethylene oxide)100-(propylene oxide)70-(ethylene oxide)100 (EO100-PO70-EO100, F127) block copolymer micelles. A small blue shift in the fluorescence spectra of C153 has been observed in presence of electrolytes due to the dehydration of the oxyethylene chains in the PEO-PPO region, although fluorescence spectra of C151 remain unaltered. The close vicinity of bulk water for C151 probably negates the effect of dehydration in the PEO region. Fluorescence anisotropy measurements indicate a gradual increase in microviscosity with electrolyte concentrations. The partial collapse of copolymer blocks in the presence of electrolytes has been suggested as a reason for the increase in microviscosity along with the strong hydration of ions in the corona region. The interplay between the ion hydration and the mechanically trapped water content, and specific interaction of ions, such as complexation of Li+ ions with the copolymer block, is found to control solvation dynamics in the corona region. In addition to that, it has been established that Na+ ions reside deep into the corona region whereas Li+ ions prefer to reside closer to the surface. Owing to its higher lyotropicity, LiCl influences the corona hydration to a greater extent than NaCl and sets in micelle-micelle interaction above the 2 M LiCl concentration, as reflected in the saturation of solvation time constants. The formation of larger clusters of F127 micelles above 2 M LiCl has been confirmed by dynamic light scattering measurements; however, such cluster formation is not evident with NaCl.

  8. Effects of Turbulence on Settling Velocities of Synthetic and Natural Particles

    NASA Astrophysics Data System (ADS)

    Jacobs, C.; Jendrassak, M.; Gurka, R.; Hackett, E. E.

    2014-12-01

    For large-scale sediment transport predictions, an important parameter is the settling or terminal velocity of particles because it plays a key role in determining the concentration of sediment particles within the water column as well as the deposition rate of particles onto the seabed. The settling velocity of particles is influenced by the fluid dynamic environment as well as attributes of the particle, such as its size, shape, and density. This laboratory study examines the effects of turbulence, generated by an oscillating grid, on both synthetic and natural particles for a range of flow conditions. Because synthetic particles are spherical, they serve as a reference for the natural particles that are irregular in shape. Particle image velocimetry (PIV) and high-speed imaging systems were used simultaneously to study the interaction between the fluid mechanics and sediment particles' dynamics in a tank. The particles' dynamics were analyzed using a custom two-dimensional tracking algorithm used to obtain distributions of the particle's velocity and acceleration. Turbulence properties, such as root-mean-square turbulent velocity and vorticity, were calculated from the PIV data. Results are classified by Stokes number, which was based-on the integral scale deduced from the auto-correlation function of velocity. We find particles with large Stokes numbers are unaffected by the turbulence, while particles with small Stokes numbers primarily show an increase in settling velocity in comparison to stagnant flow. The results also show an inverse relationship between Stokes number and standard deviation of the settling velocity. This research enables a better understanding of the interdependence between particles and turbulent flow, which can be used to improve parameterizations in large-scale sediment transport models.

  9. CFD application to subsonic inlet airframe integration. [computational fluid dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1988-01-01

    The fluid dynamics of curved diffuser duct flows of military aircraft is discussed. Three-dimensional parabolized Navier-Stokes analysis, and experiment techniques are reviewed. Flow measurements and pressure distributions are shown. Velocity vectors, and the effects of vortex generators are considered.

  10. The dynamics of oceanic fronts. I - The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1980-01-01

    The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.

  11. Measurement configuration optimization for dynamic metrology using Stokes polarimetry

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Zhang, Chuanwei; Zhong, Zhicheng; Gu, Honggang; Chen, Xiuguo; Jiang, Hao; Liu, Shiyuan

    2018-05-01

    As dynamic loading experiments such as a shock compression test are usually characterized by short duration, unrepeatability and high costs, high temporal resolution and precise accuracy of the measurements is required. Due to high temporal resolution up to a ten-nanosecond-scale, a Stokes polarimeter with six parallel channels has been developed to capture such instantaneous changes in optical properties in this paper. Since the measurement accuracy heavily depends on the configuration of the probing beam incident angle and the polarizer azimuth angle, it is important to select an optimal combination from the numerous options. In this paper, a systematic error propagation-based measurement configuration optimization method corresponding to the Stokes polarimeter was proposed. The maximal Frobenius norm of the combinatorial matrix of the configuration error propagating matrix and the intrinsic error propagating matrix is introduced to assess the measurement accuracy. The optimal configuration for thickness measurement of a SiO2 thin film deposited on a Si substrate has been achieved by minimizing the merit function. Simulation and experimental results show a good agreement between the optimal measurement configuration achieved experimentally using the polarimeter and the theoretical prediction. In particular, the experimental result shows that the relative error in the thickness measurement can be reduced from 6% to 1% by using the optimal polarizer azimuth angle when the incident angle is 45°. Furthermore, the optimal configuration for the dynamic metrology of a nickel foil under quasi-dynamic loading is investigated using the proposed optimization method.

  12. Transition from fractional to classical Stokes-Einstein behaviour in simple fluids.

    PubMed

    Coglitore, Diego; Edwardson, Stuart P; Macko, Peter; Patterson, Eann A; Whelan, Maurice

    2017-12-01

    An optical technique for tracking single particles has been used to evaluate the particle diameter at which diffusion transitions from molecular behaviour described by the fractional Stokes-Einstein relationship to particle behaviour described by the classical Stokes-Einstein relationship. The results confirm a prior prediction from molecular dynamic simulations that there is a particle size at which transition occurs and show it is inversely dependent on concentration and viscosity but independent of particle density. For concentrations in the range 5 × 10 -3 to 5 × 10 -6  mg ml -1 and viscosities from 0.8 to 150 mPa s, the transition was found to occur in the diameter range 150-300 nm.

  13. A fictitious domain finite element method for simulations of fluid-structure interactions: The Navier-Stokes equations coupled with a moving solid

    NASA Astrophysics Data System (ADS)

    Court, Sébastien; Fournié, Michel

    2015-05-01

    The paper extends a stabilized fictitious domain finite element method initially developed for the Stokes problem to the incompressible Navier-Stokes equations coupled with a moving solid. This method presents the advantage to predict an optimal approximation of the normal stress tensor at the interface. The dynamics of the solid is governed by the Newton's laws and the interface between the fluid and the structure is materialized by a level-set which cuts the elements of the mesh. An algorithm is proposed in order to treat the time evolution of the geometry and numerical results are presented on a classical benchmark of the motion of a disk falling in a channel.

  14. Development of 873 nm Raman Seed Pulse for Raman-seeded Laser Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Grigsby, F.; Peng, D.; Downer, M. C.

    2004-12-01

    By using a Raman-shifted seed pulse coincident with a main driving pulse, laser wakefields can be generated with sub-relativistic intensity, coherent control and high repetition rate in the self-modulated regime. Experimentally, the generation of a chirped Stokes laser pulse by inserting a solid state Raman shifter, Ba(NO3)2, into a CPA system before the compressor (to suppress self-phase modulation) will be described. We will also report on design, modeling and experimental demonstration of a novel compressor for the Stokes pulse that uses a mismatched grating pair to achieve a near transform-limited seed pulse. Finally, we will describe the design, simulation and current status of Raman-seeded LWFA experiments that use this novel source.

  15. Wavefront sensing with all-digital Stokes measurements

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Milione, Giovanni; Alfano, Robert R.; Forbes, Andrew

    2014-09-01

    A long-standing question in optics has been to efficiently measure the phase (or wavefront) of an optical field. This has led to numerous publications and commercial devices such as phase shift interferometry, wavefront reconstruction via modal decomposition and Shack-Hartmann wavefront sensors. In this work we develop a new technique to extract the phase which in contrast to previously mentioned methods is based on polarization (or Stokes) measurements. We outline a simple, all-digital approach using only a spatial light modulator and a polarization grating to exploit the amplitude and phase relationship between the orthogonal states of polarization to determine the phase of an optical field. We implement this technique to reconstruct the phase of static and propagating optical vortices.

  16. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a flexible UH-60A rotor in forward flight, where the rotor wake interacts with the rotor blades. These flow conditions involved blade vortex interaction and dynamic stall, two common conditions that occur as modern helicopter designs strive to achieve greater flight speeds and payload capacity. These numerical simulations utilized high-order spatial accuracy and delayed detached eddy simulation. Emphasis was placed on understanding how improved rotor wake resolution affects the prediction of the normal force, pitching moment, and chord force of the rotor. Adaptive mesh refinement was used to highly resolve the turbulent rotor wake in a computationally efficient manner. Moreover, blade vortex interaction was found to trigger dynamic stall. Time-dependent flow visualization was utilized to provide an improved understanding of the numerical and physical mechanisms involved with three-dimensional dynamic stall.

  17. A Quasi-Dynamic Approach to modelling Hydrodynamic Focusing

    NASA Astrophysics Data System (ADS)

    Kommajosula, Aditya; Xu, Songzhe; Wu, Chueh-Yu; di Carlo, Dino; Ganapathysubramanian, Baskar; ComPM Lab Team; Di Carlo Lab Collaboration

    2016-11-01

    We examine a particle's tendency at different spatial locations to shift/rotate towards the equilibrium location, by constrained simulation. Although studies in the past have used this procedure in conjunction with FSI methods to great effect, the current work in 2D explores an alternative approach by utilizing a modified trust-region-based root-finding algorithm to solve for particle position and velocities at equilibrium, using "snapshots" of finite-element solutions to the steady-state Navier-Stokes equations iteratively over a computational domain attached to the particle reference frame. Through an assortment of test cases comprising circular and non-circular particle geometries, an incorporation of stability theory as applicable to dynamical systems is demonstrated, to locate the final focusing location and velocities. The results are compared with previous experimental/numerical reports, and found to be in close agreement. A thousand-fold increase is observed in computational time for the current workflow from its transient counterpart, for an illustrative case. The current framework is formulated in 2D for 3 Degrees-of-Freedom, and will be extended to 3D. This framework potentially allows for quick, high-throughput parametric space studies of equilibrium scaling laws.

  18. Dynamic wetting failure in surfactant solutions

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Yu; Vandre, Eric; Carvalho, Marcio; Kumar, Satish

    2015-11-01

    The influence of insoluble surfactants on dynamic wetting failure during displacement of Newtonian fluids in a rectangular channel is studied in this work. A hydrodynamic model for steady Stokes flows of dilute surfactant solutions is developed and evaluated using three approaches: (i) a one-dimensional (1D) lubrication-type approach, (ii) a novel hybrid of a 1D description of the receding phase and a 2D description of the advancing phase, and (iii) an asymptotic theory of Cox. Steady-state solution families in the form of macroscopic contact angles as a function of the capillary number are determined and limit points are identified. When air is the receding fluid, Marangoni stresses are found to increase the receding-phase pressure gradients near the contact line by thinning the air film without significantly changing the capillary-pressure gradients there. As consequence, the limit points shift to lower capillary numbers and the onset of wetting failure is promoted. The model predictions are then used to interpret decades-old experimental observations concerning the influence of surfactants on air entrainment. The hybrid modeling approach developed here can readily be extended to more complicated geometries where a thin air layer is present near a contact line.

  19. Influence of quantum well inhomogeneities on absorption, spontaneous emission, photoluminescence decay time, and lasing in polar InGaN quantum wells emitting in the blue-green spectral region

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Kudrawiec, R.; Syperek, M.; Misiewicz, J.; Siekacz, M.; Cywinski, G.; Khachapuridze, A.; Suski, T.; Skierbiszewski, C.

    2014-06-01

    It is shown that in polar InGaN QWs emitting in the blue-green spectral region a Stokes shift between spontaneous emission (SE) and optical transition observed in contactless electroreflectance (CER) spectrum (absorption-like technique) can be observed even at room temperature, despite the fact that the SE is not associated with localized states. Time resolved photoluminescence measurements clearly confirm that the SE is strongly localized at low temperatures whereas at room temperature the carrier localization disappears and the SE can be attributed to the fundamental transition in this QW. The Stokes shift is observed in this QW system because of the large built-in electric field, i.e., the CER transition is a superposition of all optical transitions with non-zero electron-hole overlap integrals and, therefore, the energy of this transition does not correspond to the fundamental transition of InGaN QW. Lasing from this QW has been observed at the wavelength of 475 nm, whereas the SE was observed at 500 nm. The 25 nm shift between the lasing and SE is observed because of a screening of the built-in electric field by photogenerated carriers. However, our analysis shows that the built-in electric field inside the InGaN QW region is not fully screened under the lasing conditions.

  20. Progress and supercomputing in computational fluid dynamics; Proceedings of U.S.-Israel Workshop, Jerusalem, Israel, December 1984

    NASA Technical Reports Server (NTRS)

    Murman, E. M. (Editor); Abarbanel, S. S. (Editor)

    1985-01-01

    Current developments and future trends in the application of supercomputers to computational fluid dynamics are discussed in reviews and reports. Topics examined include algorithm development for personal-size supercomputers, a multiblock three-dimensional Euler code for out-of-core and multiprocessor calculations, simulation of compressible inviscid and viscous flow, high-resolution solutions of the Euler equations for vortex flows, algorithms for the Navier-Stokes equations, and viscous-flow simulation by FEM and related techniques. Consideration is given to marching iterative methods for the parabolized and thin-layer Navier-Stokes equations, multigrid solutions to quasi-elliptic schemes, secondary instability of free shear flows, simulation of turbulent flow, and problems connected with weather prediction.

  1. Comprehensive investigation of the excited-state dynamics of push-pull triphenylamine dyes as models for photonic applications.

    PubMed

    Ishow, Eléna; Clavier, Gilles; Miomandre, Fabien; Rebarz, Mateusz; Buntinx, Guy; Poizat, Olivier

    2013-09-07

    A series of emitting push-pull triarylamine derivatives, models of their widely used homologues in photonics and organic electronics, was investigated by steady-state and time-resolved spectroscopy. Their structural originality stems from the sole change of the electron-withdrawing substituent X (-H: 1, -CN: 2, -NO2: 3, -CHC(CN)2: 4), giving rise to efficient emission tuning from blue to red upon increasing the X electron-withdrawing character. All compounds are highly fluorescent in alkanes. The more polar compounds 2-4 undergo considerable Stokes shift and emission quenching in polar solvents. Femtosecond transient absorption data allowed us to identify the nature of the emissive state which varies as a function of the compound and surrounding polarity. A long-lived ππ* excited state with weak charge transfer character was found for 1. This excited state evolves into a long-lived ICT state with red-shifted emission for 2 in polar solvents. For 3 and 4, the ICT state is directly populated in all solvents. Long-lived and emissive in n-hexane, it relaxes in toluene to a new ICT' conformation with stronger charge transfer character and enhanced Stokes shift. In more polar THF, ethanol, and nitrile solvents, ICT relaxes to a dark excited state ICT'' with viscosity-dependent kinetics (<10 ps). The ICT'' state lifetime drops with increasing solvent polarity (150 ps for 3 in THF, 8.5 ps in butyronitrile, 1.9 ps in acetonitrile), denoting an efficient radiationless deactivation to the ground state (back charge transfer). This result reveals a very small S0-S1 energy gap at the relaxed ICT'' geometry, with a possible close-lying S0-S1 conical intersection, which suggests that the ICT → ICT'' process results from a structural change involving a large-amplitude molecular distortion. This fast structural change can account for the strong fluorescence quenching observed for 3 and 4 in polar solvents. Finally, the magnitude of intersystem crossing between the singlet and triplet excited states largely depends on the electron-deficient X unit and the solvent itself. These observations help one conclude on the prevailing role played by the electron-withdrawing groups and the surrounding polarity in the photophysical performances of triphenylamine derivatives, largely employed in numerous emissive solid-state devices.

  2. Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1996-01-01

    Novel fluorescent DNA-staining dyes are provided combining asymmetric cyanine azole-indolenine dyes, which provide for strong DNA affinity, large Stokes shifts and emission in the red region of the spectrum. The dyes find particular application in gel electrophoresis and for labels which may be bound to a variety of compositions in a variety of contexts.

  3. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    PubMed

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  4. On the dynamics of the Mouth of the Columbia River: Results from a three-dimensional fully coupled wave-current interaction model

    NASA Astrophysics Data System (ADS)

    Akan, Çiǧdem; Moghimi, Saeed; Özkan-Haller, H. Tuba; Osborne, John; Kurapov, Alexander

    2017-07-01

    Numerical simulations were performed using a 3-D ocean circulation model (ROMS) two-way coupled to a phase-averaged wave propagation model (SWAN), to expand our understanding of the dynamics of wave-current interactions at the Mouth of the Columbia River (MCR). First, model results are compared with water elevations, currents, temperature, salinity, and wave measurements obtained by the U.S. Army Corp of Engineers during the Mega-Transect Experiment in 2005. We then discuss the effects of the currents on the waves and vice versa. Results show that wave heights are intensified notably at the entrance of the mouth in the presence of the tidal currents, especially in ebb flows. We also find nonlocal modifications to the wave field because of wave focusing processes that redirect wave energy toward the inlet mouth from adjacent areas, resulting in the presence of a tidal signatures in areas where local currents are weak. The model also suggests significant wave amplification at the edge of the expanding plume in the later stages of ebb, some tens of kilometers offshore of the inlet mouth, with potential implications for navigation safety. The effect of waves on the location of the plume is also analyzed, and results suggest that the plume is shifted in the down-wave direction when wave effects are considered, and that this shift is more pronounced for larger waves, and consistent with the presence of alongshore advection terms in the salt advection equation, which are related to the Stokes velocities associated with waves.

  5. Validity of the Stokes-Einstein relation in liquids: simple rules from the excess entropy.

    PubMed

    Pasturel, A; Jakse, N

    2016-12-07

    It is becoming common practice to consider that the Stokes-Einstein relation D/T~ η -1 usually works for liquids above their melting temperatures although there is also experimental evidence for its failure. Here we investigate numerically this commonly-invoked assumption for simple liquid metals as well as for their liquid alloys. Using ab initio molecular dynamics simulations we show how entropy scaling relationships developed by Rosenfeld can be used to predict the conditions for the validity of the Stokes-Einstein relation in the liquid phase. Specifically, we demonstrate the Stokes-Einstein relation may break down in the liquid phase of some liquid alloys mainly due to the presence of local structural ordering as evidenced in their partial two-body excess entropies. Our findings shed new light on the understanding of transport properties of liquid materials and will trigger more experimental and theoretical studies since excess entropy and its two-body approximation are readily obtainable from standard experiments and simulations.

  6. Thin-layer and full Navier-Stokes calculations for turbulent supersonic flow over a cone at an angle of attack

    NASA Technical Reports Server (NTRS)

    Smith, Crawford F.; Podleski, Steve D.

    1993-01-01

    The proper use of a computational fluid dynamics code requires a good understanding of the particular code being applied. In this report the application of CFL3D, a thin-layer Navier-Stokes code, is compared with the results obtained from PARC3D, a full Navier-Stokes code. In order to gain an understanding of the use of this code, a simple problem was chosen in which several key features of the code could be exercised. The problem chosen is a cone in supersonic flow at an angle of attack. The issues of grid resolution, grid blocking, and multigridding with CFL3D are explored. The use of multigridding resulted in a significant reduction in the computational time required to solve the problem. Solutions obtained are compared with the results using the full Navier-Stokes equations solver PARC3D. The results obtained with the CFL3D code compared well with the PARC3D solutions.

  7. Establishing Approaches to Modeling the Ares I-X and Ares I Roll Control System with Free-stream Interaction

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Deere, Karen A.; Abdol-Hamid, Khales S.

    2011-01-01

    Approaches were established for modeling the roll control system and analyzing the jet interactions of the activated roll control system on Ares-type configurations using the USM3D Navier-Stokes solver. Components of the modeling approach for the roll control system include a choice of turbulence models, basis for computing a dynamic equivalence of the real gas rocket exhaust flow in terms of an ideal gas, and techniques to evaluate roll control system performance for wind tunnel and flight conditions. A simplified Ares I-X configuration was used during the development phase of the roll control system modeling approach. A limited set of Navier-Stokes solutions was obtained for the purposes of this investigation and highlights of the results are included in this paper. The USM3D solutions were compared to equivalent solutions at select flow conditions from a real gas Navier- Stokes solver (Loci-CHEM) and a structured overset grid Navier-Stokes solver (OVERFLOW).

  8. FIRST ZEEMAN DOPPLER IMAGING OF A COOL STAR USING ALL FOUR STOKES PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosén, L.; Kochukhov, O.; Wade, G. A.

    Magnetic fields are ubiquitous in active cool stars, but they are in general complex and weak. Current Zeeman Doppler imaging (ZDI) studies of cool star magnetic fields chiefly employ circular polarization observations because linear polarization is difficult to detect and requires a more sophisticated radiative transfer modeling to interpret. But it has been shown in previous theoretical studies, and in the observational analyses of magnetic Ap stars, that including linear polarization in the magnetic inversion process makes it possible to correctly recover many otherwise lost or misinterpreted magnetic features. We have obtained phase-resolved observations in all four Stokes parameters ofmore » the RS CVn star II Peg at two separate epochs. Here we present temperature and magnetic field maps reconstructed for this star using all four Stokes parameters. This is the very first such ZDI study of a cool active star. Our magnetic inversions reveal a highly structured magnetic field topology for both epochs. The strength of some surface features is doubled or even quadrupled when linear polarization is taken into account. The total magnetic energy of the reconstructed field map also becomes about 2.1–3.5 times higher. The overall complexity is also increased as the field energy is shifted toward higher harmonic modes when four Stokes parameters are used. As a consequence, the potential field extrapolation of the four Stokes parameter ZDI results indicates that magnetic field becomes weaker at a distance of several stellar radii due to a decrease of the large-scale field component.« less

  9. Derivation of the Navier-Stokes-Poisson System with Radiation for an Accretion Disk

    NASA Astrophysics Data System (ADS)

    Ducomet, Bernard; Nečasová, Šárka; Pokorný, Milan; Rodríguez-Bellido, M. Angeles

    2018-01-01

    We study the 3-D compressible barotropic radiation fluid dynamics system describing the motion of the compressible rotating viscous fluid with gravitation and radiation confined to a straight layer Ω _{ɛ } = ω × (0,ɛ ) , where ω is a 2-D domain. We show that weak solutions in the 3-D domain converge to the strong solution of—the rotating 2-D Navier-Stokes-Poisson system with radiation in ω as ɛ → 0 for all times less than the maximal life time of the strong solution of the 2-D system when the Froude number is small (Fr=O(√{ɛ })) ,—the rotating pure 2-D Navier-Stokes system with radiation in ω as ɛ → 0 when Fr=O(1).

  10. Derivation of the Navier-Stokes-Poisson System with Radiation for an Accretion Disk

    NASA Astrophysics Data System (ADS)

    Ducomet, Bernard; Nečasová, Šárka; Pokorný, Milan; Rodríguez-Bellido, M. Angeles

    2018-06-01

    We study the 3-D compressible barotropic radiation fluid dynamics system describing the motion of the compressible rotating viscous fluid with gravitation and radiation confined to a straight layer Ω _{ɛ } = ω × (0,ɛ ) , where ω is a 2-D domain. We show that weak solutions in the 3-D domain converge to the strong solution of—the rotating 2-D Navier-Stokes-Poisson system with radiation in ω as ɛ → 0 for all times less than the maximal life time of the strong solution of the 2-D system when the Froude number is small (Fr={O}(√{ɛ })),—the rotating pure 2-D Navier-Stokes system with radiation in ω as ɛ → 0 when Fr={O}(1).

  11. Holographic DC conductivity and Onsager relations

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.; Griffin, Tom; Lohitsiri, Nakarin; Melgar, Luis

    2017-07-01

    Within holography the DC conductivity can be obtained by solving a system of Stokes equations for an auxiliary fluid living on the black hole horizon. We show that these equations can be derived from a novel variational principle involving a functional that depends on the fluid variables of interest as well as the time reversed quantities. This leads to simple derivation of the Onsager relations for the conductivity. We also obtain the relevant Stokes equations for bulk theories of gravity in four dimensions including a ϑF ∧ F term in the Lagrangian, where ϑ is a function of dynamical scalar fields. We discuss various realisations of the anomalous Hall conductivity that this term induces and also solve the Stokes equations for holographic lattices which break translations in one spatial dimension.

  12. Adaptive and iterative methods for simulations of nanopores with the PNP-Stokes equations

    NASA Astrophysics Data System (ADS)

    Mitscha-Baude, Gregor; Buttinger-Kreuzhuber, Andreas; Tulzer, Gerhard; Heitzinger, Clemens

    2017-06-01

    We present a 3D finite element solver for the nonlinear Poisson-Nernst-Planck (PNP) equations for electrodiffusion, coupled to the Stokes system of fluid dynamics. The model serves as a building block for the simulation of macromolecule dynamics inside nanopore sensors. The source code is released online at http://github.com/mitschabaude/nanopores. We add to existing numerical approaches by deploying goal-oriented adaptive mesh refinement. To reduce the computation overhead of mesh adaptivity, our error estimator uses the much cheaper Poisson-Boltzmann equation as a simplified model, which is justified on heuristic grounds but shown to work well in practice. To address the nonlinearity in the full PNP-Stokes system, three different linearization schemes are proposed and investigated, with two segregated iterative approaches both outperforming a naive application of Newton's method. Numerical experiments are reported on a real-world nanopore sensor geometry. We also investigate two different models for the interaction of target molecules with the nanopore sensor through the PNP-Stokes equations. In one model, the molecule is of finite size and is explicitly built into the geometry; while in the other, the molecule is located at a single point and only modeled implicitly - after solution of the system - which is computationally favorable. We compare the resulting force profiles of the electric and velocity fields acting on the molecule, and conclude that the point-size model fails to capture important physical effects such as the dependence of charge selectivity of the sensor on the molecule radius.

  13. Ultrafast Hydration Dynamics and Coupled Water-Protein Fluctuations in Apomyoglobin

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Zhang, Luyuan; Wang, Lijuan; Zhong, Dongping

    2009-06-01

    Protein hydration dynamics are of fundamental importance to its structure and function. Here, we characterize the global solvation dynamics and anisotropy dynamics around the apomyoglobin surface in different conformational states (native and molten globule) by measuring the Stokes shift and anisotropy decay of tryptophan with femtosecond-resolved fluorescence upconversion. With site-directed mutagenesis, we designed sixteen mutants with one tryptophan in each, and placed the probe at a desirable position ranging from buried in the protein core to fully solvent-exposed on the protein surface. In all protein sites studied, two distinct solvation relaxations (1-8 ps and 20-200 ps) were observed, reflecting the initial collective water relaxation and subsequent hydrogen-bond network restructuring, respectively, and both are strongly correlated with protein's local structures and chemical properties. The hydration dynamics of the mutants in molten globule state are faster than those observed in native state, indicating that the protein becomes more flexible and less structured when its conformation is converted from fully-folded native state to partially-folded molten globule state. Complementary, fluorescence anisotropy dynamics of all mutants in native state show an increasing trend of wobbling times (40-260 ps) when the location of the probe is changed from a loop, to a lateral helix, and then, to the compact protein core. Such an increase in wobbling times is related to the local protein structural rigidity, which relates the interaction of water with side chains. The ultrafast hydration dynamics and related side-chain motion around the protein surface unravel the coupled water-protein fluctuations on the picosecond time scales and indicate that the local protein motions are slaved by hydrating water fluctuations.

  14. Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces

    NASA Astrophysics Data System (ADS)

    Dutta-Gupta, Shourya; Dabidian, Nima; Kholmanov, Iskandar; Belkin, Mikhail A.; Shvets, Gennady

    2017-03-01

    Plasmonic metasurfaces have been employed for moulding the flow of transmitted and reflected light, thereby enabling numerous applications that benefit from their ultra-thin sub-wavelength format. Their appeal is further enhanced by the incorporation of active electro-optic elements, paving the way for dynamic control of light's properties. In this paper, we realize a dynamic polarization state generator using a graphene-integrated anisotropic metasurface (GIAM) that converts the linear polarization of the incident light into an elliptical one. This is accomplished by using an anisotropic metasurface with two principal polarization axes, one of which possesses a Fano-type resonance. A gate-controlled single-layer graphene integrated with the metasurface was employed as an electro-optic element controlling the phase and intensity of light polarized along the resonant axis of the GIAM. When the incident light is polarized at an angle to the resonant axis of the metasurface, the ellipticity of the reflected light can be dynamically controlled by the application of a gate voltage. Thus accomplished dynamic polarization control is experimentally demonstrated and characterized by measuring the Stokes polarization parameters. Large changes of the ellipticity and the tilt angle of the polarization ellipse are observed. Our measurements show that the tilt angle can be changed from positive values through zero to negative values while keeping the ellipticity constant, potentially paving the way to rapid ellipsometry and other characterization techniques requiring fast polarization shifting. This article is part of the themed issue 'New horizons for nanophotonics'.

  15. A single thiazole orange molecule forms an exciplex in a DNA i-motif.

    PubMed

    Xu, Baochang; Wu, Xiangyang; Yeow, Edwin K L; Shao, Fangwei

    2014-06-18

    A fluorescent exciplex of thiazole orange (TO) is formed in a single-dye conjugated DNA i-motif. The exciplex fluorescence exhibits a large Stokes shift, high quantum yield, robust response to pH oscillation and little structural disturbance to the DNA quadruplex, which can be used to monitor the folding of high-order DNA structures.

  16. Use of Multiple Fluorescent Labels in Biological Sensing

    DTIC Science & Technology

    2006-05-01

    resulting in labels that are brighter and have longer Stokes shifts than the current standard; (B) to make excimer- and exciplex -forming probes for...2) to make excimer- and exciplex -forming probes for repetitive DNA sequences such as telomeres and centromeres, and to demonstrate them both...between fluorophores, and characterized unusual interactions, including water-soluble excimers and exciplexes . We investigated multiple ways to

  17. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander M.; Benson, Scott C.

    1999-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  18. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander M.; Benson, Scott C.

    1998-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  19. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1995-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  20. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1997-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  1. A simple method of measuring the effective SRS coefficient in single-mode optical fibres and the range of its applicability

    NASA Astrophysics Data System (ADS)

    Shikhaliev, I. I.; Gainov, V. V.; Dorozhkin, A. N.; Nanii, O. E.; Konyshev, V. A.; Treshchikov, V. N.

