Application of dynamic traffic assignment to advanced managed lane modeling.
DOT National Transportation Integrated Search
2013-11-01
In this study, a demand estimation framework is developed for assessing the managed lane (ML) : strategies by utilizing dynamic traffic assignment (DTA) modeling, instead of the traditional : approaches that are based on the static traffic assignment...
Dynamic traffic assignment based trailblazing guide signing for major traffic generator.
DOT National Transportation Integrated Search
2009-11-01
The placement of guide signs and the display of dynamic massage signs greatly affect drivers : understanding of the network and therefore their route choices. Most existing dynamic traffic assignment : models assume that drivers heading to a Major...
DOT National Transportation Integrated Search
2017-02-01
This project covered the development and calibration of a Dynamic Traffic Assignment (DTA) model and explained the procedures, constraints, and considerations for usage of this model for the Reno-Sparks area roadway network in Northern Nevada. A lite...
Dynamic traffic assignment : genetic algorithms approach
DOT National Transportation Integrated Search
1997-01-01
Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...
AMPO Travel Modeling Working Group Meeting on Dynamic Traffic Assignment
DOT National Transportation Integrated Search
2016-03-01
On December 17-18, 2015, the Association of Metropolitan Planning Organizations (AMPO) convened a travel modeling working group meeting for the purpose of discussing Dynamic Traffic Assignment (DTA). Participants discussed the uses of DTA, challenges...
Game-theoretic analysis of dynamic traffic equilibria.
DOT National Transportation Integrated Search
2014-03-01
Dynamic traffic assignment has grown steadily in popularity and use since its inception. It has become an : important and permanent tool in transportation agencies across the country. However, the exact nature of : dynamic traffic equilibrium, includ...
NASA Astrophysics Data System (ADS)
Li, Xue-yan; Li, Xue-mei; Yang, Lingrun; Li, Jing
2018-07-01
Most of the previous studies on dynamic traffic assignment are based on traditional analytical framework, for instance, the idea of Dynamic User Equilibrium has been widely used in depicting both the route choice and the departure time choice. However, some recent studies have demonstrated that the dynamic traffic flow assignment largely depends on travelers' rationality degree, travelers' heterogeneity and what the traffic information the travelers have. In this paper, we develop a new self-adaptive multi agent model to depict travelers' behavior in Dynamic Traffic Assignment. We use Cumulative Prospect Theory with heterogeneous reference points to illustrate travelers' bounded rationality. We use reinforcement-learning model to depict travelers' route and departure time choosing behavior under the condition of imperfect information. We design the evolution rule of travelers' expected arrival time and the algorithm of traffic flow assignment. Compared with the traditional model, the self-adaptive multi agent model we proposed in this paper can effectively help travelers avoid the rush hour. Finally, we report and analyze the effect of travelers' group behavior on the transportation system, and give some insights into the relation between travelers' group behavior and the performance of transportation system.
NASA Technical Reports Server (NTRS)
Foytik, Peter; Robinson, Mike
2010-01-01
As urban populations and traffic congestion levels increase, effective use of information and communication tools and intelligent transportation systems as becoming increasingly important in order to maximize the efficiency of transportation networks. The appropriate placement and employment of these tools within a network is critical to their effectiveness. This presentation proposes and demonstrates the use of a commercial transportation simulation tool to simulate dynamic traffic assignment and rerouting to model route modifications as a result of traffic information.
DOT National Transportation Integrated Search
2010-12-01
A number of initiatives were undertaken to support education, training, and technology transfer objectives related to UAB UTC Domain 2 Project: Development of a Dynamic Traffic Assignment and Simulation Model for Incident and Emergency Management App...
DOT National Transportation Integrated Search
1997-01-01
The success of Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) depends on the availability and dissemination of timely and accurate estimates of current and emerging traffic network conditions. Real-time Dy...
Idea Project Final Report, Distributed Input/ Output Subsystem For Traffic Signal Control
DOT National Transportation Integrated Search
1995-07-01
IN AN EFFORT TO ADD MORE AND MORE FEATURES (PREEMPTION, MALFUNCTION MANAGEMENT, WEATHER MONITORING, AND DYNAMIC LANE ASSIGNMENT, AMONG OTHERS) TO TRAFFIC SIGNAL SYSTEMS, THE TRAFFIC SIGNAL CABINET HAS BECOME VERY : COMPLICATED (FIGURE 1). FURTHERMORE...
Application of dynamic traffic assignment to advanced managed lane modeling : [technical summary].
DOT National Transportation Integrated Search
2013-11-01
Transportation agencies realize that, often, adding : lanes is not a feasible or effective solution for : increases in traffic congestion. So, agencies have : applied advanced strategies to better use existing : capacity. One such strategy, managed l...
A framework for the nationwide multimode transportation demand analysis.
DOT National Transportation Integrated Search
2010-09-01
This study attempts to analyze the impact of traffic on the US highway system considering both passenger vehicles and : trucks. For the analysis, a pseudo-dynamic traffic assignment model is proposed to estimate the time-dependent link flow : from th...
Manycast routing, modulation level and spectrum assignment over elastic optical networks
NASA Astrophysics Data System (ADS)
Luo, Xiao; Zhao, Yang; Chen, Xue; Wang, Lei; Zhang, Min; Zhang, Jie; Ji, Yuefeng; Wang, Huitao; Wang, Taili
2017-07-01
Manycast is a point to multi-point transmission framework that requires a subset of destination nodes successfully reached. It is particularly applicable for dealing with large amounts of data simultaneously in bandwidth-hungry, dynamic and cloud-based applications. As rapid increasing of traffics in these applications, the elastic optical networks (EONs) may be relied on to achieve high throughput manycast. In terms of finer spectrum granularity, the EONs could reach flexible accessing to network spectrum and efficient providing exact spectrum resource to demands. In this paper, we focus on the manycast routing, modulation level and spectrum assignment (MA-RMLSA) problem in EONs. Both EONs planning with static manycast traffic and EONs provisioning with dynamic manycast traffic are investigated. An integer linear programming (ILP) model is formulated to derive MA-RMLSA problem in static manycast scenario. Then corresponding heuristic algorithm called manycast routing, modulation level and spectrum assignment genetic algorithm (MA-RMLSA-GA) is proposed to adapt for both static and dynamic manycast scenarios. The MA-RMLSA-GA optimizes MA-RMLSA problem in destination nodes selection, routing light-tree constitution, modulation level allocation and spectrum resource assignment jointly, to achieve an effective improvement in network performance. Simulation results reveal that MA-RMLSA strategies offered by MA-RMLSA-GA have slightly disparity from the optimal solutions provided by ILP model in static scenario. Moreover, the results demonstrate that MA-RMLSA-GA realizes a highly efficient MA-RMLSA strategy with the lowest blocking probability in dynamic scenario compared with benchmark algorithms.
DOT National Transportation Integrated Search
2010-03-01
Urban transportation networks, consisting of numerous links and nodes, experience traffic incidents such as accidents and road : maintenance work. A typical consequence of incidents is congestion which results in long queues and causes high travel ti...
DOT National Transportation Integrated Search
2010-03-01
Urban transportation networks, consisting of numerous links and nodes, experience traffic incidents such as accidents and road maintenance work. A typical consequence of incidents is congestion which results in long queues and causes high travel time...
NASA Technical Reports Server (NTRS)
Wong, Gregory L.; Denery, Dallas (Technical Monitor)
2000-01-01
The Dynamic Planner (DP) has been designed, implemented, and integrated into the Center-TRACON Automation System (CTAS) to assist Traffic Management Coordinators (TMCs), in real time, with the task of planning and scheduling arrival traffic approximately 35 to 200 nautical miles from the destination airport. The TMC may input to the DP a series of current and future scheduling constraints that reflect the operation and environmental conditions of the airspace. Under these constraints, the DP uses flight plans, track updates, and Estimated Time of Arrival (ETA) predictions to calculate optimal runway assignments and arrival schedules that help ensure an orderly, efficient, and conflict-free flow of traffic into the terminal area. These runway assignments and schedules can be shown directly to controllers or they can be used by other CTAS tools to generate advisories to the controllers. Additionally, the TMC and controllers may override the decisions made by the DP for tactical considerations. The DP will adapt to computations to accommodate these manual inputs.
Dynamic Airspace Configuration
NASA Technical Reports Server (NTRS)
Bloem, Michael J.
2014-01-01
In air traffic management systems, airspace is partitioned into regions in part to distribute the tasks associated with managing air traffic among different systems and people. These regions, as well as the systems and people allocated to each, are changed dynamically so that air traffic can be safely and efficiently managed. It is expected that new air traffic control systems will enable greater flexibility in how airspace is partitioned and how resources are allocated to airspace regions. In this talk, I will begin by providing an overview of some previous work and open questions in Dynamic Airspace Configuration research, which is concerned with how to partition airspace and assign resources to regions of airspace. For example, I will introduce airspace partitioning algorithms based on clustering, integer programming optimization, and computational geometry. I will conclude by discussing the development of a tablet-based tool that is intended to help air traffic controller supervisors configure airspace and controllers in current operations.
DOT National Transportation Integrated Search
2010-09-01
Traffic congestion is a primary concern during major incident and evacuation scenarios and can create difficulties for emergency vehicles attempting to enter and exit affected areas; however, many of the dispatchers who would be responsible for direc...
DOT National Transportation Integrated Search
2010-09-01
Traffic congestion is a primary concern during major incident and evacuation scenarios and can create difficulties for emergency vehicles attempting to enter and exit affected areas; however, many of the dispatchers who would be responsible for direc...
Capacity planning of link restorable optical networks under dynamic change of traffic
NASA Astrophysics Data System (ADS)
Ho, Kwok Shing; Cheung, Kwok Wai
2005-11-01
Future backbone networks shall require full-survivability and support dynamic changes of traffic demands. The Generalized Survivable Networks (GSN) was proposed to meet these challenges. GSN is fully-survivable under dynamic traffic demand changes, so it offers a practical and guaranteed characterization framework for ASTN / ASON survivable network planning and bandwidth-on-demand resource allocation 4. The basic idea of GSN is to incorporate the non-blocking network concept into the survivable network models. In GSN, each network node must specify its I/O capacity bound which is taken as constraints for any allowable traffic demand matrix. In this paper, we consider the following generic GSN network design problem: Given the I/O bounds of each network node, find a routing scheme (and the corresponding rerouting scheme under failure) and the link capacity assignment (both working and spare) which minimize the cost, such that any traffic matrix consistent with the given I/O bounds can be feasibly routed and it is single-fault tolerant under the link restoration scheme. We first show how the initial, infeasible formal mixed integer programming formulation can be transformed into a more feasible problem using the duality transformation of the linear program. Then we show how the problem can be simplified using the Lagrangian Relaxation approach. Previous work has outlined a two-phase approach for solving this problem where the first phase optimizes the working capacity assignment and the second phase optimizes the spare capacity assignment. In this paper, we present a jointly optimized framework for dimensioning the survivable optical network with the GSN model. Experiment results show that the jointly optimized GSN can bring about on average of 3.8% cost savings when compared with the separate, two-phase approach. Finally, we perform a cost comparison and show that GSN can be deployed with a reasonable cost.
Computer-Assisted Traffic Engineering Using Assignment, Optimal Signal Setting, and Modal Split
DOT National Transportation Integrated Search
1978-05-01
Methods of traffic assignment, traffic signal setting, and modal split analysis are combined in a set of computer-assisted traffic engineering programs. The system optimization and user optimization traffic assignments are described. Travel time func...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sossoe, K.S., E-mail: kwami.sossoe@irt-systemx.fr; Lebacque, J-P., E-mail: jean-patrick.lebacque@ifsttar.fr
2015-03-10
We present in this paper a model of vehicular traffic flow for a multimodal transportation road network. We introduce the notion of class of vehicles to refer to vehicles of different transport modes. Our model describes the traffic on highways (which may contain several lanes) and network transit for pubic transportation. The model is drafted with Eulerian and Lagrangian coordinates and uses a Logit model to describe the traffic assignment of our multiclass vehicular flow description on shared roads. The paper also discusses traffic streams on dedicated lanes for specific class of vehicles with event-based traffic laws. An Euler-Lagrangian-remap schememore » is introduced to numerically approximate the model’s flow equations.« less
NASA Astrophysics Data System (ADS)
Hortos, William S.
1997-04-01
The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics of convergence rate and call blocking. Genetic algorithms (GAs) are also considered in PCS networks as a means to overcome the known weakness of Hopfield NNAs in determining global minima. The resulting GAs for DCA in PCS networks are compared to improved DCA algorithms based on Hopfield NNs for stationary cellular networks. Algorithm performance is compared on the basis of rate of convergence, blocking probability, analytic complexity, and parametric sensitivity to transient traffic demands and channel interference.
A practical guide on DTA model applications for regional planning
DOT National Transportation Integrated Search
2016-06-07
This document is intended as a guide for use by Metropolitan Planning Organizations (MPO) and other planning agencies that are interested in applying Dynamic Traffic Assignment (DTA) models for planning applications. The objective of this document is...
Dynamic optimization of cargo movement by trucks in metropolitan areas with adjacent ports
DOT National Transportation Integrated Search
2002-06-01
Today, in the trucking industry, dispatchers perform the tasks of cargo assignment, and driver scheduling. The growing number of containers processed at marine centers and the increasing traffic congestion in metropolitan areas adjacent to marine por...
Development of a Dynamic Traffic Assignment Model for Northern Nevada
DOT National Transportation Integrated Search
2014-06-01
The objective of this research is to build and calibrate a DTA model for Northern Nevada (RenoSparks Area) based on the network profile and travel demand information updated to date. The critical procedures include development of consistent and readi...
Use of Dynamic Traffic Assignment in FSUTMS in Support of Transportation Planning in Florida
DOT National Transportation Integrated Search
2012-06-01
Transportation planning is based on the physical : structure of roadway networks and, less : tangibly, on choices individuals make about their : transportation needs and use of the roads. For a : task this complex, computer modeling is essential. : I...
DOT National Transportation Integrated Search
2012-01-01
Transportation planning is based on the physical : structure of roadway networks and, less : tangibly, on choices individuals make about their : transportation needs and use of the roads. For a : task this complex, computer modeling is essential. : I...
Development of a dynamic traffic assignment model to evaluate lane-reversal plans for I-65.
DOT National Transportation Integrated Search
2010-05-01
This report presents the methodology and results from a project that studied contra-flow operations in support of : hurricane evacuations in the state of Alabama. As part of this effort, a simulation model was developed using the : VISTA platform for...
Simple Queueing Model Applied to the City of Portland
NASA Astrophysics Data System (ADS)
Simon, Patrice M.; Esser, Jörg; Nagel, Kai
We use a simple traffic micro-simulation model based on queueing dynamics as introduced by Gawron [IJMPC, 9(3):393, 1998] in order to simulate traffic in Portland/Oregon. Links have a flow capacity, that is, they do not release more vehicles per second than is possible according to their capacity. This leads to queue built-up if demand exceeds capacity. Links also have a storage capacity, which means that once a link is full, vehicles that want to enter the link need to wait. This leads to queue spill-back through the network. The model is compatible with route-plan-based approaches such as TRANSIMS, where each vehicle attempts to follow its pre-computed path. Yet, both the data requirements and the computational requirements are considerably lower than for the full TRANSIMS microsimulation. Indeed, the model uses standard emme/2 network data, and runs about eight times faster than real time with more than 100 000 vehicles simultaneously in the simulation on a single Pentium-type CPU. We derive the model's fundamental diagrams and explain it. The simulation is used to simulate traffic on the emme/2 network of the Portland (Oregon) metropolitan region (20 000 links). Demand is generated by a simplified home-to-work destination assignment which generates about half a million trips for the morning peak. Route assignment is done by iterative feedback between micro-simulation and router. An iterative solution of the route assignment for the above problem can be achieved within about half a day of computing time on a desktop workstation. We compare results with field data and with results of traditional assignment runs by the Portland Metropolitan Planning Organization. Thus, with a model such as this one, it is possible to use a dynamic, activities-based approach to transportation simulation (such as in TRANSIMS) with affordable data and hardware. This should enable systematic research about the coupling of demand generation, route assignment, and micro-simulation output.
Path Flow Estimation Using Time Varying Coefficient State Space Model
NASA Astrophysics Data System (ADS)
Jou, Yow-Jen; Lan, Chien-Lun
2009-08-01
The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.
Traffic sharing algorithms for hybrid mobile networks
NASA Technical Reports Server (NTRS)
Arcand, S.; Murthy, K. M. S.; Hafez, R.
1995-01-01
In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.
Agent-based Large-Scale Emergency Evacuation Using Real-Time Open Government Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei; Liu, Cheng; Bhaduri, Budhendra L
The open government initiatives have provided tremendous data resources for the transportation system and emergency services in urban areas. This paper proposes a traffic simulation framework using high temporal resolution demographic data and real time open government data for evacuation planning and operation. A comparison study using real-world data in Seattle, Washington is conducted to evaluate the framework accuracy and evacuation efficiency. The successful simulations of selected area prove the concept to take advantage open government data, open source data, and high resolution demographic data in emergency management domain. There are two aspects of parameters considered in this study: usermore » equilibrium (UE) conditions of traffic assignment model (simple Non-UE vs. iterative UE) and data temporal resolution (Daytime vs. Nighttime). Evacuation arrival rate, average travel time, and computation time are adopted as Measure of Effectiveness (MOE) for evacuation performance analysis. The temporal resolution of demographic data has significant impacts on urban transportation dynamics during evacuation scenarios. Better evacuation performance estimation can be approached by integrating both Non-UE and UE scenarios. The new framework shows flexibility in implementing different evacuation strategies and accuracy in evacuation performance. The use of this framework can be explored to day-to-day traffic assignment to support daily traffic operations.« less
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Ma, Jian-Feng
Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.
Limited static and dynamic delivering capacity allocations in scale-free networks
NASA Astrophysics Data System (ADS)
Haddou, N. Ben; Ez-Zahraouy, H.; Rachadi, A.
In traffic networks, it is quite important to assign proper packet delivering capacities to the routers with minimum cost. In this respect, many allocation models based on static and dynamic properties have been proposed. In this paper, we are interested in the impact of limiting the packet delivering capacities already allocated to the routers; each node is assigned a packet delivering capacity limited by the maximal capacity Cmax of the routers. To study the limitation effect, we use two basic delivering capacity allocation models; static delivering capacity allocation (SDCA) and dynamic delivering capacity allocation (DDCA). In the SDCA, the capacity allocated is proportional to the node degree, and for DDCA, it is proportional to its queue length. We have studied and compared the limitation of both allocation models under the shortest path (SP) routing strategy as well as the efficient path (EP) routing protocol. In the SP case, we noted a similarity in the results; the network capacity increases with increasing Cmax. For the EP scheme, the network capacity stops increasing for relatively small packet delivering capability limit Cmax for both allocation strategies. However, it reaches high values under the limited DDCA before the saturation. We also find that in the DDCA case, the network capacity remains constant when the traffic information available to each router was updated after long period times τ.
Comparison of a Visual and Head Tactile Display for Soldier Navigation
2013-12-01
environments for nuclear power plant operators, air traffic controllers, and pilots are information intensive. These environments usually involve the indirect...queue, correcting aircraft conflicts, giving instruction, clearance and advice to pilots , and assigning aircrafts to other work queues and airports...these dynamic, complex, and multitask environments (1) collect and integrate a plethora of visual information into decisions that are critical for
Capacity-constrained traffic assignment in networks with residual queues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, W.H.K.; Zhang, Y.
2000-04-01
This paper proposes a capacity-constrained traffic assignment model for strategic transport planning in which the steady-state user equilibrium principle is extended for road networks with residual queues. Therefore, the road-exit capacity and the queuing effects can be incorporated into the strategic transport model for traffic forecasting. The proposed model is applicable to the congested network particularly when the traffic demands exceeds the capacity of the network during the peak period. An efficient solution method is proposed for solving the steady-state traffic assignment problem with residual queues. Then a simple numerical example is employed to demonstrate the application of the proposedmore » model and solution method, while an example of a medium-sized arterial highway network in Sioux Falls, South Dakota, is used to test the applicability of the proposed solution to real problems.« less
Game theory and traffic assignment.
DOT National Transportation Integrated Search
2013-09-01
Traffic assignment is used to determine the number of users on roadway links in a network. While this problem has : been widely studied in transportation literature, its use of the concept of equilibrium has attracted considerable interest : in the f...
Impacts of high resolution data on traveler compliance levels in emergency evacuation simulations
Lu, Wei; Han, Lee D.; Liu, Cheng; ...
2016-05-05
In this article, we conducted a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) with detailed real world roads network. A platform for evacuation modeling built on high resolution population distribution data and activity-based microscopic traffic simulation was proposed. This platform can be extended to any cities in the world. The results indicated that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it did not significantly compromise the performance with high resolution LPC assignment. The TAZ assignment also underestimated the real travel time during evacuation. Thismore » suggests that high data resolution can improve the accuracy of traffic modeling and simulation. The evacuation manager should consider more diverse assignment during emergency evacuation to avoid congestions.« less
47 CFR 32.6532 - Network administration expense.
Code of Federal Regulations, 2013 CFR
2013-10-01
... includes such activities as controlling traffic flow, administering traffic measuring and monitoring devices, assigning equipment and load balancing, collecting and summarizing traffic data, administering...
47 CFR 32.6532 - Network administration expense.
Code of Federal Regulations, 2012 CFR
2012-10-01
... includes such activities as controlling traffic flow, administering traffic measuring and monitoring devices, assigning equipment and load balancing, collecting and summarizing traffic data, administering...
47 CFR 32.6532 - Network administration expense.
Code of Federal Regulations, 2014 CFR
2014-10-01
... includes such activities as controlling traffic flow, administering traffic measuring and monitoring devices, assigning equipment and load balancing, collecting and summarizing traffic data, administering...
NASA Astrophysics Data System (ADS)
Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu
2017-09-01
Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.
A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons
NASA Astrophysics Data System (ADS)
Liu, J.; Fu, X.; Tao, S.
2016-12-01
Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.
Near real-time traffic routing
NASA Technical Reports Server (NTRS)
Yang, Chaowei (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor); Cao, Ying (Inventor)
2012-01-01
A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.
Dynamic Density: An Air Traffic Management Metric
NASA Technical Reports Server (NTRS)
Laudeman, I. V.; Shelden, S. G.; Branstrom, R.; Brasil, C. L.
1998-01-01
The definition of a metric of air traffic controller workload based on air traffic characteristics is essential to the development of both air traffic management automation and air traffic procedures. Dynamic density is a proposed concept for a metric that includes both traffic density (a count of aircraft in a volume of airspace) and traffic complexity (a measure of the complexity of the air traffic in a volume of airspace). It was hypothesized that a metric that includes terms that capture air traffic complexity will be a better measure of air traffic controller workload than current measures based only on traffic density. A weighted linear dynamic density function was developed and validated operationally. The proposed dynamic density function includes a traffic density term and eight traffic complexity terms. A unit-weighted dynamic density function was able to account for an average of 22% of the variance in observed controller activity not accounted for by traffic density alone. A comparative analysis of unit weights, subjective weights, and regression weights for the terms in the dynamic density equation was conducted. The best predictor of controller activity was the dynamic density equation with regression-weighted complexity terms.
Configuring Airspace Sectors with Approximate Dynamic Programming
NASA Technical Reports Server (NTRS)
Bloem, Michael; Gupta, Pramod
2010-01-01
In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.
DOT National Transportation Integrated Search
1999-08-15
The Traffic Survey Unit plans to establish a methodology in which it can assign each Portable Traffic Counter (PTC) station a seasonal group profile through a means of statistical and geographical analysis. An ArcView Geographic Information Systems a...
Emrich, Teri E.; Qi, Ying; Lou, Wendy Y.; L’Abbe, Mary R.
2017-01-01
Traffic-light labelling has been proposed as a public health intervention to improve the dietary intakes of consumers. OBJECTIVES: to model the potential impact of avoiding foods with red traffic lights on the label on the energy, total fat, saturated fat, sodium, and sugars intakes of Canadian adults. METHODS: Canadian adults aged 19 and older (n = 19,915) who responded to the Canadian Community Health Survey (CCHS), Cycle 2.2. The nutrient levels in foods consumed by Canadians in CCHS were profiled using the United Kingdom’s criteria for traffic light labelling. Whenever possible, foods assigned a red traffic light for one or more of the profiled nutrients were replaced with a similar food currently sold in Canada, with nutrient levels not assigned any red traffic lights. Average intakes of calories, total fat, saturated fat, sodium, and sugars under the traffic light scenario were compared with actual intakes of calories and these nutrients (baseline) reported in CCHS. RESULTS: Under the traffic light scenario, Canadian’s intake of energy, total fat, saturated fat, and sodium were significantly reduced compared to baseline; sugars intakes were not significantly reduced. Calorie intake was reduced by 5%, total fat 13%, saturated fat 14%, and sodium 6%. CONCLUSION: Governments and policy makers should consider the adoption of traffic light labelling as a population level intervention to improve dietary intakes and chronic disease risk. PMID:28182630
Emrich, Teri E; Qi, Ying; Lou, Wendy Y; L'Abbe, Mary R
2017-01-01
Traffic-light labelling has been proposed as a public health intervention to improve the dietary intakes of consumers. to model the potential impact of avoiding foods with red traffic lights on the label on the energy, total fat, saturated fat, sodium, and sugars intakes of Canadian adults. Canadian adults aged 19 and older (n = 19,915) who responded to the Canadian Community Health Survey (CCHS), Cycle 2.2. The nutrient levels in foods consumed by Canadians in CCHS were profiled using the United Kingdom's criteria for traffic light labelling. Whenever possible, foods assigned a red traffic light for one or more of the profiled nutrients were replaced with a similar food currently sold in Canada, with nutrient levels not assigned any red traffic lights. Average intakes of calories, total fat, saturated fat, sodium, and sugars under the traffic light scenario were compared with actual intakes of calories and these nutrients (baseline) reported in CCHS. Under the traffic light scenario, Canadian's intake of energy, total fat, saturated fat, and sodium were significantly reduced compared to baseline; sugars intakes were not significantly reduced. Calorie intake was reduced by 5%, total fat 13%, saturated fat 14%, and sodium 6%. Governments and policy makers should consider the adoption of traffic light labelling as a population level intervention to improve dietary intakes and chronic disease risk.
Global Optimization of Emergency Evacuation Assignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Lee; Yuan, Fang; Chin, Shih-Miao
2006-01-01
Conventional emergency evacuation plans often assign evacuees to fixed routes or destinations based mainly on geographic proximity. Such approaches can be inefficient if the roads are congested, blocked, or otherwise dangerous because of the emergency. By not constraining evacuees to prespecified destinations, a one-destination evacuation approach provides flexibility in the optimization process. We present a framework for the simultaneous optimization of evacuation-traffic distribution and assignment. Based on the one-destination evacuation concept, we can obtain the optimal destination and route assignment by solving a one-destination traffic-assignment problem on a modified network representation. In a county-wide, large-scale evacuation case study, the one-destinationmore » model yields substantial improvement over the conventional approach, with the overall evacuation time reduced by more than 60 percent. More importantly, emergency planners can easily implement this framework by instructing evacuees to go to destinations that the one-destination optimization process selects.« less
NASA Astrophysics Data System (ADS)
Rakhmawati, Fibri; Mawengkang, Herman; Buulolo, F.; Mardiningsih
2018-01-01
The hub location with single assignment is the problem of locating hubs and assigning the terminal nodes to hubs in order to minimize the cost of hub installation and the cost of routing the traffic in the network. There may also be capacity restrictions on the amount of traffic that can transit by hubs. This paper discusses how to model the polyhedral properties of the problems and develop a feasible neighbourhood search method to solve the model.
Interaction Between Strategic and Local Traffic Flow Controls
NASA Technical Reports Server (NTRS)
Grabbe, Son; Sridhar, Banavar; Mukherjee, Avijit; Morando, Alexander
2010-01-01
The loosely coordinated sets of traffic flow management initiatives that are operationally implemented at the national- and local-levels have the potential to under, over, and inconsistently control flights. This study is designed to explore these interactions through fast-time simulations with an emphasis on identifying inequitable situations in which flights receive multiple uncoordinated delays. Two operationally derived scenarios were considered in which flights arriving into the Dallas/Fort Worth International Airport were first controlled at the national-level, either with a Ground Delay Program or a playbook reroute. These flights were subsequently controlled at the local level. The Traffic Management Advisor assigned them arrival scheduling delays. For the Ground Delay Program scenarios, between 51% and 53% of all arrivals experience both pre-departure delays from the Ground Delay Program and arrival scheduling delays from the Traffic Management Advisor. Of the subset of flights that received multiple delays, between 5.7% and 6.4% of the internal departures were first assigned a pre-departure delay by the Ground Delay Program, followed by a second pre-departure delay as a result of the arrival scheduling. For the playbook reroute scenario, Dallas/Fort Worth International Airport arrivals were first assigned pre-departure reroutes based on the MW_2_DALLAS playbook plan, and were subsequently assigned arrival scheduling delays by the Traffic Management Advisor. Since the airport was operating well below capacity when the playbook reroute was in effect, only 7% of the arrivals were observed to receive both rerouting and arrival scheduling delays. Findings from these initial experiments confirm field observations that Ground Delay Programs operated in conjunction with arrival scheduling can result in inequitable situations in which flights receive multiple uncoordinated delays.
Propagation of Disturbances in Traffic Flow
DOT National Transportation Integrated Search
1977-09-01
The system-optimized static traffic-assignment problem in a freeway corridor network is the problem of choosing a distribution of vehicles in the network to minimize average travel time. It is of interest to know how sensitive the optimal steady-stat...
NASA Astrophysics Data System (ADS)
Kou, Yanbin; Liu, Siming; Zhang, Weiheng; Shen, Guansheng; Tian, Huiping
2017-03-01
We present a dynamic capacity allocation mechanism based on the Quality of Service (QoS) for different mobile users (MU) in 60 GHz radio-over-fiber (RoF) local access networks. The proposed mechanism is capable for collecting the request information of MUs to build a full list of MU capacity demands and service types at the Central Office (CO). A hybrid algorithm is introduced to implement the capacity allocation which can satisfy the requirements of different MUs at different network traffic loads. Compared with the weight dynamic frames assignment (WDFA) scheme, the Hybrid scheme can keep high priority MUs in low delay and maintain the packet loss rate less than 1% simultaneously. At the same time, low priority MUs have a relatively better performance.
DOT National Transportation Integrated Search
1997-01-01
This paper reports on a practical, simple method for adjusting a vehicle trip table so that the resulting assignments more closely match available traffic counts. "Practical" means that this is not purely a research effort - the procedure described h...
Percolation transition in dynamical traffic network with evolving critical bottlenecks.
Li, Daqing; Fu, Bowen; Wang, Yunpeng; Lu, Guangquan; Berezin, Yehiel; Stanley, H Eugene; Havlin, Shlomo
2015-01-20
A critical phenomenon is an intrinsic feature of traffic dynamics, during which transition between isolated local flows and global flows occurs. However, very little attention has been given to the question of how the local flows in the roads are organized collectively into a global city flow. Here we characterize this organization process of traffic as "traffic percolation," where the giant cluster of local flows disintegrates when the second largest cluster reaches its maximum. We find in real-time data of city road traffic that global traffic is dynamically composed of clusters of local flows, which are connected by bottleneck links. This organization evolves during a day with different bottleneck links appearing in different hours, but similar in the same hours in different days. A small improvement of critical bottleneck roads is found to benefit significantly the global traffic, providing a method to improve city traffic with low cost. Our results may provide insights on the relation between traffic dynamics and percolation, which can be useful for efficient transportation, epidemic control, and emergency evacuation.
