Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry
NASA Astrophysics Data System (ADS)
Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun
2018-06-01
The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.
High dynamic range subjective testing
NASA Astrophysics Data System (ADS)
Allan, Brahim; Nilsson, Mike
2016-09-01
This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.
A new airborne laser rangefinder dynamic target simulator for non-stationary environment
NASA Astrophysics Data System (ADS)
Ma, Pengge; Pang, Dongdong; Yi, Yang
2017-11-01
For the non-stationary environment simulation in laser range finder product testing, a new dynamic target simulation system is studied. First of all, the three-pulsed laser ranging principle, laser target signal composition and mathematical representation are introduced. Then, the actual nonstationary working environment of laser range finder is analyzed, and points out that the real sunshine background light clutter and target shielding effect in laser echo become the main influencing factors. After that, the dynamic laser target signal simulation method is given. Eventlly, the implementation of automatic test system based on arbitrary waveform generator is described. Practical application shows that the new echo signal automatic test system can simulate the real laser ranging environment of laser range finder, and is suitable for performance test of products.
Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation
2012-07-01
Std. Z39.18 Victoria Seewaldt, M.D. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation Duke University Durham...attomole- zeptomole range. Internal dilution curves insure a high-dynamic calibration range. DU -26 8L DU -26 6L DU -29 5R DU -22 9.2 L DU...3: Nanobiosensor technology is translated to test for pathway deregulation in RPFNA cytology obtained from 10 high-risk women with cytological
Preference limits of the visual dynamic range for ultra high quality and aesthetic conveyance
NASA Astrophysics Data System (ADS)
Daly, Scott; Kunkel, Timo; Sun, Xing; Farrell, Suzanne; Crum, Poppy
2013-03-01
A subjective study was conducted to investigate the preferred maximum and minimum display luminances in order to determine the dynamic ranges for future displays. Two studies address the diffuse reflective regions, and a third study tested preferences of highlight regions. Preferences, as opposed to detection thresholds, were studied to provide results more directly relevant to the viewing of entertainment or art. Test images were specifically designed to test these limits without the perceptual conflicts that usually occur in these types of studies. For the diffuse range, we found a display with a dynamic range having luminances between 0.1 and 650 cd/m2 matches the average preferences. However, to satisfy 90% of the population, a dynamic range from 0.005 and ~3,000 cd/m2 is needed. Since a display should be able to produce values brighter than the diffuse white maximum, as in specular highlights and emissive sources, the highlight study concludes that even the average preferred maximum luminance for highlight reproduction is ~4,000 cd/m2.
2014-01-31
demonstration was part of the ESTCP Live Site Demonstration at the former Spencer Artillery Range, TN, during May 2012. The dynamic test area covered...1.024 ms) from the MP system for the Dynamic Area at the former Spencer Artillery Range, TN. .......................................9 Figure 7-1...Cart Dynamic / Cued Classification Results for the former Spencer Artillery Range, TN. Classification performed by SAIC. ..............12 Tables
NASA Technical Reports Server (NTRS)
Brock, Joseph M; Stern, Eric
2016-01-01
Dynamic CFD simulations of the SIAD ballistic test model were performed using US3D flow solver. Motivation for performing these simulations is for the purpose of validation and verification of the US3D flow solver as a viable computational tool for predicting dynamic coefficients.
CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests
NASA Technical Reports Server (NTRS)
Brock, Joseph; Stern, Eric; Wilder, Michael
2017-01-01
A series of ballistic range tests were performed on a scaled model of the Supersonic Flight Demonstration Test (SFDT) intended to test the Supersonic Inflatable Aerodynamic Decelerator (SIAD) geometry. The purpose of these experiments were to provide aerodynamic coefficients of the vehicle to aid in mission and vehicle design. The experimental data spans the moderate Mach number range, $3.8-2.0$, with a total angle of attack ($alpha_T$) range, $10o-20o$. These conditions are intended to span the Mach-$alpha$ space for the majority of the SFDT experiment. In an effort to validate the predictive capabilities of Computational Fluid Dynamics (CFD) for free-flight aerodynamic behavior, numerical simulations of the ballistic range experiment are performed using the unstructured finite volume Navier-Stokes solver, US3D. Comparisons to raw vehicle attitude, and post-processed aerodynamic coefficients are made between simulated results and experimental data. The resulting comparisons for both raw model attitude and derived aerodynamic coefficients show good agreement with experimental results. Additionally, near body pressure field values for each trajectory simulated are investigated. Extracted surface and wake pressure data gives further insights into dynamic flow coupling leading to a potential mechanism for dynamic instability.
Overview of Dynamic Test Techniques for Flight Dynamics Research at NASA LaRC (Invited)
NASA Technical Reports Server (NTRS)
Owens, D. Bruce; Brandon, Jay M.; Croom, Mark A.; Fremaux, C. Michael; Heim, Eugene H.; Vicroy, Dan D.
2006-01-01
An overview of dynamic test techniques used at NASA Langley Research Center on scale models to obtain a comprehensive flight dynamics characterization of aerospace vehicles is presented. Dynamic test techniques have been used at Langley Research Center since the 1920s. This paper will provide a partial overview of the current techniques available at Langley Research Center. The paper will discuss the dynamic scaling necessary to address the often hard-to-achieve similitude requirements for these techniques. Dynamic test techniques are categorized as captive, wind tunnel single degree-of-freedom and free-flying, and outside free-flying. The test facilities, technique specifications, data reduction, issues and future work are presented for each technique. The battery of tests conducted using the Blended Wing Body aircraft serves to illustrate how the techniques, when used together, are capable of characterizing the flight dynamics of a vehicle over a large range of critical flight conditions.
Kirchberger, Martin
2016-01-01
Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. PMID:26868955
Kirchberger, Martin; Russo, Frank A
2016-02-10
Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. © The Author(s) 2016.
Repeatability Modeling for Wind-Tunnel Measurements: Results for Three Langley Facilities
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.; Houlden, Heather P.
2014-01-01
Data from extensive check standard tests of seven measurement processes in three NASA Langley Research Center wind tunnels are statistically analyzed to test a simple model previously presented in 2000 for characterizing short-term, within-test and across-test repeatability. The analysis is intended to support process improvement and development of uncertainty models for the measurements. The analysis suggests that the repeatability can be estimated adequately as a function of only the test section dynamic pressure over a two-orders- of-magnitude dynamic pressure range. As expected for low instrument loading, short-term coefficient repeatability is determined by the resolution of the instrument alone (air off). However, as previously pointed out, for the highest dynamic pressure range the coefficient repeatability appears to be independent of dynamic pressure, thus presenting a lower floor for the standard deviation for all three time frames. The simple repeatability model is shown to be adequate for all of the cases presented and for all three time frames.
Image dynamic range test and evaluation of Gaofen-2 dual cameras
NASA Astrophysics Data System (ADS)
Zhang, Zhenhua; Gan, Fuping; Wei, Dandan
2015-12-01
In order to fully understand the dynamic range of Gaofen-2 satellite data and support the data processing, application and next satellites development, in this article, we evaluated the dynamic range by calculating some statistics such as maximum ,minimum, average and stand deviation of four images obtained at the same time by Gaofen-2 dual cameras in Beijing area; then the maximum ,minimum, average and stand deviation of each longitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of each camera's dynamic range consistency; and these four statistics of each latitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of the dynamic range consistency between PMS1 and PMS2 at last. The results suggest that there is a wide dynamic range of DN value in the image obtained by PMS1 and PMS2 which contains rich information of ground objects; in general, the consistency of dynamic range between the single camera images is in close agreement, but also a little difference, so do the dual cameras. The consistency of dynamic range between the single camera images is better than the dual cameras'.
Dynamic Behavior of Spiral-Groove and Rayleigh-Step Self-Acting Face Seals
NASA Technical Reports Server (NTRS)
Dirusso, Eliseo
1984-01-01
Tests were performed to determine the dynamic behavior and establish baseline dynamic data for five self-acting face seals employing Rayleigh-step lift-pads and inward pumping as well as outward-pumping spiral grooves for the lift-generating mechanism. The primary parameters measured in the tests were film thickness, seal seat axial motion, and seal frictional torque. The data show the dynamic response of the film thickness to the motion of the seal seat. The inward-pumping spiral-groove seals exhibited a high-amplitude film thickness vibratory mode with a frequency of four times the shaft speed. This mode was not observed in the other seals tested. The tests also revealed that high film thickness vibration amplitude produces considerably higher average film thickness than do low amplitude film thickness vibrations. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17000 rpm. Seal tangential speed range was 34.5 to 83.7 m/sec (113 to 274 ft/sec).
Shuttle structural dynamics characteristics: The analysis and verification
NASA Technical Reports Server (NTRS)
Modlin, C. T., Jr.; Zupp, G. A., Jr.
1985-01-01
The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.
NASA Technical Reports Server (NTRS)
1993-01-01
A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).
GPS test range mission planning
NASA Astrophysics Data System (ADS)
Roberts, Iris P.; Hancock, Thomas P.
The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.
Dynamic stability test results on an 0.024 scale B-1 air vehicle
NASA Technical Reports Server (NTRS)
Beeman, R. R.
1972-01-01
Dynamic longitudinal and lateral-directional stability characteristics of the B-1 air vehicle were investigated in three wind tunnels at the Langley Research Center. The main rotary derivatives were obtained for an angle of attack range of -3 degrees to +16 degrees for a Mach number range of 0.2 to 2.16. Damping in roll data could not be obtained at the supersonic Mach numbers. The Langley 7 x 10 foot high speed tunnel, the 8 foot transonic pressure tunnel, and the 4 foot Unitary Plan wind tunnel were the test sites. An 0.024 scale light-weight model was used on a forced oscillation type balance. Test Reynolds number varied from 474,000/ft to 1,550,000/ft. through the Mach number range tested. The results showed that the dynamic stability characteristics of the model in pitch and roll were generally satisfactory up to an angle attack of about +6 degrees. In the wing sweep range from 15 to 25 degrees the positive damping levels in roll deteriorated rapidly above +2 degrees angle of attack. This reduction in roll damping is believed to be due to the onset of separation over the wing as stall is approached.
NASA Technical Reports Server (NTRS)
1973-01-01
A study has been made of possible ways to improve the performance of the Langley Research Center's Transonic Dynamics Tunnel (TDT). The major effort was directed toward obtaining increased dynamic pressure in the Mach number range from 0.8 to 1.2, but methods to increase Mach number capability were also considered. Methods studied for increasing dynamic pressure capability were higher total pressure, auxiliary suction, reducing circuit losses, reduced test medium temperature, smaller test section and higher molecular weight test medium. Increased Mach number methods investigated were nozzle block inserts, variable geometry nozzle, changes in test section wall configuration, and auxiliary suction.
High dynamic range hyperspectral imaging for camouflage performance test and evaluation
NASA Astrophysics Data System (ADS)
Pearce, D.; Feenan, J.
2016-10-01
This paper demonstrates the use of high dynamic range processing applied to the specific technique of hyper-spectral imaging with linescan spectrometers. The technique provides an improvement in signal to noise for reflectance estimation. This is demonstrated for field measurements of rural imagery collected from a ground-based linescan spectrometer of rural scenes. Once fully developed, the specific application is expected to improve the colour estimation approaches and consequently the test and evaluation accuracy of camouflage performance tests. Data are presented on both field and laboratory experiments that have been used to evaluate the improvements granted by the adoption of high dynamic range data acquisition in the field of hyperspectral imaging. High dynamic ranging imaging is well suited to the hyperspectral domain due to the large variation in solar irradiance across the visible and short wave infra-red (SWIR) spectrum coupled with the wavelength dependence of the nominal silicon detector response. Under field measurement conditions it is generally impractical to provide artificial illumination; consequently, an adaptation of the hyperspectral imaging and re ectance estimation process has been developed to accommodate the solar spectrum. This is shown to improve the signal to noise ratio for the re ectance estimation process of scene materials in the 400-500 nm and 700-900 nm regions.
Time and temperature dependent modulus of pyrrone and polyimide moldings
NASA Technical Reports Server (NTRS)
Lander, L. L.
1972-01-01
A method is presented by which the modulus obtained from a stress relaxation test can be used to estimate the modulus which would be obtained from a sonic vibration test. The method was applied to stress relaxation, sonic vibration, and high speed stress-strain data which was obtained on a flexible epoxy. The modulus as measured by the three test methods was identical for identical test times, and a change of test temperature was equivalent to a shift in the logarithmic time scale. An estimate was then made of the dynamic modulus of moldings of two Pyrrones and two polyimides, using stress relaxation data and the method of analysis which was developed for the epoxy. Over the common temperature range (350 to 500 K) in which data from both types of tests were available, the estimated dynamic modulus value differed by only a few percent from the measured value. As a result, it is concluded that, over the 500 to 700 K temperature range, the estimated dynamic modulus values are accurate.
Aerodynamic Measurements on a Large Splitter Plate for the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Schuster, David M.
2001-01-01
Tests conducted in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT) assess the aerodynamic characteristics of a splitter plate used to test some semispan models in this facility. Aerodynamic data are analyzed to determine the effect of the splitter plate on the operating characteristics of the TDT, as well as to define the range of conditions over which the plate can be reasonably used to obtain aerodynamic data. Static pressures measurements on the splitter plate surface and the equipment fairing between the wind tunnel wall and the splitter plate are evaluated to determine the flow quality around the apparatus over a range of operating conditions. Boundary layer rake data acquired near the plate surface define the viscous characteristics of the flow over the plate. Data were acquired over a range of subsonic, transonic and supersonic conditions at dynamic pressures typical for models tested on this apparatus. Data from this investigation should be used as a guide for the design of TDT models and tests using the splitter plate, as well as to guide future splitter plate design for this facility.
Shen, Feng; Sun, Bing; Kreutz, Jason E; Davydova, Elena K; Du, Wenbin; Reddy, Poluru L; Joseph, Loren J; Ismagilov, Rustem F
2011-11-09
In this paper, we are working toward a problem of great importance to global health: determination of viral HIV and hepatitis C (HCV) loads under point-of-care and resource limited settings. While antiretroviral treatments are becoming widely available, viral load must be evaluated at regular intervals to prevent the spread of drug resistance and requires a quantitative measurement of RNA concentration over a wide dynamic range (from 50 up to 10(6) molecules/mL for HIV and up to 10(8) molecules/mL for HCV). "Digital" single molecule measurements are attractive for quantification, but the dynamic range of such systems is typically limited or requires excessive numbers of compartments. Here we designed and tested two microfluidic rotational SlipChips to perform multivolume digital RT-PCR (MV digital RT-PCR) experiments with large and tunable dynamic range. These designs were characterized using synthetic control RNA and validated with HIV viral RNA and HCV control viral RNA. The first design contained 160 wells of each of four volumes (125 nL, 25 nL, 5 nL, and 1 nL) to achieve a dynamic range of 5.2 × 10(2) to 4.0 × 10(6) molecules/mL at 3-fold resolution. The second design tested the flexibility of this approach, and further expanded it to allow for multiplexing while maintaining a large dynamic range by adding additional wells with volumes of 0.2 nL and 625 nL and dividing the SlipChip into five regions to analyze five samples each at a dynamic range of 1.8 × 10(3) to 1.2 × 10(7) molecules/mL at 3-fold resolution. No evidence of cross-contamination was observed. The multiplexed SlipChip can be used to analyze a single sample at a dynamic range of 1.7 × 10(2) to 2.0 × 10(7) molecules/mL at 3-fold resolution with limit of detection of 40 molecules/mL. HIV viral RNA purified from clinical samples were tested on the SlipChip, and viral load results were self-consistent and in good agreement with results determined using the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test. With further validation, this SlipChip should become useful to precisely quantify viral HIV and HCV RNA for high-performance diagnostics in resource-limited settings. These microfluidic designs should also be valuable for other diagnostic and research applications, including detecting rare cells and rare mutations, prenatal diagnostics, monitoring residual disease, and quantifying copy number variation and gene expression patterns. The theory for the design and analysis of multivolume digital PCR experiments is presented in other work by Kreutz et al.
A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.
Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond
2017-10-01
In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.
Advanced superposition methods for high speed turbopump vibration analysis
NASA Technical Reports Server (NTRS)
Nielson, C. E.; Campany, A. D.
1981-01-01
The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.
Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang
2016-01-01
The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283
SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation
NASA Technical Reports Server (NTRS)
Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John
2006-01-01
The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.
SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John
2007-01-01
The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.
Testing for significance of phase synchronisation dynamics in the EEG.
Daly, Ian; Sweeney-Reed, Catherine M; Nasuto, Slawomir J
2013-06-01
A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.
Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl. 3 forging steel
NASA Astrophysics Data System (ADS)
Lee, Byung Ho; Kim, In Sup
1995-10-01
The effect of dynamic strain aging on cyclic stress response and fatigue resistance of ASME SA508 Cl.3 forging steel for nuclear reactor pressure vessels has been evaluated in the temperature range of room temperature to 500°C. Total strain ranges and strain rates were varied from 0.7 to 2.0% and from 4 × 10 -4 to 1 × 10 -2 s -1, respectively. The cyclic stress response depended on the testing temperature, strain rate, and range. Generally, the initial cyclic hardening was immediately followed by cyclic softening at all strain rates. However, at 300°C, the operating temperature of nuclear reactor pressure vessels, the variation of cyclic stress amplitude showed the primary and secondary hardening stages dependent on the strain rate and strain range. Dynamic strain aging was manifested by enhanced cyclic hardening, distinguished secondary hardening, and negative strain rate sensitivity. A modified cell shutting model was described for the onset of the secondary hardening due to the dynamic strain aging and it was in good agreement with the experimental results. Fatigue life increased in strain rate at all testing temperatures. Specifically the fatigue life was longer at the dynamic strain aging temperature. Further, the dynamic strain aging was easy to initiate the crack, while crack propagation was retarded by crack branching and suppression of plastic zone, hence the dynamic strain aging caused the improvement of fatigue resistance.
Dynamic tensile fracture of mortar at ultra-high strain-rates
NASA Astrophysics Data System (ADS)
Erzar, B.; Buzaud, E.; Chanal, P.-Y.
2013-12-01
During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.
Ballistic Range Testing of the Mars Exploration Rover Entry Capsule
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Hathaway, Wayne; Yates, Leslie; Desai, Prasun
2005-01-01
Results from a 25 shot ballistic range test of the Mars Exploration Rover (MER) aeroshell are presented. The supersonic pitch damping properties of the MER capsule were characterized between Mach = 1.5 and Mach = 3.5 and total angles-of-attack from 0 degrees to greater than 25 degrees. Three capsule center-of-gravity positions were tested across this range of conditions, 0.27, 0.30 and 0.33 body diameters aft of the nose. Parameter identification results show that the capsule is dynamically unstable at low angles-of-attack across the Mach numbers tested, with instability increasing with lower speeds. This dynamic instability was seen to increase with aft center-of-gravity movement. The MER outer mold line was very similar to the successful Mars Pathfinder capsule with only minor modifications. Pathfinder relied on Viking forced oscillation data for preflight predictions. The pitch damping data calculated from this test program are shown to more accurately reproduce the measured Path finder flight data.
NASA Astrophysics Data System (ADS)
Xue, Min; Pan, Shilong; Zhao, Yongjiu
2016-07-01
A large dynamic range optical vector analyzer (OVA) based on optical single-sideband modulation is proposed and demonstrated. By dividing the optical signal after optical device under test into two paths, reversing the phase of one swept sideband using a Hilbert transformer in one path, and detecting the two signals from the two paths with a balanced photodetector, the measurement errors induced by the residual -1st-order sideband and the high-order sidebands can be eliminated and the dynamic range of the measurement is increased. In a proof-of-concept experiment, the stimulated Brillouin scattering and a fiber Bragg grating are measured by OVAs with and without the Hilbert transform and balanced photodetection. Results show that about 40-dB improvement in the measurement dynamic range is realized by the proposed OVA.
Fast and High Dynamic Range Imaging with Superconducting Tunnel Junction Detectors
NASA Astrophysics Data System (ADS)
Matsuo, Hiroshi
2014-08-01
We have demonstrated a combined test of the submillimeter-wave SIS photon detectors and GaAs-JFET cryogenic integrated circuits. A relatively large background photo-current can be read out by fast-reset integrating amplifiers. An integration time of 1 ms enables fast frame rate readout and large dynamic range imaging, with an expected dynamic range of 8,000 in 1 ms. Ultimate fast and high dynamic range performance of superconducting tunnel junction detectors (STJ) will be obtained when photon counting capabilities are employed. In the terahertz frequencies, when input photon rate of 100 MHz is measured, the photon bunching gives us enough timing resolution to be used as phase information of intensity fluctuation. Application of photon statistics will be a new tool in the terahertz frequency region. The design parameters of STJ terahertz photon counting detectors are discussed.
Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction
NASA Technical Reports Server (NTRS)
Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo
2015-01-01
The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.
2013-01-01
NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.
Transonic shock-induced dynamics of a flexible wing with a thick circular-arc airfoil
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Rivera, Jose A., Jr.
1991-01-01
Transonic shock boundary layer oscillations occur on rigid models over a small range of Mach numbers on thick circular-arc airfoils. Extensive tests and analyses of this phenomena have been made in the past but essentially all of them were for rigid models. A simple flexible wing model with an 18 pct. circular arc airfoil was constructed and tested in the Langley Transonic Dynamics Tunnel to study the dynamic characteristics that a wing might have under these circumstances. In the region of shock boundary layer oscillations, buffeting of the first bending mode was obtained. This mode was well separated in frequency from the shock boundary layer oscillations. A limit cycle oscillation was also measured in a third bending like mode, involving wind vertical bending and splitter plate motion, which was in the frequency range of the shock boundary layer oscillations. Several model configurations were tested, and a few potential fixes were investigated.
Clark, S; Rose, D J
2001-04-01
To establish reliability estimates of the 75% Limits of Stability Test (75% LOS test) when administered to community-dwelling older adults with a history of falls. Generalizability theory was used to estimate both the relative contribution of identified error sources to the total measurement error and generalizability coefficients. A random effects repeated-measures analysis of variance (ANOVA) was used to assess consistency of LOS test movement variables across both days and targets. A motor control research laboratory in a university setting. Fifty community-dwelling older adults with 2 or more falls in the previous year. Spatial and temporal measures of dynamic balance derived from the 75% LOS test included average movement velocity, maximum center of gravity (COG) excursion, end-point COG excursion, and directional control. Estimated generalizability coefficients for 2 testing days ranged from.58 to.87. Total variance in LOS test measures attributable to inconsistencies in day-to-day test performance (Day and Subject x Day facets) ranged from 2.5% to 8.4%. The ANOVA results indicated that no significant differences were observed in the LOS test variables across the 2 testing days. The 75% LOS test administered to older adult fallers on 2 consecutive days provides consistent and reliable measures of dynamic balance.
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB)
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Rajkumar, T.
2003-01-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
Dynamic tensile fracture of mortar at ultra-high strain-rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.
2013-12-28
During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less
Dynamics of wood in stream networks of the western Cascades Range, Oregon
Nicole M. Czarnomski; David M. Dreher; Kai U. Snyder; Julia A. Jones; Frederick J. Swanson
2008-01-01
We develop and test a conceptual model of wood dynamics in stream networks that considers legacies of forest management practices, floods, and debris flows. We combine an observational study of wood in 25 km of 2nd- through 5th-order streams in a steep, forested watershed of the western Cascade Range of Oregon with whole-network studies of forest cutting, roads, and...
Dynamic Stability Testing of the Genesis Sample Return Capsule
NASA Technical Reports Server (NTRS)
Cheatwood, F. McNeil; Winchenbach, Gerald L.; Hathaway, Wayne; Chapman, Gary
2000-01-01
This paper documents a series of free flight tests of a scale model of the Genesis Sample Return Capsule. These tests were conducted in the Aeroballistic Research Facility (ARF), located at Eglin AFB, FL, during April 1999 and were sponsored by NASA Langley Research Center. Because these blunt atmospheric entry shapes tend to experience small angle of attack dynamic instabilities (frequently leading to limit cycle motions), the primary purpose of the present tests was to determine the dynamic stability characteristics of the Genesis configuration. The tests were conducted over a Mach number range of 1.0 to 4.5. The results for this configuration indicate that the models were dynamically unstable at low angles of attack for all Mach numbers tested. At Mach numbers below 2.5, the models were also unstable at the higher angles of attack (above 15 deg), and motion amplitudes of up to 40 deg were experienced. Above Mach 2.5, the models were dynamically stable at the higher angles of attack.
The Dynamic Range Paradox: A Central Auditory Model of Intensity Change Detection
Simpson, Andrew J.R.; Reiss, Joshua D.
2013-01-01
In this paper we use empirical loudness modeling to explore a perceptual sub-category of the dynamic range problem of auditory neuroscience. Humans are able to reliably report perceived intensity (loudness), and discriminate fine intensity differences, over a very large dynamic range. It is usually assumed that loudness and intensity change detection operate upon the same neural signal, and that intensity change detection may be predicted from loudness data and vice versa. However, while loudness grows as intensity is increased, improvement in intensity discrimination performance does not follow the same trend and so dynamic range estimations of the underlying neural signal from loudness data contradict estimations based on intensity just-noticeable difference (JND) data. In order to account for this apparent paradox we draw on recent advances in auditory neuroscience. We test the hypothesis that a central model, featuring central adaptation to the mean loudness level and operating on the detection of maximum central-loudness rate of change, can account for the paradoxical data. We use numerical optimization to find adaptation parameters that fit data for continuous-pedestal intensity change detection over a wide dynamic range. The optimized model is tested on a selection of equivalent pseudo-continuous intensity change detection data. We also report a supplementary experiment which confirms the modeling assumption that the detection process may be modeled as rate-of-change. Data are obtained from a listening test (N = 10) using linearly ramped increment-decrement envelopes applied to pseudo-continuous noise with an overall level of 33 dB SPL. Increments with half-ramp durations between 5 and 50,000 ms are used. The intensity JND is shown to increase towards long duration ramps (p<10−6). From the modeling, the following central adaptation parameters are derived; central dynamic range of 0.215 sones, 95% central normalization, and a central loudness JND constant of 5.5×10−5 sones per ms. Through our findings, we argue that loudness reflects peripheral neural coding, and the intensity JND reflects central neural coding. PMID:23536749
NASA Technical Reports Server (NTRS)
Seidel, David A.; Eckstrom, Clinton V.; Sandford, Maynard C.
1987-01-01
Unsteady aerodynamic data were measured on an aspect ratio 10.3 elastic supercritical wing while undergoing high dynamic response above Mach number of 0.90. These tests were conducted in the NASA Langley Transonic Dynamics Tunnel. A previous test of this wing predicted an unusual instability boundary based upon subcritical response data. During the present test no instability was found, but an angle of attack dependent narrow Mach number region of high dynamic wing response was observed over a wide range of dynamic pressures. The effect on dynamic wing response of wing angle of attack, static outboard control surface deflection and a lower surface spanwise fence located near the 60 percent local chordline was investigated. The driving mechanism of the dynamic wing response appears to be related to chordwise shock movement in conjunction with flow separation and reattachment on both the upper and lower surfaces.
NASA Technical Reports Server (NTRS)
Seidel, David A.; Eckstrom, Clinton V.; Sandford, Maynard C.
1987-01-01
Unsteady aerodynamic data were measured on an aspect ratio 10.3 elastic supercritical wing while undergoing high dynamic response above a Mach number of 0.90. These tests were conducted in the NASA Langley Transonic Dynamics Tunnel. A previous test of this wing predicted an unusual instability boundary based on subcritical response data. During the present test no instability was found, but an angle of attack dependent narrow Mach number region of high dynamic wing response was observed over a wide range of dynamic pressures. The effect on dynamic wing response of wing angle of attack, static outbound control surface deflection and a lower surface spanwise fence located near the 60 percent local chordline was investigated. The driving mechanism of the dynamic wing response appears to be related to chordwise shock movement in conjunction with flow separation and reattachment on both the upper and lower surfaces.
Testing relativity with solar system dynamics
NASA Technical Reports Server (NTRS)
Hellings, R. W.
1984-01-01
A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.
Advanced Video Guidance Sensor (AVGS) Development Testing
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.
2004-01-01
NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.
Test techniques for determining laser ranging system performance
NASA Technical Reports Server (NTRS)
Zagwodzki, T. W.
1981-01-01
Procedures and results of an on going test program intended to evaluate laser ranging system performance levels in the field as well as in the laboratory are summarized. Tests show that laser ranging system design requires consideration of time biases and RMS jitters of individual system components. All simple Q switched lasers tested were found to be inadequate for 10 centimeter ranging systems. Timing discriminators operating over a typical 100:1 dynamic signal range may introduce as much as 7 to 9 centimeters of range bias. Time interval units commercially available today are capable of half centimeter performance and are adequate for all field systems currently deployed. Photomultipliers tested show typical tube time biases of one centimeter with single photoelectron transit time jitter of approximately 10 centimeters. Test results demonstrate that NASA's Mobile Laser Ranging System (MOBLAS) receiver configuration is limiting system performance below the 100 photoelectron level.
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Boyden, R. P.; Davenport, E. E.
1976-01-01
Supersonic forced-oscillation tests of a 0.0165-scale model of a modified 089B Rockwell International shuttle orbiter were conducted in a wind tunnel for several configurations over a Mach range from 1.6 to 4.63. The tests covered angles of attack up to 30 deg. The period and damping of the basic unaugmented vehicle were calculated along the entry trajectory using the measured damping results. Some parameter analysis was made with the measured dynamic derivatives. Photographs of the test configurations and test equipment are shown.
Chroma sampling and modulation techniques in high dynamic range video coding
NASA Astrophysics Data System (ADS)
Dai, Wei; Krishnan, Madhu; Topiwala, Pankaj
2015-09-01
High Dynamic Range and Wide Color Gamut (HDR/WCG) Video Coding is an area of intense research interest in the engineering community, for potential near-term deployment in the marketplace. HDR greatly enhances the dynamic range of video content (up to 10,000 nits), as well as broadens the chroma representation (BT.2020). The resulting content offers new challenges in its coding and transmission. The Moving Picture Experts Group (MPEG) of the International Standards Organization (ISO) is currently exploring coding efficiency and/or the functionality enhancements of the recently developed HEVC video standard for HDR and WCG content. FastVDO has developed an advanced approach to coding HDR video, based on splitting the HDR signal into a smoothed luminance (SL) signal, and an associated base signal (B). Both signals are then chroma downsampled to YFbFr 4:2:0 signals, using advanced resampling filters, and coded using the Main10 High Efficiency Video Coding (HEVC) standard, which has been developed jointly by ISO/IEC MPEG and ITU-T WP3/16 (VCEG). Our proposal offers both efficient coding, and backwards compatibility with the existing HEVC Main10 Profile. That is, an existing Main10 decoder can produce a viewable standard dynamic range video, suitable for existing screens. Subjective tests show visible improvement over the anchors. Objective tests show a sizable gain of over 25% in PSNR (RGB domain) on average, for a key set of test clips selected by the ISO/MPEG committee.
Anomalous dynamical phase in quantum spin chains with long-range interactions
NASA Astrophysics Data System (ADS)
Homrighausen, Ingo; Abeling, Nils O.; Zauner-Stauber, Valentin; Halimeh, Jad C.
2017-09-01
The existence or absence of nonanalytic cusps in the Loschmidt-echo return rate is traditionally employed to distinguish between a regular dynamical phase (regular cusps) and a trivial phase (no cusps) in quantum spin chains after a global quench. However, numerical evidence in a recent study (J. C. Halimeh and V. Zauner-Stauber, arXiv:1610.02019) suggests that instead of the trivial phase, a distinct anomalous dynamical phase characterized by a novel type of nonanalytic cusps occurs in the one-dimensional transverse-field Ising model when interactions are sufficiently long range. Using an analytic semiclassical approach and exact diagonalization, we show that this anomalous phase also arises in the fully connected case of infinite-range interactions, and we discuss its defining signature. Our results show that the transition from the regular to the anomalous dynamical phase coincides with Z2-symmetry breaking in the infinite-time limit, thereby showing a connection between two different concepts of dynamical criticality. Our work further expands the dynamical phase diagram of long-range interacting quantum spin chains, and can be tested experimentally in ion-trap setups and ultracold atoms in optical cavities, where interactions are inherently long range.
Intelligent launch and range operations virtual testbed (ILRO-VTB)
NASA Astrophysics Data System (ADS)
Bardina, Jorge; Rajkumar, Thirumalainambi
2003-09-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
NASA Astrophysics Data System (ADS)
Park, Kwangsoo
In this dissertation, a research effort aimed at development and implementation of a direct field test method to evaluate the linear and nonlinear shear modulus of soil is presented. The field method utilizes a surface footing that is dynamically loaded horizontally. The test procedure involves applying static and dynamic loads to the surface footing and measuring the soil response beneath the loaded area using embedded geophones. A wide range in dynamic loads under a constant static load permits measurements of linear and nonlinear shear wave propagation from which shear moduli and associated shearing strains are evaluated. Shear wave velocities in the linear and nonlinear strain ranges are calculated from time delays in waveforms monitored by geophone pairs. Shear moduli are then obtained using the shear wave velocities and the mass density of a soil. Shear strains are determined using particle displacements calculated from particle velocities measured at the geophones by assuming a linear variation between geophone pairs. The field test method was validated by conducting an initial field experiment at sandy site in Austin, Texas. Then, field experiments were performed on cemented alluvium, a complex, hard-to-sample material. Three separate locations at Yucca Mountain, Nevada were tested. The tests successfully measured: (1) the effect of confining pressure on shear and compression moduli in the linear strain range and (2) the effect of strain on shear moduli at various states of stress in the field. The field measurements were first compared with empirical relationships for uncemented gravel. This comparison showed that the alluvium was clearly cemented. The field measurements were then compared to other independent measurements including laboratory resonant column tests and field seismic tests using the spectral-analysis-of-surface-waves method. The results from the field tests were generally in good agreement with the other independent test results, indicating that the proposed method has the ability to directly evaluate complex material like cemented alluvium in the field.
2016-08-21
less pronounced for pelvis velocity • Seat velocity and dynamic displacement not recorded for this test series – Would provide key information for...effectiveness of seat – Displacement /time history data should be recorded for all future test series UNCLASSIFIED UNCLASSIFIED Conclusions/Future...interfacing with seat manufacturers to broaden occupant protection range – Record dynamic stroke on all drop tower tests to evaluate correlation between displacement rate and lumbar compression UNCLASSIFIED UNCLASSIFIED 17
Early Results from Solar Dynamic Space Power System Testing
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1996-01-01
A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.
Operation and tests of a DDC101 A/D
NASA Astrophysics Data System (ADS)
Nguyen, H.
1994-11-01
For the KTeV PMT laser monitoring system, one needs a high resolution device with a large dynamic range to be used for digitizing PIN photodiodes. The dynamic range should be wider than or comparable to the KTeV digitizer (17-bits). The Burr-Brown DDC101 is a precision, wide dynamic range, charge digitizing A/D converter with 20-bit resolution, packaged in a 28-pin plastic, double-wide DP. Low level current output devices such as photosensors can be directly connected to its input. The digital output can be clocked-out serially from the pins. For typical operations, a relatively wide gate of 1 msec should be used. The full scale charge is 500 pC for unipolar mode. The bipolar mode scale is +/- 250 pC. The advertised integral nonlinearity is 0.003% of FSR. This document describes only the basic DDC101 operations since full detail can be found in the DDC101 manual. Tests results are given in section 3.
Validation of a Hartmann-Moiré wavefront sensor with large dynamic range.
Wei, Xin; Van Heugten, Tony; Thibos, Larry
2009-08-03
Our goal was to validate the accuracy, repeatability, sensitivity, and dynamic range of a Hartmann-Moiré (HM) wavefront sensor (PixelOptics, Inc.) designed for ophthalmic applications. Testing apparatus injected a 4 mm diameter monochromatic (532 nm) beam of light into the wavefront sensor for measurement. Controlled amounts of defocus and astigmatism were introduced into the beam with calibrated spherical (-20D to + 18D) and cylindrical (-8D to + 8D) lenses. Repeatability was assessed with three repeated measurements within a 2-minute period. Correlation coefficients between mean wavefront measurements (n = 3) and expected wavefront vergence for both sphere and cylinder lenses were >0.999. For spherical lenses, the sensor was accurate to within 0.1D over the range from -20D to + 18D. For cylindrical lenses, the sensor was accurate to within 0.1D over the range from -8D to + 8D. The primary limitation to demonstrating an even larger dynamic range was the increasingly critical requirements for optical alignment. Sensitivity to small changes of vergence was constant over the instrument's full dynamic range. Repeatability of measurements for fixed condition was within 0.01D. The Hartmann-Moiré wavefront sensor measures defocus and astigmatism accurately and repeatedly with good sensitivity over a large dynamic range required for ophthalmic applications.
Benchmarking novel approaches for modelling species range dynamics
Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.
2016-01-01
Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. PMID:26872305
Benchmarking novel approaches for modelling species range dynamics.
Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E
2016-08-01
Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. © 2016 John Wiley & Sons Ltd.
Ground Reaction Forces Generated During Rhythmical Squats as a Dynamic Loads of the Structure
NASA Astrophysics Data System (ADS)
Pantak, Marek
2017-10-01
Dynamic forces generated by moving persons can lead to excessive vibration of the long span, slender and lightweight structure such as floors, stairs, stadium stands and footbridges. These dynamic forces are generated during walking, running, jumping and rhythmical body swaying in vertical or horizontal direction etc. In the paper the mathematical models of the Ground Reaction Forces (GRFs) generated during squats have been presented. Elaborated models was compared to the GRFs measured during laboratory tests carried out by author in wide range of frequency using force platform. Moreover, the GRFs models were evaluated during dynamic numerical analyses and dynamic field tests of the exemplary structure (steel footbridge).
Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions
NASA Technical Reports Server (NTRS)
Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.
2012-01-01
Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.
Subsonic and transonic dynamic stability characteristics of the space shuttle launch vehicle
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Boyden, R. P.; Davenport, E. E.
1976-01-01
An investigation has been conducted to determine the subsonic and transonic dynamic stability characteristics of a 0.015 scale model of the space shuttle launch vehicle. These tests were conducted in the Langley 8-foot transonic pressure tunnel over a Mach number range from 0.3 to 1.2. Forced oscillation equipment was used to determine the damping characteristics of several configurations about all three axes. The test results show that the model exhibited positive damping in pitch except at the highest Mach number (1.2) where there was a region of negative damping at 2 deg angle of attack. The yawing oscillation tests show that the model exhibited nonlinearities and negative damping at Mach numbers of 0.3 and 0.6. The model exhibited positive roll damping throughout the test angle of attack and Mach range.
Dynamic properties of composite cemented clay.
Cai, Yuan-Qiang; Liang, Xu
2004-03-01
In this work, the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.
NASA Astrophysics Data System (ADS)
Wang, Han; Hu, Zhi-qiang; Meng, Xiang-yin
2018-06-01
Both numerical calculation and model test are important techniques to study and forecast the dynamic responses of the floating offshore wind turbine (FOWT). However, both the methods have their own limitations at present. In this study, the dynamic responses of a 5 MW OC3 spar-type floating wind turbine designed for a water depth of 200 m are numerically investigated and validated by a 1:50 scaled model test. Moreover, the discrepancies between the numerical calculations and model tests are obtained and discussed. According to the discussions, it is found that the surge and pitch are coupled with the mooring tensions, but the heave is independent of them. Surge and pitch are mainly induced by wave under wind wave conditions. Wind and current will induce the low-frequency average responses, while wave will induce the fluctuation ranges of the responses. In addition, wave will induce the wavefrequency responses but wind and current will restrain the ranges of the responses.
Effects of controlled element dynamics on human feedforward behavior in ramp-tracking tasks.
Laurense, Vincent A; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus René M; Mulder, Max
2015-02-01
In real-life manual control tasks, human controllers are often required to follow a visible and predictable reference signal, enabling them to use feedforward control actions in conjunction with feedback actions that compensate for errors. Little is known about human control behavior in these situations. This paper investigates how humans adapt their feedforward control dynamics to the controlled element dynamics in a combined ramp-tracking and disturbance-rejection task. A human-in-the-loop experiment is performed with a pursuit display and vehicle-like controlled elements, ranging from a single integrator through second-order systems with a break frequency at either 3, 2, or 1 rad/s, to a double integrator. Because the potential benefits of feedforward control increase with steeper ramp segments in the target signal, three steepness levels are tested to investigate their possible effect on feedforward control with the various controlled elements. Analyses with four novel models of the operator, fitted to time-domain data, reveal feedforward control for all tested controlled elements and both (nonzero) tested levels of ramp steepness. For the range of controlled element dynamics investigated, it is found that humans adapt to these dynamics in their feedforward response, with a close to perfect inversion of the controlled element dynamics. No significant effects of ramp steepness on the feedforward model parameters are found.
Evaluation of color encodings for high dynamic range pixels
NASA Astrophysics Data System (ADS)
Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania
2015-03-01
Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.
Dynamic range adaptation in primary motor cortical populations
Rasmussen, Robert G; Schwartz, Andrew; Chase, Steven M
2017-01-01
Neural populations from various sensory regions demonstrate dynamic range adaptation in response to changes in the statistical distribution of their input stimuli. These adaptations help optimize the transmission of information about sensory inputs. Here, we show a similar effect in the firing rates of primary motor cortical cells. We trained monkeys to operate a brain-computer interface in both two- and three-dimensional virtual environments. We found that neurons in primary motor cortex exhibited a change in the amplitude of their directional tuning curves between the two tasks. We then leveraged the simultaneous nature of the recordings to test several hypotheses about the population-based mechanisms driving these changes and found that the results are most consistent with dynamic range adaptation. Our results demonstrate that dynamic range adaptation is neither limited to sensory regions nor to rescaling of monotonic stimulus intensity tuning curves, but may rather represent a canonical feature of neural encoding. DOI: http://dx.doi.org/10.7554/eLife.21409.001 PMID:28417848
Lewis Structures Technology, 1988. Volume 1: Structural Dynamics
NASA Technical Reports Server (NTRS)
1988-01-01
The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the Structures Division of the Lewis Research Center and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive testing, dynamical systems, fatigue and damage, wind turbines, hot section technology, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics.
Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model
NASA Astrophysics Data System (ADS)
Kuznetsov, A. V.; Makaryants, G. M.
2018-01-01
There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, N.M.; Vanta, E.B.
Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more thanmore » 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.« less
NASA Technical Reports Server (NTRS)
Singleton, Jeffrey D.; Yeager, William T., Jr.; Wilbur, Matthew L.
1990-01-01
An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to evaluate an advanced main rotor designed for use on a utility class helicopter, specifically the U.S. Army UH-60A Blackhawk. This rotor design incorporated advanced twist, airfoil cross sections, and geometric planform. For evaluation purposes, the current UH-60A main rotor was also tested and is referred to as the baseline blade set. A total of four blade sets were tested. One set of both the baseline and the advanced rotors were dynamically scaled to represent a full scale helicopter rotor blade design. The remaining advanced and baseline blade sets were not dynamically scaled so as to isolate the effects of structural elasticity. The investigation was conducted in hover and at rotor advance ratios ranging from 0.15 to 0.4 at a range of nominal test medium densities from 0.00238 to 0.009 slugs/cu ft. This range of densities, coupled with varying rotor lift and propulsive force, allowed for the simulation of several vehicle gross weight and density altitude combinations. Performance data are presented for all blade sets without analysis; however, cross referencing of data with flight condition may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating advanced design parameters.
The Space Station Photovoltaic Panels Plasma Interaction Test Program: Test plan and results
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.
1989-01-01
The Plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.
The Space Station photovoltaic panels plasma interaction test program - Test plan and results
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.
1990-01-01
The plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.
Dynamic response of film thickness in spiral-groove face seals
NASA Technical Reports Server (NTRS)
Dirusso, E.
1985-01-01
Tests were performed on an inward- and an outward-pumping spiral-groove face seal to experimentally determine the film thickness response to seal seat motions and to gain insight into the effect of secondary seal friction on film thickness behavior. Film thickness, seal seat axial motion, seal frictional torque, and film axial load were recorded as functions of time. The experiments revealed that for sinusoidal axial oscillations of the seal seat, the primary ring followed the seal seat motion very well. For a skewed seal seat, however, the primary ring did not follow the seal seat motion, and load-carrying capacity was degraded. Secondary seal friction was varied over a wide range to determine its effect on film thickness dynamics. The seals were tested with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed ranged from 7000 to 20,000 rpm. Seal tangential velocity ranged from 34 to 98 m/sec (113 to 323 ft/sec).
NASA Technical Reports Server (NTRS)
Dominek, Allen; Wood, Richard; Gilreath, Mel
1992-01-01
Almond shaped test body developed for use in electromagnetic anechoic chamber for evaluation of range and measurement of components has low radar cross section that varies with angle over large dynamic range. Surface is composite formed by joining properly scaled ellipsoidal surfaces. Used to mount components whose radar cross sections are to be measured, and simulate backscatter characteristics of component as though it were over infinite ground plane.
NASA Astrophysics Data System (ADS)
Zharnikova, M. A.; Alymbaeva, ZH B.; Ayurzhanaev, A. A.; Garmaev, E. ZH
2016-11-01
At present much attention is given to the spatio-temporal dynamics of plant communities of steppes to assess their response to the current climate changes. In this study, a mapping of a selected modeling polygon was carried out on the basis of data decoding and field surveys of vegetation cover in the semi-arid zone. The resulting large-scale map of actual vegetation reflects the current state of the vegetation cover and its horizontal structure. It is a valuable material for monitoring of changes in the chosen area. With multi-temporal satellite Landsat imagery we consider the vegetation cover dynamics of the test range. To analyze the transformation of the environment by the climatic factors, we compared series of NDVI versus the precipitation and of NDVI versus the temperatures. Then we calculated the degree of correlation between them.
NASA Technical Reports Server (NTRS)
Stubbs, Sandy M.
1967-01-01
An experimental investigation was made to determine impact water pressures, accelerations, and landing dynamics of a 1/4-scale dynamic model of the command module of the Apollo spacecraft. A scaled-stiffness aft heat shield was used on the model to simulate the structural deflections of the full-scale heat shield. Tests were made on water to obtain impact pressure data at a simulated parachute letdown (vertical) velocity component of approximately 30 ft/sec (9.1 m/sec) full scale. Additional tests were made on water, sand, and hard clay-gravel landing surfaces at simulated vertical velocity components of 23 ft/sec (7.0 m/sec) full scale. Horizontal velocity components investigated ranged from 0 to 50 ft/sec (15 m/sec) full scale and the pitch attitudes ranged from -40 degrees to 29 degrees. Roll attitudes were O degrees, 90 degrees, and 180 degrees, and the yaw attitude was 0 degrees.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force of...
Effect of static foot posture on the dynamic stiffness of foot joints during walking.
Sanchis-Sales, E; Sancho-Bru, J L; Roda-Sales, A; Pascual-Huerta, J
2018-05-01
The static foot posture has been related to the development of lower limb injuries. This study aimed to investigate the dynamic stiffness of foot joints during gait in the sagittal plane to understand the role of the static foot posture in the development of injuries. Seventy healthy adult male subjects with different static postures, assessed by the Foot Posture Index (FPI) (30 normal, 20 highly pronated and 20 highly supinated), were recruited. Kinematic and kinetic data were recorded using an optical motion capture system and a pressure platform, and dynamic stiffness at the different stages of the stance was calculated from the slopes of the linear regression on the flexion moment-angle curves. The effect of foot type on dynamic stiffness and on ranges of motion and moments was analysed using ANOVAs and post-hoc tests, and linear correlation between dynamic stiffness and FPI was also tested. Highly pronated feet showed a significantly smaller range of motion at the ankle and metatarsophalangeal joints and also a larger range of moments at the metatarsophalangeal joint than highly supinated feet. Dynamic stiffness during propulsion was significantly greater at all foot joints for highly pronated feet, with positive significant correlations with the squared FPI. Highly supinated feet showed greater dynamic stiffness than normal feet, although to a lesser extent. Highly pronated feet during normal gait experienced the greatest decrease in the dorsiflexor moments during propulsion, normal feet being the most balanced regarding work generated and absorbed. Extreme static foot postures show greater dynamic stiffness during propulsion and greater absorbed work, which increases the risk of developing injuries. The data presented may be used when designing orthotics or prostheses, and also when planning surgery that modifies joint stiffness. Copyright © 2018 Elsevier B.V. All rights reserved.
Species Turnover through Time: Colonization and Extinction Dynamics across Metacommunities.