    2017-11-01

    This paper describes techniques for measuring the SRS coefficient in a wide spectral range, including the region of small Stokes shifts. A simple, approximate method is proposed for evaluating the SRS coefficient near a gain peak. Spectral dependences of the SRS coefficient are presented for various telecom fibres.

  2. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    PubMed

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.

  3. Photophysical study of some 3-benzoylmethyleneindol-2-ones and estimation of ground and excited states dipole moments from solvatochromic methods using solvent polarity parameters

    NASA Astrophysics Data System (ADS)

    Saroj, Manju K.; Sharma, Neera; Rastogi, Ramesh C.

    2012-03-01

    3-Benzoylmethyleneindol-2-ones, isatin based chalcones containing donor and acceptor moieties that exhibit excited-state intramolecular charge transfer, have been studied in different solvents by absorption and emission spectroscopy. The excited state behavior of these compounds is strongly dependent on the nature of substituents and the environment. These compounds show multiple emissions arising from a locally excited state and the two states due to intramolecular processes viz. intramolecular charge transfer (ICT) and excited state intramolecular proton transfer (ESIPT). Excited-state dipole moments have been calculated using Stoke-shifts of LE and ICT states using solvatochromic methods. The higher values of dipole moments obtained lead to support the formation of ICT state as one of the prominent species in the excited states of all 3-benzoylmethyleneindol-2-ones. The correlation of the solvatochromic Stokes-shifts with the microscopic solvent polarity parameter (ETN) was found to be superior to that obtained using bulk solvent polarity functions. The absorption and florescence spectral characteristics have been also investigated as a function of acidity and basicity (Ho/pH) in aqueous phase.

  4. Monomeric red fluorescent proteins with a large Stokes shift.

    PubMed

    Piatkevich, Kiryl D; Hulit, James; Subach, Oksana M; Wu, Bin; Abdulla, Arian; Segall, Jeffrey E; Verkhusha, Vladislav V

    2010-03-23

    Two-photon microscopy has advanced fluorescence imaging of cellular processes in living animals. Fluorescent proteins in the blue-green wavelength range are widely used in two-photon microscopy; however, the use of red fluorescent proteins is limited by the low power output of Ti-Sapphire lasers above 1,000 nm. To overcome this limitation we have developed two red fluorescent proteins, LSS-mKate1 and LSS-mKate2, which possess large Stokes shifts with excitation/emission maxima at 463/624 and 460/605 nm, respectively. These LSS-mKates are characterized by high pH stability, photostability, rapid chromophore maturation, and monomeric behavior. They lack absorbance in the green region, providing an additional red color to the commonly used red fluorescent proteins. Substantial overlap between the two-photon excitation spectra of the LSS-mKates and blue-green fluorophores enables multicolor imaging using a single laser. We applied this approach to a mouse xenograft model of breast cancer to intravitally study the motility and Golgi-nucleus alignment of tumor cells as a function of their distance from blood vessels. Our data indicate that within 40 mum the breast cancer cells show significant polarization towards vessels in living mice.

  5. Design of Silicon Photonic Crystal Waveguides for High Gain Raman Amplification Using Two Symmetric Transvers-Electric-Like Slow-Light Modes

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Hua; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2013-04-01

    We designed silicon photonic crystal (PhC) waveguides (WGs) for efficient silicon Raman amplifiers and lasers. We adopted narrow-width WGs to utilize two symmetric transvers-electric-like (TE-like) guided modes, which permit efficient external coupling for both the pump and Stokes waves. Modifying the size and shape of air holes surrounding the line-defect WG structures could tune the frequency difference between these two modes, at the Brillouin-zone edge, to match the Raman shift of silicon. Thus, small group velocities are also available both for pump and Stokes waves simultaneously, which results in a large enhancement of Raman gain. The enhancement factor of the Raman gain in the designed structure is more than 100 times that reported previously.

  6. Proper Orthogonal Decomposition in Optimal Control of Fluids

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.

  7. Parallel computational fluid dynamics '91; Conference Proceedings, Stuttgart, Germany, Jun. 10-12, 1991

    NASA Technical Reports Server (NTRS)

    Reinsch, K. G. (Editor); Schmidt, W. (Editor); Ecer, A. (Editor); Haeuser, Jochem (Editor); Periaux, J. (Editor)

    1992-01-01

    A conference was held on parallel computational fluid dynamics and produced related papers. Topics discussed in these papers include: parallel implicit and explicit solvers for compressible flow, parallel computational techniques for Euler and Navier-Stokes equations, grid generation techniques for parallel computers, and aerodynamic simulation om massively parallel systems.

  8. Analogy between the Navier-Stokes equations and Maxwell's equations: Application to turbulence

    NASA Astrophysics Data System (ADS)

    Marmanis, Haralambos

    1998-06-01

    A new theory of turbulence is initiated, based on the analogy between electromagnetism and turbulent hydrodynamics, for the purpose of describing the dynamical behavior of averaged flow quantities in incompressible fluid flows of high Reynolds numbers. The starting point is the recognition that the vorticity (w=∇×u) and the Lamb vector (l=w×u) should be taken as the kernel of a dynamical theory of turbulence. The governing equations for these fields can be obtained by the Navier-Stokes equations, which underlie the whole evolution. Then whatever parts are not explicitly expressed as a function of w or l only are gathered and treated as source terms. This is done by introducing the concepts of turbulent charge and turbulent current. Thus we are led to a closed set of linear equations for the averaged field quantities. The premise is that the earlier introduced sources will be apt for modeling, in the sense that their distribution will depend only on the geometry and the total energetics of the flow. The dynamics described in the preceding manner is what we call the metafluid dynamics.

  9. Quasiconservation laws for compressible three-dimensional Navier-Stokes flow.

    PubMed

    Gibbon, J D; Holm, D D

    2012-10-01

    We formulate the quasi-Lagrangian fluid transport dynamics of mass density ρ and the projection q=ω·∇ρ of the vorticity ω onto the density gradient, as determined by the three-dimensional compressible Navier-Stokes equations for an ideal gas, although the results apply for an arbitrary equation of state. It turns out that the quasi-Lagrangian transport of q cannot cross a level set of ρ. That is, in this formulation, level sets of ρ (isopycnals) are impermeable to the transport of the projection q.

  10. A numerical study of the 2- and 3-dimensional unsteady Navier-Stokes equations in velocity-vorticity variables using compact difference schemes

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Grosch, C. E.

    1984-01-01

    A compact finite-difference approximation to the unsteady Navier-Stokes equations in velocity-vorticity variables is used to numerically simulate a number of flows. These include two-dimensional laminar flow of a vortex evolving over a flat plate with an embedded cavity, the unsteady flow over an elliptic cylinder, and aspects of the transient dynamics of the flow over a rearward facing step. The methodology required to extend the two-dimensional formulation to three-dimensions is presented.

  11. Dynamic heterogeneity in crossover spin facilitated model of supercooled liquid and fractional Stokes-Einstein relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seo-Woo; Kim, Soree; Jung, YounJoon, E-mail: yjjung@snu.ac.kr

    Kinetically constrained models have gained much interest as models that assign the origins of interesting dynamic properties of supercooled liquids to dynamical facilitation mechanisms that have been revealed in many experiments and numerical simulations. In this work, we investigate the dynamic heterogeneity in the fragile-to-strong liquid via Monte Carlo method using the model that linearly interpolates between the strong liquid-like behavior and the fragile liquid-like behavior by an asymmetry parameter b. When the asymmetry parameter is sufficiently small, smooth fragile-to-strong transition is observed both in the relaxation time and the diffusion constant. Using these physical quantities, we investigate fractional Stokes-Einsteinmore » relations observed in this model. When b is fixed, the system shows constant power law exponent under the temperature change, and the exponent has the value between that of the Frederickson-Andersen model and the East model. Furthermore, we investigate the dynamic length scale of our systems and also find the crossover relation between the relaxation time. We ascribe the competition between energetically favored symmetric relaxation mechanism and entropically favored asymmetric relaxation mechanism to the fragile-to-strong crossover behavior.« less

  12. Enlightening the ultrahigh electrical conductivities of doped double-wall carbon nanotube fibers by Raman spectroscopy and first-principles calculations.

    PubMed

    Tristant, Damien; Zubair, Ahmed; Puech, Pascal; Neumayer, Frédéric; Moyano, Sébastien; Headrick, Robert J; Tsentalovich, Dmitri E; Young, Colin C; Gerber, Iann C; Pasquali, Matteo; Kono, Junichiro; Leotin, Jean

    2016-12-01

    Highly aligned, packed, and doped carbon nanotube (CNT) fibers with electrical conductivities approaching that of copper have recently become available. These fibers are promising for high-power electrical applications that require light-weight, high current-carrying capacity cables. However, a microscopic understanding of how doping affects the electrical conductance of such CNT fibers in a quantitative manner has been lacking. Here, we performed Raman spectroscopy measurements combined with first-principles calculations to determine the position of the average Fermi energy and to obtain the temperature of chlorosulfonic-acid-doped double-wall CNT fibers under high current. Due to the unique way in which double-wall CNT Raman spectra depend on doping, it is possible to use Raman data to determine the doping level quantitatively. The correspondence between the Fermi level shift and the carbon charge transfer is derived from a tight-binding model and validated by several calculations. For the doped fiber, we were able to associate an average Fermi energy shift of ∼-0.7 eV with a conductance increase by a factor of ∼5. Furthermore, since current induces heating, local temperature determination is possible. Through the Stokes-to-anti-Stokes intensity ratio of the G-band peaks, we estimated a temperature rise at the fiber surface of ∼135 K at a current density of 2.27 × 10 8 A m -2 identical to that from the G-band shift, suggesting that thermalization between CNTs is well achieved.

  13. The Stokes-Einstein relation at moderate Schmidt number.

    PubMed

    Balboa Usabiaga, Florencio; Xie, Xiaoyi; Delgado-Buscalioni, Rafael; Donev, Aleksandar

    2013-12-07

    The Stokes-Einstein relation for the self-diffusion coefficient of a spherical particle suspended in an incompressible fluid is an asymptotic result in the limit of large Schmidt number, that is, when momentum diffuses much faster than the particle. When the Schmidt number is moderate, which happens in most particle methods for hydrodynamics, deviations from the Stokes-Einstein prediction are expected. We study these corrections computationally using a recently developed minimally resolved method for coupling particles to an incompressible fluctuating fluid in both two and three dimensions. We find that for moderate Schmidt numbers the diffusion coefficient is reduced relative to the Stokes-Einstein prediction by an amount inversely proportional to the Schmidt number in both two and three dimensions. We find, however, that the Einstein formula is obeyed at all Schmidt numbers, consistent with linear response theory. The mismatch arises because thermal fluctuations affect the drag coefficient for a particle due to the nonlinear nature of the fluid-particle coupling. The numerical data are in good agreement with an approximate self-consistent theory, which can be used to estimate finite-Schmidt number corrections in a variety of methods. Our results indicate that the corrections to the Stokes-Einstein formula come primarily from the fact that the particle itself diffuses together with the momentum. Our study separates effects coming from corrections to no-slip hydrodynamics from those of finite separation of time scales, allowing for a better understanding of widely observed deviations from the Stokes-Einstein prediction in particle methods such as molecular dynamics.

  14. Fragile-to-strong transition in liquid silica

    NASA Astrophysics Data System (ADS)

    Geske, Julian; Drossel, Barbara; Vogel, Michael

    2016-03-01

    We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.

  15. Spectroelectrochemical properties of the single walled carbon nanotubes functionalized with polydiphenylamine doped with heteropolyanions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smaranda, I.; Baibarac, M., E-mail: barac@infim.ro; Baltog, I.

    A combined chemical-electrochemical method was used for covalent functionalization of single-walled carbon nanotube (SWNT) with polydiphenylamine (PDPA) doped with heteropolyanions of H{sub 3}PMo{sub 12}O{sub 40}{center_dot}xH{sub 2}O. The functionalization process induces in Raman spectra of SWNTs the following changes: (i) an increase in relative intensity of the D band, accompanied a gradual up-shift of the G band in the case of the semiconducting tubes and a decrease in the relative intensity of band peaked at 1540 cm{sup -1} is remarked in the case of the metallic tubes; (ii) in the anti-Stokes Raman spectrum an increase in the relative intensity of Ramanmore » line of metallic tubes peaked at -1560 cm{sup -1} is remarked when the cycles number increases. The additional down-shift of the FTIR bands belonging to H{sub 3}PMo{sub 12}O{sub 40} heteropolyanions (at 881, 943 and 1055 cm{sup -1}) and PDPA (at 688, 736 and 1016 cm{sup -1}) originates in hindrance steric effects induced the covalent functionalization of SWNTs with polymer molecules. Using Raman scattering and FTIR spectroscopy we demonstrate that chemical polymerization of diphenylamine in the presence of H{sub 3}PMo{sub 12}O{sub 40}{center_dot}xH{sub 2}O and SWNTs results in a composite of the type blend based on PDPA in un-doped state and SWNTs doped with H{sub 3}PMo{sub 12}O{sub 40} heteropolyanions. - Graphical abstract: Stokes and anti-Stokes Raman spectra of the SWNTs before (a) and after electrochemical functionalization with PDPA doped with heteropolyanions by 5 (b) and 25 (c) voltammeter cycles. Highlights: Black-Right-Pointing-Pointer A chemical-electrochemical method is used to functionalization of SWNTs. Black-Right-Pointing-Pointer Functionalization of wall-side of tube is evidenced by anti-Stokes Raman studies. Black-Right-Pointing-Pointer FTIR spectra proves insertion of heteropolyanions in polydiphenylamine matrix. Black-Right-Pointing-Pointer FTIR spectra of polymer functionalized SWNTs reveal hindrance steric effects.« less

  16. Asymmetric Stokes-V Profiles at the Penumbral Boundary of a Sunspot

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Balasubramanaim, K. S.; Suematsu, Yoshinori

    2003-01-01

    We present the spectropolarimetric measurements of a sunspot in the active region NOAA 6958 (15S03W), situated near the central meridian disk passage. The follower polarity sunspot was somewhat symmetrically round shaped with an elongated penumbra. There were several opposite polarity magnetic elements at, and beyond the penumbral boundary. The H-alpha images of the sunspot show the bright emission regions near the penumbral boundary towards the sun-center, which was of opposite polarity with respect to the main spot. The net-circular polarization (NCP) map shows that NCP is negative in the inner part of the spot and positive at the penumbral boundary and near the H-alpha plage. The Doppler velocities were determined by measuring the center-of-gravity (COG) of the Stokes-I profile and zero-crossing (ZC) wavelength of the Stokes-V profiles. The COG velocity map in general agrees with the Evershed flow. In addition, it shows the up flow in the penumbral region. The ZC velocities show the strong down flow at the penumbral boundary. Double-lobed Stokes-V profiles are observed at the locations, where the penumbral fibrils terminate coinciding the H-alpha plage. The Double lobed profiles had an unshifted component similar to the Stokes-V profiles of the sunspot penumbra and a shifted component with a velocity of about 5 km/s. The amplitude of the second component increases along the penumbral fibril as a function of the distance from the center of the sunspot. In this paper we discuss the role of emerging flux in generating the observed double lobed profiles. Based on our present observations, we propose to observe with the Solar-B Spectropolarimeter for understanding the nature of emerging flux near the sunspots.

  17. Programming the Navier-Stokes computer: An abstract machine model and a visual editor

    NASA Technical Reports Server (NTRS)

    Middleton, David; Crockett, Tom; Tomboulian, Sherry

    1988-01-01

    The Navier-Stokes computer is a parallel computer designed to solve Computational Fluid Dynamics problems. Each processor contains several floating point units which can be configured under program control to implement a vector pipeline with several inputs and outputs. Since the development of an effective compiler for this computer appears to be very difficult, machine level programming seems necessary and support tools for this process have been studied. These support tools are organized into a graphical program editor. A programming process is described by which appropriate computations may be efficiently implemented on the Navier-Stokes computer. The graphical editor would support this programming process, verifying various programmer choices for correctness and deducing values such as pipeline delays and network configurations. Step by step details are provided and demonstrated with two example programs.

  18. Prediction of Business Jet Airloads Using The Overflow Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Bounajem, Elias; Buning, Pieter G.

    2001-01-01

    The objective of this work is to evaluate the application of Navier-Stokes computational fluid dynamics technology, for the purpose of predicting off-design condition airloads on a business jet configuration in the transonic regime. The NASA Navier-Stokes flow solver OVERFLOW with Chimera overset grid capability, availability of several numerical schemes and convergence acceleration techniques was selected for this work. A set of scripts which have been compiled to reduce the time required for the grid generation process are described. Several turbulence models are evaluated in the presence of separated flow regions on the wing. Computed results are compared to available wind tunnel data for two Mach numbers and a range of angles-of-attack. Comparisons of wing surface pressure from numerical simulation and wind tunnel measurements show good agreement up to fairly high angles-of-attack.

  19. Development of an Aeroelastic Code Based on an Euler/Navier-Stokes Aerodynamic Solver

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.; Janus, Mark J.

    1996-01-01

    This paper describes the development of an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic analysis. A brief review of the relevant research in the area of propulsion aeroelasticity is presented. The paper briefly describes the original Euler/Navier-Stokes code (TURBO) and then details the development of the aeroelastic extensions. The aeroelastic formulation is described. The modeling of the dynamics of the blade using a modal approach is detailed, along with the grid deformation approach used to model the elastic deformation of the blade. The work-per-cycle approach used to evaluate aeroelastic stability is described. Representative results used to verify the code are presented. The paper concludes with an evaluation of the development thus far, and some plans for further development and validation of the TURBO-AE code.

  20. Multi-wavelength picosecond BaWO4 Raman laser with long and short Raman shifts and 12-fold pulse shortening down to 3 ps at 1227 nm

    NASA Astrophysics Data System (ADS)

    Frank, M.; Jelínek, M., Jr.; Vyhlídal, D.; Kubeček, V.; Ivleva, L. I.; Zverev, P. G.; Smetanin, S. N.

    2018-02-01

    In this paper, we demonstrate the generation of three (1179, 1227, and 1323 nm) Stokes components of stimulated Raman scattering with long (925 cm-1 ) and short (332 cm-1 ) Raman shifts in an all-solid-state, synchronously pumped, extra-cavity Raman laser based on a BaWO4 crystal excited by a quasi-continuous, 36 ps, diode side-pumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. We achieved the strongest 12-fold pulse shortening down to 3 ps at the 925 cm-1   +  332 cm-1 shifted 1227 nm wavelength due to a shorter dephasing time (wider linewidth) of the short-shift 332 cm-1 Raman line, resulting in a peak power of 2.5 kW.

  1. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations.

    PubMed

    Thamareerat, N; Luadsong, A; Aschariyaphotha, N

    2016-01-01

    In this paper, we present a numerical scheme used to solve the nonlinear time fractional Navier-Stokes equations in two dimensions. We first employ the meshless local Petrov-Galerkin (MLPG) method based on a local weak formulation to form the system of discretized equations and then we will approximate the time fractional derivative interpreted in the sense of Caputo by a simple quadrature formula. The moving Kriging interpolation which possesses the Kronecker delta property is applied to construct shape functions. This research aims to extend and develop further the applicability of the truly MLPG method to the generalized incompressible Navier-Stokes equations. Two numerical examples are provided to illustrate the accuracy and efficiency of the proposed algorithm. Very good agreement between the numerically and analytically computed solutions can be observed in the verification. The present MLPG method has proved its efficiency and reliability for solving the two-dimensional time fractional Navier-Stokes equations arising in fluid dynamics as well as several other problems in science and engineering.

  2. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): time-resolved fluorescence measurements and all-atom molecular dynamics simulations.

    PubMed

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  3. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Anuradha; Das, Suman; Biswas, Ranjit, E-mail: ranjit@bose.res.in

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probemore » solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.« less

  4. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-01

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ˜120-145 K above the measured glass transition temperatures (˜207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (˜70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  5. Formation of stimulated electromagnetic emission of the ionosphere: laboratory modeling

    NASA Astrophysics Data System (ADS)

    Starodubtsev, Mikhail; Kostrov, Alexander; Nazarov, Vladimir

    Laboratory modeling of some physical processes involved in generation of the stimulated elec-tromagnetic emission (SEE) is presented. SEE is a noise component observed in the spectrum of the pump electromagnetic wave reflected from the heated ionosphere during the ionospheric heating experiments. In our laboratory experiments, main attention has been paid to the experimental investigation of generation of the most pronounced SEE components connected to the small-scale filamentation of the heated area of the ionosphere. It has been shown that the main physical mechanism of thermal magnetoplasma nonlinearity in this frequency range is due to thermal self-channeling of the Langmuir waves. This mechanism has the minimal threshold and should appear when both laboratory and ionospheric plasmas are heated by high-power radiowaves. Thermal self-channeling of Langmuir waves is connected with the fact that Langmuir waves are trapped in the area of depleted plasma density. As a result, wave amplitude significantly increases in these depleted ragion, which lead to the local plasma heating and, consequently, to the deepening of the plasma density depletion due to plasma thermo-diffusion. As the result, narrow, magnetic-field-aligned plasma density irregularities are formed in a magnetoplasma. Self-channelled Langmuir waves exhibit well-pronoused spectral satellites shifted by 1-2 MHz from the fundamental frequency (about 700 MHz in our experimental conditions). It has been found that there exist two main mechanisms of satellite formation. First mechanism (dynamic) has been observed during the formation of the small-scale irregularity, when its longitudinal size increases fastly. During this process, spectrum of the trapped wave characterizes by one low-frequency satellite. Physical mechanism, which lead to the formation of this satellite is connected to Doppler shift of the frequency of Langmuir waves trapped in the non-stationar plasma irregularity. Second mechanism (stationary) has been observed in the case of the devel-oped irregularity, i.e. when its shape is close to the cylindrical one. In this regime, spectrum of the trapped wave is characterized by two symmetric (Stokes and anti-Stokes) spectral satellites. It has been proposed that generation of these satellites is connected with scattering of trapped Langmuir waves on the drift oscillations of the irregularity.

  6. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, A.N.; Benson, S.C.

    1997-07-08

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figs.

  7. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, A.M.; Benson, S.C.

    1998-06-16

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figs.

  8. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, A.N.; Benson, S.C.

    1995-03-28

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figures.

  9. Sibling rivalry: intrinsic luminescence from two xanthene dye monoanions, resorufin and fluorescein, provides evidence for excited-state proton transfer in the latter.

    PubMed

    Kjær, Christina; Brøndsted Nielsen, Steen; Stockett, Mark H

    2017-09-20

    While the emission spectrum of fluorescein monoanions isolated in vacuo displays a broad and featureless band, that of resorufin, also belonging to the xanthene family, has a sharp band maximum, clear vibronic structure, and experiences a small Stokes shift. Excited-state proton transfer in fluorescein can account for the differences.

  10. Absorption and emission behaviour of trans- p-coumaric acid in aqueous solutions and some organic solvents

    NASA Astrophysics Data System (ADS)

    Putschögl, M.; Zirak, P.; Penzkofer, A.

    2008-01-01

    The absorption and fluorescence behaviour of trans- p-coumaric acid ( trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form ( p-CAH 2) and the single anionic form ( p-CAH -) at low pH (p Kna ≈ 4.9), and between the single anionic and the double anionic form ( p-CA 2-) at high pH (p Kaa ≈ 9.35). In the organic solvents studied trans- p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans- p-coumaric acid in aqueous solution is ϕF ≈ 1.4 × 10 -4 for the neutral and the single anionic form, while it is ϕF ≈ 1.3 × 10 -3 for the double anionic form. For trans- p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10 -5 (acetonitrile) to 1.5 × 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2-, solvent-assisted intra-molecular charge-transfer or ππ ∗ to nπ ∗ transfer and internal conversion for p-CAH 2 and p-CAH -). The solvent dependence of the first ππ ∗ electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.

  11. Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles.

    PubMed

    Nanjo, Daisuke; Hosoi, Haruko; Fujino, Tatsuya; Tahara, Tahei; Korenaga, Takashi

    2007-03-22

    Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles (polyacrylamide, PAAm) was reported. Ultrafast fluorescence dynamics of polymer/water solution was monitored using a fluorescent probe molecule (C153). In the femtosecond time-resolved fluorescence measurement at 480 nm, slowly decay components having lifetimes of tau(1) approximately 53 ps and tau(2) approximately 5 ns were observed in addition to rapid fluorescence decay. Picosecond time-resolved fluorescence spectra of C153/PAAm/H2O solution were also measured. In the time-resolved fluorescence spectra of C153/PAAm/H2O, a peak shift from 490 to 515 nm was measured, which can be assigned to the solvation dynamics of polymer fine particles. The fluorescence peak shift was related to the solvation response function and two time constants were determined (tau(3) approximately 50 ps and tau(4) approximately 467 ps). Therefore, the tau(1) component observed in the femtosecond time-resolved fluorescence measurement was assigned to the solvation dynamics that was observed only in the presence of polymer fine particles. Rotational diffusion measurements were also carried out on the basis of the picosecond time-resolved fluorescence spectra. In the C153/PAAm/H2O solution, anisotropy decay having two different time constants was also derived (tau(6) approximately 76 ps and tau(7) approximately 676 ps), indicating the presence of two different microscopic molecular environments around the polymer surface. Using the Stokes-Einstein-Debye (SED) equation, microscopic viscosity around the polymer surface was evaluated. For the area that gave a rotational diffusion time of tau(6) approximately 76 ps, the calculated viscosity is approximately 1.1 cP and for tau(7) approximately 676 ps, it is approximately 10 cP. The calculated viscosity values clearly revealed that there are two different molecular environments around the polyacrylamide fine particles.

  12. Unsteady Navier-Stokes computations over airfoils using both fixed and dynamic meshes

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Anderson, W. Kyle

    1989-01-01

    A finite volume implicit approximate factorization method which solves the thin layer Navier-Stokes equations was used to predict unsteady turbulent flow airfoil behavior. At a constant angle of attack of 16 deg, the NACA 0012 airfoil exhibits an unsteady periodic flow field with the lift coefficient oscillating between 0.89 and 1.60. The Strouhal number is 0.028. Results are similar at 18 deg, with a Strouhal number of 0.033. A leading edge vortex is shed periodically near maximum lift. Dynamic mesh solutions for unstalled airfoil flows show general agreement with experimental pressure coefficients. However, moment coefficients and the maximum lift value are underpredicted. The deep stall case shows some agreement with experiment for increasing angle of attack, but is only qualitatively comparable past stall and for decreasing angle of attack.

  13. Rotating non-Boussinesq convection: oscillating hexagons

    NASA Astrophysics Data System (ADS)

    Moroz, Vadim; Riecke, Hermann; Pesch, Werner

    2000-11-01

    Within weakly nonlinear theory hexagon patterns are expected to undergo a Hopf bifurcation to oscillating hexagons when the chiral symmetry of the system is broken. Quite generally, the oscillating hexagons are expected to exhibit bistability of spatio-temporal defect chaos and periodic dynamics. This regime is described by the complex Ginzburg-Landau equation, which has been investigated theoretically in great detail. Its complex dynamics have, however, not been observed in experiments. Starting from the Navier-Stokes equations with realistic boundary conditions, we derive the three coupled real Ginzburg-Landau equations describing hexagons in rotating non-Boussinesq convection. We use them to provide quantitative results for the wavenumber range of stability of the stationary hexagons as well as the range of existence and stability of the oscillating hexagons. Our investigation is complemented by direct numerical simulations of the Navier-Stokes equations.

  14. Adaptive polarization image fusion based on regional energy dynamic weighted average

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-Qiang; Pan, Quan; Zhang, Hong-Cai

    2005-11-01

    According to the principle of polarization imaging and the relation between Stokes parameters and the degree of linear polarization, there are much redundant and complementary information in polarized images. Since man-made objects and natural objects can be easily distinguished in images of degree of linear polarization and images of Stokes parameters contain rich detailed information of the scene, the clutters in the images can be removed efficiently while the detailed information can be maintained by combining these images. An algorithm of adaptive polarization image fusion based on regional energy dynamic weighted average is proposed in this paper to combine these images. Through an experiment and simulations, most clutters are removed by this algorithm. The fusion method is used for different light conditions in simulation, and the influence of lighting conditions on the fusion results is analyzed.

  15. Aeroelastic Calculations Using CFD for a Typical Business Jet Model

    NASA Technical Reports Server (NTRS)

    Gibbons, Michael D.

    1996-01-01

    Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.

  16. Excited state characteristics of acridine dyes: acriflavine and acridine orange.

    PubMed

    Sharma, Vijay K; Sahare, P D; Rastogi, Ramesh C; Ghoshal, S K; Mohan, D

    2003-06-01

    The magnitude of the Stokes shift (frequency shifts in absorption and fluorescence spectra) is observed on changing the solvents and further has been used to calculate experimentally the dipole moments (ground state and excited state) of acriflavine and acridine orange dye molecules. Theoretically, dipole moments are calculated using PM 3 Model. The dipole moments of excited states, for both molecules investigated here, are higher than the corresponding values in the ground states. The increase in the dipole moment has been explained in terms of the nature of the excited state. Acriflavine dye overcomes the non-lasing behaviour of acridine orange due to quaternization of the central nitrogen atom.

  17. Simulating wind and marine hydrokinetic turbines with actuator lines in RANS and LES

    NASA Astrophysics Data System (ADS)

    Bachant, Peter; Wosnik, Martin

    2015-11-01

    As wind and marine hydrokinetic (MHK) turbine designs mature, focus is shifting towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow or horizontal-axis turbines, or taking advantage of constructive wake interaction for cross-flow or vertical-axis turbines. Towards this goal, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An additional sub-model is considered for injecting turbulence model scalar quantities based on actuator line element loading. Results are presented for the simulation of performance and wake dynamics of axial- and cross-flow turbines and compared with moderate Reynolds number experiments and body-fitted mesh, blade-resolving CFD. Work supported by NSF-CBET grant 1150797.