Dynamic baseline detection method for power data network service
NASA Astrophysics Data System (ADS)
Chen, Wei
2017-08-01
This paper proposes a dynamic baseline Traffic detection Method which is based on the historical traffic data for the Power data network. The method uses Cisco's NetFlow acquisition tool to collect the original historical traffic data from network element at fixed intervals. This method uses three dimensions information including the communication port, time, traffic (number of bytes or number of packets) t. By filtering, removing the deviation value, calculating the dynamic baseline value, comparing the actual value with the baseline value, the method can detect whether the current network traffic is abnormal.
A Sarsa(λ)-based control model for real-time traffic light coordination.
Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Song; Wang, Yihong; Luo, Wei
In virtualized data centers, virtual disk images (VDIs) serve as the containers in virtual environment, so their access performance is critical for the overall system performance. Some distributed VDI chunk storage systems have been proposed in order to alleviate the I/O bottleneck for VM management. As the system scales up to a large number of running VMs, however, the overall network traffic would become unbalanced with hot spots on some VMs inevitably, leading to I/O performance degradation when accessing the VMs. Here, we propose an adaptive and collaborative VDI storage system (ACStor) to resolve the above performance issue. In comparisonmore » with the existing research, our solution is able to dynamically balance the traffic workloads in accessing VDI chunks, based on the run-time network state. Specifically, compute nodes with lightly loaded traffic will be adaptively assigned more chunk access requests from remote VMs and vice versa, which can effectively eliminate the above problem and thus improves the I/O performance of VMs. We also implement a prototype based on our ACStor design, and evaluate it by various benchmarks on a real cluster with 32 nodes and a simulated platform with 256 nodes. Experiments show that under different network traffic patterns of data centers, our solution achieves up to 2-8 performance gain on VM booting time and VM’s I/O throughput, in comparison with the other state-of-the-art approaches.« less
Strategic Control Algorithm Development : Volume 1. Summary.
DOT National Transportation Integrated Search
1974-08-01
Strategic control is an air traffic management concept wherein a central control authority determines, and assigns to each participating airplane, a conflict-free, four-dimensional route-time profile. The route-time profile assignments are long term ...
49 CFR Appendix I to Subpart A of... - Revenue Need and Allocation to Traffic at Issue
Code of Federal Regulations, 2014 CFR
2014-10-01
... composite carrier basis comprised of all traffic and cost study carriers. Data in part II, line 14 columns... Issue Traffic Based on Ton and Ton-Mile Method (See Note A) Line No. Item Source for columns 3 and 4..., by using Statement No. 6-68, Highway Form B, Schedule A, Line III. Assign the dollars in columns (6...
49 CFR Appendix I to Subpart A of... - Revenue Need and Allocation to Traffic at Issue
Code of Federal Regulations, 2013 CFR
2013-10-01
... composite carrier basis comprised of all traffic and cost study carriers. Data in part II, line 14 columns... Issue Traffic Based on Ton and Ton-Mile Method (See Note A) Line No. Item Source for columns 3 and 4..., by using Statement No. 6-68, Highway Form B, Schedule A, Line III. Assign the dollars in columns (6...
49 CFR Appendix I to Subpart A of... - Revenue Need and Allocation to Traffic at Issue
Code of Federal Regulations, 2010 CFR
2010-10-01
... composite carrier basis comprised of all traffic and cost study carriers. Data in part II, line 14 columns... Issue Traffic Based on Ton and Ton-Mile Method (See Note A) Line No. Item Source for columns 3 and 4..., by using Statement No. 6-68, Highway Form B, Schedule A, Line III. Assign the dollars in columns (6...
49 CFR Appendix I to Subpart A of... - Revenue Need and Allocation to Traffic at Issue
Code of Federal Regulations, 2011 CFR
2011-10-01
... composite carrier basis comprised of all traffic and cost study carriers. Data in part II, line 14 columns... Issue Traffic Based on Ton and Ton-Mile Method (See Note A) Line No. Item Source for columns 3 and 4..., by using Statement No. 6-68, Highway Form B, Schedule A, Line III. Assign the dollars in columns (6...
49 CFR Appendix I to Subpart A of... - Revenue Need and Allocation to Traffic at Issue
Code of Federal Regulations, 2012 CFR
2012-10-01
... composite carrier basis comprised of all traffic and cost study carriers. Data in part II, line 14 columns... Issue Traffic Based on Ton and Ton-Mile Method (See Note A) Line No. Item Source for columns 3 and 4..., by using Statement No. 6-68, Highway Form B, Schedule A, Line III. Assign the dollars in columns (6...
Simulation of Controller Pilot Data Link Communications over VHF Digital Link Mode 3
NASA Technical Reports Server (NTRS)
Bretmersky, Steven C.; Murawski, Robert; Nguyen, Thanh C.; Raghavan, Rajesh S.
2004-01-01
The Federal Aviation Administration (FAA) has established an operational plan for the future Air Traffic Management (ATM) system, in which the Controller Pilot Data Link Communications (CPDLC) is envisioned to evolve into digital messaging that will take on an ever increasing role in controller to pilot communications, significantly changing the way the National Airspace System (NAS) is operating. According to FAA, CPDLC represents the first phase of the transition from the current analog voice system to an International Civil Aviation Organization (ICAO) compliant system in which digital communication becomes the alternate and perhaps primary method of routine communication. The CPDLC application is an Air Traffic Service (ATS) application in which pilots and controllers exchange messages via an addressed data link. CPDLC includes a set of clearance, information, and request message elements that correspond to existing phraseology employed by current Air Traffic Control (ATC) procedures. These message elements encompass altitude assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests for information. The pilot is provided with the capability to respond to messages, to request clearances and information, to report information, and to declare/rescind an emergency. A 'free text' capability is also provided to exchange information not conforming to defined formats. This paper presents simulated results of the aeronautical telecommunication application Controller Pilot Data Link Communications over VHF Digital Link Mode 3 (VDL Mode 3). The objective of this simulation study was to determine the impact of CPDLC traffic loads, in terms of timely message delivery and capacity of the VDL Mode 3 subnetwork. The traffic model is based on and is used for generating air/ground messages with different priorities. Communication is modeled for the en route domain of the Cleveland Center air traffic (ZOB ARTCC).
A Sarsa(λ)-Based Control Model for Real-Time Traffic Light Coordination
Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183
DOT National Transportation Integrated Search
2010-02-01
This project developed a methodology to couple a new pollutant dispersion model with a traffic : assignment process to contain air pollution while maximizing mobility. The overall objective of the air : quality modeling part of the project is to deve...
A time-based concept for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, H.; Tobias, L.
1986-01-01
An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on the techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four dimensional guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing times provided by the scheduler are uplinked to equipped aircraft and translated into the appropriate four dimensional trajectory by the on-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of four dimensional-equipped and unequipped, as well as low-and high-performance, aircraft.
Traffic jam dynamics in stochastic cellular automata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, K.; Schreckenberg, M.
1995-09-01
Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA)more » and in NRW (Germany) for large scale microsimulations of network traffic.« less
Multigranular integrated services optical network
NASA Astrophysics Data System (ADS)
Yu, Oliver; Yin, Leping; Xu, Huan; Liao, Ming
2006-12-01
Based on all-optical switches without requiring fiber delay lines and optical-electrical-optical interfaces, the multigranular optical switching (MGOS) network integrates three transport services via unified core control to efficiently support bursty and stream traffic of subwavelength to multiwavelength bandwidth. Adaptive robust optical burst switching (AR-OBS) aggregates subwavelength burst traffic into asynchronous light-rate bursts, transported via slotted-time light paths established by fast two-way reservation with robust blocking recovery control. Multiwavelength optical switching (MW-OS) decomposes multiwavelength stream traffic into a group of timing-related light-rate streams, transported via a light-path group to meet end-to-end delay-variation requirements. Optical circuit switching (OCS) simply converts wavelength stream traffic from an electrical-rate into a light-rate stream. The MGOS network employs decoupled routing, wavelength, and time-slot assignment (RWTA) and novel group routing and wavelength assignment (GRWA) to select slotted-time light paths and light-path groups, respectively. The selected resources are reserved by the unified multigranular robust fast optical reservation protocol (MG-RFORP). Simulation results show that elastic traffic is efficiently supported via AR-OBS in terms of loss rate and wavelength utilization, while connection-oriented wavelength traffic is efficiently supported via wavelength-routed OCS in terms of connection blocking and wavelength utilization. The GRWA-tuning result for MW-OS is also shown.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie
2017-03-01
A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.
DOT National Transportation Integrated Search
2014-12-01
While indicative of a vibrant economy, large volumes of freight traffic have been associated with : accelerated wear of pavements particularly. In seeking to adopt operational policies that reduce : undue deterioration of their infrastructure, state ...
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.
2004-01-01
NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.
Suárez, Liliana; Mesías, Stephanie; Iglesias, Verónica; Silva, Claudio; Cáceres, Dante D; Ruiz-Rudolph, Pablo
2014-05-01
The objective of this study was to compare personal exposure to particulate matter (fine and ultrafine particles) in commuters using different transport modes (bicycle, bus, car and subway) in a busy, assigned route in downtown Santiago, Chile. Volunteers carrying personal samplers completed scheduled commutes during the morning rush hours, while central site measurements were conducted in parallel. A total of 137 valid commutes were assessed. The impact of central site, traffic and other variables was explored with regression models. PM2.5 personal concentrations were equal to or slightly above central site measurements, while UFP personal concentrations were above them. Regression models showed impacts of both background levels and traffic emissions on personal PM2.5 and UFP exposure. Traffic impacts varied with transport modes. Estimates of traffic impacts on personal PM2.5 exposure were 2.0, 13.0, 16.9 and 17.5 μg m(-3), for car, bicycle, subway and bus, respectively; while for UFP exposure were 8400, 16 200, 25 600 and 30 100 counts per cm(3), for subway, car, bicycle and bus, respectively. After controlling the central site and transport mode, higher temperatures increased PM2.5 exposure and decreased UFP ones, while the wind direction affected UFP personal exposure. In conclusion, we found significant impacts of both central site background measurements and traffic emissions on personal exposure of volunteer commuters in an assigned route in Santiago, with impacts varying with transport modes.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., intending to transit or in transit, shall report on the assigned frequency to the designated Seaway station... more, shall be reported to the appropriate Seaway station. (c) A downbound vessel in St. Lambert Lock shall switch to channel 10 (156.5 MHz) for a traffic report from Montreal Vessel Traffic Management...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., intending to transit or in transit, shall report on the assigned frequency to the designated Seaway station... more, shall be reported to the appropriate Seaway station. (c) A downbound vessel in St. Lambert Lock shall switch to channel 10 (156.5 MHz) for a traffic report from Montreal Vessel Traffic Management...
47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.
Code of Federal Regulations, 2012 CFR
2012-10-01
... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...
47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...
47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.
Code of Federal Regulations, 2013 CFR
2013-10-01
... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...
47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.
Code of Federal Regulations, 2014 CFR
2014-10-01
... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...
47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...
DOT National Transportation Integrated Search
2017-09-01
This study is to develop simulation methodology to conduct the dynamic assessment of bridge deck performance subjected to traffic. Concrete bridge decks are exposed to daily traffic loads and may experience some surface cracking caused by excessive s...
Relationship between microscopic dynamics in traffic flow and complexity in networks.
Li, Xin-Gang; Gao, Zi-You; Li, Ke-Ping; Zhao, Xiao-Mei
2007-07-01
Complex networks are constructed in the evolution process of traffic flow, and the states of traffic flow are represented by nodes in the network. The traffic dynamics can then be studied by investigating the statistical properties of those networks. According to Kerner's three-phase theory, there are two different phases in congested traffic, synchronized flow and wide moving jam. In the framework of this theory, we study different properties of synchronized flow and moving jam in relation to complex network. Scale-free network is constructed in stop-and-go traffic, i.e., a sequence of moving jams [Chin. Phys. Lett. 10, 2711 (2005)]. In this work, the networks generated in synchronized flow are investigated in detail. Simulation results show that the degree distribution of the networks constructed in synchronized flow has two power law regions, so the distinction in topological structure can really reflect the different dynamics in traffic flow. Furthermore, the real traffic data are investigated by this method, and the results are consistent with the simulations.
NASA Astrophysics Data System (ADS)
Chen, Shimon; Bekhor, Shlomo; Yuval; Broday, David M.
2016-10-01
Most air quality models use traffic-related variables as an input. Previous studies estimated nearby vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations, using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data show great potential for use as a proxy for pollutant emissions from motor-vehicles.
Data traffic reduction schemes for Cholesky factorization on asynchronous multiprocessor systems
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1989-01-01
Communication requirements of Cholesky factorization of dense and sparse symmetric, positive definite matrices are analyzed. The communication requirement is characterized by the data traffic generated on multiprocessor systems with local and shared memory. Lower bound proofs are given to show that when the load is uniformly distributed the data traffic associated with factoring an n x n dense matrix using n to the alpha power (alpha less than or equal 2) processors is omega(n to the 2 + alpha/2 power). For n x n sparse matrices representing a square root of n x square root of n regular grid graph the data traffic is shown to be omega(n to the 1 + alpha/2 power), alpha less than or equal 1. Partitioning schemes that are variations of block assignment scheme are described and it is shown that the data traffic generated by these schemes are asymptotically optimal. The schemes allow efficient use of up to O(n to the 2nd power) processors in the dense case and up to O(n) processors in the sparse case before the total data traffic reaches the maximum value of O(n to the 3rd power) and O(n to the 3/2 power), respectively. It is shown that the block based partitioning schemes allow a better utilization of the data accessed from shared memory and thus reduce the data traffic than those based on column-wise wrap around assignment schemes.
23 CFR 1340.6 - Assignment of observation times.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Highways NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION UNIFORM CRITERIA FOR... sites. (c) Grouping of observation sites in close geographic proximity. Observations sites in close geographic proximity may be grouped to reduce data collection burdens if: (1) The first assignment of an...
23 CFR 1340.6 - Assignment of observation times.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Highways NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION UNIFORM CRITERIA FOR... sites. (c) Grouping of observation sites in close geographic proximity. Observations sites in close geographic proximity may be grouped to reduce data collection burdens if: (1) The first assignment of an...
23 CFR 1340.6 - Assignment of observation times.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Highways NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION UNIFORM CRITERIA FOR... sites. (c) Grouping of observation sites in close geographic proximity. Observations sites in close geographic proximity may be grouped to reduce data collection burdens if: (1) The first assignment of an...
Rethinking Traffic Management: Design of Optimizable Networks
2008-06-01
Though this paper used optimization theory to design and analyze DaVinci , op- timization theory is one of many possible tools to enable a grounded...dynamically allocate bandwidth shares. The distributed protocols can be implemented using DaVinci : Dynamically Adaptive VIrtual Networks for a Customized...Internet. In DaVinci , each virtual network runs traffic-management protocols optimized for a traffic class, and link bandwidth is dynamically allocated
ACStor: Optimizing Access Performance of Virtual Disk Images in Clouds
Wu, Song; Wang, Yihong; Luo, Wei; ...
2017-03-02
In virtualized data centers, virtual disk images (VDIs) serve as the containers in virtual environment, so their access performance is critical for the overall system performance. Some distributed VDI chunk storage systems have been proposed in order to alleviate the I/O bottleneck for VM management. As the system scales up to a large number of running VMs, however, the overall network traffic would become unbalanced with hot spots on some VMs inevitably, leading to I/O performance degradation when accessing the VMs. Here, we propose an adaptive and collaborative VDI storage system (ACStor) to resolve the above performance issue. In comparisonmore » with the existing research, our solution is able to dynamically balance the traffic workloads in accessing VDI chunks, based on the run-time network state. Specifically, compute nodes with lightly loaded traffic will be adaptively assigned more chunk access requests from remote VMs and vice versa, which can effectively eliminate the above problem and thus improves the I/O performance of VMs. We also implement a prototype based on our ACStor design, and evaluate it by various benchmarks on a real cluster with 32 nodes and a simulated platform with 256 nodes. Experiments show that under different network traffic patterns of data centers, our solution achieves up to 2-8 performance gain on VM booting time and VM’s I/O throughput, in comparison with the other state-of-the-art approaches.« less
Transition Characteristic Analysis of Traffic Evolution Process for Urban Traffic Network
Chen, Hong; Li, Yang
2014-01-01
The characterization of the dynamics of traffic states remains fundamental to seeking for the solutions of diverse traffic problems. To gain more insights into traffic dynamics in the temporal domain, this paper explored temporal characteristics and distinct regularity in the traffic evolution process of urban traffic network. We defined traffic state pattern through clustering multidimensional traffic time series using self-organizing maps and construct a pattern transition network model that is appropriate for representing and analyzing the evolution progress. The methodology is illustrated by an application to data flow rate of multiple road sections from Network of Shenzhen's Nanshan District, China. Analysis and numerical results demonstrated that the methodology permits extracting many useful traffic transition characteristics including stability, preference, activity, and attractiveness. In addition, more information about the relationships between these characteristics was extracted, which should be helpful in understanding the complex behavior of the temporal evolution features of traffic patterns. PMID:24982969
Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah
Tian, Le; Latré, Steven
2017-01-01
IEEE 802.11ah, marketed as Wi-Fi HaLow, extends Wi-Fi to the sub-1 GHz spectrum. Through a number of physical layer (PHY) and media access control (MAC) optimizations, it aims to bring greatly increased range, energy-efficiency, and scalability. This makes 802.11ah the perfect candidate for providing connectivity to Internet of Things (IoT) devices. One of these new features, referred to as the Restricted Access Window (RAW), focuses on improving scalability in highly dense deployments. RAW divides stations into groups and reduces contention and collisions by only allowing channel access to one group at a time. However, the standard does not dictate how to determine the optimal RAW grouping parameters. The optimal parameters depend on the current network conditions, and it has been shown that incorrect configuration severely impacts throughput, latency and energy efficiency. In this paper, we propose a traffic-adaptive RAW optimization algorithm (TAROA) to adapt the RAW parameters in real time based on the current traffic conditions, optimized for sensor networks in which each sensor transmits packets with a certain (predictable) frequency and may change the transmission frequency over time. The TAROA algorithm is executed at each target beacon transmission time (TBTT), and it first estimates the packet transmission interval of each station only based on packet transmission information obtained by access point (AP) during the last beacon interval. Then, TAROA determines the RAW parameters and assigns stations to RAW slots based on this estimated transmission frequency. The simulation results show that, compared to enhanced distributed channel access/distributed coordination function (EDCA/DCF), the TAROA algorithm can highly improve the performance of IEEE 802.11ah dense networks in terms of throughput, especially when hidden nodes exist, although it does not always achieve better latency performance. This paper contributes with a practical approach to optimizing RAW grouping under dynamic traffic in real time, which is a major leap towards applying RAW mechanism in real-life IoT networks. PMID:28677617
Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah.
Tian, Le; Khorov, Evgeny; Latré, Steven; Famaey, Jeroen
2017-07-04
IEEE 802.11ah, marketed as Wi-Fi HaLow, extends Wi-Fi to the sub-1 GHz spectrum. Through a number of physical layer (PHY) and media access control (MAC) optimizations, it aims to bring greatly increased range, energy-efficiency, and scalability. This makes 802.11ah the perfect candidate for providing connectivity to Internet of Things (IoT) devices. One of these new features, referred to as the Restricted Access Window (RAW), focuses on improving scalability in highly dense deployments. RAW divides stations into groups and reduces contention and collisions by only allowing channel access to one group at a time. However, the standard does not dictate how to determine the optimal RAW grouping parameters. The optimal parameters depend on the current network conditions, and it has been shown that incorrect configuration severely impacts throughput, latency and energy efficiency. In this paper, we propose a traffic-adaptive RAW optimization algorithm (TAROA) to adapt the RAW parameters in real time based on the current traffic conditions, optimized for sensor networks in which each sensor transmits packets with a certain (predictable) frequency and may change the transmission frequency over time. The TAROA algorithm is executed at each target beacon transmission time (TBTT), and it first estimates the packet transmission interval of each station only based on packet transmission information obtained by access point (AP) during the last beacon interval. Then, TAROA determines the RAW parameters and assigns stations to RAW slots based on this estimated transmission frequency. The simulation results show that, compared to enhanced distributed channel access/distributed coordination function (EDCA/DCF), the TAROA algorithm can highly improve the performance of IEEE 802.11ah dense networks in terms of throughput, especially when hidden nodes exist, although it does not always achieve better latency performance. This paper contributes with a practical approach to optimizing RAW grouping under dynamic traffic in real time, which is a major leap towards applying RAW mechanism in real-life IoT networks.
Minimal-delay traffic grooming for WDM star networks
NASA Astrophysics Data System (ADS)
Choi, Hongsik; Garg, Nikhil; Choi, Hyeong-Ah
2003-10-01
All-optical networks face the challenge of reducing slower opto-electronic conversions by managing assignment of traffic streams to wavelengths in an intelligent manner, while at the same time utilizing bandwidth resources to the maximum. This challenge becomes harder in networks closer to the end users that have insufficient data to saturate single wavelengths as well as traffic streams outnumbering the usable wavelengths, resulting in traffic grooming which requires costly traffic analysis at access nodes. We study the problem of traffic grooming that reduces the need to analyze traffic, for a class of network architecture most used by Metropolitan Area Networks; the star network. The problem being NP-complete, we provide an efficient twice-optimal-bound greedy heuristic for the same, that can be used to intelligently groom traffic at the LANs to reduce latency at the access nodes. Simulation results show that our greedy heuristic achieves a near-optimal solution.
Traffic and related self-driven many-particle systems
NASA Astrophysics Data System (ADS)
Helbing, Dirk
2001-10-01
Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.
A time-based concept for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Tobias, Leonard
1986-01-01
An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four-dimensional (4D) guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing time provided by the scheduler is uplinked to equipped aircraft and translated into the appropriate 4D trajectory by the-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of 4D-equipped and unequipped, as well as low- and high-performance, aircraft. Piloted simulations of profiles flown with the aid of advisories have verified the ability to meet specified descent times with prescribed accuracy.
From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks
Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming
2016-01-01
The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968
From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.
Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming
2016-03-14
The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.
NASA Astrophysics Data System (ADS)
Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich
2016-04-01
Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"
Traffic dynamics around weaving section influenced by accident: Cellular automata approach
NASA Astrophysics Data System (ADS)
Kong, Lin-Peng; Li, Xin-Gang; Lam, William H. K.
2015-07-01
The weaving section, as a typical bottleneck, is one source of vehicle conflicts and an accident-prone area. Traffic accident will block lanes and the road capacity will be reduced. Several models have been established to study the dynamics around traffic bottlenecks. However, little attention has been paid to study the complex traffic dynamics influenced by the combined effects of bottleneck and accident. This paper presents a cellular automaton model to characterize accident-induced traffic behavior around the weaving section. Some effective control measures are proposed and verified for traffic management under accident condition. The total flux as a function of inflow rates, the phase diagrams, the spatial-temporal diagrams, and the density and velocity profiles are presented to analyze the impact of accident. It was shown that the proposed control measures for weaving traffic can improve the capacity of weaving section under both normal and accident conditions; the accidents occurring on median lane in the weaving section are more inclined to cause traffic jam and reduce road capacity; the capacity of weaving section will be greatly reduced when the accident happens downstream the weaving section.
Dynamics of traffic flow with real-time traffic information
NASA Astrophysics Data System (ADS)
Yokoya, Yasushi
2004-01-01
We studied dynamics of traffic flow with real-time information provided. Provision of the real-time traffic information based on advancements in telecommunication technology is expected to facilitate the efficient utilization of available road capacity. This system has a potentiality of not only engineering for road usage but also the science of complexity series. In the system, the information plays a role of feedback connecting microscopic and macroscopic phenomena beyond the hierarchical structure of statistical physics. In this paper, we tried to clarify how the information works in a network of traffic flow from the perspective of statistical physics. The dynamical feature of the traffic flow is abstracted by a contrastive study between the nonequilibrium statistical physics and a computer simulation based on cellular automaton. We found that the information disrupts the local equilibrium of traffic flow by a characteristic dissipation process due to interaction between the information and individual vehicles. The dissipative structure was observed in the time evolution of traffic flow driven far from equilibrium as a consequence of the breakdown of the local-equilibrium hypothesis.
DOT National Transportation Integrated Search
2011-01-01
Travel demand modeling plays a key role in the transportation system planning and evaluation process. The four-step sequential travel demand model is the most widely used technique in practice. Traffic assignment is the key step in the conventional f...
Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network
NASA Astrophysics Data System (ADS)
Yang, Bin
2017-07-01
Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately
Virtualized Traffic: reconstructing traffic flows from discrete spatiotemporal data.
Sewall, Jason; van den Berg, Jur; Lin, Ming C; Manocha, Dinesh
2011-01-01
We present a novel concept, Virtualized Traffic, to reconstruct and visualize continuous traffic flows from discrete spatiotemporal data provided by traffic sensors or generated artificially to enhance a sense of immersion in a dynamic virtual world. Given the positions of each car at two recorded locations on a highway and the corresponding time instances, our approach can reconstruct the traffic flows (i.e., the dynamic motions of multiple cars over time) between the two locations along the highway for immersive visualization of virtual cities or other environments. Our algorithm is applicable to high-density traffic on highways with an arbitrary number of lanes and takes into account the geometric, kinematic, and dynamic constraints on the cars. Our method reconstructs the car motion that automatically minimizes the number of lane changes, respects safety distance to other cars, and computes the acceleration necessary to obtain a smooth traffic flow subject to the given constraints. Furthermore, our framework can process a continuous stream of input data in real time, enabling the users to view virtualized traffic events in a virtual world as they occur. We demonstrate our reconstruction technique with both synthetic and real-world input. © 2011 IEEE Published by the IEEE Computer Society
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Kopardekar, Parimal; Battiste, Vernol; Doble, Nathan; Johnson, Walter; Lee, Paul; Prevot, Thomas; Smith, Nancy
2005-01-01
In order to meet the anticipated future demand for air travel, the National Aeronautics and Space Administration (NASA) is investigating a new concept of operations known as Distributed Air-Ground Traffic Management (DAG-TM). Under the En Route Free Maneuvering component of DAG-TM, appropriately equipped autonomous aircraft self separate from other autonomous aircraft and from managed aircraft that continue to fly under today s Instrument Flight Rules (IFR). Controllers provide separation services between IFR aircraft and assign traffic flow management constraints to all aircraft. To address concept feasibility issues pertaining to integrated air/ground operations at various traffic levels, NASA Ames and Langley Research Centers conducted a joint human-in-the-loop experiment. Professional airline pilots and air traffic controllers flew a total of 16 scenarios under four conditions: mixed autonomous/managed operations at three traffic levels and a baseline all-managed condition at the lowest traffic level. These scenarios included en route flights and descents to a terminal area meter fix in airspace modeled after the Dallas Ft. Worth area. Pilots of autonomous aircraft met controller assigned meter fix constraints with high success. Separation violations by subject pilots did not appear to vary with traffic level and were mainly attributable to software errors and procedural lapses. Controller workload was lower for mixed flight conditions, even at higher traffic levels. Pilot workload was deemed acceptable under all conditions. Controllers raised several safety concerns, most of which pertained to the occurrence of near-term conflicts between autonomous and managed aircraft. These issues are being addressed through better compatibility between air and ground systems and refinements to air and ground procedures.
Vehicular Traffic Flow Theory and Tunnel Traffic Flow Measurements
DOT National Transportation Integrated Search
1971-06-01
Vehicular traffic flow has been investigated theoretically and experimentally in order that peak hour collective traffic flow dynamics can be understood and that the peak hour flow through the Callahan Tunnel can be improved by means of traffic flow ...
Non-Uniform Per-Packet Priority Marker for Use with Adaptive Protocols
2014-01-07
through con gestion points that would totally stop traffic from a customer using the SLA shown in FIG. 5, though only some fraction of his traffic...assigning priori ties to TCP flows. PDQoS has potential to fill the need for a quality of service mechanism that is simple to configure and to
Bases of Radio Direction Finding, Part II
1977-12-22
of H-shaped system . Fundamental ind the equivalent diagrams of the piir of antennas are given in Fig. 7.12. For -alculation is assigned the frejuency...Geographic Names Transliteration System ......... ii Preface ...................................................... 2 Chapter 1. Problems of Radio Traffic...4 Chapter 2. Principles and Methods of Radio Traffic ......... 14 Chapter 3. Antenna Systems of Radio Direction Finders
Understanding traffic dynamics at a backbone POP
NASA Astrophysics Data System (ADS)
Taft, Nina; Bhattacharyya, Supratik; Jetcheva, Jorjeta; Diot, Christophe
2001-07-01
Spatial and temporal information about traffic dynamics is central to the design of effective traffic engineering practices for IP backbones. In this paper we study backbone traffic dynamics using data collected at a major POP on a tier-1 IP backbone. We develop a methodology that combines packet-level traces from access links in the POP and BGP routing information to build components of POP-to-POP traffic matrices. Our results show that there is wide disparity in the volume of traffic headed towards different egress POPs. At the same time, we find that current routing practices in the backbone tend to constrain traffic between ingress-egress POP pairs to a small number of paths. As a result, there is a wide variation in the utilization level of links in the backbone. Frequent capacity upgrades of the heavily used links are expensive; the need for such upgrades can be reduced by designing load balancing policies that will route more traffic over less utilized links. We identify traffic aggregates based on destination address prefixes and find that this set of criteria isolates a few aggregates that account for an overwhelmingly large portion of inter-POP traffic. We also demonstrate that these aggregates exhibit stability throughout the day on per-hour time scales, and thus they form a natural basis for splitting traffic over multiple paths in order to improve load balancing.
47 CFR 69.112 - Direct-trunked transport.
Code of Federal Regulations, 2012 CFR
2012-10-01
... assigned to the lowest priced density pricing zone (zone 1) under an approved density pricing zone plan as... cross-connects for the transmission of switched traffic per office assigned to the lowest priced density pricing zone (zone 1). (g) In study areas in which the telephone company has implemented density zone...
Chaotic Ising-like dynamics in traffic signals
Suzuki, Hideyuki; Imura, Jun-ichi; Aihara, Kazuyuki
2013-01-01
The green and red lights of a traffic signal can be viewed as the up and down states of an Ising spin. Moreover, traffic signals in a city interact with each other, if they are controlled in a decentralised way. In this paper, a simple model of such interacting signals on a finite-size two-dimensional lattice is shown to have Ising-like dynamics that undergoes a ferromagnetic phase transition. Probabilistic behaviour of the model is realised by chaotic billiard dynamics that arises from coupled non-chaotic elements. This purely deterministic model is expected to serve as a starting point for considering statistical mechanics of traffic signals. PMID:23350034
Selfish routing equilibrium in stochastic traffic network: A probability-dominant description.
Zhang, Wenyi; He, Zhengbing; Guan, Wei; Ma, Rui
2017-01-01
This paper suggests a probability-dominant user equilibrium (PdUE) model to describe the selfish routing equilibrium in a stochastic traffic network. At PdUE, travel demands are only assigned to the most dominant routes in the same origin-destination pair. A probability-dominant rerouting dynamic model is proposed to explain the behavioral mechanism of PdUE. To facilitate applications, the logit formula of PdUE is developed, of which a well-designed route set is not indispensable and the equivalent varitional inequality formation is simple. Two routing strategies, i.e., the probability-dominant strategy (PDS) and the dominant probability strategy (DPS), are discussed through a hypothetical experiment. It is found that, whether out of insurance or striving for perfection, PDS is a better choice than DPS. For more general cases, the conducted numerical tests lead to the same conclusion. These imply that PdUE (rather than the conventional stochastic user equilibrium) is a desirable selfish routing equilibrium for a stochastic network, given that the probability distributions of travel time are available to travelers.