Nuvoloni, Felipe Micali; Feres, Reinaldo José Fazzio; Gilbert, Benjamin
2016-06-01
Island biogeography and metacommunity theory often use equilibrium assumptions to predict local diversity, yet nonequilibrium dynamics are common in nature. In nonequilibrium communities, local diversity fluctuates through time as the relative importance of colonization and extinction change. Here, we test the prevalence and causes of nonequilibrium dynamics in metacommunities of mites associated with rubber trees distributed over large spatial (>1,000 km) and temporal (>30-60 generations) scales in Brazil. We measured colonization and extinction rates to test species turnover and nonequilibrium dynamics over a growing season. Mite metacommunities exhibited nonequilibrium dynamics for most months of the year, and these dynamics tracked climatic conditions. Monthly shifts in temperature of more than 1°C resulted in nonequilibrium dynamics, as did mean temperatures outside of two critical ranges. Nonequilibrium dynamics were caused by a change in colonization with temperature change and changes in both colonization and extinction with absolute temperature. Species turnover showed different trends; high relative humidity increased both colonization and extinction rates, increasing turnover but not nonequilibrium dynamics. Our study illustrates that testing nonequilibrium dynamics can provide new insights into the drivers of colonization, extinction, and diversity fluctuations in metacommunities.
Design Guide for Aerodynamics Testing of Earth and Planetary Entry Vehicles in a Ballistic Range
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.
2017-01-01
The purpose of this manual is to aid in the design of an aerodynamics test of an earth or planetary entry capsule in a ballistic range. In this manual, much use is made of the results and experience gained in 50 years of ballistic range aerodynamics testing at the NASA Ames Research Center, and in particular, that gained in the last 27 years, while the author was working at NASA Ames. The topics treated herein include: Data to be obtained; flight data needed to design test; Reynolds number and dynamic similarity of flight trajectory and ballistic range test; capabilities of various ballistic ranges; Calculations of swerves due to average and oscillating lift and of drag-induced velocity decreases; Model and sabot design; materials, weights and stresses; Sabot separation; Launches at angle of attack and slapping with paper to produce pitch/yaw oscillations.
Dynamic Impact Behaviour of High Entropy Alloys Used in the Military Domain
NASA Astrophysics Data System (ADS)
Geantă, V.; Voiculescu, I.; Stefănoiu, R.; Chereches, T.; Zecheru, T.; Matache, L.; Rotariu, A.
2018-06-01
AlFeCrCoNi high entropy alloys (HEA) feature significant compressive strength characteristics, being usable for severe impact applications in the military domain. The research paper presents the results obtained by testing the impact resistance of four HEA samples of different chemical compositions at perforation with 7.62 mm calibre incendiary armour-piercing bullets. The dynamical behaviour was modelled by numerical simulation based on the results of the dynamic tests conducted in the firing range, thus allowing the development of more efficient high entropy alloys, to be used for collective/personal protection.
Microhard MHX2420 Orbital Performance Evaluation Using RT Logic T400CS
NASA Technical Reports Server (NTRS)
TintoreGazulla, Oriol; Lombardi, Mark
2012-01-01
RT Logic allows simulation of Ground Station - satellite communications: Static tests have been successful. Dynamic tests have been performed for simple passes. Future dynamic tests are needed to simulate real orbit communications. Satellite attitude changes antenna gain. Atmospheric and rain losses need to be added. STK Plug-in will be the next step to improve the dynamic tests. There is a possibility of running longer simulations. Simulation of different losses available in the STK Plug-in. Microhard optimization: Effect of Microhard settings on the data throughput have been understood. Optimized settings improve data throughput for LEO communications. Longer hop intervals make transfer of larger packets more efficient (more time between hops in frequency). Use of FEC (Reed-Solomon) reduces the number of retransmissions for long-range or noisy communications.
Dynamic Tensile Properties of Iron and Steels for a Wide Range of Strain Rates and Strain
NASA Astrophysics Data System (ADS)
Kojima, Nobusato; Hayashi, Hiroyuki; Yamamoto, Terumi; Mimura, Koji; Tanimura, Shinji
The tensile stress-strain curves of iron and a variety of steels, covering a wide range of strength level, over a wide strain rate range on the order of 10-3 ~ 103 s-1, were obtained systematically by using the Sensing Block Type High Speed Material Testing System (SBTS, Saginomiya). Through intensive analysis of these results, the strain rate sensitivity of the flow stress for the large strain region, including the viscous term at high strain rates, the true fracture strength and the true fracture strain were cleared for the material group of the ferrous metals. These systematical data may be useful to develop a practical constitutive model for computer codes, including a fracture criterion for simulations of the dynamic behavior in crash worthiness studies and of work-pieces subjected to dynamic plastic working for a wide strain rate range.
Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing
NASA Technical Reports Server (NTRS)
Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.
1990-01-01
Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etingov, Pavel V.; Makarov, Yuri V.; Wu, Di
The document describes detailed uncertainty quantification (UQ) methodology developed by PNNL to estimate secure ranges of potential dynamic intra-hour interchange adjustments in the ISO-NE system and provides description of the dynamic interchange adjustment (DINA) tool developed under the same contract. The overall system ramping up and down capability, spinning reserve requirements, interchange schedules, load variations and uncertainties from various sources that are relevant to the ISO-NE system are incorporated into the methodology and the tool. The DINA tool has been tested by PNNL and ISO-NE staff engineers using ISO-NE data.
Space-Based Range Safety and Future Space Range Applications
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.
2005-01-01
The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic Global Flyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.
Space-Based Range Safety and Future Space Range Applications
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.
2005-01-01
The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety (global positioning system metric tracking data, flight termination command and range safety data relay) and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California) using the NASA Tracking and Data Relay Satellite System as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This report discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.
An Overview of Unsteady Pressure Measurements in the Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Schuster, David M.; Edwards, John W.; Bennett, Robert M.
2000-01-01
The NASA Langley Transonic Dynamics Tunnel has served as a unique national facility for aeroelastic testing for over forty years. A significant portion of this testing has been to measure unsteady pressures on models undergoing flutter, forced oscillations, or buffet. These tests have ranged from early launch vehicle buffet to flutter of a generic high-speed transport. This paper will highlight some of the test techniques, model design approaches, and the many unsteady pressure tests conducted in the TDT. The objectives and results of the data acquired during these tests will be summarized for each case and a brief discussion of ongoing research involving unsteady pressure measurements and new TDT capabilities will be presented.
Conceptual definition of a technology development mission for advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, R. P.
1986-01-01
An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.
Dynamic testing of a two-dimensional box truss beam
NASA Technical Reports Server (NTRS)
White, Charles W.
1987-01-01
Testing to determine the effects of joint freeplay and pretensioning of diagonal members on the dynamic characteristics of a two-dimensional box truss beam was conducted. The test article was ten bays of planar truss suspended by long wires at each joint. Each bay measured 2 meters per side. Pins of varying size were used to simulate various joint freeplay conditions. Single-point random excitation was the primary method of test. The rational fraction polynomial method was used to extract modal characteristics from test data. A finite element model of the test article was generated from which modal characteristics were predicted. These were compared with those obtained from tests. With the exception of the fundamental mode, correlation of theoretical and experimental results was poor, caused by the resonant coupling of local truss member bending modes with global truss beam modes. This coupling introduced many modes in the frequency range of interest whose frequencies were sensitive to joint boundary conditions. It was concluded that local/global coupling must be avoided in the frequency range where accurate modal characteristics are required.
Integrated communications and optical navigation system
NASA Astrophysics Data System (ADS)
Mueller, J.; Pajer, G.; Paluszek, M.
2013-12-01
The Integrated Communications and Optical Navigation System (ICONS) is a flexible navigation system for spacecraft that does not require global positioning system (GPS) measurements. The navigation solution is computed using an Unscented Kalman Filter (UKF) that can accept any combination of range, range-rate, planet chord width, landmark, and angle measurements using any celestial object. Both absolute and relative orbit determination is supported. The UKF employs a full nonlinear dynamical model of the orbit including gravity models and disturbance models. The ICONS package also includes attitude determination algorithms using the UKF algorithm with the Inertial Measurement Unit (IMU). The IMU is used as the dynamical base for the attitude determination algorithms. This makes the sensor a more capable plug-in replacement for a star tracker, thus reducing the integration and test cost of adding this sensor to a spacecraft. Recent additions include an integrated optical communications system which adds communications, and integrated range and range rate measurement and timing. The paper includes test results from trajectories based on the NASA New Horizons spacecraft.
NASA Astrophysics Data System (ADS)
Bijl, Piet; Hogervorst, Maarten A.; Toet, Alexander
2017-05-01
The Triangle Orientation Discrimination (TOD) methodology includes i) a widely applicable, accurate end-to-end EO/IR sensor test, ii) an image-based sensor system model and iii) a Target Acquisition (TA) range model. The method has been extensively validated against TA field performance for a wide variety of well- and under-sampled imagers, systems with advanced image processing techniques such as dynamic super resolution and local adaptive contrast enhancement, and sensors showing smear or noise drift, for both static and dynamic test stimuli and as a function of target contrast. Recently, significant progress has been made in various directions. Dedicated visual and NIR test charts for lab and field testing are available and thermal test benches are on the market. Automated sensor testing using an objective synthetic human observer is within reach. Both an analytical and an image-based TOD model have recently been developed and are being implemented in the European Target Acquisition model ECOMOS and in the EOSTAR TDA. Further, the methodology is being applied for design optimization of high-end security camera systems. Finally, results from a recent perception study suggest that DRI ranges for real targets can be predicted by replacing the relevant distinctive target features by TOD test patterns of the same characteristic size and contrast, enabling a new TA modeling approach. This paper provides an overview.
Immediate effects of dynamic sitting exercise on the lower back mobility of sedentary young adults
Chatchawan, Uraiwan; Jupamatangb, Unthika; Chanchitc, Sunisa; Puntumetakul, Rungthip; Donpunha, Wanida; Yamauchi, Junichiro
2015-01-01
[Purpose] The aim of this study was to investigate the effects of dynamic sitting exercises during prolonged sitting on the lower back mobility of sedentary young adults. [Subjects and Methods] Seventy-one subjects aged between 18–25 years participated in this study. Following a randomized crossover study design, subjects were randomly assigned to two groups: sitting only and dynamic sitting exercise. The dynamic sitting exercise was a combination of lower back hyperextension and abdominal drawing-in movements which were repeated 6 times in a 1-minute period and performed every 20 minutes during a 2-hour sitting session. Lumbar range of movement was measured with the modified-modified Schober test, and the pain intensity was evaluated using the visual analog scale. [Results] After the experiment, the lumbar range of movement was significantly impaired in the sitting only group; however, it was significantly improved in the dynamic sitting exercise group. There were significant differences in lumbar range of movement of both flexion and extension between the groups. No significant difference in pain intensity between the groups was found. [Conclusion] These results suggest that dynamic sitting exercises during prolonged sitting can prevent decreases in lumbar range of movement in both back flexion and extension following a 2-hour sitting period. PMID:26696698
Dynamic Stability Analysis of Blunt Body Entry Vehicles Using Time-Lagged Aftbody Pitching Moments
NASA Technical Reports Server (NTRS)
Kazemba, Cole D.; Braun, Robert D.; Schoenenberger, Mark; Clark, Ian G.
2013-01-01
This analysis defines an analytic model for the pitching motion of blunt bodies during atmospheric entry. The proposed model is independent of the pitch damping sum coefficient present in the standard formulation of the equations of motion describing pitch oscillations of a decelerating blunt body, instead using the principle of a time-lagged aftbody moment as the forcing function for oscillation divergence. Four parameters, all with intuitive physical relevance, are introduced to fully define the aftbody moment and the associated time delay. It is shown that the dynamic oscillation responses typical to blunt bodies can be produced using hysteresis of the aftbody moment in place of the pitch damping coefficient. The approach used in this investigation is shown to be useful in understanding the governing physical mechanisms for blunt body dynamic stability and in guiding vehicle and mission design requirements. A validation case study using simulated ballistic range test data is conducted. From this, parameter identification is carried out through the use of a least squares optimizing routine. Results show good agreement with the limited existing literature for the parameters identified, suggesting that the model proposed could be validated by an experimental ballistic range test series. The trajectories produced by the identified parameters were found to match closely those from the MER ballistic range tests for a wide array of initial conditions and can be identified with a reasonable number of ballistic range shots and computational effort.
NASA Technical Reports Server (NTRS)
Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David
2006-01-01
The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.
A dynamic motion simulator for future European docking systems
NASA Technical Reports Server (NTRS)
Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.
1990-01-01
Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.
NASA Technical Reports Server (NTRS)
Scholl, R. E. (Editor)
1979-01-01
Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.
Pionnier, Raphaël; Découfour, Nicolas; Barbier, Franck; Popineau, Christophe; Simoneau-Buessinger, Emilie
2016-03-01
The purpose of this study was to quantitatively and qualitatively assess dynamic balance with accuracy in individuals with chronic ankle instability (CAI). To this aim, a motion capture system was used while participants performed the Star Excursion Balance Test (SEBT). Reached distances for the 8 points of the star were automatically computed, thereby excluding any dependence to the experimenter. In addition, new relevant variables were also computed, such as absolute time needed to reach each distance, lower limb ranges of motion during unipodal stance, as well as absolute error of pointing. Velocity of the center of pressure and range of variation of ground reaction forces have also been assessed during the unipodal phase of the SEBT thanks to force plates. CAI group exhibited smaller reached distances and greater absolute error of pointing than the control group (p<0.05). Moreover, the ranges of motion of lower limbs joints, the velocity of the center of pressure and the range of variation of the ground reaction forces were all significantly smaller in the CAI group (p<0.05). These reduced quantitative and qualitative performances highlighted a lower dynamic postural control. The limited body movements and accelerations during the unipodal stance in the CAI group could highlight a protective strategy. The present findings could help clinicians to better understand the motor strategies used by CAI patients during dynamic balance and may guide the rehabilitation process. Copyright © 2016 Elsevier B.V. All rights reserved.
Wind-Tunnel Survey of an Oscillating Flow Field for Application to Model Helicopter Rotor Testing
NASA Technical Reports Server (NTRS)
Mirick, Paul H.; Hamouda, M-Nabil H.; Yeager, William T., Jr.
1990-01-01
A survey was conducted of the flow field produced by the Airstream Oscillator System (AOS) in the Langley Transonic Dynamics Tunnel (TDT). The magnitude of a simulated gust field was measured at 15 locations in the plane of a typical model helicopter rotor when tested in the TDT using the Aeroelastic Rotor Experimental System (ARES) model. These measurements were made over a range of tunnel dynamic pressures typical of those used for an ARES test. The data indicate that the gust field produced by the AOS is non-uniform across the tunnel test section, but should be sufficient to excite a model rotor.
Benefits of Spacecraft Level Vibration Testing
NASA Technical Reports Server (NTRS)
Gordon, Scott; Kern, Dennis L.
2015-01-01
NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.
Dynamic Properties of Human Tympanic Membrane Based on Frequency-Temperature Superposition
Zhang, Xiangming; Gan, Rong Z.
2012-01-01
The human tympanic membrane (TM) transfers sound in the ear canal into the mechanical vibration of the ossicles in the middle ear. The dynamic properties of TM directly affect the middle ear transfer function. The static or quasi-static mechanical properties of TM were reported in the literature, but the dynamic properties of TM over the auditory frequency range are very limited. In this paper, a new method was developed to measure the dynamic properties of human TM using the Dynamic-Mechanical Analyzer (DMA). The test was conducted at the frequency range of 1 to 40 Hz at three different temperatures: 5°, 25° and 37°C. The frequency-temperature superposition was applied to extend the testing frequency range to a much higher level (at least 3800 Hz). The generalized linear solid model was employed to describe the constitutive relation of the TM. The storage modulus E’ and the loss modulus E” were obtained from 11 specimens. The mean storage modulus was 15.1 MPa at 1 Hz and 27.6 MPa at 3800 Hz. The mean loss modulus was 0.28 MPa at 1 Hz and 4.1 MPa at 3800 Hz. The results show that the frequency-temperature superposition is a feasible approach to study the dynamic properties of the ear soft tissues. The dynamic properties of human TM obtained in this study provide a better description of the damping behavior of ear tissues. The properties can be transferred into the finite element (FE) model of the human ear to replace the Rayleigh type damping. The data reported here contribute to the biomechanics of the middle ear and improve the accuracy of the FE model for the human ear. PMID:22820983
Willeford, Kristin; Stanek, Justin M; McLoda, Todd A
2018-01-01
Ankle sprains are one of the most common injuries in the physically active population. Previous researchers have shown that supporting the ankle with taping or bracing is effective in preventing ankle sprains. However, no authors have compared the effects of self-adherent tape and lace-up ankle braces on ankle range of motion (ROM) and dynamic balance in collegiate football players. To examine the effectiveness of self-adherent tape and lace-up ankle braces in reducing ankle ROM and improving dynamic balance before and after a typical collegiate football practice. Crossover study. Collegiate athletic training room. Twenty-nine National Collegiate Athletic Association Division I football athletes (age = 19.2 ± 1.14 years, height = 187.52 ± 20.54 cm, mass = 106.44 ± 20.54 kg). Each participant wore each prophylactic ankle support during a single practice, self-adherent tape on 1 leg and lace-up ankle brace on the other. Range of motion and dynamic balance were assessed 3 times for each leg throughout the testing session (baseline, prepractice, postpractice). Ankle ROM for inversion, eversion, dorsiflexion, and plantar flexion were measured at baseline, immediately after donning the brace or tape, and immediately after a collegiate practice. The Y-Balance Test was used to assess dynamic balance at these same time points. Both interventions were effective in reducing ROM in all directions compared with baseline; however, dynamic balance did not differ between the tape and brace conditions. Both the self-adherent tape and lace-up ankle brace provided equal ROM restriction before and after exercise, with no change in dynamic balance.
A dual-waveband dynamic IR scene projector based on DMD
NASA Astrophysics Data System (ADS)
Hu, Yu; Zheng, Ya-wei; Gao, Jiao-bo; Sun, Ke-feng; Li, Jun-na; Zhang, Lei; Zhang, Fang
2016-10-01
Infrared scene simulation system can simulate multifold objects and backgrounds to perform dynamic test and evaluate EO detecting system in the hardware in-the-loop test. The basic structure of a dual-waveband dynamic IR scene projector was introduced in the paper. The system's core device is an IR Digital Micro-mirror Device (DMD) and the radiant source is a mini-type high temperature IR plane black-body. An IR collimation optical system which transmission range includes 3-5μm and 8-12μm is designed as the projection optical system. Scene simulation software was developed with Visual C++ and Vega soft tools and a software flow chart was presented. The parameters and testing results of the system were given, and this system was applied with satisfying performance in an IR imaging simulation testing.
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.
1980-01-01
A comparison was made between ground facility measurements, the aerodynamic design data book values, and the dynamic damping derivatives extracted from the space shuttle orbiter approach and landing flight tests. The comparison covers an angle of attack range from 2 deg to 10 deg at subsonic Mach numbers. The parameters of pitch, yaw, and roll damping, as well as the yawing moment due to rolling velocity and rolling moment due to yawing velocity are compared.
NASA Technical Reports Server (NTRS)
Allen, R. W.; Jex, H. R.
1973-01-01
In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in a space station simulator for 90 days and administered a tracking test battery. The battery included a clinical test (Critical Instability Task) designed to measure a subject's dynamic time delay, and a more conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The levels of each parameter span the range observed with professional pilots and astronaut candidates tested previously. The chamber environment caused no significant decrement on the average crewman's dynamic response behavior, and the subjects continued to improve slightly in their tracking skills during the 90-day confinement period.
Study of in-plane dynamics of tires
NASA Astrophysics Data System (ADS)
Gong, S.
1993-12-01
The in-plane dynamics of tires deals with the forces and motion in the plane of rotation of the wheel. Three aspects of tire in-plane dynamics can be identified: the rolling contact between the tire and the road surface; the transmission of forces and motion from the contact patch to the wheel axle; and the vibration of the tire treadband. The main objective of the investigation reported in this thesis is to develop a tire model which is suitable to study all three aspects of the in-plane dynamics of tires in both low and high frequency ranges. The tire model is finally validated by experimental modal analysis of a test tire. Laboratory tests are conducted to establish the modal shapes and natural frequencies of the test tire. The tests are carried out for two different configurations of the tire: one with the wheel rim fixed in space and one with the tire-wheel system suspended freely in the air. Good agreement is found between the experimental and theoretical results.
Overview of Orion Crew Module and Launch Abort Vehicle Dynamic Stability
NASA Technical Reports Server (NTRS)
Owens, Donald B.; Aibicjpm. Vamessa V.
2011-01-01
With the retirement of the Space Shuttle, NASA is designing a new spacecraft, called Orion, to fly astronauts to low earth orbit and beyond. Characterization of the dynamic stability of the Orion spacecraft is important for the design of the spacecraft and trajectory construction. Dynamic stability affects the stability and control of the Orion Crew Module during re-entry, especially below Mach = 2.0 and including flight under the drogues. The Launch Abort Vehicle is affected by dynamic stability as well, especially during the re-orientation and heatshield forward segments of the flight. The dynamic stability was assessed using the forced oscillation technique, free-to-oscillate, ballistic range, and sub-scale free-flight tests. All of the test techniques demonstrated that in heatshield-forward flight the Crew Module and Launch Abort Vehicle are dynamically unstable in a significant portion of their flight trajectory. This paper will provide a brief overview of the Orion dynamic aero program and a high-level summary of the dynamic stability characteristics of the Orion spacecraft.
NASA Technical Reports Server (NTRS)
Lopez, Armando E.; Buell, Donald A.; Tinling, Bruce E.
1959-01-01
Wind-tunnel measurements were made of the static and dynamic rotary stability derivatives of an airplane model having sweptback wing and tail surfaces. The Mach number range of the tests was from 0.23 to 0.94. The components of the model were tested in various combinations so that the separate contribution to the stability derivatives of the component parts and the interference effects could be determined. Estimates of the dynamic rotary derivatives based on some of the simpler existing procedures which utilize static force data were found to be in reasonable agreement with the experimental results at low angles of attack. The results of the static and dynamic measurements were used to compute the short-period oscillatory characteristics of an airplane geometrically similar to the test model. The results of these calculations are compared with military flying qualities requirements.
Dynamic MRI for distinguishing high-flow from low-flow peripheral vascular malformations.
Ohgiya, Yoshimitsu; Hashimoto, Toshi; Gokan, Takehiko; Watanabe, Shouji; Kuroda, Masayoshi; Hirose, Masanori; Matsui, Seishi; Nobusawa, Hiroshi; Kitanosono, Takashi; Munechika, Hirotsugu
2005-11-01
The purpose of our study was to assess the usefulness of dynamic MRI in distinguishing high-flow vascular malformations from low-flow vascular malformations, which do not need angiography for treatment. Between September 2001 and January 2003, 16 patients who underwent conventional and dynamic MRI had peripheral vascular malformations (six high- and 10 low-flow). The temporal resolution of dynamic MRI was 5 sec. Time intervals between beginning of enhancement of an arterial branch in the vicinity of a lesion in the same slice and the onset of enhancement in the lesion were calculated. We defined these time intervals as "artery-lesion enhancement time." Time intervals between the onset of enhancement in the lesion and the time of the maximal percentage of enhancement above baseline of the lesion within 120 sec were measured. We defined these time intervals as "contrast rise time" of the lesion. Diagnosis of the peripheral vascular malformations was based on angiographic or venographic findings. The mean artery-lesion enhancement time of the high-flow vascular malformations (3.3 sec [range, 0-5 sec]) was significantly shorter than that of the low-flow vascular malformations (8.8 sec [range, 0-20 sec]) (Mann-Whitney test, p < 0.05). The mean maximal lesion enhancement time of the high-flow vascular malformations (5.8 sec [range, 5-10 sec]) was significantly shorter than that of the low-flow vascular malformations (88.4 sec [range, 50-100 sec]) (Mann-Whitney test, p < 0.01). Dynamic MRI is useful for distinguishing high-flow from low-flow vascular malformations, especially when the contrast rise time of the lesion is measured.
Wall Boundary Layer Measurements for the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Wieseman, Carol D.; Bennett, Robert M.
2007-01-01
Measurements of the boundary layer parameters in the NASA Langley Transonic Dynamics tunnel were conducted during extensive calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to R-134a. Boundary-layer rakes were mounted on the wind-tunnel walls, ceiling, and floor. Measurements were made over the range of tunnel operation envelope in both heavy gas and air and without a model in the test section at three tunnel stations. Configuration variables included open and closed east sidewall wall slots, for air and R134a test media, reentry flap settings, and stagnation pressures over the full range of tunnel operation. The boundary layer thickness varied considerably for the six rakes. The thickness for the east wall was considerably larger that the other rakes and was also larger than previously reported. There generally was some reduction in thickness at supersonic Mach numbers, but the effect of stagnation pressure, and test medium were not extensive.
Transient Characterization of Type B Particles in a Transport Riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadle, L.J.; Monazam, E.R.; Mei, J.S.
2007-01-01
Simple and rapid dynamic tests were used to evaluate fluid dynamic behavior of granular materials in the transport regime. Particles with densities ranging from 189 to 2,500 kg/m3 and Sauter mean size from 61 to 812 μm were tested in a 0.305 m diameter, 15.5 m height circulating fluidized bed (CFB) riser. The transient tests involved the abrupt stoppage of solids flow for each granular material over a wide range gas flow rates. The riser emptying time was linearly related to the Froude number in each of three different operating regimes. The flow structure along the height of the risermore » followed a distinct pattern as tracked through incremental pressures. These results are discussed to better understand the transformations that take place when operating over various regimes. During the transients the particle size distribution was measured. The effects of pressure, particle size, and density on test performance are also presented.« less
Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment
NASA Technical Reports Server (NTRS)
Smith, B. P.; Dutta, S.
2017-01-01
The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.
Dynamic Restarting Schemes for Eigenvalue Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Simon, Horst D.
1999-03-10
In studies of restarted Davidson method, a dynamic thick-restart scheme was found to be excellent in improving the overall effectiveness of the eigen value method. This paper extends the study of the dynamic thick-restart scheme to the Lanczos method for symmetric eigen value problems and systematically explore a range of heuristics and strategies. We conduct a series of numerical tests to determine their relative strength and weakness on a class of electronic structure calculation problems.
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Don Holt installing projectile & powder charge
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF Chuck Cornelison operating 'Firing' control pannel
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Barbee, Brent W.; Baldwin, Philip J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility continues to evolve as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation, and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, are reviewed with a focus on recent improvements. With the most recent improvement, in support of Technology Readiness Level (TRL) 6 testing of the Inter-spacecraft Ranging and Alarm System (IRAS) for the Magnetospheric Multiscale (MMS) mission, the FFTB has significantly expanded its ability to perform realistic simulations that require Radio Frequency (RF) ranging sensors for relative navigation with the Path Emulator for RF Signals (PERFS). The PERFS, currently under development at NASA GSFC, modulates RF signals exchanged between spacecraft. The RF signals are modified to accurately reflect the dynamic environment through which they travel, including the effects of medium, moving platforms, and radiated power.
Balloon launched decelerator test program: Post-test test report
NASA Technical Reports Server (NTRS)
Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.
1972-01-01
Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.
Song, Chen; Corry, Ben
2011-01-01
The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex ‘catenary’ channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction. PMID:21731672
Song, Chen; Corry, Ben
2011-01-01
The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex 'catenary' channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction.
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Bon Bowling machining sabot to find dimensions
Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.
2016-01-01
The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.
2006-10-04
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Chuck Cornelison viewing 8x10 shadowgraph images
Irrmischer, Mona; van der Wal, C Natalie; Mansvelder, Huibert D; Linkenkaer-Hansen, Klaus
2018-01-01
There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability.
Negative mood and mind wandering increase long-range temporal correlations in attention fluctuations
van der Wal, C. Natalie; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus
2018-01-01
There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability. PMID:29746529
Dynamic and static fatigue behavior of sintered silicon nitrides
NASA Technical Reports Server (NTRS)
Chang, J.; Khandelwal, P.; Heitman, P. W.
1987-01-01
The dynamic and static fatigue behavior of Kyocera SN220M sintered silicon nitride at 1000 C was studied. Fractographic analysis of the material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 41 MPa/min. Under conditions of static fatigue this material also displayed SCG at stresses below 345 MPa. SCG appears to be controlled by microcracking of the grain boundaries. The crack velocity exponent (n) determined from both dynamic and static fatigue tests ranged from 11 to 16.
NASA Technical Reports Server (NTRS)
Gardner, William N.; Edmondson, James L.
1950-01-01
A flight test was made to determine the servoplane effectiveness and stability characteristics of the free-floating horizontal stabilizer to be used on the XF10F airplane. The results of this test indicate that servoplane effectiveness is practically constant through the speed range up to a Mach number of 1.15, and the stabilizer static stability is satisfactory. A loss of damping occurs over a narrow Mach number range near M = 1.0, resulting in dynamic instability of the stabilizer in this narrow range. Above M = 1.0 there is a gradual positive trim change of the stabilizer.
Dynamic Characteristics of Simple Cylindrical Hydraulic Engine Mount Utilizing Air Compressibility
NASA Astrophysics Data System (ADS)
Nakahara, Kazunari; Nakagawa, Noritoshi; Ohta, Katsutoshi
A cylindrical hydraulic engine mount with simple construction has been developed. This engine mount has a sub chamber formed by utilizing air compressibility without a diaphragm. A mathematical model of the mount is presented to predict non-linear dynamic characteristics in consideration of the effect of the excitation amplitude on the storage stiffness and loss factor. The mathematical model predicts experimental results well for the frequency responses of the storage stiffness and loss factor over the frequency range of 5 Hz to 60Hz. The effect of air volume and internal pressure on the dynamic characteristics is clarified by the analysis and dynamic characterization testing. The effectiveness of the cylindrical hydraulic engine mount on the reduction of engine shake is demonstrated for riding comfort through on-vehicle testing with a chassis dynamometer.
Combining facial dynamics with appearance for age estimation.
Dibeklioglu, Hamdi; Alnajar, Fares; Ali Salah, Albert; Gevers, Theo
2015-06-01
Estimating the age of a human from the captured images of his/her face is a challenging problem. In general, the existing approaches to this problem use appearance features only. In this paper, we show that in addition to appearance information, facial dynamics can be leveraged in age estimation. We propose a method to extract and use dynamic features for age estimation, using a person's smile. Our approach is tested on a large, gender-balanced database with 400 subjects, with an age range between 8 and 76. In addition, we introduce a new database on posed disgust expressions with 324 subjects in the same age range, and evaluate the reliability of the proposed approach when used with another expression. State-of-the-art appearance-based age estimation methods from the literature are implemented as baseline. We demonstrate that for each of these methods, the addition of the proposed dynamic features results in statistically significant improvement. We further propose a novel hierarchical age estimation architecture based on adaptive age grouping. We test our approach extensively, including an exploration of spontaneous versus posed smile dynamics, and gender-specific age estimation. We show that using spontaneity information reduces the mean absolute error by up to 21%, advancing the state of the art for facial age estimation.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.
1996-01-01
This progress report consists of two separate reports. The first one describes our work on the use of variable gain amplifiers to increase the receiver dynamic range of space borne laser altimeters such as NASA's Geoscience Laser Altimeter Systems (GLAS). The requirement of the receiver dynamic range was first calculated. A breadboard variable gain amplifier circuit was made and the performance was fully characterized. The circuit will also be tested in flight on board the Shuttle Laser Altimeter (SLA-02) next year. The second report describes our research on the master clock oscillator frequency calibration for space borne laser altimeter systems using global positioning system (GPS) receivers.
Vibration Modal Characterization of a Stirling Convertor via Base-Shake Excitation
NASA Technical Reports Server (NTRS)
Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey
2003-01-01
The U.S. Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC), and NASA John H. Glenn Research Center (GRC) are currently developing a high-efficiency Stirling convertor for use in a Stirling Radioisotope Generator (SRG). NASA and DOE have identified the SRG for potential use as an advanced power system for future NASA Space Science missions, providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. Low-level, baseshake sine vibration tests were conducted on the Stirling Technology Demonstration Convertor (TDC), at NASA GRC's Structural Dynamics Laboratory, in February 2001, as part of the development of this Stirling technology. The purpose of these tests was to provide a better understanding of the TDC's internal dynamic response to external vibratory base excitations. The knowledge obtained can therein be used to help explain the success that the TDC enjoyed in its previous random vibration qualification tests (December 1999). This explanation focuses on the TDC s internal dynamic characteristics in the 50 to 250 Hz frequency range, which corresponds to the maximum input levels of its qualification random vibration test specification. The internal dynamic structural characteristics of the TDC have now been measured in two separate tests under different motoring and dynamic loading conditions: (1) with the convertor being electrically motored, under a vibratory base-shake excitation load, and (2) with the convertor turned off, and its alternator internals undergoing dynamic excitation via hammer impact loading. This paper addresses the test setup, procedure and results of the base-shake vibration testing conducted on the motored TDC, and will compare these results with those results obtained from the dynamic impact tests (May 2001) on the nonmotored TDC.
Mercadante, Davide; Wagner, Johannes A; Aramburu, Iker V; Lemke, Edward A; Gräter, Frauke
2017-09-12
Molecular dynamics (MD) simulations have valuably complemented experiments describing the dynamics of intrinsically disordered proteins (IDPs), particularly since the proposal of models to solve the artificial collapse of IDPs in silico. Such models suggest redefining nonbonded interactions, by either increasing water dispersion forces or adopting the Kirkwood-Buff force field. These approaches yield extended conformers that better comply with experiments, but it is unclear if they all sample the same intrachain dynamics of IDPs. We have tested this by employing MD simulations and single-molecule Förster resonance energy transfer spectroscopy to sample the dimensions of systems with different sequence compositions, namely strong and weak polyelectrolytes. For strong polyelectrolytes in which charge effects dominate, all the proposed solutions equally reproduce the expected ensemble's dimensions. For weak polyelectrolytes, at lower cutoffs, force fields abnormally alter intrachain dynamics, overestimating excluded volume over chain flexibility or reporting no difference between the dynamics of different chains. The TIP4PD water model alone can reproduce experimentally observed changes in extensions (dimensions), but not quantitatively and with only weak statistical significance. Force field limitations are reversed with increased interaction cutoffs, showing that chain dynamics are critically defined by the presence of long-range interactions. Force field analysis aside, our study provides the first insights into how long-range interactions critically define IDP dimensions and raises the question of which length range is crucial to correctly sample the overall dimensions and internal dynamics of the large group of weakly charged yet highly polar IDPs.
Enhancing the Linear Dynamic Range in Multi-Channel Single Photon Detector beyond 7OD
Gudkov, Dmytro; Gudkov, George; Gorbovitski, Boris; Gorfinkel, Vera
2015-01-01
We present design, implementation, and characterization of a single photon detector based on 32-channel PMT sensor [model H7260-20, Hamamatsu]. The developed high speed electronics enables the photon counting with linear dynamic range (LDR) up to 108count/s per detector's channel. The experimental characterization and Monte-Carlo simulations showed that in the single photon counting mode the LDR of the PMT sensor is limited by (i) “photon” pulse width (current pulse) of 900ps and (ii) substantial decrease of amplitudes of current pulses for count rates exceeding 108 count/s. The multi-channel architecture of the detector and the developed firm/software allow further expansion of the dynamic range of the device by 32-fold by using appropriate beam shaping. The developed single photon counting detector was tested for the detection of fluorescence labeled microbeads in capillary flow. PMID:27087788
Alsalaheen, Bara; Haines, Jamie; Yorke, Amy; Broglio, Steven P
2015-12-01
To examine the reliability, convergent, and discriminant validity of the limits of stability (LOS) test to assess dynamic postural stability in adolescents using a portable forceplate system. Cross-sectional reliability observational study. School setting. Adolescents (N=36) completed all measures during the first session. To examine the reliability of the LOS test, a subset of 15 participants repeated the LOS test after 1 week. Not applicable. Outcome measurements included the LOS test, Balance Error Scoring System, Instrumented Balance Error Scoring System, and Modified Clinical Test for Sensory Interaction on Balance. A significant relation was observed among LOS composite scores (r=.36-.87, P<.05). However, no relation was observed between LOS and static balance outcome measurements. The reliability of the LOS composite scores ranged from moderate to good (intraclass correlation coefficient model 2,1=.73-.96). The results suggest that the LOS composite scores provide unique information about dynamic postural stability, and the LOS test completed at 100% of the theoretical limit appeared to be a reliable test of dynamic postural stability in adolescents. Clinicians should use dynamic balance measurement as part of their balance assessment and should not use static balance testing (eg, Balance Error Scoring System) to make inferences about dynamic balance, especially when balance assessment is used to determine rehabilitation outcomes, or when making return to play decisions after injury. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-10-12
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
Southern pine veneer laminates at various moduli of elasticity
George E. Woodson
1972-01-01
Modulus of rigidity (GLT) of veneer laminates was shown to be unrelated to dynamic modulus of elasticity (Ed) of single veneers and also, within the range of samples tested, unrelated to specific gravity. Values determined by flexure test (GLR) were consistent with those from standard plate shear...
Assessment of dynamic properties and stiffness of composite bridges with pavement defects
NASA Astrophysics Data System (ADS)
Kartopol'tsev, Vladimir; Kartopol'tsev, Andrei; Kolmakov, Boris
2017-01-01
This paper is aimed at assessing the dynamic properties and stiffness of the reinforced concrete roadway slab under live loads that impact composite bridge girders considering pavement defects. A special attention is paid to the reinforced concrete roadway slab as a transfer member of forced oscillations. The test results obtained for bridges with different spans ranging from 24 to 110 m are presented to assess the behavior of the reinforced concrete roadway slab and the dynamic stiffness of bridge span allowed for the pavement defects. Dynamic tests are carried out under controlled and random loads that simulate live load interaction with the span and the pavement with defects. The differential equations are presented for vertical oscillations of spans, pavement defect parameter, Eigen frequency and others. As a result of the experimental research the equation is derived to ascertain the dynamic stiffness of the vehicle-span system.
Long-range memory and non-Markov statistical effects in human sensorimotor coordination
NASA Astrophysics Data System (ADS)
M. Yulmetyev, Renat; Emelyanova, Natalya; Hänggi, Peter; Gafarov, Fail; Prokhorov, Alexander
2002-12-01
In this paper, the non-Markov statistical processes and long-range memory effects in human sensorimotor coordination are investigated. The theoretical basis of this study is the statistical theory of non-stationary discrete non-Markov processes in complex systems (Phys. Rev. E 62, 6178 (2000)). The human sensorimotor coordination was experimentally studied by means of standard dynamical tapping test on the group of 32 young peoples with tap numbers up to 400. This test was carried out separately for the right and the left hand according to the degree of domination of each brain hemisphere. The numerical analysis of the experimental results was made with the help of power spectra of the initial time correlation function, the memory functions of low orders and the first three points of the statistical spectrum of non-Markovity parameter. Our observations demonstrate, that with the regard to results of the standard dynamic tapping-test it is possible to divide all examinees into five different dynamic types. We have introduced the conflict coefficient to estimate quantitatively the order-disorder effects underlying life systems. The last one reflects the existence of disbalance between the nervous and the motor human coordination. The suggested classification of the neurophysiological activity represents the dynamic generalization of the well-known neuropsychological types and provides the new approach in a modern neuropsychology.
Strain characteristics of the silica-based fiber Bragg gratings for 30-273 K
NASA Astrophysics Data System (ADS)
Li, Litong; Lv, Dajuan; Yang, Minghong; Xiong, Liangming; Luo, Jie; Tan, Lu
2018-06-01
This work studied the strain coefficient of silica-based fiber Bragg grating (FBG) at cryogenic temperatures. A dynamic temperature test with an oxygen-free copper specimen in the temperature range of 30-273 K was designed. The relationship between the strain coefficient and temperature could be characterized by three-order polynomial. A static tensile test was carried out in liquid nitrogen environment verified the effectiveness of the dynamic results. Good correlation was obtained from the two experiment results. Finally, the factors affecting the measurement error were discussed.
Design and testing of an electromagnetic coupling
NASA Technical Reports Server (NTRS)
Anderson, William J.
1986-01-01
Hostile environments such as the hard vacuum of space, and exposure to water or caustic fluids have fostered the development of devices which allow mechanical rotary feed throughs with positive sealing without the use of conventional dynamic seals. One such device is an electromagnetic coupling which transfers motion across a hermetic seal by means of a rotating magnetic field. Static pull-out torque and dynamic heat build-up and pull-out torque tests of a synchronous reluctance homopolar coupling are reported herein. Coupling efficiencies are estimated for a range of speeds and torques.
NASA Technical Reports Server (NTRS)
Vaughn, J. E.; Daviet, J. T.
1975-01-01
Experimental aerodynamic investigations were conducted on a .012 scale model of a NASA/Langley modified version of the Rockwell 089B Space Shuttle Orbiter. Using the forced oscillation test technique, dynamic stability derivatives were measured in the pitch, yaw and roll planes at a Mach number of 8 over an angle of attack range from -4 deg to 28 deg. Plotted and tabulated results are presented.
Aerodynamic Coefficients from Aeroballistic Range Testing of Deployed- and Stowed-SIAD SFDT Models
NASA Technical Reports Server (NTRS)
Wilder, Michael C.; Brown, Jeffrey D.; Bogdanoff, David W.; Yates, Leslie A.; Dyakonov, Artem A.; Clark, Ian G.; Grinstead, Jay H.
2017-01-01
This report documents a ballistic-range test campaign conducted in 2012 in order to estimate the aerodynamic stability characteristics of two configurations of the Supersonic Flight Dynamics Test (SFDT) vehicle prior to its initial flight in 2014. The SFDT vehicle was a test bed for demonstrating several new aerodynamic decelerator technologies then being developed under the Low-Density Supersonic Decelerator (LDSD) Project. Of particular interest here is the Supersonic Inflatable Aerodynamic Decelerator (SIAD), an inflatable attached torus used to increase the drag surface area of an entry vehicle during the supersonic portion of the entry trajectory. Two model configurations were tested in the ballistic range: one representing the SFDT vehicle prior to deployment of the SIAD, and the other representing the nominal shape with the SIAD inflated. Both models were fabricated from solid metal, and therefore, the effects of the flexibility of the inflatable decelerator were not considered. The test conditions were chosen to match, as close as possible, the Mach number, Reynolds number, and motion dynamics expected for the SFDT vehicle in flight, both with the SIAD stowed and deployed. For SFDT models with the SIAD stowed, 12 shots were performed covering a Mach number range of 3.2 to 3.7. For models representing the deployed SIAD, 37 shots were performed over a Mach number range of 2.0 to 3.8. Pitch oscillation amplitudes covered a range from 0.7 to 20.6 degrees RMS. Portions of this report (data analysis approach, aerodynamic modeling, and resulting aerodynamic coefficients) were originally published as an internal LDSD Project report [1] in 2012. In addition, this report provides a description of the test design approach, the test facility, and experimental procedures. Estimated non-linear aerodynamic coefficients, including pitch damping, for both model configurations are reported, and the shot-by-shot trajectory measurements, plotted in comparison with calculated trajectories based on the derived non-linear aerodynamic coefficients, are provided as appendices. Since the completion of these tests, two full-scale SFDT flights have been successfully conducted: one in June 2014 [2, 3], and one in June 2015 [3].
Visual Vestibular Interaction in the Dynamic Visual Acuity Test during Voluntary Head Rotation
NASA Technical Reports Server (NTRS)
Lee, Moo Hoon; Durnford, Simon; Crowley, John; Rupert, Angus
1996-01-01
Although intact vestibular function is essential in maintaining spatial orientation, no good screening tests of vestibular function are available to the aviation community. High frequency voluntary head rotation was selected as a vestibular stimulus to isolate the vestibulo-ocular reflex (VOR) from visual influence. A dynamic visual acuity test that incorporates voluntary head rotation was evaluated as a potential vestibular function screening tool. Twenty-seven normal subjects performed voluntary sinusoidal head rotation at frequencies from 0.7-4.0 Hz under three different visual conditions: visually-enhanced VOR, normal VOR, and visually suppressed VOR. Standardized Baily-Lovie chart letters were presented on a computer monitor in front of the subject, who then was asked to read the letters while rotating his head horizontally. The electro-oculogram and dynamic visual acuity score were recorded and analyzed. There were no significant differences in gain or phase shift among three visual conditions in the frequency range of 2.8 to 4.0 Hz. The dynamic visual acuity score shifted less than 0.3 logMAR at frequencies under 2.0 Hz. The dynamic visual acuity test at frequencies a round 2.0 Hz can be recommended for evaluating vestibular function.
The role of SLR and LLR in relativity
NASA Technical Reports Server (NTRS)
Ries, John C.
1994-01-01
While General Relativity has been adopted as the standard theory of relativity, there are alternative theories, with important implications for gravitational physics, which can only be discounted with tests of sufficient accuracy. In addition to its contributions to lunar and solar system dynamics, Lunar Laser Ranging, in combination with other solar system data continues to refine some important limits. Satellite laser ranging tracking of geodetic satellites can provide similar tests, but the accuracy is usually limited by gravitational and nongravitational perturbations.
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.
The dynamic response of visual accommodation over a seven-day period
NASA Technical Reports Server (NTRS)
Randle, R. J.; Murphy, M. R.
1974-01-01
Four college students, ranging in age from 18 to 21 years, were tested on their dynamic, monocular accommodation responses to a square wave stimulus and sine waves of two frequencies. The tests were conducted over a period of seven days in a controlled environment, each subject being tested once every three hours. Latency, magnitude, velocity, gain and phase lag of the responses were measured, and means and standard deviations were computed. The latency of response was stable throughout and agreed fairly well with previous studies. The response magnitude was relatively stable. Three of the subjects had higher velocities on receding targets; one was faster on approaching targets. The group mean velocity increased over the seven days of the study. In keeping with the trend to faster dynamics over the seven days, both gain and phase lag improved.
2006-10-04
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Don Holt (L) & Don Bowling (r) in control room examining poloroids
2006-09-20
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - model M-1 in 40 degree initial launch angle with sabot
2006-09-20
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - model M-1 in 40 degree initial launch angle with sabot
NASA Technical Reports Server (NTRS)
Woodrow Whitlow, Jr. (Editor); Todd, Emily N. (Editor)
1999-01-01
These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.
Development of a rotorcraft. Propulsion dynamics interface analysis, volume 2
NASA Technical Reports Server (NTRS)
Hull, R.
1982-01-01
A study was conducted to establish a coupled rotor/propulsion analysis that would be applicable to a wide range of rotorcraft systems. The effort included the following tasks: (1) development of a model structure suitable for simulating a wide range of rotorcraft configurations; (2) defined a methodology for parameterizing the model structure to represent a particular rotorcraft; (3) constructing a nonlinear coupled rotor/propulsion model as a test case to use in analyzing coupled system dynamics; and (4) an attempt to develop a mostly linear coupled model derived from the complete nonlinear simulations. Documentation of the computer models developed is presented.
New test of general relativity - Measurement of de Sitter geodetic precession rate for lunar perigee
NASA Technical Reports Server (NTRS)
Bertotti, Bruno; Ciufolini, Ignazio; Bender, Peter L.
1987-01-01
According to general relativity, the calculated rate of motion of lunar perigee should include a contribution of 19.2 msec/yr from geodetic precession. It is shown that existing analyses of lunar-laser-ranging data confirm the general-relativistic rate for geodetic precession with respect to the planetary dynamical frame. In addition, the comparison of earth-rotation results from lunar laser ranging and from VLBI shows that the relative drift of the planetary dynamical frame and the extragalactic VLBI reference frame is small. The estimated accuracy is about 10 percent.
Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-04-01
Dynamic fibre-optic curvature sensing is demonstrated by interrogating chains of fibre segments, separated by broadband Bragg grating reflectors, using range-resolved interferometry (RRI). Four fibre strings, containing four fibre segments each of gauge length 20 cm, are attached to the opposing sides of a support structure and the resulting differential strain measurements allow inference of lateral displacements of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range at an interferometric bandwidth of 21 kHz demonstrate the suitability of this approach for highly sensitive and cost-effective fibre-optic directional vibration measurements of smart structures.
Force on Force Modeling with Formal Task Structures and Dynamic Geometry
2017-03-24
task framework, derived using the MMF methodology to structure a complex mission. It further demonstrated the integration of effects from a range of...application methodology was intended to support a combined developmental testing (DT) and operational testing (OT) strategy for selected systems under test... methodology to develop new or modify existing Models and Simulations (M&S) to: • Apply data from multiple, distributed sources (including test
Bierer, Julie Arenberg; Nye, Amberly D
2014-01-01
Objective The objective of the present study, performed in cochlear implant listeners, was to examine how the level of current required to detect single-channel electrical pulse trains relates to loudness perception on the same channel. The working hypothesis was that channels with relatively high thresholds, when measured with a focused current pattern, interface poorly to the auditory nerve. For such channels a smaller dynamic range between perceptual threshold and the most comfortable loudness would result, in part, from a greater sensitivity to changes in electrical field spread compared to low-threshold channels. The narrower range of comfortable listening levels may have important implications for speech perception. Design Data were collected from eight, adult cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp.). The partial tripolar (pTP) electrode configuration, consisting of one intracochlear active electrode, two flanking electrodes carrying a fraction (σ) of the return current, and an extracochlear ground, was used for stimulation. Single-channel detection thresholds and most comfortable listening levels were acquired using the most focused pTP configuration possible (σ ≥ 0.8) to identify three channels for further testing – those with the highest, median, and lowest thresholds – for each subject. Threshold, equal-loudness contours (at 50% of the monopolar dynamic range), and loudness growth functions were measured for each of these three test channels using various partial tripolar fractions. Results For all test channels, thresholds increased as the electrode configuration became more focused. The rate of increase with the focusing parameter σ was greatest for the high-threshold channel compared to the median- and low-threshold channels. The 50% equal-loudness contours exhibited similar rates of increase in level across test channels and subjects. Additionally, test channels with the highest thresholds had the narrowest dynamic ranges (for σ ≥ 0.5) and steepest growth of loudness functions for all electrode configurations. Conclusions Together with previous studies using focused stimulation, the results suggest that auditory responses to electrical stimuli at both threshold and suprathreshold current levels are not uniform across the electrode array of individual cochlear implant listeners. Specifically, the steeper growth of loudness and thus smaller dynamic ranges observed for high-threshold channels are consistent with a degraded electrode-neuron interface, which could stem from lower numbers of functioning auditory neurons or a relatively large distance between the neurons and electrodes. These findings may have potential implications for how stimulation levels are set during the clinical mapping procedure, particularly for speech-processing strategies that use focused electrical fields. PMID:25036146
Eaton, Jerry P.