  18. Reduction of the discretization stencil of direct forcing immersed boundary methods on rectangular cells: The ghost node shifting method

    NASA Astrophysics Data System (ADS)

    Picot, Joris; Glockner, Stéphane

    2018-07-01

    We present an analytical study of discretization stencils for the Poisson problem and the incompressible Navier-Stokes problem when used with some direct forcing immersed boundary methods. This study uses, but is not limited to, second-order discretization and Ghost-Cell Finite-Difference methods. We show that the stencil size increases with the aspect ratio of rectangular cells, which is undesirable as it breaks assumptions of some linear system solvers. To circumvent this drawback, a modification of the Ghost-Cell Finite-Difference methods is proposed to reduce the size of the discretization stencil to the one observed for square cells, i.e. with an aspect ratio equal to one. Numerical results validate this proposed method in terms of accuracy and convergence, for the Poisson problem and both Dirichlet and Neumann boundary conditions. An improvement on error levels is also observed. In addition, we show that the application of the chosen Ghost-Cell Finite-Difference methods to the Navier-Stokes problem, discretized by a pressure-correction method, requires an additional interpolation step. This extra step is implemented and validated through well known test cases of the Navier-Stokes equations.

  19. Stokes-Einstein relation and excess entropy in Al-rich Al-Cu melts

    NASA Astrophysics Data System (ADS)

    Pasturel, A.; Jakse, N.

    2016-07-01

    We investigate the conditions for the validity of the Stokes-Einstein relation that connects diffusivity to viscosity in melts using entropy-scaling relationships developed by Rosenfeld. Employing ab initio molecular dynamics simulations to determine transport and structural properties of liquid Al1-xCux alloys (with composition x ≤ 0.4), we first show that reduced self-diffusion coefficients and viscosities, according to Rosenfeld's formulation, scale with the two-body approximation of the excess entropy except the reduced viscosity for x = 0.4. Then, we use our findings to evidence that the Stokes-Einstein relation using effective atomic radii is not valid in these alloys while its validity can be related to the temperature dependence of the partial pair-excess entropies of both components. Finally, we derive a relation between the ratio of the self-diffusivities of the components and the ratio of their pair excess entropies.

  20. A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes

    NASA Technical Reports Server (NTRS)

    Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.

    1988-01-01

    A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.

  1. Hypersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen; Ryan, James S.

    1987-01-01

    While the zonal grid system of Transonic Navier-Stokes (TNS) provides excellent modeling of complex geometries, improved shock capturing, and a higher Mach number range will be required if flows about hypersonic aircraft are to be modeled accurately. A computational fluid dynamics (CFD) code, the Compressible Navier-Stokes (CNS), is under development to combine the required high Mach number capability with the existing TNS geometry capability. One of several candidate flow solvers for inclusion in the CNS is that of F3D. This upwinding flow solver promises improved shock capturing, and more accurate hypersonic solutions overall, compared to the solver currently used in TNS.

  2. A visual programming environment for the Navier-Stokes computer

    NASA Technical Reports Server (NTRS)

    Tomboulian, Sherryl; Crockett, Thomas W.; Middleton, David

    1988-01-01

    The Navier-Stokes computer is a high-performance, reconfigurable, pipelined machine designed to solve large computational fluid dynamics problems. Due to the complexity of the architecture, development of effective, high-level language compilers for the system appears to be a very difficult task. Consequently, a visual programming methodology has been developed which allows users to program the system at an architectural level by constructing diagrams of the pipeline configuration. These schematic program representations can then be checked for validity and automatically translated into machine code. The visual environment is illustrated by using a prototype graphical editor to program an example problem.

  3. Lagrangian turbulence near walls: Structures and mixing in admissible model flows

    NASA Astrophysics Data System (ADS)

    Ottino, J. M.

    1989-05-01

    The general objective of work during this period was to bridge the gap between modern ideas from dynamical systems and chaos and more traditional approaches to turbulence. In order to reach this objective we conducted theoretical and computational work on two systems: a perturbed Kelvin cat eyes flow, and prototype solutions of the Navier-Stokes equations near solid walls. The main results obtained are two-fold: production flows capable of producing complex distributions of vorticity, and constructed flow fields, based on solutions of the Navier Stokes equations, which are capable of displaying both Eulerian and Lagrangian turbulence.

  4. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide

    PubMed Central

    2014-01-01

    Coherent anti-Stokes Raman scattering (CARS) of carbon nanostructures, namely, highly oriented pyrolytic graphite, graphene nanoplatelets, graphene oxide, and multiwall carbon nanotubes as well CARS spectra of thymine (Thy) molecules adsorbed on graphene oxide were studied. The spectra of the samples were compared with spontaneous Raman scattering (RS) spectra. The CARS spectra of Thy adsorbed on graphene oxide are characterized by shifts of the main bands in comparison with RS. The CARS spectra of the initial nanocarbons are definitely different: for all investigated materials, there is a redistribution of D- and G-mode intensities, significant shift of their frequencies (more than 20 cm-1), and appearance of new modes about 1,400 and 1,500 cm-1. The D band in CARS spectra is less changed than the G band; there is an absence of 2D-mode at 2,600 cm-1 for graphene and appearance of intensive modes of the second order between 2,400 and 3,000 cm-1. Multiphonon processes in graphene under many photon excitations seem to be responsible for the features of the CARS spectra. We found an enhancement of the CARS signal from thymine adsorbed on graphene oxide with maximum enhancement factor about 105. The probable mechanism of CARS enhancement is discussed. PMID:24948887

  5. Explicit filtering in large eddy simulation using a discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Brazell, Matthew J.

    The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG's framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is based on an improved model, handles the laminar-turbulent transition region well while also showing additional robustness.

  6. Equivalence of Fluctuation Splitting and Finite Volume for One-Dimensional Gas Dynamics

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1997-01-01

    The equivalence of the discretized equations resulting from both fluctuation splitting and finite volume schemes is demonstrated in one dimension. Scalar equations are considered for advection, diffusion, and combined advection/diffusion. Analysis of systems is performed for the Euler and Navier-Stokes equations of gas dynamics. Non-uniform mesh-point distributions are included in the analyses.

  7. A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoliang; Yu, Haijun

    2017-02-01

    This paper discusses the necessity and strategy to unify the development of a dynamic solver and a minimum action method (MAM) for a spatially extended system when employing the large deviation principle (LDP) to study the effects of small random perturbations. A dynamic solver is used to approximate the unperturbed system, and a minimum action method is used to approximate the LDP, which corresponds to solving an Euler-Lagrange equation related to but more complicated than the unperturbed system. We will clarify possible inconsistencies induced by independent numerical approximations of the unperturbed system and the LDP, based on which we propose to define both the dynamic solver and the MAM on the same approximation space for spatial discretization. The semi-discrete LDP can then be regarded as the exact LDP of the semi-discrete unperturbed system, which is a finite-dimensional ODE system. We achieve this methodology for the two-dimensional Navier-Stokes equations using a divergence-free approximation space. The method developed can be used to study the nonlinear instability of wall-bounded parallel shear flows, and be generalized straightforwardly to three-dimensional cases. Numerical experiments are presented.

  8. Transport properties and Stokes-Einstein relation in Al-rich liquid alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakse, N.; Pasturel, A.

    We use ab initio molecular dynamics simulations to study the transport properties and the validity of the Stokes-Einstein relation in Al-rich liquid alloys with Ni, Cu, and Zn as alloying elements. First, we show that the composition and temperature dependence of their transport properties present different behaviors, which can be related to their local structural ordering. Then, we evidence that the competition between the local icosahedral ordering and the local chemical ordering may cause the breakdown of the Stokes–Einstein relation even in the liquid phase. We demonstrate that this breakdown can be captured by entropy-scaling relationships developed by Rosenfeld andmore » using the two-body excess entropy. Our findings provide a unique framework to study the relation between structure, thermodynamics, and dynamics in metallic melts and pave the way towards the explanation of various complex transport properties in metallic melts.« less

  9. Hydrodynamic cavitation in Stokes flow of anisotropic fluids.

    PubMed

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G; Sengupta, Anupam

    2017-05-30

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  10. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    PubMed Central

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-01-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids. PMID:28555615

  11. Turbulence and deterministic chaos. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1992-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, largest Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low Reynolds number fully developed turbulence are compared. Several flows are noted: fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, only fully chaotic is classified as turbulent. Besides the sustained flows, a flow which decays as it becomes turbulent is examined. For the finest grid, 128(exp 3) points, the spatial resolution appears to be quite good. As a final note, the variation of the velocity derivatives skewness of a Navier-Stokes flow as the Reynolds number goes to zero is calculated numerically. The value of the skewness is shown to become small at low Reynolds numbers, in agreement with intuitive arguments that nonlinear terms should be negligible.

  12. On the application of the lattice Boltzmann method to the investigation of glottal flow

    PubMed Central

    Kucinschi, Bogdan R.; Afjeh, Abdollah A.; Scherer, Ronald C.

    2008-01-01

    The production of voice is directly related to the vibration of the vocal folds, which is generated by the interaction between the glottal flow and the tissue of the vocal folds. In the current study, the aerodynamics of the symmetric glottis is investigated numerically for a number of static configurations. The numerical investigation is based on the lattice Boltzmann method (LBM), which is an alternative approach within computational fluid dynamics. Compared to the traditional Navier–Stokes computational fluid dynamics methods, the LBM is relatively easy to implement and can deal with complex geometries without requiring a dedicated grid generator. The multiple relaxation time model was used to improve the numerical stability. The results obtained with LBM were compared to the results provided by a traditional Navier–Stokes solver and experimental data. It was shown that LBM results are satisfactory for all the investigated cases. PMID:18646995

  13. Stability of Contact Lines in Fluids: 2D Stokes Flow

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Tice, Ian

    2018-02-01

    In an effort to study the stability of contact lines in fluids, we consider the dynamics of an incompressible viscous Stokes fluid evolving in a two-dimensional open-top vessel under the influence of gravity. This is a free boundary problem: the interface between the fluid in the vessel and the air above (modeled by a trivial fluid) is free to move and experiences capillary forces. The three-phase interface where the fluid, air, and solid vessel wall meet is known as a contact point, and the angle formed between the free interface and the vessel is called the contact angle. We consider a model of this problem that allows for fully dynamic contact points and angles. We develop a scheme of a priori estimates for the model, which then allow us to show that for initial data sufficiently close to equilibrium, the model admits global solutions that decay to equilibrium exponentially quickly.

  14. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static andmore » dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.« less

  15. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    NASA Astrophysics Data System (ADS)

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-05-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  16. Physical aspects of computing the flow of a viscous fluid

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1984-01-01

    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.

  17. Solvatochromic investigation of highly fluorescent 2-aminobithiophene derivatives.

    PubMed

    Bolduc, Andréanne; Dong, Yanmei; Guérin, Amélie; Skene, W G

    2012-05-21

    The solvatochromic and electrochemical properties of electronic push-pull 2-aminobithiophenes consisting of an aldehyde and nitro withdrawing groups were examined. With the use of an integrating sphere, the absolute quantum yields of the bithiophenes were measured. They were found to be highly fluorescent (Φfl > 70%), provided the nitro group was not located in the 4'-position. High fluorescence yields were observed regardless of solvent, except for alcohols, notably methanol and ethanol. Cryofluorescence was used to probe the bithiophene temperature dependent excited state deactivation modes. The singlet excited state deactivation mode other than fluorescence was found to be internal conversion involving rotation around the thiophene-thiophene bond. Deactivation by intersystem crossing to the triplet state occurred in ca. 40% only for the unsubstituted 2-aminobithiophene. In contrast, the fluorescence was quenched by photoinduced intramolecular electron transfer when the nitro group was located in the 4'-position of the bithiophene. Both the absorbance and fluorescence of the bithiophenes were found to be solvatochromic with more pronounced solvent dependent shifts being observed with the fluorescence. In fact, both the fluorescence and Stokes shifts were linearly dependent on the ET(30) solvent parameter. Deviations from the linear trend of the Stokes shift with ET(30) were observed in ethanol and methanol as a result of intermolecular hydrogen abstraction from the solvent and by the excited nitro group. The oxidation potential of the bithiophenes was also highly dependent on the type and number of the electron withdrawing substituents, with values ranging between 0.8 and 1.2 V vs. SCE.

  18. Dynamics and computation in functional shifts

    NASA Astrophysics Data System (ADS)

    Namikawa, Jun; Hashimoto, Takashi

    2004-07-01

    We introduce a new type of shift dynamics as an extended model of symbolic dynamics, and investigate the characteristics of shift spaces from the viewpoints of both dynamics and computation. This shift dynamics is called a functional shift, which is defined by a set of bi-infinite sequences of some functions on a set of symbols. To analyse the complexity of functional shifts, we measure them in terms of topological entropy, and locate their languages in the Chomsky hierarchy. Through this study, we argue that considering functional shifts from the viewpoints of both dynamics and computation gives us opposite results about the complexity of systems. We also describe a new class of shift spaces whose languages are not recursively enumerable.

  19. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan

    Here, ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbitalmore » and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.« less

  20. Study of basic physical processes in liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Chen, C. P.

    1992-01-01

    Inconsistencies between analytical results and measurements for liquid rocket thrust chamber performance, which escape suitable explanations, have motivated the examination of the basic phys ical modeling formulations as to their unlimited application. The publication of Prof. D. Straub's book, 'Thermofluid-dynamics of Optimized Rocket Propulsions,' further stimulated the interest of understanding the gas dynamic relationships in chemically reacting mixtures. A review of other concepts proposed by Falk-Ruppel (Gibbsian Thermodynamics), Straub (Alternative Theory, AT), Prigogine (Non-Equilibrium Thermodynamics), Boltzmann (Kinetic Theory), and Truesdell (Rational Mechanism) has been made to obtain a better understanding of the Navier-Stokes equation, which is now used extensively for chemically reacting flow treatment in combustion chambers. In addition to the study of the different concepts, two workshops were conducted to clarify some of the issues. The first workshop centered on Falk-Ruppel's new 'dynamics' concept, while the second one concentrated on Straub's AT. In this report brief summaries of the reviewed philosophies are presented and compared with the classical Navier-Stokes formulation in a tabular arrangement. Also the highlights of both workshops are addressed.

  1. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    DOE PAGES

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; ...

    2016-10-07

    Here, ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbitalmore » and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.« less

  2. Frequency-dependent hydrodynamic interaction between two solid spheres

    NASA Astrophysics Data System (ADS)

    Jung, Gerhard; Schmid, Friederike

    2017-12-01

    Hydrodynamic interactions play an important role in many areas of soft matter science. In simulations with implicit solvent, various techniques such as Brownian or Stokesian dynamics explicitly include hydrodynamic interactions a posteriori by using hydrodynamic diffusion tensors derived from the Stokes equation. However, this equation assumes the interaction to be instantaneous which is an idealized approximation and only valid on long time scales. In the present paper, we go one step further and analyze the time-dependence of hydrodynamic interactions between finite-sized particles in a compressible fluid on the basis of the linearized Navier-Stokes equation. The theoretical results show that at high frequencies, the compressibility of the fluid has a significant impact on the frequency-dependent pair interactions. The predictions of hydrodynamic theory are compared to molecular dynamics simulations of two nanocolloids in a Lennard-Jones fluid. For this system, we reconstruct memory functions by extending the inverse Volterra technique. The simulation data agree very well with the theory, therefore, the theory can be used to implement dynamically consistent hydrodynamic interactions in the increasingly popular field of non-Markovian modeling.

  3. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.

    PubMed

    Torner, Benjamin; Konnigk, Lucas; Hallier, Sebastian; Kumar, Jitendra; Witte, Matthias; Wurm, Frank-Hendrik

    2018-06-01

    Numerical flow analysis (computational fluid dynamics) in combination with the prediction of blood damage is an important procedure to investigate the hemocompatibility of a blood pump, since blood trauma due to shear stresses remains a problem in these devices. Today, the numerical damage prediction is conducted using unsteady Reynolds-averaged Navier-Stokes simulations. Investigations with large eddy simulations are rarely being performed for blood pumps. Hence, the aim of the study is to examine the viscous shear stresses of a large eddy simulation in a blood pump and compare the results with an unsteady Reynolds-averaged Navier-Stokes simulation. The simulations were carried out at two operation points of a blood pump. The flow was simulated on a 100M element mesh for the large eddy simulation and a 20M element mesh for the unsteady Reynolds-averaged Navier-Stokes simulation. As a first step, the large eddy simulation was verified by analyzing internal dissipative losses within the pump. Then, the pump characteristics and mean and turbulent viscous shear stresses were compared between the two simulation methods. The verification showed that the large eddy simulation is able to reproduce the significant portion of dissipative losses, which is a global indication that the equivalent viscous shear stresses are adequately resolved. The comparison with the unsteady Reynolds-averaged Navier-Stokes simulation revealed that the hydraulic parameters were in agreement, but differences for the shear stresses were found. The results show the potential of the large eddy simulation as a high-quality comparative case to check the suitability of a chosen Reynolds-averaged Navier-Stokes setup and turbulence model. Furthermore, the results lead to suggest that large eddy simulations are superior to unsteady Reynolds-averaged Navier-Stokes simulations when instantaneous stresses are applied for the blood damage prediction.

  4. Numerical Simulation Of Flow Through An Artificial Heart

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart; Kutler, Paul; Kwak, Dochan; Kiris, Centin

    1991-01-01

    Research in both artificial hearts and fluid dynamics benefits from computational studies. Algorithm that implements Navier-Stokes equations of flow extended to simulate flow of viscous, incompressible blood through articifial heart. Ability to compute details of such flow important for two reasons: internal flows with moving boundaries of academic interest in their own right, and many of deficiencies of artificial hearts attributable to dynamics of flow.

  5. A dual-emission and large Stokes shift fluorescence probe for real-time discrimination of ROS/RNS and imaging in live cells.

    PubMed

    Guo, Ting; Cui, Lei; Shen, Jiaoning; Wang, Rui; Zhu, Weiping; Xu, Yufang; Qian, Xuhong

    2013-03-04

    A novel dual-emission fluorescence probe has been developed for specific and sensitive detection of hypochlorite (ClO(-)). Upon addition of ClO(-), significant changes in fluorescence emission intensity at two discrete wavelengths were observed. Meanwhile OONO(-) led to only a single-channel fluorescence enhancement. This feature makes it a clear advantage in distinguishing ClO(-), RNS from other ROS.

  6. Stimulated Raman amplification, oscillation, and linewidth in barium nitrate

    NASA Technical Reports Server (NTRS)

    McCray, Christopher J.; Chyba, Thomas H.

    1998-01-01

    Measurements of Raman gain in a Ba(NO3)2 crystal are reported at 532 nm using a Raman oscillator/amplifier arrangement for differential absorption lidar measurements of ozone. The experimentally determined gain coefficient will be compared with theoretical results. The effect of single and multi-longitudinal mode pumping upon the amplification process will be discussed. Measurement of the Raman linewidth for 1st 2nd and 3d stokes shifts arc presented.

  7. A Highly Sensitive Fluorogenic Probe for Imaging Glycoproteins and Mucine Activity in Live Cells in the Near-Infrared Region.

    PubMed

    Samaniego Lopez, Cecilia; Hebe Martínez, Jimena; Uhrig, María Laura; Coluccio Leskow, Federico; Spagnuolo, Carla Cecilia

    2018-04-25

    A novel fluorescent molecular probe is reported, which is able to detect glycoproteins, especially mucins, with high sensitivity and with a turn-on response along with a large Stokes shift (>130 nm), within the biologically active window. The probe contains an aminotricarbocyanine as the fluorescent reporter with a linked benzoboroxole as the recognition unit, which operates through a dynamic covalent reaction between the boronic hemiester residue of the receptor and cis-diols of the analyte. The superior selectivity of the probe is displayed by the labeling of mucins present in Calu-3 cells. The new benzoboroxole fluorescent derivative gathers together key properties to make it a highly rated molecular probe: specificity, excellent solubility in water, and off-on near infrared emission. This probe is expected to be an excellent tool for imaging intracellular mucin to evaluate mucus-related diseases as well as a sensing strategy towards glycosylated structures with a high potential for theranostics approaches in biological samples. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Surface-Cross-Linked Micelles as Multifunctionalized Organic Nanoparticles for Controlled Release, Light Harvesting, and Catalysis

    PubMed Central

    2016-01-01

    Surfactant micelles are dynamic entities with a rapid exchange of monomers. By “clicking” tripropargylammonium-containing surfactants with diazide cross-linkers, we obtained surface-cross-linked micelles (SCMs) that could be multifunctionalized for different applications. They triggered membrane fusion through tunable electrostatic interactions with lipid bilayers. Antenna chromophores could be installed on them to create artificial light-harvesting complexes with efficient energy migration among tens to hundreds of chromophores. When cleavable cross-linkers were used, the SCMs could break apart in response to redox or pH signals, ejecting entrapped contents quickly as a result of built-in electrostatic stress. They served as caged surfactants whose surface activity was turned on by environmental stimuli. They crossed cell membranes readily. Encapsulated fluorophores showed enhanced photophysical properties including improved quantum yields and greatly expanded Stokes shifts. Catalytic groups could be installed on the surface or in the interior, covalently attached or physically entrapped. As enzyme mimics, the SCMs enabled rational engineering of the microenvironment around the catalysts to afford activity and selectivity not possible with conventional catalysts. PMID:27181610

  9. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    NASA Astrophysics Data System (ADS)

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-06-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering-based applications including photonic devices and (bio)imaging/sensing.

  10. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    PubMed Central

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering–based applications including photonic devices and (bio)imaging/sensing. PMID:27345862

  11. Comment on "Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua".

    PubMed

    Felderhof, B U

    2013-08-01

    Recently, a critical test of the Navier-Stokes-Fourier equations for compressible fluid continua was proposed [H. Brenner, Phys. Rev. E 87, 013014 (2013)]. It was shown that the equations of bivelocity hydrodynamics imply that a compressible fluid in an isolated rotating circular cylinder attains a nonequilibrium steady state with a nonuniform temperature increasing radially with distance from the axis. We demonstrate that statistical mechanical arguments, involving Hamiltonian dynamics and ergodicity due to irregularity of the wall, lead instead to a thermal equilibrium state with uniform temperature. This is the situation to be expected in experiment.

  12. A microscopic model of the Stokes-Einstein relation in arbitrary dimension.

    PubMed

    Charbonneau, Benoit; Charbonneau, Patrick; Szamel, Grzegorz

    2018-06-14

    The Stokes-Einstein relation (SER) is one of the most robust and widely employed results from the theory of liquids. Yet sizable deviations can be observed for self-solvation, which cannot be explained by the standard hydrodynamic derivation. Here, we revisit the work of Masters and Madden [J. Chem. Phys. 74, 2450-2459 (1981)], who first solved a statistical mechanics model of the SER using the projection operator formalism. By generalizing their analysis to all spatial dimensions and to partially structured solvents, we identify a potential microscopic origin of some of these deviations. We also reproduce the SER-like result from the exact dynamics of infinite-dimensional fluids.

  13. Comparison of Fully-Compressible Equation Sets for Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.

    2016-01-01

    Traditionally, the equation for the conservation of energy used in atmospheric models is based on potential temperature and is used in place of the total energy conservation. This paper compares the application of the two equations sets for both the Euler and the Navier-Stokes solutions using several benchmark test cases. A high-resolution wave-propagation method which accurately takes into account the source term due to gravity is used for computing the non-hydrostatic atmospheric flows. It is demonstrated that there is little to no difference between the results obtained using the two different equation sets for Euler as well as Navier-Stokes solutions.

  14. Computational fluid dynamics: An engineering tool?

    NASA Astrophysics Data System (ADS)

    Anderson, J. D., Jr.

    1982-06-01

    Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.

  15. PHYSICS REQUIRES A SIMPLE LOW MACH NUMBER FLOW TO BE COMPRESSIBLE

    EPA Science Inventory

    Radial, laminar, plane, low velocity flow represents the simplest, non-linear fluid dynamics problem. Ostensibly this apparently trivial flow could be solved using the incompressible Navier-Stokes equations, universally believed to be adequate for such problems. Most researchers ...

  16. Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.

    PubMed

    Mendoza, Carlos I; Santamaría-Holek, I; Pérez-Madrid, A

    2015-09-14

    The short- and long-time breakdown of the classical Stokes-Einstein relation for colloidal suspensions at arbitrary volume fractions is explained here by examining the role that confinement and attractive interactions play in the intra- and inter-cage dynamics executed by the colloidal particles. We show that the measured short-time diffusion coefficient is larger than the one predicted by the classical Stokes-Einstein relation due to a non-equilibrated energy transfer between kinetic and configuration degrees of freedom. This transfer can be incorporated in an effective kinetic temperature that is higher than the temperature of the heat bath. We propose a Generalized Stokes-Einstein relation (GSER) in which the effective temperature replaces the temperature of the heat bath. This relation then allows to obtain the diffusion coefficient once the viscosity and the effective temperature are known. On the other hand, the temporary cluster formation induced by confinement and attractive interactions of hydrodynamic nature makes the long-time diffusion coefficient to be smaller than the corresponding one obtained from the classical Stokes-Einstein relation. Then, the use of the GSER allows to obtain an effective temperature that is smaller than the temperature of the heat bath. Additionally, we provide a simple expression based on a differential effective medium theory that allows to calculate the diffusion coefficient at short and long times. Comparison of our results with experiments and simulations for suspensions of hard and porous spheres shows an excellent agreement in all cases.

  17. Inversions of synthetic umbral flashes: Effects of scanning time on the inferred atmospheres

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Socas-Navarro, H.; Przybylski, D.

    2018-06-01

    Context. The use of instruments that record narrowband images at selected wavelengths is a common approach in solar observations. They allow scanning of a spectral line by sampling the Stokes profiles with two-dimensional images at each line position, but require a compromise between spectral resolution and temporal cadence. The interpretation and inversion of spectropolarimetric data generally neglect changes in the solar atmosphere during the scanning of line profiles. Aims: We evaluate the impact of the time-dependent acquisition of various wavelengths on the inversion of spectropolarimetric profiles from chromospheric lines during umbral flashes. Methods: Numerical simulations of nonlinear wave propagation in a sunspot model were performed with the code MANCHA. Synthetic Stokes parameters in the Ca II 8542 Å line in NLTE were computed for an umbral flash event using the code NICOLE. Artificial profiles with the same wavelength coverage and temporal cadence from reported observations were constructed and inverted. The inferred atmospheric stratifications were compared with the original simulated models. Results: The inferred atmospheres provide a reasonable characterization of the thermodynamic properties of the atmosphere during most of the phases of the umbral flash. The Stokes profiles present apparent wavelength shifts and other spurious deformations at the early stages of the flash, when the shock wave reaches the formation height of the Ca II 8542 Å line. These features are misinterpreted by the inversion code, which can return unrealistic atmospheric models from a good fit of the Stokes profiles. The misguided results include flashed atmospheres with strong downflows, even though the simulation exhibits upflows during the umbral flash, and large variations in the magnetic field strength. Conclusions: Our analyses validate the inversion of Stokes profiles acquired by sequentially scanning certain selected wavelengths of a line profile, even in the case of rapidly changing chromospheric events such as umbral flashes. However, the inversion results are unreliable during a short period at the development phase of the flash.

  18. Measuring Magnetic Oscillations in the Solar Photosphere: Coordinated Observations with MDI, ASP and MWO

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Ulrich, R. K.

    2000-03-01

    A comprehensive observing effort was undertaken to simultaneously obtain full Stokes profiles as well as longitudinal magnetogram maps of a positive plage region on 8 December, 1998 with the Michelson Doppler Imager, the Advanced Stokes Polarimeter and Mt. Wilson Observatory magnetograph. We compare 1.2'' spatially-averaged signals of velocities as well as filter magnetograph longitudinal flux signals with Stokes determined fluctuations in filling factor, field inclination, magnetic flux and field strength. The velocity signals are in excellent agreement. Michelson Doppler Imager magnetic flux correlates best with fluctuations in the Advanced Stokes Polarimeter filling factor, not inclination angle or field strength. A correlated flux and filling factor change in the absence of a field strength fluctuation can be understood in terms of internally unperturbed flux tubes being buffeted by external pressure fluctuations. The 12.5'' square aperture spatially averaged Mt. Wilson magnetograph signals are compared with Michelson Doppler Imager signals from the corresponding observing area. Velocity signals are in superb agreement. Magnetic signals exhibit similar oscillatory behavior. Lack of Advanced Stokes Polarimeter data for this time excludes interpretation of magnetic fluctuations as due to filling factor or field inclination angle. Mt. Wilson Observatory simultaneous sampling of the nickel and sodium spectral line profiles with several wing pairs allowed inter-comparison of signals from different heights of formation. Slight phase shifts and large propagation speeds for the velocity signals are indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfvén speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfvén speed. The observed fluctuations and phases are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.

  19. Spectral and physicochemical properties of difluoroboranyls containing N,N-dimethylamino group studied by solvatochromic methods

    NASA Astrophysics Data System (ADS)

    Jędrzejewska, Beata; Grabarz, Anna; Bartkowiak, Wojciech; Ośmiałowski, Borys

    2018-06-01

    The solvatochromism of the dyes was analyzed based on the four-parameter scale including: polarizability (SP), dipolarity (SdP), acidity (SA) and basicity (SB) parameters by method proposed by Catalán. The change of solvent to more polar caused the red shift of absorption and fluorescence band position. The frequency shifts manifest the change in the dipole moment upon excitation. The ground-state dipole moment of the difluoroboranyls was estimated based on changes in molecular polarization with temperature. Moreover, the Stokes shifts were used to calculate the excited state dipole moments of the dyes. For the calculation, the ground-state dipole moments and Onsager cavity radius were also determined theoretically using density functional theory (DFT). The experimentally determined excited-state dipole moments for the compounds are higher than the corresponding ground-state values. The increase in the dipole moment is described in terms of the nature of the excited state.

  20. Numerical Treatment of Stokes Solvent Flow and Solute-Solvent Interfacial Dynamics for Nonpolar Molecules.

    PubMed

    Sun, Hui; Zhou, Shenggao; Moore, David K; Cheng, Li-Tien; Li, Bo

    2016-05-01

    We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.