Selfish routing equilibrium in stochastic traffic network: A probability-dominant description
Zhang, Wenyi; Guan, Wei; Ma, Rui
2017-01-01
This paper suggests a probability-dominant user equilibrium (PdUE) model to describe the selfish routing equilibrium in a stochastic traffic network. At PdUE, travel demands are only assigned to the most dominant routes in the same origin-destination pair. A probability-dominant rerouting dynamic model is proposed to explain the behavioral mechanism of PdUE. To facilitate applications, the logit formula of PdUE is developed, of which a well-designed route set is not indispensable and the equivalent varitional inequality formation is simple. Two routing strategies, i.e., the probability-dominant strategy (PDS) and the dominant probability strategy (DPS), are discussed through a hypothetical experiment. It is found that, whether out of insurance or striving for perfection, PDS is a better choice than DPS. For more general cases, the conducted numerical tests lead to the same conclusion. These imply that PdUE (rather than the conventional stochastic user equilibrium) is a desirable selfish routing equilibrium for a stochastic network, given that the probability distributions of travel time are available to travelers. PMID:28829834
High capacity low delay packet broadcasting multiaccess schemes for satellite repeater systems
NASA Astrophysics Data System (ADS)
Bose, S. K.
1980-12-01
Demand assigned packet radio schemes using satellite repeaters can achieve high capacities but often exhibit relatively large delays under low traffic conditions when compared to random access. Several schemes which improve delay performance at low traffic but which have high capacity are presented and analyzed. These schemes allow random acess attempts by users, who are waiting for channel assignments. The performance of these are considered in the context of a multiple point communication system carrying fixed length messages between geographically distributed (ground) user terminals which are linked via a satellite repeater. Channel assignments are done following a BCC queueing discipline by a (ground) central controller on the basis of requests correctly received over a collision type access channel. In TBACR Scheme A, some of the forward message channels are set aside for random access transmissions; the rest are used in a demand assigned mode. Schemes B and C operate all their forward message channels in a demand assignment mode but, by means of appropriate algorithms for trailer channel selection, allow random access attempts on unassigned channels. The latter scheme also introduces framing and slotting of the time axis to implement a more efficient algorithm for trailer channel selection than the former.
Wang, Yong; Ma, Xiaolei; Liu, Yong; Gong, Ke; Henricakson, Kristian C.; Xu, Maozeng; Wang, Yinhai
2016-01-01
This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers’ route choice behavior. PMID:26761209
Hydrodynamically induced oscillations and traffic dynamics in 1D microfludic networks
NASA Astrophysics Data System (ADS)
Bartolo, Denis; Jeanneret, Raphael
2011-03-01
We report on the traffic dynamics of particles driven through a minimal microfluidic network. Even in the minimal network consisting in a single loop, the traffic dynamics has proven to yield complex temporal patterns, including periodic, multi-periodic or chaotic sequences. This complex dynamics arises from the strongly nonlinear hydrodynamic interactions between the particles, that takes place at a junction. To better understand the consequences of this nontrivial coupling, we combined theoretical, numerical and experimental efforts and solved the 3-body problem in a 1D loop network. This apparently simple dynamical system revealed a rich and unexpected dynamics, including coherent spontaneous oscillations along closed orbits. Striking similarities between Hamiltonian systems and this driven dissipative system will be explained.
DOT National Transportation Integrated Search
1971-05-01
The report describes a dynamic model of a traffic circle which has been implemented on a CRT display terminal. The model includes sufficient parameters to allow changes in the structure of the traffic circle, the frequency of traffic introduced to th...
Methods and systems for detecting abnormal digital traffic
Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA
2011-03-22
Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.
NASA Technical Reports Server (NTRS)
Wade, T. O.
1984-01-01
Reduction techniques for traffic matrices are explored in some detail. These matrices arise in satellite switched time-division multiple access (SS/TDMA) techniques whereby switching of uplink and downlink beams is required to facilitate interconnectivity of beam zones. A traffic matrix is given to represent that traffic to be transmitted from n uplink beams to n downlink beams within a TDMA frame typically of 1 ms duration. The frame is divided into segments of time and during each segment a portion of the traffic is represented by a switching mode. This time slot assignment is characterized by a mode matrix in which there is not more than a single non-zero entry on each line (row or column) of the matrix. Investigation is confined to decomposition of an n x n traffic matrix by mode matrices with a requirement that the decomposition be 100 percent efficient or, equivalently, that the line(s) in the original traffic matrix whose sum is maximal (called critical line(s)) remain maximal as mode matrices are subtracted throughout the decomposition process. A method of decomposition of an n x n traffic matrix by mode matrices results in a number of steps that is bounded by n(2) - 2n + 2. It is shown that this upper bound exists for an n x n matrix wherein all the lines are maximal (called a quasi doubly stochastic (QDS) matrix) or for an n x n matrix that is completely arbitrary. That is, the fact that no method can exist with a lower upper bound is shown for both QDS and arbitrary matrices, in an elementary and straightforward manner.
An efficient routing strategy for traffic dynamics on two-layer complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Wang, Huiling; Zhang, Zhuxi; Zhang, Yi; Duan, Congwen; Qi, Zhaohui; Liu, Yu
2018-05-01
In order to alleviate traffic congestion on multilayer networks, designing an efficient routing strategy is one of the most important ways. In this paper, a novel routing strategy is proposed to reduce traffic congestion on two-layer networks. In the proposed strategy, the optimal paths in the physical layer are chosen by comprehensively considering the roles of nodes’ degrees of the two layers. Both numerical and analytical results indicate that our routing strategy can reasonably redistribute the traffic load of the physical layer, and thus the traffic capacity of two-layer complex networks are significantly enhanced compared with the shortest path routing (SPR) and the global awareness routing (GAR) strategies. This study may shed some light on the optimization of networked traffic dynamics.
Tour time in a two-route traffic system controlled by signals
NASA Astrophysics Data System (ADS)
Nagatani, Takashi; Naito, Yuichi
2011-11-01
We study the dynamic behavior of vehicular traffic in a two-route system with a series of signals (traffic lights) at low density where the number of signals on route A is different from that on route B. We investigate the dependence of the tour time on the route for some strategies of signal control. The nonlinear dynamic model of a two-route traffic system controlled by signals is presented by nonlinear maps. The vehicular traffic exhibits a very complex behavior, depending on the cycle time, the phase difference, and the irregularity. The dependence of the tour time on the route choice is clarified for the signal strategies.
Adaptive traffic signal control system (ACS-Lite) for Wolf Road, Albany, New York.
DOT National Transportation Integrated Search
2014-10-01
Adaptive Control Software Lite (ACS : - : Lite) is a : traffic : signal timing optimization system that : dynamically adjusts : traffic : signal timing : s : to meet current traffic demands. : The purpose of this : research project : was : to : deplo...
Human factors in air traffic control: problems at the interfaces.
Shouksmith, George
2003-10-01
The triangular ISIS model for describing the operation of human factors in complex sociotechnical organisations or systems is applied in this research to a large international air traffic control system. A large sample of senior Air Traffic Controllers were randomly assigned to small focus discussion groups, whose task was to identify problems occurring at the interfaces of the three major human factor components: individual, system impacts, and social. From these discussions, a number of significant interface problems, which could adversely affect the functioning of the Air Traffic Control System, emerged. The majority of these occurred at the Individual-System Impact and Individual-Social interfaces and involved a perceived need for further interface centered training.
Shen, Qinghua; Liang, Xiaohui; Shen, Xuemin; Lin, Xiaodong; Luo, Henry Y
2014-03-01
In this paper, we propose an e-health monitoring system with minimum service delay and privacy preservation by exploiting geo-distributed clouds. In the system, the resource allocation scheme enables the distributed cloud servers to cooperatively assign the servers to the requested users under the load balance condition. Thus, the service delay for users is minimized. In addition, a traffic-shaping algorithm is proposed. The traffic-shaping algorithm converts the user health data traffic to the nonhealth data traffic such that the capability of traffic analysis attacks is largely reduced. Through the numerical analysis, we show the efficiency of the proposed traffic-shaping algorithm in terms of service delay and privacy preservation. Furthermore, through the simulations, we demonstrate that the proposed resource allocation scheme significantly reduces the service delay compared to two other alternatives using jointly the short queue and distributed control law.
Effects of heavy vehicles on dynamic traffic features.
DOT National Transportation Integrated Search
2016-02-01
Traffic congestion on highways has been growing in urban areas where freight transportation hubs reside, affecting the efficiency and reliability of freight transportation. This research will investigate the effects of heavy vehicles on dynamic traff...
Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey
2015-12-01
The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.
Indiana freeway traffic characteristics and dynamic prediction of freeway traffic flows
DOT National Transportation Integrated Search
1999-12-01
Traffic volumes on Indiana's roadways have increased significantly in the past years. During the period between 1989 and 1993, traffic volumes increased 20.2% on Indiana's urban interstate freeways and expressways, and 13.1% on rural interstates. The...
Evaluation of the impacts of traffic states on crash risks on freeways.
Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin
2012-07-01
The primary objective of this study is to divide freeway traffic flow into different states, and to evaluate the safety performance associated with each state. Using traffic flow data and crash data collected from a northbound segment of the I-880 freeway in the state of California, United States, K-means clustering analysis was conducted to classify traffic flow into five different states. Conditional logistic regression models using case-controlled data were then developed to study the relationship between crash risks and traffic states. Traffic flow characteristics in each traffic state were compared to identify the underlying phenomena that made certain traffic states more hazardous than others. Crash risk models were also developed for different traffic states to identify how traffic flow characteristics such as speed and speed variance affected crash risks in different traffic states. The findings of this study demonstrate that the operations of freeway traffic can be divided into different states using traffic occupancy measured from nearby loop detector stations, and each traffic state can be assigned with a certain safety level. The impacts of traffic flow parameters on crash risks are different across different traffic flow states. A method based on discriminant analysis was further developed to identify traffic states given real-time freeway traffic flow data. Validation results showed that the method was of reasonably high accuracy for identifying freeway traffic states. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiang; Sun, Jian-Qiao
2017-02-01
Drivers often change lanes on the road to maintain desired speed and to avoid slow vehicles, pedestrians, obstacles and lane closure. Understanding the effect of lane-changing on the traffic is an important topic in designing optimal traffic control systems. This paper presents a comprehensive study of this topic. We review the theory of microscopic dynamic car-following models and the lane-changing models, propose additional lane-changing rules to deal with moving bottleneck and lane reduction, and investigate the effects of lane-changing on the traffic efficiency, traffic safety and fuel consumption as a function of different variables including the distance of the emergency sign ahead of the lane closure, speed limit, traffic density, etc. Extensive simulations of the traffic system have been carried out in different scenarios. A number of important findings of the effect of various factors on the traffic are reported. These findings provide guidance on the traffic management and are important to the designers and engineers of modern highway or inner city roads to achieve high traffic efficiency and safety with minimum environmental impact.
ERIC Educational Resources Information Center
Bell, Mary Lou; Baker, Tara Kelley; Falb, Timothy; Roberts-Gray, Cindy
2005-01-01
Pre- and post-surveys of self-protective knowledge and skills in third, fourth, and fifth grade classrooms (n = 24) randomly assigned to a model program for alcohol prevention and traffic safety or to comparison group (n = 24 classrooms) were analyzed to evaluate replicability of immediate positive effects of first-year exposure and to test…
An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers
NASA Astrophysics Data System (ADS)
Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi
As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.
14 CFR 93.341 - Aircraft operations in the DC FRZ.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-assigned discrete transponder code. The pilot must monitor VHF frequency 121.5 or UHF frequency 243.0. (d... authorization must file and activate an IFR or a DC FRZ or a DC SFRA flight plan and transmit a discrete transponder code assigned by an Air Traffic Control facility. Aircraft must transmit the discrete transponder...
A refined and dynamic cellular automaton model for pedestrian-vehicle mixed traffic flow
NASA Astrophysics Data System (ADS)
Liu, Mianfang; Xiong, Shengwu
2016-12-01
Mixed traffic flow sharing the “same lane” and having no discipline on road is a common phenomenon in the developing countries. For example, motorized vehicles (m-vehicles) and nonmotorized vehicles (nm-vehicles) may share the m-vehicle lane or nm-vehicle lane and pedestrians may share the nm-vehicle lane. Simulating pedestrian-vehicle mixed traffic flow consisting of three kinds of traffic objects: m-vehicles, nm-vehicles and pedestrians, can be a challenge because there are some erratic drivers or pedestrians who fail to follow the lane disciplines. In the paper, we investigate various moving and interactive behavior associated with mixed traffic flow, such as lateral drift including illegal lane-changing and transverse crossing different lanes, overtaking and forward movement, and propose some new moving and interactive rules for pedestrian-vehicle mixed traffic flow based on a refined and dynamic cellular automaton (CA) model. Simulation results indicate that the proposed model can be used to investigate the traffic flow characteristic in a mixed traffic flow system and corresponding complicated traffic problems, such as, the moving characteristics of different traffic objects, interaction phenomenon between different traffic objects, traffic jam, traffic conflict, etc., which are consistent with the actual mixed traffic system. Therefore, the proposed model provides a solid foundation for the management, planning and evacuation of the mixed traffic flow.
DOT National Transportation Integrated Search
2016-06-01
Active traffic management (ATM) incorporates a collection of strategies allowing the dynamic management of recurrent and nonrecurrent congestion based on prevailing traffic conditions. These strategies help to increase peak capacity, smooth traffic f...
Agent-based traffic management and reinforcement learning in congested intersection network.
DOT National Transportation Integrated Search
2012-08-01
This study evaluates the performance of traffic control systems based on reinforcement learning (RL), also called approximate dynamic programming (ADP). Two algorithms have been selected for testing: 1) Q-learning and 2) approximate dynamic programmi...
Continuum modeling of cooperative traffic flow dynamics
NASA Astrophysics Data System (ADS)
Ngoduy, D.; Hoogendoorn, S. P.; Liu, R.
2009-07-01
This paper presents a continuum approach to model the dynamics of cooperative traffic flow. The cooperation is defined in our model in a way that the equipped vehicle can issue and receive a warning massage when there is downstream congestion. Upon receiving the warning massage, the (up-stream) equipped vehicle will adapt the current desired speed to the speed at the congested area in order to avoid sharp deceleration when approaching the congestion. To model the dynamics of such cooperative systems, a multi-class gas-kinetic theory is extended to capture the adaptation of the desired speed of the equipped vehicle to the speed at the downstream congested traffic. Numerical simulations are carried out to show the influence of the penetration rate of the equipped vehicles on traffic flow stability and capacity in a freeway.
General Dynamics of Topology and Traffic on Weighted Technological Networks
NASA Astrophysics Data System (ADS)
Wang, Wen-Xu; Wang, Bing-Hong; Hu, Bo; Yan, Gang; Ou, Qing
2005-05-01
For most technical networks, the interplay of dynamics, traffic, and topology is assumed crucial to their evolution. In this Letter, we propose a traffic-driven evolution model of weighted technological networks. By introducing a general strength-coupling mechanism under which the traffic and topology mutually interact, the model gives power-law distributions of degree, weight, and strength, as confirmed in many real networks. Particularly, depending on a parameter W that controls the total weight growth of the system, the nontrivial clustering coefficient C, degree assortativity coefficient r, and degree-strength correlation are all consistent with empirical evidence.
Evaluating the benefits of dynamic message signs on Missouri's rural corridors.
DOT National Transportation Integrated Search
2011-12-01
Dynamic message signs (DMSs) are traffic control devices that provide real-time traveler information and are used for traffic warning, regulation, routing and management. DMSs on freeways in rural areas in southeast Missouri were evaluated. First, mo...
Traffic and Driving Simulator Based on Architecture of Interactive Motion.
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination.
Traffic and Driving Simulator Based on Architecture of Interactive Motion
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711
Dynamical analysis of Lorenz System on traffic problem in Yogyakarta, Indonesia
NASA Astrophysics Data System (ADS)
Hartono; Saptaningtyas, F. Y.; Krisnawan, K. P.
2018-03-01
The traffic congestion becomes a routine problem which occurs in Yogyakarta. This study was to develop a mathematical model of traffic congestion using Lorenz System. This system was used to analyze the traffic condition in Yogyakarta road. The data was taken from the observation of the road and it had been validated. Routh Hourwith used to analyse the stability of free jamm equlibrium. The dynamic analysis showed that the system was stabil. Numerical solution showed that the bigger value of ratio of the distance relaxsation time to velocity relaxsation time resulting the more time to reach the stabil condition. It showed that more and more time to reach optimal velocity, needed more and more time as well to reach equilibrium. Traffic condition at the time of observation was ideal and there was no transition of traffic jam.
NASA Astrophysics Data System (ADS)
Iyer, Sridhar
2016-12-01
The ever-increasing global Internet traffic will inevitably lead to a serious upgrade of the current optical networks' capacity. The legacy infrastructure can be enhanced not only by increasing the capacity but also by adopting advance modulation formats, having increased spectral efficiency at higher data rate. In a transparent mixed-line-rate (MLR) optical network, different line rates, on different wavelengths, can coexist on the same fiber. Migration to data rates higher than 10 Gbps requires the implementation of phase modulation schemes. However, the co-existing on-off keying (OOK) channels cause critical physical layer impairments (PLIs) to the phase modulated channels, mainly due to cross-phase modulation (XPM), which in turn limits the network's performance. In order to mitigate this effect, a more sophisticated PLI-Routing and Wavelength Assignment (PLI-RWA) scheme needs to be adopted. In this paper, we investigate the critical impairment for each data rate and the way it affects the quality of transmission (QoT). In view of the aforementioned, we present a novel dynamic PLI-RWA algorithm for MLR optical networks. The proposed algorithm is compared through simulations with the shortest path and minimum hop routing schemes. The simulation results show that performance of the proposed algorithm is better than the existing schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auld, Joshua; Hope, Michael; Ley, Hubert
This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typicallymore » done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.« less
Evaluation of dynamic message signs and their potential impact on traffic flow.
DOT National Transportation Integrated Search
2013-04-01
Maryland State Highway Administration (SHA) has a rich data archive of the messages posted to the : Dynamic Message Signs (DMS) and the time stamps when they were posted and taken down. The archive : also contains traffic information surrounding the ...
DOT National Transportation Integrated Search
2015-03-01
The Connected Vehicle Mobility Policy team (herein, policy team) developed this report to document policy considerations for the Multi-Modal Intelligent Traffic Signal System, or MMITSS. MMITSS comprises a bundle of dynamic mobility application...
Study on the Reduced Traffic Congestion Method Based on Dynamic Guidance Information
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Wang, Guang-Min; Wang, Tao; Ren, Hua-Ling; Zhang, Lin
2018-05-01
This paper studies how to generate the reasonable information of travelers’ decision in real network. This problem is very complex because the travelers’ decision is constrained by different human behavior. The network conditions can be predicted by using the advanced dynamic OD (Origin-Destination, OD) estimation techniques. Based on the improved mesoscopic traffic model, the predictable dynamic traffic guidance information can be obtained accurately. A consistency algorithm is designed to investigate the travelers’ decision by simulating the dynamic response to guidance information. The simulation results show that the proposed method can provide the best guidance information. Further, a case study is conducted to verify the theoretical results and to draw managerial insights into the potential of dynamic guidance strategy in improving traffic performance. Supported by National Natural Science Foundation of China under Grant Nos. 71471104, 71771019, 71571109, and 71471167; The University Science and Technology Program Funding Projects of Shandong Province under Grant No. J17KA211; The Project of Public Security Department of Shandong Province under Grant No. GATHT2015-236; The Major Social and Livelihood Special Project of Jinan under Grant No. 20150905
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-01-01
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research. PMID:28353664
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
ERIC Educational Resources Information Center
Salden, Ron J.C.M.; Paas, Fred; Broers, Nick J.; van Merrienboer, Jeroen J. G.
2004-01-01
The differential effects of four task selection methods on training efficiency and transfer in computer-based training for Air Traffic Control were investigated. A non-dynamic condition, in which the learning tasks were presented to the participants in a fixed, predetermined sequence, was compared to three dynamic conditions, in which learning…
Traffic routing in a switched regenerative satellite. Volume 1, task 3: Traffic assignment
NASA Astrophysics Data System (ADS)
1982-12-01
Time plan assignment in a multibeam SS-TDMA is discussed. System features fixed by the designer, such as the number and the speed of ground terminals installed in each station, and the number and the speed of satellite transponders working in each spot are described. Linkage among terminals and transponders is also discussed, including having more than one transponder linked to one terminal. A procedure to achieve a switching plan with high efficiency, taking into account all system constraints such as no bursts breaking and two transmission rates harmonization is proposed. Algorithms to be implemented are: the Hungarian method; branch and bound; the INSERT heuristic; and the HOLE heuristic. Computer programs were developed, and a time plan for a European Satellite System is produced.
Evidence of Long Range Dependence and Self-similarity in Urban Traffic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Gautam S; Helmy, Ahmed; Hui, Pan
2015-01-01
Transportation simulation technologies should accurately model traffic demand, distribution, and assignment parame- ters for urban environment simulation. These three param- eters significantly impact transportation engineering bench- mark process, are also critical in realizing realistic traffic modeling situations. In this paper, we model and charac- terize traffic density distribution of thousands of locations around the world. The traffic densities are generated from millions of images collected over several years and processed using computer vision techniques. The resulting traffic den- sity distribution time series are then analyzed. It is found using the goodness-of-fit test that the traffic density dis- tributions follows heavy-tailmore » models such as Log-gamma, Log-logistic, and Weibull in over 90% of analyzed locations. Moreover, a heavy-tail gives rise to long-range dependence and self-similarity, which we studied by estimating the Hurst exponent (H). Our analysis based on seven different Hurst estimators strongly indicate that the traffic distribution pat- terns are stochastically self-similar (0.5 H 1.0). We believe this is an important finding that will influence the design and development of the next generation traffic simu- lation techniques and also aid in accurately modeling traffic engineering of urban systems. In addition, it shall provide a much needed input for the development of smart cities.« less
The Wonderful World of Active Many-Particle Systems
NASA Astrophysics Data System (ADS)
Helbing, Dirk
Since the subject of traffic dynamics has captured the interest of physicists, many astonishing effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by so-called ``phantom traffic jams'', although they all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction of the traffic volume cause a lasting traffic jam? Why do pedestrians moving in opposite directions normally organize in lanes, while nervous crowds are ``freezing by heating''? Why do panicking pedestrians produce dangerous deadlocks? All these questions have been answered by applying and extending methods from statistical physics and non-linear dynamics to self-driven many-particle systems.
Urban public transit systems modeling capabilities
DOT National Transportation Integrated Search
1995-02-01
Current national transportation policy places increasing emphasis on multi-modal : solutions involving public transit and high-occupancy vehicle (HOV) facilities : and services. Current traffic simulation/assignment models, however, have only : limit...
Dynamic autonomous routing technology for IP-based satellite ad hoc networks
NASA Astrophysics Data System (ADS)
Wang, Xiaofei; Deng, Jing; Kostas, Theresa; Rajappan, Gowri
2014-06-01
IP-based routing for military LEO/MEO satellite ad hoc networks is very challenging due to network and traffic heterogeneity, network topology and traffic dynamics. In this paper, we describe a traffic priority-aware routing scheme for such networks, namely Dynamic Autonomous Routing Technology (DART) for satellite ad hoc networks. DART has a cross-layer design, and conducts routing and resource reservation concurrently for optimal performance in the fluid but predictable satellite ad hoc networks. DART ensures end-to-end data delivery with QoS assurances by only choosing routing paths that have sufficient resources, supporting different packet priority levels. In order to do so, DART incorporates several resource management and innovative routing mechanisms, which dynamically adapt to best fit the prevailing conditions. In particular, DART integrates a resource reservation mechanism to reserve network bandwidth resources; a proactive routing mechanism to set up non-overlapping spanning trees to segregate high priority traffic flows from lower priority flows so that the high priority flows do not face contention from low priority flows; a reactive routing mechanism to arbitrate resources between various traffic priorities when needed; a predictive routing mechanism to set up routes for scheduled missions and for anticipated topology changes for QoS assurance. We present simulation results showing the performance of DART. We have conducted these simulations using the Iridium constellation and trajectories as well as realistic military communications scenarios. The simulation results demonstrate DART's ability to discriminate between high-priority and low-priority traffic flows and ensure disparate QoS requirements of these traffic flows.
Traffic flow simulation for an urban freeway corridor
DOT National Transportation Integrated Search
1998-01-01
The objective of this paper is to develop a realistic and operational macroscopic traffic flow simulation model which requires relatively less data collection efforts. Such a model should be capable of delineating the dynamics of traffic flow created...
Glass-like dynamics in confined and congested ant traffic.
Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A D; Goldman, Daniel I
2015-09-07
The collective movement of animal groups often occurs in confined spaces. As animal groups are challenged to move at high density, their mobility dynamics may resemble the flow of densely packed non-living soft materials such as colloids, grains, or polymers. However, unlike inert soft-materials, self-propelled collective living systems often display social interactions whose influence on collective mobility are only now being explored. In this paper, we study the mobility of bi-directional traffic flow in a social insect (the fire ant Solenopsis invicta) as we vary the diameter of confining foraging tunnels. In all tunnel diameters, we observe the emergence of spatially heterogeneous regions of fast and slow traffic that are induced through two phenomena: physical obstruction, arising from the inability of individual ants to interpenetrate, and time-delay resulting from social interaction in which ants stop to briefly antennate. Density correlation functions reveal that the relaxation dynamics of high density traffic fluctuations scale linearly with fluctuation size and are sensitive to tunnel diameter. We separate the roles of physical obstruction and social interactions in traffic flow using cellular automata based simulation. Social interaction between ants is modeled as a dwell time (Tint) over which interacting ants remain stationary in the tunnel. Investigation over a range of densities and Tint reveals that the slowing dynamics of collective motion in social living systems are consistent with dynamics near a fragile glass transition in inert soft-matter systems. In particular, flow is relatively insensitive to density until a critical density is reached. As social interaction affinity is increased (increasing Tint) traffic dynamics change and resemble a strong glass transition. Thus, social interactions play an important role in the mobility of collective living systems at high density. Our experiments and model demonstrate that the concepts of soft-matter physics aid understanding of the mobility of collective living systems, and motivate further inquiry into the dynamics of densely confined social living systems.
Frequency Reuse, Cell Separation, and Capacity Analysis of VHF Digital Link Mode 3 TDMA
NASA Technical Reports Server (NTRS)
Shamma, Mohammed A.; Nguyen, Thanh C.; Apaza, Rafael D.
2003-01-01
The most recent studies by the Federal Aviation Administration (FAA) and the aviation industry have indicated that it has become increasingly difficult to make new VHF frequency or channel assignments to meet the aviation needs for air-ground communications. FAA has planned for several aggressive improvement measures to the existing systems, but these measures would not meet the projected voice communications needs beyond 2009. FAA found that since 1974 there has been, on the average, a 4 percent annual increase in the number of channel assignments needed to satisfy the air-ground communication traffic (approximately 300 new channel assignments per year). With the planned improvement measures, the channel assignments are expected to reach a maximum number of 16615 channels by about 2010. Hence, the FAA proposed the use of VDL Mode 3 as a new integrated digital voice and data communications systems to meet the future air traffic demand. This paper presents analytical results of frequency reuse; cell separation and capacity estimation of VDL Mode 3 TDMA systems that FAA has planned to implement the future VHF air-ground communications system by the year 2010. For TDMA, it is well understood that the frequency reuse factor is a crucial parameter for capacity estimation. Formulation of this frequency reuse factor is shown, taking into account the limitation imposed by the requirement to have a sufficient Signal to Co-Channel Interference Ratio. Several different values for the Signal to Co-Channel Interference Ratio were utilized corresponding to the current analog VHF DSB-AM systems, and the future digital VDL Mode 3. The required separation of Co-Channel cells is computed for most of the Frequency Protected Service Volumes (FPSV's) currently in use by the FAA. Additionally, the ideal cell capacity for each FPSV is presented. Also, using actual traffic for the Detroit air space, a FPSV traffic distribution model is used to generate a typical cell for channel capacity prediction. Such prediction is useful for evaluating the improvement of future VDL Mode 3 deployment and capacity planning.
An integrated approach to evaluate policies for controlling traffic law violations.
Mehmood, Arif
2010-03-01
Modeling dynamics of the driver behavior is a complex problem. In this paper a system approach is introduced to model and to analyze the driver behavior related to traffic law violations in the Emirate of Abu Dhabi. This paper demonstrates how the theoretical relationships between different factors can be expressed formally, and how the resulting model can assist in evaluating potential benefits of various policies to control the traffic law violations Using system approach, an integrated dynamic simulation model is developed, and model is tested to simulate the driver behavior for violating traffic laws during 2002-2007 in the Emirate of Abu Dhabi. The dynamic simulation model attempts to address the questions: (1) "what" interventions should be implemented to reduce and eventually control traffic violations which will lead to improving road safety and (2) "how" to justify those interventions will be effective or ineffective to control the violations in different transportation conditions. The simulation results reveal promising capability of applying system approach in the policy evaluation studies. Copyright 2009 Elsevier Ltd. All rights reserved.
Nature of the Congested Traffic and Quasi-steady States of the General Motor Models
NASA Astrophysics Data System (ADS)
Yang, Bo; Xu, Xihua; Pang, John Z. F.; Monterola, Christopher
2015-03-01
We look at the general motor (GM) class microscopic traffic models and analyze some of the universal features of the (multi-)cluster solutions, including the emergence of an intrinsic scale and the quasisoliton dynamics. We show that the GM models can capture the essential physics of the real traffic dynamics, especially the phase transition from the free flow to the congested phase, from which the wide moving jams emerges (the F-S-J transition pioneered by B.S. Kerner). In particular, the congested phase can be associated with either the multi-cluster quasi-steady states, or their more homogeneous precursor states. In both cases the states can last for a long time, and the narrow clusters will eventually grow and merge, leading to the formation of the wide moving jams. We present a general method to fit the empirical parameters so that both quantitative and qualitative macroscopic empirical features can be reproduced with a minimal GM model. We present numerical results for the traffic dynamics both with and without the bottleneck, including various types of spontaneous and induced ``synchronized flow,'' as well as the evolution of wide moving jams. We also discuss its implications to the nature of different phases in traffic dynamics.
NASA Astrophysics Data System (ADS)
Li, Chuan-Yao; Huang, Hai-Jun; Tang, Tie-Qiao
2017-03-01
This paper investigates the traffic flow dynamics under the social optimum (SO) principle in a single-entry traffic corridor with staggered shifts from the analytical and numerical perspectives. The LWR (Lighthill-Whitham and Richards) model and the Greenshield's velocity-density function are utilized to describe the dynamic properties of traffic flow. The closed-form SO solution is analytically derived and some numerical examples are used to further testify the analytical solution. The optimum proportion of the numbers of commuters with different desired arrival times is further discussed, where the analytical and numerical results both indicate that the cumulative outflow curve under the SO principle is piecewise smooth.
Three geographic decomposition approaches in transportation network analysis
DOT National Transportation Integrated Search
1980-03-01
This document describes the results of research into the application of geographic decomposition techniques to practical transportation network problems. Three approaches are described for the solution of the traffic assignment problem. One approach ...