1976-01-01
Tests of the standard NCER multiplex system recorded and played back on both the Bell and Howell 3700B (about 0.1% tape speed variation) and on the Sony TC-126 cassette recorder (about 1% tape speed variation) showed that subtractive compensation employing a reference frequency multiplexed on the data track was remarkably effective in reducing tape-speed-variation-induced noise 1 and, hence, in increasing the dynamic range of the record/playback system. Further tests suggested that the 0 to 30 Hz bandwidth of the standard system (8 data channels) might be increased substantially, at the 'price' of reducing the number of data channels to 3 or 4, without serious loss of dynamic range if subtractive compensation could be implemented effectively with the broader-band system.
Krstacic, Goran; Krstacic, Antonija; Smalcelj, Anton; Milicic, Davor; Jembrek-Gostovic, Mirjana
2007-04-01
Dynamic analysis techniques may quantify abnormalities in heart rate variability (HRV) based on nonlinear and fractal analysis (chaos theory). The article emphasizes clinical and prognostic significance of dynamic changes in short-time series applied on patients with coronary heart disease (CHD) during the exercise electrocardiograph (ECG) test. The subjects were included in the series after complete cardiovascular diagnostic data. Series of R-R and ST-T intervals were obtained from exercise ECG data after sampling digitally. The range rescaled analysis method determined the fractal dimension of the intervals. To quantify fractal long-range correlation's properties of heart rate variability, the detrended fluctuation analysis technique was used. Approximate entropy (ApEn) was applied to quantify the regularity and complexity of time series, as well as unpredictability of fluctuations in time series. It was found that the short-term fractal scaling exponent (alpha(1)) is significantly lower in patients with CHD (0.93 +/- 0.07 vs 1.09 +/- 0.04; P < 0.001). The patients with CHD had higher fractal dimension in each exercise test program separately, as well as in exercise program at all. ApEn was significant lower in CHD group in both RR and ST-T ECG intervals (P < 0.001). The nonlinear dynamic methods could have clinical and prognostic applicability also in short-time ECG series. Dynamic analysis based on chaos theory during the exercise ECG test point out the multifractal time series in CHD patients who loss normal fractal characteristics and regularity in HRV. Nonlinear analysis technique may complement traditional ECG analysis.
MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test
NASA Technical Reports Server (NTRS)
Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.
2001-01-01
The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations of clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including LCO behavior.
MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test
NASA Technical Reports Server (NTRS)
Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.
2001-01-01
The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including Limit Cycle Oscillation behavior.
Ultra-precise micro-motion stage for optical scanning test
NASA Astrophysics Data System (ADS)
Chen, Wen; Zhang, Jianhuan; Jiang, Nan
2009-05-01
This study aims at the application of optical sensing technology in a 2D flexible hinge test stage. Optical fiber sensor which is manufactured taking advantage of the various unique properties of optical fiber, such as good electric insulation properties, resistance of electromagnetic disturbance, sparkless property and availability in flammable and explosive environment, has lots of good properties, such as high accuracy and wide dynamic range, repeatable, etc. and is applied in 2D flexible hinge stage driven by PZT. Several micro-bending structures are designed utilizing the characteristics of the flexible hinge stage. And through experiments, the optimal micro-bending tooth structure and the scope of displacement sensor trip under this optimal micro-bending tooth structure are derived. These experiments demonstrate that the application of optical fiber displacement sensor in 2D flexible hinge stage driven by PZT substantially broadens the dynamic testing range and improves the sensitivity of this apparatus. Driving accuracy and positioning stability are enhanced as well. [1,2
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Astrophysics Data System (ADS)
Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
NASA Astrophysics Data System (ADS)
Fang, X. C.; Hu-Guo, Ch.; Ollivier-Henry, N.; Brasse, D.; Hu, Y.
2010-06-01
This paper represents the design of a low-noise, wide band multi-channel readout integrated circuit (IC) used as front end readout electronics of avalanche photo diodes (APD) dedicated to a small animal positron emission tomography (PET) system. The first ten-channel prototype chip (APD-Chip) of the analog parts has been designed and fabricated in a 0.35 μm CMOS process. Every channel of the APD_Chip includes a charge-sensitive preamplifier (CSA), a CR-(RC)2 shaper, and an analog buffer. In a channel, the CSA reads charge signals (10 bits dynamic range) from an APD array having 10 pF of capacitance per pixel. A linearized degenerated differential pair which ensures high linearity in all dynamical range is used as the high feedback resistor for preventing pile up of signals. The designed CSA has the capability of compensating automatically up to 200 nA leakage current from the detector. The CR-(RC)2 shaper filters and shapes the output signal of the CSA. An equivalent input noise charge obtained from test is 275 e -+ 10 e-/pF. In this paper the prototype is presented for both its theoretical analysis and its test results.
Unsteady pressure and structural response measurements of an elastic supercritical wing
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.
1988-01-01
Results are presented which define unsteady flow conditions associated with high dynamic response experienced on a high aspect ratio elastic supercritical wing at transonic test conditions while being tested in the NASA Langley Transonic Dynamics Tunnel. The supercritical wing, designed for a cruise Mach number of 0.80, experienced the high dynamic response in the Mach number range from 0.90 to 0.94 with the maximum response occurring at a Mach number of approximately 0.92. At the maximum wing response condition the forcing function appears to be the oscillatory chordwise movement of strong shocks located on both the wing upper and lower surfaces in conjunction with the flow separating and reattaching in the trailing edge region.
Unsteady pressure and structural response measurements on an elastic supercritical wing
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.
1988-01-01
Results are presented which define unsteady flow conditions associated with high dynamic response experienced on a high aspect ratio elastic supercritical wing at transonic test conditions while being tested in the NASA Langley Transonic Dynamics Tunnel. The supercritical wing, designed for a cruise Mach number of 0.80, experienced the high dynamic response in the Mach number range from 0.90 to 0.94 with the maximum response occurring at a Mach number of approximately 0.92. At the maximum wing response condition the forcing function appears to be the oscillatory chordwise movement of strong shocks located on both the wing upper and lower surfaces in conjuction with the flow separating and reattaching in the trailing edge region.
Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme
Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.; ...
2016-11-07
Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less
Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation
NASA Technical Reports Server (NTRS)
Herring, Helen
2003-01-01
Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.
Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.
Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Don Bowling (l) attaching firing cable to breeth cap as Don Holt (r) looks on
Characterization of a Compact Water Vapor Radiometer
NASA Astrophysics Data System (ADS)
Gill, Ajay; Selina, Rob
2018-01-01
We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of < -20 dB is met.For the gain stability test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is < 2 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2 x 10-4 requirement. The observable gain stability is < 2.5 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2.5 x 10-4 requirement.Overall, the test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.
NASA Astrophysics Data System (ADS)
Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.
2015-09-01
The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.
NASA Astrophysics Data System (ADS)
Pu, Enxiang; Zheng, Wenjie; Song, Zhigang; Feng, Han; Zhu, Yuliang
2017-03-01
Hot deformation behavior of a Fe-24Cr-22Ni-7Mo-0.5N superaustenitic stainless steel was investigated by hot compression tests in a wide temperature range of 950-1250 °C and strain rate range of 0.001-10 s-1. The flow curves show that the flow stress decreases as the deformation temperature increases or the strain rate decreases. The processing maps developed on the basis of the dynamic materials model and flow stress data were adopted to optimize the parameters of hot working. It was found that the strain higher than 0.2 has no significant effect on the processing maps. The optimum processing conditions were in the temperature range of 1125-1220 °C and strain rate range of 0.1-3 s-1. Comparing to other stable domains, microstructural observations in this domain revealed the complete dynamic recrystallization (DRX) with finer and more uniform grain size. Flow instability occurred in the domain of temperature lower than 1100 °C and strain rate higher than 0.1 s-1.
Space Shuttle main engine nozzle-steerhorn dynamics
NASA Technical Reports Server (NTRS)
Kiefling, L.
1981-01-01
On two occasions during the Space Shuttle main engine development, the LH2 feedline (called the steerhorn, because of its shape) failed during the cutoff transient. A dynamic test was undertaken, and an analytical model was developed and correlated to the dynamic test. Detailed models of the tube bundle were required to obtain the equivalent shell coefficients. All-shell models of the nozzle wall were found better than beam-shell models. The most difficult part of the structure to simulate was the felt-metal pad between the feedline and its mount, which introduced nonlinear stiffness and damping and led to the use of separate low amplitude and high amplitude models. The total structure was found to have 400 modes in the frequency range of interest, 0 to 500 Hz. Good test analysis correlation was obtained and a modified feedline configuration was found to demonstrate a 40% reduction of response stress from the original configuration.
Interferometric fibre-optic curvature sensing for structural, directional vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-06-01
Dynamic fibre-optic curvature sensing using fibre segment interferometry is demonstrated using a cost-effective rangeresolved interferometry interrogation system. Differential strain measurements from four fibre strings, each containing four fibre segments of gauge length 20 cm, allow the inference of lateral vibrations as well as the direction of the vibration of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range over a 21 kHz interferometric bandwidth demonstrate the suitability of this approach for highly sensitive fibre-optic directional vibration measurements, complementing existing laser vibrometry techniques by removing the need for side access to the structure under test.
Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators
NASA Technical Reports Server (NTRS)
Trolinger, James; Lal, Amit; Jo, Joshua; Kupiec, Stephen
2012-01-01
For many aspheric and freeform optical components, existing interferometric solutions require a custom computer-generated hologram (CGH) to characterize the part. The overall objective of this research is to develop hardware and a procedure to produce a combined, dynamic, Hartmann/ Digital Holographic interferometry inspection system for a wide range of advanced optical components, including aspheric and freeform optics. This new instrument would have greater versatility and dynamic range than currently available measurement systems. The method uses a spatial light modulator to pre-condition wavefronts for imaging, interferometry, and data processing to improve the resolution and versatility of an optical inspection instrument. Existing interferometers and Hartmann inspection systems have either too small a dynamic range or insufficient resolution to characterize conveniently unusual optical surfaces like aspherical and freeform optics. For interferometers, a specially produced, computer-generated holographic optical element is needed to transform the wavefront to within the range of the interferometer. A new hybrid wavefront sensor employs newly available spatial light modulators (SLMs) as programmable holographic optical elements (HOEs). The HOE is programmed to enable the same instrument to inspect an optical element in stages, first by a Hartmann measurement, which has a very large dynamic range but less resolution. The first measurement provides the information required to precondition a reference wave that avails the measurement process to the more precise phase shifting interferometry. The SLM preconditions a wavefront before it is used to inspect an optical component. This adds important features to an optical inspection system, enabling not just wavefront conditioning for null testing and dynamic range extension, but also the creation of hybrid measurement procedures. This, for example, allows the combination of dynamic digital holography and Hartmann sensing procedures to cover a virtually unlimited dynamic range with high resolution. Digital holography technology brings all of the power and benefits of digital holographic interferometry to the requirement, while Hartmann-type wavefront sensors bring deflectometry technologies to the solution. The SLM can be used to generate arbitrary wavefronts in one leg of the interferometer, thereby greatly simplifying its use and extending its range. The SLM can also be used to modify the system into a dynamic Shack-Hartmann system, which is useful for optical components with large amounts of slope. By integrating these capabilities into a single instrument, the system will have tremendous flexibility to measure a variety of optical shapes accurately.
Test Cases for the Benchmark Active Controls: Spoiler and Control Surface Oscillations and Flutter
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Scott, Robert C.; Wieseman, Carol D.
2000-01-01
As a portion of the Benchmark Models Program at NASA Langley, a simple generic model was developed for active controls research and was called BACT for Benchmark Active Controls Technology model. This model was based on the previously-tested Benchmark Models rectangular wing with the NACA 0012 airfoil section that was mounted on the Pitch and Plunge Apparatus (PAPA) for flutter testing. The BACT model had an upper surface spoiler, a lower surface spoiler, and a trailing edge control surface for use in flutter suppression and dynamic response excitation. Previous experience with flutter suppression indicated a need for measured control surface aerodynamics for accurate control law design. Three different types of flutter instability boundaries had also been determined for the NACA 0012/PAPA model, a classical flutter boundary, a transonic stall flutter boundary at angle of attack, and a plunge instability near M = 0.9. Therefore an extensive set of steady and control surface oscillation data was generated spanning the range of the three types of instabilities. This information was subsequently used to design control laws to suppress each flutter instability. There have been three tests of the BACT model. The objective of the first test, TDT Test 485, was to generate a data set of steady and unsteady control surface effectiveness data, and to determine the open loop dynamic characteristics of the control systems including the actuators. Unsteady pressures, loads, and transfer functions were measured. The other two tests, TDT Test 502 and TDT Test 5 18, were primarily oriented towards active controls research, but some data supplementary to the first test were obtained. Dynamic response of the flexible system to control surface excitation and open loop flutter characteristics were determined during Test 502. Loads were not measured during the last two tests. During these tests, a database of over 3000 data sets was obtained. A reasonably extensive subset of the data sets from the first two tests have been chosen for Test Cases for computational comparisons concentrating on static conditions and cases with harmonically oscillating control surfaces. Several flutter Test Cases from both tests have also been included. Some aerodynamic comparisons with the BACT data have been made using computational fluid dynamics codes at the Navier-Stokes level (and in the accompanying chapter SC). Some mechanical and active control studies have been presented. In this report several Test Cases are selected to illustrate trends for a variety of different conditions with emphasis on transonic flow effects. Cases for static angles of attack, static trailing-edge and upper-surface spoiler deflections are included for a range of conditions near those for the oscillation cases. Cases for trailing-edge control and upper-surface spoiler oscillations for a range of Mach numbers, angle of attack, and static control deflections are included. Cases for all three types of flutter instability are selected. In addition some cases are included for dynamic response measurements during forced oscillations of the controls on the flexible mount. An overview of the model and tests is given, and the standard formulary for these data is listed. Some sample data and sample results of calculations are presented. Only the static pressures and the first harmonic real and imaginary parts of the pressures are included in the data for the Test Cases, but digitized time histories have been archived. The data for the Test Cases are also available as separate electronic files.
Mass Transfer Testing of a 12.5-cm Rotor Centrifugal Contactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. H. Meikrantz; T. G. Garn; J. D. Law
2008-09-01
TRUEX mass transfer tests were performed using a single stage commercially available 12.5 cm centrifugal contactor and stable cerium (Ce) and europium (Eu). Test conditions included throughputs ranging from 2.5 to 15 Lpm and rotor speeds of 1750 and 2250 rpm. Ce and Eu extraction forward distribution coefficients ranged from 13 to 19. The first and second stage strip back distributions were 0.5 to 1.4 and .002 to .004, respectively, throughout the dynamic test conditions studied. Visual carryover of aqueous entrainment in all organic phase samples was estimated at < 0.1 % and organic carryover into all aqueous phase samplesmore » was about ten times less. Mass transfer efficiencies of = 98 % for both Ce and Eu in the extraction section were obtained over the entire range of test conditions. The first strip stage mass transfer efficiencies ranged from 75 to 93% trending higher with increasing throughput. Second stage mass transfer was greater than 99% in all cases. Increasing the rotor speed from 1750 to 2250 rpm had no significant effect on efficiency for all throughputs tested.« less
Predicting and testing continental vertical motion histories since the Paleozoic
NASA Astrophysics Data System (ADS)
Zhang, Nan; Zhong, Shijie; Flowers, Rebecca M.
2012-02-01
Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on cratonic regions. We propose that burial-unroofing histories of cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests of and constraints on our mantle dynamic models.
Predicting and testing continental vertical motion histories since the Paleozoic
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.; Flowers, R. M.
2011-12-01
Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on continental cratonic regions. We propose that burial-unroofing histories of continental cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests and constraints on our mantle dynamic models.
800 Hours of Operational Experience from a 2 kW(sub e) Solar Dynamic System
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1999-01-01
From December 1994 to September 1998, testing with a 2 kW(sub e) Solar Dynamic power system resulted in 33 individual tests, 886 hours of solar heating, and 783 hours of power generation. Power generation ranged from 400 watts to over 2 kW(sub e), and SD system efficiencies have been measured up to 17 per cent, during simulated low-Earth orbit operation. Further, the turbo-alternator-compressors successfully completed 100 start/stops on foil bearings. Operation was conducted in a large thermal/vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Solar Dynamic system featured a closed Brayton conversion unit integrated with a solar heat receiver, which included thermal energy storage for continuous power output through a typical low-Earth orbit. Two power conversion units and three alternator configurations were used during testing. This paper will review the test program, provide operational and performance data, and review a number of technology issues.
Experimental analysis and constitutive modelling of steel of A-IIIN strength class
NASA Astrophysics Data System (ADS)
Kruszka, Leopold; Janiszewski, Jacek
2015-09-01
Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.
Viscoelastic properties of a spinal posterior dynamic stabilisation device.
Lawless, Bernard M; Barnes, Spencer C; Espino, Daniel M; Shepherd, Duncan E T
2016-06-01
The purpose of this study was to quantify the frequency dependent viscoelastic properties of two types of spinal posterior dynamic stabilisation devices. In air at 37°C, the viscoelastic properties of six BDyn 1 level, six BDyn 2 level posterior dynamic stabilisation devices (S14 Implants, Pessac, France) and its elastomeric components (polycarbonate urethane and silicone) were measured using Dynamic Mechanical Analysis. The viscoelastic properties were measured over the frequency range 0.01-30Hz. The BDyn devices and its components were viscoelastic throughout the frequency range tested. The mean storage stiffness and mean loss stiffness of the BDyn 1 level device, BDyn 2 level device, silicone component and polycarbonate urethane component all presented a logarithmic relationship with respect to frequency. The storage stiffness of the BDyn 1 level device ranged from 95.56N/mm to 119.29N/mm, while the BDyn 2 level storage stiffness ranged from 39.41N/mm to 42.82N/mm. BDyn 1 level device and BDyn 2 level device loss stiffness ranged from 10.72N/mm to 23.42N/mm and 4.26N/mm to 9.57N/mm, respectively. No resonant frequencies were recorded for the devices or its components. The elastic property of BDyn 1 level device is influenced by the PCU and silicone components, in the physiological frequency range. The viscoelastic properties calculated in this study may be compared to spinal devices and spinal structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi
2016-12-15
Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Landscape-scale dynamics of aspen in Rocky Mountain National Park, Colorado
Margot W. Kaye; Kuni Suzuki; Dan Binkley; Thomas J. Stohlgren
2001-01-01
Past studies of quaking aspen in Rocky Mountain National Park suggested that the aspen population is declining due to intensive browsing by elk (Cervus elaphus). These studies were conducted in the elk winter range, an area of intensive elk impact. The elk summer range experiences less intense grazing pressure. We tested the hypothesis that impacts of elk would be...
A 1- to 10-GHz downconverter for high-resolution microwave survey
NASA Technical Reports Server (NTRS)
Mcwatters, D.
1994-01-01
A downconverter was designed, built, and tested for the High Resolution Microwave Survey project. The input frequency range is 1 to 10 GHz with instantaneous bandwidth of 350 MHz and dynamic range of 125 dB/Hz. Requirements were derived for the local oscillators and special design techniques were implemented to achieve the high degree of spectral purity required.
Quantitative theory of driven nonlinear brain dynamics.
Roberts, J A; Robinson, P A
2012-09-01
Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.
Minimum Requirements for Taxicab Security Cameras.
Zeng, Shengke; Amandus, Harlan E; Amendola, Alfred A; Newbraugh, Bradley H; Cantis, Douglas M; Weaver, Darlene
2014-07-01
The homicide rate of taxicab-industry is 20 times greater than that of all workers. A NIOSH study showed that cities with taxicab-security cameras experienced significant reduction in taxicab driver homicides. Minimum technical requirements and a standard test protocol for taxicab-security cameras for effective taxicab-facial identification were determined. The study took more than 10,000 photographs of human-face charts in a simulated-taxicab with various photographic resolutions, dynamic ranges, lens-distortions, and motion-blurs in various light and cab-seat conditions. Thirteen volunteer photograph-evaluators evaluated these face photographs and voted for the minimum technical requirements for taxicab-security cameras. Five worst-case scenario photographic image quality thresholds were suggested: the resolution of XGA-format, highlight-dynamic-range of 1 EV, twilight-dynamic-range of 3.3 EV, lens-distortion of 30%, and shutter-speed of 1/30 second. These minimum requirements will help taxicab regulators and fleets to identify effective taxicab-security cameras, and help taxicab-security camera manufacturers to improve the camera facial identification capability.
2015-08-01
10 minutes. After this, the furnace was opened and the clamps were tightened to 6 in-lb of torque . At the end of the tests, we examined the specimens...to use a different procedure for tightening the clamps in the frequency sweep tests -- this is explained in the next section...procedure to tighten the clamps. This is described next. First, the test applies different frequencies at a large range of temperatures – from -110 C to 70
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markley, Andrew L.; Begemann, Matthew B.; Clarke, Ryan E.
The application of synthetic biology requires characterized tools to precisely control gene expression. This toolbox of genetic parts previously did not exist for the industrially promising cyanobacterium, Synechococcus sp. strain PCC 7002. To address this gap, two orthogonal constitutive promoter libraries, one based on a cyanobacterial promoter and the other ported from Escherichia coli, were built and tested in PCC 7002. The libraries demonstrated 3 and 2.5 log dynamic ranges, respectively, but correlated poorly with E. coli expression levels. These promoter libraries were then combined to create and optimize a series of IPTG inducible cassettes. The resultant induction system hadmore » a 48-fold dynamic range and was shown to out-perform P trc constructs. Finally, a RBS library was designed and tested in PCC 7002. The presented synthetic biology toolbox will enable accelerated engineering of PCC 7002.« less
Markley, Andrew L.; Begemann, Matthew B.; Clarke, Ryan E.; ...
2014-09-12
The application of synthetic biology requires characterized tools to precisely control gene expression. This toolbox of genetic parts previously did not exist for the industrially promising cyanobacterium, Synechococcus sp. strain PCC 7002. To address this gap, two orthogonal constitutive promoter libraries, one based on a cyanobacterial promoter and the other ported from Escherichia coli, were built and tested in PCC 7002. The libraries demonstrated 3 and 2.5 log dynamic ranges, respectively, but correlated poorly with E. coli expression levels. These promoter libraries were then combined to create and optimize a series of IPTG inducible cassettes. The resultant induction system hadmore » a 48-fold dynamic range and was shown to out-perform P trc constructs. Finally, a RBS library was designed and tested in PCC 7002. The presented synthetic biology toolbox will enable accelerated engineering of PCC 7002.« less
Haga, Yoshihiro; Chida, Koichi; Inaba, Yohei; Kaga, Yuji; Meguro, Taiichiro; Zuguchi, Masayuki
2016-02-01
As the use of diagnostic X-ray equipment with flat panel detectors (FPDs) has increased, so has the importance of proper management of FPD systems. To ensure quality control (QC) of FPD system, an easy method for evaluating FPD imaging performance for both stationary and moving objects is required. Until now, simple rotatable QC phantoms have not been available for the easy evaluation of the performance (spatial resolution and dynamic range) of FPD in imaging moving objects. We developed a QC phantom for this purpose. It consists of three thicknesses of copper and a rotatable test pattern of piano wires of various diameters. Initial tests confirmed its stable performance. Our moving phantom is very useful for QC of FPD images of moving objects because it enables visual evaluation of image performance (spatial resolution and dynamic range) easily.
A Human-in-the Loop Exploration of the Dynamic Airspace Configuration Concept
NASA Technical Reports Server (NTRS)
Homola, Jeffrey; Lee, Paul U.; Prevot, Thomas; Lee, Hwasoo; Kessell, Angela; Brasil, Connie; Smith, Nancy
2010-01-01
An exploratory human-in-the-loop study was conducted to better understand the impact of Dynamic Airspace Configuration (DAC) on air traffic controllers. To do so, a range of three progressively more aggressive algorithmic approaches to sectorizations were chosen. Sectorizations from these algorithms were used to test and quantify the range of impact on the controller and traffic. Results show that traffic count was more equitably distributed between the four test sectors and duration of counts over MAP were progressively lower as the magnitude of boundary change increased. However, taskload and workload were also shown to increase with the increase in aggressiveness and acceptability of the boundary changes decreased. Overall, simulated operations of the DAC concept did not appear to compromise safety. Feedback from the participants highlighted the importance of limiting some aspects of boundary changes such as amount of volume gained or lost and the extent of change relative to the initial airspace design.
26 x 6.6 radial-belted aircraft tire performance
NASA Technical Reports Server (NTRS)
Davis, Pamela A.; Martinson, Veloria J.; Yager, Thomas J.; Stubbs, Sandy M.
1991-01-01
Preliminary results from testing of 26 x 6.6 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. The 26 x 6.6 tire size evaluation includes cornering performance tests throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Static test results to define 26 x 6.6 tire vertical stiffness properties are also presented and discussed.
NASA Astrophysics Data System (ADS)
Shahriari, Babak; Vafaei, Reza; Mohammad Sharifi, Ehsan; Farmanesh, Khosro
2018-03-01
The hot deformation behavior of a high strength low carbon steel was investigated using hot compression test at the temperature range of 850-1100 °C and under strain rates varying from 0.001 to 1 s-1. It was found that the flow curves of the steel were typical of dynamic recrystallization at the temperature of 950 °C and above; at tested strain rates lower than 1 s-1. A very good correlation between the flow stress and Zener-Hollomon parameter was obtained using a hyperbolic sine function. The activation energy of deformation was found to be around 390 kJ mol-1. The kinetics of dynamic recrystallization of the steel was studied by comparing it with a hypothetical dynamic recovery curve, and the dynamically fraction recrystallized was modeled by the Kolmogorov-Johnson-Mehl-Avrami relation. The Avrami exponent was approximately constant around 1.8, which suggested that the type of nucleation was one of site saturation on grain boundaries and edges.
The investigation of vertebral injury sustained during aircrew ejection
NASA Technical Reports Server (NTRS)
Benedict, J. V.
1972-01-01
A series of tests were performed on excised human vertebral segments to determine the static and dynamic response of the thoraco-lumbar spine when loaded in flexion. A total of fifteen tests were performed on eleven specimens. Specimens were obtained from male donors ranging in age from 34 to 60 years. Demographic data pertinent to each specimen and the elapsed time between death of the donor and testing of each corresponding specimen are presented. Only spinal segments comprised of lower thoracic and upper lumbar vertebrae were tested because in aircraft ejection injuries clinical complications in this anatomical region predominate. A complex continuum mathematical model describing the dynamic response of the human spine was formulated, solved, and verified experimentally. Detailed results are presented in figures, tables, and equations.
Hybrid Wing Body Model Identification Using Forced-Oscillation Water Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Vicroy, Dan D.; Kramer, Brian; Kerho, Michael
2014-01-01
Static and dynamic testing of the NASA 0.7 percent scale Hybrid Wing Body (HWB) configuration was conducted in the Rolling Hills Research Corporation water tunnel to investigate aerodynamic behavior over a large range of angle-of-attack and to develop models that can predict aircraft response in nonlinear unsteady flight regimes. This paper reports primarily on the longitudinal axis results. Flow visualization tests were also performed. These tests provide additional static data and new dynamic data that complement tests conducted at NASA Langley 14- by 22-Foot Subsonic Tunnel. HWB was developed to support the NASA Environmentally Responsible Aviation Project goals of lower noise, emissions, and fuel burn. This study also supports the NASA Aviation Safety Program efforts to model and control advanced transport configurations in loss-of-control conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teke, T
Purpose: To present and validate a set of quality control tests for trajectory treatment delivery using synchronized dynamic couch (translation and rotation), MLC and collimator motion. Methods: The quality control tests are based on the Picket fence test, which consist of 5 narrow band 2mm width spaced at 2.5cm intervals, and adds progressively synchronized dynamic motions. The tests were exposed on GafChromic EBT3 films. The first test is a regular (no motion and MLC static while beam is on) Picket Fence test used as baseline. The second test includes simultaneous collimator and couch rotation, each stripe corresponding to a differentmore » rotation speed. Errors in these tests were introduced (0.5 degree and 1 degree error in rotation synchronization) to assess the error sensitivity of this test. The second test is similar to the regular Picket Fence but now including dynamic MLC motion and couch translation (including acceleration during delivery) while the beam is on. Finally in the third test, which is a combination of the first and second test, the Picket Fence pattern is delivered using synchronized collimator and couch rotation and synchronized dynamic MLC and couch translation including acceleration. Films were analyzed with FilmQA Pro. Results: The distance between the peaks in the dose profile where measured (18.5cm away from the isocentre in the inplane direction where non synchronized rotation would have the largest effect) and compared to the regular Picket Fence tests. For well synchronized motions distances between peaks where between 24.9–25.4 mm identical to the regular Picket Fence test. This range increased to 24.4–26.4mm and 23.4–26.4mm for 0.5 degree and 1 degree error respectively. The amplitude also decreased up to 15% when errors are introduced. Conclusion: We demonstrated that the Roucoulette tests can be used as a quality control tests for trajectory treatment delivery using synchronized dynamic motion.« less
Hardware-in-the-loop projector system for light detection and ranging sensor testing
NASA Astrophysics Data System (ADS)
Kim, Hajin J.; Naumann, Charles B.; Cornell, Michael C.
2012-08-01
Efforts in developing a synthetic environment for testing light detection and ranging (LADAR) sensors in a hardware-in-the-loop simulation are continuing at the Aviation and Missile Research, Engineering, and Development Center of the U.S. Army Research, Engineering and Development Command (RDECOM). Current activities have concentrated on evaluating the optical projection techniques for the LADAR synthetic environment. Schemes for generating the optical signals representing the individual pixels of the projection are of particular interest. Several approaches have been investigated and tested with emphasis on operating wavelength, intensity dynamic range and uniformity, and flexibility in pixel waveform generation. This paper will discuss some of the results from these current efforts at RDECOM's System Simulation and Development Directorate's Electro Optical Technology Development Laboratory.
A New Forced Oscillation Capability for the Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Piatak, David J.; Cleckner, Craig S.
2002-01-01
A new forced oscillation system has been installed and tested at NASA Langley Research Center's Transonic Dynamics Tunnel (TDT). The system is known as the Oscillating Turntable (OTT) and has been designed for the purpose of oscillating, large semispan models in pitch at frequencies up to 40 Hz to acquire high-quality unsteady pressure and loads data. Precisely controlled motions of a wind-tunnel model on the OTT can yield unsteady aerodynamic phenomena associated with flutter, limit cycle oscillations, shock dynamics, and non-linear aerodynamic effects on many vehicle configurations. This paper will discuss general design and components of the OTT and will present test data from performance testing and from research tests on two rigid semispan wind-tunnel models. The research tests were designed to challenge the OTT over a wide range of operating conditions while acquiring unsteady pressure data on a small rectangular supercritical wing and a large supersonic transport wing. These results will be presented to illustrate the performance capabilities, consistency of oscillations, and usefulness of the OTT as a research tool.
Vibration test of 1/5 scale H-II launch vehicle
NASA Astrophysics Data System (ADS)
Morino, Yoshiki; Komatsu, Keiji; Sano, Masaaki; Minegishi, Masakatsu; Morita, Toshiyuki; Kohsetsu, Y.
In order to predict dynamic loads on the newly designed Japanese H-II launch vehicle, the adequacy of prediction methods has been assessed by the dynamic scale model testing. The three-dimensional dynamic model was used in the analysis to express coupling effects among axial, lateral (pitch and yaw) and torsional vibrations. The liquid/tank interaction was considered by use of a boundary element method. The 1/5 scale model of the H-II launch vehicle was designed to simulate stiffness and mass properties of important structural parts, such as core/SRB junctions, first and second stage Lox tanks and engine mount structures. Modal excitation of the test vehicle was accomplished with 100-1000 N shakers which produced random or sinusoidal vibrational forces. The vibrational response of the test vehicle was measured at various locations with accelerometers and pressure sensor. In the lower frequency range, corresmpondence between analysis and experiment was generally good. The basic procedures in analysis seem to be adequate so far, but some improvements in mathematical modeling are suggested by comparison of test and analysis.
Effects of Instantaneous Multiband Dynamic Compression on Speech Intelligibility
NASA Astrophysics Data System (ADS)
Herzke, Tobias; Hohmann, Volker
2005-12-01
The recruitment phenomenon, that is, the reduced dynamic range between threshold and uncomfortable level, is attributed to the loss of instantaneous dynamic compression on the basilar membrane. Despite this, hearing aids commonly use slow-acting dynamic compression for its compensation, because this was found to be the most successful strategy in terms of speech quality and intelligibility rehabilitation. Former attempts to use fast-acting compression gave ambiguous results, raising the question as to whether auditory-based recruitment compensation by instantaneous compression is in principle applicable in hearing aids. This study thus investigates instantaneous multiband dynamic compression based on an auditory filterbank. Instantaneous envelope compression is performed in each frequency band of a gammatone filterbank, which provides a combination of time and frequency resolution comparable to the normal healthy cochlea. The gain characteristics used for dynamic compression are deduced from categorical loudness scaling. In speech intelligibility tests, the instantaneous dynamic compression scheme was compared against a linear amplification scheme, which used the same filterbank for frequency analysis, but employed constant gain factors that restored the sound level for medium perceived loudness in each frequency band. In subjective comparisons, five of nine subjects preferred the linear amplification scheme and would not accept the instantaneous dynamic compression in hearing aids. Four of nine subjects did not perceive any quality differences. A sentence intelligibility test in noise (Oldenburg sentence test) showed little to no negative effects of the instantaneous dynamic compression, compared to linear amplification. A word intelligibility test in quiet (one-syllable rhyme test) showed that the subjects benefit from the larger amplification at low levels provided by instantaneous dynamic compression. Further analysis showed that the increase in intelligibility resulting from a gain provided by instantaneous compression is as high as from a gain provided by linear amplification. No negative effects of the distortions introduced by the instantaneous compression scheme in terms of speech recognition are observed.
NASA Technical Reports Server (NTRS)
Barret, C.
1997-01-01
This publication presents the control requirements, the details of the designed Flight Control Augmentor's (FCA's), the static stability and dynamic stability wind tunnel test programs, the static stability and control analyses, the dynamic stability characteristics of the experimental Launch Vehicle (LV) with the designed FCA's, and a consideration of the elastic vehicle. Dramatic improvements in flight stability have been realized with all the FCA designs; these ranged from 41 percent to 72 percent achieved by the blunt TE design. The control analysis showed that control increased 110 percent with only 3 degrees of FCA deflection. The dynamic stability results showed improvements with all FCA designs tested at all Mach numbers tested. The blunt TE FCA's had the best overall dynamic stability results. Since the lowest elastic vehicle frequency must be well separated from that of the control system, the significant frequencies and modes of vibration have been identified, and the response spectra compared for the experimental LV in both the conventional and the aft cg configuration. Although the dynamic response was 150 percent greater in the aft cg configuration, the lowest bending mode frequency decreased by only 2.8 percent.
WE-AB-BRB-08: Progress Towards a 2D OSL Dosimetry System Using Al2O3:C Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, M F; Yukihara, E; Schnell, E
Purpose: To develop a 2D dosimetry system based on the optically stimulated luminescence (OSL) of Al{sub 2}O{sub 3}:C films for medical applications. Methods: A 2D laser scanning OSL reader was built for readout of newly developed Al2O3:C films (Landauer Inc.). An image reconstruction algorithm was developed to correct for inherent effects introduced by reader design and detector properties. The system was tested using irradiations with photon and carbon ion beams. A calibration was obtained using a 6 MV photon beam from clinical accelerator and the dose measurement precision was tested using a range of doses and different dose distributions (flatmore » field and wedge field). The dynamic range and performance of the system in the presence of large dose gradients was also tested using 430 MeV/u {sup 12}C single and multiple pencil beams. All irradiations were performed with Gafchromic EBT3 film for comparison. Results: Preliminary results demonstrate a near-linear OSL dose response to photon fields and the ability to measure dose in dose distributions such as flat field and wedge field. Tests using {sup 12}C pencil beam demonstrate ability to measure doses over four orders of magnitude. The dose profiles measured by the OSL film generally agreed well with that measured by the EBT3 film. The OSL image signal-to-noise ratio obtained in the current conditions require further improvement. On the other hand, EBT3 films had large uncertainties in the low dose region due to film-to-film or intra-film variation in the background. Conclusion: A 2D OSL dosimetry system was developed and initial tests have demonstrated a wide dynamic range as well as good agreement between the delivered and measured doses. The low background, wide dynamic range and wide range of linearity in dose response observed for the Al{sub 2}O{sub 3}:C OSL film can be beneficial for dosimetry in radiation therapy applications, especially for small field dosimetry. This work has been funded by Landauer Inc. Dr. Eduardo G. Yukihara also would like to thank the Alexander von Humboldt Foundation for his support at the DKFZ.« less
An analytic modeling and system identification study of rotor/fuselage dynamics at hover
NASA Technical Reports Server (NTRS)
Hong, Steven W.; Curtiss, H. C., Jr.
1993-01-01
A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.
Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading
NASA Astrophysics Data System (ADS)
Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre Louis
2015-09-01
The quasi-static mechanical behavior of autoclaved aerated concrete is well-known and can be expressed as a function of its density. There are however not much studies dealing with its dynamic behavior and its damping ability when subjected to a mechanical shock or a blast. This study presents experimental results obtained at the Shock Physics Laboratory of THIOT INGENIERIE company. The test specimens are made of YTONG(TM ) cellular concrete with porosity in the range of 75 to 80%. Experimental tests cover a large strain rate amplitude (higher than 104 s-1) for specimens up to 250 mm. They were carried out with a small compression press and with two facilities dedicated to dynamic material characterization: JUPITER dynamic large press (2 MN, 3 ms rising time) and TITAN multi-caliber single-stage gas gun. Results in un-confined conditions show an increase of the compressive strength when strain rate increases (45% increase at 5.102 s-1) but dynamic tests induce damage early in the experiment. This competition between dynamic strength raise and specimen fracture makes the complete compaction curve determination not to be done in unconfined dynamic condition. A 25% increase of the compressive strength has been observed between unconfined and confined condition in Q.S. regime.
An analytic modeling and system identification study of rotor/fuselage dynamics at hover
NASA Technical Reports Server (NTRS)
Hong, Steven W.; Curtiss, H. C., Jr.
1993-01-01
A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives, resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.
Péron, Guillaume; Altwegg, Res; Jamie, Gabriel A; Spottiswoode, Claire N
2016-09-01
As populations shift their ranges in response to global change, local species assemblages can change, setting the stage for new ecological interactions, community equilibria and evolutionary responses. Here, we focus on the range dynamics of four avian brood parasite species and their hosts in southern Africa, in a context of bush encroachment (increase in woody vegetation density in places previously occupied by savanna-grassland mosaics) favouring some species at the expense of others. We first tested whether hosts and parasites constrained each other's ability to expand or maintain their ranges. Secondly, we investigated whether range shifts represented an opportunity for new host-parasite and parasite-parasite interactions. We used multispecies dynamic occupancy models with interactions, fitted to citizen science data, to estimate the contribution of interspecific interactions to range shifts and to quantify the change in species co-occurrence probability over a 25-year period. Parasites were able to track their hosts' range shifts. We detected no deleterious effect of the parasites' presence on either the local population viability of host species or the hosts' ability to colonize newly suitable areas. In the recently diversified indigobird radiation (Vidua spp.), following bush encroachment, the new assemblages presented more potential opportunities for speciation via host switch, but also more potential for hybridization between extant lineages, also via host switch. Multispecies dynamic occupancy models with interactions brought new insights into the feedbacks between range shifts, biotic interactions and local demography: brood parasitism had little detected impact on extinction or colonization processes, but inversely the latter processes affected biotic interactions via the modification of co-occurrence patterns. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Hwang, Insik; Kim, Jaehyun; Lee, Minkyung; Lee, Min-Wook; Kim, Hee-Joong; Kwon, Hyuck-In; Hwang, Do Kyung; Kim, Myunggil; Yoon, Haeyoung; Kim, Yong-Hoon; Park, Sung Kyu
2017-11-09
Purified semiconducting single-walled carbon nanotubes (sc-SWCNTs) have been researched for optoelectronic applications due to their high absorption coefficient from the visible to even the near-infrared (NIR) region. Nevertheless, the insufficient electrical characteristics and incompatibility with conventional CMOS processing have limited their wide utilization in this emerging field. Here, we demonstrate highly detective and wide spectral/dynamic range phototransistors incorporating floated heterojunction active layers which are composed of low-temperature sol-gel processed n-type amorphous indium gallium zinc oxide (a-IGZO) stacked with a purified p-type sc-SWCNT layer. To achieve a high and broad spectral/dynamic range photo-response of the heterogeneous transistors, photochemically functionalized sc-SWCNT layers were carefully implemented onto the a-IGZO channel area with a floating p-n heterojunction active layer, resulting in the suppression of parasitic charge leakage and good bias driven opto-electrical properties. The highest photosensitivity (R) of 9.6 × 10 2 A W -1 and a photodetectivity (D*) of 4 × 10 14 Jones along with a dynamic range of 100-180 dB were achieved for our phototransistor in the spectral range of 400-780 nm including continuous and minimal frequency independent behaviors. More importantly, to demonstrate the diverse application of the ultra-flexible hybrid photosensor platform as skin compatible electronics, the sc-SWCNT/a-IGZO phototransistors were fabricated on an ultra-thin (∼1 μm) polyimide film along with a severe static and dynamic electro-mechanical test. The skin-like phototransistors showed excellent mechanical stability such as sustainable good electrical performance and high photosensitivity in a wide dynamic range without any visible cracks or damage and little noise interference after being rolled-up on the 150 μm-thick optical fiber as well as more than 1000 times cycling.
Rheological behaviors of doughs reconstituted from wheat gluten and starch.
Yang, Yanyan; Song, Yihu; Zheng, Qiang
2011-08-01
Hydrated starch-gluten reconstituted doughs were prepared and dynamic rheological tests of the reconstituted doughs were performed using dynamic strain and dynamic frequency sweep modes. Influence of starch/gluten ratio on rheological behaviors of the reconstituted doughs was investigated. The results showed that the reconstituted doughs exhibited nonlinear rheological behavior with increasing strain. The mechanical spectra revealed predominantly elastic characteristics in frequency range from 10(-1) rad s(-1) to 10(2) rad s(-1). Cole-Cole functions were applied to fit the mechanical spectra to reveal the influence of starch/gluten ratio on Plateau modulus and longest relaxation time of the dough network. The time-temperature superposition principle was applicable to a narrow temperature range of 25°C ~40°C while it failed at 50°C due to swelling and gelatinization of the starch.
An analog gamma correction scheme for high dynamic range CMOS logarithmic image sensors.
Cao, Yuan; Pan, Xiaofang; Zhao, Xiaojin; Wu, Huisi
2014-12-15
In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS) process.
An Analog Gamma Correction Scheme for High Dynamic Range CMOS Logarithmic Image Sensors
Cao, Yuan; Pan, Xiaofang; Zhao, Xiaojin; Wu, Huisi
2014-01-01
In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS) process. PMID:25517692
ERIC Educational Resources Information Center
Plyler, Patrick N.; Lowery, Kristy J.; Hamby, Hilary M.; Trine, Timothy D.
2007-01-01
Purpose: The effects of multichannel expansion on the objective and subjective evaluation of 20 listeners fitted binaurally with 4-channel, digital in-the-ear hearing instruments were investigated. Method: Objective evaluations were conducted in quiet using the Connected Speech Test (CST) and in noise using the Hearing in Noise Test (HINT) at 40,…
Effect of strain rate and temperature on mechanical properties of selected building Polish steels
NASA Astrophysics Data System (ADS)
Moćko, Wojciech; Kruszka, Leopold
2015-09-01
Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.
Research on simulation system with the wide range and high-precision laser energy characteristics
NASA Astrophysics Data System (ADS)
Dong, Ke-yan; Lou, Yan; He, Jing-yi; Tong, Shou-feng; Jiang, Hui-lin
2012-10-01
The Hardware-in-the-loop(HWIL) simulation test is one of the important parts for the development and performance testing of semi-active laser-guided weapons. In order to obtain accurate results, the confidence level of the target environment should be provided for a high-seeker during the HWIL simulation test of semi-active laser-guided weapons, and one of the important simulation parameters is the laser energy characteristic. In this paper, based on the semi-active laser-guided weapon guidance principles, an important parameter of simulation of confidence which affects energy characteristics in performance test of HWIL simulation was analyzed. According to the principle of receiving the same energy by using HWIL simulation and in practical application, HWIL energy characteristics simulation systems with the crystal absorption structure was designed. And on this basis, the problems of optimal design of the optical system were also analyzed. The measured results show that the dynamic attenuation range of the system energy is greater than 50dB, the dynamic attenuation stability is less than 5%, and the maximum energy changing rate driven by the servo motor is greater than 20dB/s.
Sena, Mark; Chen, James; Dellamaggioria, Ryan; Coughlin, Dezba G; Lotz, Jeffrey C; Feeley, Brian T
2013-04-01
Conventional transphyseal anterior cruciate ligament (ACL) reconstruction techniques in skeletally immature patients have been questioned because of potential physeal injuries. Consequently, multiple alternative reconstruction options have been described to restore stability while sparing the physes in the skeletally immature patient. All pediatric reconstruction techniques will restore knee stability to intact levels, and the knee stability index (KSI) will discriminate stability patterns between reconstruction techniques. Controlled laboratory study. A novel mechanical pivot-shift device (MPSD) that consistently applies dynamic loads to cadaveric knees was used to study the effect of different physeal-sparing ACL reconstruction techniques on knee stability. Six adult cadaveric fresh-frozen knees were used. All knees were tested with 3 physeal-sparing reconstruction techniques: all epiphyseal (AE), transtibial over the top (TT), and iliotibial band (ITB). The MPSD was used to consistently perform a simulated pivot-shift maneuver. Tibial anterior displacement (AD), internal rotation (IR), posterior translational velocity (PTV), and external rotational velocity (ERV) were recorded using an Optotrak navigation system. The KSI (score range, 0-100; 0 = intact knee) was quantified using a regression analysis of AD, IR, PTV, and ERV. Repeated-measures analysis of variance and logistic regression were used for comparison of kinematics and derivation of KSI coefficients, respectively. ACL deficiency resulted in an increase of 20% to 115% in all primary stability measures tested compared with the ACL-intact state. All reconstructions resulted in a decrease in ADmax and IRmax as well as PTVmax and ERVmax to within intact ranges, indicating that all reconstructions do improve stability compared with the ACL-deficient state. The ITB reconstruction overconstrained AD and IR by 38% and 52%, respectively. The mean (±SD) KSI for the ACL-deficient state was 61.7 ± 22.2 (range, 47-100), while the ITB reconstruction had a mean KSI of 0.82 ± 24.0 (range, -24 to 35), the TT reconstruction had a mean KSI of 13.3 ± 8.9 (range, 0.3-23), and the AE reconstruction had a mean KSI of -4.0 ± 15.2 (range, -24 to 14). The KSI was not significantly different between reconstructions, and all were significantly lower than the ACL-deficient state (P < .0001). Although all reconstruction techniques tested were able to partially stabilize an ACL-deficient knee, the AE reconstruction was most effective in restoring native knee kinematics under dynamic loading conditions that mimic the pivot-shift test. This study provides orthopaedic surgeons with objective dynamic rotational data on the ability of physeal-sparing ACL reconstructions to better determine the ideal technique for ACL construction in skeletally immature patients.