  1. An energy-stable method for solving the incompressible Navier-Stokes equations with non-slip boundary condition

    NASA Astrophysics Data System (ADS)

    Lee, Byungjoon; Min, Chohong

    2018-05-01

    We introduce a stable method for solving the incompressible Navier-Stokes equations with variable density and viscosity. Our method is stable in the sense that it does not increase the total energy of dynamics that is the sum of kinetic energy and potential energy. Instead of velocity, a new state variable is taken so that the kinetic energy is formulated by the L2 norm of the new variable. Navier-Stokes equations are rephrased with respect to the new variable, and a stable time discretization for the rephrased equations is presented. Taking into consideration the incompressibility in the Marker-And-Cell (MAC) grid, we present a modified Lax-Friedrich method that is L2 stable. Utilizing the discrete integration-by-parts in MAC grid and the modified Lax-Friedrich method, the time discretization is fully discretized. An explicit CFL condition for the stability of the full discretization is given and mathematically proved.

  2. Numerical Treatment of Stokes Solvent Flow and Solute-Solvent Interfacial Dynamics for Nonpolar Molecules

    PubMed Central

    Sun, Hui; Zhou, Shenggao; Moore, David K.; Cheng, Li-Tien; Li, Bo

    2015-01-01

    We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems. PMID:27365866

  3. Infrasonic attenuation in the upper mesosphere-lower thermosphere: a comparison between Navier-Stokes and Burnett predictions.

    PubMed

    Akintunde, Akinjide; Petculescu, Andi

    2014-10-01

    This paper presents the results of a pilot study comparing the use of continuum and non-continuum fluid dynamics to predict infrasound attenuation in the rarefied lower thermosphere. The continuum approach is embodied by the Navier-Stokes equations, while the non-continuum method is implemented via the Burnett equations [Proc. London Math. Soc. 39, 385-430 (1935); 40, 382-435 (1936)]. In the Burnett framework, the coupling between stress tensor and heat flux affects the dispersion equation, leading to an attenuation coefficient smaller than its Navier-Stokes counterpart by amounts of order 0.1 dB/km at 0.1 Hz, 10 dB/km at 1 Hz, and 100 dB/km at 10 Hz. It has been observed that many measured thermospheric arrivals are stronger than current predictions based on continuum mechanics. In this context, the consistently smaller Burnett-based absorption is cautiously encouraging.

  4. Dual-Analyte Fluorescent Sensor Based on [5]Helicene Derivative with Super Large Stokes Shift for the Selective Determinations of Cu2+ or Zn2+ in Buffer Solutions and Its Application in a Living Cell.

    PubMed

    Sakunkaewkasem, Siwakorn; Petdum, Anuwut; Panchan, Waraporn; Sirirak, Jitnapa; Charoenpanich, Adisri; Sooksimuang, Thanasat; Wanichacheva, Nantanit

    2018-05-10

    A new fluorescent sensor, M201-DPA, based on [5]helicene derivative was utilized as dual-analyte sensor for determination of Cu 2+ or Zn 2+ in different media and different emission wavelengths. The sensor could provide selective and bifunctional determination of Cu 2+ in HEPES buffer containing Triton-X100 and Zn 2+ in Tris buffer/methanol without interference from each other and other ions. In HEPES buffer, M201-DPA demonstrated the selective ON-OFF fluorescence quenching at 524 nm toward Cu 2+ . On the other hand, in Tris buffer/methanol, M201-DPA showed the selective OFF-ON fluorescence enhancement upon the addition of Zn 2+ , which was specified by the hypsochromic shift at 448 nm. Additionally, M201-DPA showed extremely large Stokes shifts up to ∼150 nm. By controlling the concentration of Zn 2+ and Cu 2+ in a living cell, the imaging of a HepG2 cellular system was performed, in which the fluorescence of M201-DPA in the blue channel was decreased upon addition of Cu 2+ and was enhanced in UV channel upon addition of Zn 2+ . The detection limits of M201-DPA for Cu 2+ and Zn 2+ in buffer solutions were 5.6 and 3.8 ppb, respectively. Importantly, the Cu 2+ and Zn 2+ detection limits of the developed sensors were significantly lower than permitted Cu 2+ and Zn 2+ concentrations in drinking water as established by the U.S. EPA and WHO.

  5. Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large Stokes shift.

    PubMed

    Piatkevich, Kiryl D; Malashkevich, Vladimir N; Almo, Steven C; Verkhusha, Vladislav V

    2010-08-11

    LSSmKate1 and LSSmKate2 are monomeric red fluorescent proteins (RFPs) with large Stokes shifts (LSSs), which allows for efficient separation of absorbance and emission maxima, as well as for excitation with conventional two-photon laser sources. These LSSmKates differ by a single amino acid substitution at position 160 and exhibit absorbance maxima around 460 nm, corresponding to a neutral DsRed-like chromophore. However, excitation at 460 nm leads to fluorescence emission above 600 nm. Structures of LSSmKate1 and LSSmKate2, determined at resolutions of 2.0 and 1.5 A, respectively, revealed that the predominant DsRed-chromophore configurations are cis for LSSmKate1 but trans for LSSmKate2. Crystallographic and mutagenesis analyses, as well as isotope and temperature dependences, suggest that an excited-state proton transfer (ESPT) is responsible for the LSSs observed in LSSmKates. Hydrogen bonding between the chromophore hydroxyl and Glu160 in LSSmKate1 and a proton relay involving the chromophore tyrosine hydroxyl, Ser158, and the Asp160 carboxylate in LSSmKate2 represent the putative ESPT pathways. Comparisons with mKeima LSS RFP suggest that similar proton relays could be engineered in other FPs. Accordingly, we mutated positions 158 and 160 in several conventional red-shifted FPs, including mNeptune, mCherry, mStrawberry, mOrange, and mKO, and the resulting FP variants exhibited LSS fluorescence emission in a wide range of wavelengths from 560 to 640 nm. These data suggest that different chromophores formed by distinct tripeptides in different environments can be rationally modified to yield RFPs with novel photochemical properties.

  6. Low-Dimensional Model of a Cylinder Wake

    NASA Astrophysics Data System (ADS)

    Luchtenburg, Mark; Cohen, Kelly; Siegel, Stefan; McLaughlin, Tom

    2003-11-01

    In a two-dimensional cylinder wake, self-excited oscillations in the form of periodic shedding of vortices are observed above a critical Reynolds number of about 47. These flow-induced non-linear oscillations lead to some undesirable effects associated with unsteady pressures such as fluid-structure interactions. An effective way of suppressing the self-excited flow oscillations is by the incorporation of closed-loop flow control. In this effort, a low dimensional, proper orthogonal decomposition (POD) model is based on data obtained from direct numerical simulations of the Navier Stokes equations for the two dimensional circular cylinder wake at a Reynolds number of 100. Three different conditions are examined, namely, the unforced wake experiencing steady-state vortex shedding, the transient behavior of the unforced wake at the startup of the simulation, and transient response to open-loop harmonic forcing by translation. We discuss POD mode selection and the number of modes that need to be included in the low-dimensional model. It is found that the transient dynamics need to be represented by a coupled system that includes an aperiodic mean-flow mode, an aperiodic shift mode and the periodic von Karman modes. Finally, a least squares mapping method is introduced to develop the non-linear state equations. The predictive capability of the state equations demonstrates the ability of the above approach to model the transient dynamics of the wake.

  7. Up-conversion in an Er-containing nanocomposite and microlasers based on it

    NASA Astrophysics Data System (ADS)

    Sobeshchuk, N. O.; Denisyuk, I. Yu.

    2017-06-01

    The results of an investigation of three-dimensional polymer microcavities doped with inorganic luminescent particles are presented. Microlasers in the form of rectangular parallelepipeds were fabricated based on the SU8 2025 photoresist by means of compact UV lithography. Luminescent particles containing erbium oxide were obtained by low-temperature synthesis of the corresponding chlorides in a nonaqueous medium. The obtained spectra confirm the presence of a narrowband laser radiation exhibiting a Stokes shift.

  8. Energy transfer by way of an exciplex intermediate in flexible boron dipyrromethene-based allosteric architectures.

    PubMed

    Mula, Soumyaditya; Elliott, Kristopher; Harriman, Anthony; Ziessel, Raymond

    2010-10-07

    We have designed and synthesized a series of modular, dual-color dyes comprising a conventional boron dipyrromethene (Bodipy) dye, as a yellow emitter, and a Bodipy dye possessing extended conjugation that functions as a red emitter. A flexible tether of variable length, built from ethylene glycol residues, connects the terminal dyes. A critical design element of this type of dyad relates to a secondary amine linkage interposed between the conventional Bodipy and the tether. Cyclic voltammetry shows both Bodipy dyes to be electroactive and indicates that the secondary amine is quite easily oxidized. The ensuing fluorescence quenching is best explained in terms of the rapid formation of an intermediate charge-transfer state. In fact, exciplex-type emission is observed in weakly polar solvents and over a critical temperature range. In the dual-color dyes, direct excitation of the yellow emitter results in the appearance of red fluorescence, indicating that the exciplex is likely involved in the energy-transfer event, and provides for a virtual Stokes shift of 5000 cm(-1). Replacing the red emitter with a higher energy absorber (namely, pyrene) facilitates the collection of near-UV light and extends the virtual Stokes shift to 8000 cm(-1). Modulation of the efficacy of intramolecular energy transfer is achieved by preorganization of the connector in the presence of certain cations. This latter behavior, which is fully reversible, corresponds to an artificial allosteric effect.

  9. Experimental verification of PSM polarimetry: monitoring polarization at 193nm high-NA with phase shift masks

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory; Neureuther, Andrew; Slonaker, Steve; Vellanki, Venu; Reynolds, Patrick

    2006-03-01

    The initial experimental verification of a polarization monitoring technique is presented. A series of phase shifting mask patterns produce polarization dependent signals in photoresist and are capable of monitoring the Stokes parameters of any arbitrary illumination scheme. Experiments on two test reticles have been conducted. The first reticle consisted of a series of radial phase gratings (RPG) and employed special apertures to select particular illumination angles. Measurement sensitivities of about 0.3 percent of the clear field per percent change in polarization state were observed. The second test reticle employed the more sensitive proximity effect polarization analyzers (PEPA), a more robust experimental setup, and a backside pinhole layer for illumination angle selection and to enable characterization of the full illuminator. Despite an initial complication with the backside pinhole alignment, the results correlate with theory. Theory suggests that, once the pinhole alignment is corrected in the near future, the second reticle should achieve a measurement sensitivity of about 1 percent of the clear field per percent change in polarization state. This corresponds to a measurement of the Stokes parameters after test mask calibration, to within about 0.02 to 0.03. Various potential improvements to the design, fabrication of the mask, and experimental setup are discussed. Additionally, to decrease measurement time, a design modification and double exposure technique is proposed to enable electrical detection of the measurement signal.

  10. Exploiting the benefit of S0 → T1 excitation in triplet-triplet annihilation upconversion to attain large anti-stokes shifts: tuning the triplet state lifetime of a tris(2,2'-bipyridine) osmium(ii) complex.

    PubMed

    Liu, Dongyi; Zhao, Yingjie; Wang, Zhijia; Xu, Kejing; Zhao, Jianzhang

    2018-03-07

    Os(ii) complexes are particularly interesting for triplet-triplet annihilation (TTA) upconversion, due to the strong direct S 0 → T 1 photoexcitation, as in this way, energy loss is minimized and large anti-Stokes shift can be achieved for TTA upconversion. However, Os(bpy) 3 has an intrinsic short T 1 state lifetime (56 ns), which is detrimental for the intermolecular triplet-triplet energy transfer (TTET), one of the crucial steps in TTA upconversion. In order to prolong the triplet state lifetime, we prepared an Os(ii) tris(bpy) complex with a Bodipy moiety attached, so that an extended T 1 state lifetime is achieved by excited state electronic configuration mixing or triplet state equilibrium between the coordination center-localized state ( 3 MLCT state) and Bodipy ligand-localized state ( 3 IL state). With steady-state and time-resolved transient absorption/emission spectroscopy, we proved that the 3 MLCT is slightly above the 3 IL state (by 0.05 eV), and the triplet state lifetime was prolonged by 31-fold (from 56 ns to 1.73 μs). The TTA upconversion quantum yield was increased by 4-fold as compared to that of the unsubstituted Os(ii) complex.

  11. Caspase-1 Specific Light-Up Probe with Aggregation-Induced Emission Characteristics for Inhibitor Screening of Coumarin-Originated Natural Products.

    PubMed

    Lin, Hao; Yang, Haitao; Huang, Shuai; Wang, Fujia; Wang, Dong-Mei; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-04-18

    Caspase-1 is a key player in pyroptosis and inflammation. Caspase-1 inhibition is found to be beneficial to various diseases. Coumarin-originated natural products have an anti-inflammation function, but their direct inhibition effect to caspase-1 remains unexplored. To evaluate their interactions, the widely used commercial coumarin-based probe (Ac-YVAD-AMC) is not suitable, as the background signal from coumarin-originated natural products could interfere with the screening results. Therefore, fluorescent probes using a large Stokes shift could help solve this problem. In this work, we chose the fluorophore of tetraphenylethylene-thiophene (TPETH) with aggregation-induced emission characteristics and a large Stokes shift of about 200 nm to develop a molecular probe. Bioconjugation between TPETH and hydrophilic peptides (DDYVADC) through a thiol-ene reaction generated a light-up probe, C1-P3. The probe has little background signal in aqueous media and exerts a fluorescent turn-on effect in the presence of caspase-1. Moreover, when evaluating the inhibition potency of coumarin-originated natural products, the new probe could generate a true and objective result but not for the commercial probe (Ac-YVAD-AMC), which is evidenced by HPLC analysis. The quick light-up response and accurate screening results make C1-P3 very useful in fundamental study and inhibitior screening toward caspase-1.

  12. Detailed Balance Limit of Efficiency of Broadband-Pumped Lasers.

    PubMed

    Nechayev, Sergey; Rotschild, Carmel

    2017-09-13

    Broadband light sources are a wide class of pumping schemes for lasers including LEDs, sunlight and flash lamps. Recently, efficient coupling of broadband light to high-quality micro-cavities has been demonstrated for on-chip applications and low-threshold solar-pumped lasers via cascade energy transfer. However, the conversion of incoherent to coherent light comes with an inherent price of reduced efficiency, which has yet to be assessed. In this paper, we derive the detailed balance limit of efficiency of broadband-pumped lasers and discuss how it is affected by the need to maintain a threshold population inversion and thermodynamically dictated minimal Stokes' shift. We show that lasers' slope efficiency is analogous to the nominal efficiency of solar cells, limited by thermalisation losses and additional unavoidable Stokes' shift. The lasers' power efficiency is analogous to the detailed balance limit of efficiency of solar cells, affected by the cavity mirrors and impedance matching factor, respectively. As an example we analyze the specific case of solar-pumped sensitized Nd 3+ :YAG-like lasers and define the conditions to reach their thermodynamic limit of efficiency. Our work establishes an upper theoretical limit for the efficiency of broadband-pumped lasers. Our general, yet flexible model also provides a way to incorporate other optical and thermodynamic losses and, hence, to estimate the efficiency of non-ideal broadband-pumped lasers.

  13. Near-Unity Emitting Copper-Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators.

    PubMed

    Sharma, Manoj; Gungor, Kivanc; Yeltik, Aydan; Olutas, Murat; Guzelturk, Burak; Kelestemur, Yusuf; Erdem, Talha; Delikanli, Savas; McBride, James R; Demir, Hilmi Volkan

    2017-08-01

    Doping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum. However, existing doped CQDs that are aimed for full solar spectrum LSCs suffer from moderately low quantum efficiency, intrinsically small absorption cross-section, and gradually increasing absorption profiles coinciding with the emission spectrum, which together fundamentally limit their effective usage. Here, the authors show the first account of copper doping into atomically flat colloidal quantum wells (CQWs). In addition to Stokes-shifted and tunable dopant-induced photoluminescence emission, the copper doping into CQWs enables near-unity quantum efficiencies (up to ≈97%), accompanied by substantially high absorption cross-section and inherently step-like absorption profile, compared to those of the doped CQDs. Based on these exceptional properties, the authors have demonstrated by both experimental analysis and numerical modeling that these newly synthesized doped CQWs are excellent candidates for LSCs. These findings may open new directions for deployment of doped CQWs in LSCs for advanced solar light harvesting technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Near-infrared fluorescence imaging using organic dye nanoparticles.

    PubMed

    Yu, Jia; Zhang, Xiujuan; Hao, Xiaojun; Zhang, Xiaohong; Zhou, Mengjiao; Lee, Chun-Sing; Chen, Xianfeng

    2014-03-01

    Near-infrared (NIR) fluorescence imaging in the 700-1000 nm wavelength range has been very attractive for early detection of cancers. Conventional NIR dyes often suffer from limitation of low brightness due to self-quenching, insufficient photo- and bioenvironmental stability, and small Stokes shift. Herein, we present a strategy of using small-molecule organic dye nanoparticles (ONPs) to encapsulate NIR dyes to enable efficient fluorescence resonance energy transfer to obtain NIR probes with remarkably enhanced performance for in vitro and in vivo imaging. In our design, host ONPs are used as not only carriers to trap and stabilize NIR dyes, but also light-harvesting agent to transfer energy to NIR dyes to enhance their brightness. In comparison with pure NIR dyes, our organic dye nanoparticles possess almost 50-fold increased brightness, large Stokes shifts (∼250 nm) and dramatically enhanced photostability. With surface modification, these NIR-emissive organic nanoparticles have water-dispersity and size- and fluorescence- stability over pH values from 2 to 10 for almost 60 days. With these superior advantages, these NIR-emissive organic nanoparticles can be used for highly efficient folic-acid aided specific targeting in vivo and ex vivo cellular imaging. Finally, during in vivo imaging, the nanoparticles show negligible toxicity. Overall, the results clearly display a potential application of using the NIR-emissive organic nanoparticles for in vitro and in vivo imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effects of friction on forced two-dimensional Navier-Stokes turbulence.

    PubMed

    Blackbourn, Luke A K; Tran, Chuong V

    2011-10-01

    Large-scale dissipation mechanisms have been routinely employed in numerical simulations of two-dimensional turbulence to absorb energy at large scales, presumably mimicking the quasisteady picture of Kraichnan in an unbounded fluid. Here, "side effects" of such a mechanism--mechanical friction--on the small-scale dynamics of forced two-dimensional Navier-Stokes turbulence are elaborated by both theoretical and numerical analysis. Given a positive friction coefficient α, viscous dissipation of enstrophy has been known to vanish in the inviscid limit ν→0. This effectively renders the scale-neutral friction the only mechanism responsible for enstrophy dissipation in that limit. The resulting dynamical picture is that the classical enstrophy inertial range becomes a dissipation range in which the dissipation of enstrophy by friction mainly occurs. For each α>0, there exists a critical viscosity ν(c), which depends on physical parameters, separating the regimes of predominant viscous and frictional dissipation of enstrophy. It is found that ν(c)=[η'(1/3)/(Ck(f)(2))]exp[-η'(1/3)/(Cα)], where η' is half the enstrophy injection rate, k(f) is the forcing wave number, and C is a nondimensional constant (the Kraichnan-Batchelor constant). The present results have important theoretical and practical implications. Apparently, mechanical friction is a poor choice in numerical attempts to address fundamental issues concerning the direct enstrophy transfer in two-dimensional Navier-Stokes turbulence. Furthermore, as relatively strong friction naturally occurs on the surfaces and at lateral boundaries of experimental fluids as well as at the interfaces of shallow layers in geophysical fluid models, the frictional effects discussed in this study are crucial in understanding the dynamics of these systems.

  16. Dynamics of deformation and pinch-off of a migrating compound droplet in a tube

    NASA Astrophysics Data System (ADS)

    Borthakur, Manash Pratim; Biswas, Gautam; Bandyopadhyay, Dipankar

    2018-04-01

    A computational fluid dynamic investigation has been carried out to study the dynamics of a moving compound droplet inside a tube. The motions associated with such a droplet is uncovered by solving the axisymmetric Navier-Stokes equations in which the spatiotemporal evolution of a pair of twin-deformable interfaces has been tracked employing the volume-of-fluid approach. The deformations at the interfaces and their subsequent dynamics are found to be stimulated by the subtle interplay between the capillary and viscous forces. The simulations uncover that when a compound drop composed of concentric inner and outer interfaces migrates inside a tube, initially in the unsteady domain of evolution, the inner drop shifts away from the concentric position to reach a morphology of constant eccentricity at the steady state. The coupled motions of the droplets in the unsteady regime causes a continuous deformation of the inner and outer interfaces to obtain a configuration with a (an) prolate (oblate) shaped outer (inner) interface. The magnitudes of capillary number and viscosity ratio are found to have significant influence on the temporal evolution of the interfacial deformations as well as the eccentricity of the droplets. Further, the simulations uncover that, following the asymmetric deformation of the interfaces, the migrating compound droplet can undergo an uncommon breakup stimulated by a rather irregular pinch-off of the outer shell. The breakup is found to initiate with the thinning of the outer shell followed by the pinch-off. Interestingly, the kinetics of the thinning of outer shell is found to follow two distinct power-law regimes—a swiftly thinning stage at the onset followed by a rate limiting stage before pinch-off, which eventually leads to the uncommon breakup of the migrating compound droplets.

  17. Construction of energy transfer pathways self-assembled from DNA-templated stacks of anthracene.

    PubMed

    Iwaura, Rika; Yui, Hiroharu; Someya, Yuu; Ohnishi-Kameyama, Mayumi

    2014-01-05

    We describe optical properties of anthracene stacks formed from single-component self-assembly of thymidylic acid-appended anthracene 2,6-bis[5-(3'-thymidylic acid)pentyloxy] anthracene (TACT) and the binary self-assembly of TACT and complementary 20-meric oligoadenylic acid (TACT/dA20) in an aqueous buffer. UV-Vis and emission spectra for the single-component self-assembly of TACT and the binary self-assembly of TACT/dA20 were very consistent with stacked acene moieties in both self-assemblies. Interestingly, time-resolved fluorescence spectra from anthracene stacks exhibited very different features of the single-component and binary self-assemblies. In the single-component self-assembly of TACT, a dynamic Stokes shift (DSS) and relatively short fluorescence lifetime (τ=0.35ns) observed at around 450nm suggested that the anthracene moieties were flexible. Moreover, a broad emission at 530nm suggested the formation of an excited dimer (excimer). In the binary self-assembly of TACT/dA20, we detected a broad, red-shifted emission component at 534nm with a lifetime (τ=0.4ns) shorter than that observed in the TACT single-component self-assembly. Combining these results with the emission spectrum of the binary self-assembly of TACT/5'-HEX dA20, we concluded that the energy transfer pathway was constructed by columnar anthracene stacks formed from the DNA-templated self-assembly of TACT. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The influence of sub-grid scale motions on particle collision in homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Li, Jing; Liu, Zhaohui; Zheng, Chuguang

    2018-02-01

    The absence of sub-grid scale (SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this issue, data from direct numerical simulation (DNS) of homogenous isotropic turbulence coupled with Lagrangian particle tracking are used as a benchmark to evaluate the corresponding results of filtered DNS (FDNS). It is found that the filtering process in FDNS will lead to a non-monotonic variation of the particle collision statistics, including radial distribution function, radial relative velocity, and the collision kernel. The peak of radial distribution function shifts to the large-inertia region due to the lack of SGS motions, and the analysis of the local flowstructure characteristic variable at particle position indicates that the most effective interaction scale between particles and fluid eddies is increased in FDNS. Moreover, this scale shifting has an obvious effect on the odd-order moments of the probability density function of radial relative velocity, i.e. the skewness, which exhibits a strong correlation to the variance of radial distribution function in FDNS. As a whole, the radial distribution function, together with radial relative velocity, can compensate the SGS effects for the collision kernel in FDNS when the Stokes number based on the Kolmogorov time scale is greater than 3.0. However, it still leaves considerable errors for { St}_k <3.0.

  19. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    High-resolution simulations of rotor/vortex-wake interaction for a UH60-A rotor under BVI and dynamic stallconditions were carried out with the OVERFLOW Navier-Stokes code.a. The normal force and pitching moment variation with azimuth angle were in good overall agreementwith flight-test data, similar to other CFD results reported in the literature.b. The wake-grid resolution did not have a significant effect on the rotor-blade airloads. This surprisingresult indicates that a wake grid spacing of (Delta)S=10% ctip is sufficient for engineering airloads predictionfor hover and forward flight. This assumes high-resolution body grids, high-order spatial accuracy, anda hybrid RANS/DDES turbulence model.c. Three-dimensional dynamic stall was found to occur due the presence of blade-tip vortices passing overa rotor blade on the retreating side. This changed the local airfoil angle of attack, causing stall, unlikethe 2D perspective of pure pitch oscillation of the local airfoil section.

  20. Quantitative tradeoffs between spatial, temporal, and thermometric resolution of nonresonant Raman thermometry for dynamic experiments.

    PubMed

    McGrane, Shawn D; Moore, David S; Goodwin, Peter M; Dattelbaum, Dana M

    2014-01-01

    The ratio of Stokes to anti-Stokes nonresonant spontaneous Raman can provide an in situ thermometer that is noncontact, independent of any material specific parameters or calibrations, can be multiplexed spatially with line imaging, and can be time resolved for dynamic measurements. However, spontaneous Raman cross sections are very small, and thermometric measurements are often limited by the amount of laser energy that can be applied without damaging the sample or changing its temperature appreciably. In this paper, we quantitatively detail the tradeoff space between spatial, temporal, and thermometric accuracy measurable with spontaneous Raman. Theoretical estimates are pinned to experimental measurements to form realistic expectations of the resolution tradeoffs appropriate to various experiments. We consider the effects of signal to noise, collection efficiency, laser heating, pulsed laser ablation, and blackbody emission as limiting factors, provide formulae to help choose optimal conditions and provide estimates relevant to planning experiments along with concrete examples for single-shot measurements.

  1. Intercomparison of SOUP, ASP, LPSP, and MDI magnetograms

    NASA Astrophysics Data System (ADS)

    Berger, T.; Lites, B.; Martinez-Pillet, V.; Tarbell, T.; Title, A.

    2001-05-01

    We compare simultaneous magnetograms of a solar active region taken by the Advanced Stokes Polarimeter (ASP) and the Solar Optical Universal Polimeter (SOUP) in 1998. In addition we compare magnetograms taken by the La Palma Stokes Polarimeter (LPSP), the Michelson Doppler Imager (MDI) on SOHO, and the SOUP instrument in 2000. The SOUP instrument on the Swedish Vacuum Solar Telescope (SVST) attains the highest spatial resolution but has the least understood calibration; the ASP on the Dunn Solar Telescope (DST) at Sacramento Peak attains the highest magnetic field precision. The goal of the program is to better quantify the SOUP magnetograms and thereby study magnetic element dynamics in the photosphere with higher precision.

  2. Two-Dimensional Computational Model for Wave Rotor Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.

  3. Navier-Stokes Dynamics by a Discrete Boltzmann Model

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robet

    2010-01-01

    This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.

  4. Workshop report - A validation study of Navier-Stokes codes for transverse injection into a Mach 2 flow

    NASA Technical Reports Server (NTRS)

    Eklund, Dean R.; Northam, G. B.; Mcdaniel, J. C.; Smith, Cliff

    1992-01-01

    A CFD (Computational Fluid Dynamics) competition was held at the Third Scramjet Combustor Modeling Workshop to assess the current state-of-the-art in CFD codes for the analysis of scramjet combustors. Solutions from six three-dimensional Navier-Stokes codes were compared for the case of staged injection of air behind a step into a Mach 2 flow. This case was investigated experimentally at the University of Virginia and extensive in-stream data was obtained. Code-to-code comparisons have been made with regard to both accuracy and efficiency. The turbulence models employed in the solutions are believed to be a major source of discrepancy between the six solutions.

  5. Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Burklund, Michael D.; Johnson, Wayne

    2003-01-01

    A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.

  6. Lagrangian turbulence: Structures and mixing in admissible model flows

    NASA Astrophysics Data System (ADS)

    Ottino, Julio M.

    1991-12-01

    The goal of our research was to bridge the gap between modern ideas from dynamical systems and chaos and more traditional approaches to turbulence. In order to reach this objective we conducted theoretical and computational work on two systems: (1) a perturbed-Kelvin cat eyes flow, and (2) prototype solutions of the Navier-Stokes equations near solid walls. The main results obtained are two-fold: we have been able to produce flows capable of producing complex distributions of vorticity, and we have been able to construct flowfields, based on solutions of the Navier-Stokes equations, which are capable of displaying both Eulerian and Lagrangian turbulence. These results exemplify typical mechanisms of mixing enhancement in transitional flows.

  7. Grounding line dynamics inferred from a 3D full-Stokes model solving the contact problem

    NASA Astrophysics Data System (ADS)

    Favier, Lionel; Gagliardini, Olivier; Durand, Gael; Zwinger, Thomas

    2010-05-01

    The mass balance of marine ice-sheets, such as the West Antarctic Ice Sheet, is mostly controlled by their grounding line dynamics. Most numerical models simulating marine ice-sheets involve simplifications and do not include all the stress gradients. First results obtained with a 3D full-Stokes model for the grounded ice-sheet / floating ice-shelf transition, using the finite-element code Elmer/Ice, are presented. The initial geometry, which takes into account a dome and a calving front, has been laterally extruded from a previously investigated 2D flowline geometry. The grounding line migration is computed by solving the contact problem between the ice and the rigid downward sloping bedrock, where a non linear friction law is applied in the two horizontal directions. The evolutions of the sea-air and sea-ice interfaces are determined by the solution of a local transport equation. The consistency between the 3D model and the analogous results of the flowline model is shown by comparing the results in the basic extruded case, with no normal flux through lateral boundaries. Thereafter, spatially non uniform perturbations are introduced, to simulate the grounding line dynamics under fully three-dimensional perturbations.

  8. Prediction of Flows about Forebodies at High-Angle-of-Attack Dynamic Conditions

    NASA Technical Reports Server (NTRS)

    Fremaux, C. M.; vanDam, C. P.; Saephan, S.; DalBello, T.