Application of Decomposition to Transportation Network Analysis
DOT National Transportation Integrated Search
1976-10-01
This document reports preliminary results of five potential applications of the decomposition techniques from mathematical programming to transportation network problems. The five application areas are (1) the traffic assignment problem with fixed de...
Design and evaluation of impact of traffic light priority for trucks on traffic flow.
DOT National Transportation Integrated Search
2015-06-01
Current traffic light control systems treat all vehicles the same. Trucks however have : different dynamics than passenger vehicles. They take a longer distance to stop, have : lower acceleration rates, have bigger turning rates that cause bigger tra...
Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system
NASA Astrophysics Data System (ADS)
Liu, Mianfang; Xiong, Shengwu; Li, Bixiang
2016-05-01
With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.
Instability of cooperative adaptive cruise control traffic flow: A macroscopic approach
NASA Astrophysics Data System (ADS)
Ngoduy, D.
2013-10-01
This paper proposes a macroscopic model to describe the operations of cooperative adaptive cruise control (CACC) traffic flow, which is an extension of adaptive cruise control (ACC) traffic flow. In CACC traffic flow a vehicle can exchange information with many preceding vehicles through wireless communication. Due to such communication the CACC vehicle can follow its leader at a closer distance than the ACC vehicle. The stability diagrams are constructed from the developed model based on the linear and nonlinear stability method for a certain model parameter set. It is found analytically that CACC vehicles enhance the stabilization of traffic flow with respect to both small and large perturbations compared to ACC vehicles. Numerical simulation is carried out to support our analytical findings. Based on the nonlinear stability analysis, we will show analytically and numerically that the CACC system better improves the dynamic equilibrium capacity over the ACC system. We have argued that in parallel to microscopic models for CACC traffic flow, the newly developed macroscopic will provide a complete insight into the dynamics of intelligent traffic flow.
Macroscopic modeling of freeway traffic using an artificial neural network
DOT National Transportation Integrated Search
1997-01-01
Traffic flow on freeways is a complex process that often is described by a set of highly nonlinear, dynamic equations in the form of a macroscopic traffic flow model. However, some of the existing macroscopic models have been found to exhibit instabi...
NASA Astrophysics Data System (ADS)
Liao, Luhua; Li, Lemin; Wang, Sheng
2006-12-01
We investigate the protection approach for dynamic multicast traffic under shared risk link group (SRLG) constraints in meshed wavelength-division-multiplexing optical networks. We present a shared protection algorithm called dynamic segment shared protection for multicast traffic (DSSPM), which can dynamically adjust the link cost according to the current network state and can establish a primary light-tree as well as corresponding SRLG-disjoint backup segments for a dependable multicast connection. A backup segment can efficiently share the wavelength capacity of its working tree and the common resources of other backup segments based on SRLG-disjoint constraints. The simulation results show that DSSPM not only can protect the multicast sessions against a single-SRLG breakdown, but can make better use of the wavelength resources and also lower the network blocking probability.
DOT National Transportation Integrated Search
1971-06-01
An analysis has been made of the potentialities and problems involved in assigning some computer processing and control functions to the remote sites in an upgraded third generation air traffic control system. Interrogator sites offer the most fruitf...
Fast packet switching algorithms for dynamic resource control over ATM networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, R.P.; Keattihananant, P.; Chang, T.
1996-12-01
Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types ofmore » schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.« less
Traffic Flow Density Distribution Based on FEM
NASA Astrophysics Data System (ADS)
Ma, Jing; Cui, Jianming
In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.
NASA Astrophysics Data System (ADS)
Shinozaki, Takashi; Okada, Masato; Reyes, Alex D.; Câteau, Hideyuki
2010-01-01
Intermingled neural connections apparent in the brain make us wonder what controls the traffic of propagating activity in the brain to secure signal transmission without harmful crosstalk. Here, we reveal that inhibitory input but not excitatory input works as a particularly useful traffic controller because it controls the degree of synchrony of population firing of neurons as well as controlling the size of the population firing bidirectionally. Our dynamical system analysis reveals that the synchrony enhancement depends crucially on the nonlinear membrane potential dynamics and a hidden slow dynamical variable. Our electrophysiological study with rodent slice preparations show that the phenomenon happens in real neurons. Furthermore, our analysis with the Fokker-Planck equations demonstrates the phenomenon in a semianalytical manner.
Zhang, Xuejun; Lei, Jiaxing
2015-01-01
Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840
Long-term traffic-related exposures and asthma onset in schoolchildren in oslo, norway.
Oftedal, Bente; Nystad, Wenche; Brunekreef, Bert; Nafstad, Per
2009-05-01
Whether there is a causal relation between long-term exposure to traffic and asthma development is so far not clear. This may be explained by inaccurate exposure assessment. We investigated the associations of long-term traffic-related exposures with asthma onset assessed retrospectively and respiratory symptoms in 9- to 10-year-old children. We collected information on respiratory outcomes and potential confounding variables by parental questionnaire in 2,871 children in Oslo. Nitrogen dioxide exposure was assessed by the EPISODE dispersion model and assigned at updated individual addresses during lifetime. Distance to major road was assigned at birth address and address by date of questionnaire. Cox proportional hazard regression and logistic regression were used. We did not find positive associations between any long-term traffic-related exposure and onset of doctor-diagnosed asthma. An interquartile range (IQR) increase of NO(2) exposure before asthma onset was associated with an adjusted risk ratio of 0.82 [95% confidence interval (CI), 0.67-1.02]. Handling early asthma cases (children < 4 years of age) with recovery during follow-up as noncases gave a less negative association. The associations for late asthma onset (>/= 4 years of age) were positive but not statistically significant. For current symptoms, an IQR increase of previous year's NO(2) exposure was associated with adjusted odds ratios of 1.01 (95% CI, 0.83-1.23) for wheeze, 1.10 (95% CI, 0.79-1.51) for severe wheeze, and 1.01 (95% CI, 0.84-1.21) for dry cough. We were not able to find positive associations of long-term traffic-related exposures with asthma onset or with current respiratory symptoms in 9- to 10-year-old children in Oslo.
Improving ETMS Default Route Assignment
DOT National Transportation Integrated Search
2005-01-01
Twenty-four hours before a scheduled flight departs, data on this flight from the Official Airline Guide (OAG) is loaded into the Enhanced Traffic Management System (ETMS). This flight is then included in the Monitor/Alert demand predictions that ETM...
Positive feedback : exploring current approaches in iterative travel demand model implementation.
DOT National Transportation Integrated Search
2012-01-01
Currently, the models that TxDOTs Transportation Planning and Programming Division (TPP) developed are : traditional three-step models (i.e., trip generation, trip distribution, and traffic assignment) that are sequentially : applied. A limitation...
Knowledge-Based Scheduling of Arrival Aircraft in the Terminal Area
NASA Technical Reports Server (NTRS)
Krzeczowski, K. J.; Davis, T.; Erzberger, H.; Lev-Ram, Israel; Bergh, Christopher P.
1995-01-01
A knowledge based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real time simulation. The scheduling system automatically sequences, assigns landing times, and assign runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithm is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reductions, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithm is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper describes the scheduling algorithms, gives examples of their use, and presents data regarding their potential benefits to the air traffic system.
Knowledge-based scheduling of arrival aircraft
NASA Technical Reports Server (NTRS)
Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.
1995-01-01
A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.
NASA Technical Reports Server (NTRS)
Yoo, Hyo-Sang; Brasil, Connie; Buckley, Nathan; Mohlenbrink, Christoph; Speridakos, Constantine; Parke, Bonny; Hodell, Gita; Lee, Paul U.; Smith, Nancy M.
2017-01-01
This paper introduces NASA's Integrated Demand Management (IDM) concept and presents the results from an early proof-of-concept evaluation and an exploratory experiment. An initial development of the concept was focused on integrating two systems - i.e. the FAA's newly deployed Traffic Flow Management System (TFMS) tool called the Collaborative Trajectory Options Program (CTOP) and the Time-Based Flow Management (TBFM) system with Extended Metering (XM) capabilities to manage projected heavy traffic demand into a capacity-constrained airport. A human-in-the-loop (HITL) simulation experiment was conducted to demonstrate the feasibility of the initial development of the concept by adapting it to an arrival traffic problem at Newark Liberty International Airport (EWR) during clear weather conditions. In this study, the CTOP was utilized to strategically plan the arrival traffic demand by controlling take-off times of both short- and long-haul flights (long-hauls specify aircraft outside TBFM regions and short-hauls specify aircraft within TBFM regions) in a way that results in equitable delays among the groups. Such strategic planning allows less airborne delay to occur within TBFM by feeding manageable long-haul traffic demand while reserving sufficient slots in the overhead streams for the short-haul departures. The manageable traffic demand indicates the TBFM scheduler assigns no more airborne delay than its assigned airspace is capable of absorbing. TBFM then uses its time-based metering capabilities to deliver the desirable throughput by tactically rescheduling the TBFM entered long-haul flights and short-haul departures. Additional research was also performed to explore use of Required Time of Arrival (RTA) capabilities as a potential control mechanism for the airborne flights to improve arrival traffic delivery accuracy of scheduled long-haul traffic demand. The study results show that both short- and long-haul flights received similar ground delays. In addition, there was a noticeable reduction in the total amount of excessive unanticipated last-minute ground delays, i.e. delays that are frequently imposed on the short-haul flight in current day operations due to saturation in the overhead stream, commonly referred to as 'double penalty'. Furthermore, the concept achieved the target throughput while minimizing the expected cost associated with overall delays in arrival traffic. Assessment of the RTA capabilities showed that there was indeed improvement of the scheduled entry times into TBFM regions by using RTA capabilities. However, with respect to reduction in delays incurred within TBFM, there was no observable benefit of improving the precision of long-haul flights entry times.
NASA Astrophysics Data System (ADS)
Gao, Tao; Li, Xin; Guo, Bingli; Yin, Shan; Li, Wenzhe; Huang, Shanguo
2017-07-01
Multipath provisioning is a survivable and resource efficient solution against increasing link failures caused by natural or man-made disasters in elastic optical datacenter networks (EODNs). Nevertheless, the conventional multipath provisioning scheme is designed only for connecting a specific node pair. Also, it is obvious that the number of node-disjoint paths between any two nodes is restricted to network connectivity, which has a fixed value for a given topology. Recently, the concept of content connectivity in EODNs has been proposed, which guarantees that a user can be served by any datacenter hosting the required content regardless of where it is located. From this new perspective, we propose a survivable multipath provisioning with content connectivity (MPCC) scheme, which is expected to improve the spectrum efficiency and the whole system survivability. We formulate the MPCC scheme with Integer Linear Program (ILP) in static traffic scenario and a heuristic approach is proposed for dynamic traffic scenario. Furthermore, to adapt MPCC to the variation of network state in dynamic traffic scenario, we propose a dynamic content placement (DCP) strategy in the MPCC scheme for detecting the variation of the distribution of user requests and adjusting the content location dynamically. Simulation results indicate that the MPCC scheme can reduce over 20% spectrum consumption than conventional multipath provisioning scheme in static traffic scenario. And in dynamic traffic scenario, the MPCC scheme can reduce over 20% spectrum consumption and over 50% blocking probability than conventional multipath provisioning scheme. Meanwhile, benefiting from the DCP strategy, the MPCC scheme has a good adaption to the variation of the distribution of user requests.
Network traffic behaviour near phase transition point
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-03-01
We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.
Research on architecture of intelligent transportation cloud platform for Guangxi expressway
NASA Astrophysics Data System (ADS)
Hua, Pan; Huang, Zhongxiang; He, Zengzhen
2017-04-01
In view of the practical needs of the intelligent transportation business collaboration, a model on intelligent traffic business collaboration is established. Aarchitecture of intelligent traffic cloud platformfor high speed road is proposed which realizes the loose coupling of each intelligent traffic business module. Based on custom technology in database design, it realizes the dynamic customization of business function which means that different roles can dynamically added business functions according to the needs. Through its application in the development and implementation of the actual business system, the architecture is proved to be effective and feasible.
On sequential data assimilation for scalar macroscopic traffic flow models
NASA Astrophysics Data System (ADS)
Blandin, Sébastien; Couque, Adrien; Bayen, Alexandre; Work, Daniel
2012-09-01
We consider the problem of sequential data assimilation for transportation networks using optimal filtering with a scalar macroscopic traffic flow model. Properties of the distribution of the uncertainty on the true state related to the specific nonlinearity and non-differentiability inherent to macroscopic traffic flow models are investigated, derived analytically and analyzed. We show that nonlinear dynamics, by creating discontinuities in the traffic state, affect the performances of classical filters and in particular that the distribution of the uncertainty on the traffic state at shock waves is a mixture distribution. The non-differentiability of traffic dynamics around stationary shock waves is also proved and the resulting optimality loss of the estimates is quantified numerically. The properties of the estimates are explicitly studied for the Godunov scheme (and thus the Cell-Transmission Model), leading to specific conclusions about their use in the context of filtering, which is a significant contribution of this article. Analytical proofs and numerical tests are introduced to support the results presented. A Java implementation of the classical filters used in this work is available on-line at http://traffic.berkeley.edu for facilitating further efforts on this topic and fostering reproducible research.
Freight Transportation Energy Use : Volume 2. Methodology and Program Documentation.
DOT National Transportation Integrated Search
1978-07-01
The structure and logic of the transportation network model component of the TSC Freight Energy Model are presented. The model assigns given origin-destination commodity flows to specific transport modes and routes, thereby determining the traffic lo...
Geostationary platform systems concepts definition study. Volume 2A: Appendixes, book 1
NASA Technical Reports Server (NTRS)
1980-01-01
Appendixes addressing various aspects of a geostationary platform concepts definition study are given. Communication platform traffic requirements, video conferencing forecast, intersatellite link capacity requirements, link budgets, payload data, payload assignments, and platform synthesis are addressed.
Emergency automatic signalling system using time scheduling
NASA Astrophysics Data System (ADS)
Rayavel, P.; Surenderanath, S.; Rathnavel, P.; Prakash, G.
2018-04-01
It is difficult to handle traffic congestion and maintain roads during traffic mainly in India. As the people migrate from rural to urban and sub-urban areas, it becomes still more critical. Presently Roadways is a standout amongst the most vital transportation. At the point when a car crash happens, crisis vehicles, for example, ambulances and fire trucks must rush to the mischance scene. There emerges a situation where a portion of the crisis vehicles may cause another car crash. Therefore it becomes still more difficult for emergency vehicle to reach the destination within a predicted time. To avoid that kind of problem we have come out with an effective idea which can reduce the potential in the traffic system. The traffic system is been modified using a wireless technology and high speed micro controller to provide smooth and clear flow of traffic for ambulance to reach the destination on time. This is achieved by using RFID Tag at the ambulance and RFID Reader at the traffic system i.e., traffic signal. This mainly deals with identifying the emergency vehicle and providing a green signal to traffic signal at time of traffic jam. — By assigning priorities to various traffic movements, we can control the traffic jam. In some moments like ambulance emergency, high delegates arrive people facing lot of trouble. To overcome this problem in this paper we propose a time priority based traffic system achieved by using RFID transmitter at the emergency vehicle and RFID receiver at the traffic system i.e., traffic signal. The signal from the emergency vehicle is sent to traffic system which after detecting it sends it to microcontroller which controls the traffic signal. If any emergency vehicle is detected the system goes to emergency system mode where signal switch to green and if it is not detected normal system mode.
A graph based algorithm for adaptable dynamic airspace configuration for NextGen
NASA Astrophysics Data System (ADS)
Savai, Mehernaz P.
The National Airspace System (NAS) is a complicated large-scale aviation network, consisting of many static sectors wherein each sector is controlled by one or more controllers. The main purpose of the NAS is to enable safe and prompt air travel in the U.S. However, such static configuration of sectors will not be able to handle the continued growth of air travel which is projected to be more than double the current traffic by 2025. Under the initiative of the Next Generation of Air Transportation system (NextGen), the main objective of Adaptable Dynamic Airspace Configuration (ADAC) is that the sectors should change to the changing traffic so as to reduce the controller workload variance with time while increasing the throughput. Change in the resectorization should be such that there is a minimal increase in exchange of air traffic among controllers. The benefit of a new design (improvement in workload balance, etc.) should sufficiently exceed the transition cost, in order to deserve a change. This leads to the analysis of the concept of transition workload which is the cost associated with a transition from one sectorization to another. Given two airspace configurations, a transition workload metric which considers the air traffic as well as the geometry of the airspace is proposed. A solution to reduce this transition workload is also discussed. The algorithm is specifically designed to be implemented for the Dynamic Airspace Configuration (DAC) Algorithm. A graph model which accurately represents the air route structure and air traffic in the NAS is used to formulate the airspace configuration problem. In addition, a multilevel graph partitioning algorithm is developed for Dynamic Airspace Configuration which partitions the graph model of airspace with given user defined constraints and hence provides the user more flexibility and control over various partitions. In terms of air traffic management, vertices represent airports and waypoints. Some of the major (busy) airports need to be given more importance and hence treated separately. Thus the algorithm takes into account the air route structure while finding a balance between sector workloads. The performance of the proposed algorithms and performance metrics is validated with the Enhanced Traffic Management System (ETMS) air traffic data.
Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software
NASA Technical Reports Server (NTRS)
Hunter, George; Boisvert, Benjamin
2013-01-01
This document is the final report for the project entitled "Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software." This report consists of 17 sections which document the results of the several subtasks of this effort. The Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather avoidance capability.
MATSurv: multisensor air traffic surveillance system
NASA Astrophysics Data System (ADS)
Yeddanapudi, Murali; Bar-Shalom, Yaakov; Pattipati, Krishna R.; Gassner, Richard R.
1995-09-01
This paper deals with the design and implementation of MATSurv 1--an experimental Multisensor Air Traffic Surveillance system. The proposed system consists of a Kalman filter based state estimator used in conjunction with a 2D sliding window assignment algorithm. Real data from two FAA radars is used to evaluate the performance of this algorithm. The results indicate that the proposed algorithm provides a superior classification of the measurements into tracks (i.e., the most likely aircraft trajectories) when compared to the aircraft trajectories obtained using the measurement IDs (squawk or IFF code).
Traffic Games: Modeling Freeway Traffic with Game Theory
Cortés-Berrueco, Luis E.; Gershenson, Carlos; Stephens, Christopher R.
2016-01-01
We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers’ interactions. PMID:27855176
Traffic Games: Modeling Freeway Traffic with Game Theory.
Cortés-Berrueco, Luis E; Gershenson, Carlos; Stephens, Christopher R
2016-01-01
We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers' interactions.
Human factors opportunities to improve Ohio's transportation system : final report, June 2005.
DOT National Transportation Integrated Search
2005-06-01
The aim of this study was to identify opportunities to apply human factors principles and research to improve : Ohios transportation system. The Office of Traffic Engineering assigned thirteen topic areas to provide information : and the study was...
Novel approaches for road congestion mitigation.
DOT National Transportation Integrated Search
2012-07-02
Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...
Novel approaches for road congestion minimization.
DOT National Transportation Integrated Search
2012-07-01
Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...
Knowledge-Based Runway Assignment for Arrival Aircraft in the Terminal Area
DOT National Transportation Integrated Search
1997-01-01
A knowledge-based system for scheduling arrival traffic in the terminal area, : referred to as the Final Approach Spacing Tool (FAST), has been implemented and : operationally tested at the Dallas/Fort Worth Terminal Radar Approach Control : (TRACON)...
DOT National Transportation Integrated Search
2011-11-01
The intersection and mandatory movement lane control signs placed on intersection approaches are critical to : safe and efficient intersection operations. Ramp, frontage road, and cross-street approaches to interchanges : often widen at intersections...
Phase transitions in traffic flow on multilane roads.
Kerner, Boris S; Klenov, Sergey L
2009-11-01
Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases-free flow, synchronized flow, and wide moving jams-occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.
NASA Astrophysics Data System (ADS)
Munigety, Caleb Ronald
2018-04-01
The traditional traffic microscopic simulation models consider driver and vehicle as a single unit to represent the movements of drivers in a traffic stream. Due to this very fact, the traditional car-following models have the driver behavior related parameters, but ignore the vehicle related aspects. This approach is appropriate for homogeneous traffic conditions where car is the major vehicle type. However, in heterogeneous traffic conditions where multiple vehicle types are present, it becomes important to incorporate the vehicle related parameters exclusively to account for the varying dynamic and static characteristics. Thus, this paper presents a driver-vehicle integrated model hinged on the principles involved in physics-based spring-mass-damper mechanical system. While the spring constant represents the driver’s aggressiveness, the damping constant and the mass component take care of the stability and size/weight related aspects, respectively. The proposed model when tested, behaved pragmatically in representing the vehicle-type dependent longitudinal movements of vehicles.
Traffic dispersion through a series of signals with irregular split
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2016-01-01
We study the traffic behavior of a group of vehicles moving through a sequence of signals with irregular splits on a roadway. We present the stochastic model of vehicular traffic controlled by signals. The dynamic behavior of vehicular traffic is clarified by analyzing traffic pattern and travel time numerically. The group of vehicles breaks up more and more by the irregularity of signal's split. The traffic dispersion is induced by the irregular split. We show that the traffic dispersion depends highly on the cycle time and the strength of split's irregularity. Also, we study the traffic behavior through the series of signals at the green-wave strategy. The dependence of the travel time on offset time is derived for various values of cycle time. The region map of the traffic dispersion is shown in (cycle time, offset time)-space.
Optimal resource allocation strategy for two-layer complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Wang, Lixin; Li, Sufeng; Duan, Congwen; Liu, Yu
2018-02-01
We study the traffic dynamics on two-layer complex networks, and focus on its delivery capacity allocation strategy to enhance traffic capacity measured by the critical value Rc. With the limited packet-delivering capacity, we propose a delivery capacity allocation strategy which can balance the capacities of non-hub nodes and hub nodes to optimize the data flow. With the optimal value of parameter αc, the maximal network capacity is reached because most of the nodes have shared the appropriate delivery capacity by the proposed delivery capacity allocation strategy. Our work will be beneficial to network service providers to design optimal networked traffic dynamics.
Li, Jinjian; Dridi, Mahjoub; El-Moudni, Abdellah
2016-01-01
The problem of reducing traffic delays and decreasing fuel consumption simultaneously in a network of intersections without traffic lights is solved by a cooperative traffic control algorithm, where the cooperation is executed based on the connection of Vehicle-to-Infrastructure (V2I). This resolution of the problem contains two main steps. The first step concerns the itinerary of which intersections are chosen by vehicles to arrive at their destination from their starting point. Based on the principle of minimal travel distance, each vehicle chooses its itinerary dynamically based on the traffic loads in the adjacent intersections. The second step is related to the following proposed cooperative procedures to allow vehicles to pass through each intersection rapidly and economically: on one hand, according to the real-time information sent by vehicles via V2I in the edge of the communication zone, each intersection applies Dynamic Programming (DP) to cooperatively optimize the vehicle passing sequence with minimal traffic delays so that the vehicles may rapidly pass the intersection under the relevant safety constraints; on the other hand, after receiving this sequence, each vehicle finds the optimal speed profiles with the minimal fuel consumption by an exhaustive search. The simulation results reveal that the proposed algorithm can significantly reduce both travel delays and fuel consumption compared with other papers under different traffic volumes. PMID:27999333
NASA Technical Reports Server (NTRS)
Birisan, Mihnea; Beling, Peter
2011-01-01
New generations of surveillance drones are being outfitted with numerous high definition cameras. The rapid proliferation of fielded sensors and supporting capacity for processing and displaying data will translate into ever more capable platforms, but with increased capability comes increased complexity and scale that may diminish the usefulness of such platforms to human operators. We investigate methods for alleviating strain on analysts by automatically retrieving content specific to their current task using a machine learning technique known as Multi-Instance Learning (MIL). We use MIL to create a real time model of the analysts' task and subsequently use the model to dynamically retrieve relevant content. This paper presents results from a pilot experiment in which a computer agent is assigned analyst tasks such as identifying caravanning vehicles in a simulated vehicle traffic environment. We compare agent performance between MIL aided trials and unaided trials.
Dynamic Transportation Navigation
NASA Astrophysics Data System (ADS)
Meng, Xiaofeng; Chen, Jidong
Miniaturization of computing devices, and advances in wireless communication and sensor technology are some of the forces that are propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include intelligent traffic management, location-based services, tourist services, mobile electronic commerce, and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management, and mobile workforce. Location management, i.e., the management of transient location information, is an enabling technology for all these applications. In this chapter, we present the applications of moving objects management and their functionalities, in particular, the application of dynamic traffic navigation, which is a challenge due to the highly variable traffic state and the requirement of fast, on-line computations.
Flight Departure Delay and Rerouting Under Uncertainty in En Route Convective Weather
NASA Technical Reports Server (NTRS)
Mukherjee, Avijit; Grabbe, Shon; Sridhar, Banavar
2011-01-01
Delays caused by uncertainty in weather forecasts can be reduced by improving traffic flow management decisions. This paper presents a methodology for traffic flow management under uncertainty in convective weather forecasts. An algorithm for assigning departure delays and reroutes to aircraft is presented. Departure delay and route assignment are executed at multiple stages, during which, updated weather forecasts and flight schedules are used. At each stage, weather forecasts up to a certain look-ahead time are treated as deterministic and flight scheduling is done to mitigate the impact of weather on four-dimensional flight trajectories. Uncertainty in weather forecasts during departure scheduling results in tactical airborne holding of flights. The amount of airborne holding depends on the accuracy of forecasts as well as the look-ahead time included in the departure scheduling. The weather forecast look-ahead time is varied systematically within the experiments performed in this paper to analyze its effect on flight delays. Based on the results, longer look-ahead times cause higher departure delays and additional flying time due to reroutes. However, the amount of airborne holding necessary to prevent weather incursions reduces when the forecast look-ahead times are higher. For the chosen day of traffic and weather, setting the look-ahead time to 90 minutes yields the lowest total delay cost.
Analysis of sequencing and scheduling methods for arrival traffic
NASA Technical Reports Server (NTRS)
Neuman, Frank; Erzberger, Heinz
1990-01-01
The air traffic control subsystem that performs scheduling is discussed. The function of the scheduling algorithms is to plan automatically the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several important scheduling algorithms are described and the statistical performance of the scheduling algorithms is examined. Scheduling brings order to an arrival sequence for aircraft. First-come-first-served scheduling (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the traffic, gaps will remain in the scheduled sequence of aircraft. These gaps are filled, or partially filled, by time-advancing the leading aircraft after a gap while still preserving the FCFS order. Tightly scheduled groups of aircraft remain with a mix of heavy and large aircraft. Separation requirements differ for different types of aircraft trailing each other. Advantage is taken of this fact through mild reordering of the traffic, thus shortening the groups and reducing average delays. Actual delays for different samples with the same statistical parameters vary widely, especially for heavy traffic.
NASA Astrophysics Data System (ADS)
Chen, Jingxu; Li, Zhibin; Jiang, Hang; Zhu, Senlai; Wang, Wei
2017-02-01
In recent years, many bicycle lanes on urban streets are replaced with vehicle parking places. Spaces for bicycle riding are reduced, resulting in changes in bicycle and vehicle operational features. The objective of this study is to estimate the impacts of on-street parking on heterogeneous traffic operation on urban streets. A cellular automaton (CA) model is developed and calibrated to simulate bicycle lane-changing on streets with on-street parking. Two types of street segments with different bicycle lane width are considered. From the simulation, two types of conflicts between bicycles and vehicles are identified which are frictional conflicts and blocking conflicts. Factors affecting the frequency of conflicts are also identified. Based on the results, vehicle delay is estimated for various traffic situations considering the range of occupancy levels for on-street parking. Later, a numerical network example is analyzed to estimate the network impact of on-street parking on traffic assignment and operation. Findings of the study are helpful to policies and design regarding on-street vehicle parking to improve the efficiency of traffic operations.
Conception of the system for traffic measurements based on piezoelectric foils
NASA Astrophysics Data System (ADS)
Płaczek, M.
2016-08-01
A concept of mechatronic system for traffic measurements based on the piezoelectric transducers used as sensors is presented. The aim of the work project is to theoretically and experimentally analyse the dynamic response of road infrastructure forced by vehicles motion. The subject of the project is therefore on the borderline of civil engineering and mechanical and covers a wide range of issues in both these areas. To measure the dynamic response of the tested pieces of road infrastructure application of piezoelectric, in particular piezoelectric transducers in the form of piezoelectric films (MFC - Macro Fiber Composite) is proposed. The purpose is to verify the possibility to use composite piezoelectric transducers as sensors used in traffic surveillance systems - innovative methods of controlling the road infrastructure and traffic. Presented paper reports works that were done in order to receive the basic information about analysed systems and their behaviour under excitation by passing vehicles. It is very important to verify if such kind of systems can be controlled by the analysis of the dynamic response of road infrastructure measured using piezoelectric transducers. Obtained results show that it could be possible.
NASA Astrophysics Data System (ADS)
Tamazian, A.; Nguyen, V. D.; Markelov, O. A.; Bogachev, M. I.
2016-07-01
We suggest a universal phenomenological description for the collective access patterns in the Internet traffic dynamics both at local and wide area network levels that takes into account erratic fluctuations imposed by cooperative user behaviour. Our description is based on the superstatistical approach and leads to the q-exponential inter-session time and session size distributions that are also in perfect agreement with empirical observations. The validity of the proposed description is confirmed explicitly by the analysis of complete 10-day traffic traces from the WIDE backbone link and from the local campus area network downlink from the Internet Service Provider. Remarkably, the same functional forms have been observed in the historic access patterns from single WWW servers. The suggested approach effectively accounts for the complex interplay of both “calm” and “bursty” user access patterns within a single-model setting. It also provides average sojourn time estimates with reasonable accuracy, as indicated by the queuing system performance simulation, this way largely overcoming the failure of Poisson modelling of the Internet traffic dynamics.
Bourbakis, N G
1997-01-01
This paper presents a generic traffic priority language, called KYKLOFORTA, used by autonomous robots for collision-free navigation in a dynamic unknown or known navigation space. In a previous work by X. Grossmman (1988), a set of traffic control rules was developed for the navigation of the robots on the lines of a two-dimensional (2-D) grid and a control center coordinated and synchronized their movements. In this work, the robots are considered autonomous: they are moving anywhere and in any direction inside the free space, and there is no need of a central control to coordinate and synchronize them. The requirements for each robot are i) visual perception, ii) range sensors, and iii) the ability of each robot to detect other moving objects in the same free navigation space, define the other objects perceived size, their velocity and their directions. Based on these assumptions, a traffic priority language is needed for each robot, making it able to decide during the navigation and avoid possible collision with other moving objects. The traffic priority language proposed here is based on a set of primitive traffic priority alphabet and rules which compose pattern of corridors for the application of the traffic priority rules.
The new car following model considering vehicle dynamics influence and numerical simulation
NASA Astrophysics Data System (ADS)
Sun, Dihua; Liu, Hui; Zhang, Geng; Zhao, Min
2015-12-01
In this paper, the car following model is investigated by considering the vehicle dynamics in a cyber physical view. In fact, that driving is a typical cyber physical process which couples the cyber aspect of the vehicles' information and driving decision tightly with the dynamics and physics of the vehicles and traffic environment. However, the influence from the physical (vehicle) view was been ignored in the previous car following models. In order to describe the car following behavior more reasonably in real traffic, a new car following model by considering vehicle dynamics (for short, D-CFM) is proposed. In this paper, we take the full velocity difference (FVD) car following model as a case. The stability condition is given on the base of the control theory. The analytical method and numerical simulation results show that the new models can describe the evolution of traffic congestion. The simulations also show vehicles with a more actual acceleration of starting process than early models.