Kousi, Evanthia; Smith, Joely; Ledger, Araminta E; Scurr, Erica; Allen, Steven; Wilson, Robin M; O'Flynn, Elizabeth; Pope, Romney J E; Leach, Martin O; Schmidt, Maria A
2018-01-01
To propose a method to quantify T 1 and contrast agent uptake in breast dynamic contrast-enhanced (DCE) examinations undertaken with standard clinical fat-suppressed MRI sequences and to demonstrate the proposed approach by comparing the enhancement characteristics of lobular and ductal carcinomas. A standard fat-suppressed DCE of the breast was performed at 1.5 T (Siemens Aera), followed by the acquisition of a proton density (PD)-weighted sequence, also fat suppressed. Both sequences were characterized with test objects (T 1 ranging from 30 ms to 2,400 ms) and calibration curves were obtained to enable T 1 calculation. The reproducibility and accuracy of the calibration curves were also investigated. Healthy volunteers and patients were scanned with Ethics Committee approval. The effect of B 0 field inhomogeneity was assessed in test objects and healthy volunteers. The T 1 of breast tumors was calculated at different time points (pre-, peak-, and post-contrast agent administration) for 20 patients, pre-treatment (10 lobular and 10 ductal carcinomas) and the two cancer types were compared (Wilcoxon rank-sum test). The calibration curves proved to be highly reproducible (coefficient of variation under 10%). T 1 measurements were affected by B 0 field inhomogeneity, but frequency shifts below 50 Hz introduced only 3% change to fat-suppressed T 1 measurements of breast parenchyma in volunteers. The values of T 1 measured pre-, peak-, and post-contrast agent administration demonstrated that the dynamic range of the DCE sequence was correct, that is, image intensity is approximately directly proportional to 1/T 1 for that range. Significant differences were identified in the width of the distributions of the post-contrast T 1 values between lobular and ductal carcinomas (P < 0.05); lobular carcinomas demonstrated a wider range of post-contrast T 1 values, potentially related to their infiltrative growth pattern. This work has demonstrated the feasibility of fat-suppressed T 1 measurements as a tool for clinical studies. The proposed quantitative approach is practical, enabled the detection of differences between lobular and invasive ductal carcinomas, and further enables the optimization of DCE protocols by tailoring the dynamic range of the sequence to the values of T 1 measured. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Twelfth Annual Conference on Manual Control
NASA Technical Reports Server (NTRS)
Wempe, T. E.
1976-01-01
Main topics discussed cover multi-task decision making, attention allocation and workload measurement, displays and controls, nonvisual displays, tracking and other psychomotor tasks, automobile driving, handling qualities and pilot ratings, remote manipulation, system identification, control models, and motion and visual cues. Sixty-five papers are included with presentations on results of analytical studies to develop and evaluate human operator models for a range of control task, vehicle dynamics and display situations; results of tests of physiological control systems and applications to medical problems; and on results of simulator and flight tests to determine display, control and dynamics effects on operator performance and workload for aircraft, automobile, and remote control systems.
Comparison of electron transport calculations in warm dense matter using the Ziman formula
Burrill, D. J.; Feinblum, D. V.; Charest, M. R. J.; ...
2016-02-10
The Ziman formulation of electrical conductivity is tested in warm and hot dense matter using the pseudo-atom molecular dynamics method. Several implementation options that have been widely used in the literature are systematically tested through a comparison to the accurate, but expensive Kohn–Sham density functional theory molecular dynamics (KS-DFT-MD) calculations. As a result, the comparison is made for several elements and mixtures and for a wide range of temperatures and densities, and reveals a preferred method that generally gives very good agreement with the KS-DFT-MD results, but at a fraction of the computational cost.
Dynamic stall characterization using modal analysis of phase-averaged pressure distributions
NASA Astrophysics Data System (ADS)
Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan
2017-11-01
Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.
A Flight Dynamics Perspective of the Orion Pad Abort One Flight Test
NASA Technical Reports Server (NTRS)
Idicula, Jinu; Williams-Hayes, Peggy S.; Stillwater, Ryan; Yates, Max
2009-01-01
The Orion Crew Exploration Vehicle is America s next generation of human rated spacecraft. The Orion Launch Abort System will take the astronauts away from the exploration vehicle in the event of an aborted launch. The pad abort mode of the Launch Abort System will be flight-tested in 2009 from the White Sands Missile Range in New Mexico. This paper examines some of the efforts currently underway at the NASA Dryden Flight Research Center by the Controls & Dynamics group in preparation for the flight test. The concept of operation for the pad abort flight is presented along with an overview of the guidance, control and navigation systems. Preparations for the flight test, such as hardware testing and development of the real-time displays, are examined. The results from the validation and verification efforts for the aerodynamic and atmospheric models are shown along with Monte Carlo analysis results.
Armored RNA as Virus Surrogate in a Real-Time Reverse Transcriptase PCR Assay Proficiency Panel
Hietala, S. K.; Crossley, B. M.
2006-01-01
In recent years testing responsibilities for high-consequence pathogens have been expanded from national reference laboratories into networks of local and regional laboratories in order to support enhanced disease surveillance and to test for surge capacity. This movement of testing of select agents and high-consequence pathogens beyond reference laboratories introduces a critical need for standardized, noninfectious surrogates of disease agents for use as training and proficiency test samples. In this study, reverse transcription-PCR assay RNA targets were developed and packaged as armored RNA for use as a noninfectious, quantifiable synthetic substitute for four high-consequence animal pathogens: classical swine fever virus; foot-and-mouth disease virus; vesicular stomatitis virus, New Jersey serogroup; and vesicular stomatitis virus, Indiana serogroup. Armored RNA spiked into oral swab fluid specimens mimicked virus-positive clinical material through all stages of the reverse transcription-PCR testing process, including RNA recovery by four different commercial extraction procedures, reverse transcription, PCR amplification, and real-time detection at target concentrations consistent with the dynamic ranges of the existing real-time PCR assays. The armored RNA concentrations spiked into the oral swab fluid specimens were stable under storage conditions selected to approximate the extremes of time and temperature expected for shipping and handling of proficiency panel samples, including 24 h at 37°C and 2 weeks at temperatures ranging from ambient room temperature to −70°C. The analytic test performance, including the reproducibility over the dynamic range of the assays, indicates that armored RNA can provide a noninfectious, quantifiable, and stable virus surrogate for specific assay training and proficiency test purposes. PMID:16390950
Evaluation of Two Guralp Preamplifiers for GS21 Seismometer Application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.; Slad, George William
2015-08-01
Sandia National Laboratories has tested and evaluated two Guralp preamplifiers for use with a GS21 seismometer application. The two preamplifiers have a gain factor of 61.39. The purpose of the preamplifier evaluation was to determine a measured gain factor, transfer function, total harmonic distortion, self-noise, application passband, dynamic range, seismometer calibration pass-through, and to comment on any issues encountered during the evaluation. The test results included in this report were in response to static, tonal, and dynamic input signals. The Guralp GS21 preamplifiers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treatymore » Organization (CTBTO). Test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters« less
Hybrid-mode read-in integrated circuit for infrared scene projectors
NASA Astrophysics Data System (ADS)
Cho, Min Ji; Shin, Uisub; Lee, Hee Chul
2017-05-01
The infrared scene projector (IRSP) is a tool for evaluating infrared sensors by producing infrared images. Because sensor testing with IRSPs is safer than field testing, the usefulness of IRSPs is widely recognized at present. The important performance characteristics of IRSPs are the thermal resolution and the thermal dynamic range. However, due to an existing trade-off between these requirements, it is often difficult to find a workable balance between them. The conventional read-in integrated circuit (RIIC) can be classified into two types: voltage-mode and current-mode types. An IR emitter driven by a voltage-mode RIIC offers a fine thermal resolution. On the other hand, an emitter driven by the current-mode RIIC has the advantage of a wide thermal dynamic range. In order to provide various scenes, i.e., from highresolution scenes to high-temperature scenes, both of the aforementioned advantages are required. In this paper, a hybridmode RIIC which is selectively operated in two modes is proposed. The mode-selective characteristic of the proposed RIIC allows users to generate high-fidelity scenes regardless of the scene content. A prototype of the hybrid-mode RIIC was fabricated using a 0.18-μm 1-poly 6-metal CMOS process. The thermal range and the thermal resolution of the IR emitter driven by the proposed circuit were calculated based on measured data. The estimated thermal dynamic range of the current mode was from 261K to 790K, and the estimated thermal resolution of the voltage mode at 300K was 23 mK with a 12-bit gray-scale resolution.
NASA Astrophysics Data System (ADS)
Ding, Zong-ye; Hu, Qiao-dan; Zeng, Long; Li, Jian-guo
2016-11-01
Isothermal hot compression tests of as-cast high-Cr ultra-super-critical (USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s-1. The softening mechanism was dynamic recovery (DRV) at 950°C and the strain rate of 1 s-1, whereas it was dynamic recrystallization (DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ•mol-1. The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate ( θ)-flow stress ( σ) and -∂ θ/∂ σ-σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s-1, with a power dissipation efficiency η greater than 31%.
2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall
NASA Technical Reports Server (NTRS)
Piziali, R. A.
1994-01-01
A comprehensive experimental investigation of the pressure distribution over a semispan wing undergoing pitching motions representative of a helicopter rotor blade was conducted. Testing the wing in the nonrotating condition isolates the three-dimensional (3-D) blade aerodynamic and dynamic stall characteristics from the complications of the rotor blade environment. The test has generated a very complete, detailed, and accurate body of data. These data include static and dynamic pressure distributions, surface flow visualizations, two-dimensional (2-D) airfoil data from the same model and installation, and important supporting blockage and wall pressure distributions. This body of data is sufficiently comprehensive and accurate that it can be used for the validation of rotor blade aerodynamic models over a broad range of the important parameters including 3-D dynamic stall. This data report presents all the cycle-averaged lift, drag, and pitching moment coefficient data versus angle of attack obtained from the instantaneous pressure data for the 3-D wing and the 2-D airfoil. Also presented are examples of the following: cycle-to-cycle variations occurring for incipient or lightly stalled conditions; 3-D surface flow visualizations; supporting blockage and wall pressure distributions; and underlying detailed pressure results.
MIUS integration and subsystems test program
NASA Technical Reports Server (NTRS)
Beckham, W. S., Jr.; Shows, G. C.; Redding, T. E.; Wadle, R. C.; Keough, M. B.; Poradek, J. C.
1976-01-01
The MIUS Integration and Subsystems Test (MIST) facility at the Lyndon B. Johnson Space Center was completed and ready in May 1974 for conducting specific tests in direct support of the Modular Integrated Utility System (MIUS). A series of subsystems and integrated tests was conducted since that time, culminating in a series of 24-hour dynamic tests to further demonstrate the capabilities of the MIUS Program concepts to meet typical utility load profiles for a residential area. Results of the MIST Program are presented which achieved demonstrated plant thermal efficiencies ranging from 57 to 65 percent.
A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 3: Program manual
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
The computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate rotor performance, loads, and noise; the helicopter vibration and gust response; the flight dynamics and handling qualities; and the system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft and to be a basis for further development of rotary wing theories.
Flight Test Identification and Simulation of a UH-60A Helicopter and Slung Load
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; Sahai, Ranjana; Tucker, George E.; McCoy, Allen H.; Tyson, Peter H.; Tischler, Mark B.; Rosen, Aviv
2001-01-01
Helicopter slung-load operations are common in both military and civil contexts. Helicopters and loads are often qualified for these operations by means of flight tests, which can be expensive and time consuming. There is significant potential to reduce such costs both through revisions in flight-test methods and by using validated simulation models. To these ends, flight tests were conducted at Moffett Field to demonstrate the identification of key dynamic parameters during flight tests (aircraft stability margins and handling-qualities parameters, and load pendulum stability), and to accumulate a data base for simulation development and validation. The test aircraft was a UH-60A Black Hawk, and the primary test load was an instrumented 8- by 6- by 6-ft cargo container. Tests were focused on the lateral and longitudinal axes, which are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities; tests were conducted at airspeeds from hover to 80 knots. Using telemetered data, the dynamic parameters were evaluated in near real time after each test airspeed and before clearing the aircraft to the next test point. These computations were completed in under 1 min. A simulation model was implemented by integrating an advanced model of the UH-60A aerodynamics, dynamic equations for the two-body slung-load system, and load static aerodynamics obtained from wind-tunnel measurements. Comparisons with flight data for the helicopter alone and with a slung load showed good overall agreement for all parameters and test points; however, unmodeled secondary dynamic losses around 2 Hz were found in the helicopter model and they resulted in conservative stability margin estimates.
ICESAT GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.; Borsa, Adrian A.; Fricker, Helen Amanda; Yi, Donghui; Dimarzio, John P.; Paolo, Fernando S.; Brunt, Kelly M.; Harding, David J.; Neumann, Gregory A.
2017-01-01
NASAs Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of earths ice sheet elevations, sea-ice thickness, and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to the earth's surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than anticipated, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as approximately 50 cm for ice- and snow-covered surfaces. We developed a correction for this saturation range bias based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates with those derived from Global Positioning System surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet.
Milgromian dynamics and dwarf galaxies in galactic voids
NASA Astrophysics Data System (ADS)
Khadem, Mahdi; Haghi, Hosein
2018-05-01
We use kinematic data of 103 dwarf galaxies, obtained from the Sloan Digital Sky Survey catalog, to test the Milgromian dynamics (MOND) inside a galactic void. From this data, we compute the line-of-sight velocity dispersions of the dwarf galaxies in the frameworks of MOND and Newtonian dynamics without invoking any dark matter. The prediction for the line-of-sight velocity dispersions from MOND of 53 selected dwarf galaxies is compared with their measured values. For appropriate mass-to-light ratios in the range 1 to 5 for each individual dwarf galaxy, our results for the line-of-sight velocity dispersions predicted by MOND are more compatible with observations than those predicted by Newtonian dynamics.
Advanced Power Sources for Space Missions
1989-01-01
Range indicate that extremely high power levels hav- ing fast time-ramping capabilities must be provided during the tests. Only highly efficient prime...system efficiency results from advantages in thermal storage versus battery storage and from the increased conversion efficiency of a solar-dynamic... thermal manage- ment, power flow, and voltage levels, and may be in the same power range already experienced in the very- high -power radar and fusion
A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.
Smith, E R; Müller, E A; Craster, R V; Matar, O K
2016-12-06
Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.
A survey of design methods for failure detection in dynamic systems
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1975-01-01
A number of methods for detecting abrupt changes (such as failures) in stochastic dynamical systems are surveyed. The class of linear systems is concentrated on but the basic concepts, if not the detailed analyses, carry over to other classes of systems. The methods surveyed range from the design of specific failure-sensitive filters, to the use of statistical tests on filter innovations, to the development of jump process formulations. Tradeoffs in complexity versus performance are discussed.
NASA Technical Reports Server (NTRS)
Jermey, C.; Schiff, L. B.
1985-01-01
A series of wind-tunnel tests have been conducted on the Standard Dynamics Model (a simplified generic fighter-aircraft shape) undergoing coning motion at Mach 0.6. Six-component force and moment data are presented for a range of angles of attack, sideslip and coning rates. At the relatively low nondimensional coning rates employed, the lateral aerodynamic charactersitics generally show a linear variation with coning rate.
Estimation of dynamic stability parameters from drop model flight tests
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Iliff, K. W.
1981-01-01
The overall remotely piloted drop model operation, descriptions, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods are discussed. Static and dynamic stability derivatives were obtained for an angle attack range from -20 deg to 53 deg. It is indicated that the variations of the estimates with angle of attack are consistent for most of the static derivatives, and the effects of configuration modifications to the model were apparent in the static derivative estimates.
A Test Strategy for High Resolution Image Scanners.
1983-10-01
for multivariate analysis. Holt, Richart and Winston, Inc., New York. Graybill , F.A., 1961: An introduction to linear statistical models . SVolume I...i , j i -(7) 02 1 )2 y 4n .i ij 13 The linear estimation model for the polynomial coefficients can be set up as - =; =(8) with T = ( x’ . . X-nn "X...Resolution Image Scanner MTF Geometrical and radiometric performance Dynamic range, linearity , noise - Dynamic scanning errors Response uniformity Skewness of
Gas dynamic design of the pipe line compressor with 90% efficiency. Model test approval
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Rekstin, A.; Soldatova, K.
2015-08-01
Gas dynamic design of the pipe line compressor 32 MW was made for PAO SMPO (Sumy, Ukraine). The technical specification requires compressor efficiency of 90%. The customer offered favorable scheme - single-stage design with console impeller and axial inlet. The authors used the standard optimization methodology of 2D impellers. The original methodology of internal scroll profiling was used to minimize efficiency losses. Radically improved 5th version of the Universal modeling method computer programs was used for precise calculation of expected performances. The customer fulfilled model tests in a 1:2 scale. Tests confirmed the calculated parameters at the design point (maximum efficiency of 90%) and in the whole range of flow rates. As far as the authors know none of compressors have achieved such efficiency. The principles and methods of gas-dynamic design are presented below. The data of the 32 MW compressor presented by the customer in their report at the 16th International Compressor conference (September 2014, Saint- Petersburg) and later transferred to the authors.
Distributed Aerodynamic Sensing and Processing Toolbox
NASA Technical Reports Server (NTRS)
Brenner, Martin; Jutte, Christine; Mangalam, Arun
2011-01-01
A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logsdon, W.A.
1982-03-01
Dynamic fracture toughness tests were performed on materials which had been subjected to one of three long-time post weld type stress relief heat treatments: 48 hours at 1000/degree/F (538/degree/C), 24 hours at 1125/degree/F (607/degree/C), and 48 hours at 1125/degree/F (607/degree/C). Linear elastic K/sub Id/ results were obtained at low temperatures while J-integral techniques were utilized to evaluate dynamic fracture toughness over the transition and upper shelf temperature ranges. Tensile, Charpy impact, and drop weight nil-ductility transition tests as well as room temperature, air environment fatigue crack growth rate tests (SA508 Cl 2a only) were also performed. The fracture toughness ofmore » both materials exceeded the ASME specified minimum reference toughness K/sub IR/ curve. 17 refs.« less
A data base and analysis program for shuttle main engine dynamic pressure measurements
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base management system is described for measurements obtained from space shuttle main engine (SSME) hot firing tests. The data were provided in terms of engine power level and rms pressure time histories, and power spectra of the dynamic pressure measurements at selected times during each test. Test measurements and engine locations are defined along with a discussion of data acquisition and reduction procedures. A description of the data base management analysis system is provided and subroutines developed for obtaining selected measurement means, variances, ranges and other statistics of interest are discussed. A summary of pressure spectra obtained at SSME rated power level is provided for reference. Application of the singular value decomposition technique to spectrum interpolation is discussed and isoplots of interpolated spectra are presented to indicate measurement trends with engine power level. Program listings of the data base management and spectrum interpolation software are given. Appendices are included to document all data base measurements.
Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes
NASA Astrophysics Data System (ADS)
Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent
2015-12-01
Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.
Experimental setup for investigation of two-phase (water-air) flows in a tube
NASA Astrophysics Data System (ADS)
Kazunin, D. V.; Lashkov, V. A.; Mashek, I. Ch.; Khoronzhuk, R. S.
2018-05-01
A special setup was designed and built at St. Petersburg State University for providing experimental research in flow dynamics of the of air-water mixtures in a pipeline. The test section of the setup allows simulating a wide range of flow regimes of a gas-liquid mixture. The parameters of the experimental setup are given; the initial test results are discussed.
Wallace, Jason A; Shen, Jana K
2012-11-14
Recent development of constant pH molecular dynamics (CpHMD) methods has offered promise for adding pH-stat in molecular dynamics simulations. However, until now the working pH molecular dynamics (pHMD) implementations are dependent in part or whole on implicit-solvent models. Here we show that proper treatment of long-range electrostatics and maintaining charge neutrality of the system are critical for extending the continuous pHMD framework to the all-atom representation. The former is achieved here by adding forces to titration coordinates due to long-range electrostatics based on the generalized reaction field method, while the latter is made possible by a charge-leveling technique that couples proton titration with simultaneous ionization or neutralization of a co-ion in solution. We test the new method using the pH-replica-exchange CpHMD simulations of a series of aliphatic dicarboxylic acids with varying carbon chain length. The average absolute deviation from the experimental pK(a) values is merely 0.18 units. The results show that accounting for the forces due to extended electrostatics removes the large random noise in propagating titration coordinates, while maintaining charge neutrality of the system improves the accuracy in the calculated electrostatic interaction between ionizable sites. Thus, we believe that the way is paved for realizing pH-controlled all-atom molecular dynamics in the near future.
Wallace, Jason A.; Shen, Jana K.
2012-01-01
Recent development of constant pH molecular dynamics (CpHMD) methods has offered promise for adding pH-stat in molecular dynamics simulations. However, until now the working pH molecular dynamics (pHMD) implementations are dependent in part or whole on implicit-solvent models. Here we show that proper treatment of long-range electrostatics and maintaining charge neutrality of the system are critical for extending the continuous pHMD framework to the all-atom representation. The former is achieved here by adding forces to titration coordinates due to long-range electrostatics based on the generalized reaction field method, while the latter is made possible by a charge-leveling technique that couples proton titration with simultaneous ionization or neutralization of a co-ion in solution. We test the new method using the pH-replica-exchange CpHMD simulations of a series of aliphatic dicarboxylic acids with varying carbon chain length. The average absolute deviation from the experimental pKa values is merely 0.18 units. The results show that accounting for the forces due to extended electrostatics removes the large random noise in propagating titration coordinates, while maintaining charge neutrality of the system improves the accuracy in the calculated electrostatic interaction between ionizable sites. Thus, we believe that the way is paved for realizing pH-controlled all-atom molecular dynamics in the near future. PMID:23163362
Bhadauria, Esha A; Gurudut, Peeyoosha
2017-08-01
The aim of the present study was to compare three different forms of exercises namely lumbar stabilization, dynamic strengthening, and Pilates on chronic low back pain (LBP) in terms of pain, range of motion, core strength and function. In this study, 44 subjects suffering from non-specific LBP for more than 3 months were randomly allocated into the lumbar stabilization group, the dynamic strengthening group, and the Pilates group. Ten sessions of exercises for 3 weeks were prescribed along with interferential current and hot moist pack. Pain was assessed by visual analog scale, functional affection by modified Oswestry Disability Questionnaire, range of motion by assessing lumbar flexion and extension by modified Schober test and core strength was assessed by pressure biofeedback on day 1 and day 10 of the treatment. There was reduction of pain, improvement in range of motion, functional ability and core strength in all the 3 exercise groups. The improvement was significantly greater in the lumbar stabilization group for all the outcome measures, when compared the posttreatment after 10th session. Pairwise comparison showed that there was greater reduction of disability in the Pilates group than the dynamic strengthening group. It was concluded that the lumbar stabilization is more superior compared to the dynamic strengthening and Pilates in chronic nonspecific LBP. However, long-term benefits need to be assessed and compared with prospective follow-up studies.
The Viking parachute qualification test technique.
NASA Technical Reports Server (NTRS)
Raper, J. L.; Lundstrom, R. R.; Michel, F. C.
1973-01-01
The parachute system for NASA's Viking '75 Mars lander was flight qualified in four high-altitude flight tests at the White Sands Missile range (WSMR). A balloon system lifted a full-scale simulated Viking spacecraft to an altitude where a varying number of rocket motors were used to propel the high drag, lifting test vehicle to test conditions which would simulate the range of entry conditions expected at Mars. A ground-commanded cold gas pointing system located on the balloon system provided powered vehicle azimuth control to insure that the flight trajectory remained within the WSMR boundaries. A unique ground-based computer-radar system was employed to monitor inflight performance of the powered vehicle and insure that command ignition of the parachute mortar occurred at the required test conditions of Mach number and dynamic pressure. Performance data were obtained from cameras, telemetry, and radar.
Misic, Mark M; Rosengren, Karl S; Woods, Jeffrey A; Evans, Ellen M
2007-01-01
Muscle mass, strength and fitness play a role in lower-extremity physical function (LEPF) in older adults; however, the relationships remain inadequately characterized. This study aimed to examine the relationships between leg mineral free lean mass (MFLM(LEG)), leg muscle quality (leg strength normalized for MFLM(LEG)), adiposity, aerobic fitness and LEPF in community-dwelling healthy elderly subjects. Fifty-five older adults (69.3 +/- 5.5 years, 36 females, 19 males) were assessed for leg strength using an isokinetic dynamometer, body composition by dual energy X-ray absorptiometry and aerobic fitness via a treadmill maximal oxygen consumption test. LEPF was assessed using computerized dynamic posturography and stair ascent/descent, a timed up-and-go task and a 7-meter walk with and without an obstacle. Muscle strength, muscle quality and aerobic fitness were similarly correlated with static LEPF tests (r range 0.27-0.40, p < 0.05); however, the strength of the independent predictors was not robust with explained variance ranging from 9 to 16%. Muscle quality was the strongest correlate of all dynamic LEPF tests (r range 0.54-0.65, p < 0.001). Using stepwise linear regression analysis, muscle quality was the strongest independent predictor of dynamic physical function explaining 29-42% of the variance (p < 0.001), whereas aerobic fitness or body fat mass explained 5-6% of the variance (p < 0.05) depending on performance measure. Muscle quality is the most important predictor, and aerobic fitness and fat mass are secondary predictors of LEPF in community-dwelling older adults. These findings support the importance of exercise, especially strength training, for optimal body composition, and maintenance of strength and physical function in older adults.
Current efforts on developing an HWIL synthetic environment for LADAR sensor testing at AMRDEC
NASA Astrophysics Data System (ADS)
Kim, Hajin J.; Cornell, Michael C.; Naumann, Charles B.
2005-05-01
Efforts in developing a synthetic environment for testing LADAR sensors in a hardware-in-the-loop simulation are continuing at the Aviation and Missile Research, Engineering, and Development Center (AMRDEC) of the U.S. Army Research, Engineering and Development Command (RDECOM). Current activities have concentrated on developing the optical projection hardware portion of the synthetic environment. These activities range from system level design down to component level testing. Of particular interest have been schemes for generating the optical signals representing the individual pixels of the projection. Several approaches have been investigated and tested with emphasis on operating wavelength, intensity dynamic range and uniformity, and flexibility in pixel waveform generation. This paper will discuss some of the results from these current efforts at RDECOM's Advanced Simulation Center (ASC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
Analysis of Fluctuating Static Pressure Measurements in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Igoe, William B.
1996-01-01
Dynamic measurements of fluctuating static pressure levels were taken with flush-mounted, high-frequency response pressure transducers at 11 locations in the circuit of the National Transonic Facility (NTF) across the complete operating range of this wind tunnel. Measurements were taken at test-section Mach numbers from 0.1 to 1.2, at pressures from 1 to 8.6 atm, and at temperatures from ambient to -250 F, which resulted in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made by independent variation of the Mach number, the Reynolds number, or the fan drive power while the other two parameters were held constant, which for the first time resulted in a distinct separation of the effects of these three important parameters.
Minimum Requirements for Taxicab Security Cameras*
Zeng, Shengke; Amandus, Harlan E.; Amendola, Alfred A.; Newbraugh, Bradley H.; Cantis, Douglas M.; Weaver, Darlene
2015-01-01
Problem The homicide rate of taxicab-industry is 20 times greater than that of all workers. A NIOSH study showed that cities with taxicab-security cameras experienced significant reduction in taxicab driver homicides. Methods Minimum technical requirements and a standard test protocol for taxicab-security cameras for effective taxicab-facial identification were determined. The study took more than 10,000 photographs of human-face charts in a simulated-taxicab with various photographic resolutions, dynamic ranges, lens-distortions, and motion-blurs in various light and cab-seat conditions. Thirteen volunteer photograph-evaluators evaluated these face photographs and voted for the minimum technical requirements for taxicab-security cameras. Results Five worst-case scenario photographic image quality thresholds were suggested: the resolution of XGA-format, highlight-dynamic-range of 1 EV, twilight-dynamic-range of 3.3 EV, lens-distortion of 30%, and shutter-speed of 1/30 second. Practical Applications These minimum requirements will help taxicab regulators and fleets to identify effective taxicab-security cameras, and help taxicab-security camera manufacturers to improve the camera facial identification capability. PMID:26823992
NASA Astrophysics Data System (ADS)
Liu, Yang; Geng, Cong; Zhu, Yunke; Peng, Jinfeng; Xu, Junrui
2017-04-01
Using a controlled thermal simulator system, hybrid carbon nanotube-aluminum reinforced ZA27 composites were subjected to hot compression testing in the temperature range of 473-523 K with strain rates of 0.01-10 s-1. Based on experimental results, a developed-flow stress model was established using a constitutive equation coupled with strain to describe strain softening arising from dynamic recrystallization. The intrinsic workability was further investigated by constructing three-dimensional (3D) processing maps aided by optical observations of microstructures. The 3D processing maps were constructed based on a dynamic model of materials to delineate variations in the efficiency of power dissipation and flow instability domains. The instability domains exhibited adiabatic shear band and flow localization, which need to be prevented during hot processing. The recommended domain is predicated to be within the temperature range 550-590 K and strain rate range 0.01-0.35 s-1. In this state, the main softening mechanism is dynamic recrystallization. The results from processing maps agree well with the microstructure observations.
NASA Technical Reports Server (NTRS)
Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.
1961-01-01
As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human pilots in coping with the wide range of vehicle dynamics and the control problems covered in this study. It was shown that pilot-response characteristics, deduced by the analog-pilot method, could be related to pilot opinion. Possible application of these results for predicting flight-control problems was illustrated by means of an example control-problem analysis. The results of a brief evaluation of a pencil-type side-arm controller in the centrifuge showed a considerable improvement in the pilots' ability to cope with high-frequency, low-damping dynamics, compared to results obtained with the center stick. This improvement with the pencil controller was attributed primarily to a marked reduction in the adverse effects of large and exaggerated pitching and longitudinal accelerations on pilot control precision.
Ares I-X Separation and Reentry Trajectory Analyses
NASA Technical Reports Server (NTRS)
Tartabini, Paul V.; Starr, Brett R.
2011-01-01
The Ares I-X Flight Test Vehicle was launched on October 28, 2009 and was the first and only test flight of NASA s two-stage Ares I launch vehicle design. The launch was successful and the flight test met all of its primary and secondary objectives. This paper discusses the stage separation and reentry trajectory analysis that was performed in support of the Ares I-X test flight. Pre-flight analyses were conducted to assess the risk of stage recontact during separation, to evaluate the first stage flight dynamics during reentry, and to define the range safety impact ellipses of both stages. The results of these pre-flight analyses were compared with available flight data. On-board video taken during flight showed that the flight test vehicle successfully separated without any recontact. Reconstructed trajectory data also showed that first stage flight dynamics were well characterized by pre-flight Monte Carlo results. In addition, comparisons with flight data indicated that the complex interference aerodynamic models employed in the reentry simulation were effective in capturing the flight dynamics during separation. Finally, the splash-down locations of both stages were well within predicted impact ellipses.
A Disposable Tear Glucose Biosensor—Part 2: System Integration and Model Validation
La Belle, Jeffrey T.; Bishop, Daniel K.; Vossler, Stephen R.; Patel, Dharmendra R.; Cook, Curtiss B.
2010-01-01
Background We presented a concept for a tear glucose sensor system in an article by Bishop and colleagues in this issue of Journal of Diabetes Science and Technology. A unique solution to collect tear fluid and measure glucose was developed. Individual components were selected, tested, and optimized, and system error modeling was performed. Further data on prototype testing are now provided. Methods An integrated fluidics portion of the prototype was designed, cast, and tested. A sensor was created using screen-printed sensors integrated with a silicone rubber fluidics system and absorbent polyurethane foam. A simulated eye surface was prepared using fluid-saturated poly(2-hydroxyethyl methacrylate) sheets, and the disposable prototype was tested for both reproducibility at 0, 200, and 400 μM glucose (n = 7) and dynamic range of glucose detection from 0 to 1000 μM glucose. Results From the replicated runs, an established relative standard deviation of 15.8% was calculated at 200 μM and a lower limit of detection was calculated at 43.4 μM. A linear dynamic range was demonstrated from 0 to 1000 μM with an R2 of 99.56%. The previously developed model predicted a 14.9% variation. This compares to the observed variance of 15.8% measured at 200 μM glucose. Conclusion With the newly designed fluidics component, an integrated tear glucose prototype was assembled and tested. Testing of this integrated prototype demonstrated a satisfactory lower limit of detection for measuring glucose concentration in tears and was reproducible across a physiological sampling range. The next step in the device design process will be initial animal studies to evaluate the current prototype for factors such as eye irritation, ease of use, and correlation with blood glucose. PMID:20307390
A disposable tear glucose biosensor-part 2: system integration and model validation.
La Belle, Jeffrey T; Bishop, Daniel K; Vossler, Stephen R; Patel, Dharmendra R; Cook, Curtiss B
2010-03-01
We presented a concept for a tear glucose sensor system in an article by Bishop and colleagues in this issue of Journal of Diabetes Science and Technology. A unique solution to collect tear fluid and measure glucose was developed. Individual components were selected, tested, and optimized, and system error modeling was performed. Further data on prototype testing are now provided. An integrated fluidics portion of the prototype was designed, cast, and tested. A sensor was created using screen-printed sensors integrated with a silicone rubber fluidics system and absorbent polyurethane foam. A simulated eye surface was prepared using fluid-saturated poly(2-hydroxyethyl methacrylate) sheets, and the disposable prototype was tested for both reproducibility at 0, 200, and 400 microM glucose (n = 7) and dynamic range of glucose detection from 0 to 1000 microM glucose. From the replicated runs, an established relative standard deviation of 15.8% was calculated at 200 microM and a lower limit of detection was calculated at 43.4 microM. A linear dynamic range was demonstrated from 0 to 1000 microM with an R(2) of 99.56%. The previously developed model predicted a 14.9% variation. This compares to the observed variance of 15.8% measured at 200 microM glucose. With the newly designed fluidics component, an integrated tear glucose prototype was assembled and tested. Testing of this integrated prototype demonstrated a satisfactory lower limit of detection for measuring glucose concentration in tears and was reproducible across a physiological sampling range. The next step in the device design process will be initial animal studies to evaluate the current prototype for factors such as eye irritation, ease of use, and correlation with blood glucose. (c) 2010 Diabetes Technology Society.
NASA Technical Reports Server (NTRS)
Hohenemser, K. H.; Banerjee, D.
1977-01-01
An introduction to aircraft state and parameter identification methods is presented. A simplified form of the maximum likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel test results for accelerated cyclic pitch stirring excitation. The dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements were examined. The rotor blades are essentially rigid for inplane bending and for torsion within the frequency range of study, but flexible in out-of-plane bending. Reverse flow effects are considered for high rotor advance ratios. Two inflow models are studied; the first is based on an equivalent blade Lock number, the second is based on a time delayed momentum inflow. In addition to the inflow parameters, basic rotor parameters like the blade natural frequency and the actual blade Lock number are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is evaluated.
Reliability and Validity of Observational Risk Screening in Evaluating Dynamic Knee Valgus
Ekegren, Christina L.; Miller, William C.; Celebrini, Richard G.; Eng, Janice J.; MacIntyre, Donna L.
2012-01-01
Study Design Nonexperimental methodological study. Objectives To determine the interrater and intrarater reliability and validity of using observational risk screening guidelines to evaluate dynamic knee valgus. Background A deficiency in the neuromuscular control of the hip has been identified as a key risk factor for non-contact anterior cruciate ligament (ACL) injury in post pubescent females. This deficiency can manifest itself as a valgus knee alignment during tasks involving hip and knee flexion. There are currently no scientifically tested methods to screen for dynamic knee valgus in the clinic or on the field. Methods Three physiotherapists used observational risk screening guidelines to rate 40 adolescent female soccer players according to their risk of ACL injury. The rating was based on the amount of dynamic knee valgus observed on a drop jump landing. Ratings were evaluated for intrarater and interrater agreement using kappa coefficients. Sensitivity and specificity of ratings were evaluated by comparing observational ratings with measurements obtained using 3-dimensional (3D) motion analysis. Results Kappa coefficients for intrarater and interrater agreement ranged from 0.75 to 0.85, indicating that ratings were reasonably consistent over time and between physiotherapists. Sensitivity values were inadequate, ranging from 67–87%. This indicated that raters failed to detect up to a third of “truly high risk” individuals. Specificity values ranged from 60–72% which was considered adequate for the purposes of the screen. Conclusion Observational risk screening is a practical and cost-effective method of screening for ACL injury risk. Rater agreement and specificity were acceptable for this method but sensitivity was not. To detect a greater proportion of individuals at risk of ACL injury, coaches and clinicians should ensure that they include additional tests for other high risk characteristics in their screening protocols. PMID:19721212
Transistor analogs of emergent iono-neuronal dynamics.
Rachmuth, Guy; Poon, Chi-Sang
2008-06-01
Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.
Robust Flutter Analysis for Aeroservoelastic Systems
NASA Astrophysics Data System (ADS)
Kotikalpudi, Aditya
The dynamics of a flexible air vehicle are typically described using an aeroservoelastic model which accounts for interaction between aerodynamics, structural dynamics, rigid body dynamics and control laws. These subsystems can be individually modeled using a theoretical approach and experimental data from various ground tests can be combined into them. For instance, a combination of linear finite element modeling and data from ground vibration tests may be used to obtain a validated structural model. Similarly, an aerodynamic model can be obtained using computational fluid dynamics or simple panel methods and partially updated using limited data from wind tunnel tests. In all cases, the models obtained for these subsystems have a degree of uncertainty owing to inherent assumptions in the theory and errors in experimental data. Suitable uncertain models that account for these uncertainties can be built to study the impact of these modeling errors on the ability to predict dynamic instabilities known as flutter. This thesis addresses the methods used for modeling rigid body dynamics, structural dynamics and unsteady aerodynamics of a blended wing design called the Body Freedom Flutter vehicle. It discusses the procedure used to incorporate data from a wide range of ground based experiments in the form of model uncertainties within these subsystems. Finally, it provides the mathematical tools for carrying out flutter analysis and sensitivity analysis which account for these model uncertainties. These analyses are carried out for both open loop and controller in the loop (closed loop) cases.
Nonlinear dynamic range transformation in visual communication channels.
Alter-Gartenberg, R
1996-01-01
The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.
Small, high-pressure ratio compressor mechanical acceptance test, volume 2
NASA Technical Reports Server (NTRS)
Metty, G. R.; Shoup, W. I.
1973-01-01
The fabrication and mechanical testing of the high-pressure-ratio compressor are reported. Mechanical testing was performed to demonstrate overspeed capability, adequate rotor dynamics, electrical isolation of the gas bearing trunnion mounted diffuser and shroud and the effect of operating parameters (speed and pressure ratio) on clearance of the compressor test rig. The speed range covered was 20 to 120 percent of rated speed (80,000 rpm). Following these tests an acceptance test which consisted of a 5 hour run at 80,000 rpm was made with approximately design impeller to shroud clearances. For Vol. 1, see N73-26483.
NASA Technical Reports Server (NTRS)
Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.
1974-01-01
A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.
Eriksrud, Ola; Federolf, Peter; Anderson, Patrick; Cabri, Jan
2018-01-01
Tests of dynamic postural control eliciting full-body three-dimensional joint movements in a systematic manner are scarce. The well-established star excursion balance test (SEBT) elicits primarily three-dimensional lower extremity joint movements with minimal trunk and no upper extremity joint movements. In response to these shortcomings we created the hand reach star excursion balance test (HSEBT) based on the SEBT reach directions. The aims of the current study were to 1) compare HSEBT and SEBT measurements, 2) compare joint movements elicited by the HSEBT to both SEBT joint movements and normative range of motion values published in the literature. Ten SEBT and HSEBT reaches for each foot were obtained while capturing full-body kinematics in twenty recreationally active healthy male subjects. HSEBT and SEBT areas and composite scores (sum of reaches) for total, anterior and posterior subsections and individual reaches were correlated. Total reach score comparisons showed fair to moderate correlations (r = .393 to .606), while anterior and posterior subsections comparisons had fair to good correlations (r = .269 to .823). Individual reach comparisons had no to good correlations (r = -.182 to .822) where lateral and posterior reaches demonstrated the lowest correlations (r = -.182 to .510). The HSEBT elicited more and significantly greater joint movements than the SEBT, except for hip external rotation, knee extension and plantarflexion. Comparisons to normative range of motion values showed that 3 of 18 for the SEBT and 8 of 22 joint movements for the HSEBT were within normative values. The findings suggest that the HSEBT can be used for the assessment of dynamic postural control and is particularly suitable for examining full-body functional mobility.
Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V
2003-10-01
Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.
A Fiber-Optic Interferometric Tri-Component Geophone for Ocean Floor Seismic Monitoring
Chen, Jiandong; Chang, Tianying; Fu, Qunjian; Lang, Jinpeng; Gao, Wenzhi; Wang, Zhongmin; Yu, Miao; Zhang, Yanbo; Cui, Hong-Liang
2016-01-01
For the implementation of an all fiber observation network for submarine seismic monitoring, a tri-component geophone based on Michelson interferometry is proposed and tested. A compliant cylinder-based sensor head is analyzed with finite element method and tested. The operation frequency ranges from 2 Hz to 150 Hz for acceleration detection, employing a phase generated carrier demodulation scheme, with a responsivity above 50 dB re rad/g for the whole frequency range. The transverse suppression ratio is about 30 dB. The system noise at low frequency originated mainly from the 1/f fluctuation, with an average system noise level −123.55 dB re rad/Hz ranging from 0 Hz to 500 Hz. The minimum detectable acceleration is about 2 ng/Hz, and the dynamic range is above 116 dB. PMID:28036011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Darren M.
Sandia National Laboratories has tested and evaluated Geotech Smart24 data acquisition system with active Fortezza crypto card data signing and authentication. The test results included in this report were in response to static and tonal-dynamic input signals. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters; others were designed by Sandia specifically for infrasound application evaluation and for supplementary criteria not addressed in the IEEE standards. The objective of this work was to evaluate the overall technical performance of the Geotech Smart24 digitizer with a Fortezza PCMCIA cryptomore » card actively implementing the signing of data packets. The results of this evaluation were compared to relevant specifications provided within manufacturer's documentation notes. The tests performed were chosen to demonstrate different performance aspects of the digitizer under test. The performance aspects tested include determining noise floor, least significant bit (LSB), dynamic range, cross-talk, relative channel-to-channel timing, time-tag accuracy, analog bandwidth and calibrator performance.« less
Experimental Results From a 2kW Brayton Power Conversion Unit
NASA Technical Reports Server (NTRS)
Hervol, David; Mason, Lee; Birchenough, Arthur
2003-01-01
This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).
Crush Testing at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Matthew R
2011-01-01
The dynamic crush test is required in the certification testing of some small Type B transportation packages. International Atomic Energy Agency regulations state that the test article must be 'subjected to a dynamic crush test by positioning the specimen on the target so as to suffer maximum damage.' Oak Ridge National Laboratory (ORNL) Transportation Technologies Group performs testing of Type B transportation packages, including the crush test, at the National Transportation Research Center in Knoxville, Tennessee (United States). This paper documents ORNL's experiences performing crush tests on several different Type B packages. ORNL has crush tested five different drum-type packagemore » designs, continuing its 60 year history of RAM package testing. A total of 26 crush tests have been performed in a wide variety of package orientations and crush plate CG alignments. In all cases, the deformation of the outer drum created by the crush test was significantly greater than the deformation damage caused by the 9 m drop test. The crush test is a highly effective means for testing structural soundness of smaller nondense Type B shipping package designs. Further regulatory guidance could alleviate the need to perform the crush test in a wide range of orientations and crush plate CG alignments.« less
NASA Astrophysics Data System (ADS)
Davidson, Phillip; Babbitt, Ashli; Magstadt, Andrew; Nikoueeyan, Pourya; Naughton, Jonathan; Jonathan Naughton Team
2014-11-01
The performance of helicopter and wind turbine blades is affected by dynamic stall. Dynamic stall has received considerable attention, but it is still difficult to simulate and not fully understood. Over the past seven years, many airfoils for helicopter and wind turbine use ranging from 9.5 to 30% thick have been experimentally tested and simulated while dynamically pitching to further characterize dynamic stall. Tests have been run at chord Reynolds number between 225,000-440,000 for various reduced frequencies, mean angles of attack, and oscillation amplitudes. Characterization of stall has been accomplished using data from previous studies as well as the unsteady pressure and flow-field data available from our own work. Where available, combined surface and flow-field data allow for clear identification of the types of stall observed and the flow structure associated with them. The results indicate that thin airfoil stall, leading edge stall, and trailing edge stall are observed in the oscillating airfoil experiments and simulations. These three main stall types are further divided into subcategories. By improving our understanding of the features of dynamic stall, it is expected that physics-based simulations can be improved. Work supported by DOE and a gift from BP.
Oceanic island biogeography through the lens of the general dynamic model: assessment and prospect.
Borregaard, Michael K; Amorim, Isabel R; Borges, Paulo A V; Cabral, Juliano S; Fernández-Palacios, José M; Field, Richard; Heaney, Lawrence R; Kreft, Holger; Matthews, Thomas J; Olesen, Jens M; Price, Jonathan; Rigal, Francois; Steinbauer, Manuel J; Triantis, Konstantinos A; Valente, Luis; Weigelt, Patrick; Whittaker, Robert J
2017-05-01
The general dynamic model of oceanic island biogeography (GDM) has added a new dimension to theoretical island biogeography in recognizing that geological processes are key drivers of the evolutionary processes of diversification and extinction within remote islands. It provides a dynamic and essentially non-equilibrium framework generating novel predictions for emergent diversity properties of oceanic islands and archipelagos. Its publication in 2008 coincided with, and spurred on, renewed attention to the dynamics of remote islands. We review progress, both in testing the GDM's predictions and in developing and enhancing ecological-evolutionary understanding of oceanic island systems through the lens of the GDM. In particular, we focus on four main themes: (i) macroecological tests using a space-for-time rationale; (ii) extensions of theory to islands following different patterns of ontogeny; (iii) the implications of GDM dynamics for lineage diversification and trait evolution; and (iv) the potential for downscaling GDM dynamics to local-scale ecological patterns and processes within islands. We also consider the implications of the GDM for understanding patterns of non-native species diversity. We demonstrate the vitality of the field of island biogeography by identifying a range of potentially productive lines for future research. © 2016 Cambridge Philosophical Society.
Tank Investigation of a Powered Dynamic Model of a Large Long-Range Flying Boat
NASA Technical Reports Server (NTRS)
Parkinson, John B; Olson, Roland E; Harr, Marvin I
1947-01-01
Principles for designing the optimum hull for a large long-range flying boat to meet the requirements of seaworthiness, minimum drag, and ability to take off and land at all operational gross loads were incorporated in a 1/12-size powered dynamic model of a four-engine transport flying boat having a design gross load of 165,000 pounds. These design principles included the selection of a moderate beam loading, ample forebody length, sufficient depth of step, and close adherence to the form of a streamline body. The aerodynamic and hydrodynamic characteristics of the model were investigated in Langley tank no. 1. Tests were made to determine the minimum allowable depth of step for adequate landing stability, the suitability of the fore-and-aft location of the step, the take-off performance, the spray characteristics, and the effects of simple spray-control devices. The application of the design criterions used and test results should be useful in the preliminary design of similar large flying boats.
Digital Moiré based transient interferometry and its application in optical surface measurement
NASA Astrophysics Data System (ADS)
Hao, Qun; Tan, Yifeng; Wang, Shaopu; Hu, Yao
2017-10-01
Digital Moiré based transient interferometry (DMTI) is an effective non-contact testing methods for optical surfaces. In DMTI system, only one frame of real interferogram is experimentally captured for the transient measurement of the surface under test (SUT). When combined with partial compensation interferometry (PCI), DMTI is especially appropriate for the measurement of aspheres with large apertures, large asphericity or different surface parameters. Residual wavefront is allowed in PCI, so the same partial compensator can be applied to the detection of multiple SUTs. Excessive residual wavefront aberration results in spectrum aliasing, and the dynamic range of DMTI is limited. In order to solve this problem, a method based on wavelet transform is proposed to extract phase from the fringe pattern with spectrum aliasing. Results of simulation demonstrate the validity of this method. The dynamic range of Digital Moiré technology is effectively expanded, which makes DMTI prospective in surface figure error measurement for intelligent fabrication of aspheric surfaces.
Dynamic Uniaxial Compression of HSLA-65 Steel at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Dike, Shweta; Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas
2017-12-01
In the present study, the dynamic response of a high-strength, low alloy Grade 65 (HSLA-65) steel, used by the United States Navy for ship hull construction, is investigated under dynamic uniaxial compression at temperatures ranging from room temperature to 1000 °C using a novel elevated temperature split-Hopkinson pressure bar. These experiments are designed to probe the dynamic response of HSLA-65 steel in its single α-ferrite phase, mixed α + γ-austenite phase, and the single γ-austenite phase, as a function of temperature. The investigation is conducted at two different average strain rates—1450 and 2100/s. The experimental results indicate that at test temperatures in the range from room temperature to lower than 600 °C, i.e. prior to the development of the mixed α + γ phase, a net softening in flow strength is observed at all levels of plastic strain with increase in test temperatures. As the test temperatures are increased, the rate of this strain softening with temperature is observed to decrease, and at 600 °C the trend reverses itself resulting in an increase in flow stress at all strains tested. This increase in flow stress is understood be due to dynamic strain aging, where solute atoms play a distinctive role in hindering dislocation motion. At 800 °C, a (sharp) drop in the flow stress, equivalent to one-half of its value at room temperature, is observed. As the test temperature are increased to 900 and 1000 °C, further drop in flow stress are observed at all plastic strain levels. In addition, strain hardening in flow stress is observed at all test temperatures up to 600 °C; beyond 800 °C the rate of strain hardening is observed to decrease, with strain softening becoming dominant at temperatures of 900 °C and higher. Moreover, comparing the high strain rate stress versus strain data gathered on HSLA 65 in the current investigation with those available in the literature at quasi-static strain rates, strain-rate hardening can be inferred. The flow stress increases from 700 MPa at 8 × 10-4/s to 950 MPa at 1450/s and then to 1000 MPa at 2100/s at a strain of 0.1. Optical microscopy is used to understand evolution of microstructure in the post-test samples at the various test temperatures employed in the present study.