    2003-01-01

    A Reynolds-average Navier Stokes method developed for rotorcraft type of flow problems is applied for predicting the forces and moments of forebody models at high-angle-of-attack dynamic conditions and for providing insight into the flow characteristics at these conditions. Wind-tunnel results from rotary testing on generic forebody models conducted by NASA Langley and DERA are used for comparison. This paper focuses on the steady-state flow problem.

  9. A paradigm for modeling and computation of gas dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Liu, Chang

    2017-02-01

    In the continuum flow regime, the Navier-Stokes (NS) equations are usually used for the description of gas dynamics. On the other hand, the Boltzmann equation is applied for the rarefied flow. These two equations are based on distinguishable modeling scales for flow physics. Fortunately, due to the scale separation, i.e., the hydrodynamic and kinetic ones, both the Navier-Stokes equations and the Boltzmann equation are applicable in their respective domains. However, in real science and engineering applications, they may not have such a distinctive scale separation. For example, around a hypersonic flying vehicle, the flow physics at different regions may correspond to different regimes, where the local Knudsen number can be changed significantly in several orders of magnitude. With a variation of flow physics, theoretically a continuous governing equation from the kinetic Boltzmann modeling to the hydrodynamic Navier-Stokes dynamics should be used for its efficient description. However, due to the difficulties of a direct modeling of flow physics in the scale between the kinetic and hydrodynamic ones, there is basically no reliable theory or valid governing equations to cover the whole transition regime, except resolving flow physics always down to the mean free path scale, such as the direct Boltzmann solver and the Direct Simulation Monte Carlo (DSMC) method. In fact, it is an unresolved problem about the exact scale for the validity of the NS equations, especially in the small Reynolds number cases. The computational fluid dynamics (CFD) is usually based on the numerical solution of partial differential equations (PDEs), and it targets on the recovering of the exact solution of the PDEs as mesh size and time step converging to zero. This methodology can be hardly applied to solve the multiple scale problem efficiently because there is no such a complete PDE for flow physics through a continuous variation of scales. For the non-equilibrium flow study, the direct modeling methods, such as DSMC, particle in cell, and smooth particle hydrodynamics, play a dominant role to incorporate the flow physics into the algorithm construction directly. It is fully legitimate to combine the modeling and computation together without going through the process of constructing PDEs. In other words, the CFD research is not only to obtain the numerical solution of governing equations but to model flow dynamics as well. This methodology leads to the unified gas-kinetic scheme (UGKS) for flow simulation in all flow regimes. Based on UGKS, the boundary for the validation of the Navier-Stokes equations can be quantitatively evaluated. The combination of modeling and computation provides a paradigm for the description of multiscale transport process.

  10. Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun

    2015-10-05

    We report systematic measurements of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) by employing Brillouin light scattering in Pt/Co/AlO{sub x} and Ta/Pt/Co/AlO{sub x} structures. By introducing a tantalum buffer layer, the saturation magnetization and the interfacial perpendicular magnetic anisotropy are significantly improved due to the better interface between heavy metal and ferromagnetic layer. From the frequency shift between Stokes- and anti-Stokes spin-waves, we successively obtain considerably larger iDM energy densities (D{sub max} = 1.65 ± 0.13 mJ/m{sup 2} at t{sub Co} = 1.35 nm) upon adding the Ta buffer layer, despite the nominally identical interface materials. Moreover, the energy density shows an inverse proportionality with the Co layer thickness,more » which is the critical clue that the observed iDMI is indeed originating from the interface between the Pt and Co layers.« less

  11. Impulsive Raman spectroscopy via precision measurement of frequency shift with low energy excitation.

    PubMed

    Raanan, Dekel; Ren, Liqing; Oron, Dan; Silberberg, Yaron

    2018-02-01

    Stimulated Raman scattering (SRS) has recently become useful for chemically selective bioimaging. It is usually measured via modulation transfer from the pump beam to the Stokes beam. Impulsive stimulated Raman spectroscopy, on the other hand, relies on the spectral shift of ultrashort pulses as they propagate in a Raman active sample. This method was considered impractical with low energy pulses since the observed shifts are very small compared to the excitation pulse bandwidth, spanning many terahertz. Here we present a new apparatus, using tools borrowed from the field of precision measurement, for the detection of low-frequency Raman lines via stimulated-Raman-scattering-induced spectral shifts. This method does not require any spectral filtration and is therefore an excellent candidate to resolve low-lying Raman lines (<200  cm -1 ), which are commonly masked by the strong Rayleigh scattering peak. Having the advantage of the high repetition rate of the ultrafast oscillator, we reduce the noise level by implementing a lock-in detection scheme with a wavelength shift sensitivity well below 100 fm. This is demonstrated by the measurement of low-frequency Raman lines of various liquid samples.

  12. Numerical computations of the dynamics of fluidic membranes and vesicles

    NASA Astrophysics Data System (ADS)

    Barrett, John W.; Garcke, Harald; Nürnberg, Robert

    2015-11-01

    Vesicles and many biological membranes are made of two monolayers of lipid molecules and form closed lipid bilayers. The dynamical behavior of vesicles is very complex and a variety of forms and shapes appear. Lipid bilayers can be considered as a surface fluid and hence the governing equations for the evolution include the surface (Navier-)Stokes equations, which in particular take the membrane viscosity into account. The evolution is driven by forces stemming from the curvature elasticity of the membrane. In addition, the surface fluid equations are coupled to bulk (Navier-)Stokes equations. We introduce a parametric finite-element method to solve this complex free boundary problem and present the first three-dimensional numerical computations based on the full (Navier-)Stokes system for several different scenarios. For example, the effects of the membrane viscosity, spontaneous curvature, and area difference elasticity (ADE) are studied. In particular, it turns out, that even in the case of no viscosity contrast between the bulk fluids, the tank treading to tumbling transition can be obtained by increasing the membrane viscosity. Besides the classical tank treading and tumbling motions, another mode (called the transition mode in this paper, but originally called the vacillating-breathing mode and subsequently also called trembling, transition, and swinging mode) separating these classical modes appears and is studied by us numerically. We also study how features of equilibrium shapes in the ADE and spontaneous curvature models, like budding behavior or starfish forms, behave in a shear flow.

  13. A map for heavy inertial particles in fluid flows

    NASA Astrophysics Data System (ADS)

    Vilela, Rafael D.; de Oliveira, Vitor M.

    2017-06-01

    We introduce a map which reproduces qualitatively many fundamental properties of the dynamics of heavy particles in fluid flows. These include a uniform rate of decrease of volume in phase space, a slow-manifold effective dynamics when the single parameter s (analogous of the Stokes number) approaches zero, the possibility of fold caustics in the "velocity field", and a minimum, as a function of s, of the Lyapunov (Kaplan-Yorke) dimension of the attractor where particles accumulate.

  14. Identifying time scales for violation/preservation of Stokes-Einstein relation in supercooled water

    PubMed Central

    Kawasaki, Takeshi; Kim, Kang

    2017-01-01

    The violation of the Stokes-Einstein (SE) relation D ~ (η/T)−1 between the shear viscosity η and the translational diffusion constant D at temperature T is of great importance for characterizing anomalous dynamics of supercooled water. Determining which time scales play key roles in the SE violation remains elusive without the measurement of η. We provide comprehensive simulation results of the dynamic properties involving η and D in the TIP4P/2005 supercooled water. This enabled the thorough identification of the appropriate time scales for the SE relation Dη/T. In particular, it is demonstrated that the temperature dependence of various time scales associated with structural relaxation, hydrogen bond breakage, stress relaxation, and dynamic heterogeneities can be definitely classified into only two classes. That is, we propose the generalized SE relations that exhibit “violation” or “preservation.” The classification depends on the examined time scales that are coupled or decoupled with the diffusion. On the basis of the classification, we explain the physical origins of the violation in terms of the increase in the plateau modulus and the nonexponentiality of stress relaxation. This implies that the mechanism of SE violation is attributed to the attained solidity upon supercooling, which is in accord with the growth of non-Gaussianity and spatially heterogeneous dynamics. PMID:28835918

  15. Particle-based simulations of self-motile suspensions

    NASA Astrophysics Data System (ADS)

    Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2015-11-01

    A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.

  16. Relativistic viscoelastic fluid mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  17. Relativistic viscoelastic fluid mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for themore » propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.« less

  18. Optical properties of cyanine dyes in nanotubes of chrysotile asbestos

    NASA Astrophysics Data System (ADS)

    Starovoytov, Anton A.; Vartanyan, Tigran A.; Belotitskii, Vladimir I.; Kumzerov, Yuri A.; Sysoeva, Anna A.

    2017-08-01

    Optical properties of cyanine dye molecules incorporated in nanotubes of natural chrysotile asbestos are studied. The absorption and fluorescence spectra of dye in asbestos have the similar shapes as in the ethanol solution, apart from small blue shift of the maxima. The Stokes shift in asbestos is smaller than in the ethanol solution. The fluorescence decay times of the dyes in asbestos nanotubes are found to be larger than that in the case of thin films of the same dyes formed on the transparent dielectric supports. This observation is rationalized in terms of the stereoisomerization hindrance in the excited electronic state of dye molecules. At the same time linear dichroism and fluorescence anisotropy observed in the experiment indicate that the embedded dye molecules are well-isolated monomer oriented predominantly along asbestos nanotubes.

  19. ac Stark-mediated quantum control with femtosecond two-color laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrat, Carles

    2005-11-15

    A critical dependence of the quantum interference on the optical Stark spectral shift produced when two-color laser pulses interact with a two-level medium is observed. The four-wave mixing of two ultrashort phase-locked {omega}-3{omega} laser pulses propagating coherently in a two-level system depends on the pulses' relative phase. The phase dominating the efficiency of the coupling to the anti-Stokes Raman component is found to be determined by the sign of the total ac Stark shift induced in the system, in such a way that the phase sensitivity disappears precisely where the ac Stark effect due to both pulses is compensated. Amore » coherent control scheme based on this phenomenon can be contemplated as the basis for nonlinear optical spectroscopy techniques.« less

  20. Red fluorescent proteins: advanced imaging applications and future design.

    PubMed

    Shcherbakova, Daria M; Subach, Oksana M; Verkhusha, Vladislav V

    2012-10-22

    In the past few years a large series of the advanced red-shifted fluorescent proteins (RFPs) has been developed. These enhanced RFPs provide new possibilities to study biological processes at the levels ranging from single molecules to whole organisms. Herein the relationship between the properties of the RFPs of different phenotypes and their applications to various imaging techniques are described. Existing and emerging imaging approaches are discussed for conventional RFPs, far-red FPs, RFPs with a large Stokes shift, fluorescent timers, irreversibly photoactivatable and reversibly photoswitchable RFPs. Advantages and limitations of specific RFPs for each technique are presented. Recent progress in understanding the chemical transformations of red chromophores allows the future RFP phenotypes and their respective novel imaging applications to be foreseen. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Physicochemical Investigation of 2,4,5-Trimethoxybenzylidene Propanedinitrile (TMPN) Dye as Fluorescence off-on Probe for Critical Micelle Concentration (CMC) of SDS and CTAB.

    PubMed

    Khan, Salman A; Asiri, Abdullah M

    2015-11-01

    2,4,5-trimethoxybenzylidene propanedinitrile (TMPN) was synthesized by Knoevenagel condensation. Structure of the TMPN was conformed by the elemental analysis and EI-MS, FT-IR, (1)H-NMR, (13)C-NMR spectroscopy. Absorbance and emission spectrum of the TMPN was studied in different solvent provide that TMPN is good absorbent and emission red shift in absorbance and emission spectra as polarity of the solvents increase. Photophysical properties including, oscillator strength, extinction coefficient, transition dipole moment, stokes shift and fluorescence quantum yield were investigated in order to investigate the physicochemical behaviors of TMPN. Dye undergoes solubilization in different micelles and may be used as a probe to determine the critical micelle concentration (CMC) of SDS and CTAB.

  2. Collective Modes in a Trapped Gas from Second-Order Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lewis, William; Romatschke, Paul

    Navier-Stokes equations are often used to analyze collective oscillations and expansion dynamics of strongly interacting quantum gases. However, their use, for example, in precision determination of transport properties such as the ratio shear viscosity to entropy density (η / s) in strongly interacting Fermi gases problematic. Second-order hydrodynamics addresses this by promoting the viscous stress tensor to a hydrodynamic variable relaxing to the Navier-Stokes form on a timescale τπ. We derive frequencies, damping rates, and spatial structure of collective oscillations up to the decapole mode of a harmonically trapped gas in this framework. We find damping of higher-order modes (i.e. beyond quadrupolar) exhibits greater sensitivity to shear viscosity. Thus measurement of the hexapolar mode, for example, may lead to a stronger experimental constraint on η / s . Additionally, we find ``non-hydrodynamic'' modes not contained in a Navier-Stokes description. We calculate excitation amplitudes of non-hydrodynamic modes demonstrating they should be observable. Non-hydrodynamic modes may have implications for the hydrodynamization timescale, the existence of quasi-particles, and universal transport behavior in strongly interacting quantum fluids.

  3. Finite-mode spectral model of homogeneous and isotropic Navier-stokes turbulence: a rapidly depleted energy cascade.

    PubMed

    Lévêque, E; Koudella, C R

    2001-04-30

    An eddy-viscous term is added to Navier-Stokes dynamics at wave numbers k greater than the inflection point kc of the energy flux F(log(k)). The eddy viscosity is fixed so that the energy spectrum satisfies E(k) = E(kc) (k/kc)(-3) for k>kc. This resulting forcing induces a rapid depletion of the energy cascade at k>kc. It is observed numerically that the model reproduces turbulence energetics at k< or =kc and statistics of two-point velocity correlations at scales r>lambda (Taylor microscale). Compared to a direct numerical simulation of R(lambda) = 130 an equivalent run with the present model results in a gain of a factor 20 in CPU time.

  4. RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1997-01-01

    Topics considered include: high-performance computing; cognitive and perceptual prostheses (computational aids designed to leverage human abilities); autonomous systems. Also included: development of a 3D unstructured grid code based on a finite volume formulation and applied to the Navier-stokes equations; Cartesian grid methods for complex geometry; multigrid methods for solving elliptic problems on unstructured grids; algebraic non-overlapping domain decomposition methods for compressible fluid flow problems on unstructured meshes; numerical methods for the compressible navier-stokes equations with application to aerodynamic flows; research in aerodynamic shape optimization; S-HARP: a parallel dynamic spectral partitioner; numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains; application of high-order shock capturing schemes to direct simulation of turbulence; multicast technology; network testbeds; supercomputer consolidation project.

  5. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis.

    PubMed

    Flores-Flores, E; Torres-Hurtado, S A; Páez, R; Ruiz, U; Beltrán-Pérez, G; Neale, S L; Ramirez-San-Juan, J C; Ramos-García, R

    2015-10-01

    In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters.

  6. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis

    PubMed Central

    Flores-Flores, E.; Torres-Hurtado, S. A.; Páez, R.; Ruiz, U.; Beltrán-Pérez, G.; Neale, S. L.; Ramirez-San-Juan, J. C.; Ramos-García, R.

    2015-01-01

    In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters. PMID:26504655

  7. Application of CFD codes to the design and development of propulsion systems

    NASA Technical Reports Server (NTRS)

    Lord, W. K.; Pickett, G. F.; Sturgess, G. J.; Weingold, H. D.

    1987-01-01

    The internal flows of aerospace propulsion engines have certain common features that are amenable to analysis through Computational Fluid Dynamics (CFD) computer codes. Although the application of CFD to engineering problems in engines was delayed by the complexities associated with internal flows, many codes with different capabilities are now being used as routine design tools. This is illustrated by examples taken from the aircraft gas turbine engine of flows calculated with potential flow, Euler flow, parabolized Navier-Stokes, and Navier-Stokes codes. Likely future directions of CFD applied to engine flows are described, and current barriers to continued progress are highlighted. The potential importance of the Numerical Aerodynamic Simulator (NAS) to resolution of these difficulties is suggested.

  8. Full Navier-Stokes analysis of a two-dimensional mixer/ejector nozzle for noise suppression

    NASA Technical Reports Server (NTRS)

    Debonis, James R.

    1992-01-01

    A three-dimensional full Navier-Stokes (FNS) analysis was performed on a mixer/ejector nozzle designed to reduce the jet noise created at takeoff by a future supersonic transport. The PARC3D computational fluid dynamics (CFD) code was used to study the flow field of the nozzle. The grid that was used in the analysis consisted of approximately 900,000 node points contained in eight grid blocks. Two nozzle configurations were studied: a constant area mixing section and a diverging mixing section. Data are presented for predictions of pressure, velocity, and total temperature distributions and for evaluations of internal performance and mixing effectiveness. The analysis provided good insight into the behavior of the flow.

  9. Analysis of strong-interaction dynamic stall for laminar flow on airfoils

    NASA Technical Reports Server (NTRS)

    Gibeling, H. J.; Shamroth, S. J.; Eiseman, P. R.

    1978-01-01

    A compressible Navier-Stokes solution procedure is applied to the flow about an isolated airfoil. Two major problem areas were investigated. The first area is that of developing a coordinate system and an initial step in this direction has been taken. An airfoil coordinate system obtained from specification of discrete data points developed and the heat conduction equation has been solved in this system. Efforts required to allow the Navier-Stokes equations to be solved in this system are discussed. The second problem area is that of obtaining flow field solutions. Solutions for the flow about a circular cylinder and an isolated airfoil are presented. In the former case, the prediction is shown to be in good agreement with data.

  10. Stokes-Einstein relation of the liquid metal rubidium and its relationship to changes in the microscopic dynamics with increasing temperature

    NASA Astrophysics Data System (ADS)

    Demmel, F.; Tani, A.

    2018-06-01

    For liquid rubidium the Stokes-Einstein (SE) relation is well fulfilled near the melting point with an effective hydrodynamic diameter, which agrees well with a value from structural investigations. A wealth of thermodynamic and microscopic data exists for a wide range of temperatures for liquid rubidium and hence it represents a good test bed to challenge the SE relation with rising temperature from an experimental point of view. We performed classical molecular dynamics simulations to complement the existing experimental data using a pseudopotential, which describes perfectly the structure and dynamics of liquid rubidium. The derived SE relation from combining experimental shear viscosity data with simulated diffusion coefficients reveals a weak violation at about 1.3 Tmelting≈400 K. The microscopic relaxation dynamics on nearest neighbor distances from neutron spectroscopy demonstrate distinct changes in the amplitude with rising temperature. The derived average relaxation time for density fluctuations on this length scale shows a non-Arrhenius behavior, with a slope change around 1.5 Tmelting≈450 K. Combining the simulated macroscopic self-diffusion coefficient with that microscopic average relaxation time, a distinct violation of the SE relation in the same temperature range can be demonstrated. One can conclude that the changes in the collective dynamics, a mirror of the correlated movements of the particles, are at the origin for the violation of the SE relation. The changes in the dynamics can be understood as a transition from a more viscous liquid metal to a more fluid-like liquid above the crossover temperature range of 1.3-1.5 Tmelting. The decay of the amplitude of density fluctuations in liquid aluminium, lead, and rubidium demonstrates a remarkable agreement and points to a universal thermal crossover in the dynamics of liquid metals.

  11. Live Cell Visualization of Multiple Protein-Protein Interactions with BiFC Rainbow.

    PubMed

    Wang, Sheng; Ding, Miao; Xue, Boxin; Hou, Yingping; Sun, Yujie

    2018-05-18

    As one of the most powerful tools to visualize PPIs in living cells, bimolecular fluorescence complementation (BiFC) has gained great advancement during recent years, including deep tissue imaging with far-red or near-infrared fluorescent proteins or super-resolution imaging with photochromic fluorescent proteins. However, little progress has been made toward simultaneous detection and visualization of multiple PPIs in the same cell, mainly due to the spectral crosstalk. In this report, we developed novel BiFC assays based on large-Stokes-shift fluorescent proteins (LSS-FPs) to detect and visualize multiple PPIs in living cells. With the large excitation/emission spectral separation, LSS-FPs can be imaged together with normal Stokes shift fluorescent proteins to realize multicolor BiFC imaging using a simple illumination scheme. We also further demonstrated BiFC rainbow combining newly developed BiFC assays with previously established mCerulean/mVenus-based BiFC assays to achieve detection and visualization of four PPI pairs in the same cell. Additionally, we prove that with the complete spectral separation of mT-Sapphire and CyOFP1, LSS-FP-based BiFC assays can be readily combined with intensity-based FRET measurement to detect ternary protein complex formation with minimal spectral crosstalk. Thus, our newly developed LSS-FP-based BiFC assays not only expand the fluorescent protein toolbox available for BiFC but also facilitate the detection and visualization of multiple protein complex interactions in living cells.

  12. Fine tuning the emission wavelengths of the 7-hydroxy-1-indanone based nano-structure dyes: Near-infrared (NIR) dual emission generation with large stokes shifts

    NASA Astrophysics Data System (ADS)

    Roohi, Hossein; Alizadeh, Parvaneh

    2018-05-01

    Near-infrared (NIR) fluorescent dyes have recently gained special attention due to their applications to use as molecular probes for imaging of biological targets and sensitive determination. In this study, photophysical properties of the 7-hydroxy-1-indanone based fluorophors A1, A2, A3, B1, B2 and 3R-B2 (R = CF3, NH2, NO2 and OMe) in the gas and three solution phases were probed using TD-DFT method at PBE0/6-311++G(d,p) and M06-2X/6-311++G(d,p) levels of theory. In addition to structural and photophysical properties as well as ESIPT mechanism of all mentioned molecules, the FC and relaxed potential energy surfaces of B2 and 3R-B2 (R = CF3 and NH2) molecules were explored in gas phase and acetonitrile, cyclohexane and water solvents. It is predicted that the A1, A3 and 3R-B2 chromophores afford normal (615-670 nm) and NIR fluorescence emissions (770-940 nm; biological window) with the large Stokes shifts of >160 and >300 nm, respectively. A good aggrement was found between theoretical and experimental results. In sum, these new types of dyes may render the new approaches for the development of the most efficient NIR fluorescent probes for enhanced image contrast and optimal apparent brightness in biological applications.

  13. First-principle study of phosphors for white-LED applications : absorption and emission energies for Ce- and Eu-doped hosts.

    NASA Astrophysics Data System (ADS)

    Gonze, Xavier; Jia, Yongchao; Miglio, Anna; Giantomassi, Matteo; Ponce, Samuel; Mikami, Masayoshi

    After the invasion of compact fluorescent lamps, white LED lighting is becoming a major contender in ecofriendly light sources, with a combination of yellow-, green- and/or red-emitting phosphors partly absorbing the blue light emitted by an InGaN LED. After introducing the semi-empirical Dorenbos model for 4f' 5d transition energies of rare earth ions, I present a first-principle study of two dozen compounds, pristine as well as doped with Ce3+ or Eu2+ ions, in view of explaining their different emission color. The neutral excitation of the ions is simulated through a constrained density functional theory method coupled with a delta SCF analysis of total energies, yielding absorption energies. Then, atomic positions in the excited state are relaxed, yielding emission energies and Stokes shifts, and identification of luminescent centers. In case of the Ce doped materials, the first-principle approach matches experimental data within 0.3 eV for both absorption and emission energies, covering a range of values between 2.0 eV and 5.0 eV, and provides Stokes shifts within 30%, with two exceptions. This is significantly better than the semi-empirical Dorenbos model. A similar analysis is performed for Eu-doped materials, also examining the thermal quenching of two oxynitride hosts. The work was supported by the FRS-FNRS Belgium (PDR Grant T.0238.13 - AIXPHO).

  14. Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory.

    PubMed

    Fried, Eliot; Gurtin, Morton E

    2007-05-01

    We present a continuum-mechanical formulation and generalization of the Navier-Stokes alpha theory based on a general framework for fluid-dynamical theories with gradient dependencies. Our flow equation involves two additional problem-dependent length scales alpha and beta. The first of these scales enters the theory through the internal kinetic energy, per unit mass, alpha2|D|2, where D is the symmetric part of the gradient of the filtered velocity. The remaining scale is associated with a dissipative hyperstress which depends linearly on the gradient of the filtered vorticity. When alpha and beta are equal, our flow equation reduces to the Navier-Stokes alpha equation. In contrast to the original derivation of the Navier-Stokes alpha equation, which relies on Lagrangian averaging, our formulation delivers boundary conditions. For a confined flow, our boundary conditions involve an additional length scale l characteristic of the eddies found near walls. Based on a comparison with direct numerical simulations for fully developed turbulent flow in a rectangular channel of height 2h, we find that alphabeta approximately Re(0.470) and lh approximately Re(-0.772), where Re is the Reynolds number. The first result, which arises as a consequence of identifying the internal kinetic energy with the turbulent kinetic energy, indicates that the choice alpha=beta required to reduce our flow equation to the Navier-Stokes alpha equation is likely to be problematic. The second result evinces the classical scaling relation eta/L approximately Re(-3/4) for the ratio of the Kolmogorov microscale eta to the integral length scale L . The numerical data also suggests that l < or = beta . We are therefore led to conjecture a tentative hierarchy, l < or = beta < alpha , involving the three length scales entering our theory.

  15. Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Sokolowski, M.; Colegate, T.; Sutinjo, A. T.; Ung, D.; Wayth, R.; Hurley-Walker, N.; Lenc, E.; Pindor, B.; Morgan, J.; Kaplan, D. L.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; For, Bi-Qing; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wu, C.; Zheng, Q.

    2017-11-01

    The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science programme, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programmes for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope's primary beam. Recent results from the MWA GaLactic Extragalactic All-sky Murchison Widefield Array (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10-20% in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA's primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 × 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen, and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200-231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.

  16. Assessment of RANS and LES Turbulence Modeling for Buoyancy-Aided/Opposed Forced and Mixed Convection

    NASA Astrophysics Data System (ADS)

    Clifford, Corey; Kimber, Mark

    2017-11-01

    Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.

  17. Polarity control at interfaces: Quantifying pseudo-solvent effects in nano-confined systems

    DOE PAGES

    Singappuli-Arachchige, Dilini; Manzano, J. Sebastian; Sherman, Lindy M.; ...

    2016-08-02

    Surface functionalization controls local environments and induces solvent-like effects at liquid–solid interfaces. We explored structure–property relationships between organic groups bound to pore surfaces of mesoporous silica nanoparticles and Stokes shifts of the adsorbed solvatochromic dye Prodan. Correlating shifts of the dye on the surfaces with its shifts in solvents resulted in a local polarity scale for functionalized pores. The scale was validated by studying the effects of pore polarity on quenching of Nile Red fluorescence and on the vibronic band structure of pyrene. Measurements were done in aqueous suspensions of porous particles, proving that the dielectric properties in the poresmore » are different from the bulk solvent. The precise control of pore polarity was used to enhance the catalytic activity of TEMPO in the aerobic oxidation of furfuryl alcohol in water. Furthermore, an inverse relationship was found between pore polarity and activity of TEMPO in the pores, demonstrating that controlling the local polarity around an active site allows modulating the activity of nanoconfined catalysts.« less

  18. Solvent effects on the photophysical properties of coumarin dye

    NASA Astrophysics Data System (ADS)

    Bhavya, P.; Melavanki, Raveendra; Manjunatha, M. N.; Koppal, Varsha; Patil, N. R.; Muttannavar, V. T.

    2018-05-01

    The absorption and emission spectrum of fluorescent coumarin dye namely, 3-Hydroxy-3-[2-oxo-2-(3-oxo-3H-benzo[f]chromen-2-yl)-ethyl]-1,3-dihydro-indol-2-one [3HBCD] has been recorded at room temperature in solvents of different polarities. The exited state dipole moments (μe) were estimated from Lippert's, Bakhshiev's and Kawski-Chamma-Viallet's equations using the variation of Stoke's shift with the solvent dielectric constant and refractive index. The geometry of the molecule was fully optimized and the μg was also calculated theoretically by Gaussian 03 software using B3LYP/6-31g* level of theory. The μg and μg were calculated by means of solvatochromic shift method. It was observed that μe was higher than μg, indicating a substantial redistribution of the π-electron densities in a more polar excited state for the selected coumarin dye. Further, the changes in the dipole moment (Δμ) was calculated from solvatochromic shift method.

  19. Ultralow-threshold laser and blue shift cooperative luminescence in a Yb{sup 3+} doped silica microsphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yantang, E-mail: g@fzu.edu.cn; Huang, Yu; Zhang, Peijin

    2014-02-15

    An experimental investigation on ultralow threshold laser and blue shift cooperative luminescence (CL) in a Yb{sup 3+} doped silica microsphere (YDSM) with continuous-wave 976 nm laser diode pumping is reported. The experimental results show that the YDSM emits laser oscillation with ultralow threshold of 2.62 μW, and the laser spectrum is modulated by the microsphere morphology characteristics. In addition, blue emission of YDSM is also observed with the increase of pump power, which is supposed to be generated by CL of excited Yb ion-pairs with the absorption of 976 nm photons and Si-O vibration phonons, and the process is explainedmore » with an energy level diagram. This property of the blue shift CL with phonons absorption in the Yb{sup 3+}doped microcavity makes it attractive for the application of laser cooling based on anti-Stokes fluorescence emission, if the Yb{sup 3+}doped microcavity made from with low phonon energy host materials.« less

  20. Long-time dynamics of Rouse-Zimm polymers in dilute solutions with hydrodynamic memory.

    PubMed

    Lisy, V; Tothova, J; Zatovsky, A V

    2004-12-01

    The dynamics of flexible polymers in dilute solutions is studied taking into account the hydrodynamic memory, as a consequence of fluid inertia. As distinct from the Rouse-Zimm (RZ) theory, the Boussinesq friction force acts on the monomers (beads) instead of the Stokes force, and the motion of the solvent is governed by the nonstationary Navier-Stokes equations. The obtained generalized RZ equation is solved approximately using the preaveraging of the Oseen tensor. It is shown that the time correlation functions describing the polymer motion essentially differ from those in the RZ model. The mean-square displacement (MSD) of the polymer coil is at short times approximately t(2) (instead of approximately t). At long times the MSD contains additional (to the Einstein term) contributions, the leading of which is approximately t. The relaxation of the internal normal modes of the polymer differs from the traditional exponential decay. It is displayed in the long-time tails of their correlation functions, the longest lived being approximately t(-3/2) in the Rouse limit and t(-5/2) in the Zimm case, when the hydrodynamic interaction is strong. It is discussed that the found peculiarities, in particular, an effectively slower diffusion of the polymer coil, should be observable in dynamic scattering experiments. (c) 2004 American Institute of Physics

  1. Hopping and the Stokes-Einstein relation breakdown in simple glass formers.

    PubMed

    Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Zamponi, Francesco

    2014-10-21

    One of the most actively debated issues in the study of the glass transition is whether a mean-field description is a reasonable starting point for understanding experimental glass formers. Although the mean-field theory of the glass transition--like that of other statistical systems--is exact when the spatial dimension d → ∞, the evolution of systems properties with d may not be smooth. Finite-dimensional effects could dramatically change what happens in physical dimensions,d = 2, 3. For standard phase transitions finite-dimensional effects are typically captured by renormalization group methods, but for glasses the corrections are much more subtle and only partially understood. Here, we investigate hopping between localized cages formed by neighboring particles in a model that allows to cleanly isolate that effect. By bringing together results from replica theory, cavity reconstruction, void percolation, and molecular dynamics, we obtain insights into how hopping induces a breakdown of the Stokes-Einstein relation and modifies the mean-field scenario in experimental systems. Although hopping is found to supersede the dynamical glass transition, it nonetheless leaves a sizable part of the critical regime untouched. By providing a constructive framework for identifying and quantifying the role of hopping, we thus take an important step toward describing dynamic facilitation in the framework of the mean-field theory of glasses.