NASA Astrophysics Data System (ADS)
Xiong, Hui; Shang, Pengjian; Bian, Songhan
2017-05-01
In this paper, we apply the empirical mode decomposition (EMD) method to the recurrence plot (RP) and recurrence quantification analysis (RQA), to evaluate the frequency- and time-evolving dynamics of the traffic flow. Based on the cumulative intrinsic mode functions extracted by the EMD, the frequency-evolving RP regarding different oscillation of modes suggests that apparent dynamics of the data considered are mainly dominated by its components of medium- and low-frequencies while severely affected by fast oscillated noises contained in the signal. Noises are then eliminated to analyze the intrinsic dynamics and consequently, the denoised time-evolving RQA diversely characterizes the properties of the signal and marks crucial points more accurately where white bands in the RP occur, whereas a strongly qualitative agreement exists between all the non-denoised RQA measures. Generally, the EMD combining with the recurrence analysis sheds more reliable, abundant and inherent lights into the traffic flow, which is meaningful to the empirical analysis of complex systems.
DOT National Transportation Integrated Search
2017-08-30
Transit oriented development (TOD) has emerged in recent years as a promising paradigm to promote public transportation, increase active transportation usage, mitigate congestion, and alleviate air pollution. However, there is a lack of analytic stud...
Trajectory Specification for High-Capacity Air Traffic Control
NASA Technical Reports Server (NTRS)
Paielli, Russell A.
2004-01-01
In the current air traffic management system, the fundamental limitation on airspace capacity is the cognitive ability of human air traffic controllers to maintain safe separation with high reliability. The doubling or tripling of airspace capacity that will be needed over the next couple of decades will require that tactical separation be at least partially automated. Standardized conflict-free four-dimensional trajectory assignment will be needed to accomplish that objective. A trajectory specification format based on the Extensible Markup Language is proposed for that purpose. This format can be used to downlink a trajectory request, which can then be checked on the ground for conflicts and approved or modified, if necessary, then uplinked as the assigned trajectory. The horizontal path is specified as a series of geodetic waypoints connected by great circles, and the great-circle segments are connected by turns of specified radius. Vertical profiles for climb and descent are specified as low-order polynomial functions of along-track position, which is itself specified as a function of time. Flight technical error tolerances in the along-track, cross-track, and vertical axes define a bounding space around the reference trajectory, and conformance will guarantee the required separation for a period of time known as the conflict time horizon. An important safety benefit of this regimen is that the traffic will be able to fly free of conflicts for at least several minutes even if all ground systems and the entire communication infrastructure fail. Periodic updates in the along-track axis will adjust for errors in the predicted along-track winds.
Dynamic speed feedback signs for rural traffic calming.
DOT National Transportation Integrated Search
2013-10-01
Small rural communities often lack the expertise and resources necessary to address speeding and the persistent challenge of slowing high-speed through traffic. The entrances to communities are especially problematic given that drivers must transitio...
[Risk factors for road traffic injury in agricultural vehicle drivers].
Cui, M J; Chen, Y; Li, Y; Hu, J; Zhang, X J
2017-08-20
Objective: To examine the risk factors for road traffic injury in agricultural vehicle drivers. Methods: A total of 103 drivers (who had suffered agricultural vehicle road traffic injury within the past year based on the road traffic injury registrar from the Traffic Management Bureau) who were involved in the annual agricultural vehicle inspection from December 2014 to January 2015 were randomly sampled from the Yixing Agricultural Vehicle Station as the case group for this study. Based on a 1∶2 assignment ratio and matched for sex, age, and education, a total of 206 drivers who had not suffered any agricultural vehicle road traffic injury within the past year were selected as the control group. The general information, vehicle information, driving information, driving behavior, and accident details of the agricultural vehicle drivers were analyzed. Results: The incidence rate of road traffic injury was 7.24% given the 103 agricultural vehicle drivers who had suffered agricultural vehicle road traffic injury in the past year. Univariate logistic regression analysis showed that drinking, debt, pressure, history of car accident, history of drunk driving, smoking and phone use during driving, fatigue driving, and driving with illness were the risk factors for road traffic injury in agricultural vehicle drivers ( OR =2.332, 2.429, 19.778, 5.589, 8.517, 2.125, 3.203, 10.249 and 5.639, respectively) . Multivariate logistic regression analysis also demonstrated that pressure, history of car accident, history of drunk driving, fatigue driving, and driving with illness were the risk factors for road traffic injury in agricultural vehicle drivers ( OR =12.139, 11.184, 6.729, 5.939, and 6.544, respectively) . Conclusion: Pressure, history of car accident, history of drunk driving, fatigue driving, and driving with illness are the major risk factors for road traffic injury in agricultural vehicle drivers.
Improved Dynamic Lightpath Provisioning for Large Wavelength-Division Multiplexed Backbones
NASA Astrophysics Data System (ADS)
Kong, Huifang; Phillips, Chris
2007-07-01
Technology already exists that would allow future optical networks to support automatic lightpath configuration in response to dynamic traffic demands. Given appropriate commercial drivers, it is possible to foresee carrier network operators migrating away from semipermanent provisioning to enable on-demand short-duration communications. However, with traditional lightpath reservation protocols, a portion of the lightpath is idly held during the signaling propagation phase, which can significantly reduce the lightpath bandwidth efficiency in large wavelength-division multiplexed backbones. This paper proposes a prebooking mechanism to improve the lightpath efficiency over traditional reactive two-way reservation protocols, consequently liberating network resources to support higher traffic loads. The prebooking mechanism predicts the time when the traffic will appear at the optical cross connects, and intelligently schedules the lightpath components such that resources are only consumed as necessary. We describe the proposed signaling procedure for both centralized and distributed control planes and analyze its performance. This paper also investigates the aggregated flow length characteristics with the self-similar incident traffic and examines the effects of traffic prediction on the blocking probability as well as the ability to support latency sensitive traffic in a wide-area environment.
Efficient traffic grooming with dynamic ONU grouping for multiple-OLT-based access network
NASA Astrophysics Data System (ADS)
Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Wang, Hongxiang
2015-12-01
Fast bandwidth growth urges large-scale high-density access scenarios, where the multiple Passive Optical Networking (PON) system clustered deployment can be adopted as an appropriate solution to fulfill the huge bandwidth demands, especially for a future 5G mobile network. However, the lack of interaction between different optical line terminals (OLTs) results in part of the bandwidth resources waste. To increase the bandwidth efficiency, as well as reduce bandwidth pressure at the edge of a network, we propose a centralized flexible PON architecture based on Time- and Wavelength-Division Multiplexing PON (TWDM PON). It can provide flexible affiliation for optical network units (ONUs) and different OLTs to support access network traffic localization. Specifically, a dynamic ONU grouping algorithm (DGA) is provided to obtain the minimal OLT outbound traffic. Simulation results show that DGA obtains an average 25.23% traffic gain increment under different OLT numbers within a small ONU number situation, and the traffic gain will increase dramatically with the increment of the ONU number. As the DGA can be deployed easily as an application running above the centralized control plane, the proposed architecture can be helpful to improve the network efficiency for future traffic-intensive access scenarios.
Traffic placement policies for a multi-band network
NASA Technical Reports Server (NTRS)
Maly, Kurt J.; Foudriat, E. C.; Game, David; Mukkamala, R.; Overstreet, C. Michael
1990-01-01
Recently protocols were introduced that enable the integration of synchronous traffic (voice or video) and asynchronous traffic (data) and extend the size of local area networks without loss in speed or capacity. One of these is DRAMA, a multiband protocol based on broadband technology. It provides dynamic allocation of bandwidth among clusters of nodes in the total network. A number of traffic placement policies for such networks are proposed and evaluated. Metrics used for performance evaluation include average network access delay, degree of fairness of access among the nodes, and network throughput. The feasibility of the DRAMA protocol is established through simulation studies. DRAMA provides effective integration of synchronous and asychronous traffic due to its ability to separate traffic types. Under the suggested traffic placement policies, the DRAMA protocol is shown to handle diverse loads, mixes of traffic types, and numbers of nodes, as well as modifications to the network structure and momentary traffic overloads.
Optimal Control of Hybrid Systems in Air Traffic Applications
NASA Astrophysics Data System (ADS)
Kamgarpour, Maryam
Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient implementation of the proposed algorithms.
Risk assessment on an Argentinean road with a dynamic traffic simulator
NASA Astrophysics Data System (ADS)
Voumard, Jérémie; Baumann, Valérie; Jaboyedoff, Michel; Derron, Marc-Henri; Penna, Ivanna
2014-05-01
The National Route 7 in Argentina is one of the most important corridors crossing the Andean Cordillera. It concentrates most of the traffic related to the Southern Common Market (MERCOSUR), it also connects Mendoza city (the fourth most populated in Argentina) with Santiago de Chile (the Chile capital city), and is used by tourists to access to the Aconcagua National park, Puente del Inca natural monument, skiing resorts, and to local displacements for the villages along the Mendoza valley. The road crosses the Andes through the Mendoza river valley at an elevation between 2'000 and 3'000 m. The traffic (2500 vehicles/day) is composed of motorcycles, cars and pickup trucks, trucks without trailer, buses, and semi-trailer trucks. Debris flows developed along tributaries of the Mendoza River, and due to remobilization of talus materials, impact frequently the road, causing traffic disruptions, bridges damages, etc. Rock falls detached from highly fractured outcrops also impact frequently the road, causing sometimes casualties. The aim of this study is to evaluate risk along sections of the National Road 7 develop along the Mendoza river, using a dynamic traffic simulator based on MATLAB© routine. The dynamic traffic simulator developed for natural hazards events on roads consider different scenarios based on traffic speeds, vehicle types, interactions types, road properties and natural processes. Here we show that vehicle types and traffic variations may influence the risk estimation. The analyzed risk on several critical sections of the National Route 7 demonstrates that risk may significantly increase: 1) on sinuous sections, steep sections and because of road conditions changes (exit of tunnel, bridges, road width, etc.) because of decreasing vehicle speed, particularly with semi-trailer trucks; 2) when an event, such a debris flow, occurs and generates a vehicle tailback increasing their duration presence in the risk area.
Goodman, William M; Ma, Zhenfeng; Andrade, Angie
2015-06-01
This four-stage study culminated in a game interface designed to calibrate people's perceptions of net risk (combining frequency and severity), in contexts where risks are elevated from their accepted, "typical" values, as when avalanche threats elevate the risks of "skiing" above levels skiers normally accept. Risk prompts are displayed dynamically, in naturalistic language, and not, for example, as static displays of dollar amounts or probabilities. Individual differences are measured. In Stage 1 (pilot), focus groups (n=9) piloted procedures, visual prompts, and examples of contexts where risks elevated from the "usual," for use in upcoming stages. In Stage 2 (exploratory), participants (primarily students; n=119; mean age, 20.1 years; 64 percent male) were assigned to risk contexts, answered demographic and risk-history questions, and then matched risk-description prompts to perceived "appropriate" levels along an ordinal risk scale. Descriptive measures and graphs showed response distributions; chi-squared analyses compared responses for different demographics. In Stage 3 (manipulating "cards"), participants (n=80; mean age, 37 years; 60 percent male) matched naturalistic risk prompts with ordinal risk positions. Regressions compared cards' placements with their "expected" (per exploratory Stage 2) placements. In Stage 4, the interface was coded in the Unity(®) (implemented at Business and IT Capstone, University of Ontario Institute of Technology, Oshawa, ON, Canada) development environment. In Stage 1, ambiguities in draft wordings/displays for Stage 2 were identified and corrected. Three risk contexts emerged: traffic/hidden intersection; skiing/avalanche; and swimming/drowning. In Stage 2, for traffic and skiing contexts, responses relating ordinal risk categories to realistic examples were observed to cluster around values potentially usable as markers. No associations appeared with demographic variables. In Stage 3, actual and "expected" ordinal-risk-category assignments for naturalistic risk markers were well correlated. "Approximate mappings" between markers and categories appeared stable. In Stage 4, the interface design incorporated the "approximate mappings"-yet also incorporated a "tuning phase," for measuring and recording individual differences. The interface can capture individual differences in risk perception on two key dimensions (frequency and severity)-viewed in dynamic, naturalistic scenarios, where risk levels are increased.
Information-Seeking Triggered by Age.
ERIC Educational Resources Information Center
Ng, Sik Hung; And Others
1991-01-01
Asked college students what information they would glean from drivers (aged 16 to 91) involved in traffic accident for assigning accident responsibility. Found ageist information-seeking across lifespan independent of driver gender, participant age, and participant gender. Participants would ask younger drivers about driving conduct (drinking,…
Efficient Trajectory Options Allocation for the Collaborative Trajectory Options Program
NASA Technical Reports Server (NTRS)
Rodionova, Olga; Arneson, Heather; Sridhar, Banavar; Evans, Antony
2017-01-01
The Collaborative Trajectory Options Program (CTOP) is a Traffic Management Initiative (TMI) intended to control the air traffic flow rates at multiple specified Flow Constrained Areas (FCAs), where demand exceeds capacity. CTOP allows flight operators to submit the desired Trajectory Options Set (TOS) for each affected flight with associated Relative Trajectory Cost (RTC) for each option. CTOP then creates a feasible schedule that complies with capacity constraints by assigning affected flights with routes and departure delays in such a way as to minimize the total cost while maintaining equity across flight operators. The current version of CTOP implements a Ration-by-Schedule (RBS) scheme, which assigns the best available options to flights based on a First-Scheduled-First-Served heuristic. In the present study, an alternative flight scheduling approach is developed based on linear optimization. Results suggest that such an approach can significantly reduce flight delays, in the deterministic case, while maintaining equity as defined using a Max-Min fairness scheme.
Interaction of Airspace Partitions and Traffic Flow Management Delay with Weather
NASA Technical Reports Server (NTRS)
Lee, Hak-Tae; Chatterji, Gano B.; Palopo, Kee
2011-01-01
The interaction of partitioning the airspace and delaying flights in the presence of convective weather is explored to study how re-partitioning the airspace can help reduce congestion and delay. Three approaches with varying complexities are employed to compute the ground delays.In the first approach, an airspace partition of 335 high-altitude sectors that is based on clear weather day traffic is used. Routes are then created to avoid regions of convective weather. With traffic flow management, this approach establishes the baseline with per-flight delay of 8.4 minutes. In the second approach, traffic flow management is used to select routes and assign departure delays such that only the airport capacity constraints are met. This results in 6.7 minutes of average departure delay. The airspace is then partitioned with a specific capacity. It is shown that airspace-capacity-induced delay can be reduced to zero ata cost of 20percent more sectors for the examined scenario.
Measuring Road Network Vulnerability with Sensitivity Analysis
Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin
2017-01-01
This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706
Enmarker, Ingela
2004-11-01
The aim of the present experiment was to examine the effects of meaningful irrelevant speech and road traffic noise on attention, episodic and semantic memory, and also to examine whether the noise effects were age-dependent. A total of 96 male and female teachers in the age range of 35-45 and 55-65 years were randomly assigned to a silent or the two noise conditions. Noise effects found in episodic memory were limited to a meaningful text, where cued recall contrary to expectations was equally impaired by the two types of noise. However, meaningful irrelevant speech also deteriorated recognition of the text, whereas road traffic noise caused no decrement. Retrieval from two word fluency tests in semantic memory showed strong effects of noise exposure, one affected by meaningful irrelevant speech and the other by road traffic noise. The results implied that both acoustic variation and the semantic interference could be of importance for noise impairments. The expected age-dependent noise effects did not show up.
Wave dynamics in an extended macroscopic traffic flow model with periodic boundaries
NASA Astrophysics Data System (ADS)
Wang, Yu-Qing; Chu, Xing-Jian; Zhou, Chao-Fan; Yan, Bo-Wen; Jia, Bin; Fang, Chen-Hao
2018-06-01
Motivated by the previous traffic flow model considering the real-time traffic state, a modified macroscopic traffic flow model is established. The periodic boundary condition is applied to the car-following model. Besides, the traffic state factor R is defined in order to correct the real traffic conditions in a more reasonable way. It is a key step that we introduce the relaxation time as a density-dependent function and provide corresponding evolvement of traffic flow. Three different typical initial densities, namely the high density, the medium one and the low one, are intensively investigated. It can be found that the hysteresis loop exists in the proposed periodic-boundary system. Furthermore, the linear and nonlinear stability analyses are performed in order to test the robustness of the system.
Stability analysis of dynamic collaboration model with control signals on two lanes
NASA Astrophysics Data System (ADS)
Li, Zhipeng; Zhang, Run; Xu, Shangzhi; Qian, Yeqing; Xu, Juan
2014-12-01
In this paper, the influence of control signals on the stability of two-lane traffic flow is mainly studied by applying control theory with lane changing behaviors. We present the two-lane dynamic collaboration model with lateral friction and the expressions of feedback control signals. What is more, utilizing the delayed feedback control theory to the two-lane dynamic collaboration model with control signals, we investigate the stability of traffic flow theoretically and the stability conditions for both lanes are derived with finding that the forward and lateral feedback signals can improve the stability of traffic flow while the backward feedback signals cannot achieve it. Besides, direct simulations are conducted to verify the results of theoretical analysis, which shows that the feedback signals have a significant effect on the running state of two vehicle groups, and the results are same with the theoretical analysis.
Simultaneous Detection and Tracking of Pedestrian from Panoramic Laser Scanning Data
NASA Astrophysics Data System (ADS)
Xiao, Wen; Vallet, Bruno; Schindler, Konrad; Paparoditis, Nicolas
2016-06-01
Pedestrian traffic flow estimation is essential for public place design and construction planning. Traditional data collection by human investigation is tedious, inefficient and expensive. Panoramic laser scanners, e.g. Velodyne HDL-64E, which scan surroundings repetitively at a high frequency, have been increasingly used for 3D object tracking. In this paper, a simultaneous detection and tracking (SDAT) method is proposed for precise and automatic pedestrian trajectory recovery. First, the dynamic environment is detected using two different methods, Nearest-point and Max-distance. Then, all the points on moving objects are transferred into a space-time (x, y, t) coordinate system. The pedestrian detection and tracking amounts to assign the points belonging to pedestrians into continuous trajectories in space-time. We formulate the point assignment task as an energy function which incorporates the point evidence, trajectory number, pedestrian shape and motion. A low energy trajectory will well explain the point observations, and have plausible trajectory trend and length. The method inherently filters out points from other moving objects and false detections. The energy function is solved by a two-step optimization process: tracklet detection in a short temporal window; and global tracklet association through the whole time span. Results demonstrate that the proposed method can automatically recover the pedestrians trajectories with accurate positions and low false detections and mismatches.
Ng, Annie W Y; Chan, Alan H S
2011-06-01
This research investigated whether different training methods had any effect on the effectiveness of traffic sign training and whether there were any relationships between traffic sign characteristics and effectiveness of the training. Thirty-six participants were randomly assigned into 4 equal-sized groups (control, paired-associate learning, recall training, and recognition training) to study the learnability of Mainland China traffic signs. In paired-associate learning, participants studied each traffic sign along with a referent describing its meaning. In addition to being informed of the meaning of traffic signs, both recall training and recognition training provided participants with questions and feedback. For recall training, the questioning process was a recall task in which participants had to produce a meaning for a given traffic sign from memory. For recognition training, the questioning process was a recognition task that required participants to identify the most appropriate referent corresponding to a given sign. No traffic sign training was given to the control group. Each training method significantly improved comprehension of the meaning of traffic signs. Participants from recall training performed better in a posttraining test than those from paired-associate learning and recognition training, indicating that the recall training elicited a deeper level of learning. In addition, questioning and feedback had a positive influence on training effectiveness. Performance in the posttest was found to be better when the questioning process matched the test process. Regarding the traffic sign characteristics, semantic closeness had a long-lasting effect, in terms of the timescale of this experiment on traffic sign comprehension, and traffic signs were perceived as more meaningful after their intended meanings were studied. Recall training is more effective in enhancing comprehension of traffic signs than paired-associate learning and recognition training. The findings of this study provide a basis for useful recommendations for designing symbol-training programs to improve road safety for road users.
Multi Car Elevator Control by using Learning Automaton
NASA Astrophysics Data System (ADS)
Shiraishi, Kazuaki; Hamagami, Tomoki; Hirata, Hironori
We study an adaptive control technique for multi car elevators (MCEs) by adopting learning automatons (LAs.) The MCE is a high performance and a near-future elevator system with multi shafts and multi cars. A strong point of the system is that realizing a large carrying capacity in small shaft area. However, since the operation is too complicated, realizing an efficient MCE control is difficult for top-down approaches. For example, “bunching up together" is one of the typical phenomenon in a simple traffic environment like the MCE. Furthermore, an adapting to varying environment in configuration requirement is a serious issue in a real elevator service. In order to resolve these issues, having an autonomous behavior is required to the control system of each car in MCE system, so that the learning automaton, as the solutions for this requirement, is supposed to be appropriate for the simple traffic control. First, we assign a stochastic automaton (SA) to each car control system. Then, each SA varies its stochastic behavior distributions for adapting to environment in which its policy is evaluated with each passenger waiting times. That is LA which learns the environment autonomously. Using the LA based control technique, the MCE operation efficiency is evaluated through simulation experiments. Results show the technique enables reducing waiting times efficiently, and we confirm the system can adapt to the dynamic environment.
Congestion control strategy on complex network with privilege traffic
NASA Astrophysics Data System (ADS)
Li, Shi-Bao; He, Ya; Liu, Jian-Hang; Zhang, Zhi-Gang; Huang, Jun-Wei
The congestion control of traffic is one of the most important studies in complex networks. In the previous congestion algorithms, all the network traffic is assumed to have the same priority, and the privilege of traffic is ignored. In this paper, a privilege and common traffic congestion control routing strategy (PCR) based on the different priority of traffic is proposed, which can be devised to cope with the different traffic congestion situations. We introduce the concept of privilege traffic in traffic dynamics for the first time and construct a new traffic model which taking into account requirements with different priorities. Besides, a new factor Ui is introduced by the theoretical derivation to characterize the interaction between different traffic routing selection, furthermore, Ui is related to the network throughput. Since the joint optimization among different kinds of traffic is accomplished by PCR, the maximum value of Ui can be significantly reduced and the network performance can be improved observably. The simulation results indicate that the network throughput with PCR has a better performance than the other strategies. Moreover, the network capacity is improved by 25% at least. Additionally, the network throughput is also influenced by privilege traffic number and traffic priority.
Road Traffic Anomaly Detection via Collaborative Path Inference from GPS Snippets
Wang, Hongtao; Wen, Hui; Yi, Feng; Zhu, Hongsong; Sun, Limin
2017-01-01
Road traffic anomaly denotes a road segment that is anomalous in terms of traffic flow of vehicles. Detecting road traffic anomalies from GPS (Global Position System) snippets data is becoming critical in urban computing since they often suggest underlying events. However, the noisy and sparse nature of GPS snippets data have ushered multiple problems, which have prompted the detection of road traffic anomalies to be very challenging. To address these issues, we propose a two-stage solution which consists of two components: a Collaborative Path Inference (CPI) model and a Road Anomaly Test (RAT) model. CPI model performs path inference incorporating both static and dynamic features into a Conditional Random Field (CRF). Dynamic context features are learned collaboratively from large GPS snippets via a tensor decomposition technique. Then RAT calculates the anomalous degree for each road segment from the inferred fine-grained trajectories in given time intervals. We evaluated our method using a large scale real world dataset, which includes one-month GPS location data from more than eight thousand taxicabs in Beijing. The evaluation results show the advantages of our method beyond other baseline techniques. PMID:28282948
Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction
DOT National Transportation Integrated Search
2017-09-01
Concrete bridge decks are directly exposed to daily traffic loads and may experience some surface cracking caused by excessive stress or fatigue accumulation, which requires repair or replacement. Among typical bridges in North America, bridge decks ...
Analysis of delay reducing and fuel saving sequencing and spacing algorithms for arrival traffic
NASA Technical Reports Server (NTRS)
Neuman, Frank; Erzberger, Heinz
1991-01-01
The air traffic control subsystem that performs sequencing and spacing is discussed. The function of the sequencing and spacing algorithms is to automatically plan the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several algorithms are described and their statistical performance is examined. Sequencing brings order to an arrival sequence for aircraft. First-come-first-served sequencing (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the arriving traffic, gaps will remain in the sequence of aircraft. Delays are reduced by time-advancing the leading aircraft of each group while still preserving the FCFS order. Tightly spaced groups of aircraft remain with a mix of heavy and large aircraft. Spacing requirements differ for different types of aircraft trailing each other. Traffic is reordered slightly to take advantage of this spacing criterion, thus shortening the groups and reducing average delays. For heavy traffic, delays for different traffic samples vary widely, even when the same set of statistical parameters is used to produce each sample. This report supersedes NASA TM-102795 on the same subject. It includes a new method of time-advance as well as an efficient method of sequencing and spacing for two dependent runways.
Mohammadi, Ali; Ahmadi, Maryam; Gharagozlu, Alireza
2016-03-01
Each year, around 1.2 million people die in the road traffic incidents. Reducing traffic accidents requires an exact understanding of the risk factors associated with traffic patterns and behaviors. Properly analyzing these factors calls for a comprehensive system for collecting and processing accident data. The aim of this study was to develop a minimum data set (MDS) for an information management system to study traffic accidents in Iran. This descriptive, cross-sectional study was performed in 2014. Data were collected from the traffic police, trauma centers, medical emergency centers, and via the internet. The investigated resources for this study were forms, databases, and documents retrieved from the internet. Forms and databases were identical, and one sample of each was evaluated. The related internet-sourced data were evaluated in their entirety. Data were collected using three checklists. In order to arrive at a consensus about the data elements, the decision Delphi technique was applied using questionnaires. The content validity and reliability of the questionnaires were assessed by experts' opinions and the test-retest method, respectively. An (MDS) of a traffic accident information management system was assigned to three sections: a minimum data set for traffic police with six classes, including 118 data elements; a trauma center with five data classes, including 57 data elements; and a medical emergency center, with 11 classes, including 64 data elements. Planning for the prevention of traffic accidents requires standardized data. As the foundation for crash prevention efforts, existing standard data infrastructures present policymakers and government officials with a great opportunity to strengthen and integrate existing accident information systems to better track road traffic injuries and fatalities.
Mohammadi, Ali; Ahmadi, Maryam; Gharagozlu, Alireza
2016-01-01
Background: Each year, around 1.2 million people die in the road traffic incidents. Reducing traffic accidents requires an exact understanding of the risk factors associated with traffic patterns and behaviors. Properly analyzing these factors calls for a comprehensive system for collecting and processing accident data. Objectives: The aim of this study was to develop a minimum data set (MDS) for an information management system to study traffic accidents in Iran. Materials and Methods: This descriptive, cross-sectional study was performed in 2014. Data were collected from the traffic police, trauma centers, medical emergency centers, and via the internet. The investigated resources for this study were forms, databases, and documents retrieved from the internet. Forms and databases were identical, and one sample of each was evaluated. The related internet-sourced data were evaluated in their entirety. Data were collected using three checklists. In order to arrive at a consensus about the data elements, the decision Delphi technique was applied using questionnaires. The content validity and reliability of the questionnaires were assessed by experts’ opinions and the test-retest method, respectively. Results: An (MDS) of a traffic accident information management system was assigned to three sections: a minimum data set for traffic police with six classes, including 118 data elements; a trauma center with five data classes, including 57 data elements; and a medical emergency center, with 11 classes, including 64 data elements. Conclusions: Planning for the prevention of traffic accidents requires standardized data. As the foundation for crash prevention efforts, existing standard data infrastructures present policymakers and government officials with a great opportunity to strengthen and integrate existing accident information systems to better track road traffic injuries and fatalities. PMID:27247791
Prediction based active ramp metering control strategy with mobility and safety assessment
NASA Astrophysics Data System (ADS)
Fang, Jie; Tu, Lili
2018-04-01
Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.
Heterogeneous delivering capability promotes traffic efficiency in complex networks
NASA Astrophysics Data System (ADS)
Zhu, Yan-Bo; Guan, Xiang-Min; Zhang, Xue-Jun
2015-12-01
Traffic is one of the most fundamental dynamical processes in networked systems. With the homogeneous delivery capability of nodes, the global dynamic routing strategy proposed by Ling et al. [Phys. Rev. E81, 016113 (2010)] adequately uses the dynamic information during the process and thus it can reach a quite high network capacity. In this paper, based on the global dynamic routing strategy, we proposed a heterogeneous delivery allocation strategy of nodes on scale-free networks with consideration of nodes degree. It is found that the network capacity as well as some other indexes reflecting transportation efficiency are further improved. Our work may be useful for the design of more efficient routing strategies in communication or transportation systems.
32 CFR 634.15 - Restricted driving privileges or probation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... assigned duties. In this instance, a limited exception can be granted for the sole purpose of driving... 32 National Defense 4 2012-07-01 2011-07-01 true Restricted driving privileges or probation. 634... (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Privileges...
32 CFR 634.15 - Restricted driving privileges or probation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... assigned duties. In this instance, a limited exception can be granted for the sole purpose of driving... 32 National Defense 4 2014-07-01 2013-07-01 true Restricted driving privileges or probation. 634... (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Privileges...
32 CFR 634.15 - Restricted driving privileges or probation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... assigned duties. In this instance, a limited exception can be granted for the sole purpose of driving... 32 National Defense 4 2013-07-01 2013-07-01 false Restricted driving privileges or probation. 634... (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Privileges...
32 CFR 634.15 - Restricted driving privileges or probation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... assigned duties. In this instance, a limited exception can be granted for the sole purpose of driving... 32 National Defense 4 2011-07-01 2011-07-01 false Restricted driving privileges or probation. 634... (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Privileges...
DOT National Transportation Integrated Search
2014-10-01
Adverse impacts of greenhouse gasses (GHG) and the imperative for reducing the production are well established. The : transportation sector accounts for 28% of all U.S. GHG production. Heavy-duty vehicles (e.g., large freight trucks) account for : ne...
Development of multi-class, multi-criteria bicycle traffic assignment models and solution algorithms
DOT National Transportation Integrated Search
2015-08-31
Cycling is gaining popularity both as a mode of travel in urban communities and as an alternative mode to private motorized vehicles due to its wide range of benefits (health, environmental, and economical). However, this change in modal share is not...
32 CFR 537.4 - Claims not collectible.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Deployment and Distribution Command (SDDC), formerly the Military Traffic Management Command (MTMC), for lost or destroyed shipments. (d) Where damage to assigned quarters, or equipment or furnishings therein, is collectible from a member of the uniformed services under 10 U.S.C. 2775. (e) Where the medical...
32 CFR 537.4 - Claims not collectible.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Deployment and Distribution Command (SDDC), formerly the Military Traffic Management Command (MTMC), for lost or destroyed shipments. (d) Where damage to assigned quarters, or equipment or furnishings therein, is collectible from a member of the uniformed services under 10 U.S.C. 2775. (e) Where the medical...
49 CFR 236.777 - Operator, control.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Operator, control. 236.777 Section 236.777..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.777 Operator, control. An employee assigned to operate the control machine of a traffic control system. ...
49 CFR 236.777 - Operator, control.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Operator, control. 236.777 Section 236.777..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.777 Operator, control. An employee assigned to operate the control machine of a traffic control system. ...
49 CFR 236.777 - Operator, control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Operator, control. 236.777 Section 236.777..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.777 Operator, control. An employee assigned to operate the control machine of a traffic control system. ...