NASA Astrophysics Data System (ADS)
Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas
2017-12-01
In the present paper, results of plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial strain compression and elevated temperatures up to melt are presented. The dynamic stress at yield and post yield of magnesium, as inferred from the measured normal component of the particle velocity histories at the free (rear) surface of the target plate, are observed to decrease progressively with increasing test temperatures in the range from 23 to 500 °C. At (higher) test temperatures in the range 500-610 °C, the rate of decrease of dynamic stress with temperature at yield and post-yield in the sample is observed to weaken. At still higher test temperatures (617 and 630 °C), a dramatic increase in dynamic yield as well as flow stress is observed indicating a change in dominant mechanism of plastic deformation as the sample approaches the melt point of magnesium at strain rates of 105/s. In addition to these measurements at the wavefront, the plateau region of the free surface particle velocity profiles indicates that the longitudinal (plastic) impedance of the magnesium samples decreases continuously as the sample temperatures are increased from room to 610 °C, and then reverses trend (indicating increasing material longitudinal impedance/strength) as the sample temperatures are increased to 617 and 630 °C. Electron back scattered diffraction analysis of the as-received and annealed pre-test magnesium samples reveal grain coarsening as well as grain re-orientation to a different texture during the heating process of the samples.
Finite Element Model Development and Validation for Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.
NASA Technical Reports Server (NTRS)
Andre, M. A.; Bardet, P. M.; Cadell, S. R.; Woods, B.; Burns, R. A.; Danehy, P. M.
2017-01-01
N2O molecular tagging velocimetry (N2O-MTV) is developed for use in very-high-temperature reactor environments. Tests were carried out to determine the optimum excitation wavelength, tracer concentration, and timing parameters for the laser system. Using NO tracers obtained from photo-dissociation of N2O, velocity profiles are successfully obtained in air, nitrogen, and helium for a large range of parameters: temperature from 295 to 781 K, pressure from 1 to 3 bars, with a velocity precision of 0.01 m/s. Furthermore, by using two read pulses at adjustable time delays, the velocity dynamic range can be increased. An unprecedented dynamic range of 5,000 has been obtained to successfully resolve the flow during a helium blowdown from 1000 m/s down to 0.2 m/s. This technique is also applied to the high-temperature test facility (HTTF) at Oregon State University (OSU) during a depressurized condition cooldown (DCC) event. Details of these measurements are presented in a companion paper. This technique shows a strong potential for fundamental understanding of gas flows in nuclear reactors and to provide benchmark experimental data to validate numerical simulations.
Optical methods for non-contact measurements of membranes
NASA Astrophysics Data System (ADS)
Roose, S.; Stockman, Y.; Rochus, P.; Kuhn, T.; Lang, M.; Baier, H.; Langlois, S.; Casarosa, G.
2009-11-01
Structures for space applications very often suffer stringent mass constraints. Lightweight structures are developed for this purpose, through the use of deployable and/or inflatable beams, and thin-film membranes. Their inherent properties (low mass and small thickness) preclude the use of conventional measurement methods (accelerometers and displacement transducers for example) during on-ground testing. In this context, innovative non-contact measurement methods need to be investigated for these stretched membranes. The object of the present project is to review existing measurement systems capable of measuring characteristics of membrane space-structures such as: dot-projection videogrammetry (static measurements), stereo-correlation (dynamic and static measurements), fringe projection (wrinkles) and 3D laser scanning vibrometry (dynamic measurements). Therefore, minimum requirements were given for the study in order to have representative test articles covering a wide range of applications. We present test results obtained with the different methods on our test articles.
Low-speed static and dynamic force tests of a generic supersonic cruise fighter configuration
NASA Technical Reports Server (NTRS)
Hahne, David E.
1989-01-01
Static and dynamic force tests of a generic fighter configuration designed for sustained supersonic flight were conducted in the Langley 30- by 60-foot tunnel. The baseline configuration had a 65 deg arrow wing, twin wing mounted vertical tails and a canard. Results showed that control was available up to C sub L,max (maximum lift coefficient) from aerodynamic controls about all axes but control in the pitch and yaw axes decreased rapidly in the post-stall angle-of-attack region. The baseline configuration showed stable lateral-directional characteristics at low angles of attack but directional stability occurred near alpha = 25 deg as the wing shielded the vertical tails. The configuration showed positive effective dihedral throughout the test angle-of-attack range. Forced oscillation tests indicated that the baseline configuration had stable damping characteristics about the lateral-directional axes.
A theory of forest dynamics: Spatially explicit models and issues of scale
NASA Technical Reports Server (NTRS)
Pacala, S.
1990-01-01
Good progress has been made in the first year of DOE grant (number sign) FG02-90ER60933. The purpose of the project is to develop and investigate models of forest dynamics that apply across a range of spatial scales. The grant is one third of a three-part project. The second third was funded by the NSF this year and is intended to provide the empirical data necessary to calibrate and test small-scale (less than or equal to 1000 ha) models. The final third was also funded this year (NASA), and will provide data to calibrate and test the large-scale features of the models.
Stretch-Induced Reductions in Throwing Performance Are Attenuated by Warm-up Before Exercise.
Mascarin, Naryana C; Vancini, Rodrigo L; Lira, Claudio A B; Andrade, Marilia S
2015-05-01
Recent investigations have suggested that static stretching (SS) performed before exercise reduces muscular performance. However, it is yet unknown whether dynamic warm-up exercises performed together with SS may actually minimize the detrimental acute effects of stretching on muscular performance. This study aimed to assess the effects of static shoulder stretching exercises, dynamic warm-up exercises, or both together, on muscular performance evaluated by ball throwing. Twenty-one female handball players (age: 16.2 ± 1.0 years [range: 14-18 years], height: 167.0 ± 10.0 cm [range: 158-179 cm], and body mass: 63.3 ± 7.6 kg [range: 50.4-77.4 kg]) performed SS, dynamic warm-up exercises or both, targeting the muscles of the upper limbs. Thereafter, medicine ball throwing distance and handball ball throwing speed tests were performed. Static stretching performed before the medicine ball throwing test reduced performance when compared with the warm-up exercises (95% confidence interval [CI] = 0.02-0.17, p ≤ 0.05, effect size [ES] = 0.34). When a warm-up exercise routine was added to SS, the detrimental effects of SS were abolished (95% CI = -0.01 to 0.18, p > 0.05, ES = 0.31). The throwing speed was the same over the 3 conditions. In conclusion, warm-up exercises performed together with SS abolished the impairment in medicine ball throwing distance. We recommend that athletes perform warm-up exercises together with SS before activity to avoid detrimental effects on muscle strength.
An experimental investigation of the structural dynamics of a torsionally soft rotor in vacuum
NASA Technical Reports Server (NTRS)
Srinivasan, A. V.; Cutts, D. G.; Shu, H. T.
1986-01-01
An extensive data base of structural dynamic characteristics has been generated from an experimental program conducted on a torsionally soft two-bladed model helicopter rotor system. Measurements of vibratory strains for five modes of vibration were made at twenty-one locations on the two blades at speeds varying from 0 to 1000 RPM and for several combinations of precone, droop and flexure stiffness. Tests were conducted in vacuum under carefully controlled conditions using a unique excitation device with a system of piezoelectric crystals bonded to the blade surface near the root. Frequencies, strain mode shapes and dampings are extracted from the time histories and can be used to validate structural dynamics codes. The dynamics of the system are such that there is a clear tendency for the first torsion and second flap modes to couple within the speed range considered. Strain mode shapes vary significantly with speed and configuration. This feature is important in the calcualtion of aeroelastic instabilities. The tension axis tests confirmed that the modulus-weighted centroid for the nonhomogeneous airfoil is slightly off the mass centroid and validated previous static tests done to determine location of the tension axis.
Kreutz, Jason E; Munson, Todd; Huynh, Toan; Shen, Feng; Du, Wenbin; Ismagilov, Rustem F
2011-11-01
This paper presents a protocol using theoretical methods and free software to design and analyze multivolume digital PCR (MV digital PCR) devices; the theory and software are also applicable to design and analysis of dilution series in digital PCR. MV digital PCR minimizes the total number of wells required for "digital" (single molecule) measurements while maintaining high dynamic range and high resolution. In some examples, multivolume designs with fewer than 200 total wells are predicted to provide dynamic range with 5-fold resolution similar to that of single-volume designs requiring 12,000 wells. Mathematical techniques were utilized and expanded to maximize the information obtained from each experiment and to quantify performance of devices and were experimentally validated using the SlipChip platform. MV digital PCR was demonstrated to perform reliably, and results from wells of different volumes agreed with one another. No artifacts due to different surface-to-volume ratios were observed, and single molecule amplification in volumes ranging from 1 to 125 nL was self-consistent. The device presented here was designed to meet the testing requirements for measuring clinically relevant levels of HIV viral load at the point-of-care (in plasma, <500 molecules/mL to >1,000,000 molecules/mL), and the predicted resolution and dynamic range was experimentally validated using a control sequence of DNA. This approach simplifies digital PCR experiments, saves space, and thus enables multiplexing using separate areas for each sample on one chip, and facilitates the development of new high-performance diagnostic tools for resource-limited applications. The theory and software presented here are general and are applicable to designing and analyzing other digital analytical platforms including digital immunoassays and digital bacterial analysis. It is not limited to SlipChip and could also be useful for the design of systems on platforms including valve-based and droplet-based platforms. In a separate publication by Shen et al. (J. Am. Chem. Soc., 2011, DOI: 10.1021/ja2060116), this approach is used to design and test digital RT-PCR devices for quantifying RNA.
Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite
2014-11-04
Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.
Cardoso, Márcio Zikán
2010-01-01
While butterfly responses to climate change are well studied, detailed analyses of the seasonal dynamics of range expansion are few. Therefore, the seasonal range expansion of the butterfly Heliconius charithonia L. (Lepidoptera: Nymphalidae) was analyzed using a database of sightings and collection records dating from 1884 to 1992 from Texas. First and last sightings for each year were noted, and residency time calculated, for each collection locality. To test whether sighting dates were a consequence of distance from source (defined as the southernmost location of permanent residence), the distance between source and other locations was calculated. Additionally, consistent directional change over time of arrival dates was tested in a well-sampled area (San Antonio). Also, correlations between temperature, rainfall, and butterfly distribution were tested to determine whether butterfly sightings were influenced by climate. Both arrival date and residency interval were influenced by distance from source: butterflies arrived later and residency time was shorter at more distant locations. Butterfly occurrence was correlated with temperature but not rainfall. Residency time was also correlated with temperature but not rainfall. Since temperature follows a north-south gradient this may explain the inverse relationship between residency and distance from entry point. No long-term directional change in arrival dates was found in San Antonio. The biological meaning of these findings is discussed suggesting that naturalist notes can be a useful tool in reconstructing spatial dynamics. PMID:20672989
Discrete filtering techniques applied to sequential GPS range measurements
NASA Technical Reports Server (NTRS)
Vangraas, Frank
1987-01-01
The basic navigation solution is described for position and velocity based on range and delta range (Doppler) measurements from NAVSTAR Global Positioning System satellites. The application of discrete filtering techniques is examined to reduce the white noise distortions on the sequential range measurements. A second order (position and velocity states) Kalman filter is implemented to obtain smoothed estimates of range by filtering the dynamics of the signal from each satellite separately. Test results using a simulated GPS receiver show a steady-state noise reduction, the input noise variance divided by the output noise variance, of a factor of four. Recommendations for further noise reduction based on higher order Kalman filters or additional delta range measurements are included.
A survey of design methods for failure detection in dynamic systems
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1975-01-01
A number of methods for the detection of abrupt changes (such as failures) in stochastic dynamical systems were surveyed. The class of linear systems were emphasized, but the basic concepts, if not the detailed analyses, carry over to other classes of systems. The methods surveyed range from the design of specific failure-sensitive filters, to the use of statistical tests on filter innovations, to the development of jump process formulations. Tradeoffs in complexity versus performance are discussed.
Aerodynamic characteristics of the standard dynamics model in coning motion at Mach 0.6
NASA Technical Reports Server (NTRS)
Jermey, C.; Schiff, L. B.
1985-01-01
A wind tunnel test was conducted on the Standard Dynamics Model (a simplified generic fighter aircraft shape) undergoing coning motion at Mach 0.6. Six component force and moment data are presented for a range of angle of attack, sideslip, and coning rates. At the relatively low non-dimensional coning rate employed (omega b/2V less than or equal to 0.04), the lateral aerodynamic characteristics generally show a linear variation with coning rate.
Espí-López, Gemma V; López-Martínez, Susana; Inglés, Marta; Serra-Añó, Pilar; Aguilar-Rodríguez, Marta
2018-04-22
To compare the effectiveness of a specific Manual Therapy (MT) protocol applied to field hockey players (FHP), versus a Proprioceptive Neuromuscular Facilitation (PNF) protocol, in the improvement of dynamic balance, active range of movement and lumbar flexibility one-week and four-weeks after the treatment. Randomized controlled trial. Participants were assigned to 2 groups: MT and PNF. 30 min' sessions were performed once a week for three weeks. Three evaluations were performed: basal, one-week and four-weeks post-treatment. University of Valencia (Spain). 22 in MT group and 20 in PNF group. Dynamic Balance, measured with Star Excursion Balance Test; Active Range of Motion (ROM), using a manual goniometer and Lumbar Flexibility, assessed with Fingertip-to-floor test. Both groups significantly improved in lateral and medial dynamic balance one-week post-treatment (p < 0.05); but the improvement in the MT group lasted until the fourth-week after treatment in both reaches (lateral and medial) (p < 0.05). MT group also obtained significant improvements in dorsal flexion of the ankle in the fourth-week post-treatment (p < 0.05) and in lumbar flexibility one-week post-treatment (p < 0.05). MT and PNF improve dynamic balance one-week post-treatment; however, the improvement obtained through MT is maintained four-weeks later. Only MT improves dorsal flexion of the ankle four-weeks post-treatment and lumbar flexibility one-week post-treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Three-step labyrinth seal for high-performance turbomachines
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.
1987-01-01
A three-step labyrinth seal with 12, 11, and 10 labyrinth teeth per step, respectively, was tested under static (nonrotating) conditions. The configuration represented the seal for a high-performance turbopump (e.g., the space shuttle main engine fuel pump). The test data included critical mass flux and pressure profiles over a wide range of fluid conditions at concentric, partially eccentric, and fully eccentric seal positions. The seal mass fluxes (leakage rates) were lower over the entire range of fluid conditions tested than those for data collected for similar straight and three-step cylindrical seals, and this conformed somewhat to expectations. However, the pressure profiles for the eccentric positions indicated little, if any, direct stiffness for this configuration in contrast to significant direct stiffness reported for the straight and three-step cylindrical seals over the range of test conditions. Seal dynamics depend on geometric configuration, inlet and exit parameters, fluid phase, and rotation. The method of corresponding states was applied to the mass flux data, which were found to have a pressure dependency for helium.
NASA Technical Reports Server (NTRS)
Hollinger, James A.; Mitcham, Grady L.
1955-01-01
A flight test of a rocket-propelled model of the Convair XFY-1 airplane was conducted to determine the lateral stability and control characteristics, The 0.133-scale model had windmilling propellers for this test, which covered a Mach number range of O.70 to 1.12. The center of gravity was located at 13.9 percent of the mean aerodynamic chord. The methods of analysis included both a solution by vector diagrams and simple one- and two-degree-of-freedom methods. The model was both statically and dynamically stable throughout the speed range of the testa The roll damping was good, and the slope of the side-force curve varied little with speed. The rudder was effective throughout the test speed range, although it was reduced to about 43 percent of its subsonic value at supersonic speeds.
Programmable, automated transistor test system
NASA Technical Reports Server (NTRS)
Truong, L. V.; Sundburg, G. R.
1986-01-01
A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.
Verification Challenges of Dynamic Testing of Space Flight Hardware
NASA Technical Reports Server (NTRS)
Winnitoy, Susan
2010-01-01
The Six Degree-of-Freedom Dynamic Test System (SDTS) is a test facility at the National Aeronautics and Space Administration (NASA) Johnson Space Center in Houston, Texas for performing dynamic verification of space structures and hardware. Some examples of past and current tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility is able to integrate a dynamic simulation of on-orbit spacecraft mating or demating using flight-like mechanical interface hardware. A force moment sensor is utilized for input to the simulation during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents many unique challenges, one particular area of interest is with respect to the use of external measurement systems to ensure accurate feedback of dynamic contact. There are many commercial off-the-shelf (COTS) measurement systems available on the market, and the test facility measurement systems have evolved over time to include two separate COTS systems. The first system incorporates infra-red sensing cameras, while the second system employs a laser interferometer to determine position and orientation data. The specific technical challenges with the measurement systems in a large dynamic environment include changing thermal and humidity levels, operational area and measurement volume, dynamic tracking, and data synchronization. The facility is located in an expansive high-bay area that is occasionally exposed to outside temperature when large retractable doors at each end of the building are opened. The laser interferometer system, in particular, is vulnerable to the environmental changes in the building. The operational area of the test facility itself is sizeable, ranging from seven meters wide and five meters deep to as much as seven meters high. Both facility measurement systems have desirable measurement volumes and the accuracies vary within the respective volumes. In addition, because this is a dynamic facility with a moving test bed, direct line-of-sight may not be available at all times between the measurement sensors and the tracking targets. Finally, the feedback data from the active test bed along with the two external measurement systems must be synchronized to allow for data correlation. To ensure the desired accuracy and resolution of these systems, calibration of the systems must be performed regularly. New innovations in sensor technology itself are periodically incorporated into the facility s overall measurement scheme. In addressing the challenges of the measurement systems, the facility is able to provide essential position and orientation data to verify the dynamic performance of space flight hardware.
Short-range density functional correlation within the restricted active space CI method
NASA Astrophysics Data System (ADS)
Casanova, David
2018-03-01
In the present work, I introduce a hybrid wave function-density functional theory electronic structure method based on the range separation of the electron-electron Coulomb operator in order to recover dynamic electron correlations missed in the restricted active space configuration interaction (RASCI) methodology. The working equations and the computational algorithm for the implementation of the new approach, i.e., RAS-srDFT, are presented, and the method is tested in the calculation of excitation energies of organic molecules. The good performance of the RASCI wave function in combination with different short-range exchange-correlation functionals in the computation of relative energies represents a quantitative improvement with respect to the RASCI results and paves the path for the development of RAS-srDFT as a promising scheme in the computation of the ground and excited states where nondynamic and dynamic electron correlations are important.
Nonlinear dynamic simulation of single- and multi-spool core engines
NASA Technical Reports Server (NTRS)
Schobeiri, T.; Lippke, C.; Abouelkheir, M.
1993-01-01
In this paper a new computational method for accurate simulation of the nonlinear dynamic behavior of single- and multi-spool core engines, turbofan engines, and power generation gas turbine engines is presented. In order to perform the simulation, a modularly structured computer code has been developed which includes individual mathematical modules representing various engine components. The generic structure of the code enables the dynamic simulation of arbitrary engine configurations ranging from single-spool thrust generation to multi-spool thrust/power generation engines under adverse dynamic operating conditions. For precise simulation of turbine and compressor components, row-by-row calculation procedures were implemented that account for the specific turbine and compressor cascade and blade geometry and characteristics. The dynamic behavior of the subject engine is calculated by solving a number of systems of partial differential equations, which describe the unsteady behavior of the individual components. In order to ensure the capability, accuracy, robustness, and reliability of the code, comprehensive critical performance assessment and validation tests were performed. As representatives, three different transient cases with single- and multi-spool thrust and power generation engines were simulated. The transient cases range from operating with a prescribed fuel schedule, to extreme load changes, to generator and turbine shut down.
NASA Astrophysics Data System (ADS)
Kabir, Salman; Smith, Craig; Armstrong, Frank; Barnard, Gerrit; Schneider, Alex; Guidash, Michael; Vogelsang, Thomas; Endsley, Jay
2018-03-01
Differential binary pixel technology is a threshold-based timing, readout, and image reconstruction method that utilizes the subframe partial charge transfer technique in a standard four-transistor (4T) pixel CMOS image sensor to achieve a high dynamic range video with stop motion. This technology improves low light signal-to-noise ratio (SNR) by up to 21 dB. The method is verified in silicon using a Taiwan Semiconductor Manufacturing Company's 65 nm 1.1 μm pixel technology 1 megapixel test chip array and is compared with a traditional 4 × oversampling technique using full charge transfer to show low light SNR superiority of the presented technology.
NASA Astrophysics Data System (ADS)
Erice, B.; Pérez-Martín, M. J.; Cendón, D. A.; Gálvez, F.
2012-05-01
A series of quasi-static and dynamic tensile tests at varying temperatures were carried out to determine the mechanical behaviour of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD as-HIPed alloy. The temperature for the tests ranged from room temperature to 850 ∘C. The effect of the temperature on the ultimate tensile strength, as expected, was almost negligible within the selected temperature range. Nevertheless, the plastic flow suffered some softening because of the temperature. This alloy presents a relatively low ductility; thus, a low tensile strain to failure. The dynamic tests were performed in a Split Hopkinson Tension Bar, showing an increase of the ultimate tensile strength due to the strain rate hardening effect. Johnson-Cook constitutive relation was used to model the plastic flow. A post-testing microstructural of the specimens revealed an inhomogeneous structure, consisting of lamellar α2 + γ structure and γ phase equiaxed grains in the centre, and a fully lamellar structure on the rest. The assessment of the duplex-fully lamellar area ratio showed a clear relationship between the microstructure and the fracture behaviour.
Wind Tunnel Test of Subscale Ringsail and Disk-Gap-Band Parachutes
NASA Technical Reports Server (NTRS)
Zumwalt, Carlie H.; Cruz, Juan R.; Keller, Donald F.; O'Farrell, Clara
2016-01-01
A subsonic wind tunnel test was conducted to determine the drag and static aerodynamic coefficients, as well as to capture the dynamic motions of a new Supersonic Ringsail parachute developed by the Low Density Supersonic Decelerator Project. To provide a comparison against current Mars parachute technology, the Mars Science Laboratory's Disk-Gap-Band parachute was also included in the test. To account for the effect of fabric permeability, two fabrics ("low" and "standard" permeability) were used to fabricate each parachute canopy type, creating four combinations of canopy type and fabric material. A wide range of test conditions were covered during the test, spanning Mach numbers from 0.09 to 0.5, and static pressures from 103 to 2116 pounds per square inch (psf) (nominal values). The fabric permeability is shown to have a first-order effect on the aerodynamic coefficients and dynamic motions of the parachutes. For example, for a given parachute type and test condition, models fabricated from "low" permeability fabric always have a larger drag coefficient than models fabricated from "standard" permeability material. This paper describes the test setup and conditions, how the results were analyzed, and presents and discusses a sample of the results. The data collected during this test is being used to create and improve parachute aerodynamic databases for use in flight dynamics simulations for missions to Mars.
Boxberger, John I.; Orlansky, Amy S.; Sen, Sounok; Elliott, Dawn M.
2009-01-01
The intervertebral disc functions over a range of dynamic loading regimes including axial loads applied across a spectrum of frequencies at varying compressive loads. Biochemical changes occurring in early degeneration, including reduced nucleus pulposus glycosaminoglycan content, may alter disc mechanical behavior and thus may contribute to the progression of degeneration. The objective of this study was to determine disc dynamic viscoelastic properties under several equilibrium loads and loading frequencies, and further, to determine how reduced nucleus glycosaminglycan content alters dynamic mechanics. We hypothesized (1) that dynamic stiffness would be elevated with increasing equilibrium load and increasing frequency, (2) that the disc would behave more elastically at higher frequencies, and finally, (3) that dynamic stiffness would be reduced at low equilibrium loads under all frequencies due to nucleus glycosaminoglycan loss. We mechanically tested control and chondroitinase-ABC injected rat lumbar motion segments at several equilibrium loads using oscillatory loading at frequencies ranging from 0.05 to 5 Hz. The rat lumbar disc behaved non-linearly with higher dynamic stiffness at elevated compressive loads irrespective of frequency. Phase angle was not affected by equilibrium load, although it decreased as frequency was increased. Reduced glycosaminoglycan decreased dynamic stiffness at low loads but not at high equilibrium loads and led to increased phase angle at all loads and frequencies. The findings of this study demonstrate the effect of equilibrium load and loading frequencies on dynamic disc mechanics and indicate possible mechanical mechanisms through which disc degeneration can progress. PMID:19539936
NASA Astrophysics Data System (ADS)
Salminen, J.; Högström, R.; Saxholm, S.; Lakka, A.; Riski, K.; Heinonen, M.
2018-04-01
In this paper we present the development of a primary standard for dynamic pressures that is based on the drop weight method. At the moment dynamic pressure transducers are typically calibrated using reference transducers, which are calibrated against static pressure standards. Because dynamic and static characteristics of pressure transducers may significantly differ from each other, it is important that these transducers are calibrated against dynamic pressure standards. In a method developed in VTT Technical Research Centre of Finland Ltd, Centre for Metrology MIKES, a pressure pulse is generated by impact between a dropping weight and a piston of a liquid-filled piston-cylinder assembly. The traceability to SI-units is realized through interferometric measurement of the acceleration of the dropping weight during impact, the effective area of the piston-cylinder assembly and the mass of the weight. Based on experimental validation and an uncertainty evaluation, the developed primary standard provides traceability for peak pressures in the range from 10 MPa to 400 MPa with a few millisecond pulse width and a typical relative expanded uncertainty (k = 2) of 1.5%. The performance of the primary standard is demonstrated by test calibrations of two dynamic pressure transducers.
Preparation and Dynamic Mechanical Properties at Elevated Temperatures of a Tungsten/Glass Composite
NASA Astrophysics Data System (ADS)
Gao, Chong; Wang, Yingchun; Ma, Xueya; Liu, Keyi; Wang, Yubing; Li, Shukui; Cheng, Xingwang
2018-03-01
Experiments were conducted to prepare a borosilicate glass matrix composite containing 50 vol.% tungsten and examine its dynamic compressive behavior at elevated temperatures in the range of 450-775 °C. The results show that the homogenous microstructure of the tungsten/glass composite with relative density of 97% can be obtained by hot-pressing sintering at 800 °C for 1 h under pressure of 30 MPa. Dynamic compressive testing was carried out by a separate Hopkinson pressure bar system with a synchronous device. The results show that the peak stress decreases and the composite transforms from brittle to ductile in nature with testing temperature increasing from 450 to 750 °C. The brittle-ductile transition temperature is about 500 °C. Over 775 °C, the composite loses load-bearing capacity totally because of the excessive softening of the glass phase. In addition, the deformation and failure mechanism were analyzed.
Sagittal back motion of college football athletes and nonathletes.
Strong, L R; Titlow, L
1997-08-01
The study was designed as an ex post facto study using volunteers. To compare sagittal back motion of male college athletes with that of nonathletes and to compare data from both groups with normative data. Few studies have evaluated athletic demands on the spine. Much of the information on athletic demands comes from electromyographic studies, flexibility comparisons, and lift task studies. Although these studies provide a basis for back testing and evaluation, they do not present direct evidence of athletic low back performance. Fifteen male college football athletes and 15 male college nonathletes volunteered for testing using the IsoStation B-200 BSCAN 2.0 protocol (Isotechnologies, Inc., Hillsborough, NC). Measures were recorded for range of motion, isometric flexion and extension, and moderate and high dynamic flexion and extension. Data were analyzed using multivariate analysis of variance. The results of Hotelling's multivariate test were significant. Univariate follow-up analysis showed that athletes had significantly better isometric flexion, isometric extension, moderate dynamic flexion, high dynamic flexion, and high dynamic extension. Athletic data were compared with the BSCAN population data at the 50th and 80th percentile. Athletes were significantly better (P < 0.007) for all variables at the 50th percentile and for all dynamic variables at the 80th percentile. Within the limitations of the study, college football athletes had better sagittal back motion strength and speed as tested with the B-200 than nonathletes. Population data for the B-200 were representative for nonathletes but nonrepresentative for football players.
Reduced-Order Models for the Aeroelastic Analysis of Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.
2010-01-01
This document presents the development and application of unsteady aerodynamic, structural dynamic, and aeroelastic reduced-order models (ROMs) for the ascent aeroelastic analysis of the Ares I-X flight test and Ares I crew launch vehicles using the unstructured-grid, aeroelastic FUN3D computational fluid dynamics (CFD) code. The purpose of this work is to perform computationally-efficient aeroelastic response calculations that would be prohibitively expensive via computation of multiple full-order aeroelastic FUN3D solutions. These efficient aeroelastic ROM solutions provide valuable insight regarding the aeroelastic sensitivity of the vehicles to various parameters over a range of dynamic pressures.
The long-term reliability of static and dynamic quantitative sensory testing in healthy individuals.
Marcuzzi, Anna; Wrigley, Paul J; Dean, Catherine M; Adams, Roger; Hush, Julia M
2017-07-01
Quantitative sensory tests (QSTs) have been increasingly used to investigate alterations in somatosensory function in a wide range of painful conditions. The interpretation of these findings is based on the assumption that the measures are stable and reproducible. To date, reliability of QST has been investigated for short test-retest intervals. The aim of this study was to investigate the long-term reliability of a multimodal QST assessment in healthy people, with testing conducted on 3 occasions over 4 months. Forty-two healthy people were enrolled in the study. Static and dynamic tests were performed, including cold and heat pain threshold (CPT, HPT), mechanical wind-up [wind-up ratio (WUR)], pressure pain threshold (PPT), 2-point discrimination (TPD), and conditioned pain modulation (CPM). Systematic bias, relative reliability and agreement were analysed using repeated measure analysis of variance, intraclass correlation coefficients (ICCs3,1) and SE of the measurement (SEM), respectively. Static QST (CPT, HPT, PPT, and TPD) showed good-to-excellent reliability (ICCs: 0.68-0.90). Dynamic QST (WUR and CPM) showed poor-to-good reliability (ICCs: 0.35-0.61). A significant linear decrease over time was observed for mechanical QST at the back (PPT and TPD) and for CPM (P < 0.01). Static QST were stable over a period of 4 months; however, a small systematic decrease over time has been observed for mechanical QST. Dynamic QST showed considerable variability over time; in particular, CPM using PPT as the test stimulus did not show adequate reliability, suggesting that this test paradigm may be less useful for monitoring individuals over time.
Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics
Jakse, Noel; Pasturel, Alain
2013-01-01
We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons with experimental data favor the LDA approximation to compute dynamic properties of liquid aluminum. We show that the GGA approximation induce more important backscattering effects due to an enhancement of the icosahedral short range order (ISRO) that impact directly dynamic properties like the self-diffusion coefficient. All these results are then used to test the Stokes-Einstein relation and the universal scaling law relating the diffusion coefficient and the excess entropy of a liquid. PMID:24190311
Roos, Margaret A; Reisman, Darcy S; Hicks, Gregory; Rose, William; Rudolph, Katherine S
2016-01-01
Adults with stroke have difficulty avoiding obstacles when walking, especially when a time constraint is imposed. The Four Square Step Test (FSST) evaluates dynamic balance by requiring individuals to step over canes in multiple directions while being timed, but many people with stroke are unable to complete it. The purposes of this study were to (1) modify the FSST by replacing the canes with tape so that more persons with stroke could successfully complete the test and (2) examine the reliability and validity of the modified version. Fifty-five subjects completed the Modified FSST (mFSST) by stepping over tape in all four directions while being timed. The mFSST resulted in significantly greater numbers of subjects completing the test than the FSST (39/55 [71%] and 33/55 [60%], respectively) (p < 0.04). The test-retest, intrarater, and interrater reliability of the mFSST were excellent (intraclass correlation coefficient ranges: 0.81-0.99). Construct and concurrent validity of the mFSST were also established. The minimal detectable change was 6.73 s. The mFSST, an ideal measure of dynamic balance, can identify progress in people with stroke in varied settings and can be completed by a wide range of people with stroke in approximately 5 min with the use of minimal equipment (tape, stop watch).
Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.
Duncan, Comer; Zhai, Guangnian; Scherer, Ronald
2006-11-01
The penalty immersed boundary (PIB) method, originally introduced by Peskin (1972) to model the function of the mammalian heart, is tested as a fluid-structure interaction model of the closely coupled dynamics of the vocal folds and aerodynamics in phonation. Two-dimensional vocal folds are simulated with material properties chosen to result in self-oscillation and volume flows in physiological frequency ranges. Properties of the glottal flow field, including vorticity, are studied in conjunction with the dynamic vocal fold motion. The results of using the PIB method to model self-oscillating vocal folds for the case of 8 cm H20 as the transglottal pressure gradient are described. The volume flow at 8 cm H20, the transglottal pressure, and vortex dynamics associated with the self-oscillating model are shown. Volume flow is also given for 2, 4, and 12 cm H2O, illustrating the robustness of the model to a range of transglottal pressures. The results indicate that the PIB method applied to modeling phonation has good potential for the study of the interdependence of aerodynamics and vocal fold motion.
Oscillating-flow loss test results in rectangular heat exchanger passages
NASA Technical Reports Server (NTRS)
Wood, J. Gary
1991-01-01
Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.
Digital PCR Modeling for Maximal Sensitivity, Dynamic Range and Measurement Precision
Majumdar, Nivedita; Wessel, Thomas; Marks, Jeffrey
2015-01-01
The great promise of digital PCR is the potential for unparalleled precision enabling accurate measurements for genetic quantification. A challenge associated with digital PCR experiments, when testing unknown samples, is to perform experiments at dilutions allowing the detection of one or more targets of interest at a desired level of precision. While theory states that optimal precision (Po) is achieved by targeting ~1.59 mean copies per partition (λ), and that dynamic range (R) includes the space spanning one positive (λL) to one negative (λU) result from the total number of partitions (n), these results are tempered for the practitioner seeking to construct digital PCR experiments in the laboratory. A mathematical framework is presented elucidating the relationships between precision, dynamic range, number of partitions, interrogated volume, and sensitivity in digital PCR. The impact that false reaction calls and volumetric variation have on sensitivity and precision is next considered. The resultant effects on sensitivity and precision are established via Monte Carlo simulations reflecting the real-world likelihood of encountering such scenarios in the laboratory. The simulations provide insight to the practitioner on how to adapt experimental loading concentrations to counteract any one of these conditions. The framework is augmented with a method of extending the dynamic range of digital PCR, with and without increasing n, via the use of dilutions. An example experiment demonstrating the capabilities of the framework is presented enabling detection across 3.33 logs of starting copy concentration. PMID:25806524
Vertical-axis wind turbine experiments at full dynamic similarity
NASA Astrophysics Data System (ADS)
Duvvuri, Subrahmanyam; Miller, Mark; Brownstein, Ian; Dabiri, John; Hultmark, Marcus
2017-11-01
This study presents results from pressurized (upto 200 atm) wind tunnel tests of a self-spinning 5-blade model Vertical-Axis Wind Turbine (VAWT). The model is geometrically similar (scale ratio 1:22) to a commercially available VAWT, which has a rotor diameter of 2.17 meters and blade span of 3.66 meters, and is used at the Stanford university field lab. The use of pressurized air as working fluid allows for the unique ability to obtain full dynamic similarity with field conditions in terms of matched Reynolds numbers (Re), tip-speed ratios (λ), and Mach number (M). Tests were performed across a wide range of Re and λ, with the highest Re exceeding the maximum operational field Reynolds number (Remax) by a factor of 3. With an extended range of accessible Re conditions, the peak turbine power efficiency was seen to occur roughly at Re = 2 Remax and λ = 1 . Beyond Re > 2 Remax the turbine performance is invariant in Re for all λ. A clear demonstration of Reynolds number invariance for an actual full-scale wind turbine lends novelty to this study, and overall the results show the viability of the present experimental technique in testing turbines at field conditions.
Drift Mode Accelerometry for Spaceborne Gravity Measurements
NASA Astrophysics Data System (ADS)
Conklin, J. W.; Shelley, R.; Chilton, A.; Olatunde, T.; Ciani, G.; Mueller, G.
2014-12-01
A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be accounted for in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. This presentation describes operation and performance modeling for such a device with respect to a low Earth orbiting satellite geodesy mission. Methods for testing the drift mode accelerometer with the University of Florida precision torsion pendulum will also be discussed.
NASA Astrophysics Data System (ADS)
Demmel, F.; Tani, A.
2018-06-01
For liquid rubidium the Stokes-Einstein (SE) relation is well fulfilled near the melting point with an effective hydrodynamic diameter, which agrees well with a value from structural investigations. A wealth of thermodynamic and microscopic data exists for a wide range of temperatures for liquid rubidium and hence it represents a good test bed to challenge the SE relation with rising temperature from an experimental point of view. We performed classical molecular dynamics simulations to complement the existing experimental data using a pseudopotential, which describes perfectly the structure and dynamics of liquid rubidium. The derived SE relation from combining experimental shear viscosity data with simulated diffusion coefficients reveals a weak violation at about 1.3 Tmelting≈400 K. The microscopic relaxation dynamics on nearest neighbor distances from neutron spectroscopy demonstrate distinct changes in the amplitude with rising temperature. The derived average relaxation time for density fluctuations on this length scale shows a non-Arrhenius behavior, with a slope change around 1.5 Tmelting≈450 K. Combining the simulated macroscopic self-diffusion coefficient with that microscopic average relaxation time, a distinct violation of the SE relation in the same temperature range can be demonstrated. One can conclude that the changes in the collective dynamics, a mirror of the correlated movements of the particles, are at the origin for the violation of the SE relation. The changes in the dynamics can be understood as a transition from a more viscous liquid metal to a more fluid-like liquid above the crossover temperature range of 1.3-1.5 Tmelting. The decay of the amplitude of density fluctuations in liquid aluminium, lead, and rubidium demonstrates a remarkable agreement and points to a universal thermal crossover in the dynamics of liquid metals.
The cochlea as a smart structure
NASA Astrophysics Data System (ADS)
Elliott, Stephen J.; Shera, Christopher A.
2012-06-01
The cochlea is part of the inner ear and its mechanical response provides us with many aspects of our amazingly sensitive and selective hearing. The human cochlea is a coiled tube, with two main fluid chambers running along its length, separated by a 35 mm-long flexible partition that has its own internal dynamics. A dispersive wave can propagate along the cochlea due to the interaction between the inertia of the fluid and the dynamics of the partition. This partition includes about 12 000 outer hair cells, which have different structures, on a micrometre and a nanometre scale, and act both as motional sensors and as motional actuators. The local feedback action of all these cells amplifies the motion inside the inner ear by more than 40 dB at low sound pressure levels. The feedback loops become saturated at higher sound pressure levels, however, so that the feedback gain is reduced, leading to a compression of the dynamic range in the cochlear amplifier. This helps the sensory cells, with a dynamic range of only about 30 dB, to respond to sounds with a dynamic range of more than 120 dB. The active and nonlinear nature of the dynamics within the cochlea give rise to a number of other phenomena, such as otoacoustic emissions, which can be used as a diagnostic test for hearing problems in newborn children, for example. In this paper we view the mechanical action of the cochlea as a smart structure. In particular a simplified wave model of the cochlear dynamics is reviewed that represents its essential features. This can be used to predict the motion along the cochlea when the cochlea is passive, at high levels, and also the effect of the cochlear amplifier, at low levels.
Huang, Wenzhu; Zhang, Wentao; Li, Fang
2015-04-01
This Letter presents a static strain demodulation technique for FBG-FP sensors using a suppressed carrier LiNbO(3) (LN) optical single sideband (SSB-SC) modulator. A narrow-linewidth tunable laser source is generated by driving the modulator using a linear chirp signal. Then this tunable single-frequency laser is used to interrogate the FBG-FP sensors with the Pound-Drever-Hall (PDH) technique, which is beneficial to eliminate the influence of light intensity fluctuation of the modulator at different tuning frequencies. The static strain is demodulated by calculating the wavelength difference of the PDH signals between the sensing FBG-FP sensor and the reference FBG-FP sensor. As an experimental result using the modulator, the linearity (R2) of the time-frequency response increases from 0.989 to 0.997, and the frequency-swept range (dynamic range) increases from hundreds of MHz to several GHz compared with commercial PZT-tunable lasers. The high-linearity time-wavelength relationship of the modulator is beneficial for improving the strain measurement resolution, as it can solve the problem of the frequency-swept nonlinearity effectively. In the laboratory test, a 0.67 nanostrain static strain resolution, with a 6 GHz dynamic range, is demonstrated.
Dynamic Temperature and Pressure Measurements in the Core of a Propulsion Engine
NASA Technical Reports Server (NTRS)
Schuster, Bill; Gordon, Grant; Hultgren, Lennart S.
2015-01-01
Dynamic temperature and pressure measurements were made in the core of a TECH977 propulsion engine as part of a NASA funded investigation into indirect combustion noise. Dynamic temperature measurements were made in the combustor, the inter-turbine duct, and the mixer using ten two-wire thermocouple probes. Internal dynamic pressure measurements were made at the same locations using piezoresistive transducers installed in semi-infinite coils. Measurements were acquired at four steady state operating conditions covering the range of aircraft approach power settings. Fluctuating gas temperature spectra were computed from the thermocouple probe voltage measurements using a compensation procedure that was developed under previous NASA test programs. A database of simultaneously acquired dynamic temperature and dynamic pressure measurements was produced. Spectral and cross-spectral analyses were conducted to explore the characteristics of the temperature and pressure fluctuations inside the engine, with a particular focus on attempting to identify the presence of indirect combustion noise.
Evaluation of the safety and durability of low-cost nonprogrammable electric powered wheelchairs.
Pearlman, Jonathan L; Cooper, Rory A; Karnawat, Jaideep; Cooper, Rosemarie; Boninger, Michael L
2005-12-01
To evaluate whether a selection of low-cost, nonprogrammable electric-powered wheelchairs (EPWs) meets the American National Standards Institute (ANSI)/Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Wheelchair Standards requirements. Objective comparison tests of various aspects of power wheelchair design and performance of 4 EPW types. Three of each of the following EPWs: Pride Mobility Jet 10 (Pride), Invacare Pronto M50 (Invacare), Electric Mobility Rascal 250PC (Electric Mobility), and the Golden Technologies Alanté GP-201-F (Golden). Rehabilitation engineering research center. Not applicable. Static tipping angle; dynamic tipping score; braking distance; energy consumption; climatic conditioning; power and control systems integrity and safety; and static, impact, and fatigue life (equivalent cycles). Static tipping angle and dynamic tipping score were significantly different across manufacturers for each tipping direction (range, 6.6 degrees-35.6 degrees). Braking distances were significantly different across manufacturers (range, 7.4-117.3 cm). Significant differences among groups were found with analysis of variance (ANOVA). Energy consumption results show that all EPWs can travel over 17 km before the battery is expected to be exhausted under idealized conditions (range, 18.2-32.0 km). Significant differences among groups were found with ANOVA. All EPWs passed the climatic conditioning tests. Several adverse responses were found during the power and control systems testing, including motors smoking during the stalling condition (Electric Mobility), charger safety issues (Electric Mobility, Invacare), and controller failures (Golden). All EPWs passed static and impact testing; 9 of 12 failed fatigue testing (3 Invacare, 3 Golden, 1 Electric Mobility, 2 Pride). Equivalent cycles did not differ statistically across manufacturers (range, 9759-824,628 cycles). Large variability in the results, especially with respect to static tipping, power and control system failures, and fatigue life suggest design improvements must be made to make these low-cost, nonprogrammable EPWs safe and reliable for the consumer. Based on our results, these EPWs do not, in general, meet the ANSI/RESNA Wheelchair Standards requirements.
Dynamic facade module prototype development for solar radiation prevention in high rise building
NASA Astrophysics Data System (ADS)
Sega Sufia Purnama, Muhammad; Sutanto, Dalhar
2018-03-01
Solar radiation is an aspect that high rise building must avoid. The problem is, if high rise building facade can’t overcome, the solar thermal will come in the building, and its affects on the increasing of room temperature above comfort range. A type of additional facade element that could solve solar thermal in high rise building is adding a sun shading. A dynamic facade is a shade plane in high rise building that can moved or changed on outside condition such as solar movement and intensity. This research will discuss the dynamic facade module prototype development in high rise building in Jakarta. This research will be finish through some step. (1) Static shading shadow simulation. (2) Dynamic facade concept design development. (3) Dynamic shading shadow simulation. (4) Making of dynamic facade module prototype. (5) Field test for the dynamic facade module prototype. The dynamic facade in Jakarta case will be effective to solve solar transmission in high rise building rather than static facade.
Bhadauria, Esha A.; Gurudut, Peeyoosha
2017-01-01
The aim of the present study was to compare three different forms of exercises namely lumbar stabilization, dynamic strengthening, and Pilates on chronic low back pain (LBP) in terms of pain, range of motion, core strength and function. In this study, 44 subjects suffering from non-specific LBP for more than 3 months were randomly allocated into the lumbar stabilization group, the dynamic strengthening group, and the Pilates group. Ten sessions of exercises for 3 weeks were prescribed along with interferential current and hot moist pack. Pain was assessed by visual analog scale, functional affection by modified Oswestry Disability Questionnaire, range of motion by assessing lumbar flexion and extension by modified Schober test and core strength was assessed by pressure biofeedback on day 1 and day 10 of the treatment. There was reduction of pain, improvement in range of motion, functional ability and core strength in all the 3 exercise groups. The improvement was significantly greater in the lumbar stabilization group for all the outcome measures, when compared the posttreatment after 10th session. Pairwise comparison showed that there was greater reduction of disability in the Pilates group than the dynamic strengthening group. It was concluded that the lumbar stabilization is more superior compared to the dynamic strengthening and Pilates in chronic nonspecific LBP. However, long-term benefits need to be assessed and compared with prospective follow-up studies. PMID:29114516
Simulation of the dynamic environment for missile component testing: Demonstration
NASA Technical Reports Server (NTRS)
Chang, Kurng Y.
1989-01-01
The problems in defining a realistic test requirement for missile and space vehicle components can be classified into two categories: (1) definition of the test environment representing the expected service condition, and (2) simulation of the desired environment in the test laboratory. Recently, a new three-dimensional (3-D) test facility was completed at the U.S. Army Harry Diamond Laboratory (HDL) to simulate triaxial vibration input to a test specimen. The vibration test system is designed to support multi-axial vibration tests over the frequency range of 5 to 2000 Hertz. The availability of this 3-D test system motivates the development of new methodologies addressing environmental definition and simulation.
Trzcinski, M Kurtis; Walde, Sandra J; Taylor, Philip D
2008-11-01
1. Theory predicting that populations with high maximum rates of increase (r(max)) will be less stable, and that metapopulations with high average r(max) will be less synchronous, was tested using a small protist, Bodo, that inhabits pitcher plant leaves (Sarracenia purpurea L.). The effects of predators and resources on these relationships were also determined. 2. Abundance data collected for a total of 60 populations of Bodo, over a period of 3 months, at six sites in three bogs in eastern Canada, were used to test these predictions. Mosquitoes were manipulated in half the leaves partway through the season to increase the range of predation rates. 3. Dynamics differed greatly among leaves and sites, but most populations exhibited one or more episodes of rapid increase followed by a population crash. Estimates of r(max) obtained using a linear mixed-effects model, ranged from 1 x 5 to 2 x 7 per day. Resource levels (captured insect) and midge abundances affected r(max). 4. Higher r(max) was associated with greater temporal variability and lower synchrony as predicted. However, in contrast to expectations, populations with higher r(max) also had lower mean abundance and were more suppressed by predators. 5. This study demonstrates that the link between r(max) and temporal variability is key to understanding the dynamics of populations that spend little time near equilibrium, and to predicting and interpreting the effects of community structure on the dynamics of such populations.
NASA Astrophysics Data System (ADS)
Khalifa, Aly A.; Aly, Hussein A.; El-Sherif, Ashraf F.