  2. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juan M. Restrepo

    2008-09-01

    Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers en- compassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation ismore » boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundry conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.« less

  3. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, 3-D, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  4. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, three-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  5. Aerodynamics of powered missile separation from a wing

    NASA Technical Reports Server (NTRS)

    Shanks, S. P.; Ahmad, J. U.

    1991-01-01

    A 3D dynamic 'chimera' algorithm that solves the thin-layer Navier-Stokes equations over multiple moving bodies was modified to numerically simulate the aerodynamics, missile dynamics, and missile plume of a finless missile separating from a wing in transonic flow. A powered missile separation case was considered to examine the influence of the missile and plume on the wing. The wing and missile is at a two degree angle of attack. The computational results show the details of the flow field.

  6. Dynamic Stall Computations Using a Zonal Navier-Stokes Model

    DTIC Science & Technology

    1988-06-01

    NAVAL POSTGRADUATE SCHOOL lotMonterey ,California CD Lj STATF ,-S THESIS DYNAMIC STALL CALCULATIONS USING A ZONAL.-,_ % 0 NVETESISDE by Jack H...Conroyd, Jr. June 1988 Thesis Co-advisors: M.F. Platzer Lawrence W. Carr Approved for public release; distribution is unlimitedDOTIC , ~~~~~~~~ELECT...OINT %, Master s Thesis OM To June 212 6 SLP;’LEENTARY NOTATION ri The views expressed in this thesis are those of the author and do not reflect the

  7. NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Presentations given at the NASA Computational Fluid Dynamics (CFD) Conference held at the NASA Ames Research Center, Moffett Field, California, March 7-9, 1989 are given. Topics covered include research facility overviews of CFD research and applications, validation programs, direct simulation of compressible turbulence, turbulence modeling, advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations, grid generation and invicid flow computation around aircraft geometries, numerical simulation of rotorcraft, and viscous drag prediction for rotor blades.

  8. Model for dynamic self-assembled magnetic surface structures

    NASA Astrophysics Data System (ADS)

    Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.

    2010-07-01

    We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.

  9. Numerical simulations on unsteady operation processes of N2O/HTPB hybrid rocket motor with/without diaphragm

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Hu, Fan; Wang, Donghui; Okolo. N, Patrick; Zhang, Weihua

    2017-07-01

    Numerical simulations on processes within a hybrid rocket motor were conducted in the past, where most of these simulations carried out majorly focused on steady state analysis. Solid fuel regression rate strongly depends on complicated physicochemical processes and internal fluid dynamic behavior within the rocket motor, which changes with both space and time during its operation, and are therefore more unsteady in characteristics. Numerical simulations on the unsteady operational processes of N2O/HTPB hybrid rocket motor with and without diaphragm are conducted within this research paper. A numerical model is established based on two dimensional axisymmetric unsteady Navier-Stokes equations having turbulence, combustion and coupled gas/solid phase formulations. Discrete phase model is used to simulate injection and vaporization of the liquid oxidizer. A dynamic mesh technique is applied to the non-uniform regression of fuel grain, while results of unsteady flow field, variation of regression rate distribution with time, regression process of burning surface and internal ballistics are all obtained. Due to presence of eddy flow, the diaphragm increases regression rate further downstream. Peak regression rates are observed close to flow reattachment regions, while these peak values decrease gradually, and peak position shift further downstream with time advancement. Motor performance is analyzed accordingly, and it is noticed that the case with diaphragm included results in combustion efficiency and specific impulse efficiency increase of roughly 10%, and ground thrust increase of 17.8%.

  10. Lattice Boltzmann study of chemically-driven self-propelled droplets.

    PubMed

    Fadda, F; Gonnella, G; Lamura, A; Tiribocchi, A

    2017-12-19

    We numerically study the behavior of self-propelled liquid droplets whose motion is triggered by a Marangoni-like flow. This latter is generated by variations of surfactant concentration which affect the droplet surface tension promoting its motion. In the present paper a model for droplets with a third amphiphilic component is adopted. The dynamics is described by Navier-Stokes and convection-diffusion equations, solved by the lattice Boltzmann method coupled with finite-difference schemes. We focus on two cases. First, the study of self-propulsion of an isolated droplet is carried on and, then, the interaction of two self-propelled droplets is investigated. In both cases, when the surfactant migrates towards the interface, a quadrupolar vortex of the velocity field forms inside the droplet and causes the motion. A weaker dipolar field emerges instead when the surfactant is mainly diluted in the bulk. The dynamics of two interacting droplets is more complex and strongly depends on their reciprocal distance. If, in a head-on collision, droplets are close enough, the velocity field initially attracts them until a motionless steady state is achieved. If the droplets are vertically shifted, the hydrodynamic field leads to an initial reciprocal attraction followed by a scattering along opposite directions. This hydrodynamic interaction acts on a separation of some droplet radii otherwise it becomes negligible and droplets motion is only driven by the Marangoni effect. Finally, if one of the droplets is passive, this latter is generally advected by the fluid flow generated by the active one.

  11. Disentangling the triadic interactions in Navier-Stokes equations.

    PubMed

    Sahoo, Ganapati; Biferale, Luca

    2015-10-01

    We study the role of helicity in the dynamics of energy transfer in a modified version of the Navier-Stokes equations with explicit breaking of the mirror symmetry. We select different set of triads participating in the dynamics on the basis of their helicity content. In particular, we remove the negative helically polarized Fourier modes at all wave numbers except for those falling on a localized shell of wave number, |k| ~ k(m). Changing k(m) to be above or below the forcing scale, k(f), we are able to assess the energy transfer of triads belonging to different interaction classes. We observe that when the negative helical modes are present only at a wave number smaller than the forced wave numbers, an inverse energy cascade develops with an accumulation of energy on a stationary helical condensate. Vice versa, when negative helical modes are present only at a wave number larger than the forced wave numbers, a transition from backward to forward energy transfer is observed in the regime when the minority modes become energetic enough.

  12. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the highmore » efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N 2 and air over a 2D field of 40 mm 2.« less

  13. Structural origin of fractional Stokes-Einstein relation in glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Pan, Shaopeng; Wu, Z. W.; Wang, W. H.; Li, M. Z.; Xu, Limei

    2017-01-01

    In many glass-forming liquids, fractional Stokes-Einstein relation (SER) is observed above the glass transition temperature. However, the origin of such phenomenon remains elusive. Using molecular dynamics simulations, we investigate the break- down of SER and the onset of fractional SER in a model of metallic glass-forming liquid. We find that SER breaks down when the size of the largest cluster consisting of trapped atoms starts to increase sharply at which the largest cluster spans half of the simulations box along one direction, and the fractional SER starts to follows when the largest cluster percolates the entire system and forms 3-dimentional network structures. Further analysis based on the percolation theory also confirms that percolation occurs at the onset of the fractional SER. Our results directly link the breakdown of the SER with structure inhomogeneity and onset of the fraction SER with percolation of largest clusters, thus provide a possible picture for the break- down of SER and onset of fractional SER in glass-forming liquids, which is is important for the understanding of the dynamic properties in glass-forming liquids.

  14. Fluorescence spectroscopy of trapped molecular ions

    NASA Astrophysics Data System (ADS)

    Wright, Kenneth Charles

    This thesis describes the development of a unique instrument capable of detecting fluorescence emission from large gas phase molecular ions trapped in a three-dimensional quadrupole ion trap. The hypothesis that has formed the basis of this work is the belief that fluorescence spectroscopy can be combined with ion trap mass spectrometry to probe the structure of gas phase molecular ions. The ion trap provides a rarefied environment where fluorescence experiments can be conducted without interference from solvent molecules or impurities. Although fluorescence was not detected during preliminary experiments, two significant experimental challenges associated with detecting the gas phase fluorescence of ions were discovered. First, gas phase ions were vulnerable to photodissociation and low laser powers were necessary to avoid photodissociation. Since fluorescence emission is directly proportional to laser intensity, a lower laser power limits the fluorescence signal. Second, the fluorescence emission was not significantly Stokes shifted from the excitation. The lack of Stokes shift meant the small fluorescence signal must be detected in the presence of a large amount of background scatter generated by the excitation. Initially, this background was seven orders of magnitude higher than the analytical signal ultimately detected. A specially designed fiber optic probe was inserted between the electrodes of the ion trap to stop light scattered off the outside surfaces of the trap from reaching the detector. The inside surfaces of the ion trap were coated black to further reduce the amount of scattered light collected. These innovations helped reduced the background by six orders of magnitude and fluorescence emission from rhodamine-6G was detected. Pulse counting experiments were used to optimize fluorescence detection. The effects of trapping level, laser power, and irradiation time were investigated and optimized. The instrument developed in this work not only allows for the detection of fluorescent photons, but the sensitivity is high enough for the light to be dispersed and an emission spectrum recorded. The emission spectra of rhodamine-6G and 5-carboxyrhodamine-6G ions reported in this thesis represent the first spectra recorded from large molecular ions confined in a quadrupole ion trap. Finally, anti-Stokes fluorescence from rhodamine-6G was also detected.

  15. Dispersive Fourier transformation for megahertz detection of coherent stokes and anti-stokes Raman spectra

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Patterson, Brian D.; Kliewer, Christopher J.

    2017-11-01

    In many fields of study, from coherent Raman microscopy on living cells to time-resolved coherent Raman spectroscopy of gas-phase turbulence and combustion reaction dynamics, the need for the capability to time-resolve fast dynamical and nonrepetitive processes has led to the continued development of high-speed coherent Raman methods and new high-repetition rate laser sources, such as pulse-burst laser systems. However, much less emphasis has been placed on our ability to detect shot to shot coherent Raman spectra at equivalently high scan rates, across the kilohertz to megahertz regime. This is beyond the capability of modern scientific charge coupled device (CCD) cameras, for instance, as would be employed with a Czerny-Turner type spectrograph. As an alternative detection strategy with megahertz spectral detection rate, we demonstrate dispersive Fourier transformation detection of pulsed (∼90 ps) coherent Raman signals in the time-domain. Instead of reading the frequency domain signal out using a spectrometer and CCD, the signal is transformed into a time-domain waveform through dispersive Fourier transformation in a long single-mode fiber and read-out with a fast sampling photodiode and oscilloscope. Molecular O- and S-branch rotational sideband spectra from both N2 and H2 were acquired employing this scheme, and the waveform is fitted to show highly quantitative agreement with a molecular model. The total detection time for the rotational spectrum was 20 ns, indicating an upper limit to the detection frequency of ∼50 MHz, significantly faster than any other reported spectrally-resolved coherent anti-Stokes Raman detection strategy to date.

  16. Active frequency matching in stimulated Brillouin amplification for production of a 2.4  J, 200  ps laser pulse.

    PubMed

    Yuan, Hang; Wang, Yulei; Lu, Zhiwei; Zheng, Zhenxing

    2018-02-01

    A frequency matching Brillouin amplification in high-power solid-state laser systems is proposed. The energy extraction efficiency could be maintained at a high level in a non-collinear Brillouin amplification structure using an exact Stokes frequency shift. Laser pulses having a width of 200 ps and energy of 2.4 J were produced. This method can be used to transfer energy from a long pulse to a short pulse through a high-power solid-state laser system.

  17. Experimental search for Exact Coherent Structures in turbulent small aspect ratio Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Crowley, Christopher J.; Krygier, Michael; Grigoriev, Roman O.; Schatz, Michael F.

    2017-11-01

    Recent theoretical and experimental work suggests that the dynamics of turbulent flows are guided by unstable nonchaotic solutions to the Navier-Stokes equations. These solutions, known as exact coherent structures (ECS), play a key role in a fundamentally deterministic description of turbulence. In order to quantitatively demonstrate that actual turbulence in 3D flows is guided by ECS, high resolution, 3D-3C experimental measurements of the velocity need to be compared to solutions from direct numerical simulation of the Navier-Stokes equations. In this talk, we will present experimental measurements of fully time resolved, velocity measurements in a volume of turbulence in a counter-rotating, small aspect ratio Taylor-Couette flow. This work is supported by the Army Research Office (Contract # W911NF-16-1-0281).

  18. Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    1992-01-01

    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology.

  19. SSME thrust chamber simulation using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The capability of the PHOENICS fluid dynamics code in predicting two-dimensional, compressible, and reacting flow in the combustion chamber and nozzle of the space shuttle main engine (SSME) was evaluated. A non-orthogonal body fitted coordinate system was used to represent the nozzle geometry. The Navier-Stokes equations were solved for the entire nozzle with a turbulence model. The wall boundary conditions were calculated based on the wall functions which account for pressure gradients. Results of the demonstration test case reveal all expected features of the transonic nozzle flows. Of particular interest are the locations of normal and barrel shocks, and regions of highest temperature gradients. Calculated performance (global) parameters such as thrust chamber flow rate, thrust, and specific impulse are also in good agreement with available data.

  20. Applications of Fluorogens with Rotor Structures in Solar Cells.

    PubMed

    Ong, Kok-Haw; Liu, Bin

    2017-05-29

    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A., E-mail: anthony.rasca.ctr@nrl.navy.mil

    Recent observations of the photosphere using high spatial and temporal resolution show small dynamic features at or below the current resolving limits. A new pixel dynamics method has been developed to analyze spectral profiles and quantify changes in line displacement, width, asymmetry, and peakedness of photospheric absorption lines. The algorithm evaluates variations of line profile properties in each pixel and determines the statistics of such fluctuations averaged over all pixels in a given region. The method has been used to derive statistical characteristics of pixel fluctuations in observed quiet-Sun regions, an active region with no eruption, and an active regionmore » with an ongoing eruption. Using Stokes I images from the Vector Spectromagnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope on 2012 March 13, variations in line width and peakedness of Fe i 6301.5 Å are shown to have a distinct spatial and temporal relationship with an M7.9 X-ray flare in NOAA 11429. This relationship is observed as stationary and contiguous patches of pixels adjacent to a sunspot exhibiting intense flattening in the line profile and line-center displacement as the X-ray flare approaches peak intensity, which is not present in area scans of the non-eruptive active region. The analysis of pixel dynamics allows one to extract quantitative information on differences in plasma dynamics on sub-pixel scales in these photospheric regions. The analysis can be extended to include the Stokes parameters and study signatures of vector components of magnetic fields and coupled plasma properties.« less

  2. CFD validation needs for advanced concepts at Northrop Corporation

    NASA Technical Reports Server (NTRS)

    George, Michael W.

    1987-01-01

    Information is given in viewgraph form on the Computational Fluid Dynamics (CFD) Workshop held July 14 - 16, 1987. Topics covered include the philosophy of CFD validation, current validation efforts, the wing-body-tail Euler code, F-20 Euler simulated oil flow, and Euler Navier-Stokes code validation for 2D and 3D nozzle afterbody applications.

  3. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.

  4. The indirect effects on the computation of geoid undulations

    NASA Technical Reports Server (NTRS)

    Wichiencharoen, C.

    1982-01-01

    The indirect effects on the geoid computation due to the second method of Helmert's condensation were studied. when Helmert's anomalies are used in Stokes's equation, there are three types of corrections to the free air geoid. The first correction, the indirect effect on geoid undulation due to the potential change in Helmert's reduction, had a maximum value of 0.51 meters in the test area covering the United States. The second correction, the attraction change effect on geoid undulation, had a maximum value of 9.50 meters when the 10 deg cap was used in Stokes' equation. The last correction, the secondary indirect effect on geoid undulatin, was found negligible in the test area. The corrections were applied to uncorrected free air geoid undulations at 65 Doppler stations in the test area and compared with the Doppler undulations. Based on the assumption that the Doppler coordinate system has a z shift of 4 meters with respect to the geocenter, these comparisons showed that the corrections presented in this study yielded improved values of gravimetric undulations.

  5. Asymptotic expansions for 2D symmetrical laminar wakes

    NASA Astrophysics Data System (ADS)

    Belan, Marco; Tordella, Daniela

    1999-11-01

    An extension of the well known asymptotic representation of the 2D laminar incompressible wake past a symmetrical body is presented. Using the thin free shear layer approximation we determined solutions in terms of infinite asymptotic expansions. These are power series of the streamwise space variable with fractional negative coefficients. The general n-th order term has been analytically established. Through analysis of the behaviour of the same expansions inserted into the Navier-Stokes equations, we verified the self-consistency of the approximation showing that at the third order the correction due to pressure variations identically vanishes while the contribution of the longitudinal diffusion is still two-three order of magnitude smaller than that of the transversal diffusion, depending on Re. When the procedure is applied to the Navier-Stokes equations, we showed that further mathematical difficulties do not arise. Where opportune one may thus easily shift to the complete model. Through a spatial multiscaling approach, a brief account on the stability properties of these expansions as representing the non parallel basic flow of 2D wakes will be given.

  6. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins.

    PubMed

    Karp, Jerome M; Eryilmaz, Ertan; Erylimaz, Ertan; Cowburn, David

    2015-01-01

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  7. Efficient 2.96 micron dysprosium-doped ZBLAN fibre laser pumped at 1.3 micron

    NASA Astrophysics Data System (ADS)

    Tsang, Yuen H.; El-Taher, Atalla E.; King, Terence A.; Chang, Kuang-Po; Jackson, Stuart D.

    2006-04-01

    Wavelengths around 1.15 μm, 1.3 μm and 1.7 μm can be used to pump Dy-doped ZBLAN fibre in order to generate ~3 μm with high efficiency. Previously the generation of 2.9 μm from the Dy-ZBLAN fibre was demonstrated by pumping with 1.1 μm Yb-silica fibre laser sources. The laser slope efficiency and lasing threshold demonstrated was about ~5% and ~1.78 W. In this investigation, the longer wavelength absorption band ( 6H 9/2 , 6F 11/2) centred at 1.3 μm of Dy 3+-doped ZBLAN is utilised and the lasing transition around ~3 μm takes places from 6H 13/2 --> 6H 15/2. With this pumping scheme the Stokes' efficiency is expected to be up to ~45%. A quasi-continuous wave Dy 3+-ZBLAN fibre laser pumped by a ~1.3 μm Nd:YAG laser and operating at 2.96 μm with a bandwidth (FWHM) of ~14 nm has been demonstrated. For a 60cm fibre length, a threshold of 0.5W and a slope efficiency of ~20% with respect to the absorbed pump power was observed. The overall pump absorption in the fibre was around 84%. The cavity reflectivities at 2.9 μm were 99% and 50%. The demonstrated slope efficiency was 45% of the Stokes' limit. The slope efficiency was around four times higher and the threshold around 3.6 times lower than the previous performance demonstrated by using the 1.1 μm Yb fibre laser pumping scheme. The higher performance achieved compared to the 1.1 μm pump scheme is due to the higher Stokes' limit, lower pump ESA losses and higher cavity reflectivity. About 590 cm -1 Raman Stokes shift has also detected by using 514.5 nm and 488 nm Ar ion laser as excitation pump sources.

  8. Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier–Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balajewicz, Maciej; Tezaur, Irina; Dowell, Earl

    For a projection-based reduced order model (ROM) of a fluid flow to be stable and accurate, the dynamics of the truncated subspace must be taken into account. This paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which truncated modes are accounted for a priori via a minimal rotation of the projection subspace. Attention is focused on the full non-linear compressible Navier–Stokes equations in specific volume form as a step toward a more general formulation for problems with generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consistency between the ROM and themore » Navier–Stokes equation from which the ROM is derived is maintained. Mathematically, the approach is formulated as a trace minimization problem on the Stiefel manifold. As a result, the reproductive as well as predictive capabilities of the method are evaluated on several compressible flow problems, including a problem involving laminar flow over an airfoil with a high angle of attack, and a channel-driven cavity flow problem.« less

  9. Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier–Stokes equations

    DOE PAGES

    Balajewicz, Maciej; Tezaur, Irina; Dowell, Earl

    2016-05-25

    For a projection-based reduced order model (ROM) of a fluid flow to be stable and accurate, the dynamics of the truncated subspace must be taken into account. This paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which truncated modes are accounted for a priori via a minimal rotation of the projection subspace. Attention is focused on the full non-linear compressible Navier–Stokes equations in specific volume form as a step toward a more general formulation for problems with generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consistency between the ROM and themore » Navier–Stokes equation from which the ROM is derived is maintained. Mathematically, the approach is formulated as a trace minimization problem on the Stiefel manifold. As a result, the reproductive as well as predictive capabilities of the method are evaluated on several compressible flow problems, including a problem involving laminar flow over an airfoil with a high angle of attack, and a channel-driven cavity flow problem.« less

  10. Three-Dimensional Coupled Dynamics of The Two-Fluid Model in Superfluid 4He: Deformed Velocity Profile of Normal Fluid in Thermal Counterflow

    NASA Astrophysics Data System (ADS)

    Yui, Satoshi; Tsubota, Makoto; Kobayashi, Hiromichi

    2018-04-01

    The coupled dynamics of the two-fluid model of superfluid 4He is numerically studied for quantum turbulence of the thermal counterflow in a square channel. We combine the vortex filament model of the superfluid and the Navier-Stokes equations of normal fluid. Simulations of the coupled dynamics show that the velocity profile of the normal fluid is deformed significantly by superfluid turbulence as the vortices become dense. This result is consistent with recently performed visualization experiments. We introduce a dimensionless parameter that characterizes the deformation of the velocity profile.

  11. Fluid Dynamics and Solidification of Molten Solder Droplets Impacting on a Substrate in Microgravity

    NASA Technical Reports Server (NTRS)

    Megardis, C. M.; Poulikakos, D.; Diversiev, G.; Boomsma, K.; Xiong, B.; Nayagam, V.

    1999-01-01

    This program investigates the fluid dynamics and simultaneous solidification of molten solder droplets impacting on a flat smooth substrate. The problem of interest is directly relevant to the printing of microscopic solder droplets in surface mounting of microelectronic devices. The study consists of a theoretical and an experimental component. The theoretical work uses axisymmetric Navier-Stokes models based on finite element techniques. The experimental work will be ultimately performed in microgravity in order to allow for the use of larger solder droplets which make feasible the performance of accurate measurements, while maintaining similitude of the relevant fluid dynamics groups (Re, We).

  12. Fluid Dynamics and Solidification of Molten Solder Droplets Impacting on a Substrate in Microgravity

    NASA Technical Reports Server (NTRS)

    Poulikakos, Dimos; Megaridis, Constantine M.; Vedha-Nayagam, M.

    1996-01-01

    This program investigates the fluid dynamics and simultaneous solidification of molten solder droplets impacting on a flat substrate. The problem of interest is directly relevant to the printing of microscopic solder droplets in surface mounting of microelectronic devices. The study consists of a theoretical and an experimental component. The theoretical work uses axisymmetric Navier-Stokes models based on finite element techniques. The experimental work is performed in microgravity to allow for the use of larger solder droplets that make feasible the performance of accurate measurements while maintaining similitude of the relevant fluid dynamics groups (Re, We) and keeping the effect of gravity negligible.

  13. MagIC: Fluid dynamics in a spherical shell simulator

    NASA Astrophysics Data System (ADS)

    Wicht, J.; Gastine, T.; Barik, A.; Putigny, B.; Yadav, R.; Duarte, L.; Dintrans, B.

    2017-09-01

    MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

  14. AIEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg2+ sensing.

    PubMed

    Chen, Yuncong; Zhang, Weijie; Cai, Yuanjing; Kwok, Ryan T K; Hu, Yubing; Lam, Jacky W Y; Gu, Xinggui; He, Zikai; Zhao, Zheng; Zheng, Xiaoyan; Chen, Bin; Gui, Chen; Tang, Ben Zhong

    2017-03-01

    A novel dark through-bond energy transfer (DTBET) strategy is proposed and applied as the design strategy to develop ratiometric Hg 2+ sensors with high performance. Tetraphenylethene ( TPE ) derivatives with aggregation-induced emission (AIE) characteristics are selected as dark donors to eliminate emission leakage from the donors. The TBET mechanism has been adopted since it experiences less influence from spectral overlapping than Förster resonance energy transfer (FRET), making it more flexible for developing cassettes with large pseudo-Stokes shifts. In this work, energy transfer from the TPE derivatives (dark donor) to a rhodamine moiety (acceptor) was illustrated through photophysical spectroscopic studies and the energy transfer efficiency (ETE) was found to be up to 99%. In the solution state, no emission from the donors was observed and large pseudo-Stokes shifts were achieved (>280 nm), which are beneficial for biological imaging. Theoretical calculations were performed to gain a deeper mechanistic insight into the DTBET process and the structure-property relationship of the DTBET cassettes. Ratiometric Hg 2+ sensors were rationally constructed based on the DTBET mechanism by taking advantage of the intense emission of TPE aggregates. The Hg 2+ sensors exhibited well resolved emission peaks. >6000-fold ratiometric fluorescent enhancement is also achieved and the detection limit was found to be as low as 0.3 ppb. This newly proposed DTBET mechanism could be used to develop novel ratiometric sensors for various analytes and AIEgens with DTBET characteristics will have great potential in various areas including light harvesting materials, environmental science, chemical sensing, biological imaging and diagnostics.

  15. Nonequilibrium diffusive gas dynamics: Poiseuille microflow

    NASA Astrophysics Data System (ADS)

    Abramov, Rafail V.; Otto, Jasmine T.

    2018-05-01

    We test the recently developed hierarchy of diffusive moment closures for gas dynamics together with the near-wall viscosity scaling on the Poiseuille flow of argon and nitrogen in a one micrometer wide channel, and compare it against the corresponding Direct Simulation Monte Carlo computations. We find that the diffusive regularized Grad equations with viscosity scaling provide the most accurate approximation to the benchmark DSMC results. At the same time, the conventional Navier-Stokes equations without the near-wall viscosity scaling are found to be the least accurate among the tested closures.

  16. Numerical Schemes and Computational Studies for Dynamically Orthogonal Equations (Multidisciplinary Simulation, Estimation, and Assimilation Systems: Reports in Ocean Science and Engineering)

    DTIC Science & Technology

    2011-08-01

    heat transfers [49, 52]. However, the DO method has not yet been applied to Boussinesq flows, and the numerical challenges of the DO decomposition for...used a PCE scheme to study mixing in a two-dimensional (2D) microchannel and improved the efficiency of their solution scheme by decoupling the...to several Navier-Stokes flows and their stochastic dynamics has been studied, including mean-mode and mode-mode energy transfers for 2D flows and

  17. Experimental Validation Data for Computational Fluid Dynamics of Forced Convection on a Vertical Flat Plate

    DOE PAGES

    Harris, Jeff R.; Lance, Blake W.; Smith, Barton L.

    2015-08-10

    We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Re x < 300,000, 357 < Re δ2 < 813, and 0.02 < Gr/Re 2 < 0.232.

  18. Protein electron transfer: Dynamics and statistics

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2013-07-01

    Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.

  19. Protein electron transfer: Dynamics and statistics.

    PubMed

    Matyushov, Dmitry V

    2013-07-14

    Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.

  20. Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.

    PubMed

    Bluman, James; Kang, Chang-Kwon

    2017-06-15

    Wing-wake interaction is a characteristic nonlinear flow feature that can enhance unsteady lift in flapping flight. However, the effects of wing-wake interaction on the flight dynamics of hover are inadequately understood. We use a well-validated 2D Navier-Stokes equation solver and a quasi-steady model to investigate the role of wing-wake interaction on the hover stability of a fruit fly scale flapping flyer. The Navier-Stokes equations capture wing-wake interaction, whereas the quasi-steady models do not. Both aerodynamic models are tightly coupled to a flight dynamic model, which includes the effects of wing mass. The flapping amplitude, stroke plane angle, and flapping offset angle are adjusted in free flight for various wing rotations to achieve hover equilibrium. We present stability results for 152 simulations which consider different kinematics involving the pitch amplitude and pitch axis as well as the duration and timing of pitch rotation. The stability of all studied motions was qualitatively similar, with an unstable oscillatory mode present in each case. Wing-wake interaction has a destabilizing effect on the longitudinal stability, which cannot be predicted by a quasi-steady model. Wing-wake interaction increases the tendency of the flapping flyer to pitch up in the presence of a horizontal velocity perturbation, which further destabilizes the unstable oscillatory mode of hovering flight dynamics.