49 CFR 236.777 - Operator, control.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Operator, control. 236.777 Section 236.777..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.777 Operator, control. An employee assigned to operate the control machine of a traffic control system. ...
Effects of traffic generation patterns on the robustness of complex networks
NASA Astrophysics Data System (ADS)
Wu, Jiajing; Zeng, Junwen; Chen, Zhenhao; Tse, Chi K.; Chen, Bokui
2018-02-01
Cascading failures in communication networks with heterogeneous node functions are studied in this paper. In such networks, the traffic dynamics are highly dependent on the traffic generation patterns which are in turn determined by the locations of the hosts. The data-packet traffic model is applied to Barabási-Albert scale-free networks to study the cascading failures in such networks and to explore the effects of traffic generation patterns on network robustness. It is found that placing the hosts at high-degree nodes in a network can make the network more robust against both intentional attacks and random failures. It is also shown that the traffic generation pattern plays an important role in network design.
DOT National Transportation Integrated Search
2012-10-01
Active Traffic Management (ATM) applications, such as variable speed limits, queue warning systems, and dynamic : ramp metering, have been shown to offer mobility and safety benefits. Yet because they differ from conventional capacity : investments i...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grilo, Clara, E-mail: clarabentesgrilo@gmail.com; Centro Brasileiro de Estudos em Ecologia de Estradas, Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, 37200-000 Lavras, Minas Gerais; Ferreira, Flavio Zanchetta
Previous studies have found that the relationship between wildlife road mortality and traffic volume follows a threshold effect on low traffic volume roads. We aimed at evaluating the response of several species to increasing traffic intensity on highways over a large geographic area and temporal period. We used data of four terrestrial vertebrate species with different biological and ecological features known by their high road-kill rates: the barn owl (Tyto alba), hedgehog (Erinaceus europaeus), red fox (Vulpes vulpes) and European rabbit (Oryctolagus cuniculus). Additionally, we checked whether road-kill likelihood varies when traffic patterns depart from the average. We used annualmore » average daily traffic (AADT) and road-kill records observed along 1000 km of highways in Portugal over seven consecutive years (2003–2009). We fitted candidate models using Generalized Linear Models with a binomial distribution through a sample unit of 1 km segments to describe the effect of traffic on the probability of finding at least one victim in each segment during the study. We also assigned for each road-kill record the traffic of that day and the AADT on that year to test for differences using Paired Student's t-test. Mortality risk declined significantly with traffic volume but varied among species: the probability of finding road-killed red foxes and rabbits occurs up to moderate traffic volumes (< 20,000 AADT) whereas barn owls and hedgehogs occurred up to higher traffic volumes (40,000 AADT). Perception of risk may explain differences in responses towards high traffic highway segments. Road-kill rates did not vary significantly when traffic intensity departed from the average. In summary, we did not find evidence of traffic thresholds for the analysed species and traffic intensities. We suggest mitigation measures to reduce mortality be applied in particular on low traffic roads (< 5000 AADT) while additional measures to reduce barrier effects should take into account species-specific behavioural traits. - Highlights: • Traffic and road-kills were analysed along 1000 km of highways over seven years. • Mortality risk declined significantly with traffic volume. • Perception of risk may explain different responses towards high traffic sections. • Reducing barrier effects should take into account species behavioural traits.« less
NASA Astrophysics Data System (ADS)
Kong, Dewen; Guo, Xiucheng; Wu, Dingxin
Although the on-ramp system has been widely studied, the influence of heavy vehicles is unknown because researchers only investigate the traffic dynamics around on-ramp system under homogeneous traffic conditions, which is different in real-world settings. This paper uses an improved cellular automaton model to study the heterogeneous traffic around on-ramp system. The forward motion rules are improved by considering the differences of driving behavior in different vehicle combinations. The lane change rules are improved by reflecting the aggressive behavior in mandatory lane changes. The phase diagram, traffic flow, capacity and spatial-temporal diagram are analyzed under the influences of heavy vehicles. The results show that by increasing the percentage of heavy vehicles, there will be more severe traffic congestion around on-ramp system, lower saturated flow and capacity. Also, the interactions between main road and on-ramp have been investigated. Increasing the percentage of heavy vehicles at the upstream of the conflict area on the main road or restricting heavy vehicles on the outside lane of the main road will deteriorate the performance of on-ramp. While the main road will have better performance as the percentage of heavy vehicles on the on-ramp increases when the on-ramp inflow rate is not low.
Traffic flow behavior at un-signalized intersection with crossings pedestrians
NASA Astrophysics Data System (ADS)
Khallouk, A.; Echab, H.; Ez-Zahraouy, H.; Lakouari, N.
2018-02-01
Mixed traffic flux composed of crossing pedestrians and vehicles extensively exists in cities. To study the characteristics of the interference traffic flux, we develop a pedestrian-vehicle cellular automata model to present the interaction behaviors on a simple cross road. By realizing the fundamental parameters (i.e. injecting rates α1, α2, the extracting rate β and the pedestrian arrival rate αP), simulations are carried out. The vehicular traffic flux is calculated in terms of rates. The effect of the crosswalk can be regarded as a dynamic impurity. The system phase diagrams in the (α1 ,αP) plane are built. It is found that the phase diagrams consist essentially of four phases namely Free Flow, Congested, Maximal Current and Gridlock. The value of the Maximal current phase depends on the extracting rate β, while the Gridlock phase is achieved only when the pedestrians generating rate is higher than a critical value. Furthermore, the effect of vehicles changing lane (Pch1 ,Pch2) and the location of the crosswalk XP on the dynamic characteristics of vehicles flow are investigated. It is found that traffic situation in the system is slightly enhanced if the location of the crosswalks XP is far from the intersection. However, when Pch1, Pch2 increase, the traffic becomes congested and the Gridlock phase enlarges.
NASA Astrophysics Data System (ADS)
Yu, Shaowei; Zhao, Xiangmo; Xu, Zhigang; Zhang, Licheng
2016-11-01
To evaluate the effects of velocity difference changes with memory in the intelligent transportation environment on the dynamics and fuel consumptions of traffic flow, we first investigate the linkage between velocity difference changes with memory and car-following behaviors with the measured data in cities, and then propose an improved cooperative car-following model considering multiple velocity difference changes with memory in the cooperative adaptive cruise control strategy, finally carry out several numerical simulations under the periodic boundary condition and at signalized intersections to explore how velocity difference changes with memory affect car's velocity, velocity fluctuation, acceleration and fuel consumptions in the intelligent transportation environment. The results show that velocity difference changes with memory have obvious effects on car-following behaviors, that the improved cooperative car-following model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, that the stability and fuel economy of traffic flow simulated by the improved car-following model with velocity difference changes with memory is obviously superior to those without velocity difference changes, and that taking velocity difference changes with memory into account in designing the advanced adaptive cruise control strategy can significantly improve the stability and fuel economy of traffic flow.
Estimating the health benefits of planned public transit investments in Montreal.
Tétreault, Louis-François; Eluru, Naveen; Hatzopoulou, Marianne; Morency, Patrick; Plante, Celine; Morency, Catherine; Reynaud, Frederic; Shekarrizfard, Maryam; Shamsunnahar, Yasmin; Faghih Imani, Ahmadreza; Drouin, Louis; Pelletier, Anne; Goudreau, Sophie; Tessier, Francois; Gauvin, Lise; Smargiassi, Audrey
2018-01-01
Since public transit infrastructure affects road traffic volumes and influences transportation mode choice, which in turn impacts health, it is important to estimate the alteration of the health burden linked with transit policies. We quantified the variation in health benefits and burden between a business as usual (BAU) and a public transit (PT) scenarios in 2031 (with 8 and 19 new subway and train stations) for the greater Montreal region. Using mode choice and traffic assignment models, we predicted the transportation mode choice and traffic assignment on the road network. Subsequently, we estimated the distance travelled in each municipality by mode, the minutes spent in active transportation, as well as traffic emissions. Thereafter we estimated the health burden attributed to air pollution and road traumas and the gains associated with active transportation for both the BAU and PT scenarios. We predicted a slight decrease of overall trips and kilometers travelled by car as well as an increase of active transportation for the PT in 2031 vs the BAU. Our analysis shows that new infrastructure will reduce the overall burden of transportation by 2.5 DALYs per 100,000 persons. This decrease is caused by the reduction of road traumas occurring in the inner suburbs and central Montreal region as well as gains in active transportation in the inner suburbs. Based on the results of our study, transportation planned public transit projects for Montreal are unlikely to reduce drastically the burden of disease attributable to road vehicles and infrastructures in the Montreal region. The impact of the planned transportation infrastructures seems to be very low and localized mainly in the areas where new public transit stations are planned. Copyright © 2017 Elsevier Inc. All rights reserved.
Study on Brain Injury Biomechanics Based on the Real Pedestrian Traffic Accidents
NASA Astrophysics Data System (ADS)
Feng, Chengjian; Yin, Zhiyong
This paper aimed to research the dynamic response and injury mechanisms of head based on real pedestrian traffic accidents with video. The kinematics of head contact with the vehicle was reconstructed by using multi-body dynamics models. These calculated parameters such as head impact velocity and impact location and head orientation were applied to the THUMS-4 FE head model as initial conditions. The intracranial pressure and stress of brain were calculated from simulations of head contact with the vehicle. These results were consistent with that of others. It was proved that real traffic accidents combined with simulation analysis can be used to study head injury biomechanics. Increasing in the number of cases, a tolerance limit of brain injury will be put forward.
Chain-reaction crash in traffic flow controlled by taillights
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2015-02-01
We study the chain-reaction crash (multiple-vehicle collision) in low-visibility condition on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle. The first crash may induce more collisions. We investigate whether or not the first collision induces the chain-reaction crash, numerically and analytically. The dynamic transitions occur from no collisions through a single collision, double collisions and triple collisions, to multiple collisions with decreasing the headway. Also, we find that the dynamic transition occurs from the finite chain reaction to the infinite chain reaction when the headway is less than the critical value. We derive, analytically, the transition points and the region maps for the chain-reaction crash in traffic flow controlled by taillights.
30 CFR 46.5 - New miner training.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the recognition and avoidance of electrical hazards and other hazards present at the mine, such as traffic patterns and control, mobile equipment (e.g., haul trucks and front-end loaders), and loose or... aspects of an assigned task in paragraph (b)(4) of this section, if hazard recognition training specific...
30 CFR 46.5 - New miner training.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the recognition and avoidance of electrical hazards and other hazards present at the mine, such as traffic patterns and control, mobile equipment (e.g., haul trucks and front-end loaders), and loose or... aspects of an assigned task in paragraph (b)(4) of this section, if hazard recognition training specific...
14 CFR 91.1061 - Augmented flight crews.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any flight...
14 CFR 91.1061 - Augmented flight crews.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any flight...
32 CFR 263.4 - Registration of vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Registration of vehicles. 263.4 Section 263.4...) MISCELLANEOUS TRAFFIC AND VEHICLE CONTROL ON CERTAIN DEFENSE MAPPING AGENCY SITES § 263.4 Registration of vehicles. (a) Newly assigned or employed individuals who intend to operate a privately-owned vehicle at the...
32 CFR 263.4 - Registration of vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Registration of vehicles. 263.4 Section 263.4...) MISCELLANEOUS TRAFFIC AND VEHICLE CONTROL ON CERTAIN DEFENSE MAPPING AGENCY SITES § 263.4 Registration of vehicles. (a) Newly assigned or employed individuals who intend to operate a privately-owned vehicle at the...
32 CFR 263.4 - Registration of vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Registration of vehicles. 263.4 Section 263.4...) MISCELLANEOUS TRAFFIC AND VEHICLE CONTROL ON CERTAIN DEFENSE MAPPING AGENCY SITES § 263.4 Registration of vehicles. (a) Newly assigned or employed individuals who intend to operate a privately-owned vehicle at the...
Minimizing Wide-Area Performance Disruptions in Inter-Domain Routing
2011-09-01
Servers As another example, we saw the average round-trip time double for an ISP in Malaysia . The RTT increase was caused by a traffic shift to different... censorship , conduct wiretapping, or offer poor performance. This is achieved by applying regular expressions to the AS-PATH to assign lower preference
Delay Banking for Managing Air Traffic
NASA Technical Reports Server (NTRS)
Green, Steve
2008-01-01
Delay banking has been invented to enhance air-traffic management in a way that would increase the degree of fairness in assigning arrival, departure, and en-route delays and trajectory deviations to aircraft impacted by congestion in the national airspace system. In delay banking, an aircraft operator (airline, military, general aviation, etc.) would be assigned a numerical credit when any of their flights are delayed because of an air-traffic flow restriction. The operator could subsequently bid against other operators competing for access to congested airspace to utilize part or all of its accumulated credit. Operators utilize credits to obtain higher priority for the same flight, or other flights operating at the same time, or later, in the same airspace, or elsewhere. Operators could also trade delay credits, according to market rules that would be determined by stakeholders in the national airspace system. Delay banking would be administered by an independent third party who would use delay banking automation to continually monitor flights, allocate delay credits, maintain accounts of delay credits for participating airlines, mediate bidding and the consumption of credits of winning bidders, analyze potential transfers of credits within and between operators, implement accepted transfers, and ensure fair treatment of all participating operators. A flow restriction can manifest itself in the form of a delay in assigned takeoff time, a reduction in assigned airspeed, a change in the position for the aircraft in a queue of all aircraft in a common stream of traffic (e.g., similar route), a change in the planned altitude profile for an aircraft, or change in the planned route for the aircraft. Flow restrictions are typically imposed to mitigate traffic congestion at an airport or in a region of airspace, particularly congestion due to inclement weather, or the unavailability of a runway or region of airspace. A delay credit would be allocated to an operator of a flight that has accepted, or upon which was imposed, a flow restriction. The amount of the credit would increase with the amount of delay caused by the flow restriction, the exact amount depending on which of several candidate formulas is eventually chosen. For example, according to one formula, there would be no credit for a delay smaller than some threshold value (e.g., 30 seconds) and the amount of the credit for a longer delay would be set at the amount of the delay minus the threshold value. Optionally, the value of a delay credit could be made to decay with time according to a suitable formula (e.g., an exponential decay). Also, optionally, a transaction charge could be assessed against the value of a delay credit that an operator used on a flight different from the one for which the delay originated or that was traded with a different operator. The delay credits accumulated by a given airline could be utilized in various ways. For example, an operator could enter a bid for priority handling in a new flow restriction that impacts one or more of the operator s flights; if the bid were unsuccessful, all or a portion of the credit would be returned to the bidder. If the bid pertained to a single aircraft that was in a queue, delay credits could be consumed in moving the aircraft to an earlier position within the queue. In the case of a flow restriction involving a choice of alternate routes, planned altitude profile, aircraft spacing, or other non-queue flow restrictions, delay credits could be used to bid for an alternative assignment.
Evaluation of dynamic message signs and their potential impact on traffic flow : [research summary].
DOT National Transportation Integrated Search
2013-04-01
The objective of this research was to understand the potential impact of DMS messages on traffic : flow and evaluate their accuracy, timeliness, relevance and usefulness. Additionally, Bluetooth : sensors were used to track and analyze the diversion ...
A dynamical framework for integrated corridor management.
DOT National Transportation Integrated Search
2016-01-11
We develop analysis and control synthesis tools for dynamic traffic flow over networks. Our analysis : relies on exploiting monotonicity properties of the dynamics, and on adapting relevant tools from : stochastic queuing networks. We develop proport...
Oscillations in interconnected complex networks under intentional attack
NASA Astrophysics Data System (ADS)
Zhang, Wen-Ping; Xia, Yongxiang; Tan, Fei
2016-01-01
Many real-world networks are interconnected with each other. In this paper, we study the traffic dynamics in interconnected complex networks under an intentional attack. We find that with the shortest time delay routing strategy, the traffic dynamics can show the stable state, periodic, quasi-periodic and chaotic oscillations, when the capacity redundancy parameter changes. Moreover, compared with isolated complex networks, oscillations always take place in interconnected networks more easily. Thirdly, in interconnected networks, oscillations are affected strongly by the coupling probability and coupling preference.
NASA Astrophysics Data System (ADS)
Mehrübeoğlu, Mehrübe; McLauchlan, Lifford
2006-02-01
The goal of this project was to detect the intensity of traffic on a road at different times of the day during daytime. Although the work presented utilized images from a section of a highway, the results of this project are intended for making decisions on the type of intervention necessary on any given road at different times for traffic control, such as installation of traffic signals, duration of red, green and yellow lights at intersections, and assignment of traffic control officers near school zones or other relevant locations. In this project, directional patterns are used to detect and count the number of cars in traffic images over a fixed area of the road to determine local traffic intensity. Directional patterns are chosen because they are simple and common to almost all moving vehicles. Perspective vision effects specific to each camera orientation has to be considered, as they affect the size and direction of patterns to be recognized. In this work, a simple and fast algorithm has been developed based on horizontal directional pattern matching and perspective vision adjustment. The results of the algorithm under various conditions are presented and compared in this paper. Using the developed algorithm, the traffic intensity can accurately be determined on clear days with average sized cars. The accuracy is reduced on rainy days when the camera lens contains raindrops, when there are very long vehicles, such as trucks or tankers, in the view, and when there is very low light around dusk or dawn.
Interaction of Airspace Partitions and Traffic Flow Management Delay
NASA Technical Reports Server (NTRS)
Palopo, Kee; Chatterji, Gano B.; Lee, Hak-Tae
2010-01-01
To ensure that air traffic demand does not exceed airport and airspace capacities, traffic management restrictions, such as delaying aircraft on the ground, assigning them different routes and metering them in the airspace, are implemented. To reduce the delays resulting from these restrictions, revising the partitioning of airspace has been proposed to distribute capacity to yield a more efficient airspace configuration. The capacity of an airspace partition, commonly referred to as a sector, is limited by the number of flights that an air traffic controller can safely manage within the sector. Where viable, re-partitioning of the airspace distributes the flights over more efficient sectors and reduces individual sector demand. This increases the overall airspace efficiency, but requires additional resources in some sectors in terms of controllers and equipment, which is undesirable. This study examines the tradeoff of the number of sectors designed for a specified amount of traffic in a clear-weather day and the delays needed for accommodating the traffic demand. Results show that most of the delays are caused by airport arrival and departure capacity constraints. Some delays caused by airspace capacity constraints can be eliminated by re-partitioning the airspace. Analyses show that about 360 high-altitude sectors, which are approximately today s operational number of sectors of 373, are adequate for delays to be driven solely by airport capacity constraints for the current daily air traffic demand. For a marginal increase of 15 seconds of average delay, the number of sectors can be reduced to 283. In addition, simulations of traffic growths of 15% and 20% with forecasted airport capacities in the years 2018 and 2025 show that delays will continue to be governed by airport capacities. In clear-weather days, for small increases in traffic demand, increasing sector capacities will have almost no effect on delays.
Methods and measurements in real-time air traffic control system simulation.
DOT National Transportation Integrated Search
1983-04-01
The major purpose of this work was to asses dynamic simulation of air traffic control systems as a technique for evaluating such systems in a statistically sound and objective manner. A large set of customarily used measures based on the system missi...
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin
As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.
NASA Astrophysics Data System (ADS)
Markelov, Oleg; Nguyen Duc, Viet; Bogachev, Mikhail
2017-11-01
Recently we have suggested a universal superstatistical model of user access patterns and aggregated network traffic. The model takes into account the irregular character of end user access patterns on the web via the non-exponential distributions of the local access rates, but neglects the long-term correlations between these rates. While the model is accurate for quasi-stationary traffic records, its performance under highly variable and especially non-stationary access dynamics remains questionable. In this paper, using an example of the traffic patterns from a highly loaded network cluster hosting the website of the 1998 FIFA World Cup, we suggest a generalization of the previously suggested superstatistical model by introducing long-term correlations between access rates. Using queueing system simulations, we show explicitly that this generalization is essential for modeling network nodes with highly non-stationary access patterns, where neglecting long-term correlations leads to the underestimation of the empirical average sojourn time by several decades under high throughput utilization.
Design Analysis of Corridors-in-the-Sky
NASA Technical Reports Server (NTRS)
Xue, Min
2008-01-01
Corridors-in-the-sky or tubes is one of new concepts in dynamic airspace configuration. It accommodates high density traffic, which has similar trajectories. Less air traffic controllers workload is expected than classic airspaces, thus, corridors-in-the-sky may increase national airspace capacity and reduce flight delays. To design corridors-in-the-sky, besides identifying their locations, their utilization, altitudes, and impacts on remaining system need to be analyzed. This paper chooses one tube candidate and presents analyses of spatial and temporal utilization of the tube, the impact on the remaining traffic, and the potential benefit caused by off-loading the traffic from underlying sectors. Fundamental issues regarding to the benefits have been also clarified. Methods developed to assist the analysis are described. Analysis results suggest dynamic tubes in terms of varied utilizations during different time periods. And it is found that combined lane options would be a good choice to lower the impact on non-tube users. Finally, it shows significant reduction of peak aircraft count in underlying sectors with only one tube enabled.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system has been developed for the time scheduling of aircraft into the terminal area. The three functions of the air-traffic-control schedule advisor are as follows: (1) for each new arrival, it develops an admisible flight plan for that aircraft; (2) as the aircraft progresses through the terminal area, it monitors deviations from the aircraft's flight plan and provides advisories to return the aircraft to its assigned schedule; and (3) if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programmed in MRS (a logic programming language), Lisp, and Fortran.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system was developed for the time scheduling of aircraft into the terminal area. The three functions of the air traffic control schedule advisor are as follows: first, for each new arrival, it develops an admissible flight plan for that aircraft. Second, as the aircraft progresses through the terminal area, it monitors deviations from the flight plan and provides advisories to return the aircraft to its assigned schedule. Third, if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programed in MRS (a logic programming language), Lisp, and FORTRAN.
Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models
NASA Astrophysics Data System (ADS)
Dickes, Amanda Catherine; Sengupta, Pratim
2013-06-01
In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these agents obey simple rules assigned or manipulated by the user (e.g., speeding up, slowing down, etc.). It is the interactions between these agents, based on the rules assigned by the user, that give rise to emergent, aggregate-level behavior (e.g., formation and movement of the traffic jam). Natural selection is such an emergent phenomenon, which has been shown to be challenging for novices (K16 students) to understand. Whereas prior research on learning evolutionary phenomena with MABMs has typically focused on high school students and beyond, we investigate how elementary students (4th graders) develop multi-level explanations of some introductory aspects of natural selection—species differentiation and population change—through scaffolded interactions with an MABM that simulates predator-prey dynamics in a simple birds-butterflies ecosystem. We conducted a semi-clinical interview based study with ten participants, in which we focused on the following: a) identifying the nature of learners' initial interpretations of salient events or elements of the represented phenomena, b) identifying the roles these interpretations play in the development of their multi-level explanations, and c) how attending to different levels of the relevant phenomena can make explicit different mechanisms to the learners. In addition, our analysis also shows that although there were differences between high- and low-performing students (in terms of being able to explain population-level behaviors) in the pre-test, these differences disappeared in the post-test.
Potential of dynamic spectrum allocation in LTE macro networks
NASA Astrophysics Data System (ADS)
Hoffmann, H.; Ramachandra, P.; Kovács, I. Z.; Jorguseski, L.; Gunnarsson, F.; Kürner, T.
2015-11-01
In recent years Mobile Network Operators (MNOs) worldwide are extensively deploying LTE networks in different spectrum bands and utilising different bandwidth configurations. Initially, the deployment is coverage oriented with macro cells using the lower LTE spectrum bands. As the offered traffic (i.e. the requested traffic from the users) increases the LTE deployment evolves with macro cells expanded with additional capacity boosting LTE carriers in higher frequency bands complemented with micro or small cells in traffic hotspot areas. For MNOs it is crucial to use the LTE spectrum assets, as well as the installed network infrastructure, in the most cost efficient way. The dynamic spectrum allocation (DSA) aims at (de)activating the available LTE frequency carriers according to the temporal and spatial traffic variations in order to increase the overall LTE system performance in terms of total network capacity by reducing the interference. This paper evaluates the DSA potential of achieving the envisaged performance improvement and identifying in which system and traffic conditions the DSA should be deployed. A self-optimised network (SON) DSA algorithm is also proposed and evaluated. The evaluations have been carried out in a hexagonal and a realistic site-specific urban macro layout assuming a central traffic hotspot area surrounded with an area of lower traffic with a total size of approximately 8 × 8 km2. The results show that up to 47 % and up to 40 % possible DSA gains are achievable with regards to the carried system load (i.e. used resources) for homogenous traffic distribution with hexagonal layout and for realistic site-specific urban macro layout, respectively. The SON DSA algorithm evaluation in a realistic site-specific urban macro cell deployment scenario including realistic non-uniform spatial traffic distribution shows insignificant cell throughput (i.e. served traffic) performance gains. Nevertheless, in the SON DSA investigations, a gain of up to 25 % has been observed when analysing the resource utilisation in the non-hotspot cells.
Realistic Data-Driven Traffic Flow Animation Using Texture Synthesis.
Chao, Qianwen; Deng, Zhigang; Ren, Jiaping; Ye, Qianqian; Jin, Xiaogang
2018-02-01
We present a novel data-driven approach to populate virtual road networks with realistic traffic flows. Specifically, given a limited set of vehicle trajectories as the input samples, our approach first synthesizes a large set of vehicle trajectories. By taking the spatio-temporal information of traffic flows as a 2D texture, the generation of new traffic flows can be formulated as a texture synthesis process, which is solved by minimizing a newly developed traffic texture energy. The synthesized output captures the spatio-temporal dynamics of the input traffic flows, and the vehicle interactions in it strictly follow traffic rules. After that, we position the synthesized vehicle trajectory data to virtual road networks using a cage-based registration scheme, where a few traffic-specific constraints are enforced to maintain each vehicle's original spatial location and synchronize its motion in concert with its neighboring vehicles. Our approach is intuitive to control and scalable to the complexity of virtual road networks. We validated our approach through many experiments and paired comparison user studies.
Order and disorder in traffic and self-driven many-particle systems
NASA Astrophysics Data System (ADS)
Helbing, Dirk
2002-07-01
During the last decade, physicists have identified various spatio-temporal patterns of motion in vehicle and pedestrian traffic. Moreover, by applying and extending methods from statistical physics and non-linear dynamics, these have been successfully explained by means of self-driven many-particle models. Some of the questions now understood are the following: Why are vehicles sometimes stopped by so-called "phantom traffic jams," although they all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction of the traffic volume cause a lasting traffic jam? What is the origin of fluctuations in traffic systems and which consequences do they have? Why do pedestrians moving in opposite directions normally organize in lanes, while nervous crowds are "freezing by heating?" Why do panicking pedestrians produce dangerous deadlocks?
NASA Astrophysics Data System (ADS)
Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei
2017-07-01
Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.
NASA Astrophysics Data System (ADS)
Han, Keesook J.; Hodge, Matthew; Ross, Virginia W.
2011-06-01
For monitoring network traffic, there is an enormous cost in collecting, storing, and analyzing network traffic datasets. Data mining based network traffic analysis has a growing interest in the cyber security community, but is computationally expensive for finding correlations between attributes in massive network traffic datasets. To lower the cost and reduce computational complexity, it is desirable to perform feasible statistical processing on effective reduced datasets instead of on the original full datasets. Because of the dynamic behavior of network traffic, traffic traces exhibit mixtures of heavy tailed statistical distributions or overdispersion. Heavy tailed network traffic characterization and visualization are important and essential tasks to measure network performance for the Quality of Services. However, heavy tailed distributions are limited in their ability to characterize real-time network traffic due to the difficulty of parameter estimation. The Entropy-Based Heavy Tailed Distribution Transformation (EHTDT) was developed to convert the heavy tailed distribution into a transformed distribution to find the linear approximation. The EHTDT linearization has the advantage of being amenable to characterize and aggregate overdispersion of network traffic in realtime. Results of applying the EHTDT for innovative visual analytics to real network traffic data are presented.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
Maritime dynamic traffic generator. Volume 3 : density data on world maps
DOT National Transportation Integrated Search
1975-06-01
The 18,000 vessels whose weekly movements are tracked by the maritime traffic generator represent 106 different countries. There are 4915 vessels five or less years old. The record for the week of January 26, 1972 includes 11,789 arrivals, 10,896 dep...
DOT National Transportation Integrated Search
2013-12-01
Traffic engineers use various left-turn signalization : methods to find an optimal balance of safety and : efficiency. While protected/permitted left-turn : configurations allow most left-turning traffic to : turn during the protected phase, the perm...
Self-Learning Intelligent Agents for Dynamic Traffic Routing on Transportation Networks
NASA Astrophysics Data System (ADS)
Sadek, Add; Basha, Nagi
Intelligent Transportation Systems (ITS) are designed to take advantage of recent advances in communications, electronics, and Information Technology in improving the efficiency and safety of transportation systems. Among the several ITS applications is the notion of Dynamic Traffic Routing (DTR), which involves generating "optimal" routing recommendations to drivers with the aim of maximizing network utilizing. In this paper, we demonstrate the feasibility of using a self-learning intelligent agent to solve the DTR problem to achieve traffic user equilibrium in a transportation network. The core idea is to deploy an agent to a simulation model of a highway. The agent then learns by itself by interacting with the simulation model. Once the agent reaches a satisfactory level of performance, it can then be deployed to the real-world, where it would continue to learn how to refine its control policies over time. To test this concept in this paper, the Cell Transmission Model (CTM) developed by Carlos Daganzo of the University of California at Berkeley is used to simulate a simple highway with two main alternative routes. With the model developed, a Reinforcement Learning Agent (RLA) is developed to learn how to best dynamically route traffic, so as to maximize the utilization of existing capacity. Preliminary results obtained from our experiments are promising. RL, being an adaptive online learning technique, appears to have a great potential for controlling a stochastic dynamic systems such as a transportation system. Furthermore, the approach is highly scalable and applicable to a variety of networks and roadways.
Modeling and Control of Airport Queueing Dynamics under Severe Flow Restrictions
NASA Technical Reports Server (NTRS)
Carr, Francis; Evans, Antony; Clarke, John-Paul; Deron, Eric
2003-01-01
Based on field observations and interviews with controllers at BOS and EWR, we identify the closure of local departure fixes as the most severe class of airport departure restrictions. A set of simple queueing dynamics and traffic rules are developed to model departure traffic under such restrictions. The validity of the proposed model is tested via Monte Carlo simulation against 10 hours of actual operations data collected during a case-study at EWR on June 29,2000. In general, the model successfully reproduces the aggregate departure congestion. An analysis of the average error over 40 simulation runs indicates that flow-rate restrictions also significantly impact departure traffic; work is underway to capture these effects. Several applications and what-if scenarios are discussed for future evaluation using the calibrated model.
NASA Technical Reports Server (NTRS)
Sheth, Kapil S.; Gutierrez-Nolasco, Sebastian
2010-01-01
This paper presents an analysis of factors that impact user flight schedules during air traffic congestion. In pre-departure flight planning, users file one route per flight, which often leads to increased delays, inefficient airspace utilization, and exclusion of user flight preferences. In this paper, first the idea of filing alternate routes and providing priorities on each of those routes is introduced. Then, the impact of varying planning interval and system imposed departure delay increment is discussed. The metrics of total delay and equity are used for analyzing the impact of these factors on increased traffic and on different users. The results are shown for four cases, with and without the optional routes and priority assignments. Results demonstrate that adding priorities to optional routes further improves system performance compared to filing one route per flight and using first-come first-served scheme. It was also observed that a two-hour planning interval with a five-minute system imposed departure delay increment results in highest delay reduction. The trend holds for a scenario with increased traffic.