2016-02-01
Near infrared (NIR) dynamic scene projection systems are used to perform hardware in-the-loop (HWIL) testing of a unit under test operating in the NIR band. The common and complex requirement of a class of these units is a dynamic scene that is spatio-temporal variant. In this paper we apply and investigate active external modulation of NIR laser in different ranges of temporal frequencies. We use digital micromirror devices (DMDs) integrated as the core of a NIR projection system to generate these dynamic scenes. We deploy the spatial pattern to the DMD controller to simultaneously yield the required amplitude by pulse width modulation (PWM) of the mirror elements as well as the spatio-temporal pattern. Desired modulation and coding of high stable, high power visible (Red laser at 640 nm) and NIR (Diode laser at 976 nm) using the combination of different optical masks based on DMD were achieved. These spatial versatile active coding strategies for both low and high frequencies in the range of kHz for irradiance of different targets were generated by our system and recorded using VIS-NIR fast cameras. The temporally-modulated laser pulse traces were measured using array of fast response photodetectors. Finally using a high resolution spectrometer, we evaluated the NIR dynamic scene projection system response in terms of preserving the wavelength and band spread of the NIR source after projection.
Launch Vehicle Flight Report - Nasa Project Apollo Little Joe 2 Qualification Test Vehicle 12-50-1
NASA Technical Reports Server (NTRS)
1963-01-01
The Little Joe II Qualification Test Vehicle, Model 12-50-1, was launched from Army Launch Area 3 {ALA-3) at White Sands Missile Range, New Mexico, on 28 August 1963. This was the first launch of this class of boosters. The Little Joe II Launch Vehicle was designed as a test vehicle for boosting payloads into flight. For the Apollo Program, its mission is to serve as a launch vehicle for flight testing of the Apollo spacecraft. Accomplishment of this mission requires that the vehicle be capable of boosting the Apollo payload to parameters ranging from high dynamic pressures at low altitude to very high altitude flight. The fixed-fin 12-50 version was designed to accomplish the low-altitude parameter. The 12-51 version incorporates an attitude control system to accomplish the high altitude mission. This launch was designed to demonstrate the Little Joe II capability of meeting the high dynamic pressure parameter for the Apollo Program. For this test, a boiler-plate version of the Apollo capsule, service module and escape tower were attached to the launch vehicle to simulate weight, center of gravity and aerodynamic shape of the Apollo configuration. No attempt was made to separate the payload in flight. The test was conducted in compliance with Project Apollo Flight Mission Directive for QTV-1, NASA-MSC, dated 3 June 1963, under authority of NASA Contract NAS 9-492,
Foam Rolling for Delayed-Onset Muscle Soreness and Recovery of Dynamic Performance Measures
Pearcey, Gregory E. P.; Bradbury-Squires, David J.; Kawamoto, Jon-Erik; Drinkwater, Eric J.; Behm, David G.; Button, Duane C.
2015-01-01
Context: After an intense bout of exercise, foam rolling is thought to alleviate muscle fatigue and soreness (ie, delayed-onset muscle soreness [DOMS]) and improve muscular performance. Potentially, foam rolling may be an effective therapeutic modality to reduce DOMS while enhancing the recovery of muscular performance. Objective: To examine the effects of foam rolling as a recovery tool after an intense exercise protocol through assessment of pressure-pain threshold, sprint time, change-of-direction speed, power, and dynamic strength-endurance. Design: Controlled laboratory study. Setting: University laboratory. Patients or Other Participants: A total of 8 healthy, physically active males (age = 22.1 ± 2.5 years, height = 177.0 ± 7.5 cm, mass = 88.4 ± 11.4 kg) participated. Intervention(s): Participants performed 2 conditions, separated by 4 weeks, involving 10 sets of 10 repetitions of back squats at 60% of their 1-repetition maximum, followed by either no foam rolling or 20 minutes of foam rolling immediately, 24, and 48 hours postexercise. Main Outcome Measure(s): Pressure-pain threshold, sprint speed (30-m sprint time), power (broad-jump distance), change-of-direction speed (T-test), and dynamic strength-endurance. Results: Foam rolling substantially improved quadriceps muscle tenderness by a moderate to large amount in the days after fatigue (Cohen d range, 0.59 to 0.84). Substantial effects ranged from small to large in sprint time (Cohen d range, 0.68 to 0.77), power (Cohen d range, 0.48 to 0.87), and dynamic strength-endurance (Cohen d = 0.54). Conclusions: Foam rolling effectively reduced DOMS and associated decrements in most dynamic performance measures. PMID:25415413
A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thatcher, Diana R.; Jablonowski, Christiane
A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. Furthermore, the new moist variant of the HS test can be considered a test case of intermediate complexity.« less
A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores
Thatcher, Diana R.; Jablonowski, Christiane
2016-04-04
A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. Furthermore, the new moist variant of the HS test can be considered a test case of intermediate complexity.« less
Development of Test-Analysis Models (TAM) for correlation of dynamic test and analysis results
NASA Technical Reports Server (NTRS)
Angelucci, Filippo; Javeed, Mehzad; Mcgowan, Paul
1992-01-01
The primary objective of structural analysis of aerospace applications is to obtain a verified finite element model (FEM). The verified FEM can be used for loads analysis, evaluate structural modifications, or design control systems. Verification of the FEM is generally obtained as the result of correlating test and FEM models. A test analysis model (TAM) is very useful in the correlation process. A TAM is essentially a FEM reduced to the size of the test model, which attempts to preserve the dynamic characteristics of the original FEM in the analysis range of interest. Numerous methods for generating TAMs have been developed in the literature. The major emphasis of this paper is a description of the procedures necessary for creation of the TAM and the correlation of the reduced models with the FEM or the test results. Herein, three methods are discussed, namely Guyan, Improved Reduced System (IRS), and Hybrid. Also included are the procedures for performing these analyses using MSC/NASTRAN. Finally, application of the TAM process is demonstrated with an experimental test configuration of a ten bay cantilevered truss structure.
Measurement of Unsteady Pressure Data on a Large HSCT Semispan Wing and Comparison with Analysis
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Silva, Walter A.; Florance, James R.; Keller, Donald F.
2002-01-01
Experimental data from wind-tunnel tests of the Rigid Semispan Model (RSM) performed at NASA Langley's Transonic Dynamics Tunnel (TDT) are presented. The primary focus of the paper is on data obtained from testing of the RSM on the Oscillating Turntable (OTT). The OTT is capable of oscillating models in pitch at various amplitudes and frequencies about mean angles of attack. Steady and unsteady pressure data obtained during testing of the RSM on the OTT is presented and compared to data obtained from previous tests of the RSM on a load balance and on a Pitch and Plunge Apparatus (PAPA). Testing of the RSM on the PAPA resulted in utter boundaries that were strongly dependent on angle of attack across the Mach number range. Pressure data from all three tests indicates the existence of vortical flows at moderate angles of attack. The correlation between the vortical flows and the unusual utter boundaries from the RSM/PAPA test is discussed. Comparisons of experimental data with analyses using the CFL3Dv6 computational fluid dynamics code are presented.
NASA Technical Reports Server (NTRS)
Gouge, Michael F.
2011-01-01
Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.
Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul
2011-07-01
In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.
Feasibility of using Eastman Kodak type 3400 film for high altitude multispectral photography
NASA Technical Reports Server (NTRS)
Perry, L.
1972-01-01
A photographic test flight of the NASA RB-57F was conducted on March 25, 1972, over Houston and West Texas, to determine the suitability of Eastman Kodak type 3400 film as a replacement for type 2402 film in the Hasselblad cameras. An additional purpose was to test GAF film type 2914, a new black and white film similar to 2402, but with higher maximum gamma and greater dynamic range.
Warm-ups for military fitness testing: rapid evidence assessment of the literature.
Zeno, Stacey A; Purvis, Dianna; Crawford, Cindy; Lee, Courtney; Lisman, Peter; Deuster, Patricia A
2013-07-01
Warm-up exercises are commonly used before exercise as a method to physiologically prepare for strenuous physical activity. Various warm-up exercises are often implemented but without scientific merit and, at times, may be detrimental to performance. To date, no systematic reviews have examined the effectiveness of warm-up exercises for military physical fitness test (PFT) or combat fitness test (CFT). The purpose of this rapid evidence assessment of the literature was to examine the quantity, quality, and effectiveness of warm-up exercises for PFT and identify those that might increase PFT and/or CFT scores, as reported in the literature. Literature searches of randomized controlled trials were performed across various databases from database inception to May 2011. Methodological quality of included studies was assessed using the Scottish Intercollegiate Guidelines Network (SIGN) 50 criteria for randomized controlled trial designs, and studies were individually described. Subject matter experts summarized the results applicable or generalizable to military testing. The search yielded a total of 1177 citations, with 37 fitting our inclusion criteria. Cardiovascular warm-ups increased sprint/running time, but dynamic stretching and dynamic warm-ups had the most positive outcome for the various exercise tests examined. Systematically, static stretching had no beneficial or detrimental effect on exercise performance but did improve range of movement exercises. Selected warm-up exercise may increase PFT and possibly CFT scores. Further research is needed to investigate the efficacy of dynamic stretching and dynamic warm-ups.
The experimental identification of magnetorheological dampers and evaluation of their controllers
NASA Astrophysics Data System (ADS)
Metered, H.; Bonello, P.; Oyadiji, S. O.
2010-05-01
Magnetorheological (MR) fluid dampers are semi-active control devices that have been applied over a wide range of practical vibration control applications. This paper concerns the experimental identification of the dynamic behaviour of an MR damper and the use of the identified parameters in the control of such a damper. Feed-forward and recurrent neural networks are used to model both the direct and inverse dynamics of the damper. Training and validation of the proposed neural networks are achieved by using the data generated through dynamic tests with the damper mounted on a tensile testing machine. The validation test results clearly show that the proposed neural networks can reliably represent both the direct and inverse dynamic behaviours of an MR damper. The effect of the cylinder's surface temperature on both the direct and inverse dynamics of the damper is studied, and the neural network model is shown to be reasonably robust against significant temperature variation. The inverse recurrent neural network model is introduced as a damper controller and experimentally evaluated against alternative controllers proposed in the literature. The results reveal that the neural-based damper controller offers superior damper control. This observation and the added advantages of low-power requirement, extended service life of the damper and the minimal use of sensors, indicate that a neural-based damper controller potentially offers the most cost-effective vibration control solution among the controllers investigated.
J-2X Fuel Turbopump Point of Departure: The Performance of the J-2s Fuel Turbopump Inducer
NASA Technical Reports Server (NTRS)
Sargent, S. R.; Becht, D. G.; Mulder, A. D.
2008-01-01
To aid the J-2X program design effort with detailed performance and environment information, the J-2S fuel turbopump (FTP) inducer has undergone a thorough test series in both water and hydrogen. The test series utilizes both inducer only and a complete pump configuration to assess the inducer interaction to the overall turbopump system. The test goals include verification of suction performance against heritage J-2S data, head production, effects of thermodynamic suppression head (TSH), and evaluation of the inducer dynamic pressure caused by cavitation instabilities. Test facilities at both Pratt & Whitney Rocketdyne (PWR) and NASA s Stennis Space Center (SSC) are employed for the testing. The inducer only water test effort conducted at PWR established performance curves for suction performance, head production, and efficiency over a wide operating range. Because the heritage J-2S suction performance data set is in hydrogen, it is desired to obtain current suction performance data in hydrogen as well, thus avoiding the reliance on a theoretical TSH correlation for direct comparison. This data then provides an empirically based TSH correlation allowing for the comparison of water test suction data to system suction requirements. The FTP testing performed at SSC provides these suction performance relationships as well as inlet duct dynamic pressures during liquid hydrogen operation. The test effort successfully confirms the heritage J-2S suction performance and establishes the amount of TSH between water and hydrogen operation at the design flow coefficient. Correlating data is also obtained for cavitating instability frequency content, illustrating the validity of using the wide flow range water test data to predict hydrogen performance.
de Lima, Guilherme Ferreira; Duarte, Hélio Anderson; Pliego, Josefredo R
2010-12-09
A new dynamical discrete/continuum solvation model was tested for NH(4)(+) and OH(-) ions in water solvent. The method is similar to continuum solvation models in a sense that the linear response approximation is used. However, different from pure continuum models, explicit solvent molecules are included in the inner shell, which allows adequate treatment of specific solute-solvent interactions present in the first solvation shell, the main drawback of continuum models. Molecular dynamics calculations coupled with SCC-DFTB method are used to generate the configurations of the solute in a box with 64 water molecules, while the interaction energies are calculated at the DFT level. We have tested the convergence of the method using a variable number of explicit water molecules and it was found that even a small number of waters (as low as 14) are able to produce converged values. Our results also point out that the Born model, often used for long-range correction, is not reliable and our method should be applied for more accurate calculations.
Schmidt, David M; Scrivani, Peter V; Dykes, Nathan L; Goldstein, Richard M; Erb, Hollis N; Reeves, Anthony P
2012-04-01
To compare estimation of glomerular filtration rate determined via conventional methods (ie, scintigraphy and plasma clearance of technetium Tc 99m pentetate) and dynamic single-slice computed tomography (CT). 8 healthy adult cats. Scintigraphy, plasma clearance testing, and dynamic CT were performed on each cat on the same day; order of examinations was randomized. Separate observers performed GFR calculations for scintigraphy, plasma clearance testing, or dynamic CT. Methods were compared via Bland-Altman plots and considered interchangeable and acceptable when the 95% limits of agreement (mean difference between methods ± 1.96 SD of the differences) were ≤ 0.7 mL/min/kg. Global GFR differed < 0.7 mL/min/kg in 5 of 8 cats when comparing plasma clearance testing and dynamic CT; the limits of agreement were 1.4 and -1.7 mL/min/kg. The mean ± SD difference was -0.2 ± 0.8 mL/min/kg, and the maximum difference was 1.6 mL/min/kg. The mean ± SD difference (absolute value) for percentage filtration by individual kidneys was 2.4 ± 10.5% when comparing scintigraphy and dynamic CT; the maximum difference was 20%, and the limits of agreement were 18% and 23% (absolute value). GFR estimation via dynamic CT exceeded the definition for acceptable clinical use, compared with results for conventional methods, which was likely attributable to sample size and preventable technical complications. Because 5 of 8 cats had comparable values between methods, further investigation of dynamic CT in a larger sample population with a wide range of GFR values should be performed.
NASA Technical Reports Server (NTRS)
Chiang, T.; Tessarzik, J. M.; Badgley, R. H.
1972-01-01
The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.
NASA Technical Reports Server (NTRS)
Adams, M. L.; Yang, T.; Pace, S. E.
1989-01-01
A new seal test facility for measuring high-pressure seal rotor-dynamic characteristics has recently been made operational at Case Western Reserve University (CWRU). This work is being sponsored by the Electric Power Research Institute (EPRI). The fundamental concept embodied in this test apparatus is a double-spool-shaft spindle which permits independent control over the spin speed and the frequency of an adjustable circular vibration orbit for both forward and backward whirl. Also, the static eccentricity between the rotating and non-rotating test seal parts is easily adjustable to desired values. By accurately measuring both dynamic radial displacement and dynamic radial force signals, over a wide range of circular orbit frequency, one is able to solve for the full linear-anisotropic model's 12 coefficients rather than the 6 coefficients of the more restrictive isotropic linear model. Of course, one may also impose the isotropic assumption in reducing test data, thereby providing a valid qualification of which seal configurations are well represented by the isotropic model and which are not. In fact, as argued in reference (1), the requirement for maintaining a symmetric total system mass matrix means that the resulting isotropic model needs 5 coefficients and the anisotropic model needs 11 coefficients.
Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P
2009-07-31
In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be equivalent to the bacterial growth occurring at the product's surface or centre when convection heat transfer is taken into account. Our results indicate that combining food engineering and predictive microbiology models is an interesting approach providing very useful tools for food safety and process optimisation.
NASA Astrophysics Data System (ADS)
Hendrix, Roy E.; Dugger, Paul H.
1983-03-01
Since the onset of user testing in the AEDC aeroballistic ranges in 1961, concentrated efforts in such areas as model launching techniques, test environment simulation, and specialized instrumentation have been made to enhance the usefulness of these test facilities. A wide selection of specialized instrumentation has been developed over the years to provide, among other features, panoramic photographic coverage of test models during flight. Pulsed ruby lasers, xenon flash lamps, visible-light spark sources, and flash X-ray systems are employed as short-duration radiation sources in various front-light and back-light photographic systems. Visible-light and near infrared image intensifier diodes are used to achieve high-speed shuttering in photographic pyrometry systems that measure surface temperatures of test models in flight. Turbine-driven framing cameras are used to provide multiframe photography of such high-speed phenomena as impact debris formation and model encounter with erosive fields. As a result, the capabilities of these ballistic range test units have increased significantly in regard to the types of tests that can be accommodated and to the quality and quantity of data that can be provided. Presently, five major range and companion track facilities are active in conducting hypervelocity testing in AEDC's von K6rman Gas Dynamics Facility (VKF): Ranges G, K, and S-1 and Tracks G and K. The following types of tests are conducted in these test units: ablation/erosion, transpiration-cooled nosetip (TCNT), nosetip transition, heat transfer, aerodynamic, cannon projectile, rocket contrail, reentry physics, and hypervelocity impact. The parallel achievements in high-speed photography and testing capabilities are discussed, and the significant role of photographic systems in the development of the overall testing capabilities of the AEDC range and track facilities is illustrated in numerous examples of photographic results.
High dynamic range image acquisition based on multiplex cameras
NASA Astrophysics Data System (ADS)
Zeng, Hairui; Sun, Huayan; Zhang, Tinghua
2018-03-01
High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.
Liao, Ying-Yi; Yang, Yea-Ru; Cheng, Shih-Jung; Wu, Yih-Ru; Fuh, Jong-Ling; Wang, Ray-Yau
2015-08-01
Obstacle crossing is a balance-challenging task and can cause falls in people with Parkinson's disease (PD). However, programs for people with PD that effectively target obstacle crossing and dynamic balance have not been established. To examine the effects of virtual reality-based exercise on obstacle crossing performance and dynamic balance in participants with PD. Thirty-six participants with a diagnosis of PD (Hoehn and Yahr score ranging 1 to 3) were randomly assigned to one of three groups. In the exercise groups, participants received virtual reality-based Wii Fit exercise (VRWii group) or traditional exercise (TE group) for 45 minutes, followed by 15 minutes of treadmill training in each session for a total of 12 sessions over 6 weeks. Participants in the control group received no structured exercise program. Primary outcomes included obstacle crossing performance (crossing velocity, stride length, and vertical toe obstacle clearance) and dynamic balance (maximal excursion, movement velocity, and directional control measured by the limits-of-stability test). Secondary outcomes included sensory organization test (SOT), Parkinson's Disease Questionnaire (PDQ39), fall efficacy scale (FES-I), and timed up and go test (TUG). All outcomes were assessed at baseline, after training, and at 1-month follow-up. The VRWii group showed greater improvement in obstacle crossing velocity, crossing stride length, dynamic balance, SOT, TUG, FES-I, and PDQ39 than the control group. VRWii training also resulted in greater improvement in movement velocity of limits-of-stability test than TE training. VRWii training significantly improved obstacle crossing performance and dynamic balance, supporting implementation of VRWii training in participants with PD. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Marshall, B. R.; Miller, E. K.
2015-02-15
A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, andmore » we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.« less
NASA Technical Reports Server (NTRS)
Triplett, William C; Brown, Stuart C; Smith, G Allan
1955-01-01
The longitudinal and lateral-directional dynamic-response characteristics of a 35 degree swept-wing fighter-type airplane determined from flight measurements are presented and compared with predictions based on theoretical studies and wind-tunnel data. Flights were made at an altitude of 35,000 feet covering the Mach number range of 0.50 to 1.04. A limited amount of lateral-directional data were also obtained at 10,000 feet. The flight consisted essentially of recording transient responses to pilot-applied pulsed motions of each of the three primary control surfaces. These transient data were converted into frequency-response form by means of the Fourier transformation and compared with predicted responses calculated from the basic equations. Experimentally determined transfer functions were used for the evaluation of the stability derivatives that have the greatest effect on the dynamic response of the airplane. The values of these derivatives, in most cases, agreed favorably with predictions over the Mach number range of the test.
Computed and Experimental Flutter/LCO Onset for the Boeing Truss-Braced Wing Wind-Tunnel Model
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Scott, Robert C.; Funk, Christie J.; Allen, Timothy J.; Sexton, Bradley W.
2014-01-01
This paper presents high fidelity Navier-Stokes simulations of the Boeing Subsonic Ultra Green Aircraft Research truss-braced wing wind-tunnel model and compares the results to linear MSC. Nastran flutter analysis and preliminary data from a recent wind-tunnel test of that model at the NASA Langley Research Center Transonic Dynamics Tunnel. The simulated conditions under consideration are zero angle of attack, so that structural nonlinearity can be neglected. It is found that, for Mach number greater than 0.78, the linear flutter analysis predicts flutter onset dynamic pressure below the wind-tunnel test and that predicted by the Navier-Stokes analysis. Furthermore, the wind-tunnel test revealed that the majority of the high structural dynamics cases were wing limit cycle oscillation (LCO) rather than flutter. Most Navier-Stokes simulated cases were also LCO rather than hard flutter. There is dip in the wind-tunnel test flutter/LCO onset in the Mach 0.76-0.80 range. Conditions tested above that Mach number exhibited no aeroelastic instability at the dynamic pressures reached in the tunnel. The linear flutter analyses do not show a flutter/LCO dip. The Navier-Stokes simulations also do not reveal a dip; however, the flutter/LCO onset is at a significantly higher dynamic pressure at Mach 0.90 than at lower Mach numbers. The Navier-Stokes simulations indicate a mild LCO onset at Mach 0.82, then a more rapidly growing instability at Mach 0.86 and 0.90. Finally, the modeling issues and their solution related to the use of a beam and pod finite element model to generate the Navier-Stokes structure mode shapes are discussed.
Real-time maritime scene simulation for ladar sensors
NASA Astrophysics Data System (ADS)
Christie, Chad L.; Gouthas, Efthimios; Swierkowski, Leszek; Williams, Owen M.
2011-06-01
Continuing interest exists in the development of cost-effective synthetic environments for testing Laser Detection and Ranging (ladar) sensors. In this paper we describe a PC-based system for real-time ladar scene simulation of ships and small boats in a dynamic maritime environment. In particular, we describe the techniques employed to generate range imagery accompanied by passive radiance imagery. Our ladar scene generation system is an evolutionary extension of the VIRSuite infrared scene simulation program and includes all previous features such as ocean wave simulation, the physically-realistic representation of boat and ship dynamics, wake generation and simulation of whitecaps, spray, wake trails and foam. A terrain simulation extension is also under development. In this paper we outline the development, capabilities and limitations of the VIRSuite extensions.
Reliability and Normative Data for the Dynamic Visual Acuity Test for Vestibular Screening.
Riska, Kristal M; Hall, Courtney D
2016-06-01
The purpose of this study was to determine reliability of computerized dynamic visual acuity (DVA) testing and to determine reference values for younger and older adults. A primary function of the vestibular system is to maintain gaze stability during head motion. The DVA test quantifies gaze stabilization with the head moving versus stationary. Commercially available computerized systems allow clinicians to incorporate DVA into their assessment; however, information regarding reliability and normative values of these systems is sparse. Forty-six healthy adults, grouped by age, with normal vestibular function were recruited. Each participant completed computerized DVA testing including static visual acuity, minimum perception time, and DVA using the NeuroCom inVision System. Testing was performed by two examiners in the same session and then repeated at a follow-up session 3 to 14 days later. Intraclass correlation coefficients (ICCs) were used to determine inter-rater and test-retest reliability. ICCs for inter-rater reliability ranged from 0.323 to 0.937 and from 0.434 to 0.909 for horizontal and vertical head movements, respectively. ICCs for test-retest reliability ranged from 0.154 to 0.856 and from 0.377 to 0.9062 for horizontal and vertical head movements, respectively. Overall, raw scores (left/right DVA and up/down DVA) were more reliable than DVA loss scores. Reliability of a commercially available DVA system has poor-to-fair reliability for DVA loss scores. The use of a convergence paradigm and not incorporating the forced choice paradigm may contribute to poor reliability.
A fully dynamic magneto-rheological fluid damper model
NASA Astrophysics Data System (ADS)
Jiang, Z.; Christenson, R. E.
2012-06-01
Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper.
NASA Technical Reports Server (NTRS)
Scheidler, Justin; Asnani, Vivake M.; Dapino, Marcelo J.
2015-01-01
This paper details the development of an electrically-controlled, variable-stiffness spring based on magnetostrictive materials. The device, termed a magnetostrictive Varispring, can be applied as a semi-active vibration isolator or switched stiffness vibration controller for reducing transmitted vibrations. The Varispring is designed using 1D linear models that consider the coupled electrical response, mechanically-induced magnetic diffusion, and the effect of internal mass on dynamic stiffness. Modeling results illustrate that a Terfenol-D-based Varispring has a rise time almost an order of magnitude smaller and a magnetic diffusion cut-off frequency over two orders of magnitude greater than a Galfenol-based Varispring. The results motivate the use of laminated Terfenol-D rods for a greater stiffness tuning range and increased bandwidth. The behavior of a prototype Varispring is examined under vibratory excitation up to 6 MPa and 25 Hz using a dynamic load frame. For this prototype, stiffness is indirectly varied by controlling the excitation current. Preliminary measurements of continuous stiffness tuning via sinusoidal currents up to 1 kHz are presented. The measurements demonstrate that the Young's modulus of the Terfenol-D rod inside the Varispring can be continuously varied by up to 21.9 GPa. The observed stiffness tuning range is relatively constant up to 500 Hz, but significantly decreases thereafter. The stiffness tuning range can be greatly increased by improving the current and force control such that a more consistent current can be applied and the Varispring can be accurately tested at a more optimal bias stress.
Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Wang, Peng; Plimpton, Steven J
The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - 1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory,more » 2) minimizing the amount of code that must be ported for efficient acceleration, 3) utilizing the available processing power from both many-core CPUs and accelerators, and 4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.« less
Dynamic range in small-world networks of Hodgkin-Huxley neurons with chemical synapses
NASA Astrophysics Data System (ADS)
Batista, C. A. S.; Viana, R. L.; Lopes, S. R.; Batista, A. M.
2014-09-01
According to Stevens' law the relationship between stimulus and response is a power-law within an interval called the dynamic range. The dynamic range of sensory organs is found to be larger than that of a single neuron, suggesting that the network structure plays a key role in the behavior of both the scaling exponent and the dynamic range of neuron assemblies. In order to verify computationally the relationships between stimulus and response for spiking neurons, we investigate small-world networks of neurons described by the Hodgkin-Huxley equations connected by chemical synapses. We found that the dynamic range increases with the network size, suggesting that the enhancement of the dynamic range observed in sensory organs, with respect to single neurons, is an emergent property of complex network dynamics.
Similarity Metrics for Closed Loop Dynamic Systems
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.
2008-01-01
To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and hence system identification error metrics are not directly relevant. In applications such as launch vehicles where the open loop plant is unstable it is similarity of the closed-loop system dynamics of a flight test that are relevant.
Forebody/Inlet of the Joint Strike Fighter Tested at Low Speeds
NASA Technical Reports Server (NTRS)
Johns, Albert L.
1998-01-01
As part of a national cooperative effort to develop a multinational fighter aircraft, a model of a Joint Strike Fighter concept was tested in several NASA Lewis Research Center wind tunnels at low speeds over a range of headwind velocities and model attitudes. This Joint Strike Fighter concept, which is scheduled to go into production in 2005, will greatly improve the range, capability, maneuverability, and survivability of fighter aircraft, and the production program could ultimately be worth $100 billion. The test program was a team effort between Lewis and Lockheed Martin Tactical Aircraft Systems. Testing was completed in September 1997, several weeks ahead of schedule, allowing Lockheed additional time to review the results and analysis data before the next test and resulting in significant cost savings for Lockheed. Several major milestones related to dynamic and steady-state data acquisition and overall model performance were reached during this model test. Results from this program will contribute to both the concept demonstration phase and the production aircraft.
NASA Technical Reports Server (NTRS)
Mcalister, K. W.; Pucci, S. L.; Mccroskey, W. J.; Carr, L. W.
1982-01-01
Experimentally derived force and moment data are presented for eight airfoil sections that were tested at fixed and varying incidence in a subsonic two dimensional stream. Airfoil incidence was varied through sinusoidal oscillations in pitch over a wide range of amplitude and frequency. The surface pressure distribution, as well as the lift, drag, and pitching moment derived therefrom, are displayed in a uniform fashion to delineate the static and dynamic characteristics of each airfoil both in and out of stall.
NASA Astrophysics Data System (ADS)
Bock, Carlos; Prat, Josep; Walker, Stuart D.
2005-12-01
A novel time/space/wavelength division multiplexing (TDM/WDM) architecture using the free spectral range (FSR) periodicity of the arrayed waveguide grating (AWG) is presented. A shared tunable laser and a photoreceiver stack featuring dynamic bandwidth allocation (DBA) and remote modulation are used for transmission and reception. Transmission tests show correct operation at 2.5 Gb/s to a 30-km reach, and network performance calculations using queue modeling demonstrate that a high-bandwidth-demanding application could be deployed on this network.
Measurement of Gear Tooth Dynamic Friction
NASA Technical Reports Server (NTRS)
Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.
1996-01-01
Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.
Aircraft radial-belted tire evaluation
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Stubbs, Sandy M.; Davis, Pamela A.
1990-01-01
An overview is given of the ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program being conducted at NASA Langley's Aircraft Landing Dynamics Facility (ALDF). The START Program involves tests using three different tire sizes to evaluate tire rolling resistance, braking, and cornering performance throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Preliminary results from recent 40 x 14 size bias-ply, radial-belted, and H-type aircraft tire tests are discussed. The paper concludes with a summary of the current program status and planned ALDF test schedule.
Dynamic Emulation of NASA Missions for IVandV: A Case Study of JWST and SLS
NASA Technical Reports Server (NTRS)
Yokum, Steve
2015-01-01
Software-Only-Simulations are an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations ranging from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).
Fiber-Optic/Photoelastic Flow Sensors
NASA Technical Reports Server (NTRS)
Wesson, Laurence N.; Cabato, Nellie L.; Brooks, Edward F.
1995-01-01
Simple, rugged, lightweight transducers detect periodic vortices. Fiber-optic-coupled transducers developed to measure flows over wide dynamic ranges and over wide temperature ranges in severe environments. Used to measure flows of fuel in advanced aircraft engines. Feasibility of sensors demonstrated in tests of prototype sensor in water flowing at various temperatures and speeds. Particularly attractive for aircraft applications because optical fibers compact and make possible transmission of sensor signals at high rates with immunity from electromagnetic interference at suboptical frequencies. Sensors utilize optical-to-optical conversion via photoelastic effect.
Cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire
NASA Technical Reports Server (NTRS)
Davis, Pamela A.; Stubbs, Sandy M.; Vogler, William A.
1989-01-01
Tests of the Space Shuttle Orbiter nose-gear tire have been completed at NASA Langley's Aircraft Landing Dynamics Facility. The purpose of these tests was to determine the cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire under realistic operating conditions. The tire was tested on a simulated Kennedy Space Center runway surface at speeds from 100 to 180 kts. The results of these tests defined the cornering characteristics which included side forces and associated side force friction coefficient over a range of yaw angles from 0 deg to 12 deg. Wear characteristics were defined by tire tread and cord wear over a yaw angle range of 0 deg to 4 deg under dry and wet runway conditions. Wear characteristics were also defined for a 15 kt crosswind landing with two blown right main-gear tires and nose-gear steering engaged.
NASA Technical Reports Server (NTRS)
Choi, Sung H.; Salem, J. A.; Nemeth, N. N.
1998-01-01
High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.
Design and fabrication of an autonomous rendezvous and docking sensor using off-the-shelf hardware
NASA Technical Reports Server (NTRS)
Grimm, Gary E.; Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.
1991-01-01
NASA Marshall Space Flight Center (MSFC) has developed and tested an engineering model of an automated rendezvous and docking sensor system composed of a video camera ringed with laser diodes at two wavelengths and a standard remote manipulator system target that has been modified with retro-reflective tape and 830 and 780 mm optical filters. TRW has provided additional engineering analysis, design, and manufacturing support, resulting in a robust, low cost, automated rendezvous and docking sensor design. We have addressed the issue of space qualification using off-the-shelf hardware components. We have also addressed the performance problems of increased signal to noise ratio, increased range, increased frame rate, graceful degradation through component redundancy, and improved range calibration. Next year, we will build a breadboard of this sensor. The phenomenology of the background scene of a target vehicle as viewed against earth and space backgrounds under various lighting conditions will be simulated using the TRW Dynamic Scene Generator Facility (DSGF). Solar illumination angles of the target vehicle and candidate docking target ranging from eclipse to full sun will be explored. The sensor will be transportable for testing at the MSFC Flight Robotics Laboratory (EB24) using the Dynamic Overhead Telerobotic Simulator (DOTS).
High frequency testing of rubber mounts.
Vahdati, Nader; Saunders, L Ken Lauderbaugh
2002-04-01
Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.
NASA Technical Reports Server (NTRS)
Havens, Robert F.
1946-01-01
Tests of a powered dynamic model of the Columbia XJL-1 amphibian were made in Langley tank no.1 to determine the hydrodynamic stability and spray characteristics of the basic hull and to investigate the effects of modifications on these characteristics. Modifications to the forebody chime flare, the step, and the afterbody, and an increase in the angle of incidence of the wing were included in the test program. The seaworthiness and spray characteristics were studied from simulated taxi runs in smooth and rough water. The trim limits of stability, the range of stable positions of the enter of gravity for take-off, and the landing stability were determined in smooth water. The aerodynamic lift, pitching moment, and thrust were determined at speeds up to take-off speed.
Tests of Theories of Crime in Female Prisoners.
Lindberg, Marc A; Fugett, April; Adkins, Ashtin; Cook, Kelsey
2017-02-01
Several general theories of crime were tested with path models on 293 female prisoners in a U.S. State prison. The theories tested included Social Bond and Control, Thrill/Risk Seeking, and a new attachment-based Developmental Dynamic Systems model. A large battery of different instruments ranging from measures of risk taking, to a crime addiction scale, to Childhood Adverse Events, to attachments and clinical issues were used. The older general theories of crime did not hold up well under the rigor of path modeling. The new dynamic systems model was supported that incorporated adverse childhood events leading to (a) peer crime, (b) crime addiction, and (c) a measure derived from the Attachment and Clinical Issues Questionnaire (ACIQ) that takes individual differences in attachments and clinical issues into account. The results were discussed in terms of new approaches to Research Defined Criteria of Diagnosis (RDoC) and new approaches to intervention.
NASA Astrophysics Data System (ADS)
Wang, Yun; Zhao, Min; Wang, Qingguo
2018-01-01
In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.
Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data.
Caulfield, Thomas R; Devkota, Batsal; Rollins, Geoffrey C
2011-01-01
We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500 ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16.
Serrated Flow Behavior of Aisi 316l Austenitic Stainless Steel for Nuclear Reactors
NASA Astrophysics Data System (ADS)
Li, Qingshan; Shen, Yinzhong; Han, Pengcheng
2017-10-01
AISI 316L austenitic stainless steel is a candidate material for Generation IV reactors. In order to investigate the influence of temperature on serrated flow behavior, tensile tests were performed at temperatures ranging from 300 to 700 °C at an initial strain rate of 2×10-4 s-1. Another group of tensile tests were carried out at strain rates ranging from 1×10-4 to 1×10-2 s-1 at 600 °C to examine the influence of strain rates on serrated flow behavior. The steel exhibited serrated flow, suggesting the occurrence of dynamic strain ageing at 450-650°C. No plateau of yield stresses of the steel was observed at an initial strain rate of 2×10-4 s-1. The effective activation energy for serrated flow occurrence was calculated to be about 254.72 kJ/mol-1. Cr, Mn, Ni and Mo solute atoms are expected to be responsible for dynamic strain ageing at high temperatures of 450-650 °C in the steel.
NASA Astrophysics Data System (ADS)
Sokolovskiy, Vladimir; Grünebohm, Anna; Buchelnikov, Vasiliy; Entel, Peter
2014-09-01
This special issue collects contributions from the participants of the "Information in Dynamical Systems and Complex Systems" workshop, which cover a wide range of important problems and new approaches that lie in the intersection of information theory and dynamical systems. The contributions include theoretical characterization and understanding of the different types of information flow and causality in general stochastic processes, inference and identification of coupling structure and parameters of system dynamics, rigorous coarse-grain modeling of network dynamical systems, and exact statistical testing of fundamental information-theoretic quantities such as the mutual information. The collective efforts reported herein reflect a modern perspective of the intimate connection between dynamical systems and information flow, leading to the promise of better understanding and modeling of natural complex systems and better/optimal design of engineering systems.
Flight measurements of surface pressures on a flexible supercritical research wing
NASA Technical Reports Server (NTRS)
Eckstrom, C. V.
1985-01-01
A flexible supercritical research wing, designated as ARW-1, was flight-tested as part of the NASA Drones for Aerodynamic and Structural Testing Program. Aerodynamic loads, in the form of wing surface pressure measurements, were obtained during flights at altitudes of 15,000, 20,000, and 25,000 feet at Mach numbers from 0.70 to 0.91. Surface pressure coefficients determined from pressure measurements at 80 orifice locations are presented individually as nearly continuous functions of angle of attack for constant values of Mach number. The surface pressure coefficients are also presented individually as a function of Mach number for an angle of attack of 2.0 deg. The nearly continuous values of the pressure coefficient clearly show details of the pressure gradient, which occurred in a rather narrow Mach number range. The effects of changes in angle of attack, Mach number, and dynamic pressure are also shown by chordwise pressure distributions for the range of test conditions experienced. Reynolds numbers for the tests ranged from 5.7 to 8.4 x 1,000,000.
Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li
2018-02-01
The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.
Optical testing of progressive ophthalmic glasses based on galvo mirrors
NASA Astrophysics Data System (ADS)
Stuerwald, S.; Schmitt, R.
2014-03-01
In production of ophthalmic freeform optics like progressive eyeglasses, the specimens are tested according to a standardized method which is based on the measurement of the vertex power on usually less than 10 points. For a better quality management and thus to ensure more reliable and valid tests, a more comprehensive measurement approach is required. For Shack Hartmann Sensors (SHS) the dynamic range is defined by the number of micro-lenses and the resolution of the imaging sensor. Here, we present an approach for measuring wavefronts with increased dynamic range and lateral resolution by the use of a scanning procedure. Therefore, the proposed innovative setup is based on galvo mirrors that are capable of measuring the vertex power with a lateral resolution below one millimeter since this is sufficient for a functional test of progressive eyeglasses. Expressed in a more abstract way, the concept is based on a selection and thereby encoding of single sub-apertures of the wave front under test. This allows measuring the wave fronts slope consecutively in a scanning procedure. The use of high precision galvo systems allows a lateral resolution below one millimeter as well as a significant fast scanning ability. The measurement concept and performance of this method will be demonstrated for different spherical and freeformed specimens like progressive eye glasses. Furthermore, approaches for calibration of the measurement system will be characterized and the optical design of the detector will be discussed.
Effect of storage time on the viscoelastic properties of elastomeric impression materials.
Papadogiannis, Dimitris; Lakes, Roderic; Palaghias, George; Papadogiannis, Yiannis
2012-01-01
The aim of this study was to evaluate creep and viscoelastic properties of dental impression materials after different storage times. Six commercially available impression materials (one polyether and five silicones) were tested after being stored for 30 min to 2 weeks under both static and dynamic testing. Shear and Young's moduli, dynamic viscosity, loss tangent and other viscoelastic parameters were calculated. Four of the materials were tested 1 h after setting under creep for three hours and recovery was recorder for 50 h. The tested materials showed differences among them, while storage time had significant influence on their properties. Young's modulus E ranged from 1.81 to 12.99 MPa with the polyether material being the stiffest. All of the materials showed linear viscoelastic behavior exhibiting permanent deformation after 50h of creep recovery. As storage time affects the materials' properties, pouring time should be limited in the first 48 h after impression. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Pine, P Scott; Munro, Sarah A; Parsons, Jerod R; McDaniel, Jennifer; Lucas, Anne Bergstrom; Lozach, Jean; Myers, Timothy G; Su, Qin; Jacobs-Helber, Sarah M; Salit, Marc
2016-06-24
Highly multiplexed assays for quantitation of RNA transcripts are being used in many areas of biology and medicine. Using data generated by these transcriptomic assays requires measurement assurance with appropriate controls. Methods to prototype and evaluate multiple RNA controls were developed as part of the External RNA Controls Consortium (ERCC) assessment process. These approaches included a modified Latin square design to provide a broad dynamic range of relative abundance with known differences between four complex pools of ERCC RNA transcripts spiked into a human liver total RNA background. ERCC pools were analyzed on four different microarray platforms: Agilent 1- and 2-color, Illumina bead, and NIAID lab-made spotted microarrays; and two different second-generation sequencing platforms: the Life Technologies 5500xl and the Illumina HiSeq 2500. Individual ERCC controls were assessed for reproducible performance in signal response to concentration among the platforms. Most demonstrated linear behavior if they were not located near one of the extremes of the dynamic range. Performance issues with any individual ERCC transcript could be attributed to detection limitations, platform-specific target probe issues, or potential mixing errors. Collectively, these pools of spike-in RNA controls were evaluated for suitability as surrogates for endogenous transcripts to interrogate the performance of the RNA measurement process of each platform. The controls were useful for establishing the dynamic range of the assay, as well as delineating the useable region of that range where differential expression measurements, expressed as ratios, would be expected to be accurate. The modified Latin square design presented here uses a composite testing scheme for the evaluation of multiple performance characteristics: linear performance of individual controls, signal response within dynamic range pools of controls, and ratio detection between pairs of dynamic range pools. This compact design provides an economical sample format for the evaluation of multiple external RNA controls within a single experiment per platform. These results indicate that well-designed pools of RNA controls, spiked into samples, provide measurement assurance for endogenous gene expression studies.
Tojo, Axel; Malm, Johan; Marko-Varga, György; Lilja, Hans; Laurell, Thomas
2014-01-01
The antibody microarrays have become widespread, but their use for quantitative analyses in clinical samples has not yet been established. We investigated an immunoassay based on nanoporous silicon antibody microarrays for quantification of total prostate-specific-antigen (PSA) in 80 clinical plasma samples, and provide quantitative data from a duplex microarray assay that simultaneously quantifies free and total PSA in plasma. To further develop the assay the porous silicon chips was placed into a standard 96-well microtiter plate for higher throughput analysis. The samples analyzed by this quantitative microarray were 80 plasma samples obtained from men undergoing clinical PSA testing (dynamic range: 0.14-44ng/ml, LOD: 0.14ng/ml). The second dataset, measuring free PSA (dynamic range: 0.40-74.9ng/ml, LOD: 0.47ng/ml) and total PSA (dynamic range: 0.87-295ng/ml, LOD: 0.76ng/ml), was also obtained from the clinical routine. The reference for the quantification was a commercially available assay, the ProStatus PSA Free/Total DELFIA. In an analysis of 80 plasma samples the microarray platform performs well across the range of total PSA levels. This assay might have the potential to substitute for the large-scale microtiter plate format in diagnostic applications. The duplex assay paves the way for a future quantitative multiplex assay, which analyses several prostate cancer biomarkers simultaneously. PMID:22921878
The fresnel interferometric imager
NASA Astrophysics Data System (ADS)
Koechlin, Laurent; Serre, Denis; Deba, Paul; Pelló, Roser; Peillon, Christelle; Duchon, Paul; Gomez de Castro, Ana Ines; Karovska, Margarita; Désert, Jean-Michel; Ehrenreich, David; Hebrard, Guillaume; Lecavelier Des Etangs, Alain; Ferlet, Roger; Sing, David; Vidal-Madjar, Alfred
2009-03-01
The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 - 6. We have also validated numerical simulation algorithms for larger Fresnel interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 - 8 for arrays such as the 3.6 m one we propose. A dynamic range of 10 - 8 allows detection of objects at contrasts as high as than 10 - 9 in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept.
Connor, David E; Shamieh, Khader Samer; Ogden, Alan L; Mukherjee, Debi P; Sin, Anthony; Nanda, Anil
2012-12-01
Dynamic anterior cervical plating is well established as a means of enhancing graft loading and subsequent arthrodesis. Current concerns center on the degree of adjacent-level stress induced by these systems. The aim of this study was to evaluate and compare the load transferred to adjacent levels for single-level anterior cervical discectomy and fusion utilizing rigid compared to dynamic anterior plating systems. Nine cadaveric adult human cervical spine specimens were subjected to range-of-motion testing prior to and following C5-C6 anterior cervical discectomy and fusion procedures. Interbody grafting was performed with human fibula tissue. Nondestructive biomechanical testing included flexion/extension and lateral bending loading modes. A constant displacement of 5mm was applied in each direction and the applied load was measured in newtons (N). Specimens were tested in the following order: intact, following discectomy, after rigid plating, then after dynamic plating. Adjacent level (C4-C5 [L(S)] and C6-C7 [L(I)]) compressive forces were measured using low profile load cells inserted into each disc space. The measured load values for plating systems were then normalized using values measured for the intact specimens. Mean loads transferred to L(S) and L(I) during forced flexion in specimens with rigid plating were 23.47 N and 8.76 N, respectively; while the corresponding values in specimens with dynamic plating were 18.55 N and 1.03 N, respectively. Dynamic plating yielded no significant change at L(I) and a 21.0% decrease in load at L(S) when compared with rigid plating, although the difference was not significant. The observed trend suggests that dynamic plating may diminish superior adjacent level compressive stresses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel; Reyna-Gutierrez, Jose Antonio; Bauer-Gottwein, Peter
2017-05-01
The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts have been devoted to the retrieval of these hydraulic properties from spaceborne platforms in the past few decades. However, due to coarse spatial and temporal resolutions, spaceborne missions have several limitations when assessing the water level of terrestrial surface water bodies and determining complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric height). Three different ranging payloads, which consisted of a radar, a sonar and an in-house developed camera-based laser distance sensor (CLDS), have been evaluated in terms of accuracy, precision, maximum ranging distance and beam divergence. After numerous flights, the relative accuracy of the overall system was estimated. A ranging accuracy better than 0.5% of the range and a maximum ranging distance of 60 m were achieved with the radar. The CLDS showed the lowest beam divergence, which is required to avoid contamination of the signal from interfering surroundings for narrow fields of view. With the GNSS system delivering a relative vertical accuracy better than 3-5 cm, water level can be retrieved with an overall accuracy better than 5-7 cm.
Temple, Duncan K; Cederlund, Anna A; Lawless, Bernard M; Aspden, Richard M; Espino, Daniel M
2016-10-06
The purpose of this study was to compare the frequency-dependent viscoelastic properties of human and bovine cartilage. Full-depth cartilage specimens were extracted from bovine and human femoral heads. Using dynamic mechanical analysis, the viscoelastic properties of eight bovine and six human specimens were measured over the frequency range 1 Hz to 88 Hz. Significant differences between bovine and human cartilage viscoelastic properties were assessed using a Mann-Whitney test (p < 0.05). Throughout the range of frequencies tested and for both species, the storage modulus was greater than the loss modulus and both were frequency-dependent. The storage and loss moduli of all human and bovine cartilage specimens presented a logarithmic relationship with respect to frequency. The mean human storage modulus ranged from 31.9 MPa to 43.3 MPa, while the mean bovine storage modulus ranged from 54.0 MPa to 80.5 MPa; bovine storage moduli were 1.7 to 1.9 times greater than the human modulus. Similarly, the loss modulus of bovine cartilage was 2.0 to 2.1 times greater than human. The mean human loss modulus ranged from 5.3 MPa to 8.5 MPa while bovine moduli ranged from 10.6 MPa to 18.1 MPa. Frequency-dependent viscoelastic trends of bovine articular cartilage were consistent with those of human articular cartilage; this includes a similar frequency dependency and high-frequency plateau. Bovine cartilage was, however, 'stiffer' than human by a factor of approximately 2. With these provisos, bovine articular cartilage may be a suitable dynamic model for human articular cartilage.
Station report on the Goddard Space Flight Center (GSFC) 1.2 meter telescope facility
NASA Technical Reports Server (NTRS)
Mcgarry, Jan F.; Zagwodzki, Thomas W.; Abbott, Arnold; Degnan, John J.; Cheek, Jack W.; Chabot, Richard S.; Grolemund, David A.; Fitzgerald, Jim D.
1993-01-01
The 1.2 meter telescope system was built for the Goddard Space Flight Center (GSFC) in 1973-74 by the Kollmorgen Corporation as a highly accurate tracking telescope. The telescope is an azimuth-elevation mounted six mirror Coude system. The facility has been used for a wide range of experimentation including helioseismology, two color refractometry, lunar laser ranging, satellite laser ranging, visual tracking of rocket launches, and most recently satellite and aircraft streak camera work. The telescope is a multi-user facility housed in a two story dome with the telescope located on the second floor above the experimenter's area. Up to six experiments can be accommodated at a given time, with actual use of the telescope being determined by the location of the final Coude mirror. The telescope facility is currently one of the primary test sites for the Crustal Dynamics Network's new UNIX based telescope controller software, and is also the site of the joint Crustal Dynamics Project / Photonics Branch two color research into atmospheric refraction.