  1. Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics

    PubMed Central

    Jakse, Noel; Pasturel, Alain

    2013-01-01

    We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons with experimental data favor the LDA approximation to compute dynamic properties of liquid aluminum. We show that the GGA approximation induce more important backscattering effects due to an enhancement of the icosahedral short range order (ISRO) that impact directly dynamic properties like the self-diffusion coefficient. All these results are then used to test the Stokes-Einstein relation and the universal scaling law relating the diffusion coefficient and the excess entropy of a liquid. PMID:24190311

  2. The northern tidal dynamic of Aceh waters: A 3D numerical model

    NASA Astrophysics Data System (ADS)

    Irham, M.; Miswar, E.; Ilhamsyah, Y.; Setiawan, I.

    2018-05-01

    The northern tidal dynamic of Aceh waters studied by employing three-dimensional (3D) numerical hydrodynamic model. The purpose of this study is to understand the phenomena and the characteristic of the northern tidal dynamic of Aceh waters. The research used the explicit-splitting scheme numerical model of Navier-Stokes formulation. The result displays that the vertical rotation of flow movement (vertical eddy) at a depth of 15 to 25 meter eastern part of the study area. Hence, the result also informs that the current circulation identically to the upwelling in the western region of Aceh during the wet season and vice versa. However, during the transitional season, the flow circulation depends on how the tidal dynamic occurs in the area.

  3. Simulation of hydrodynamically interacting particles near a no-slip boundary

    NASA Astrophysics Data System (ADS)

    Swan, James W.; Brady, John F.

    2007-11-01

    The dynamics of spherical particles near a single plane wall are computed using an extension of the Stokesian dynamics method that includes long-range many-body and pairwise lubrication interactions between the spheres and the wall in Stokes flow. Extra care is taken to ensure that the mobility and resistance tensors are symmetric, positive, and definite—something which is ineluctable for particles in low-Reynolds-number flows. We discuss why two previous simulation methods for particles near a plane wall, one using multipole expansions and the other using the Rotne-Prager tensor, fail to produce symmetric resistance and mobility tensors. Additionally, we offer some insight on how the Stokesian dynamics paradigm might be extended to study the dynamics of particles in any confining geometry.

  4. BEYOND MIXING-LENGTH THEORY: A STEP TOWARD 321D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnett, W. David; Meakin, Casey; Viallet, Maxime

    2015-08-10

    We examine the physical basis for algorithms to replace mixing-length theory (MLT) in stellar evolutionary computations. Our 321D procedure is based on numerical solutions of the Navier–Stokes equations. These implicit large eddy simulations (ILES) are three-dimensional (3D), time-dependent, and turbulent, including the Kolmogorov cascade. We use the Reynolds-averaged Navier–Stokes (RANS) formulation to make concise the 3D simulation data, and use the 3D simulations to give closure for the RANS equations. We further analyze this data set with a simple analytical model, which is non-local and time-dependent, and which contains both MLT and the Lorenz convective roll as particular subsets ofmore » solutions. A characteristic length (the damping length) again emerges in the simulations; it is determined by an observed balance between (1) the large-scale driving, and (2) small-scale damping. The nature of mixing and convective boundaries is analyzed, including dynamic, thermal and compositional effects, and compared to a simple model. We find that (1) braking regions (boundary layers in which mixing occurs) automatically appear beyond the edges of convection as defined by the Schwarzschild criterion, (2) dynamic (non-local) terms imply a non-zero turbulent kinetic energy flux (unlike MLT), (3) the effects of composition gradients on flow can be comparable to thermal effects, and (4) convective boundaries in neutrino-cooled stages differ in nature from those in photon-cooled stages (different Péclet numbers). The algorithms are based upon ILES solutions to the Navier–Stokes equations, so that, unlike MLT, they do not require any calibration to astronomical systems in order to predict stellar properties. Implications for solar abundances, helioseismology, asteroseismology, nucleosynthesis yields, supernova progenitors and core collapse are indicated.« less

  5. Beyond Mixing-length Theory: A Step Toward 321D

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Meakin, Casey; Viallet, Maxime; Campbell, Simon W.; Lattanzio, John C.; Mocák, Miroslav

    2015-08-01

    We examine the physical basis for algorithms to replace mixing-length theory (MLT) in stellar evolutionary computations. Our 321D procedure is based on numerical solutions of the Navier-Stokes equations. These implicit large eddy simulations (ILES) are three-dimensional (3D), time-dependent, and turbulent, including the Kolmogorov cascade. We use the Reynolds-averaged Navier-Stokes (RANS) formulation to make concise the 3D simulation data, and use the 3D simulations to give closure for the RANS equations. We further analyze this data set with a simple analytical model, which is non-local and time-dependent, and which contains both MLT and the Lorenz convective roll as particular subsets of solutions. A characteristic length (the damping length) again emerges in the simulations; it is determined by an observed balance between (1) the large-scale driving, and (2) small-scale damping. The nature of mixing and convective boundaries is analyzed, including dynamic, thermal and compositional effects, and compared to a simple model. We find that (1) braking regions (boundary layers in which mixing occurs) automatically appear beyond the edges of convection as defined by the Schwarzschild criterion, (2) dynamic (non-local) terms imply a non-zero turbulent kinetic energy flux (unlike MLT), (3) the effects of composition gradients on flow can be comparable to thermal effects, and (4) convective boundaries in neutrino-cooled stages differ in nature from those in photon-cooled stages (different Péclet numbers). The algorithms are based upon ILES solutions to the Navier-Stokes equations, so that, unlike MLT, they do not require any calibration to astronomical systems in order to predict stellar properties. Implications for solar abundances, helioseismology, asteroseismology, nucleosynthesis yields, supernova progenitors and core collapse are indicated.

  6. EVIDENCE FOR COLLAPSING FIELDS IN THE CORONA AND PHOTOSPHERE DURING THE 2011 FEBRUARY 15 X2.2 FLARE: SDO/AIA AND HMI OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosain, S., E-mail: sgosain@nso.edu; Udaipur Solar Observatory, P.O. Box 198, Dewali, Udaipur, Rajasthan 313001

    2012-04-10

    We use high-resolution Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly observations to study the evolution of the coronal loops in a flaring solar active region, NOAA 11158. We identify three distinct phases of the coronal loop dynamics during this event: (1) slow-rise phase: slow rising motion of the loop-tops prior to the flare in response to the slow rise of the underlying flux rope; (2) collapse phase: sudden contraction of the loop-tops, with the lower loops collapsing earlier than the higher loops; and (3) oscillation phase: the loops exhibit global kink oscillations after the collapse phase at different periods, with themore » period decreasing with the decreasing height of the loops. The period of these loop oscillations is used to estimate the field strength in the coronal loops. Furthermore, we also use SDO/Helioseismic and Magnetic Imager (HMI) observations to study the photospheric changes close to the polarity inversion line (PIL). The longitudinal magnetograms show a stepwise permanent decrease in the magnetic flux after the flare over a coherent patch along the PIL. Furthermore, we examine the HMI Stokes I, Q, U, V profiles over this patch and find that the Stokes-V signal systematically decreases while the Stokes-Q and U signals increase after the flare. These observations suggest that close to the PIL the field configuration became more horizontal after the flare. We also use HMI vector magnetic field observations to quantify the changes in the field inclination angle and find an inward collapse of the field lines toward the PIL by {approx}10 Degree-Sign . These observations are consistent with the 'coronal implosion' scenario and its predictions about flare-related photospheric field changes.« less

  7. A block iterative finite element algorithm for numerical solution of the steady-state, compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1976-01-01

    An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.

  8. On the control of the chaotic attractors of the 2-d Navier-Stokes equations.

    PubMed

    Smaoui, Nejib; Zribi, Mohamed

    2017-03-01

    The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, R e . Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.

  9. Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations.

    PubMed

    Bell, John B; Garcia, Alejandro L; Williams, Sarah A

    2007-07-01

    The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. This paper examines explicit Eulerian discretizations of the full LLNS equations. Several computational fluid dynamics approaches are considered (including MacCormack's two-step Lax-Wendroff scheme and the piecewise parabolic method) and are found to give good results for the variance of momentum fluctuations. However, neither of these schemes accurately reproduces the fluctuations in energy or density. We introduce a conservative centered scheme with a third-order Runge-Kutta temporal integrator that does accurately produce fluctuations in density, energy, and momentum. A variety of numerical tests, including the random walk of a standing shock wave, are considered and results from the stochastic LLNS solver are compared with theory, when available, and with molecular simulations using a direct simulation Monte Carlo algorithm.

  10. Computational analysis of water entry of a circular section at constant velocity based on Reynold's averaged Navier-Stokes method

    NASA Astrophysics Data System (ADS)

    Uddin, M. Maruf; Fuad, Muzaddid-E.-Zaman; Rahaman, Md. Mashiur; Islam, M. Rabiul

    2017-12-01

    With the rapid decrease in the cost of computational infrastructure with more efficient algorithm for solving non-linear problems, Reynold's averaged Navier-Stokes (RaNS) based Computational Fluid Dynamics (CFD) has been used widely now-a-days. As a preliminary evaluation tool, CFD is used to calculate the hydrodynamic loads on offshore installations, ships, and other structures in the ocean at initial design stages. Traditionally, wedges have been studied more than circular cylinders because cylinder section has zero deadrise angle at the instant of water impact, which increases with increase of submergence. In Present study, RaNS based commercial code ANSYS Fluent is used to simulate the water entry of a circular section at constant velocity. It is seen that present computational results were compared with experiment and other numerical method.

  11. On the control of the chaotic attractors of the 2-d Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Smaoui, Nejib; Zribi, Mohamed

    2017-03-01

    The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, Re. Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.

  12. Attractors of equations of non-Newtonian fluid dynamics

    NASA Astrophysics Data System (ADS)

    Zvyagin, V. G.; Kondrat'ev, S. K.

    2014-10-01

    This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles.

  13. Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations.

    PubMed

    Chen, Xuemei; Fried, Eliot

    2008-10-01

    Lundgren's vortex model for the intermittent fine structure of high-Reynolds-number turbulence is applied to the Navier-Stokes alphabeta equations and specialized to the Navier-Stokes alpha equations. The Navier-Stokes alphabeta equations involve dispersive and dissipative length scales alpha and beta, respectively. Setting beta equal to alpha reduces the Navier-Stokes alphabeta equations to the Navier-Stokes alpha equations. For the Navier-Stokes alpha equations, the energy spectrum is found to obey Kolmogorov's -5/3 law in a range of wave numbers identical to that determined by Lundgren for the Navier-Stokes equations. For the Navier-Stokes alphabeta equations, Kolmogorov's -5/3 law is also recovered. However, granted that beta < alpha, the range of wave numbers for which this law holds is extended by a factor of alphabeta . This suggests that simulations based on the Navier-Stokes alphabeta equations may have the potential to resolve features smaller than those obtainable using the Navier-Stokes alpha equations.

  14. Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications

    PubMed Central

    Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi

    2010-01-01

    Nitridosilicates are structurally built up on three-dimensional SiN4 tetrahedral networks, forming a very interesting class of materials with high thermomechanical properties, hardness, and wide band gap. Traditionally, nitridosilicates are often used as structural materials such as abrasive particles, cutting tools, turbine blade, etc. Recently, the luminescence of rare earth doped nitridosilicates has been extensively studied, and a novel family of luminescent materials has been developed. This paper reviews the synthesis, luminescence and applications of nitridosilicate phosphors, with emphasis on rare earth nitrides in the system of M-Si-Al-O-N (M = Li, Ca, Sr, Ba, La) and their applications in white LEDs. These phosphors exhibit interesting luminescent properties, such as red-shifted excitation and emission, small Stokes shift, small thermal quenching, and high conversion efficiency, enabling them to use as down-conversion luminescent materials in white LEDs with tunable color temperature and high color rendering index.

  15. Effect of solvent hydrogen bonding on the photophysical properties of intramolecular charge transfer probe trans-ethyl p-(dimethylamino) cinamate and its derivative

    NASA Astrophysics Data System (ADS)

    Singh, T. Sanjoy; Moyon, N. S.; Mitra, Sivaprasad

    2009-08-01

    Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino) cinamate (EDAC) and 4-(dimethylamino) cinnamic acid (DMACA) were studied by steady state absorption and emission, picosecond time-resolved fluorescence experiments in various pure and mixed solvent systems. The large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition ( ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property; however, fluorescence emission maximum, stokes shift and fluorescence quantum yield show significant deviation from linearity in polar protic solvents, indicating a large contribution of solvent hydrogen bonding on the excited state relaxation mechanism. A quantitative estimation of contribution from different solvatochromic parameters was made using linear free energy relationship based on Kamlet-Taft equation.

  16. Synthesis and Photoluminescent Properties of Arylethynyl substituted 9,10-Anthraquinones

    NASA Technical Reports Server (NTRS)

    Yang, Jin-Hua; Dass, Amala; Sotiriou-Leventis, Chariklia; Leventis, Nicholas

    2003-01-01

    A series of arylethynyl substituted anthraquinones were synthesized via Sonogashira coupling reactions of 2,7- dibromo-, 2,6-dibromo- and 2-bromoanthraquinone with para-substituted phenylacetylenes. While the redox properties of those compounds are almost insensitive to substitution, their absorption maxima are linearly related to the Hammett constants for electron donating and electron withdrawing groups separately. All compounds are photoluminescent both in solution (quantum yield of emission approximately 2%) and as solids. X-ray crystallographic characterization of 2,7-bisphenylethynyl anthraquinone indicates a monoclinic p2(l/n) space group and no indication for pi-overlap that would promote self-quenching. The emission maxima are red- shifted by both electron donating and electron withdrawing groups alike. The Stokes shifts of all compounds are significant and are correlated to the electronic properties of the substituents. The reduced forms of these compounds are also photoluminescent and the emission originates from the dihydroanthraquinone core.

  17. DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models

    NASA Astrophysics Data System (ADS)

    Ullrich, Paul A.; Jablonowski, Christiane; Kent, James; Lauritzen, Peter H.; Nair, Ramachandran; Reed, Kevin A.; Zarzycki, Colin M.; Hall, David M.; Dazlich, Don; Heikes, Ross; Konor, Celal; Randall, David; Dubos, Thomas; Meurdesoif, Yann; Chen, Xi; Harris, Lucas; Kühnlein, Christian; Lee, Vivian; Qaddouri, Abdessamad; Girard, Claude; Giorgetta, Marco; Reinert, Daniel; Klemp, Joseph; Park, Sang-Hun; Skamarock, William; Miura, Hiroaki; Ohno, Tomoki; Yoshida, Ryuji; Walko, Robert; Reinecke, Alex; Viner, Kevin

    2017-12-01

    Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier-Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.

  18. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    PubMed

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  19. Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD.

    PubMed

    Popa, C V; Zaidi, H; Arfaoui, A; Polidori, G; Taiar, R; Fohanno, S

    2011-01-01

    This paper deals with the flow dynamics around a competitive swimmer during underwater glide phases occurring at the start and at every turn. The influence of the head position, namely lifted up, aligned and lowered, on the wall shear stress and the static pressure distributions is analyzed. The problem is considered as 3D and in steady hydrodynamic state. Three velocities (1.4 m/s, 2.2 m/s and 3.1 m/s) that correspond to inter-regional, national and international swimming levels are studied. The flow around the swimmer is assumed turbulent. The Reynolds-averaged Navier-Stokes (RANS) equations are solved with the standard k-ω turbulent model by using the CFD (computational fluid dynamics) numerical method based on a volume control approach. Numerical simulations are carried out with the ANSYS FLUENT® CFD code. The results show that the wall shear stress increases with the velocity and consequently the drag force opposing the movement of the swimmer increases as well. Also, high wall shear stresses are observed in the areas where the body shape, globally rigid in form, presents complex surface geometries such as the head, shoulders, buttocks, heel and chest.

  20. Generalized extended Navier-Stokes theory: correlations in molecular fluids with intrinsic angular momentum.

    PubMed

    Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik

    2013-01-21

    The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.

  1. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    PubMed

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  2. Extension of the ADjoint Approach to a Laminar Navier-Stokes Solver

    NASA Astrophysics Data System (ADS)

    Paige, Cody

    The use of adjoint methods is common in computational fluid dynamics to reduce the cost of the sensitivity analysis in an optimization cycle. The forward mode ADjoint is a combination of an adjoint sensitivity analysis method with a forward mode automatic differentiation (AD) and is a modification of the reverse mode ADjoint method proposed by Mader et al.[1]. A colouring acceleration technique is presented to reduce the computational cost increase associated with forward mode AD. The forward mode AD facilitates the implementation of the laminar Navier-Stokes (NS) equations. The forward mode ADjoint method is applied to a three-dimensional computational fluid dynamics solver. The resulting Euler and viscous ADjoint sensitivities are compared to the reverse mode Euler ADjoint derivatives and a complex-step method to demonstrate the reduced computational cost and accuracy. Both comparisons demonstrate the benefits of the colouring method and the practicality of using a forward mode AD. [1] Mader, C.A., Martins, J.R.R.A., Alonso, J.J., and van der Weide, E. (2008) ADjoint: An approach for the rapid development of discrete adjoint solvers. AIAA Journal, 46(4):863-873. doi:10.2514/1.29123.

  3. A patient-specific aortic valve model based on moving resistive immersed implicit surfaces.

    PubMed

    Fedele, Marco; Faggiano, Elena; Dedè, Luca; Quarteroni, Alfio

    2017-10-01

    In this paper, we propose a full computational framework to simulate the hemodynamics in the aorta including the valve. Closed and open valve surfaces, as well as the lumen aorta, are reconstructed directly from medical images using new ad hoc algorithms, allowing a patient-specific simulation. The fluid dynamics problem that accounts from the movement of the valve is solved by a new 3D-0D fluid-structure interaction model in which the valve surface is implicitly represented through level set functions, yielding, in the Navier-Stokes equations, a resistive penalization term enforcing the blood to adhere to the valve leaflets. The dynamics of the valve between its closed and open position is modeled using a reduced geometric 0D model. At the discrete level, a finite element formulation is used and the SUPG stabilization is extended to include the resistive term in the Navier-Stokes equations. Then, after time discretization, the 3D fluid and 0D valve models are coupled through a staggered approach. This computational framework, applied to a patient-specific geometry and data, allows to simulate the movement of the valve, the sharp pressure jump occurring across the leaflets, and the blood flow pattern inside the aorta.

  4. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Hicks, Raymond M.; Cliff, Susan E.

    1991-01-01

    Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.

  5. Early Visual Cortex Dynamics during Top-Down Modulated Shifts of Feature-Selective Attention.

    PubMed

    Müller, Matthias M; Trautmann, Mireille; Keitel, Christian

    2016-04-01

    Shifting attention from one color to another color or from color to another feature dimension such as shape or orientation is imperative when searching for a certain object in a cluttered scene. Most attention models that emphasize feature-based selection implicitly assume that all shifts in feature-selective attention underlie identical temporal dynamics. Here, we recorded time courses of behavioral data and steady-state visual evoked potentials (SSVEPs), an objective electrophysiological measure of neural dynamics in early visual cortex to investigate temporal dynamics when participants shifted attention from color or orientation toward color or orientation, respectively. SSVEPs were elicited by four random dot kinematograms that flickered at different frequencies. Each random dot kinematogram was composed of dashes that uniquely combined two features from the dimensions color (red or blue) and orientation (slash or backslash). Participants were cued to attend to one feature (such as color or orientation) and respond to coherent motion targets of the to-be-attended feature. We found that shifts toward color occurred earlier after the shifting cue compared with shifts toward orientation, regardless of the original feature (i.e., color or orientation). This was paralleled in SSVEP amplitude modulations as well as in the time course of behavioral data. Overall, our results suggest different neural dynamics during shifts of attention from color and orientation and the respective shifting destinations, namely, either toward color or toward orientation.

  6. On the hydrogen-bond network and the non-Arrhenius transport properties of water

    NASA Astrophysics Data System (ADS)

    Galamba, N.

    2017-01-01

    We study the structural and dynamic transformations of SPC/E water with temperature, through molecular dynamics (MD), and discuss the non-Arrhenius behavior of the transport properties and orientational dynamics, and the magnitude of the breakdown of the Stokes-Einstein (SE) and the Stokes-Einstein-Debye (SED) relations, in the light of these transformations. Our results show that deviations from Arrhenius behavior of the self-diffusion at low temperatures cannot be exclusively explained by the reduction of water defects (interstitial waters) and the increase of the local tetrahedrality, thus, suggesting the importance of the slowdown of collective rearrangements. Interestingly we find that at high temperatures (T  ⩾  340 K) water defects lead to a slight increase of the tetrahedrality and a decrease of the self-diffusion, opposite to water at low temperatures. The relative magnitude of the breakdown of the SE and the SED relations is found to be in accord with recent experiments (Dehaoui et al 2015 Proc. Natl Acad. Sci. USA 112 12020) resolving the discrepancy with previous MD results. Further, we show that SPC/E hydrogen-bond (HB) lifetimes deviate from Arrhenious behaviour at low temperatures in contrast with some previous MD studies. This deviation is nevertheless much smaller than that observed for the orientational dynamics and the transport properties of water, consistent with the relaxation times measured by several experimental methods. The HB acceptor exchange dynamics defined here by the acceptor switch and reform (librational dynamics) frequencies exhibit similar Arrhenius deviations, thus explaining to some extent the non-Arrhenius behavior of the transport properties and of the orientational dynamics of water. Our results also show that the fraction of HB switches through a bifurcated pathway follow a power law with the temperature decrease. Thus, at low temperatures HB acceptor switches are less frequent but occur on a faster time scale consistent with the temperature dependence of the ratio of the rotational relaxation times for the different Legendre polynomial ranks.

  7. Simulating Ice-Flow and Calving on Store Glacier, West Greenland, with a 3D Full Stokes Model

    NASA Astrophysics Data System (ADS)

    Todd, J.; Christoffersen, P.; Zwinger, T.; Luckman, A. J.; Benn, D.

    2015-12-01

    The mass balance and long-term stability of the ice sheets in Greenland and Antarctica depend heavily on the dynamics of their ice-ocean margins. Iceberg calving accounts for the majority of the net annual loss of ice in Antarctica and around half of that from Greenland. Furthermore, climate driven changes to dynamics at these calving margins can be transmitted far inland. Thus, predicting future sea level contribution from the cryosphere requires an improved understanding of calving, and the processes which link it to climate and ice-sheet flow. We present results from a new 3D calving model coupled to a full-Stokes, time evolving glacier dynamic model, implemented for Store Glacier, a 5-km-wide calving glacier in the Uummannaq region of West Greenland, which flows at a rate of 20 m/day at its terminus. The model is developed using the open source finite element package Elmer/Ice, with the criterion that calving occurs when surface and basal crevasses meet. Crevasses open in response to tensile stresses near the terminus and water pressure at the bed. When the model was applied in 2D for the central flowline of Store Glacier, we found that basal topography exerts overarching control on the long term position of the calving front, while ice mélange buttressing allows the seasonal extension of a floating tongue, which collapses in early summer. New results emerging from implementation of calving in a 3D model indicate significant spatial heterogeneity in calving dynamics because the northern half of the terminus is grounded whereas the southern half is floating. This contrasting setting affects calving dynamics, further underlining the importance of geometry and basal topography, and suggesting that lower dimensional calving models may miss important aspects of calving dynamics. Our results also suggest that implementing grounding line dynamics is important for modelling calving, even for glaciers which are, for the most part, firmly grounded.

  8. On the hydrogen-bond network and the non-Arrhenius transport properties of water.

    PubMed

    Galamba, N

    2017-01-11

    We study the structural and dynamic transformations of SPC/E water with temperature, through molecular dynamics (MD), and discuss the non-Arrhenius behavior of the transport properties and orientational dynamics, and the magnitude of the breakdown of the Stokes-Einstein (SE) and the Stokes-Einstein-Debye (SED) relations, in the light of these transformations. Our results show that deviations from Arrhenius behavior of the self-diffusion at low temperatures cannot be exclusively explained by the reduction of water defects (interstitial waters) and the increase of the local tetrahedrality, thus, suggesting the importance of the slowdown of collective rearrangements. Interestingly we find that at high temperatures (T  ⩾  340 K) water defects lead to a slight increase of the tetrahedrality and a decrease of the self-diffusion, opposite to water at low temperatures. The relative magnitude of the breakdown of the SE and the SED relations is found to be in accord with recent experiments (Dehaoui et al 2015 Proc. Natl Acad. Sci. USA 112 12020) resolving the discrepancy with previous MD results. Further, we show that SPC/E hydrogen-bond (HB) lifetimes deviate from Arrhenious behaviour at low temperatures in contrast with some previous MD studies. This deviation is nevertheless much smaller than that observed for the orientational dynamics and the transport properties of water, consistent with the relaxation times measured by several experimental methods. The HB acceptor exchange dynamics defined here by the acceptor switch and reform (librational dynamics) frequencies exhibit similar Arrhenius deviations, thus explaining to some extent the non-Arrhenius behavior of the transport properties and of the orientational dynamics of water. Our results also show that the fraction of HB switches through a bifurcated pathway follow a power law with the temperature decrease. Thus, at low temperatures HB acceptor switches are less frequent but occur on a faster time scale consistent with the temperature dependence of the ratio of the rotational relaxation times for the different Legendre polynomial ranks.

  9. Differential Geometry Based Multiscale Models

    PubMed Central

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418

  10. 3D full-Stokes modeling of the grounding line dynamics of Thwaites Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Yu, H.; Rignot, E. J.; Morlighem, M.; Seroussi, H. L.

    2016-12-01

    Thwaites Glacier (TG) is the broadest and second largest ice stream in the West Antarctica. Satellite observations have revealed rapid grounding line retreat and mass loss of this glacier in the past few decades, which has been attributed to the enhanced basal melting in the Amundsen Sea Embayment. With a retrograde bed configuration, TG is on the verge of collapse according to the marine ice sheet instability theory. Here, we use the UCI/JPL Ice Sheet System Model (ISSM) to simulate the grounding line position of TG to determine its stability, rate of retreat and sensitivity to enhanced basal melting using a three-dimensional full-Stokes numerical model. Simulations with simplified models (Higher Order (HO), and Shelfy-Stream Approximation (SSA)) are also conducted for comparison. We first validate our full Stokes model by conducting MISMIP3D experiments. Then we applied the model to TG using new bed elevation dataset combining IceBridge (OIB) gravity data, OIB ice thickness, ice flow vectors from interferometry and a mass conservation method at 450 m spacing. Basal friction coefficient and ice rheology of floating ice are inferred to match observed surface velocity. We find that the grounding line is capable of retreating at rate of 1km/yr under current forcing and that the glacier's sensitivity to melt is higher in the Stokes model than HO or SSA, which means that projections using SSA or HO might underestimate the future rate of retreat of the glacier. This work has been performed at UC Irvine and Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program.

  11. Structuring Stokes correlation functions using vector-vortex beam

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  12. Raman beam combining for laser brightness enhancement

    DOEpatents

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  13. Highly stable red-emitting polymer dots for cellular imaging

    NASA Astrophysics Data System (ADS)

    Chelora, Jipsa; Zhang, Jinfeng; Chen, Rui; Thachoth Chandran, Hrisheekesh; Lee, Chun-Sing

    2017-07-01

    Polymer dots (Pdots) have emerged as a new type of fluorescent probe material for biomedical applications and have attracted great interest due to their excellent optical properties and biocompatability. In this work, we report on a red-emitting P3HT Pdot fluorescent probe for intracellular bioimaging. The as-prepared Pdot fluorescent probe exhibits good stability and has a large Stokes shift (121 nm) compared to molecules in tetrahydrofuran (THF). Furthermore, the probe shows low cytotoxicity, broad absorption spectrum, resistance against photodegradation, and good water dispersibility. These advantageous characteristics make P3HT Pdots a promising fluorescent probe material for bioimaging.

  14. Highly stable red-emitting polymer dots for cellular imaging.

    PubMed

    Chelora, Jipsa; Zhang, Jinfeng; Chen, Rui; Chandran, Hrisheekesh Thachoth; Lee, Chun-Sing

    2017-07-14

    Polymer dots (Pdots) have emerged as a new type of fluorescent probe material for biomedical applications and have attracted great interest due to their excellent optical properties and biocompatability. In this work, we report on a red-emitting P 3 HT Pdot fluorescent probe for intracellular bioimaging. The as-prepared Pdot fluorescent probe exhibits good stability and has a large Stokes shift (121 nm) compared to molecules in tetrahydrofuran (THF). Furthermore, the probe shows low cytotoxicity, broad absorption spectrum, resistance against photodegradation, and good water dispersibility. These advantageous characteristics make P 3 HT Pdots a promising fluorescent probe material for bioimaging.

  15. Achieving high CRI from warm to super white

    NASA Astrophysics Data System (ADS)

    Bailey, Edward; Tormey, Ellen S.

    2007-09-01

    Light sources which produce a high color rendering index (CRI) have many applications in the lighting industry today. High color rendering accents the rich color which abounds in nature, interior design, theatrical costumes and props, clothing and fabric, jewelry, and machine vision applications. Multi-wavelength LED sources can pump phosphors at multiple stokes shift emission regimes and when combined with selected direct emission sources can allow for greater flexibility in the production of warm-white and cool white light of specialty interest. Unique solutions to R8 and R14 CRI >95 at 2850K, 4750K, 5250K, and 6750K presented.

  16. Two colorimetric and ratiometric fluorescence probes for hydrogen sulfide based on AIE strategy of α-cyanostilbenes

    NASA Astrophysics Data System (ADS)

    Zhao, Baoying; Yang, Binsheng; Hu, Xiangquan; Liu, Bin

    2018-06-01

    Aggregation-induced emission (AIE) active fluorescent probes have attracted great potential in biological sensors. In this paper two cyanostilbene based fluorescence chemoprobe Cya-NO2 (1) and Cya-N3 (2) were developed and evaluated for the selective and sensitive detection of hydrogen sulfide (H2S). Both of these probes behave aggression-induced emission (AIE) activity which fluoresces in the red region with a large Stokes shift. They exhibit rapid response to H2S with enormous colorimetric and ratiometric fluorescent changes. They are readily employed for assessing intracellular H2S levels.