Two visual systems in monitoring of dynamic traffic: effects of visual disruption.
Zheng, Xianjun Sam; McConkie, George W
2010-05-01
Studies from neurophysiology and neuropsychology provide support for two separate object- and location-based visual systems, ventral and dorsal. In the driving context, a study was conducted using a change detection paradigm to explore drivers' ability to monitor the dynamic traffic flow, and the effects of visual disruption on these two visual systems. While driving, a discrete change, such as vehicle location, color, or identity, was occasionally made in one of the vehicles on the road ahead of the driver. Experiment results show that without visual disruption, all changes were detected very well; yet, these equally perceivable changes were disrupted differently by a brief blank display (150 ms): the detection of location changes was especially reduced. The disruption effects were also bigger for the parked vehicle compared to the moving ones. The findings support the different roles for two visual systems in monitoring the dynamic traffic: the "where", dorsal system, tracks vehicle spatiotemporal information on perceptual level, encoding information in a coarse and transient manner; whereas the "what", ventral system, monitors vehicles' featural information, encoding information more accurately and robustly. Both systems work together contributing to the driver's situation awareness of traffic. Benefits and limitations of using the driving simulation are also discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ngan, Henry Y. T.; Yung, Nelson H. C.; Yeh, Anthony G. O.
2015-02-01
This paper aims at presenting a comparative study of outlier detection (OD) for large-scale traffic data. The traffic data nowadays are massive in scale and collected in every second throughout any modern city. In this research, the traffic flow dynamic is collected from one of the busiest 4-armed junction in Hong Kong in a 31-day sampling period (with 764,027 vehicles in total). The traffic flow dynamic is expressed in a high dimension spatial-temporal (ST) signal format (i.e. 80 cycles) which has a high degree of similarities among the same signal and across different signals in one direction. A total of 19 traffic directions are identified in this junction and lots of ST signals are collected in the 31-day period (i.e. 874 signals). In order to reduce its dimension, the ST signals are firstly undergone a principal component analysis (PCA) to represent as (x,y)-coordinates. Then, these PCA (x,y)-coordinates are assumed to be conformed as Gaussian distributed. With this assumption, the data points are further to be evaluated by (a) a correlation study with three variant coefficients, (b) one-class support vector machine (SVM) and (c) kernel density estimation (KDE). The correlation study could not give any explicit OD result while the one-class SVM and KDE provide average 59.61% and 95.20% DSRs, respectively.
Initial Concept of Operations for Full Management by Trajectory
NASA Technical Reports Server (NTRS)
Fernandes, Alicia D.; Atkins, Steve; Leiden, Ken; Kaler, Curt; Evans, Mark; Bell, Alan; Kilbourne, Todd; Jackson, Michael
2017-01-01
This document describes Management by Trajectory (MBT), a concept for future air traffic management (ATM) in which flights are assigned four-dimensional trajectories (4DTs) through a negotiation process between the Federal Aviation Administration (FAA) and flight operators that respects the flight operator's goals while complying with National Airspace System (NAS) constraints.
30 CFR 46.6 - Newly hired experienced miner training.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Instruction on the recognition and avoidance of electrical hazards and other hazards present at the mine, such as traffic patterns and control, mobile equipment (e.g., haul trucks and front-end loaders), and... health and safety aspects of an assigned task in paragraph (b)(4) of this section, if hazard recognition...
30 CFR 46.6 - Newly hired experienced miner training.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Instruction on the recognition and avoidance of electrical hazards and other hazards present at the mine, such as traffic patterns and control, mobile equipment (e.g., haul trucks and front-end loaders), and... health and safety aspects of an assigned task in paragraph (b)(4) of this section, if hazard recognition...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... of Application for Approval of Discontinuance or Modification of a Railroad Signal System In... of a signal system. FRA assigned the petition Docket Number FRA-2013-0073. Applicant: Norfolk..., Georgia 30309. NS seeks approval of the proposed discontinuance of automatic signals within traffic...
Congestion patterns of electric vehicles with limited battery capacity.
Jing, Wentao; Ramezani, Mohsen; An, Kun; Kim, Inhi
2018-01-01
The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm.
Congestion patterns of electric vehicles with limited battery capacity
2018-01-01
The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm. PMID:29543875
Distributed traffic signal control using fuzzy logic
NASA Technical Reports Server (NTRS)
Chiu, Stephen
1992-01-01
We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.
Microscopic modeling of multi-lane highway traffic flow
NASA Astrophysics Data System (ADS)
Hodas, Nathan O.; Jagota, Anand
2003-12-01
We discuss a microscopic model for the study of multi-lane highway traffic flow dynamics. Each car experiences a force resulting from a combination of the desire of the driver to attain a certain velocity, aerodynamic drag, and change of the force due to car-car interactions. The model also includes multi-lane simulation capability and the ability to add and remove obstructions. We implement the model via a Java applet, which is used to simulate traffic jam formation, the effect of bottlenecks on traffic flow, and the existence of light, medium, and heavy traffic flow. The simulations also provide insight into how the properties of individual cars result in macroscopic behavior. Because the investigation of emergent characteristics is so common in physics, the study of traffic in this manner sheds new light on how the micro-to-macro transition works in general.
Dynamic traffic grooming with Spectrum Engineering (TG-SE) in flexible grid optical networks
NASA Astrophysics Data System (ADS)
Yu, Xiaosong; Zhao, Yongli; Zhang, Jiawei; Wang, Jianping; Zhang, Guoying; Chen, Xue; Zhang, Jie
2015-12-01
Flexible grid has emerged as an evolutionary technology to satisfy the ever increasing demand for higher spectrum efficiency and operational flexibility. To optimize the spectrum resource utilization, this paper introduces the concept of Spectrum Engineering in flex-grid optical networks. The sliceable optical transponder has been proposed to offload IP traffic to the optical layer and reduce the number of IP router ports and transponders. We discuss the impact of sliceable transponder in traffic grooming and propose several traffic-grooming schemes with Spectrum Engineering (TG-SE). Our results show that there is a tradeoff among different traffic grooming policies, which should be adopted based on the network operator's objectives. The proposed traffic grooming with Spectrum Engineering schemes can reduce OPEX as well as increase spectrum efficiency by efficiently utilizing the bandwidth variability and capability of sliceable optical transponders.
Multiplexing technique for computer communications via satellite channels
NASA Technical Reports Server (NTRS)
Binder, R.
1975-01-01
Multiplexing scheme combines technique of dynamic allocation with conventional time-division multiplexing. Scheme is designed to expedite short-duration interactive or priority traffic and to delay large data transfers; as result, each node has effective capacity of almost total channel capacity when other nodes have light traffic loads.
Dynamic Capacity Allocation Algorithms for iNET Link Manager
2014-05-01
algorithm that can better cope with severe congestion and misbehaving users and traffic flows. We compare the E-LM with the LM baseline algorithm (B-LM...capacity allocation algorithm that can better cope with severe congestion and misbehaving users and traffic flows. We compare the E-LM with the LM
DOT National Transportation Integrated Search
2016-12-25
The key objectives of this study were to: 1. Develop advanced analytical techniques that make use of a dynamically configurable connected vehicle message protocol to predict traffic flow regimes in near-real time in a virtual environment and examine ...
Flying SATS Higher Volume Operations: Training, Lessons Learned, and Pilots' Experiences
NASA Technical Reports Server (NTRS)
Conway, Sheila; Williams, Dan; Adams, Catherine; Consiglio, Maria; Murdoch, Jennifer
2005-01-01
Developments in aviation, including new surveillance technologies and quicker, more economical small aircraft, have been identified as driving factors in a potential expansion of the use of non-towered, non-radar airports. The Small Aircraft Transportation System (SATS) project has developed the Higher Volume Operations (HVO) concept that enables pilots to safely arrive and depart these airports in instrument conditions at an increased rate as compared to today's procedures. This is achieved by transferring some traffic management tasks to centralized, ground-based automation, while assigning others to participating pilots aided by on-board tools. This paper describes strategies and lessons learned while training pilots to fly these innovative operations. Pilot approaches to using the experimental displays and dynamic altering systems during training are discussed. Potential operational benefits as well as pit-falls and frustrations expressed by subjects while learning to fly these new procedures are presented. Generally, pilots were comfortable with the procedures and the training process, and expressed interest in its near-term implementation.
Delay functions in trip assignment for transport planning process
NASA Astrophysics Data System (ADS)
Leong, Lee Vien
2017-10-01
In transportation planning process, volume-delay and turn-penalty functions are the functions needed in traffic assignment to determine travel time on road network links. Volume-delay function is the delay function describing speed-flow relationship while turn-penalty function is the delay function associated to making a turn at intersection. The volume-delay function used in this study is the revised Bureau of Public Roads (BPR) function with the constant parameters, α and β values of 0.8298 and 3.361 while the turn-penalty functions for signalized intersection were developed based on uniform, random and overflow delay models. Parameters such as green time, cycle time and saturation flow were used in the development of turn-penalty functions. In order to assess the accuracy of the delay functions, road network in areas of Nibong Tebal, Penang and Parit Buntar, Perak was developed and modelled using transportation demand forecasting software. In order to calibrate the models, phase times and traffic volumes at fourteen signalised intersections within the study area were collected during morning and evening peak hours. The prediction of assigned volumes using the revised BPR function and the developed turn-penalty functions show close agreement to actual recorded traffic volume with the lowest percentage of accuracy, 80.08% and the highest, 93.04% for the morning peak model. As for the evening peak model, they were 75.59% and 95.33% respectively for lowest and highest percentage of accuracy. As for the yield left-turn lanes, the lowest percentage of accuracy obtained for the morning and evening peak models were 60.94% and 69.74% respectively while the highest percentage of accuracy obtained for both models were 100%. Therefore, can be concluded that the development and utilisation of delay functions based on local road conditions are important as localised delay functions can produce better estimate of link travel times and hence better planning for future scenarios.
TraPy-MAC: Traffic Priority Aware Medium Access Control Protocol for Wireless Body Area Network.
Ullah, Fasee; Abdullah, Abdul Hanan; Kaiwartya, Omprakash; Cao, Yue
2017-06-01
Recently, Wireless Body Area Network (WBAN) has witnessed significant attentions in research and product development due to the growing number of sensor-based applications in healthcare domain. Design of efficient and effective Medium Access Control (MAC) protocol is one of the fundamental research themes in WBAN. Static on-demand slot allocation to patient data is the main approach adopted in the design of MAC protocol in literature, without considering the type of patient data specifically the level of severity on patient data. This leads to the degradation of the performance of MAC protocols considering effectiveness and traffic adjustability in realistic medical environments. In this context, this paper proposes a Traffic Priority-Aware MAC (TraPy-MAC) protocol for WBAN. It classifies patient data into emergency and non-emergency categories based on the severity of patient data. The threshold value aided classification considers a number of parameters including type of sensor, body placement location, and data transmission time for allocating dedicated slots patient data. Emergency data are not required to carry out contention and slots are allocated by giving the due importance to threshold value of vital sign data. The contention for slots is made efficient in case of non-emergency data considering threshold value in slot allocation. Moreover, the slot allocation to emergency and non-emergency data are performed parallel resulting in performance gain in channel assignment. Two algorithms namely, Detection of Severity on Vital Sign data (DSVS), and ETS Slots allocation based on the Severity on Vital Sign (ETS-SVS) are developed for calculating threshold value and resolving the conflicts of channel assignment, respectively. Simulations are performed in ns2 and results are compared with the state-of-the-art MAC techniques. Analysis of results attests the benefit of TraPy-MAC in comparison with the state-of-the-art MAC in channel assignment in realistic medical environments.
A new cellular automaton for signal controlled traffic flow based on driving behaviors
NASA Astrophysics Data System (ADS)
Wang, Yang; Chen, Yan-Yan
2015-03-01
The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined. Project supported by the National Basic Research Program of China (Grand No. 2012CB723303) and the Beijing Committee of Science and Technology, China (Grand No. Z1211000003120100).
Qualitative study to explore stakeholder perceptions related to road safety in Hyderabad, India.
Tetali, Shailaja; Lakshmi, J K; Gupta, Shivam; Gururaj, G; Wadhwaniya, Shirin; Hyder, Adnan A
2013-12-01
The Bloomberg Philanthropies Global Road Safety Programme in India focuses on reduction of drink driving and increase in helmet usage in the city of Hyderabad. During the early stages of implementation, perceptions of stakeholders on road safety were explored as part of the monitoring and evaluation process for a better understanding of areas for improving road safety in Hyderabad. Fifteen in-depth interviews with government officials, subject experts, and road traffic injury victims, and four focus group discussions with trauma surgeons, medical interns, nurses, and taxi drivers were conducted, analysed manually, and presented as themes. Respondents found Hyderabad unsafe for road-users. Factors such as inadequate traffic laws, gaps in enforcement, lack of awareness, lack of political will, poor road engineering, and high-risk road users were identified as threats to road safety. The responsibility for road safety was assigned to both individual road-users and the government, with the former bearing the responsibility for safe traffic behaviour, and the latter for infrastructure provision and enforcement of regulations. The establishment of a lead agency to co-ordinate awareness generation, better road engineering, and stricter enforcement of traffic laws with economic and non-economic penalties for suboptimal traffic behaviour, could facilitate improved road safety in Hyderabad. Copyright © 2013 Elsevier Ltd. All rights reserved.
Heuristic approaches for energy-efficient shared restoration in WDM networks
NASA Astrophysics Data System (ADS)
Alilou, Shahab
In recent years, there has been ongoing research on the design of energy-efficient Wavelength Division Multiplexing (WDM) networks. The explosive growth of Internet traffic has led to increased power consumption of network components. Network survivability has also been a relevant research topic, as it plays a crucial role in assuring continuity of service with no disruption, regardless of network component failure. Network survivability mechanisms tend to utilize considerable resources such as spare capacity in order to protect and restore information. This thesis investigates techniques for reducing energy demand and enhancing energy efficiency in the context of network survivability. We propose two novel heuristic energy-efficient shared protection approaches for WDM networks. These approaches intend to save energy by setting on sleep mode devices that are not being used while providing shared backup paths to satisfy network survivability. The first approach exploits properties of a math series in order to assign weight to the network links. It aims at reducing power consumption at the network indirectly by aggregating traffic on a set of nodes and links with high traffic load level. Routing traffic on links and nodes that are already under utilization makes it possible for the links and nodes with no load to be set on sleep mode. The second approach is intended to dynamically route traffic through nodes and links with high traffic load level. Similar to the first approach, this approach computes a pair of paths for every newly arrived demand. It computes these paths for every new demand by comparing the power consumption of nodes and links in the network before the demand arrives with their potential power consumption if they are chosen along the paths of this demand. Simulations of two different networks were used to compare the total network power consumption obtained using the proposed techniques against a standard shared-path restoration scheme. Shared-path restoration is a network survivability method in which a link-disjoint backup path and wavelength is reserved at the time of call setup for a working path. However, in order to reduce spare capacity consumption, this reserved backup path and wavelength may be shared with other backup paths. Pool Sharing Scheme (PSS) is employed to implement shared-path restoration scheme [1]. In an optical network, the failure of a single link leads to the failure of all the lightpaths that pass through that particular link. PSS ensures that the amount of backup bandwidth required on a link to restore the failed connections will not be more than the total amount of reserved backup bandwidth on that link. Simulation results indicate that the proposed approaches lead to up to 35% power savings in WDM networks when traffic load is low. However, power saving decreases to 14% at high traffic load level. Furthermore, in terms of the total capacity consumption for working paths, PSS outperforms the two proposed approaches, as expected. In terms of total capacity consumption all the approaches behave similarly. In general, at low traffic load level, the two proposed approaches behave similar to PSS in terms of average link load, and the ratio of block demands. Nevertheless, at high traffic load, the proposed approaches result in higher ratio of blocked demands than PSS. They also lead to higher average link load than PSS for the equal number of generated demands.
De Roos, Anneclaire J; Koehoorn, Mieke; Tamburic, Lillian; Davies, Hugh W; Brauer, Michael
2014-10-01
The risk of rheumatoid arthritis (RA) has been associated with living near traffic; however, there is evidence suggesting that air pollution may not be responsible for this association. Noise, another traffic-generated exposure, has not been studied as a risk factor for RA. We investigated proximity to traffic, ambient air pollution, and community noise in relation to RA in the Vancouver and Victoria regions of British Columbia, Canada. Cases and controls were identified in a cohort of adults that was assembled using health insurance registration records. Incident RA cases from 1999 through 2002 were identified by diagnostic codes in combination with prescriptions and type of physician (e.g., rheumatologist). Controls were matched to RA cases by age and sex. Environmental exposures were assigned to each member of the study population by their residential postal code(s). We estimated relative risks using conditional logistic regression, with additional adjustment for median income at the postal code. RA incidence was increased with proximity to traffic, with an odds ratio (OR) of 1.37 (95% CI: 1.11, 1.68) for residence ≤ 50 m from a highway compared with residence > 150 m away. We found no association with traffic-related exposures such as PM2.5, nitrogen oxides, or noise. Ground-level ozone, which was highest in suburban areas, was associated with an increased risk of RA (OR = 1.26; 95% CI: 1.18, 1.36 per interquartile range increase). Our study confirms a previously observed association of RA risk with proximity to traffic and suggests that neither noise levels nor traffic-related air pollutants are responsible for this relationship. Additional investigation of neighborhood and individual correlates of residence near roadways may provide new insight into risk factors for RA.
[Computer simulation by passenger wound analysis of vehicle collision].
Zou, Dong-Hua; Liu, Nning-Guo; Shen, Jie; Zhang, Xiao-Yun; Jin, Xian-Long; Chen, Yi-Jiu
2006-08-15
To reconstruct the course of vehicle collision, so that to provide the reference for forensic identification and disposal of traffic accidents. Through analyzing evidences left both on passengers and vehicles, technique of momentum impulse combined with multi-dynamics was applied to simulate the motion and injury of passengers as well as the track of vehicles. Model of computer stimulation perfectly reconstructed phases of the traffic collision, which coincide with details found by forensic investigation. Computer stimulation is helpful and feasible for forensic identification in traffic accidents.
Dynamic Wireless Power Transfer - Grid Impacts Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, Tony; Meintz, Andrew; Gonder, Jeff
2015-12-04
This presentation discusses the current status of analysis of the electricity grid impacts of a dynamic wireless power transfer system deployed to the Atlanta region on select high traffic roadway segments.
Comparing Methods for Dynamic Airspace Configuration
NASA Technical Reports Server (NTRS)
Zelinski, Shannon; Lai, Chok Fung
2011-01-01
This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.
NASA Astrophysics Data System (ADS)
Djuana, E.; Rahardjo, K.; Gozali, F.; Tan, S.; Rambung, R.; Adrian, D.
2018-01-01
A city could be categorized as a smart city when the information technology has been developed to the point that the administration could sense, understand, and control every resource to serve its people and sustain the development of the city. One of the smart city aspects is transportation and traffic management. This paper presents a research project to design an adaptive traffic lights control system as a part of the smart system for optimizing road utilization and reducing congestion. Research problems presented include: (1) Congestion in one direction toward an intersection due to dynamic traffic condition from time to time during the day, while the timing cycles in traffic lights system are mostly static; (2) No timing synchronization among traffic lights in adjacent intersections that is causing unsteady flows; (3) Difficulties in traffic condition monitoring on the intersection and the lack of facility for remotely controlling traffic lights. In this research, a simulator has been built to model the adaptivity and integration among different traffic lights controllers in adjacent intersections, and a case study consisting of three sets of intersections along Jalan K. H. Hasyim Ashari has been simulated. It can be concluded that timing slots synchronization among traffic lights is crucial for maintaining a steady traffic flow.
NASA Astrophysics Data System (ADS)
Khan, Akhtar Nawaz
2017-11-01
Currently, analytical models are used to compute approximate blocking probabilities in opaque and all-optical WDM networks with the homogeneous link capacities. Existing analytical models can also be extended to opaque WDM networking with heterogeneous link capacities due to the wavelength conversion at each switch node. However, existing analytical models cannot be utilized for all-optical WDM networking with heterogeneous structure of link capacities due to the wavelength continuity constraint and unequal numbers of wavelength channels on different links. In this work, a mathematical model is extended for computing approximate network blocking probabilities in heterogeneous all-optical WDM networks in which the path blocking is dominated by the link along the path with fewer number of wavelength channels. A wavelength assignment scheme is also proposed for dynamic traffic, termed as last-fit-first wavelength assignment, in which a wavelength channel with maximum index is assigned first to a lightpath request. Due to heterogeneous structure of link capacities and the wavelength continuity constraint, the wavelength channels with maximum indexes are utilized for minimum hop routes. Similarly, the wavelength channels with minimum indexes are utilized for multi-hop routes between source and destination pairs. The proposed scheme has lower blocking probability values compared to the existing heuristic for wavelength assignments. Finally, numerical results are computed in different network scenarios which are approximately equal to values obtained from simulations. Since January 2016, he is serving as Head of Department and an Assistant Professor in the Department of Electrical Engineering at UET, Peshawar-Jalozai Campus, Pakistan. From May 2013 to June 2015, he served Department of Telecommunication Engineering as an Assistant Professor at UET, Peshawar-Mardan Campus, Pakistan. He also worked as an International Internship scholar in the Fukuda Laboratory, National Institute of Informatics, Tokyo, Japan on the topic large-scale simulation for internet topology analysis. His research interests include design and analysis of optical WDM networks, network algorithms, network routing, and network resource optimization problems.
Fiber optic sensor for monitoring a density of road traffic
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Mec, Pavel; Novak, Martin; Jargus, Jan; Vasinek, Vladimir
2017-10-01
Authors of this article have focused on the use of fiber-optic technology in the car traffic. The article describes the use of fiber-optic interferometer for the purpose of the dynamic calculation of traffic density and inclusion the vehicle into the traffic lane. The objective is to increase safety and traffic flow. Presented solution is characterized by the non-destructive character to the road - sensor no need built into the roadway. The sensor works with standard telecommunications fibers of the G.652 standard. Other hallmarks are immunity to electromagnetic interference (EMI) and passivity of concerning the power supply. The massive expansion of optical cables within telecommunication needs along roads offers the possibility of connecting to the existing telecommunications fiber-optic network without a converter. Information can be transmitted at distances of several km up to tens km by this fiber-optic network. Set of experimental measurements in real traffic flow verified the functionality of presented solution.
NASA Technical Reports Server (NTRS)
Arnaout, Georges M.; Bowling, Shannon R.
2011-01-01
Traffic congestion is an ongoing problem of great interest to researchers from different areas in academia. With the emerging technology for inter-vehicle communication, vehicles have the ability to exchange information with predecessors by wireless communication. In this paper, we present an agent-based model of traffic congestion and examine the impact of having CACC (Cooperative Adaptive Cruise Control) embedded vehicle(s) on a highway system consisting of 4 traffic lanes without overtaking. In our model, CACC vehicles adapt their acceleration/deceleration according to vehicle-to-vehicle inter-communication. We analyze the average speed of the cars, the shockwaves, and the evolution of traffic congestion throughout the lifecycle of the model. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce the oscillatory behavior (stop and go) resulting from the acceleration/deceleration of the vehicles.
Photonics approach to traffic signs
NASA Astrophysics Data System (ADS)
Litwin, Dariusz; Galas, Jacek; CzyŻewski, Adam; Rymsza, Barbara; Kornalewski, Leszek; Kryszczyński, Tadeusz; Mikucki, Jerzy; Wikliński, Piotr; Daszkiewicz, Marek; Malasek, Jacek
2016-12-01
The automotive industry has been always a driving force for all economies. Despite of its beneficial meaning to every society it brings also many issues including wide area of road safety. The latter has been enforced by the increasing number of cars and the dynamic development of the traffic as a whole. Road signs and traffic lights are crucial in context of good traffic arrangement and its fluency. Traffic designers are used to treat horizontal road signs independently of vertical signs. However, modern light sources and growing flexibility in shaping optical systems create opportunity to design more advanced and smart solutions. In this paper we present an innovative, multidisciplinary approach that consists in tight interdependence of different traffic signals. We describe new optical systems together with their influence on the perception of the road user. The analysis includes maintenance and visibility in different weather conditions. A special attention has been focused on intersections of complex geometry.
Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks
Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei
2017-01-01
Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction. PMID:28672867
Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks.
Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei
2017-06-26
Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.
Gheorghiu, Razvan Andrei; Iordache, Valentin
2018-06-03
As road traffic conditions worsen due to the constantly increasing number of cars, traffic management systems are struggling to provide a suitable environment, by gathering all the relevant information from the road network. However, in most cases these are obtained via traffic detectors placed near road junctions, thus providing no information on the conditions in between. A large-scale sensor network using detectors on the majority of vehicles would certainly be capable of providing useful data, but has two major impediments: the equipment installed on the vehicles should be cheap enough (assuming the willingness of private car owners to be a part of the network) and be capable of transferring the required amount of data in due time, as the vehicle passes by the road side unit that acts as interface with the traffic management system. These restrictions reduce the number of technologies that can be used. In this article a series of comprehensive tests have been performed to evaluate the Bluetooth and ZigBee protocols for this purpose from many points of view: handshake time, static and dynamic data transfer (in laboratory conditions and in real traffic conditions). An assessment of the environmental conditions (during tests and probable to be encountered in real conditions) was also provided.
Factors contributing to young moped rider accidents in Denmark.
Møller, Mette; Haustein, Sonja
2016-02-01
Young road users still constitute a high-risk group with regard to road traffic accidents. The crash rate of a moped is four times greater than that of a motorcycle, and the likelihood of being injured in a road traffic accident is 10-20 times higher among moped riders compared to car drivers. Nevertheless, research on the behaviour and accident involvement of young moped riders remains sparse. Based on analysis of 128 accident protocols, the purpose of this study was to increase knowledge about moped accidents. The study was performed in Denmark involving riders aged 16 or 17. A distinction was made between accident factors related to (1) the road and its surroundings, (2) the vehicle, and (3) the reported behaviour and condition of the road user. Thirteen accident factors were identified with the majority concerning the reported behaviour and condition of the road user. The average number of accident factors assigned per accident was 2.7. Riding speed was assigned in 45% of the accidents which made it the most frequently assigned factor on the part of the moped rider followed by attention errors (42%), a tuned up moped (29%) and position on the road (14%). For the other parties involved, attention error (52%) was the most frequently assigned accident factor. The majority (78%) of the accidents involved road rule breaching on the part of the moped rider. The results indicate that preventive measures should aim to eliminate violations and increase anticipatory skills among moped riders and awareness of mopeds among other road users. Due to their young age the effect of such measures could be enhanced by infrastructural measures facilitating safe interaction between mopeds and other road users. Copyright © 2015 Elsevier Ltd. All rights reserved.
Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow
NASA Astrophysics Data System (ADS)
Balouchi, Ashkan; Browne, Dana
2015-03-01
The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.
Evaluation of multicast schemes in optical burst-switched networks: the case with dynamic sessions
NASA Astrophysics Data System (ADS)
Jeong, Myoungki; Qiao, Chunming; Xiong, Yijun; Vandenhoute, Marc
2000-10-01
In this paper, we evaluate the performance of several multicast schemes in optical burst-switched WDM networks taking into accounts the overheads due to control packets and guard bands (Gbs) of bursts on separate channels (wavelengths). A straightforward scheme is called Separate Multicasting (S-MCAST) where each source node constructs separate bursts for its multicast (per each multicast session) and unicast traffic. To reduce the overhead due to Gbs (and control packets), one may piggyback the multicast traffic in bursts containing unicast traffic using a scheme called Multiple Unicasting (M-UCAST). The third scheme is called Tree-Shared Multicasting (TS-MCAST) wehreby multicast traffic belonging to multiple multicast sesions can be mixed together in a burst, which is delivered via a shared multicast tree. In [1], we have evaluated several multicast schemes with static sessions at the flow level. In this paper, we perform a simple analysis for the multicast schemes and evaluate the performance of three multicast schemes, focusing on the case with dynamic sessions in terms of the link utilization, bandwidth consumption, blocking (loss) probability, goodput and the processing loads.
An extended car-following model to describe connected traffic dynamics under cyberattacks
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Yu, Guizhen; Wu, Xinkai; Qin, Hongmao; Wang, Yunpeng
2018-04-01
In this paper, the impacts of the potential cyberattacks on vehicles are modeled through an extended car-following model. To better understand the mechanism of traffic disturbance under cyberattacks, the linear and nonlinear stability analysis are conducted respectively. Particularly, linear stability analysis is performed to obtain different neutral stability conditions with various parameters; and nonlinear stability analysis is carried out by using reductive perturbation method to derive the soliton solution of the modified Korteweg de Vries equation (mKdV) near the critical point, which is used to draw coexisting stability lines. Furthermore, by applying linear and nonlinear stability analysis, traffic flow state can be divided into three states, i.e., stable, metastable and unstable states which are useful to describe shockwave dynamics and driving behaviors under cyberattacks. The theoretical results show that the proposed car-following model is capable of successfully describing the car-following behavior of connected vehicles with cyberattacks. Finally, numerical simulation using real values has confirmed the validity of theoretical analysis. The results further demonstrate our model can be used to help avoid collisions and relieve traffic congestion with cybersecurity threats.
Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Aziz, H M Abdul; Young, Stan
Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections.more » In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.« less
DOT National Transportation Integrated Search
1975-05-01
In this comparison, questionnaires concerning aspects of training-related and work-related attitudes were sent to 225 ATC trainees who represented groups of attritions and retentions in two En Route training programs; viz, programs that provided basi...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... of Application for Approval of Discontinuance or Modification of a Railroad Signal System In... discontinuance or modification of a signal system. FRA assigned the petition Docket Number FRA-2012-0046... discontinuance of an automatic block signal (ABS) system and a traffic control signal (TCS) system on the...
14 CFR 93.339 - Requirements for operating in the DC SFRA, including the DC FRZ.
Code of Federal Regulations, 2010 CFR
2010-01-01
... aircraft in the DC SFRA, including the DC FRZ, the pilot obtains and transmits a discrete transponder code... flight plan by obtaining a discrete transponder code. The flight plan is closed upon landing at an... transmitting an Air Traffic Control-assigned discrete transponder code. (c) When operating an aircraft in the...
How the Architectural Research Is Used in Educational Facilities and Design in Japan. Phase II.