Video-microscopy of NCAP films: the observation of LC droplets in real time
NASA Astrophysics Data System (ADS)
Reamey, Robert H.; Montoya, Wayne; Wong, Abraham
1992-06-01
We have used video-microscopy to observe the behavior of liquid crystal (LC) droplets within nematic droplet-polymer films (NCAP) as the droplets respond to an applied electric field. The textures observed at intermediate fields yielded information about the process of liquid crystal orientation dynamics within droplets. The nematic droplet-polymer films had low LC content (less than 1 percent) to allow the observation of individual droplets in a 2 - 6 micrometers size range. The aqueous emulsification technique was used to prepare the films as it allows the straightforward preparation of low LC content films with a controlled droplet size range. Standard electro-optical (E-O) tests were also performed on the films, allowing us to correlate single droplet behavior with that of the film as a whole. Hysteresis measured in E-O tests was visually confirmed by droplet orientation dynamics; a film which had high hysteresis in E-O tests exhibited distinctly different LC orientations within the droplet when ramped up in voltage than when ramped down in voltage. Ramping the applied voltage to well above saturation resulted in some droplets becoming `stuck'' in a new droplet structure which can be made to revert back to bipolar with high voltage pulses or with heat.
Anderst, William J.; West, Tyler; Donaldson, William F; Lee, Joon Y.; Kang, James D.
2016-01-01
Study Design A longitudinal study using biplane radiography to measure in vivo intervertebral range of motion (ROM) during dynamic flexion/extension and rotation. Objective To longitudinally compare intervertebral maximal ROM and midrange motion in asymptomatic control subjects and single-level arthrodesis patients. Summary of Background Data In vitro studies consistently report that adjacent segment maximal ROM increases superior and inferior to cervical arthrodesis. Previous in vivo results have been conflicting, indicating that maximal ROM may or may not increase superior and/or inferior to the arthrodesis. There are no previous reports of midrange motion in arthrodesis patients and similar-aged controls. Methods Eight single-level (C5/C6) anterior arthrodesis patients (tested 7±1 months and 28±6 months post-surgery) and six asymptomatic control subjects (tested twice, 58±6 months apart) performed dynamic full ROM flexion/extension and axial rotation while biplane radiographs were collected at 30 images/s. A previously validated tracking process determined three-dimensional vertebral position from each pair of radiographs with sub-millimeter accuracy. The intervertebral maximal ROM and midrange motion in flexion/extension, rotation, lateral bending, and anterior-posterior translation were compared between test dates and between groups. Results Adjacent segment maximal ROM did not increase over time during flexion/extension or rotation movements. Adjacent segment maximal rotational ROM was not significantly greater in arthrodesis patients than in corresponding motion segments of similar-aged controls. C4/C5 adjacent segment rotation during the midrange of head motion and maximal anterior-posterior translation were significantly greater in arthrodesis patients than in the corresponding motion segment in controls on the second test date. Conclusions C5/C6 arthrodesis appears to significantly affect midrange, but not end-range, adjacent segment motions. The effects of arthrodesis on adjacent segment motion may be best evaluated by longitudinal studies that compare maximal and midrange adjacent segment motion to corresponding motion segments of similar-aged controls to determine if the adjacent segment motion is truly excessive. PMID:27831986
Anderst, William J; West, Tyler; Donaldson, William F; Lee, Joon Y; Kang, James D
2016-11-15
A longitudinal study using biplane radiography to measure in vivo intervertebral range of motion (ROM) during dynamic flexion/extension, and rotation. To longitudinally compare intervertebral maximal ROM and midrange motion in asymptomatic control subjects and single-level arthrodesis patients. In vitro studies consistently report that adjacent segment maximal ROM increases superior and inferior to cervical arthrodesis. Previous in vivo results have been conflicting, indicating that maximal ROM may or may not increase superior and/or inferior to the arthrodesis. There are no previous reports of midrange motion in arthrodesis patients and similar-aged controls. Eight single-level (C5/C6) anterior arthrodesis patients (tested 7 ± 1 months and 28 ± 6 months postsurgery) and six asymptomatic control subjects (tested twice, 58 ± 6 months apart) performed dynamic full ROM flexion/extension and axial rotation whereas biplane radiographs were collected at 30 images per second. A previously validated tracking process determined three-dimensional vertebral position from each pair of radiographs with submillimeter accuracy. The intervertebral maximal ROM and midrange motion in flexion/extension, rotation, lateral bending, and anterior-posterior translation were compared between test dates and between groups. Adjacent segment maximal ROM did not increase over time during flexion/extension, or rotation movements. Adjacent segment maximal rotational ROM was not significantly greater in arthrodesis patients than in corresponding motion segments of similar-aged controls. C4/C5 adjacent segment rotation during the midrange of head motion and maximal anterior-posterior translation were significantly greater in arthrodesis patients than in the corresponding motion segment in controls on the second test date. C5/C6 arthrodesis appears to significantly affect midrange, but not end-range, adjacent segment motions. The effects of arthrodesis on adjacent segment motion may be best evaluated by longitudinal studies that compare maximal and midrange adjacent segment motion to corresponding motion segments of similar-aged controls to determine if the adjacent segment motion is truly excessive. 3.
Steinberg, Julia S; Saßmannshausen, Marlene; Pfau, Maximilian; Fleckenstein, Monika; Finger, Robert P; Holz, Frank G; Schmitz-Valckenberg, Steffen
2017-07-01
The purpose of this study was to evaluate and compare the MP-1S (Nidek Technologies, Padova, Italy) and the S-MAIA (CenterVue, Padova, Italy) for mesopic and scotopic fundus-controlled perimetry (FCP) in age-related macular degeneration (AMD). Eleven eyes from 11 patients underwent mesopic and, after 30 minutes of dark adaptation, scotopic (MP-1S: Goldmann V, 200 ms, background luminance 0.0032 cd/m 2 ; S-MAIA: Goldman III, 200 ms, background luminance <0.0001 cd/m 2 ) FCP. For the S-MAIA device, cyan (505 nm) and red (627 nm) scotopic FCP were performed. For both devices, a grid of 56 stimulus points covering 16° of the central macula was used. Examination time, fixation stability, and threshold values were analyzed. The upper end of the dynamic range (≤4 dB of lowest threshold) was frequently reached by the MP-1S for mesopic testing (median 34 of 56 stimuli), while threshold values within the lower 4 dB of the dynamic range were occasionally found with the S-MAIA for scotopic testing (median 3 for cyan, median 2 for red). After correction of the stimulus intensity for the S-MAIA results, the median difference for all stimuli between both devices for mesopic testing was -2.0 dB (interquartile range [-4;0], range -14 to 6). The results indicate that robust testing of mesopic and scotopic function is feasible with both devices in patients with AMD, although both devices are susceptible to floor and ceiling effects. The interpretation and particularly the comparison of both scotopic and mesopic FCP results between the MP-1S and the S-MAIA in AMD eyes need to consider variable susceptibility of floor and ceiling effects. Further software updates are desirable as FCP captures visual functional loss that is not noted with best-corrected central visual acuity and is important for clinical trials in AMD.
Pfau, Maximilian; Lindner, Moritz; Müller, Philipp L; Birtel, Johannes; Finger, Robert P; Harmening, Wolf M; Fleckenstein, Monika; Holz, Frank G; Schmitz-Valckenberg, Steffen
2017-05-01
To determine the effective dynamic range (EDR), retest reliability, and number of discriminable steps (DS) for mesopic and dark-adapted two-color fundus-controlled perimetry (FCP) using the S-MAIA (Scotopic-Macular Integrity Assessment) "micro-perimeter." In this prospective cross-sectional study, each of the 52 eyes of 52 subjects with various macular diseases (mean age 62.0 ± 16.9 years; range, 19.1-90.1 years) underwent duplicate mesopic (achromatic stimuli, 400-800 nm), dark-adapted cyan (505 nm), and dark-adapted red (627 nm) FCP using a grid of 61 stimuli covering 18° of the central retina. The EDR, the number of DS, and the retest reliability for point-wise sensitivity (PWS) were analyzed. The effects of fixation stability, sensitivity, and age on retest reliability were examined using mixed-effects models. The EDR was 10 to 30 dB with five DS for mesopic and 4 to 17 dB with four DS for dark-adapted cyan and red testing. PWS retest reliability was good among all three types of retinal sensitivity assessments (coefficient of repeatability ±5.79, ±4.72, and ±4.77 dB, respectively) and did not depend on fixation stability or age. PWS had no effect on retest variability in dark-adapted cyan and dark-adapted red testing but had a minor effect in mesopic testing. Combined mesopic and dark-adapted two-color FCP allows for reliable topographic testing of cone and rod function in patients with various macular diseases with and without foveal fixation. Retest reliability is homogeneous across eccentricities and various degrees of scotoma depth, including zones at risk for disease progression. These reliability estimates can serve for the design of future clinical trials.
NASA Astrophysics Data System (ADS)
Lach, E.; Redjaïmia, A.; Leitner, H.; Clemens, H.
2006-08-01
Nanometer-sized precipitates are responsible for the high strength of steel alloys well known as maraging steels. The term maraging relates to aging reactions in very low-carbon martensitic steels. Due to precipitation hardening 0.2% yield stress values of up to 2.4 GPa can be achieved. The class of stainless maraging steels exhibits an excellent combination of very high strength and hardness, ductility and toughness, combined with good corrosion resistance. In many applications like crash worthiness or ballistic protection the materials are loaded at high strain-rates. The most important characteristic of material behavior under dynamic load is the dynamic yield stress. In this work compression tests had been conducted at strain-rates in the order of 5 x 10 - 3 s - 1 up to 3 x 103 s - 1 to study the materials behaviour. Additionally high dynamic compression tests had been performed in the temperature range from -40circC up to 300circC.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
NASA Astrophysics Data System (ADS)
Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D. B.
1995-03-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, S.; Zacharia, T.; Baltas, N.
1995-04-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. Themore » Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.« less
Flight-Time Identification of a UH-60A Helicopter and Slung Load
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; McCoy, Allen H.; Tischler, Mark B.; Tucker, George E.; Gatenio, Pinhas; Marmar, Dani
1998-01-01
This paper describes a flight test demonstration of a system for identification of the stability and handling qualities parameters of a helicopter-slung load configuration simultaneously with flight testing, and the results obtained.Tests were conducted with a UH-60A Black Hawk at speeds from hover to 80 kts. The principal test load was an instrumented 8 x 6 x 6 ft cargo container. The identification used frequency domain analysis in the frequency range to 2 Hz, and focussed on the longitudinal and lateral control axes since these are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities. Results were computed for stability margins, handling qualities parameters and load pendulum stability. The computations took an average of 4 minutes before clearing the aircraft to the next test point. Important reductions in handling qualities were computed in some cases, depending, on control axis and load-slung combination. A database, including load dynamics measurements, was accumulated for subsequent simulation development and validation.
Precision Lunar Laser Ranging For Lunar and Gravitational Science
NASA Technical Reports Server (NTRS)
Merkowitz, S. M.; Arnold, D.; Dabney, P. W.; Livas, J. C.; McGarry, J. F.; Neumann, G. A.; Zagwodzki, T. W.
2008-01-01
Laser ranging to retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Lunar missions over the past 39 years have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Significant advances in these areas will require placing modern retroreflectors and/or active laser ranging systems at new locations on the lunar surface. Ranging to new locations will enable better measurements of the lunar librations, aiding in our understanding of the interior structure of the moon. More precise range measurements will allow us to study effects that are too small to be observed by the current capabilities as well as enabling more stringent tests of Einstein's theory of General Relativity. Setting up retroreflectors was a key part of the Apollo missions so it is natural to ask if future lunar missions should include them as well. The Apollo retroreflectors are still being used today, and nearly 40 years of ranging data has been invaluable for scientific as well as other studies such as orbital dynamics. However, the available retroreflectors all lie within 26 degrees latitude of the equator, and the most useful ones within 24 degrees longitude of the sub-earth meridian. This clustering weakens their geometrical strength.
An improved triangulation laser rangefinder using a custom CMOS HDR linear image sensor
NASA Astrophysics Data System (ADS)
Liscombe, Michael
3-D triangulation laser rangefinders are used in many modern applications, from terrain mapping to biometric identification. Although a wide variety of designs have been proposed, laser speckle noise still provides a fundamental limitation on range accuracy. These works propose a new triangulation laser rangefinder designed specifically to mitigate the effects of laser speckle noise. The proposed rangefinder uses a precision linear translator to laterally reposition the imaging system (e.g., image sensor and imaging lens). For a given spatial location of the laser spot, capturing N spatially uncorrelated laser spot profiles is shown to improve range accuracy by a factor of N . This technique has many advantages over past speckle-reduction technologies, such as a fixed system cost and form factor, and the ability to virtually eliminate laser speckle noise. These advantages are made possible through spatial diversity and come at the cost of increased acquisition time. The rangefinder makes use of the ICFYKWG1 linear image sensor, a custom CMOS sensor developed at the Vision Sensor Laboratory (York University). Tests are performed on the image sensor's innovative high dynamic range technology to determine its effects on range accuracy. As expected, experimental results have shown that the sensor provides a trade-off between dynamic range and range accuracy.
Accurate screening for insulin resistance in PCOS women using fasting insulin concentrations.
Lunger, Fabian; Wildt, Ludwig; Seeber, Beata
2013-06-01
The aims of this cross-sectional study were to evaluate the relative agreement of both static and dynamic methods of diagnosing IR in women with polycystic ovary syndrome (PCOS) and to suggest a simple screening method for IR. All participants underwent serial blood draws for hormonal profiling and lipid assessment, a 3 h, 75 g load oral glucose tolerance test (OGTT) with every 15 min measurements of glucose and insulin, and an ACTH stimulation test. The prevalence of IR ranged from 12.2% to 60.5%, depending on the IR index used. Based on largest area under the curve on receiver operating curve (ROC) analyses, the dynamic indices outperformed the static indices with glucose to insulin ratio and fasting insulin (fInsulin) demonstrating the best diagnostic properties. Applying two cut-offs representing fInsulin extremes (<7 and >13 mIU/l, respectively) gave the diagnosis in 70% of the patients with high accuracy. Currently utilized indices for assessing IR give highly variable results in women with PCOS. The most accurate indices based on dynamic testing can be time-consuming and labor-intensive. We suggest the use of fInsulin as a simple screening test, which can reduce the number of OGTTs needed to routinely assess insulin resistance in women with PCOS.
NASA Astrophysics Data System (ADS)
Mitchell, Myles A.; He, Jian-hua; Arnold, Christian; Li, Baojiu
2018-06-01
We propose a new framework for testing gravity using cluster observations, which aims to provide an unbiased constraint on modified gravity models from Sunyaev-Zel'dovich (SZ) and X-ray cluster counts and the cluster gas fraction, among other possible observables. Focusing on a popular f(R) model of gravity, we propose a novel procedure to recalibrate mass scaling relations from Λ cold dark matter (ΛCDM) to f(R) gravity for SZ and X-ray cluster observables. We find that the complicated modified gravity effects can be simply modelled as a dependence on a combination of the background scalar field and redshift, fR(z)/(1 + z), regardless of the f(R) model parameter. By employing a large suite of N-body simulations, we demonstrate that a theoretically derived tanh fitting formula is in excellent agreement with the dynamical mass enhancement of dark matter haloes for a large range of background field parameters and redshifts. Our framework is sufficiently flexible to allow for tests of other models and inclusion of further observables, and the one-parameter description of the dynamical mass enhancement can have important implications on the theoretical modelling of observables and on practical tests of gravity.
Dynamics of Galaxy Clusters and Expectations from Astro-H
NASA Technical Reports Server (NTRS)
Markevitch, Maxim
2012-01-01
Galaxy clusters span a range of dynamical states, from violent mergers -- the most energetic events in the Universe -- to systems near hydrostatic equilibrium that allow us to map their dark matter distribution using X-ray observations of the intracluster gas. Accurate knowledge of the cluster physics, and in particular, the physics of the hot intracluster gas, is required to realize the full potential of clusters as cosmological probes. So far, we have been studying the cluster dynamics indirectly, deducing merger geometries, cluster masses, etc., using X-ray brightness and gas temperature mapping. For the first time, the calorimeter onboard Astro-H will provide direct measurements of line-of-sight velocities and turbulent broadening in the intracluster gas, testing many of our key assumptions about clusters. This talk will summarize expectations for cluster dynamic studies with this new instrument.
NASA Technical Reports Server (NTRS)
Prince, Jill L.; Shoenenberger, Mark
2017-01-01
The Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) project requested that the NASA Engineering and Safety Center (NESC) support a ballistic range test to measure backshell pressures on scale models of the Mars 2020 entry capsule. The MEDLI2 project needed the test to provide important dynamic pressure data to help select a backshell pressure port, quantify drag coefficient reconstruction uncertainties, and design the data acquisition hardware. This document contains the outcome of the NESC assessment.
A Comparison of Lifting-Line and CFD Methods with Flight Test Data from a Research Puma Helicopter
NASA Technical Reports Server (NTRS)
Bousman, William G.; Young, Colin; Toulmay, Francois; Gilbert, Neil E.; Strawn, Roger C.; Miller, Judith V.; Maier, Thomas H.; Costes, Michel; Beaumier, Philippe
1996-01-01
Four lifting-line methods were compared with flight test data from a research Puma helicopter and the accuracy assessed over a wide range of flight speeds. Hybrid Computational Fluid Dynamics (CFD) methods were also examined for two high-speed conditions. A parallel analytical effort was performed with the lifting-line methods to assess the effects of modeling assumptions and this provided insight into the adequacy of these methods for load predictions.
Application of Nondestructive Testing Techniques to Materials Testing.
1984-01-01
describes enjoy the same luxury. Real-time interpolation of the data set the dynamic-range limitations of real-time digital imaging sys - terns due to...delta encoded, ELEMENT %’. ~ ._________ litlcrcrtnen t) hr t is currtent value. I n DAI SY . thle accumulator is% a sitmple up-co uriter, and the binary...roughly 36 A. Phase Qrittization antd Phase Qiuan:ti, ’o / rr, r kilolbytes of focus mem-ory. 2 Such an architecture requtres For :i sy -, @tl V.it)1 M)0
2017 Guralp Affinity Digitizer Evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.
Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).
Hyperion 5113/A Infrasound Sensor Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion John
2015-09-01
Sandia National Laboratories has tested and evaluated an infrasound sensor, the 5113/A manufactured by Hyperion. These infrasound sensors measure pressure output by a methodology developed by the University of Mississippi. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, and dynamic range. The 5113/A infrasound sensor is a new revision of the 5000 series intended to meet the infrasound application requirements for use in the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).
NASA Astrophysics Data System (ADS)
Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun
2018-07-01
Traction or braking operations are usually applied to trains or locomotives for acceleration, speed adjustment, and stopping. During these operations, gear transmission equipment plays a very significant role in the delivery of traction or electrical braking power. Failures of the gear transmissions are likely to cause power loses and even threaten the operation safety of the train. Its dynamic performance is closely related to the normal operation and service safety of the entire train, especially under some emergency braking conditions. In this paper, a locomotive-track coupled vertical-longitudinal dynamics model is employed with considering the dynamic action from the gear transmissions. This dynamics model enables the detailed analysis and more practical simulation on the characteristics of power transmission path, namely motor-gear transmission-wheelset-longitudinal motion of locomotive, especially for traction or braking conditions. Multi-excitation sources, such as time-varying mesh stiffness and nonlinear wheel-rail contact excitations, are considered in this study. This dynamics model is then validated by comparing the simulated results with the experimental test results under braking conditions. The calculated results indicate that involvement of gear transmission could reveal the load reduction of the wheelset due to transmitted forces. Vibrations of the wheelset and the motor are dominated by variation of the gear dynamic mesh forces in the low speed range and by rail geometric irregularity in the higher speed range. Rail vertical geometric irregularity could also cause wheelset longitudinal vibrations, and do modulations to the gear dynamic mesh forces. Besides, the hauling weight has little effect on the locomotive vibrations and the dynamic mesh forces of the gear transmissions for both traction and braking conditions under the same running speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeni, Lorenzo; Hesselbæk, Bo; Bech, John
This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers. The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in <10 Hz range, including frequency control and power oscillation damping) is described, demonstrating the capabilities of the test facility and drawing the track for future work and improvements.
Bennett, Charles R; Kelly, Brian P
2013-08-09
Standard in-vitro spine testing methods have focused on application of isolated and/or constant load components while the in-vivo spine is subject to multiple components that can be resolved into resultant dynamic load vectors. To advance towards more in-vivo like simulations the objective of the current study was to develop a methodology to apply robotically-controlled, non-zero, real-time dynamic resultant forces during flexion-extension on human lumbar motion segment units (MSU) with initial application towards simulation of an ideal follower load (FL) force vector. A proportional-integral-derivative (PID) controller with custom algorithms coordinated the motion of a Cartesian serial manipulator comprised of six axes each capable of position- or load-control. Six lumbar MSUs (L4-L5) were tested with continuously increasing sagittal plane bending to 8 Nm while force components were dynamically programmed to deliver a resultant 400 N FL that remained normal to the moving midline of the intervertebral disc. Mean absolute load-control tracking errors between commanded and experimental loads were computed. Global spinal ranges of motion and sagittal plane inter-body translations were compared to previously published values for non-robotic applications. Mean TEs for zero-commanded force and moment axes were 0.7 ± 0.4N and 0.03 ± 0.02 Nm, respectively. For non-zero force axes mean TEs were 0.8 ± 0.8 N, 1.3 ± 1.6 Nm, and 1.3 ± 1.6N for Fx, Fz, and the resolved ideal follower load vector FL(R), respectively. Mean extension and flexion ranges of motion were 2.6° ± 1.2° and 5.0° ± 1.7°, respectively. Relative vertebral body translations and rotations were very comparable to data collected with non-robotic systems in the literature. The robotically coordinated Cartesian load controlled testing system demonstrated robust real-time load-control that permitted application of a real-time dynamic non-zero load vector during flexion-extension. For single MSU investigations the methodology has potential to overcome conventional follower load limitations, most notably via application outside the sagittal plane. This methodology holds promise for future work aimed at reducing the gap between current in-vitro testing and in-vivo circumstances. Copyright © 2013 Elsevier Ltd. All rights reserved.
USGS VDP Infrasound Sensor Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slad, George William; Merchant, Bion J.
2016-10-01
Sandia National Laboratories has tested and evaluated two infrasound sensors, the model VDP100 and VDP250, built in-house at the USGS Cascades Volcano Observatory. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, self-noise, dynamic range and nominal transfer function. Notable features of the VDP sensors include novel and durable construction and compact size.
NASA Technical Reports Server (NTRS)
Igoe, William B.
1991-01-01
Dynamic measurements of fluctuating static pressure levels were made using flush mounted high frequency response pressure transducers at eleven locations in the circuit of the National Transonic Facility (NTF) over the complete operating range of this wind tunnel. Measurements were made at test section Mach numbers from 0.2 to 1.2, at pressure from 1 to 8.6 atmospheres and at temperatures from ambient to -250 F, resulting in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made independently at variable Mach number, variable Reynolds number, and variable drivepower, each time keeping the other two variables constant thus allowing for the first time, a distinct separation of these three important variables. A description of the NTF emphasizing its flow quality features, details on the calibration of the instrumentation, results of measurements with the test section slots covered, downstream choke, effects of liquid nitrogen injection and gaseous nitrogen venting, comparisons between air and nitrogen, isolation of the effects of Mach number, Reynolds number, and fan drive power, and identification of the sources of significant flow disturbances is included. The results indicate that primary sources of flow disturbance in the NTF may be edge-tones generated by test section sidewall re-entry flaps and the venting of nitrogen gas from the return leg of the tunnel circuit between turns 3 and 4 in the cryogenic mode of operation. The tests to isolate the effects of Mach number, Reynolds number, and drive power indicate that Mach number effects predominate. A comparison with other transonic wind tunnels shows that the NTF has low levels of test section fluctuating static pressure especially in the high subsonic Mach number range from 0.7 to 0.9.
Dynamical Formation and Merger of Binary Black Holes
NASA Astrophysics Data System (ADS)
Stone, Nicholas
2017-01-01
The advent of gravitational wave (GW) astronomy began with Advanced LIGO's 2015 discovery of GWs from coalescing black hole (BH) binaries. GW astronomy holds great promise for testing general relativity, but also for investigating open astrophysical questions not amenable to traditional electromagnetic observations. One such question concerns the origin of stellar mass BH binaries in the universe: do these form primarily from evolution of isolated binaries of massive stars, or do they form through more exotic dynamical channels? The best studied dynamical formation channel involves multibody interactions of BHs and stars in dense globular cluster environments, but many other dynamical scenarios have recently been proposed, ranging from the Kozai effect in hierarchical triple systems to BH binary formation in the outskirts of Toomre-unstable accretion disks surrounding supermassive black holes. The BH binaries formed through these processes will have different distributions of observable parameters (e.g. mass ratios, spins) than BH binaries formed through the evolution of isolated binary stars. In my talk I will overview these and other dynamical formation scenarios, and summarize the key observational tests that will enable Advanced LIGO or other future detectors to determine what formation pathway creates the majority of binary BHs in the universe. NCS thanks NASA, which has funded his work through Einstein postdoctoral grant PF5-160145.
Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A.; Falvo D’Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto
2016-01-01
A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306
Massai, Diana; Isu, Giuseppe; Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A; Falvo D'Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto
2016-01-01
A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future.
Dynamic visual noise affects visual short-term memory for surface color, but not spatial location.
Dent, Kevin
2010-01-01
In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.
Autonomous Flight Safety System September 27, 2005, Aircraft Test
NASA Technical Reports Server (NTRS)
Simpson, James C.
2005-01-01
This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.
Method and algorithm of automatic estimation of road surface type for variable damping control
NASA Astrophysics Data System (ADS)
Dąbrowski, K.; Ślaski, G.
2016-09-01
In this paper authors presented an idea of road surface estimation (recognition) on a base of suspension dynamic response signals statistical analysis. For preliminary analysis cumulated distribution function (CDF) was used, and some conclusion that various roads have responses values in a different ranges of limits for the same percentage of samples or for the same limits different percentages of samples are located within the range between limit values. That was the base for developed and presented algorithm which was tested using suspension response signals recorded during road test riding over various surfaces. Proposed algorithm can be essential part of adaptive damping control algorithm for a vehicle suspension or adaptive control strategy for suspension damping control.
A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning
NASA Astrophysics Data System (ADS)
Peng, Chaoyong; Chen, Yang; Chen, Quansheng; Yang, Jiansi; Wang, Hongti; Zhu, Xiaoyi; Xu, Zhiqiang; Zheng, Yu
2017-03-01
Earthquake Early Warning System (EEWS) has shown its efficiency for earthquake damage mitigation. As the progress of low-cost Micro Electro Mechanical System (MEMS), many types of MEMS-based accelerometers have been developed and widely used in deploying large-scale, dense seismic networks for EEWS. However, the noise performance of these commercially available MEMS is still insufficient for weak seismic signals, leading to the large scatter of early-warning parameters estimation. In this study, we developed a new type of tri-axial accelerometer based on high dynamic range MEMS with low noise level using for EEWS. It is a MEMS-integrated data logger with built-in seismological processing. The device is built on a custom-tailored Linux 2.6.27 operating system and the method for automatic detecting seismic events is STA/LTA algorithms. When a seismic event is detected, peak ground parameters of all data components will be calculated at an interval of 1 s, and τc-Pd values will be evaluated using the initial 3 s of P wave. These values will then be organized as a trigger packet actively sent to the processing center for event combining detection. The output data of all three components are calibrated to sensitivity 500 counts/cm/s2. Several tests and a real field test deployment were performed to obtain the performances of this device. The results show that the dynamic range can reach 98 dB for the vertical component and 99 dB for the horizontal components, and majority of bias temperature coefficients are lower than 200 μg/°C. In addition, the results of event detection and real field deployment have shown its capabilities for EEWS and rapid intensity reporting.
Development and testing of the ultraviolet spectrometer for the Mariner Mars 1971 spacecraft
NASA Technical Reports Server (NTRS)
Farrar, J. W.
1972-01-01
The Mariner Mars 1971 ultraviolet spectrometer is an Ebert-Fastie type of the same basic design as the Mariner Mars 1969 instrument. Light enters the instrument and is split into component wavelengths by a scanning reflection diffraction grating. Two monochrometer exit slits allow the use of two independent photomultiplier tube sensors. Channel 1 has a spectral range of 1100 to 1692 A with a fixed gain, while Channel 2 has a spectral range of 1450 to 3528 A with an automatic step gain control, providing a dynamic range over the expected atmosphere and surface brightness of Mars. The scientific objectives, basic operation, design, testing, and calibration for the Mariner Mars 1971 ultraviolet spectrometer are described. The design discussion includes those modifications that were necessary to extend the lifetime of the instrument in order to accomplish the Mariner Mars 1971 mission objectives.
The MOLDY short-range molecular dynamics package
NASA Astrophysics Data System (ADS)
Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.
2011-12-01
We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as measuring thermodynamic properities, diffusion, radiation damage, fracture, twinning deformation, nucleation and growth of phase transitions, sputtering etc. In the vast majority of materials, the interactions are non-pairwise, and the code must be able to deal with many-body forces. Solution method: Molecular dynamics involves integrating Newton's equations of motion. MOLDY uses verlet (for good energy conservation) or predictor-corrector (for accurate trajectories) algorithms. It is parallelised using open MP. It also includes a static minimisation routine to find the lowest energy structure. Boundary conditions for surfaces, clusters, grain boundaries, thermostat (Nose), barostat (Parrinello-Rahman), and externally applied strain are provided. The initial configuration can be either a repeated unit cell or have all atoms given explictly. Initial velocities are generated internally, but it is also possible to specify the velocity of a particular atom. A wide range of interatomic force models are implemented, including embedded atom, Morse or Lennard-Jones. Thus the program is especially well suited to calculations of metals. Restrictions: The code is designed for short-ranged potentials, and there is no Ewald sum. Thus for long range interactions where all particles interact with all others, the order- N scaling will fail. Different interatomic potential forms require recompilation of the code. Additional comments: There is a set of associated open-source analysis software for postprocessing and visualisation. This includes local crystal structure recognition and identification of topological defects. Running time: A set of test modules for running time are provided. The code scales as order N. The parallelisation shows near-linear scaling with number of processors in a shared memory environment. A typical run of a few tens of nanometers for a few nanoseconds will run on a timescale of days on a multiprocessor desktop.
Validity of a jump training apparatus using Wii Balance Board.
Yamamoto, Keizo; Matsuzawa, Mamoru
2013-05-01
The dynamic quantification of jump ability is useful for sports performance evaluation. We developed a force measurement system using the Wii Balance Board (WBB). This study was conducted to validate the system in comparison with a laboratory-grade force plate (FP). For a static validation, weights of 10-180kg were put progressively on the WBB put on the FP. The vertical component of the ground reaction force (vGRF) was measured using both devices and compared. For the dynamic validation, 10 subjects without lower limb pathology participated in the study and performed vertical jumping twice on the WBB on the FP. The range of analysis was set from the landing after the first jump to taking off of the second jump. The peak values during the landing phase and jumping phase were obtained and the force-time integral (force impulse) was measured. The relations of the values measured using each device were compared using Pearson's correlation coefficient test and Bland-Altman plots (BAP). Significant correlation (P<.01, r=.99) was found between the values of both devices in the static and the dynamic test. Examination of the BAP revealed a proportion error in the landing phase and showed no relation in the jumping phase between the difference and the mean in the dynamic test. The WBB detects the vGRF in the jumping phase with high precision. Copyright © 2012 Elsevier B.V. All rights reserved.
Burby, Joshua W.; Lacker, Daniel
2016-01-01
Systems as diverse as the interacting species in a community, alleles at a genetic locus, and companies in a market are characterized by competition (over resources, space, capital, etc) and adaptation. Neutral theory, built around the hypothesis that individual performance is independent of group membership, has found utility across the disciplines of ecology, population genetics, and economics, both because of the success of the neutral hypothesis in predicting system properties and because deviations from these predictions provide information about the underlying dynamics. However, most tests of neutrality are weak, based on static system properties such as species-abundance distributions or the number of singletons in a sample. Time-series data provide a window onto a system’s dynamics, and should furnish tests of the neutral hypothesis that are more powerful to detect deviations from neutrality and more informative about to the type of competitive asymmetry that drives the deviation. Here, we present a neutrality test for time-series data. We apply this test to several microbial time-series and financial time-series and find that most of these systems are not neutral. Our test isolates the covariance structure of neutral competition, thus facilitating further exploration of the nature of asymmetry in the covariance structure of competitive systems. Much like neutrality tests from population genetics that use relative abundance distributions have enabled researchers to scan entire genomes for genes under selection, we anticipate our time-series test will be useful for quick significance tests of neutrality across a range of ecological, economic, and sociological systems for which time-series data are available. Future work can use our test to categorize and compare the dynamic fingerprints of particular competitive asymmetries (frequency dependence, volatility smiles, etc) to improve forecasting and management of complex adaptive systems. PMID:27689714
Hot Deformation Behavior and Dynamic Recrystallization of Medium Carbon LZ50 Steel
NASA Astrophysics Data System (ADS)
Du, Shiwen; Chen, Shuangmei; Song, Jianjun; Li, Yongtang
2017-03-01
Hot deformation and dynamic recrystallization behaviors of a medium carbon steel LZ50 were systematically investigated in the temperature range from 1143 K to 1443 K (870 °C to 1170 °C) at strain rates from 0.05 to 3s-1 using a Gleeble-3500 thermo-simulation machine. The flow stress constitutive equation for hot deformation of this steel was developed with the two-stage Laasraoui equation. The activation energy of the tested steel was 304.27 KJ/mol, which was in reasonable agreement with those reported previously. The flow stress of this steel in hot deformation was mainly controlled by dislocation climb during their intragranular motion. The effect of Zener-Hollomon parameter on the characteristic points of the flow curves was studied, and the dependence of critical strain on peak strain obeyed a linear equation. Dynamic recrystallization was the most important softening mechanism for the tested steel during hot deformation. Kinetic equation of this steel was also established based on the flow stress. The austenite grain size of complete dynamic recrystallization was a power law function of Zener-Hollomon parameter with an exponent of -0.2956. Moreover, the microstructures induced under different deformation conditions were analyzed.
Biometric verification in dynamic writing
NASA Astrophysics Data System (ADS)
George, Susan E.
2002-03-01
Pen-tablet devices capable of capturing the dynamics of writing record temporal and pressure information as well as the spatial pattern. This paper explores biometric verification based upon the dynamics of writing where writers are distinguished not on the basis of what they write (ie the signature), but how they write. We have collected samples of dynamic writing from 38 Chinese writers. Each writer was asked to provide 10 copies of a paragraph of text and the same number of signature samples. From the data we have extracted stroke-based primitives from the sentence data utilizing pen-up/down information and heuristic rules about the shape of the character. The x, y and pressure values of each primitive were interpolated into an even temporal range based upon a 20 msec sampling rate. We applied the Daubechies 1 wavelet transform to the x signal, y signal and pressure signal using the coefficients as inputs to a multi-layer perceptron trained with back-propagation on the sentence data. We found a sensitivity of 0.977 and specificity of 0.990 recognizing writers based on test primitives extracted from sentence data and measures of 0.916 and 0.961 respectively, from test primitives extracted from signature data.
NASA Astrophysics Data System (ADS)
Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Pardini, Carmen; Peron, Roberto; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo
2017-04-01
The main goal of the LARASE (LAser RAnged Satellites Experiment) research program is to obtain refined tests of Einstein's theory of General Relativity (GR) by means of very precise measurements of the round-trip time among a number of ground stations of the International Laser Ranging Service (ILRS) network and a set of geodetic satellites. These measurements are guaranteed by means of the powerful and precise Satellite Laser Ranging (SLR) technique. In particular, a big effort of LARASE is dedicated to improve the dynamical models of the LAGEOS, LAGEOS II and LARES satellites, with the objective to obtain a more precise and accurate determination of their orbit. These activities contribute to reach a final error budget that should be robust and reliable in the evaluation of the main systematic errors sources that come to play a major role in masking the relativistic precession on the orbit of these laser-ranged satellites. These error sources may be of gravitational and non-gravitational origin. It is important to stress that a more accurate and precise orbit determination, based on more reliable dynamical models, represents a fundamental prerequisite in order to reach a sub-mm precision in the root-mean-square of the SLR range residuals and, consequently, to gather benefits in the fields of geophysics and space geodesy, such as stations coordinates knowledge, geocenter determination and the realization of the Earth's reference frame. The results reached over the last year will be presented in terms of the improvements achieved in the dynamical model, in the orbit determination and, finally, in the measurement of the relativistic precessions that act on the orbit of the satellites considered.
Control integration concept for hypersonic cruise-turn maneuvers
NASA Technical Reports Server (NTRS)
Raney, David L.; Lallman, Frederick J.
1992-01-01
Piloting difficulties associated with conducting aircraft maneuvers in hypersonic flight are caused in part by the nonintuitive nature of the aircraft response and the stringent constraints anticipated on allowable angle of attack and dynamic pressure variations. An approach is documented that provides precise, coordinated maneuver control during excursions from a hypersonic cruise flight path and the necessary flight condition constraints. The approach is to achieve specified guidance commands by resolving altitude and cross range errors into a load factor and bank angle command by using a coordinate transformation that acts as an interface between outer and inner loop flight controls. This interface, referred to as a 'resolver', applies constraints on angle of attack and dynamic pressure perturbations while prioritizing altitude regulation over cross range. An unpiloted test simulation, in which the resolver was used to drive inner loop flight controls, produced time histories of responses to guidance commands and atmospheric disturbances at Mach numbers of 6, 10, 15, and 20. Angle of attack and throttle perturbation constraints, combined with high speed flight effects and the desire to maintain constant dynamic pressure, significantly impact the maneuver envelope for a hypersonic vehicle.
Confounded winter and spring phenoclimatology on large herbivore ranges
Christianson, David; Klaver, Robert W.; Middleton, Arthur; Kauffman, Matthew
2013-01-01
Annual variation in winter severity and growing season vegetation dynamics appear to influence the demography of temperate herbivores but parsing winter from spring effects requires independent metrics of environmental conditions specific to each season. We tested for independence in annual variation amongst four common metrics used to describe winter severity and early growing season vegetation dynamics across the entire spatial distribution of elk (Cervus elaphus) in Wyoming from 1989 to 2006. Winter conditions and early growing season dynamics were correlated in a specific way. Winters with snow cover that ended early tended to be followed by early, but slow, rises in the normalized difference vegetation index (NDVI), while long winters with extended periods of snow cover were often followed by late and rapid rises in NDVI. Across the 35 elk ranges, 0.4–86.8 % of the variation in the rate of increase in NDVI’s in spring was explained by the date snow cover disappeared from SNOTEL stations. Because phenoclimatological metrics are correlated across seasons and shifting due to climate change, identifying environmental constraints on herbivore fitness, particularly migratory species, is more difficult than previously recognized.
Habasaki, J; Casalini, R; Ngai, K L
2010-03-25
Experimentally, superpositioning of dynamic properties such as viscosity, relaxation times, or diffusion coefficients under different conditions of temperature T, pressure P, and volume V by the scaling variable TV(gamma) (where gamma is a material constant) has been reported as a general feature of many kinds of glass-forming materials. In the present work, molecular dynamics (MD) simulations have been performed to study the scaling of dynamics near the glass-transition regime of ionic liquids. Scaling in the simulated 1-ethyl-3-methylimidazolium nitrate (EMIM-NO(3)) system has been tested over wide ranges of temperatures and pressures. TV(gamma) scaling of the dynamics is well described by master curves with gamma = 4.0 +/- 0.2 and 3.8 +/- 0.2 for cation and anion, respectively. Structures and Coulombic terms of the corresponding states are found to be quite similar. The temperature and pressure dependence of the pair correlation function show similar trends and therefore can be superpositioned onto the master curve. Although the behaviors with gamma = 4 might be expected from the relation, gamma = n/3, for the dynamics with the soft-core-type potential U = epsilon(sigma/r)(n), with n = 12, pair potentials used in the MD simulation have a more complex form, and not all the repulsive terms can play their roles in the heterogeneous structures determined by ion-ion interactions. Scaling is related to the common part of effective potentials related to the pair correlation functions, including the many-body effect in real space.
Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios
2015-12-01
Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles.
Nonlinear analysis of pupillary dynamics.
Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo
2016-02-01
Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (p<0.001). Our results suggest that (a) pupil size at constant light condition is characterized by nonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.
Complex dynamics of memristive circuits: Analytical results and universal slow relaxation
NASA Astrophysics Data System (ADS)
Caravelli, F.; Traversa, F. L.; Di Ventra, M.
2017-02-01
Networks with memristive elements (resistors with memory) are being explored for a variety of applications ranging from unconventional computing to models of the brain. However, analytical results that highlight the role of the graph connectivity on the memory dynamics are still few, thus limiting our understanding of these important dynamical systems. In this paper, we derive an exact matrix equation of motion that takes into account all the network constraints of a purely memristive circuit, and we employ it to derive analytical results regarding its relaxation properties. We are able to describe the memory evolution in terms of orthogonal projection operators onto the subspace of fundamental loop space of the underlying circuit. This orthogonal projection explicitly reveals the coupling between the spatial and temporal sectors of the memristive circuits and compactly describes the circuit topology. For the case of disordered graphs, we are able to explain the emergence of a power-law relaxation as a superposition of exponential relaxation times with a broad range of scales using random matrices. This power law is also universal, namely independent of the topology of the underlying graph but dependent only on the density of loops. In the case of circuits subject to alternating voltage instead, we are able to obtain an approximate solution of the dynamics, which is tested against a specific network topology. These results suggest a much richer dynamics of memristive networks than previously considered.
Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data
Caulfield, Thomas R.; Devkota, Batsal; Rollins, Geoffrey C.
2011-01-01
We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500 ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16. PMID:21716650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rembold, Randy Kai; Hart, Darren M.
Sandia National Laboratories has tested and evaluated Geotech SMART24BH borehole data acquisition system with active Fortezza crypto card data signing and authentication. The test results included in this report were in response to static and tonal-dynamic input signals. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters; others were designed by Sandia specifically for infrasound application evaluation and for supplementary criteria not addressed in the IEEE standards. The objective of this work was to evaluate the overall technical performance of two Geotech SMART24BH digitizers with a Fortezza PCMCIAmore » crypto card actively implementing the signing of data packets. The results of this evaluation were compared to relevant specifications provided within manufacturer's documentation notes. The tests performed were chosen to demonstrate different performance aspects of the digitizer under test. The performance aspects tested include determining noise floor, least significant bit (LSB), dynamic range, cross-talk, relative channel-to-channel timing, time-tag accuracy/statistics/drift, analog bandwidth.« less
Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini.
Janz, N; Nyblom, K; Nylin, S
2001-04-01
Two general patterns that have emerged from the intense studies on insect-host plant associations are a predominance of specialists over generalists and a taxonomic conservatism in host-plant use. In most insect-host plant systems, explanations for these patterns must be based on biases in the processes of host colonizations, host shifts, and specialization, rather than cospeciation. In the present paper, we investigate changes in host range in the nymphalid butterfly tribe Nymphalini, using parsimony optimizations of host-plant data on the butterfly phylogeny. In addition, we performed larval establishment tests to search for larval capacity to feed and survive on plants that have been lost from the female egg-laying repertoire. Optimizations suggested an ancestral association with Urticaceae, and most of the tested species showed a capacity to feed on Urtica dioica regardless of actual host-plant use. In addition, there was a bias among the successful establishments on nonhosts toward plants that are used as hosts by other species in the Nymphalini. An increased likelihood of colonizing ancestral or related plants could also provide an alternative explanation for the observed pattern that some plant families appear to have been colonized independently several times in the tribe. We also show that there is no directionality in host range evolution toward increased specialization, that is, specialization is not a dead end. Instead, changes in host range show a very dynamic pattern.
Distribution of Human papillomavirus load in clinical specimens.
Lowe, Brian; O'Neil, Dominic; Loeffert, Dirk; Nazarenko, Irina
2011-04-01
The information about the range and distribution of Human papillomavirus load in clinical specimens is important for the design of accurate clinical tests. The amount of Human papillomavirus in cervical specimens was estimated using the digene HC2 HPV DNA Test(®) (QIAGEN). This semi-quantitative assay is based on linear signal amplification with an analytical limit-of-detection of approximately 2500 virus copies per assay and 3-4 log dynamic range. The dynamic range of the assay was extended by a serial dilution strategy. Two large sets of positive specimens (n=501 and 569) were analyzed and 9-11% of specimens was estimated to contain more than 7 × 10(7) copies of virus. The viral load was also assessed for an assortment of specimens with known cytology diagnoses (n=9435) and histological diagnoses (n=2056). The percentage of specimens with more than 7 × 10(7) copies of virus was estimated to be 0.89 for normal cells, 4.2 for atypical cells (unknown significance), 14.31 for cells of low-grade lesions and 22.24 for cells of high-grade lesions. The viral load increased with disease severity, but its broad distribution may not support its use as a disease biomarker. This information is important for assay design and automation, where cross-reactivity and sample-to-sample contamination must be addressed rigorously. Copyright © 2011 Elsevier B.V. All rights reserved.
Airborne Simulation of Launch Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.
2014-01-01
In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity-turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is optimized for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using NASA Dryden Flight Research Center's Full-scale Advanced Systems Testbed (FAST), a modified F/A-18 airplane, over a range of scenarios designed to stress the SLS's adaptive augmenting control (AAC) algorithm.
Hakim, Renée M; Davies, Lauren; Jaworski, Kate; Tufano, Nina; Unterstein, Allison
2012-04-01
A systematic review by Barclay-Goddard et al (2004) reported that force platform feedback improved stance symmetry but not sway, clinical balance outcomes, or measures of independence in adults with stroke. However, the role of computerized dynamic posturography (CDP) systems was not explored. The purpose of this case report was to describe a CDP training program to improve balance and reduce fall risk in a patient with a diagnosis of chronic stroke. A 61-year-old patient 8 years poststroke participated in 1 hour of CDP training, three times a week over a period of 6 weeks. Examination was conducted before and after intervention using the Sensory Organization Test (SOT), Limits of Stability (LOS) test, and Weight Bearing/Squat Symmetry test on a CDP system, and clinical testing with the Berg Balance Scale (BBS), Timed Up and Go (TUG), Activities-specific Balance Confidence (ABC) scale, 30-second Chair Stand (CS), and range of motion of the ankle joints. The patient improved in sensory integration abilities on the SOT for conditions 4, 5, and 6, and maximum excursion abilities improved by a range of 23-103% on the LOS test. Scores on the BBS increased from 37/56 to 47/56, which indicated reduced fall risk and her ABC score improved from 50% to 70%. Ankle ROM improved bilaterally by 6 to 8 degrees. This CDP training program showed promise as a systematic, objective method to reduce fall risk with improved overground performance of balance tasks in an individual with chronic stroke.
Drift mode accelerometry for spaceborne gravity measurements
NASA Astrophysics Data System (ADS)
Conklin, John W.
2015-11-01
A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be neglected in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. The drift mode accelerometer is a novel offshoot of the like-named operational mode of the LISA Pathfinder spacecraft, in which its test mass suspension system is cycled on and off to estimate the acceleration noise associated with the front-end electronics. This paper presents the concept of a drift mode accelerometer, describes the operation of such a device, develops models for its performance with respect to non-drag-free satellite geodesy and gravitational wave missions, and discusses plans for testing the performance of a prototype sensor in the laboratory using torsion pendula.
NASA Technical Reports Server (NTRS)
Sadoff, Melvin
1958-01-01
The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.
High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging
Persoons, Tim; O’Donovan, Tadhg S.
2011-01-01
The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods. PMID:22346564
Built for speed: strain in the cartilaginous vertebral columns of sharks.
Porter, M E; Diaz, Candido; Sturm, Joshua J; Grotmol, Sindre; Summers, A P; Long, John H
2014-02-01
In most bony fishes vertebral column strain during locomotion is almost exclusively in the intervertebral joints, and when these joints move there is the potential to store and release strain energy. Since cartilaginous fishes have poorly mineralized vertebral centra, we tested whether the vertebral bodies undergo substantial strain and thus may be sites of energy storage during locomotion. We measured axial strains of the intervertebral joints and vertebrae in vivo and ex vivo to characterize the dynamic behavior of the vertebral column. We used sonomicrometry to directly measure in vivo and in situ strains of intervertebral joints and vertebrae of Squalus acanthias swimming in a flume. For ex vivo measurements, we used a materials testing system to dynamically bend segments of vertebral column at frequencies ranging from 0.25 to 1.00 Hz and a range of physiologically relevant curvatures, which were determined using a kinematic analysis. The vertebral centra of S. acanthias undergo strain during in vivo volitional movements as well as in situ passive movements. Moreover, when isolated segments of vertebral column were tested during mechanical bending, we measured the same magnitudes of strain. These data support our hypothesis that vertebral column strain in lateral bending is not limited to the intervertebral joints. In histological sections, we found that the vertebral column of S. acanthias has an intracentral canal that is open and covered with a velum layer. An open intracentral canal may indicate that the centra are acting as tunics around some sections of a hydrostat, effectively stiffening the vertebral column. These data suggest that the entire vertebral column of sharks, both joints and centra, is mechanically engaged as a dynamic spring during locomotion. Copyright © 2013 Elsevier GmbH. All rights reserved.