  17. A benzothiazole-based fluorescent probe for hypochlorous acid detection and imaging in living cells

    NASA Astrophysics Data System (ADS)

    Nguyen, Khac Hong; Hao, Yuanqiang; Zeng, Ke; Fan, Shengnan; Li, Fen; Yuan, Suke; Ding, Xuejing; Xu, Maotian; Liu, You-Nian

    2018-06-01

    A benzothiazole-based turn-on fluorescent probe with a large Stokes shift (190 nm) has been developed for hypochlorous acid detection. The probe displays prompt fluorescence response for HClO with excellent selectivity over other reactive oxygen species as well as a low detection limit of 0.08 μM. The sensing mechanism involves the HClO-induced specific oxidation of oxime moiety of the probe to nitrile oxide, which was confirmed by HPLC-MS technique. Furthermore, imaging studies demonstrated that the probe is cell permeable and can be applied to detect HClO in living cells.

  18. Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms

    NASA Astrophysics Data System (ADS)

    Wang, Da-Wei; Li, Zheng-Hong; Zheng, Hang; Zhu, Shi-Yao

    2010-04-01

    A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.

  19. Enhancing molecular logic through modulation of temporal and spatial constraints with quantum dot-based systems that use fluorescent (Förster) resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Claussen, Jonathan C.; Algar, W. Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2013-10-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) contain favorable photonic properties (e.g., resistance to photobleaching, size-tunable PL, and large effective Stokes shifts) that make them well-suited for fluorescence (Förster) resonance energy transfer (FRET) based applications including monitoring proteolytic activity, elucidating the effects of nanoparticles-mediated drug delivery, and analyzing the spatial and temporal dynamics of cellular biochemical processes. Herein, we demonstrate how unique considerations of temporal and spatial constraints can be used in conjunction with QD-FRET systems to open up new avenues of scientific discovery in information processing and molecular logic circuitry. For example, by conjugating both long lifetime luminescent terbium(III) complexes (Tb) and fluorescent dyes (A647) to a single QD, we can create multiple FRET lanes that change temporally as the QD acts as both an acceptor and donor at distinct time intervals. Such temporal FRET modulation creates multi-step FRET cascades that produce a wealth of unique photoluminescence (PL) spectra that are well-suited for the construction of a photonic alphabet and photonic logic circuits. These research advances in bio-based molecular logic open the door to future applications including multiplexed biosensing and drug delivery for disease diagnostics and treatment.

  20. Chromospheric polarimetry through multiline observations of the 850-nm spectral region - II. A magnetic flux tube scenario

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Kato, Y.; Katsukawa, Y.; Oba, T.; de la Cruz Rodríguez, J.; Carlsson, M.; Shimizu, T.; Orozco Suárez, D.; Ruiz Cobo, B.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y.

    2017-11-01

    In this publication, we continue the work started in Quintero Noda et al., examining this time a numerical simulation of a magnetic flux tube concentration. Our goal is to study if the physical phenomena that take place in it, in particular, the magnetic pumping, leaves a specific imprint on the examined spectral lines. We find that the profiles from the interior of the flux tube are periodically doppler shifted following an oscillation pattern that is also reflected in the amplitude of the circular polarization signals. In addition, we analyse the properties of the Stokes profiles at the edges of the flux tube discovering the presence of linear polarization signals for the Ca II lines, although they are weak with an amplitude around 0.5 per cent of the continuum intensity. Finally, we compute the response functions to perturbations in the longitudinal field, and we estimate the field strength using the weak-field approximation. Our results indicate that the height of formation of the spectral lines changes during the magnetic pumping process, which makes the interpretation of the inferred magnetic field strength and its evolution more difficult. These results complement those from previous works, demonstrating the capabilities and limitations of the 850-nm spectrum for chromospheric Zeeman polarimetry in a very dynamic and complex atmosphere.

  1. Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg(2+) and oxytetracycline.

    PubMed

    Xu, Shenghao; Li, Xiaolin; Mao, Yaning; Gao, Teng; Feng, Xiuying; Luo, Xiliang

    2016-04-01

    In this work, we present a direct one-step strategy for rapidly preparing dual ligand co-functionalized fluorescent Au nanoclusters (NCs) by using threonine (Thr) and 11-mercaptoundecanoic acid (MUA) as assorted reductants and capping agents in aqueous solution at room temperature. Fluorescence spectra, high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and infrared (IR) spectroscopy were performed to demonstrate the optical properties and chemical composition of the as-prepared AuNCs. They possess many attractive features such as near-infrared emission (λem = 606 nm), a large Stoke's shift (>300 nm), high colloidal stability (pH, temperature, salt, and time stability), and water dispersibility. Subsequently, the as-prepared AuNCs were used as a versatile probe for "turn off" sensing of Hg(2+) based on aggregation-induced fluorescence quenching and for "turn-on" sensing of oxytetracycline (OTC). This assay provided good linearity ranging from 37.5 to 3750 nM for Hg(2+) and from 0.375 to 12.5 μM for OTC, with detection limits of 8.6 nM and 0.15 μM, respectively. Moreover, the practical application of this assay was further validated by detecting OTC in human serum samples.

  2. Dynamic cost shifting in hospitals: evidence from the 1980s and 1990s.

    PubMed

    Clement, J P

    The purpose of this paper is to determine whether dynamic cost shifting occurred among acute care hospitals during the period from the early 1980s to the early 1990s and, if so, whether market factors affected the ability to shift costs. Evidence from this study of California acute care hospitals during three time intervals shows that the hospital did practice dynamic cost shifting, but that their ability to shift costs decreased over time. Surprisingly, hospital competition and HMO penetration did not influence cost shifting. However, increasing HMO penetration (measured as the HMO percentage of hospital discharges) did decrease both net prices and costs for the early part of the study, but later was associated with increases in both.

  3. Excitation-resolved wide-field fluorescence imaging of indocyanine green visualizes the microenvironment properties in vivo via solvatochromic shift (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cho, Jaedu; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    Near-infrared fluorescence imaging (NIRF) is a powerful wide-field optical imaging tool that has a potential to visualize molecular-specific exogenous fluorescence agents, such as FDA approved Indocyanine Green (ICG), in thick tissue. Indeed, ICG is sensitive to biochemical environment such that it can be used to detect micro- or macroscopic environmental changes in tissue by solvatochromic shift that is defined by the dependence of absorption and emission spectra with the solvent polarity. For example, dimethyl sulfoxide (DMSO) is a very powerful drug carrier that can penetrate biological barriers such as the skin, the membranes, and the blood-brain-barrier. In presence of DMSO, ICG in tissue shows the excitation blue shift. However, NIRF imaging of microenvironment dependent changes of ICG has been challenging for the following reasons. First, the Stoke's shift of ICG is too small to separate the excitation and emission spectra easily. Second, the solvatochromic shift of ICG is too small to be detected by conventional NIRF techniques. Last but not least, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We developed a wavelength-swept laser-based NIRF system that can resolve the excitation shift of ICG in tissue such that DMSO can be indirectly visualized. We plan to conduct an in-vivo lymph-node drug-delivery study in a mouse model to show feasibility of the indirect imaging of the drug-carrier with the wavelength-swept-laser based NIRF system.

  4. The dynamical crossover phenomenon in bulk water, confined water and protein hydration water.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Baglioni, Piero; Fratini, Emiliano; Chen, Sow-Hsin

    2012-02-15

    We discuss a phenomenon regarding water that was until recently a subject of scientific controversy, i.e. the dynamical crossover from fragile-to-strong glass-forming material, for both bulk and protein hydration water. Such a crossover is characterized by a temperature T(L) at which significant dynamical changes occur, such as violation of the Stokes-Einstein relation and changes of behaviour of homologous transport parameters such as the density relaxation time and the viscosity. In this respect we will consider carefully the dynamic properties of water-protein systems. More precisely, we will study proteins and their hydration water as far as bulk and confined water. In order to clarify the controversy we will discuss in a comparative way many previous and new experimental data that have emerged using different techniques and molecular dynamic simulation (MD). We point out the reasons for the different dynamical findings from the use of different experimental techniques.

  5. How Does a Divided Population Respond to Change?

    PubMed

    Qubbaj, Murad R; Muneepeerakul, Rachata; Aggarwal, Rimjhim M; Anderies, John M

    2015-01-01

    Most studies on the response of socioeconomic systems to a sudden shift focus on long-term equilibria or end points. Such narrow focus forgoes many valuable insights. Here we examine the transient dynamics of regime shift on a divided population, exemplified by societies divided ideologically, politically, economically, or technologically. Replicator dynamics is used to investigate the complex transient dynamics of the population response. Though simple, our modeling approach exhibits a surprisingly rich and diverse array of dynamics. Our results highlight the critical roles played by diversity in strategies and the magnitude of the shift. Importantly, it allows for a variety of strategies to arise organically as an integral part of the transient dynamics--as opposed to an independent process--of population response to a regime shift, providing a link between the population's past and future diversity patterns. Several combinations of different populations' strategy distributions and shifts were systematically investigated. Such rich dynamics highlight the challenges of anticipating the response of a divided population to a change. The findings in this paper can potentially improve our understanding of a wide range of socio-ecological and technological transitions.

  6. Perils of Neglecting Lattice Relaxation in the Pressure Dependence of Deep Luminescence Bands in Wide Gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Iota, V.; Weinstein, B. A.

    1998-03-01

    Deep defect states are often assumed to be insensitive to pressure because of their localized atomic-like character. In apparent conflict with this, experiments on widegap II-VI materials find that the pressure shifts of many 'midgap' photoluminescence (PL) bands associated with large-lattice-relaxation defects are more rapid than the shift of the bandgap(B. Weinstein, T. Ritter, et. al., Phys. Stat. Sol. (b) 198), 167 (1996). To study this, we measured the effects of pressure on the PL and PL-excitation (PLE) bands arising from the Zn-vacancy (V_Zn) and the P_Se deep acceptor centers in ZnSe. Using the observed pressure variation of the Stokes shifts and the established 1 atm. configuration coordinate (CC) models( D.Y. Jeon, H.P Gislason, G.D. Watkins, Phys. Rev. B 48), 7872 (1993), we were able to infer quantitative CC-diagrams at any pressure. Our results show that the pressure dependence of the lattice relaxation contributes a substantial fraction (several meV/kbar) to the overall shift of the PL-bands, and, hence, must be included. For the case of the V_Zn, simple calculations of the Jahn-Teller splitting using dangling-bond orbitals support this conclusion. figures

  7. Flowfield Comparisons from Three Navier-Stokes Solvers for an Axisymmetric Separate Flow Jet

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James; Khavaran, Abbas

    2002-01-01

    To meet new noise reduction goals, many concepts to enhance mixing in the exhaust jets of turbofan engines are being studied. Accurate steady state flowfield predictions from state-of-the-art computational fluid dynamics (CFD) solvers are needed as input to the latest noise prediction codes. The main intent of this paper was to ascertain that similar Navier-Stokes solvers run at different sites would yield comparable results for an axisymmetric two-stream nozzle case. Predictions from the WIND and the NPARC codes are compared to previously reported experimental data and results from the CRAFT Navier-Stokes solver. Similar k-epsilon turbulence models were employed in each solver, and identical computational grids were used. Agreement between experimental data and predictions from each code was generally good for mean values. All three codes underpredict the maximum value of turbulent kinetic energy. The predicted locations of the maximum turbulent kinetic energy were farther downstream than seen in the data. A grid study was conducted using the WIND code, and comments about convergence criteria and grid requirements for CFD solutions to be used as input for noise prediction computations are given. Additionally, noise predictions from the MGBK code, using the CFD results from the CRAFT code, NPARC, and WIND as input are compared to data.

  8. Development of the Glenn-HT Computer Code to Enable Time-Filtered Navier-Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes

    NASA Technical Reports Server (NTRS)

    Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Philip; Thurman, Douglas; Steinthorsson, Erlendur

    2014-01-01

    Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations which are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminarturbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes which take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-HT code and applied to film cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30 holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and four blowing ratios of 0.5, 1.0, 1.5 and 2.0 are shown. Flow features under those conditions are also described.

  9. Wind Code Application to External Forebody Flowfields with Comparisons to Experimental Results

    NASA Technical Reports Server (NTRS)

    Frate, F. C.; Kim, H. D.

    2001-01-01

    The WIND Code, a general purpose Navier-Stokes solver, has been utilized to obtain supersonic external flowfield Computational Fluid Dynamics (CFD) solutions over an axisymmetric, parabolic forebody with comparisons made to wind tunnel experimental results. Various cases have been investigated at supersonic freestream conditions ranging from Mach 2.0 to 3.5, at 0 deg and 3 deg angles-of-attack, and with either a sharp-nose or blunt-nose forebody configuration. Both a turbulent (Baldwin-Lomax algebraic turbulence model) and a laminar model have been implemented in the CFD. Obtaining the solutions involved utilizing either the parabolized- or full-Navier-Stokes analyses supplied in WIND. Comparisons have been made with static pressure measurements, with boundary-layer rake and flowfield rake pitot pressure measurements, and with temperature sensitive paint experimental results. Using WIND's parabolized Navier-Stokes capability, grid sequencing, and the Baldwin-Lomax algebraic turbulence model allowed for significant reductions in computational time while still providing good agreement with experiment. Given that CFD and experiment compare well, WIND is found to be a good computational platform for solving this type of forebody problem, and the grids developed in conjunction with it will be used in the future to investigate varying freestream conditions not tested experimentally.

  10. Development of high-resolution n(2) coherent anti-stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows.

    PubMed

    Woodmansee, M A; Lucht, R P; Dutton, J C

    2000-11-20

    Mean and instantaneous measurements of pressure, temperature, and density have been acquired in an optically accessible gas cell and in the flow field of an underexpanded sonic jet by use of the high-resolution N(2) coherent anti-Stokes Raman scattering (CARS) technique. This nonintrusive method resolves the pressure- and temperature-sensitive rotational transitions of the nu = 0 ? 1 N(2) Q-branch to within Domega = 0.10 cm(-1). To extract thermodynamic information from the experimental spectra, theoretical spectra, generated by a N(2) spectral modeling program, are fit to the experimental spectra in a least-squares manner. In the gas cell, the CARS-measured pressures compare favorably with transducer-measured pressures. The precision and accuracy of the single-shot CARS pressure measurements increase at subatmospheric conditions. Along the centerline of the underexpanded jet, the agreement between the mean CARS P/T/rho measurements and similar quantities extracted from a Reynolds-averaged Navier-Stokes computational fluid dynamic simulation is generally excellent. This CARS technique is able to capture the low-pressure and low-temperature conditions of the M = 3.4 flow entering the Mach disk, as well as the subsonic conditions immediately downstream of this normal shock.

  11. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field

    DTIC Science & Technology

    2012-09-30

    deployment of a comprehensive optical suite including underwater video- polarimetry (full Stokes vector video-imaging camera custom-built Cummings; and...During field operations, we couple polarimetry measurements of live, free-swimming animals in their environments with a full suite of optical...Seibel, Ahmed). We also restrain live, awake animals to take polarimetry measurements (in the field and laboratory) under a complete set of

  12. Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.

    1990-01-01

    A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.

  13. Research on Aero-Thermodynamic Distortion Induced Structural Dynamic Response of Multi-Stage Compressor Blading.

    DTIC Science & Technology

    1988-01-15

    However. only very engineering limited experimental data exists to assess the Director, Thermal Sciences and range of validity and to direct the... experimental results of Goldstein et. al. "A 1111 and also the Navier Stokes numerical solutions of Morihara 1121. Diffuser The predicted stream function...Unsteady Aerodynamic Interactions in a Multistage Compressor............................................................ 53 I APPENDIX VI. Experimental

  14. New variational principles for locating periodic orbits of differential equations.

    PubMed

    Boghosian, Bruce M; Fazendeiro, Luis M; Lätt, Jonas; Tang, Hui; Coveney, Peter V

    2011-06-13

    We present new methods for the determination of periodic orbits of general dynamical systems. Iterative algorithms for finding solutions by these methods, for both the exact continuum case, and for approximate discrete representations suitable for numerical implementation, are discussed. Finally, we describe our approach to the computation of unstable periodic orbits of the driven Navier-Stokes equations, simulated using the lattice Boltzmann equation.

  15. Covariances and spectra of the kinematics and dynamics of nonlinear waves

    NASA Technical Reports Server (NTRS)

    Tung, C. C.; Huang, N. E.

    1985-01-01

    Using the Stokes waves as a model of nonlinear waves and considering the linear component as a narrow-band Gaussian process, the covariances and spectra of velocity and acceleration components and pressure for points in the vicinity of still water level were derived taking into consideration the effects of free surface fluctuations. The results are compared with those obtained earlier using linear Gaussian waves.

  16. Prediction of pressure drop in fluid tuned mounts using analytical and computational techniques

    NASA Technical Reports Server (NTRS)

    Lasher, William C.; Khalilollahi, Amir; Mischler, John; Uhric, Tom

    1993-01-01

    A simplified model for predicting pressure drop in fluid tuned isolator mounts was developed. The model is based on an exact solution to the Navier-Stokes equations and was made more general through the use of empirical coefficients. The values of these coefficients were determined by numerical simulation of the flow using the commercial computational fluid dynamics (CFD) package FIDAP.

  17. Development of Improved Algorithms and Multiscale Modeling Capability with SUNTANS

    DTIC Science & Technology

    2013-09-30

    solves the Navier-Stokes equations under the Boussinesq approximation (Fringer et al.,2006). The formulation is based on the method outlined by...stratified systems . Figure 4 shows a nonhydrostatic isopycnal simulation of oscillatory flow in a continuously stratified fluid over a Gaussian sill. This...Modeling the Earth System , Boulder (invited). Sankaranarayanan, S., and Fringer, O. B., 2013, "Dynamics of barotropic low-frequency fluctuations in

  18. Viscous Incompressible Flow Computations for 3-D Steady and Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2001-01-01

    This viewgraph presentation gives an overview of viscous incompressible flow computations for three-dimensional steady and unsteady flows. Details are given on the use of computational fluid dynamics (CFD) as an engineering tool, solution methods for incompressible Navier-Stokes equations, numerical and physical characteristics of the primitive variable approach, and the role of CFD in the past and in current engineering and research applications.

  19. The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles

    NASA Astrophysics Data System (ADS)

    Bluman, James Edward

    Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and allow for simpler and lighter designs since they do not require pitch actuation mechanisms. This study is the first to evaluate the impact of wing flexibility on the hovering stability of flapping flyers, which can explain the ranges of flexibility seen in insects and can inform designs of synthetic flapping wing robots.

  20. Power-based Shift Schedule for Pure Electric Vehicle with a Two-speed Automatic Transmission

    NASA Astrophysics Data System (ADS)

    Wang, Jiaqi; Liu, Yanfang; Liu, Qiang; Xu, Xiangyang

    2016-11-01

    This paper introduces a comprehensive shift schedule for a two-speed automatic transmission of pure electric vehicle. Considering about driving ability and efficiency performance of electric vehicles, the power-based shift schedule is proposed with three principles. This comprehensive shift schedule regards the vehicle current speed and motor load power as input parameters to satisfy the vehicle driving power demand with lowest energy consumption. A simulation model has been established to verify the dynamic and economic performance of comprehensive shift schedule. Compared with traditional dynamic and economic shift schedules, simulation results indicate that the power-based shift schedule is superior to traditional shift schedules.

  1. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  2. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  3. Modified Einstein and Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  4. Numerical simulation of the vortical flow around a pitching airfoil

    NASA Astrophysics Data System (ADS)

    Fu, Xiang; Li, Gaohua; Wang, Fuxin

    2017-04-01

    In order to study the dynamic behaviors of the flapping wing, the vortical flow around a pitching NACA0012 airfoil is investigated. The unsteady flow field is obtained by a very efficient zonal procedure based on the velocity-vorticity formulation and the Reynolds number based on the chord length of the airfoil is set to 1 million. The zonal procedure divides up the whole computation domain in to three zones: potential flow zone, boundary layer zone and Navier-Stokes zone. Since the vorticity is absent in the potential flow zone, the vorticity transport equation needs only to be solved in the boundary layer zone and Navier-Stokes zone. Moreover, the boundary layer equations are solved in the boundary layer zone. This arrangement drastically reduces the computation time against the traditional numerical method. After the flow field computation, the evolution of the vortices around the airfoil is analyzed in detail.

  5. Swimming Behavior and Flow Geometry: A Fluid Mechanical Study of the Feeding Currents in Calanoid Copepods

    NASA Astrophysics Data System (ADS)

    Jiang, Houshuo; Meneveau, Charles; Osborn, Thomas R.

    2003-11-01

    Copepods are small crustaceans living in oceans and fresh waters and play an important role in the marine and freshwater food webs. As they are the biggest biomass in the oceans some call them "the insects of the sea". Previous laboratory observations have shown that the fluid mechanical phenomena occurring at copepod body scale are crucial for the survival of copepods. One of the interesting phenomena is that many calanoid copepods display various behaviors to create the feeding currents for the purpose of capturing food particles. We have developed a fluid mechanical model to study the feeding currents. The model is a self-propelled body model in that the Navier-Stokes equations are properly coupled with the dynamic equations for the copepod's body. The model has been solved both analytically using the Stokes approximation with a spherical body shape and numerically using CFD with a realistic body shape.

  6. Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Garg Vijay; Ameri, Ali

    2005-01-01

    The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.

  7. A new computational method for reacting hypersonic flows

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Fadgyas, M. C.; Pepelea, D.; Stoican, M. G.

    2017-07-01

    Hypersonic gas dynamics computations are challenging due to the difficulties to have reliable and robust chemistry models that are usually added to Navier-Stokes equations. From the numerical point of view, it is very difficult to integrate together Navier-Stokes equations and chemistry model equations because these partial differential equations have different specific time scales. For these reasons, almost all known finite volume methods fail shortly to solve this second order partial differential system. Unfortunately, the heating of Earth reentry vehicles such as space shuttles and capsules is very close linked to endothermic chemical reactions. A better prediction of wall heat flux leads to smaller safety coefficient for thermal shield of space reentry vehicle; therefore, the size of thermal shield decreases and the payload increases. For these reasons, the present paper proposes a new computational method based on chemical equilibrium, which gives accurate prediction of hypersonic heating in order to support the Earth reentry capsule design.

  8. Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas

    2011-01-01

    A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.

  9. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.

  10. Lattice Boltzmann and Navier-Stokes Cartesian CFD Approaches for Airframe Noise Predictions

    NASA Technical Reports Server (NTRS)

    Barad, Michael F.; Kocheemoolayil, Joseph G.; Kiris, Cetin C.

    2017-01-01

    Lattice Boltzmann (LB) and compressible Navier-Stokes (NS) equations based computational fluid dynamics (CFD) approaches are compared for simulating airframe noise. Both LB and NS CFD approaches are implemented within the Launch Ascent and Vehicle Aerodynamics (LAVA) framework. Both schemes utilize the same underlying Cartesian structured mesh paradigm with provision for local adaptive grid refinement and sub-cycling in time. We choose a prototypical massively separated, wake-dominated flow ideally suited for Cartesian-grid based approaches in this study - The partially-dressed, cavity-closed nose landing gear (PDCC-NLG) noise problem from AIAA's Benchmark problems for Airframe Noise Computations (BANC) series of workshops. The relative accuracy and computational efficiency of the two approaches are systematically compared. Detailed comments are made on the potential held by LB to significantly reduce time-to-solution for a desired level of accuracy within the context of modeling airframes noise from first principles.

  11. Modified Einstein and Navier–Stokes Equations

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  12. An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2005-01-01

    An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.

  13. An integral equation formulation for rigid bodies in Stokes flow in three dimensions

    NASA Astrophysics Data System (ADS)

    Corona, Eduardo; Greengard, Leslie; Rachh, Manas; Veerapaneni, Shravan

    2017-03-01

    We present a new derivation of a boundary integral equation (BIE) for simulating the three-dimensional dynamics of arbitrarily-shaped rigid particles of genus zero immersed in a Stokes fluid, on which are prescribed forces and torques. Our method is based on a single-layer representation and leads to a simple second-kind integral equation. It avoids the use of auxiliary sources within each particle that play a role in some classical formulations. We use a spectrally accurate quadrature scheme to evaluate the corresponding layer potentials, so that only a small number of spatial discretization points per particle are required. The resulting discrete sums are computed in O (n) time, where n denotes the number of particles, using the fast multipole method (FMM). The particle positions and orientations are updated by a high-order time-stepping scheme. We illustrate the accuracy, conditioning and scaling of our solvers with several numerical examples.

  14. Calm water resistance prediction of a bulk carrier using Reynolds averaged Navier-Stokes based solver

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. Mashiur; Islam, Hafizul; Islam, Md. Tariqul; Khondoker, Md. Reaz Hasan

    2017-12-01

    Maneuverability and resistance prediction with suitable accuracy is essential for optimum ship design and propulsion power prediction. This paper aims at providing some of the maneuverability characteristics of a Japanese bulk carrier model, JBC in calm water using a computational fluid dynamics solver named SHIP Motion and OpenFOAM. The solvers are based on the Reynolds average Navier-Stokes method (RaNS) and solves structured grid using the Finite Volume Method (FVM). This paper comprises the numerical results of calm water test for the JBC model with available experimental results. The calm water test results include the total drag co-efficient, average sinkage, and trim data. Visualization data for pressure distribution on the hull surface and free water surface have also been included. The paper concludes that the presented solvers predict the resistance and maneuverability characteristics of the bulk carrier with reasonable accuracy utilizing minimum computational resources.

  15. Performance of Reynolds Averaged Navier-Stokes Models in Predicting Separated Flows: Study of the Hump Flow Model Problem

    NASA Technical Reports Server (NTRS)

    Cappelli, Daniele; Mansour, Nagi N.

    2012-01-01

    Separation can be seen in most aerodynamic flows, but accurate prediction of separated flows is still a challenging problem for computational fluid dynamics (CFD) tools. The behavior of several Reynolds Averaged Navier-Stokes (RANS) models in predicting the separated ow over a wall-mounted hump is studied. The strengths and weaknesses of the most popular RANS models (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST) are evaluated using the open source software OpenFOAM. The hump ow modeled in this work has been documented in the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control. Only the baseline case is treated; the slot flow control cases are not considered in this paper. Particular attention is given to predicting the size of the recirculation bubble, the position of the reattachment point, and the velocity profiles downstream of the hump.

  16. Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas A.; Flores, Jolen

    1989-01-01

    Computational fluid dynamics (CFD) research for hypersonic flows presents new problems in code validation because of the added complexity of the physical models. This paper surveys code validation procedures applicable to hypersonic flow models that include real gas effects. The current status of hypersonic CFD flow analysis is assessed with the Compressible Navier-Stokes (CNS) code as a case study. The methods of code validation discussed to beyond comparison with experimental data to include comparisons with other codes and formulations, component analyses, and estimation of numerical errors. Current results indicate that predicting hypersonic flows of perfect gases and equilibrium air are well in hand. Pressure, shock location, and integrated quantities are relatively easy to predict accurately, while surface quantities such as heat transfer are more sensitive to the solution procedure. Modeling transition to turbulence needs refinement, though preliminary results are promising.

  17. Application of CFD to a generic hypersonic flight research study

    NASA Technical Reports Server (NTRS)

    Green, Michael J.; Lawrence, Scott L.; Dilley, Arthur D.; Hawkins, Richard W.; Walker, Mary M.; Oberkampf, William L.

    1993-01-01

    Computational analyses have been performed for the initial assessment of flight research vehicle concepts that satisfy requirements for potential hypersonic experiments. Results were obtained from independent analyses at NASA Ames, NASA Langley, and Sandia National Labs, using sophisticated time-dependent Navier-Stokes and parabolized Navier-Stokes methods. Careful study of a common problem consisting of hypersonic flow past a slightly blunted conical forebody was undertaken to estimate the level of uncertainty in the computed results, and to assess the capabilities of current computational methods for predicting boundary-layer transition onset. Results of this study in terms of surface pressure and heat transfer comparisons, as well as comparisons of boundary-layer edge quantities and flow-field profiles are presented here. Sensitivities to grid and gas model are discussed. Finally, representative results are presented relating to the use of Computational Fluid Dynamics in the vehicle design and the integration/support of potential experiments.

  18. Stokes paradox in electronic Fermi liquids

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    2017-03-01

    The Stokes paradox is the statement that in a viscous two-dimensional fluid, the "linear response" problem of fluid flow around an obstacle is ill posed. We present a simple consequence of this paradox in the hydrodynamic regime of a Fermi liquid of electrons in two-dimensional metals. Using hydrodynamics and kinetic theory, we estimate the contribution of a single cylindrical obstacle to the global electrical resistance of a material, within linear response. Momentum relaxation, present in any realistic electron liquid, resolves the classical paradox. Nonetheless, this paradox imprints itself in the resistance, which can be parametrically larger than predicted by Ohmic transport theory. We find a remarkably rich set of behaviors, depending on whether or not the quasiparticle dynamics in the Fermi liquid should be treated as diffusive, hydrodynamic, or ballistic on the length scale of the obstacle. We argue that all three types of behavior are observable in present day experiments.

  19. Coherent Anti-Stokes Raman Spectroscopic Thermometry in a Supersonic Combustor

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Danehy, P. M.; Springer, R. R.; OByrne, S.; Capriotti, D. P.; DeLoach, R.

    2003-01-01

    An experiment has been conducted to acquire data for the validation of computational fluid dynamics codes used in the design of supersonic combustors. The flow in a supersonic combustor, consisting of a diverging duct with a single downstream-angled wail injector, is studied. Combustor entrance Mach number is 2 and enthalpy nominally corresponds to Mach 7 flight. The primary measurement technique is coherent anti-Stokes Raman spectroscopy, but surface pressures and temperatures have also been acquired. Modern design of experiment techniques have been used to maximize the quality of the data set (for the given level of effort) and to minimize systematic errors. Temperature maps are obtained at several planes in the flow for a case in which the combustor is piloted by injecting fuel upstream of the main injector and one case in which it is not piloted. Boundary conditions and uncertainties are characterized.

  20. An Evaluation of Architectural Platforms for Parallel Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1996-01-01

    We study the computational, communication, and scalability characteristics of a computational fluid dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architecture platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed memory multiprocessors with different topologies - the IBM SP and the Cray T3D. We investigate the impact of various networks connecting the cluster of workstations on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

Top