Clark, Ross A; Pua, Yong-Hao; Oliveira, Cristino C; Bower, Kelly J; Thilarajah, Shamala; McGaw, Rebekah; Hasanki, Ksaniel; Mentiplay, Benjamin F
2015-07-01
The Microsoft Kinect V2 for Windows, also known as the Xbox One Kinect, includes new and potentially far improved depth and image sensors which may increase its accuracy for assessing postural control and balance. The aim of this study was to assess the concurrent validity and reliability of kinematic data recorded using a marker-based three dimensional motion analysis (3DMA) system and the Kinect V2 during a variety of static and dynamic balance assessments. Thirty healthy adults performed two sessions, separated by one week, consisting of static standing balance tests under different visual (eyes open vs. closed) and supportive (single limb vs. double limb) conditions, and dynamic balance tests consisting of forward and lateral reach and an assessment of limits of stability. Marker coordinate and joint angle data were concurrently recorded using the Kinect V2 skeletal tracking algorithm and the 3DMA system. Task-specific outcome measures from each system on Day 1 and 2 were compared. Concurrent validity of trunk angle data during the dynamic tasks and anterior-posterior range and path length in the static balance tasks was excellent (Pearson's r>0.75). In contrast, concurrent validity for medial-lateral range and path length was poor to modest for all trials except single leg eyes closed balance. Within device test-retest reliability was variable; however, the results were generally comparable between devices. In conclusion, the Kinect V2 has the potential to be used as a reliable and valid tool for the assessment of some aspects of balance performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of test methodology for dynamic mechanical analysis instrumentation
NASA Technical Reports Server (NTRS)
Allen, V. R.
1982-01-01
Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic.
Li, Desheng
2014-01-01
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem.
NASA Astrophysics Data System (ADS)
Wang, W. L.; Zhou, Z. R.; Yu, D. S.; Qin, Q. H.; Iwnicki, S.
2017-10-01
A full nonlinear physical 'in-service' model was built for a rail vehicle secondary suspension hydraulic damper with shim-pack-type valves. In the modelling process, a shim pack deflection theory with an equivalent-pressure correction factor was proposed, and a Finite Element Analysis (FEA) approach was applied. Bench test results validated the damper model over its full velocity range and thus also proved that the proposed shim pack deflection theory and the FEA-based parameter identification approach are effective. The validated full damper model was subsequently incorporated into a detailed vehicle dynamics simulation to study how its key in-service parameter variations influence the secondary-suspension-related vehicle system dynamics. The obtained nonlinear physical in-service damper model and the vehicle dynamic response characteristics in this study could be used in the product design optimization and nonlinear optimal specifications of high-speed rail hydraulic dampers.
Performance comparison for Barnes model 12-1000, Exotech model 100, and Ideas Inc. Biometer Mark 2
NASA Technical Reports Server (NTRS)
Robinson, B. (Principal Investigator)
1981-01-01
Results of tests show that all channels of all instruments, except channel 3 of the Biometer Mark 2, were stable in response to input signals were linear, and were adequately stable in response to temperature changes. The Biometer Mark 2 is labelled with an inappropriate description of the units measured and the dynamic range is a inappropriate for field measurements causing unnecessarily high fractional errors. This instrument is, therefore, quantization limited. The dynamic range and noise performance of the Model 12-1000 are appropriate for remote sensing field research. The field of view and performance of the Model 100A and the Model 12-1000 are satisfactory. The Biometer Mark 2 has not, as yet, been satisfactorily equipped with an acceptable field of view determining device. Neither the widely used aperture plate nor the 24 deg cone are acceptable.
NASA Technical Reports Server (NTRS)
Nemeth, Z. N.
1972-01-01
Rotor bearing dynamic tests were conducted with tilting-pad journal bearings having three different pad masses and two different pivot geometries. The rotor was vertically mounted and supported by two three-pad tilting-pad gas journal bearings and a simple externally pressurized thrust bearing. The bearing pads were 5.1 cm (2.02 in.) in diameter and 2.8 cm (1.5 in.) long. The length to diameter ratio was 0.75. One pad was mounted on a flexible diaphragm. The bearing supply pressure ranged from 0 to 690 kilonewtons per square meter (0 to 100 psig), and speeds ranged to 38,500 rpm. Heavy mass pad tilting-pad assemblies produced three rotor-bearing resonances above the first two rotor critical speeds. Lower supply pressure eliminated the resonances. The resonances were oriented primarily in the direction normal to the diaphragm.
Properties of a center/surround retinex. Part 2: Surround design
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.; Woodell, Glenn A.
1995-01-01
The last version of Edwin Land's retinex model for human vision's lightness and color constancy has been implemented. Previous research has established the mathematical foundations of Land's retinex but has not examined specific design issues and their effects on the properties of the retinex operation. We have sought to define a practical implementation of the retinex without particular concern for its validity as a model for human lightness and color perception. Here we describe issues involved in designing the surround function. We find that there is a trade-off between rendition and dynamic range compression that is governed by the surround space constant. Various functional forms for the retinex surround are evaluated and a Gaussian form is found to perform better than the inverse square suggested by Land. Preliminary testing led to the design of a Gaussian surround with a space constant of 80 pixels as a reasonable compromise between dynamic range compression and rendition.
NASA Astrophysics Data System (ADS)
Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.
2014-02-01
A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.
Effect of tone mapping operators on visual attention deployment
NASA Astrophysics Data System (ADS)
Narwaria, Manish; Perreira Da Silva, Matthieu; Le Callet, Patrick; Pepion, Romuald
2012-10-01
High Dynamic Range (HDR) images/videos require the use of a tone mapping operator (TMO) when visualized on Low Dynamic Range (LDR) displays. From an artistic intention point of view, TMOs are not necessarily transparent and might induce different behavior to view the content. In this paper, we investigate and quantify how TMOs modify visual attention (VA). To that end both objective and subjective tests in the form of eye-tracking experiments have been conducted on several still image content that have been processed by 11 different TMOs. Our studies confirm that TMOs can indeed modify human attention and fixation behavior significantly. Therefore our studies suggest that VA needs consideration for evaluating the overall perceptual impact of TMOs on HDR content. Since the existing studies so far have only considered the quality or aesthetic appeal angle, this study brings in a new perspective regarding the importance of VA in HDR content processing for visualization on LDR displays.
Modelling and identification for control of gas bearings
NASA Astrophysics Data System (ADS)
Theisen, Lukas R. S.; Niemann, Hans H.; Santos, Ilmar F.; Galeazzi, Roberto; Blanke, Mogens
2016-03-01
Gas bearings are popular for their high speed capabilities, low friction and clean operation, but suffer from poor damping, which poses challenges for safe operation in presence of disturbances. Feedback control can achieve enhanced damping but requires low complexity models of the dominant dynamics over its entire operating range. Models from first principles are complex and sensitive to parameter uncertainty. This paper presents an experimental technique for "in situ" identification of a low complexity model of a rotor-bearing-actuator system and demonstrates identification over relevant ranges of rotational speed and gas injection pressure. This is obtained using parameter-varying linear models that are found to capture the dominant dynamics. The approach is shown to be easily applied and to suit subsequent control design. Based on the identified models, decentralised proportional control is designed and shown to obtain the required damping in theory and in a laboratory test rig.
A conceptual study of the rotor systems research aircraft
NASA Technical Reports Server (NTRS)
1972-01-01
The analytical comparison of the two candidate Rotor Systems Research Aircraft (RSRA) configurations selected by the Government at the completion of Part 1 of the RSRA Conceptual Predesign Study is presented. The purpose of the comparison was to determine the relative suitability of both vehicles for the RSRA missions described in the Government Statement of Work, and to assess their versatility in the testing of new rotor concepts. The analytical comparison was performed primarily with regard to performance and stability and control. A weights, center-of-gravity, and inertia computation was performed for each iteration in the analysis process. The dynamics investigation was not concerned so much with a comparison of the two vehicles, but explored the dynamic problems attending operation of any RSRA operating with large rotor RPM and diameter ranges over large forward speed ranges. Several means of isolating in- and out-of-plane rotor vibrations were analyzed. An optimum isolation scheme was selected.
Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto
2018-06-04
In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.
2016-01-01
As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for combustion analysis model development. Hot-fire testing was conducted with main combustion chamber pressures ranging from 1400 to 2100 psia, and main combustion chamber mixture ratios ranging from 2.4 to 2.9. Different levels of fuel film cooling injected from the injector face were examined ranging from none to about 12% of the total fuel flow. This paper presents the hot-fire test results of the integrated test article. Combustion performance, stability, thermal, and compatibility characteristics of both the preburner and the thrust chamber are described. Another companion paper at this JANNAF meeting includes additional and more detailed test data regarding the combustion dynamics and stability characteristics.
Machine Learning Control For Highly Reconfigurable High-Order Systems
2015-01-02
develop and flight test a Reinforcement Learning based approach for autonomous tracking of ground targets using a fixed wing Unmanned...Reinforcement Learning - based algorithms are developed for learning agents’ time dependent dynamics while also learning to control them. Three algorithms...to a wide range of engineering- based problems . Implementation of these solutions, however, is often complicated by the hysteretic, non-linear,
Load and inflation pressure effects on soil compaction of forwarder tires
Tim McDonald; Tom Way; Bjorn Lofgren; Fernando Seixas; Mats Landstrom
1996-01-01
A standard forwarder tire (600/55-26.5) was tested to determine its range of soil compaction with various inflation pressures and dynamic loads. Past research has shown that compaction of heavier equipment can be somewhat mitigated by operating with lower inflation pressures. Results indicated a significant effect of both load and inflation pressure on bulk density,...
Dynamic Loading Assembly for Testing Actuators of Segmented Mirror Telescope
NASA Astrophysics Data System (ADS)
Deshmukh, Prasanna Gajanan; Parihar, Padmakar; Balasubramaniam, Karthik A.; Mishra, Deepta Sundar; Mahesh, P. K.
Upcoming large telescopes are based on Segmented Mirror Telescope (SMT) technology which uses small hexagonal mirror segments placed side by side to form the large monolithic surface. The segments alignment needs to be maintained against external disturbances like wind, gravity, temperature and structural vibration. This is achieved by using three position actuators per segment working at few-nanometer scale range along with a local closed loop controller. The actuator along with a controller is required to meet very stringent performance requirements, such as track rates up to 300nm/s (90mN/s) with tracking errors less than 5nm, dynamical forces of up to ±40N, ability to reject disturbances introduced by the wind as well as by mechanical vibration generated in the mirror cell, etc. To conduct these performance tests in more realistic manner, we have designed and developed a Dynamic Loading Assembly (DLA) at Indian Institute of Astrophysics (IIA), Bangalore. DLA is a computer controlled force-inducing device, designed in a modular fashion to generate different types of user-defined disturbances in extremely precise and controlled manner. Before realizing the device, using a simple spring-mass-damper-based mathematical model, we ensured that the concept would indeed work. Subsequently, simple concept was converted into a detailed mechanical design and parts were manufactured and assembled. DLA has static and dynamic loading capabilities up to 250N and 18N respectively, with a bandwidth sufficient to generate wind disturbances. In this paper, we present various performance requirements of SMT actuators as well as our effort to develop a dynamic loading device which can be used to test these actuators. Well before using DLA for meaningful testing of the actuator, the DLA itself have gone through various tests and improvements phases. We have successfully demonstrated that DLA can be used to check the extreme performance of two different SMT actuators, which are expected to track the position/force with a few nanometer accuracy.
A Novel Approach for Dynamic Testing of Total Hip Dislocation under Physiological Conditions.
Herrmann, Sven; Kluess, Daniel; Kaehler, Michael; Grawe, Robert; Rachholz, Roman; Souffrant, Robert; Zierath, János; Bader, Rainer; Woernle, Christoph
2015-01-01
Constant high rates of dislocation-related complications of total hip replacements (THRs) show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of testing THR stability under dynamic, reproducible and physiological conditions. The approach is based on a hardware-in-the-loop (HiL) simulation where a robotic physical setup interacts with a computational musculoskeletal model based on inverse dynamics. A major objective of this work was the validation of the HiL test system against in vivo data derived from patients with instrumented THRs. Moreover, the impact of certain test conditions, such as joint lubrication, implant position, load level in terms of body mass and removal of muscle structures, was evaluated within several HiL simulations. The outcomes for a normal sitting down and standing up maneuver revealed good agreement in trend and magnitude compared with in vivo measured hip joint forces. For a deep maneuver with femoral adduction, lubrication was shown to cause less friction torques than under dry conditions. Similarly, it could be demonstrated that less cup anteversion and inclination lead to earlier impingement in flexion motion including pelvic tilt for selected combinations of cup and stem positions. Reducing body mass did not influence impingement-free range of motion and dislocation behavior; however, higher resisting torques were observed under higher loads. Muscle removal emulating a posterior surgical approach indicated alterations in THR loading and the instability process in contrast to a reference case with intact musculature. Based on the presented data, it can be concluded that the HiL test system is able to reproduce comparable joint dynamics as present in THR patients.
A Novel Approach for Dynamic Testing of Total Hip Dislocation under Physiological Conditions
Herrmann, Sven; Kluess, Daniel; Kaehler, Michael; Grawe, Robert; Rachholz, Roman; Souffrant, Robert; Zierath, János; Bader, Rainer; Woernle, Christoph
2015-01-01
Constant high rates of dislocation-related complications of total hip replacements (THRs) show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of testing THR stability under dynamic, reproducible and physiological conditions. The approach is based on a hardware-in-the-loop (HiL) simulation where a robotic physical setup interacts with a computational musculoskeletal model based on inverse dynamics. A major objective of this work was the validation of the HiL test system against in vivo data derived from patients with instrumented THRs. Moreover, the impact of certain test conditions, such as joint lubrication, implant position, load level in terms of body mass and removal of muscle structures, was evaluated within several HiL simulations. The outcomes for a normal sitting down and standing up maneuver revealed good agreement in trend and magnitude compared with in vivo measured hip joint forces. For a deep maneuver with femoral adduction, lubrication was shown to cause less friction torques than under dry conditions. Similarly, it could be demonstrated that less cup anteversion and inclination lead to earlier impingement in flexion motion including pelvic tilt for selected combinations of cup and stem positions. Reducing body mass did not influence impingement-free range of motion and dislocation behavior; however, higher resisting torques were observed under higher loads. Muscle removal emulating a posterior surgical approach indicated alterations in THR loading and the instability process in contrast to a reference case with intact musculature. Based on the presented data, it can be concluded that the HiL test system is able to reproduce comparable joint dynamics as present in THR patients. PMID:26717236
A Novel Concept for a Deformable Membrane Mirror for Correction of Large Amplitude Aberrations
NASA Technical Reports Server (NTRS)
Moore, Jim; Patrick, Brian
2006-01-01
Very large, light weight mirrors are being developed for applications in space. Due to launch mass and volume restrictions these mirrors will need to be much more flexible than traditional optics. The use of primary mirrors with these characteristics will lead to requirements for adaptive optics capable of correcting wave front errors with large amplitude relatively low spatial frequency aberrations. The use of low modulus membrane mirrors actuated with electrostatic attraction forces is a potential solution for this application. Several different electrostatic membrane mirrors are now available commercially. However, as the dynamic range requirement of the adaptive mirror is increased the separation distance between the membrane and the electrodes must increase to accommodate the required face sheet deformations. The actuation force applied to the mirror decreases inversely proportional to the square of the separation distance; thus for large dynamic ranges the voltage requirement can rapidly increase into the high voltage regime. Experimentation with mirrors operating in the KV range has shown that at the higher voltages a serious problem with electrostatic field cross coupling between actuators can occur. Voltage changes on individual actuators affect the voltage of other actuators making the system very difficult to control. A novel solution has been proposed that combines high voltage electrodes with mechanical actuation to overcome this problem. In this design an array of electrodes are mounted to a backing structure via light weight large dynamic range flextensional actuators. With this design the control input becomes the separation distance between the electrode and the mirror. The voltage on each of the actuators is set to a uniform relatively high voltage, thus the problem of cross talk between actuators is avoided and the favorable distributed load characteristic of electrostatic actuation is retained. Initial testing and modeling of this concept demonstrates that this is an attractive concept for increasing the dynamic range capability of electrostatic deformable mirrors.
Normal modes of weak colloidal gels
NASA Astrophysics Data System (ADS)
Varga, Zsigmond; Swan, James W.
2018-01-01
The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer physics, our results indicate that long-ranged hydrodynamic interactions play a crucial role in determining the microscopic dynamics and macroscopic properties of weak colloidal gels.
NASA Technical Reports Server (NTRS)
D'Souza, Christopher; Milenkovich, Zoran; Wilson, Zachary; Huich, David; Bendle, John; Kibler, Angela
2011-01-01
The Space Operations Simulation Center (SOSC) at the Lockheed Martin (LM) Waterton Campus in Littleton, Colorado is a dynamic test environment focused on Autonomous Rendezvous and Docking (AR&D) development testing and risk reduction activities. The SOSC supports multiple program pursuits and accommodates testing Guidance, Navigation, and Control (GN&C) algorithms for relative navigation, hardware testing and characterization, as well as software and test process development. The SOSC consists of a high bay (60 meters long by 15.2 meters wide by 15.2 meters tall) with dual six degree-of-freedom (6DOF) motion simulators and a single fixed base 6DOF robot. The large testing area (maximum sensor-to-target effective range of 60 meters) allows for large-scale, flight-like simulations of proximity maneuvers and docking events. The facility also has two apertures for access to external extended-range outdoor target test operations. In addition, the facility contains four Mission Operations Centers (MOCs) with connectivity to dual high bay control rooms and a data/video interface room. The high bay is rated at Class 300,000 (. 0.5 m maximum particles/m3) cleanliness and includes orbital lighting simulation capabilities.
Phase separated microstructure and dynamics of polyurethane elastomers under strain
NASA Astrophysics Data System (ADS)
Iacob, Ciprian; Padsalgikar, Ajay; Runt, James
The molecular mobility of polyurethane elastomers is of the utmost importance in establishing physical properties for uses ranging from automotive tires and shoe soles to more sophisticated aerospace and biomedical applications. In many of these applications, chain dynamics as well as mechanical properties under external stresses/strains are critical for determining ultimate performance. In order to develop a more complete understanding of their mechanical response, we explored the effect of uniaxial strain on the phase separated microstructure and molecular dynamics of the elastomers. We utilize X-ray scattering to investigate soft segment and hard domain orientation, and broadband dielectric spectroscopy for interrogation of the dynamics. Uniaxial deformation is found to significantly perturb the phase-separated microstructure and chain orientation, and results in a considerable slowing down of the dynamics of the elastomers. Attenuated total reflectance Fourier transform infrared spectroscopy measurements of the polyurethanes under uniaxial deformation are also employed and the results are quantitatively correlated with mechanical tensile tests and the degree of phase separation from small-angle X-ray scattering measurements.
Age-related changes in human vestibulo-ocular reflexes: Sinusoidal rotation and caloric tests
NASA Technical Reports Server (NTRS)
Peterka, R. J.; Black, F. O.; Schoenhoff, M. B.
1989-01-01
The dynamic response properties of horizontal vestibulo-ocular reflex (VOR) were characterized in 216 human subjects ranging in age from 7 to 81 years. The object of this cross-sectional study was to determine the effects of aging on VOR dynamics, and to identify the distributions of parameters which describe VOR responses to caloric and to sinusoidal rotational stimuli in a putatively normal population. Caloric test parameters showed no consistent trend with age. Rotation test parameters showed declining response amplitude and slightly less compensatory response phase with increasing age. The magnitudes of these changes were not large relative to the variability within the population. The age-related trends in VOR were not consistent with the anatomic changes in the periphery reported by others which showed an increasing rate of peripheral hair cell and nerve fiber loss in subjects over 55 years. The poor correlation between physiological and anatomical data suggest that adaptive mechanisms in the central nervous system are important in maintaining the VOR.
Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method.
Shinto, Hironobu; Saita, Yusuke; Nomura, Takanori
2016-07-10
A Shack-Hartmann wavefront sensor (SHWFS) that consists of a microlens array and an image sensor has been used to measure the wavefront aberrations of human eyes. However, a conventional SHWFS has finite dynamic range depending on the diameter of the each microlens. The dynamic range cannot be easily expanded without a decrease of the spatial resolution. In this study, an adaptive spot search method to expand the dynamic range of an SHWFS is proposed. In the proposed method, spots are searched with the help of their approximate displacements measured with low spatial resolution and large dynamic range. By the proposed method, a wavefront can be correctly measured even if the spot is beyond the detection area. The adaptive spot search method is realized by using the special microlens array that generates both spots and discriminable patterns. The proposed method enables expanding the dynamic range of an SHWFS with a single shot and short processing time. The performance of the proposed method is compared with that of a conventional SHWFS by optical experiments. Furthermore, the dynamic range of the proposed method is quantitatively evaluated by numerical simulations.
Effects of age and loading rate on equine cortical bone failure.
Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S
2011-01-01
Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.
Su, Hsuan; Chang, Nai-Jen; Wu, Wen-Lan; Guo, Lan-Yuen; Chu, I-Hua
2017-11-01
Foam rolling has been proposed to improve muscle function, performance, and joint range of motion (ROM). However, whether a foam rolling protocol can be adopted as a warm-up to improve flexibility and muscle strength is unclear. To examine and compare the acute effects of foam rolling, static stretching, and dynamic stretching used as part of a warm-up on flexibility and muscle strength of knee flexion and extension. Crossover study. University research laboratory. 15 male and 15 female college students (age 21.43 ± 1.48 y, weight 65.13 ± 12.29 kg, height 166.90 ± 6.99 cm). Isokinetic peak torque was measured during knee extension and flexion at an angular velocity of 60°/second. Flexibility of the quadriceps was assessed by the modified Thomas test, while flexibility of the hamstrings was assessed using the sit-and-reach test. The 3 interventions were performed by all participants in random order on 3 days separated by 48-72 hours. The flexibility test scores improved significantly more after foam rolling as compared with static and dynamic stretching. With regard to muscle strength, only knee extension peak torque (pre vs. postintervention) improved significantly after the dynamic stretching and foam rolling, but not after static stretching. Knee flexion peak torque remained unchanged. Foam rolling is more effective than static and dynamic stretching in acutely increasing flexibility of the quadriceps and hamstrings without hampering muscle strength, and may be recommended as part of a warm-up in healthy young adults.
NASA Technical Reports Server (NTRS)
Poole, Lamont R.; Councill, Earl L., Jr.
1972-01-01
A series of tests has been conducted to investigate the elastic behavior of Viking-type suspension-line material under dynamic loading conditions. Results indicate that there is a decrease in both rupture-load capability and elongation at rupture as the test strain rate is increased. Preliminary examination of force-strain characteristics indicates that, on the average, the material exhibits some type of viscous effect which results in a greater force being produced, for a particular value of strain, under dynamic loading conditions than that produced under quasi-static loading conditions. A great deal of uncertainty exists in defining a priori the tensile properties of viscoelastic materials, such as nylon or dacron, under dynamic loading conditions. Additional uncertainty enters the picture when woven configurations such as suspension,line material are considered. To eliminate these uncertainties, with respect to the Viking parachute configuration, a test program has been conducted to obtain data on the tensile properties of Viking-type suspension-line material over a wide range of strain rates. Based on preliminary examination of these data, the following conclusions can be drawn: 1. Material rupture-load capability decreases as strain-rate is increased. At strain rates above 75 percent/sec, no rupture loads were observed which would meet the minimum tensile strength specification of 880 pounds. 2. The material, on the average, exhibits some type of viscous effect which, for a particular value of strain, produces a greater load under dynamic loading conditions than that produced under quasi-static loading conditions.
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Brown, J. W.; Lewis, J. L.
1982-01-01
An enhanced proximity sensor and display system was developed at the Jet Propulsion Laboratory (JPL) and tested on the full scale Space Shuttle Remote Manipulator at the Johnson Space Center (JSC) Manipulator Development Facility (MDF). The sensor system, integrated with a four-claw end effector, measures range error up to 6 inches, and pitch and yaw alignment errors within + or 15 deg., and displays error data on both graphic and numeric displays. The errors are referenced to the end effector control axes through appropriate data processing by a dedicated microcomputer acting on the sensor data in real time. Both display boxes contain a green lamp which indicates whether the combination of range, pitch and yaw errors will assure a successful grapple. More than 200 test runs were completed in early 1980 by three operators at JSC for grasping static and capturing slowly moving targets. The tests have indicated that the use of graphic/numeric displays of proximity sensor information improves precision control of grasp/capture range by more than a factor of two for both static and dynamic grapple conditions.
A common optimization principle for motor execution in healthy subjects and parkinsonian patients.
Baraduc, Pierre; Thobois, Stéphane; Gan, Jing; Broussolle, Emmanuel; Desmurget, Michel
2013-01-09
Recent research on Parkinson's disease (PD) has emphasized that parkinsonian movement, although bradykinetic, shares many attributes with healthy behavior. This observation led to the suggestion that bradykinesia in PD could be due to a reduction in motor motivation. This hypothesis can be tested in the framework of optimal control theory, which accounts for many characteristics of healthy human movement while providing a link between the motor behavior and a cost/benefit trade-off. This approach offers the opportunity to interpret movement deficits of PD patients in the light of a computational theory of normal motor control. We studied 14 PD patients with bilateral subthalamic nucleus (STN) stimulation and 16 age-matched healthy controls, and tested whether reaching movements were governed by similar rules in these two groups. A single optimal control model accounted for the reaching movements of healthy subjects and PD patients, whatever the condition of STN stimulation (on or off). The choice of movement speed was explained in all subjects by the existence of a preset dynamic range for the motor signals. This range was idiosyncratic and applied to all movements regardless of their amplitude. In PD patients this dynamic range was abnormally narrow and correlated with bradykinesia. STN stimulation reduced bradykinesia and widened this range in all patients, but did not restore it to a normal value. These results, consistent with the motor motivation hypothesis, suggest that constrained optimization of motor effort is the main determinant of movement planning (choice of speed) and movement production, in both healthy and PD subjects.
Girsanov reweighting for path ensembles and Markov state models
NASA Astrophysics Data System (ADS)
Donati, L.; Hartmann, C.; Keller, B. G.
2017-06-01
The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.
NASA Astrophysics Data System (ADS)
Gao, Fei; Liu, Zhenyu; Misra, R. D. K.; Liu, Haitao; Yu, Fuxiao
2014-09-01
The hot deformation behavior of an ultra-pure 17%Cr ferritic stainless steel was studied in the temperature range of 750-1000 °C and strain rates of 0.5 to 10 s-1 using isothermal hot compression tests in a thermomechanical simulator. The microstructural evolution was investigated using electron backscattered diffraction and transmission electron microscopy. A modified constitutive equation considering the effect of strain on material constant was developed, which predicted the flow stress for the deformation conditions studied, except at 950 °C in 1 s-1 and 900 °C in 10 s-1. Decreasing deformation temperature and increasing strain was beneficial in refining the microstructure. Decreasing deformation temperature, the in-grain shear bands appeared in the microstructure. It is suggested that the dynamic softening mechanism is closely related to deformation temperature. At low deformation temperature, dynamic recovery was major softening mechanism and no dynamic recrystallization occurred. At high deformation temperature, dynamic softening was explained in terms of efficient dynamic recovery and limited continuous dynamic recrystallization. A drop in the flow stress was not found due to very small fraction of new grains nucleated during dynamic recrystallization.
Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi
2012-01-01
Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.
The social dynamics of genetic testing: the case of Fragile-X.
Nelkin, D
1996-12-01
This article considers a program to screen school children for Fragile-X Syndrome as a way to explore several features of the growing practice of genetic testing in American society. These include the common practice of predictive testing in nonclinical settings; the economic, entrepreneurial, and policy interests that are driving the development of genetic screening programs; and the public support for genetic testing even when there are no effective therapeutic interventions. Drawing from research on popular images of genetics, I argue that cultural beliefs and expectations, widely conveyed through popular narratives, are encouraging the search for diagnostic information and enhancing the appeal of genetic explanations for a growing range of conditions.
Dot Projection Photogrammetric Technique for Shape Measurements of Aerospace Test Articles
NASA Technical Reports Server (NTRS)
Jones, Thomas W.; Pappa, Richard S.
2002-01-01
Results from initial laboratory investigations with the dot projection photogrammetric technique are presented for three wind-tunnel test articles with a range of surface scattering and reflection properties. These test articles are a semispan model and a micro air vehicle with a latex wing that are both diffusely reflecting, and a highly polished specularly reflecting model used for high Reynolds number testing. Results using both white light and laser illumination are presented. Some of the advantages and limitations of the dot projection technique are discussed. Although a desirable final outcome of this research effort is the characterization of dynamic behavior, only static laboratory results are presented in this preliminary effort.
NASA Technical Reports Server (NTRS)
Whitlow, Jr., Woodrow (Editor); Todd, Emily N. (Editor)
1999-01-01
The proceedings of a workshop sponsored by the Confederation of European Aerospace Societies (CEAS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), Washington, D.C., and the Institute for Computer Applications in Science and Engineering (ICASE), Hampton, Virginia, and held in Williamsburg, Virginia June 22-25, 1999 represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.
Detection of generalized synchronization using echo state networks
NASA Astrophysics Data System (ADS)
Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.
2018-03-01
Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.
Noise Source Identification and Dynamic Modeling of a Pneumatic Nailing Device =
NASA Astrophysics Data System (ADS)
Nili Ahmadabadi, Zahra
Exposure to hazardous noise levels emitted by pneumatic nailing devices contributes significantly to risk of hearing damage among the construction workers throughout the world. This health problem comes from the lack of appropriate technology such as low noise devices which in turn results from the lack of scientific knowledge about designing reduced noise devices. This study contributes to the design improvement of pneumatic nailing devices through identifying the noise sources and developing the simulation tool required to redesign the pneumatic nailing device. To identify the noise sources, the study uses a combination of two complementary experimental approaches. The first makes use of time-synchronized data analysis of several variables during the machine operation. This strategy allows identifying the physical processes and provides a detailed separation of the noise generation mechanisms in successive time sequences. However, since multiple noise sources radiate at the same time, this observation approach is not sufficient for noise source identification and ranking. Thus, it is completed by a selective wrapping and muffler procedure. This technique provides overall generated noise associated with each process, as well as ranking of the three major sources: (1) exhaust noise, (2) machine body vibrations, and (3) workpiece vibrations. A special investigation is conducted on this third one with two cases: a workpiece/worktable setup representative of the actual field usage of a nailing device and a workpiece/sandbox setup used in a standardized laboratory test. The study evaluates the efficiency of the workpiece/sandbox setup in reducing the workpiece radiation and obtains a typical workpiece contribution on an actual worksite. To provide a simulation tool, a dynamic model of the pneumatic nailing device needs to be developed. Dynamic modeling of the nailing device requires mathematical modeling of the physical processes involved in its operation. All of these processes can be described through already existing mathematical relations, except for the penetration resistance force (PRF) imposed on the nails when penetrating the wood. The PRF depends on various factors. This study follows two approaches in parallel to develop an empirical prediction law for the PRF: quasi-static and high-speed. The quasi-static approach provides a rapid and precise representation of the law at quasistatic penetration velocities. The law covers the entire displacement range, various nail geometries and sizes, and wood types. The high-speed approach aims to provide a law which covers a much wider range of penetration velocities. The approach is complicated since it requires a sophisticated test machine to conduct the nail driving tests at high penetration velocities. The study designs and fabricates an advanced test machine to later extend the prediction range of the PRF law. The last part of this study develops the dynamic model of a nail gun while integrating the quasi-static PRF law. The model includes dynamics of all the air chambers and the moving parts, and interactions and impacts/contacts between different parts. The study integrates a comprehensive experimental validation of the model. Future improvements in the dynamic model precision will be possible by using the extended version of the PRF law.
Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97
NASA Astrophysics Data System (ADS)
Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Spätig, Philippe
2011-07-01
The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock's approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.
Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition
Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A.
2016-01-01
The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. PMID:26209846
NASA Astrophysics Data System (ADS)
Migiyama, Go; Sugimura, Atsuhiko; Osa, Atsushi; Miike, Hidetoshi
Recently, digital cameras are offering technical advantages rapidly. However, the shot image is different from the sight image generated when that scenery is seen with the naked eye. There are blown-out highlights and crushed blacks in the image that photographed the scenery of wide dynamic range. The problems are hardly generated in the sight image. These are contributory cause of difference between the shot image and the sight image. Blown-out highlights and crushed blacks are caused by the difference of dynamic range between the image sensor installed in a digital camera such as CCD and CMOS and the human visual system. Dynamic range of the shot image is narrower than dynamic range of the sight image. In order to solve the problem, we propose an automatic method to decide an effective exposure range in superposition of edges. We integrate multi-step exposure images using the method. In addition, we try to erase pseudo-edges using the process to blend exposure values. Afterwards, we get a pseudo wide dynamic range image automatically.
Wavefront Control Testbed (WCT) Experiment Results
NASA Technical Reports Server (NTRS)
Burns, Laura A.; Basinger, Scott A.; Campion, Scott D.; Faust, Jessica A.; Feinberg, Lee D.; Hayden, William L.; Lowman, Andrew E.; Ohara, Catherine M.; Petrone, Peter P., III
2004-01-01
The Wavefront Control Testbed (WCT) was created to develop and test wavefront sensing and control algorithms and software for the segmented James Webb Space Telescope (JWST). Last year, we changed the system configuration from three sparse aperture segments to a filled aperture with three pie shaped segments. With this upgrade we have performed experiments on fine phasing with line-of-sight and segment-to-segment jitter, dispersed fringe visibility and grism angle;. high dynamic range tilt sensing; coarse phasing with large aberrations, and sampled sub-aperture testing. This paper reviews the results of these experiments.
2015-01-02
The wind tunnel is fitted with large windows for extended optical access to permit various non intrusive and minimally intrusive diagnostic ...as well as new dielectric and semiconducting surface structures The tunnel test section is built with dielectric walls to avoid electromagnetic ...14 – DAQ transducer cable. 15 – Pitot tube and hot wire sensors free-stream velocity data. Figure 3. New test section. 250×360×600 mm3. 1-inch
Evaluation of Two Guralp Preamplifiers for GS13 Seismometer Application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.
Sandia National Laboratories has tested and evaluated a new preamplifier, the Guralp Preamplifier for GS13, manufactured by Guralp. These preamplifiers are used to interface between Guralp digitizers and Geotech GS13 Seismometers. The purpose of the preamplifier evaluation was to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The Guralp GS13 Preamplifiers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).
Long-time dynamic compatibility of elastomeric materials with hydrazine
NASA Technical Reports Server (NTRS)
Coulbert, C. D.; Cuddihy, E. F.; Fedors, R. F.
1973-01-01
The tensile property surfaces for two elastomeric materials, EPT-10 and AF-E-332, were generated in air and in liquid hydrazine environments using constant strain rate tensile tests over a range of temperatures and elongation rates. These results were used to predict the time-to-rupture for these materials in hydrazine as a function of temperature and amount of strain covering a span of operating times from less than a minute to twenty years. The results of limited sheet-folding tests and their relationship to the tensile failure boundary are presented and discussed.
A reliability analysis of the revised competitiveness index.
Harris, Paul B; Houston, John M
2010-06-01
This study examined the reliability of the Revised Competitiveness Index by investigating the test-retest reliability, interitem reliability, and factor structure of the measure based on a sample of 280 undergraduates (200 women, 80 men) ranging in age from 18 to 28 years (M = 20.1, SD = 2.1). The findings indicate that the Revised Competitiveness Index has high test-retest reliability, high inter-item reliability, and a stable factor structure. The results support the assertion that the Revised Competitiveness Index assesses competitiveness as a stable trait rather than a dynamic state.
Li, B; Zhang, Z; Liu, W
2001-05-30
A simple and sensitive flow-injection chemiluminescence (CL) system for automated dissolution testing is described and evaluated for monitoring of dissolution profiles of isoniazid tablets. The undissolved suspended particles in the dissolved solution were eliminated via on-line filter. The novel CL system of KIO(4)-isoniazid was also investigated. The sampling frequency of the system was 120 h(-1). The dissolution profiles of isoniazid fast-release tablets from three sources were determined, which demonstrates the stability, great sensitivity, large dynamic measuring range and robustness of the system.
Bagley, Justin C; Sandel, Michael; Travis, Joseph; Lozano-Vilano, María de Lourdes; Johnson, Jerald B
2013-10-09
Climatic and sea-level fluctuations throughout the last Pleistocene glacial cycle (~130-0 ka) profoundly influenced present-day distributions and genetic diversity of Northern Hemisphere biotas by forcing range contractions in many species during the glacial advance and allowing expansion following glacial retreat ('expansion-contraction' model). Evidence for such range dynamics and refugia in the unglaciated Gulf-Atlantic Coastal Plain stems largely from terrestrial species, and aquatic species Pleistocene responses remain relatively uninvestigated. Heterandria formosa, a wide-ranging regional endemic, presents an ideal system to test the expansion-contraction model within this biota. By integrating ecological niche modeling and phylogeography, we infer the Pleistocene history of this livebearing fish (Poeciliidae) and test for several predicted distributional and genetic effects of the last glaciation. Paleoclimatic models predicted range contraction to a single southwest Florida peninsula refugium during the Last Glacial Maximum, followed by northward expansion. We inferred spatial-population subdivision into four groups that reflect genetic barriers outside this refuge. Several other features of the genetic data were consistent with predictions derived from an expansion-contraction model: limited intraspecific divergence (e.g. mean mtDNA p-distance = 0.66%); a pattern of mtDNA diversity (mean Hd = 0.934; mean π = 0.007) consistent with rapid, recent population expansion; a lack of mtDNA isolation-by-distance; and clinal variation in allozyme diversity with higher diversity at lower latitudes near the predicted refugium. Statistical tests of mismatch distributions and coalescent simulations of the gene tree lent greater support to a scenario of post-glacial expansion and diversification from a single refugium than to any other model examined (e.g. multiple-refugia scenarios). Congruent results from diverse data indicate H. formosa fits the classic Pleistocene expansion-contraction model, even as the genetic data suggest additional ecological influences on population structure. While evidence for Plio-Pleistocene Gulf Coast vicariance is well described for many freshwater species presently codistributed with H. formosa, this species demography and diversification departs notably from this pattern. Species-specific expansion-contraction dynamics may therefore have figured more prominently in shaping Coastal Plain evolutionary history than previously thought. Our findings bolster growing appreciation for the complexity of phylogeographical structuring within North America's southern refugia, including responses of Coastal Plain freshwater biota to Pleistocene climatic fluctuations.
ExoMars Entry Demonstrator Module Dynamic Stability
NASA Astrophysics Data System (ADS)
Dormieux, Marc; Gulhan, Ali; Berner, Claude
2011-05-01
In the frame of ExoMars DM aerodynamics characterization, pitch damping derivatives determination is required as it drives the parachute deployment conditions. Series of free-flight and free- oscillation tests (captive model) have been conducted with particular attention for data reduction. 6 Degrees- of-Freedom (DoF) analysis tools require the knowledge of local damping derivatives. In general ground tests do not provide them directly but only effective damping derivatives. Free-flight (ballistic range) tests with full oscillations around trim angle have been performed at ISL for 0.5
Frih, Bechir; Mkacher, Wajdi; Jaafar, Hamdi; Frih, Ameur; Ben Salah, Zohra; El May, Mezry; Hammami, Mohamed
2018-04-01
The purpose of this study was to evaluate the effects of 6 months of specific balance training included in endurance-resistance program on postural balance in haemodialysis (HD) patients. Forty-nine male patients undergoing HD were randomly assigned to an intervention group (balance training included in an endurance-resistance training, n = 26) or a control group (resistance-endurance training only, n = 23). Postural control was assessed using six clinical tests; Timed Up and Go test, Tinetti Mobility Test, Berg Balance Scale, Unipodal Stance test, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scale. All balance measures increased significantly after the period of rehabilitation training in the intervention group. Only the Timed Up and Go, Berg Balance Scale, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scores were improved in the control group. The ranges of change in these tests were greater in the balance training group. In HD patients, specific balance training included in a usual endurance-resistance training program improves static and dynamic balance better than endurance-resistance training only. Implications for rehabilitation Rehabilitation using exercise in haemodialysis patients improved global mobility and functional abilities. Specific balance training included in usual endurance resistance training program could lead to improved static and dynamic balance.
Random Testing and Model Checking: Building a Common Framework for Nondeterministic Exploration
NASA Technical Reports Server (NTRS)
Groce, Alex; Joshi, Rajeev
2008-01-01
Two popular forms of dynamic analysis, random testing and explicit-state software model checking, are perhaps best viewed as search strategies for exploring the state spaces introduced by nondeterminism in program inputs. We present an approach that enables this nondeterminism to be expressed in the SPIN model checker's PROMELA language, and then lets users generate either model checkers or random testers from a single harness for a tested C program. Our approach makes it easy to compare model checking and random testing for models with precisely the same input ranges and probabilities and allows us to mix random testing with model checking's exhaustive exploration of non-determinism. The PROMELA language, as intended in its design, serves as a convenient notation for expressing nondeterminism and mixing random choices with nondeterministic choices. We present and discuss a comparison of random testing and model checking. The results derive from using our framework to test a C program with an effectively infinite state space, a module in JPL's next Mars rover mission. More generally, we show how the ability of the SPIN model checker to call C code can be used to extend SPIN's features, and hope to inspire others to use the same methods to implement dynamic analyses that can make use of efficient state storage, matching, and backtracking.
Convective dynamics and chemical disequilibrium in the atmospheres of substellar objects
NASA Astrophysics Data System (ADS)
Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.
2017-11-01
The thousands of substellar objects now known provide a unique opportunity to test our understanding of atmospheric dynamics across a range of environments. The chemical timescales of certain species transition from being much shorter than the dynamical timescales to being much longer than them at a point in the atmosphere known as the quench point. This transition leads to a state of dynamical disequilibrium, the effects of which can be used to probe the atmospheric dynamics of these objects. Unfortunately, due to computational constraints, models that inform the interpretation of these observations are run at dynamical parameters which are far from realistic values. In this study, we explore the behavior of a disequilibrium chemical process with increasingly realistic planetary conditions, to quantify the effects of the approximations used in current models. We simulate convection in 2-D, plane-parallel, polytropically-stratified atmospheres, into which we add reactive passive tracers that explore disequilibrium behavior. We find that as we increase the Rayleigh number, and thus achieve more realistic planetary conditions, the behavior of these tracers does not conform to the classical predictions of disequilibrium chemistry.
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.; Mcalister, K. W.; Carr, L. W.; Pucci, S. L.
1982-01-01
The static and dynamic characteristics of seven helicopter sections and a fixed-wing supercritical airfoil were investigated over a wide range of nominally two dimensional flow conditions, at Mach numbers up to 0.30 and Reynolds numbers up to 4 x 10 to the 6th power. Details of the experiment, estimates of measurement accuracy, and test conditions are described in this volume (the first of three volumes). Representative results are also presented and comparisons are made with data from other sources. The complete results for pressure distributions, forces, pitching moments, and boundary-layer separation and reattachment characteristics are available in graphical form in volumes 2 and 3. The results of the experiment show important differences between airfoils, which would otherwise tend to be masked by differences in wind tunnels, particularly in steady cases. All of the airfoils tested provide significant advantages over the conventional NACA 0012 profile. In general, however, the parameters of the unsteady motion appear to be more important than airfoil shape in determining the dynamic-stall airloads.
NASA Astrophysics Data System (ADS)
Tarasov, A. E.; Badamshina, E. R.; Anokhin, D. V.; Razorenov, S. V.; Vakorina, G. S.
2018-01-01
The results of measurements of the mechanical characteristics of cured epoxy composites containing small and ultrasmall additions of single-walled carbon nanotubes in the concentration range from 0 to 0.133 wt % under static and dynamic loads are presented. Static measurements of strength characteristics have been carried out under standard test conditions. Measurements of the Hugoniot elastic limit and spall strength were performed under a shock wave loading of the samples at a deformation rate of (0.8-1.5) ß 105 s-1 before the fracture using explosive devices by recording and subsequent analyzing the evolution of the full wave profiles. It has been shown that agglomerates of nanotubes present in the structure of the composites after curing cause a significant scatter of the measured strength parameters, both in the static and in the dynamic test modes. However, the effects of carbon nanotube additions in the studied concentration interval on the physical and mechanical characteristics of the parameters were not revealed for both types of loading.
Detection of coupling delay: A problem not yet solved
NASA Astrophysics Data System (ADS)
Coufal, David; Jakubík, Jozef; Jajcay, Nikola; Hlinka, Jaroslav; Krakovská, Anna; Paluš, Milan
2017-08-01
Nonparametric detection of coupling delay in unidirectionally and bidirectionally coupled nonlinear dynamical systems is examined. Both continuous and discrete-time systems are considered. Two methods of detection are assessed—the method based on conditional mutual information—the CMI method (also known as the transfer entropy method) and the method of convergent cross mapping—the CCM method. Computer simulations show that neither method is generally reliable in the detection of coupling delays. For continuous-time chaotic systems, the CMI method appears to be more sensitive and applicable in a broader range of coupling parameters than the CCM method. In the case of tested discrete-time dynamical systems, the CCM method has been found to be more sensitive, while the CMI method required much stronger coupling strength in order to bring correct results. However, when studied systems contain a strong oscillatory component in their dynamics, results of both methods become ambiguous. The presented study suggests that results of the tested algorithms should be interpreted with utmost care and the nonparametric detection of coupling delay, in general, is a problem not yet solved.
NASA Technical Reports Server (NTRS)
Lee, Henry A.; Libbey, Charles E.
1961-01-01
Incipient- and developed-spin and recovery characteristics of a modern high-speed fighter design with low aspect ratio have been investigated by means of dynamic model tests. A 1/7-scale radio-controlled model was tested by means of drop tests from a helicopter. Several 1/25-scale models with various configuration changes were tested in the Langley 20-foot free-spinning tunnel. Model results indicated that generally it would be difficult to obtain a developed spin with a corresponding airplane and that either the airplane would recover of its own accord from any poststall motion or the poststall motion could be readily terminated by proper control technique. On occasion, however, the results indicated that if a post-stall motion were allowed to continue, a fully developed spin might be obtainable from which recovery could range from rapid to no recovery at all, even when optimum control technique was used. Satisfactory recoveries could be obtained with a proper-size tail parachute or strake, application of pitching-, rolling-, or yawing-moment rockets, or sufficient differential deflection of the horizontal tail.
Energy Absorbing Seat System for an Agricultural Aircraft
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)
2002-01-01
A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.
NASA Technical Reports Server (NTRS)
Debevoise, J. M.; Mcginnis, R. F.
1972-01-01
Force tests on a 0.0035-scale model of the General Dynamics/Convair space shuttle B-15B-1 booster were conducted in the MSFC trisonic wind tunnel during February and March 1971. Longitudinal and lateral characteristics were obtained at Mach numbers from 0.6 to 4.96. The configuration tested had a low delta wing, all-movable canard controls of delta planform, and a single vertical tail. Most of the test was devoted to obtaining data relevant to the transition from atmospheric reentry to subsonic cruise. In that portion of the test the angles of attack ranged from 6 degrees to 60 degrees, and yaw runs were made at angles of attack of 15 and 35 degrees. The rest of the test was devoted to obtaining booster-alone buildup data relevant to the launch phase. For the launch phase, the Mach number range was from 0.6 to 2.0, the angles of attack were from -10 to +10 degrees, and yaw runs were made at zero angle of attack.
NASA Technical Reports Server (NTRS)
Bruce, Walter E., III; Mesick, Nathaniel J.; Ferlemann, Paul G.; Siemers, Paul M., III; DelCorso, Joseph A.; Hughes, Stephen J.; Tobin, Steven A.; Kardell, Matthew P.
2012-01-01
Flexible TPS development involves ground testing and analysis necessary to characterize performance of the FTPS candidates prior to flight testing. This paper provides an overview of the analysis and ground testing efforts performed over the last year at the NASA Langley Research Center and in the Boeing Large-Core Arc Tunnel (LCAT). In the LCAT test series, material layups were subjected to aerothermal loads commensurate with peak re-entry conditions enveloping a range of HIAD mission trajectories. The FTPS layups were tested over a heat flux range from 20 to 50 W/cm with associated surface pressures of 3 to 8 kPa. To support the testing effort a significant redesign of the existing shear (wedge) model holder from previous testing efforts was undertaken to develop a new test technique for supporting and evaluating the FTPS in the high-temperature, arc jet flow. Since the FTPS test samples typically experience a geometry change during testing, computational fluid dynamic (CFD) models of the arc jet flow field and test model were developed to support the testing effort. The CFD results were used to help determine the test conditions experienced by the test samples as the surface geometry changes. This paper includes an overview of the Boeing LCAT facility, the general approach for testing FTPS, CFD analysis methodology and results, model holder design and test methodology, and selected thermal results of several FTPS layups.