ERIC Educational Resources Information Center
Nagakura, Yasuhiko; Moronuki, Mikio
When designing schools, one should assign space for athletic fields, arrange halls so that traffic will not disturb classrooms, separate grade levels, provide playgrounds exclusively for younger children, and provide lighting and ventilation. Unit plans should be designed so that all educational and domestic activities can be executed in the…
NASA Technical Reports Server (NTRS)
Jung, Jaewoo; Swenson, Harry; Thipphavong, Jane; Martin, Lynne Hazel; Chen, Liang; Nguyen, Jimmy
2013-01-01
The growth of global demand for air transportation has put increasing strain on the nation's air traffic management system. To relieve this strain, the International Civil Aviation Organization has urged all nations to adopt Performance-Based Navigation (PBN), which can help to reduce air traffic congestion, decrease aviation fuel consumption, and protect the environment. NASA has developed a Terminal Area Precision Scheduling and Spacing (TAPSS) system that can support increased use of PBN during periods of high traffic, while supporting fuel-efficient, continuous descent approaches. In the original development of this system, arrival aircraft are assigned fuel-efficient Area Navigation (RNAV) Standard Terminal Arrival Routes before their initial descent from cruise, with routing defined to a specific runway. The system also determines precise schedules for these aircraft that facilitate continuous descent through the assigned routes. To meet these schedules, controllers are given a set of advisory tools to precisely control aircraft. The TAPSS system has been evaluated in a series of human-in-the-loop (HITL) air traffic simulations during 2010 and 2011. Results indicated increased airport arrival throughput up to 10 over current operations, and maintained fuel-efficient aircraft decent profiles from the initial descent to landing with reduced controller workload. This paper focuses on results from a joint NASA and FAA HITL simulation conducted in 2012. Due to the FAA rollout of the advance terminal area PBN procedures at mid-sized airports first, the TAPSS system was modified to manage arrival aircraft as they entered Terminal Radar Approach Control (TRACON). Dallas-Love Field airport (DAL) was selected by the FAA as a representative mid-sized airport within a constrained TRACON airspace due to the close proximity of a major airport, in this case Dallas-Ft Worth International Airport, one of the busiest in the world. To address this constraint, RNAV routes and Required Navigation Performance with the particular capability known as Radius-to-Fix (RNP-RF) approaches to a short final were used. The purpose of this simulation was to get feedback on how current operations could benefit with the TAPSS system and also to evaluate the efficacy of the advisory tools to support the broader use of PBN in the US National Airspace System. For this NASA-FAA joint experiment, an Air Traffic Control laboratory at NASA Ames was arranged to simulate arrivals into DAL in Instrument Meteorological Conditions utilizing parallel dependent approaches, with two feeder positions that handed off traffic to one final position. Four FAA controllers participated, alternately covering these three positions. All participants were Full-Performance Level terminal controllers and members of the National Air Traffic Controllers Association. During the simulation, PBN arrival operations were compared and contrasted in three conditions. They were the Baseline, where none of the TAPSS systems TRACON controller decision support advisories were provided, the Limited Advisories, reflecting the existing but dormant capabilities of the current terminal automation equipment with providing a subset of the TAPSS systems advisories; numerical delay, landing sequence, and runway assignment information, and the Full Advisories, with providing the following in addition to the ones in the Limited condition; trajectory slot markers, timelines of estimated times of arrivals and sched
Xu, Chengcheng; Wang, Wei; Liu, Pan; Zhang, Fangwei
2015-01-01
This study aimed to identify the traffic flow variables contributing to crash risks under different traffic states and to develop a real-time crash risk model incorporating the varying crash mechanisms across different traffic states. The crash, traffic, and geometric data were collected on the I-880N freeway in California in 2008 and 2009. This study considered 4 different traffic states in Wu's 4-phase traffic theory. They are free fluid traffic, bunched fluid traffic, bunched congested traffic, and standing congested traffic. Several different statistical methods were used to accomplish the research objective. The preliminary analysis showed that traffic states significantly affected crash likelihood, collision type, and injury severity. Nonlinear canonical correlation analysis (NLCCA) was conducted to identify the underlying phenomena that made certain traffic states more hazardous than others. The results suggested that different traffic states were associated with various collision types and injury severities. The matching of traffic flow characteristics and crash characteristics in NLCCA revealed how traffic states affected traffic safety. The logistic regression analyses showed that the factors contributing to crash risks were quite different across various traffic states. To incorporate the varying crash mechanisms across different traffic states, random parameters logistic regression was used to develop a real-time crash risk model. Bayesian inference based on Markov chain Monte Carlo simulations was used for model estimation. The parameters of traffic flow variables in the model were allowed to vary across different traffic states. Compared with the standard logistic regression model, the proposed model significantly improved the goodness-of-fit and predictive performance. These results can promote a better understanding of the relationship between traffic flow characteristics and crash risks, which is valuable knowledge in the pursuit of improving traffic safety on freeways through the use of dynamic safety management systems.
Liu, Allen P; Botelho, Roberto J; Antonescu, Costin N
2017-09-01
Compartmentalization of eukaryotic cells into dynamic organelles that exchange material through regulated membrane traffic governs virtually every aspect of cellular physiology including signal transduction, metabolism and transcription. Much has been revealed about the molecular mechanisms that control organelle dynamics and membrane traffic and how these processes are regulated by metabolic, physical and chemical cues. From this emerges the understanding of the integration of specific organellar phenomena within complex, multiscale and nonlinear regulatory networks. In this review, we discuss systematic approaches that revealed remarkable insight into the complexity of these phenomena, including the use of proximity-based proteomics, high-throughput imaging, transcriptomics and computational modeling. We discuss how these methods offer insights to further understand molecular versatility and organelle heterogeneity, phenomena that allow a single organelle population to serve a range of physiological functions. We also detail on how transcriptional circuits drive organelle adaptation, such that organelles may shift their function to better serve distinct differentiation and stress conditions. Thus, organelle dynamics and membrane traffic are functionally heterogeneous and adaptable processes that coordinate with higher-order system behavior to optimize cell function under a range of contexts. Obtaining a comprehensive understanding of organellar phenomena will increasingly require combined use of reductionist and system-based approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A quantum mechanics-based approach to model incident-induced dynamic driver behavior
NASA Astrophysics Data System (ADS)
Sheu, Jiuh-Biing
2008-08-01
A better understanding of the psychological factors influencing drivers, and the resulting driving behavior responding to incident-induced lane traffic phenomena while passing by an incident site is vital to the improvement of road safety. This paper presents a microscopic driver behavior model to explain the dynamics of the instantaneous driver decision process under lane-blocking incidents on adjacent lanes. The proposed conceptual framework decomposes the corresponding driver decision process into three sequential phases: (1) initial stimulus, (2) glancing-around car-following, and (3) incident-induced driving behavior. The theorem of quantum mechanics in optical flows is applied in the first phase to explain the motion-related perceptual phenomena while vehicles approach the incident site in adjacent lanes, followed by the incorporation of the effect of quantum optical flows in modeling the induced glancing-around car-following behavior in the second phase. Then, an incident-induced driving behavior model is formulated to reproduce the dynamics of driver behavior conducted in the process of passing by an incident site in the adjacent lanes. Numerical results of model tests using video-based incident data indicate the validity of the proposed traffic behavior model in analyzing the incident-induced lane traffic phenomena. It is also expected that such a proposed quantum-mechanics based methodology can throw more light if applied to driver psychology and response in anomalous traffic environments in order to improve road safety.
NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel
2017-08-01
Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.
Tonne, Cathryn; Halonen, Jaana I; Beevers, Sean D; Dajnak, David; Gulliver, John; Kelly, Frank J; Wilkinson, Paul; Anderson, H Ross
2016-01-01
There is relatively little evidence of health effects of long-term exposure to traffic-related pollution in susceptible populations. We investigated whether long-term exposure to traffic air and noise pollution was associated with all-cause mortality or hospital readmission for myocardial infarction (MI) among survivors of hospital admission for MI. Patients from the Myocardial Ischaemia National Audit Project database resident in Greater London (n = 1 8,138) were followed for death or readmission for MI. High spatially-resolved annual average air pollution (11 metrics of primary traffic, regional or urban background) derived from a dispersion model (resolution 20 m × 20 m) and road traffic noise for the years 2003-2010 were used to assign exposure at residence. Hazard ratios (HR, 95% confidence interval (CI)) were estimated using Cox proportional hazards models. Most air pollutants were positively associated with all-cause mortality alone and in combination with hospital readmission. The largest associations with mortality per interquartile range (IQR) increase of pollutant were observed for non-exhaust particulate matter (PM(10)) (HR = 1.05 (95% CI 1.00, 1.10), IQR = 1.1 μg/m(3)); oxidant gases (HR = 1.05 (95% CI 1.00, 1.09), IQR = 3.2 μg/m(3)); and the coarse fraction of PM (HR = 1.05 (95% CI 1.00, 1.10), IQR = 0.9 μg/m(3)). Adjustment for traffic noise only slightly attenuated these associations. The association for a 5 dB increase in road-traffic noise with mortality was HR = 1.02 (95% CI 0.99, 1.06) independent of air pollution. These data support a relationship of primary traffic and regional/urban background air pollution with poor prognosis among MI survivors. Although imprecise, traffic noise appeared to have a modest association with prognosis independent of air pollution. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.
Evaluation of the efficacy of simulation games in traffic safety education of kindergarten children.
Renaud, L; Suissa, S
1989-01-01
Using a simulation game designed to teach children to obey certain traffic safety rules, an experimental study was conducted with 136 five-year-old children in four Quebec schools. Within each classroom, subjects were randomly divided into four groups: three intervention groups and one control group. Each of the experimental groups was subjected to a different intervention with outcome measured using three instruments related to attitudes, behavior, and transfer of learning of pedestrian traffic safety. Results suggest that simulation games including role-playing/group dynamics and modeling/training can change attitudes and modify behavior in the area of pedestrian traffic safety in children of this age. PMID:2916716
Detection of traffic incidents using nonlinear time series analysis
NASA Astrophysics Data System (ADS)
Fragkou, A. D.; Karakasidis, T. E.; Nathanail, E.
2018-06-01
In this study, we present results of the application of nonlinear time series analysis on traffic data for incident detection. More specifically, we analyze daily volume records of Attica Tollway (Greece) collected from sensors located at various locations. The analysis was performed using the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) method of the volume data of the lane closest to the median. The results show that it is possible to identify, through the abrupt change of the dynamics of the system revealed by RPs and RQA, the occurrence of incidents on the freeway and differentiate from recurrent traffic congestion. The proposed methodology could be of interest for big data traffic analysis.
NASA Astrophysics Data System (ADS)
Camilo, Ana E. F.; Grégio, André; Santos, Rafael D. C.
2016-05-01
Malware detection may be accomplished through the analysis of their infection behavior. To do so, dynamic analysis systems run malware samples and extract their operating system activities and network traffic. This traffic may represent malware accessing external systems, either to steal sensitive data from victims or to fetch other malicious artifacts (configuration files, additional modules, commands). In this work, we propose the use of visualization as a tool to identify compromised systems based on correlating malware communications in the form of graphs and finding isomorphisms between them. We produced graphs from over 6 thousand distinct network traffic files captured during malware execution and analyzed the existing relationships among malware samples and IP addresses.
Evaluation of the efficacy of simulation games in traffic safety education of kindergarten children.
Renaud, L; Suissa, S
1989-03-01
Using a simulation game designed to teach children to obey certain traffic safety rules, an experimental study was conducted with 136 five-year-old children in four Quebec schools. Within each classroom, subjects were randomly divided into four groups: three intervention groups and one control group. Each of the experimental groups was subjected to a different intervention with outcome measured using three instruments related to attitudes, behavior, and transfer of learning of pedestrian traffic safety. Results suggest that simulation games including role-playing/group dynamics and modeling/training can change attitudes and modify behavior in the area of pedestrian traffic safety in children of this age.
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Condon, Gregory W. (Technical Monitor)
1996-01-01
NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. The core processes of control and the distribution of decision making in that control are undergoing extensive analysis. From our perspective, the human operators and the procedures by which they interact are the fundamental determinants of the safe, efficient, and flexible operation of the system. In that perspective, we have begun to explore what our experience has taught will be the most challenging aspects of designing and integrating human-centered automation in the advanced system. We have performed a full mission simulation looking at the role shift to self-separation on board the aircraft with the rules of the air guiding behavior and the provision of a cockpit display of traffic information and an on-board traffic alert system that seamlessly integrates into the TCAS operations. We have performed and initial investigation of the operational impact of "Dynamic Density" metrics on controller relinquishing and reestablishing full separation authority. (We follow the assumption that responsibility at all times resides with the controller.) This presentation will describe those efforts as well as describe the process by which we will guide the development of error tolerant systems that are sensitive to shifts in operator work load levels and dynamic shifts in the operating point of air traffic management.
NASA Astrophysics Data System (ADS)
Hadi, M. Z.; Djatna, T.; Sugiarto
2018-04-01
This paper develops a dynamic storage assignment model to solve storage assignment problem (SAP) for beverages order picking in a drive-in rack warehousing system to determine the appropriate storage location and space for each beverage products dynamically so that the performance of the system can be improved. This study constructs a graph model to represent drive-in rack storage position then combine association rules mining, class-based storage policies and an arrangement rule algorithm to determine an appropriate storage location and arrangement of the product according to dynamic orders from customers. The performance of the proposed model is measured as rule adjacency accuracy, travel distance (for picking process) and probability a product become expiry using Last Come First Serve (LCFS) queue approach. Finally, the proposed model is implemented through computer simulation and compare the performance for different storage assignment methods as well. The result indicates that the proposed model outperforms other storage assignment methods.
Traffic Management Coordinator Evaluation of the Dynamic Weather Routes Concept and System
NASA Technical Reports Server (NTRS)
Gong, Chester
2014-01-01
Dynamic Weather Routes (DWR) is a weather-avoidance system for airline dispatchers and FAA traffic managers that continually searches for and advises the user of more efficient routes around convective weather. NASA and American Airlines (AA) have been conducting an operational trial of DWR since July 17, 2012. The objective of this evaluation is to assess DWR from a traffic management coordinator (TMC) perspective, using recently retired TMCs and actual DWR reroutes advisories that were rated acceptable by AA during the operational trial. Results from the evaluation showed that the primary reasons for a TMC to modify or reject airline reroute requests were related to airspace configuration. Approximately 80 percent of the reroutes evaluated required some coordination before implementation. Analysis showed TMCs approved 62 percent of the requested DWR reroutes, resulting in 57 percent of the total requested DWR time savings.
Cascade defense via routing in complex networks
NASA Astrophysics Data System (ADS)
Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen
2015-05-01
As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.
A Human-in-the Loop Exploration of the Dynamic Airspace Configuration Concept
NASA Technical Reports Server (NTRS)
Homola, Jeffrey; Lee, Paul U.; Prevot, Thomas; Lee, Hwasoo; Kessell, Angela; Brasil, Connie; Smith, Nancy
2010-01-01
An exploratory human-in-the-loop study was conducted to better understand the impact of Dynamic Airspace Configuration (DAC) on air traffic controllers. To do so, a range of three progressively more aggressive algorithmic approaches to sectorizations were chosen. Sectorizations from these algorithms were used to test and quantify the range of impact on the controller and traffic. Results show that traffic count was more equitably distributed between the four test sectors and duration of counts over MAP were progressively lower as the magnitude of boundary change increased. However, taskload and workload were also shown to increase with the increase in aggressiveness and acceptability of the boundary changes decreased. Overall, simulated operations of the DAC concept did not appear to compromise safety. Feedback from the participants highlighted the importance of limiting some aspects of boundary changes such as amount of volume gained or lost and the extent of change relative to the initial airspace design.
Effect of Dynamic Sector Boundary Changes on Air Traffic Controllers
NASA Technical Reports Server (NTRS)
Jung, Jaewoo; Lee, Paul; Kessell, Angela; Homola, Jeff; Zelinski, Shannon
2010-01-01
The effect of dynamic sector boundary changes on air traffic controller workload was investigated with data from a human-in-the-loop simulation. Multiple boundary changes were made during simulated operations, and controller rating of workload was recorded. Analysis of these data showed an increase of 16.9% in controller workload due to boundary changes. This increased workload was correlated with the number of aircraft handoffs and change in sector volume. There was also a 12.7% increase in average workload due to the changed sector design after boundary changes. This increase was correlated to traffic flow crossing points getting closer to sector boundaries and an increase in the number of flights with short dwell time in a sector. This study has identified some of the factors that affect controller workload when sector boundaries are changed, but more research is needed to better understand their relationships.
Traffic Safety Messages on Dynamic Message Signs (DMS)
DOT National Transportation Integrated Search
2018-05-01
This technical assistance report investigated the existing state of practice across the nation for placing safety campaign messages on dynamic message signs (DMS) and reviewed relevant studies that documented any evidence of effectiveness in influenc...
Analysis of Different Cost Functions in the Geosect Airspace Partitioning Tool
NASA Technical Reports Server (NTRS)
Wong, Gregory L.
2010-01-01
A new cost function representing air traffic controller workload is implemented in the Geosect airspace partitioning tool. Geosect currently uses a combination of aircraft count and dwell time to select optimal airspace partitions that balance controller workload. This is referred to as the aircraft count/dwell time hybrid cost function. The new cost function is based on Simplified Dynamic Density, a measure of different aspects of air traffic controller workload. Three sectorizations are compared. These are the current sectorization, Geosect's sectorization based on the aircraft count/dwell time hybrid cost function, and Geosect s sectorization based on the Simplified Dynamic Density cost function. Each sectorization is evaluated for maximum and average workload along with workload balance using the Simplified Dynamic Density as the workload measure. In addition, the Airspace Concept Evaluation System, a nationwide air traffic simulator, is used to determine the capacity and delay incurred by each sectorization. The sectorization resulting from the Simplified Dynamic Density cost function had a lower maximum workload measure than the other sectorizations, and the sectorization based on the combination of aircraft count and dwell time did a better job of balancing workload and balancing capacity. However, the current sectorization had the lowest average workload, highest sector capacity, and the least system delay.
2007-06-01
introduces ASC-U’s approach for solving the dynamic UAV allocation problem. 26 Christopher J...18 Figure 6. Assignments Dynamics Example (after) .........................................................20 Figure 7. ASC-U Dynamic Cueing...decisions in order to respond to the dynamic environment they face. Thus, to succeed, the Army’s transformation cannot rely
Cognitive Task Analysis of En Route Air Traffic Control: Model Extension and Validation.
ERIC Educational Resources Information Center
Redding, Richard E.; And Others
Phase II of a project extended data collection and analytic procedures to develop a model of expertise and skill development for en route air traffic control (ATC). New data were collected by recording the Dynamic Simulator (DYSIM) performance of five experts with a work overload problem. Expert controllers were interviewed in depth for mental…
Airspace Technology Demonstration 3 (ATD-3): Applied Traffic Flow Management Project Overview
NASA Technical Reports Server (NTRS)
Gong, Chester
2016-01-01
ATD-3 Project Overview for 3rd Joint Workshop for KAIA-KARI - NASA ATM Research Collaboration. This presentation gives a high level description of the ATD-3 project and related technologies. These technologies include Multi-Flight Common Routes (MFCR), Traffic Aware Strategic Aircrew Requests (TASAR) and Dynamic Routes for Arrivals in Weather (DRAW).
K-9 Traffic Safety Resource Curriculum. Level C. Professional Guide.
ERIC Educational Resources Information Center
Governor's Highway Safety Program Office, Raleigh, NC.
One of four curriculum guides designed to aid teachers of grades K-9 in implementing a balanced, dynamic traffic safety program, this level C guide contains materials for teachers of grades 4-6. Four units in pedestrian, bicycle, school bus, and passenger safety are presented, and minicycle and optional farm vehicle safety units are introduced.…
Evaluation of the Efficacy of Simulation Games in Traffic Safety Education of Kindergarten Children.
ERIC Educational Resources Information Center
Renaud, Lise; Suissa, Samy
1989-01-01
Uses a post-test-only control group study to evaluate the effect of three different types of simulation games used to teach traffic safety to kindergarten students. Results suggest that games including role-playing/group dynamics and modeling/training can change attitudes and modify behavior with this age group. (FMW)
Satellite economics in the 1980's
NASA Astrophysics Data System (ADS)
Morgan, W. L.
1980-01-01
Satellite traffic, competition, and decreasing costs are discussed, as are capabilities in telecommunication (including entertainment) and computation. Also considered are future teleconferencing and telecommuting to offset the cost of transportation, the establishment of a manufacturer-to-user link for increased home minicomputer capability, and an increase of digital over analog traffic. It is suggested that transcontinental bulk traffic, high-speed data, and multipoint private networks will eventually be handled by satellites which are cost-insensitive to distance, readily match dynamically varying multipoint networks, and have uniformly wide bandwidths available to both major cities and isolated towns.
NASA Astrophysics Data System (ADS)
Palatella, Luigi; Trevisan, Anna; Rambaldi, Sandro
2013-08-01
Valuable information for estimating the traffic flow is obtained with current GPS technology by monitoring position and velocity of vehicles. In this paper, we present a proof of concept study that shows how the traffic state can be estimated using only partial and noisy data by assimilating them in a dynamical model. Our approach is based on a data assimilation algorithm, developed by the authors for chaotic geophysical models, designed to be equivalent but computationally much less demanding than the traditional extended Kalman filter. Here we show that the algorithm is even more efficient if the system is not chaotic and demonstrate by numerical experiments that an accurate reconstruction of the complete traffic state can be obtained at a very low computational cost by monitoring only a small percentage of vehicles.
Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun
2016-02-01
As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.
Dynamic Transfers Of Tasks Among Computers
NASA Technical Reports Server (NTRS)
Liu, Howard T.; Silvester, John A.
1989-01-01
Allocation scheme gives jobs to idle computers. Ideal resource-sharing algorithm should have following characteristics: Dynamics, decentralized, and heterogeneous. Proposed enhanced receiver-initiated dynamic algorithm (ERIDA) for resource sharing fulfills all above criteria. Provides method balancing workload among hosts, resulting in improvement in response time and throughput performance of total system. Adjusts dynamically to traffic load of each station.
Benefits Assessment of Algorithmically Combining Generic High Altitude Airspace Sectors
NASA Technical Reports Server (NTRS)
Bloem, Michael; Gupta, Pramod; Lai, Chok Fung; Kopardekar, Parimal
2009-01-01
In today's air traffic control operations, sectors that have traffic demand below capacity are combined so that fewer controller teams are required to manage air traffic. Controllers in current operations are certified to control a group of six to eight sectors, known as an area of specialization. Sector combinations are restricted to occur within areas of specialization. Since there are few sector combination possibilities in each area of specialization, human supervisors can effectively make sector combination decisions. In the future, automation and procedures will allow any appropriately trained controller to control any of a large set of generic sectors. The primary benefit of this will be increased controller staffing flexibility. Generic sectors will also allow more options for combining sectors, making sector combination decisions difficult for human supervisors. A sector-combining algorithm can assist supervisors as they make generic sector combination decisions. A heuristic algorithm for combining under-utilized air space sectors to conserve air traffic control resources has been described and analyzed. Analysis of the algorithm and comparisons with operational sector combinations indicate that this algorithm could more efficiently utilize air traffic control resources than current sector combinations. This paper investigates the benefits of using the sector-combining algorithm proposed in previous research to combine high altitude generic airspace sectors. Simulations are conducted in which all the high altitude sectors in a center are allowed to combine, as will be possible in generic high altitude airspace. Furthermore, the algorithm is adjusted to use a version of the simplified dynamic density (SDD) workload metric that has been modified to account for workload reductions due to automatic handoffs and Automatic Dependent Surveillance Broadcast (ADS-B). This modified metric is referred to here as future simplified dynamic density (FSDD). Finally, traffic demand sets with increased air traffic demand are used in the simulations to capture the expected growth in air traffic demand by the mid-term.
An Improved Memetic Algorithm for Break Scheduling
NASA Astrophysics Data System (ADS)
Widl, Magdalena; Musliu, Nysret
In this paper we consider solving a complex real life break scheduling problem. This problem of high practical relevance arises in many working areas, e.g. in air traffic control and other fields where supervision personnel is working. The objective is to assign breaks to employees such that various constraints reflecting legal demands or ergonomic criteria are satisfied and staffing requirement violations are minimised.
Quality of head injury coding from autopsy reports with AIS © 2005 update 2008.
Schick, Sylvia; Humrich, Anton; Graw, Matthias
2018-02-28
ABSTACT Objective: Coding injuries from autopsy reports of traffic accident victims according to Abbreviated Injury Scale AIS © 2005 update 2008 [1] is quite time consuming. The suspicion arose, that many issues leading to discussion between coder and control reader were based on information required by the AIS that was not documented in the autopsy reports. To quantify this suspicion, we introduced an AIS-detail-indicator (AIS-DI). To each injury in the AIS Codebook one letter from A to N was assigned indicating the level of detail. Rules were formulated to receive repeatable assignments. This scheme was applied to a selection of 149 multiply injured traffic fatalities. The frequencies of "not A" codes were calculated for each body region and it was analysed, why the most detailed level A had not been coded. As a first finding, the results of the head region are presented. 747 AIS head injury codes were found in 137 traffic fatalities, and 60% of these injuries were coded with an AIS-DI of level A. There are three different explanations for codes of AIS-DI "not A": Group 1 "Missing information in autopsy report" (5%), Group 2 "Clinical data required by AIS" (20%), and Group 3 "AIS system determined" (15%). Groups 1 and 2 show consequences for the ISS in 25 cases. Other body regions might perform differently. The AIS-DI can indicate the quality of the underlying data basis and, depending on the aims of different AIS users it can be a helpful tool for quality checks.
Evacuee Compliance Behavior Analysis using High Resolution Demographic Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei; Han, Lee; Liu, Cheng
2014-01-01
The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic trafficmore » simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.« less
Comparative analysis of dynamic pricing strategies for managed lanes.
DOT National Transportation Integrated Search
2015-06-01
The objective of this research is to investigate and compare the performances of different : dynamic pricing strategies for managed lanes facilities. These pricing strategies include real-time : traffic responsive methods, as well as refund options a...
Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng
2017-04-10
This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.
Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng
2017-01-01
This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks. PMID:28394270
Fan, Yaxin; Zhu, Xinyan; Guo, Wei; Guo, Tao
2018-01-01
The analysis of traffic collisions is essential for urban safety and the sustainable development of the urban environment. Reducing the road traffic injuries and the financial losses caused by collisions is the most important goal of traffic management. In addition, traffic collisions are a major cause of traffic congestion, which is a serious issue that affects everyone in the society. Therefore, traffic collision analysis is essential for all parties, including drivers, pedestrians, and traffic officers, to understand the road risks at a finer spatio-temporal scale. However, traffic collisions in the urban context are dynamic and complex. Thus, it is important to detect how the collision hotspots evolve over time through spatio-temporal clustering analysis. In addition, traffic collisions are not isolated events in space. The characteristics of the traffic collisions and their surrounding locations also present an influence of the clusters. This work tries to explore the spatio-temporal clustering patterns of traffic collisions by combining a set of network-constrained methods. These methods were tested using the traffic collision data in Jianghan District of Wuhan, China. The results demonstrated that these methods offer different perspectives of the spatio-temporal clustering patterns. The weighted network kernel density estimation provides an intuitive way to incorporate attribute information. The network cross K-function shows that there are varying clustering tendencies between traffic collisions and different types of POIs. The proposed network differential Local Moran’s I and network local indicators of mobility association provide straightforward and quantitative measures of the hotspot changes. This case study shows that these methods could help researchers, practitioners, and policy-makers to better understand the spatio-temporal clustering patterns of traffic collisions. PMID:29672551
Integration of Weather Avoidance and Traffic Separation
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.
2011-01-01
This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction
Studies of vehicle overtaking dynamics and its influence on traffic flow at a bidirectional road
NASA Astrophysics Data System (ADS)
Echab, H.; Marzoug, R.; Lakouari, N.; Ez-Zahraouy, H.
For the purposes of optimizing traffic flow composed of different types of vehicles, it is important to understand the interactions between them. This paper proposes a cellular automata model to investigate a bidirectional two-lane traffic flow under the periodic boundary condition. The vehicle flux and the phase diagrams of the system in the (ρ1,ρ2) space are constructed by applying two different overtaking models (symmetric, asymmetric). The inter-lane correlation and the overtaking frequency are also studied. The simulation results show that the variation of the density of one lane has an apparent influence on the traffic of the adjacent lane. Furthermore, it is found that the phase diagram on both models is classified into several regions. Thus, for the symmetric model, as the overtaking probability increases, the traffic on the system becomes better. Likewise, the results also indicate that the asymmetric model can effectively enhance the traffic capacity and alleviate the congested state.
Modeling self-consistent multi-class dynamic traffic flow
NASA Astrophysics Data System (ADS)
Cho, Hsun-Jung; Lo, Shih-Ching
2002-09-01
In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.
A cellular automaton model for ship traffic flow in waterways
NASA Astrophysics Data System (ADS)
Qi, Le; Zheng, Zhongyi; Gang, Longhui
2017-04-01
With the development of marine traffic, waterways become congested and more complicated traffic phenomena in ship traffic flow are observed. It is important and necessary to build a ship traffic flow model based on cellular automata (CAs) to study the phenomena and improve marine transportation efficiency and safety. Spatial discretization rules for waterways and update rules for ship movement are two important issues that are very different from vehicle traffic. To solve these issues, a CA model for ship traffic flow, called a spatial-logical mapping (SLM) model, is presented. In this model, the spatial discretization rules are improved by adding a mapping rule. And the dynamic ship domain model is considered in the update rules to describe ships' interaction more exactly. Take the ship traffic flow in the Singapore Strait for example, some simulations were carried out and compared. The simulations show that the SLM model could avoid ship pseudo lane-change efficiently, which is caused by traditional spatial discretization rules. The ship velocity change in the SLM model is consistent with the measured data. At finally, from the fundamental diagram, the relationship between traffic ability and the lengths of ships is explored. The number of ships in the waterway declines when the proportion of large ships increases.
An investigation of driver distraction near the tipping point of traffic flow stability.
Cooper, Joel M; Vladisavljevic, Ivana; Medeiros-Ward, Nathan; Martin, Peter T; Strayer, David L
2009-04-01
The purpose of this study was to explore the interrelationship between driver distraction and characteristics of driver behavior associated with reduced highway traffic efficiency. Research on the three-phase traffic theory and on behavioral driving suggests that a number of characteristics associated with efficient traffic flow may be affected by driver distraction. Previous studies have been limited, however, by the fact that researchers typically do not allow participants to change lanes, nor do they account for the impact of varying traffic states on driving performance. Participants drove in three simulated environments with differing traffic congestion while both using and not using a cell phone. Instructed only to obey the speed limit, participants were allowed to vary driving behaviors, such as those involving forward following distance, speed, and lane-changing frequency. Both driver distraction and traffic congestion were found to significantly affect lane change frequency, mean speed, and the likelihood of remaining behind a slower-moving lead vehicle. This research suggests that the behavioral profile of "cell phone drivers," which is often described as compensatory, may have far-reaching and unexpected consequences for traffic efficiency. By considering the dynamic interplay between characteristics of traffic flow and driver behavior, this research may inform both public policy regarding in-vehicle cell phone use and future investigations of driving behavior.
NASA Astrophysics Data System (ADS)
Weinbruch, Stephan; Worringen, Annette; Ebert, Martin; Scheuvens, Dirk; Kandler, Konrad; Pfeffer, Ulrich; Bruckmann, Peter
2014-12-01
The contribution of the three traffic-related components exhaust, abrasion, and resuspension to kerbside and urban background PM10 and PM1 levels was quantified based on the analysis of individual particles by scanning electron microscopy. A total of 160 samples was collected on 38 days between February and September 2009 at a kerbside and an urban background station in the urban/industrial Ruhr area (Germany). Based on size, morphology, chemical composition and stability under electron bombardment, the 111,003 particles studied in detail were classified into the following 14 particle classes: traffic/exhaust, traffic/abrasion, traffic/resuspension, carbonaceous/organic, industry/metallurgy, industry/power plants, secondary particles, (aged) sea salt, silicates, Ca sulfates, carbonates, Fe oxides/hydroxides, biological particles, and other particles. The traffic/exhaust component consists predominantly of externally mixed soot particles and soot internally mixed with secondary particles. The traffic/abrasion component contains all particles with characteristic tracer elements (Fe, Cu, Ba, Sb, Zn) for brake and tire abrasion. The traffic/resuspension component is defined by the mixing state and comprises all internally mixed particles with a high proportion of silicates or Fe oxides/hydroxides which contain soot or abrasion particles as minor constituent. In addition, silicates and Fe oxides/hydroxides internally mixed with chlorine and sulphur containing particles were also assigned to the traffic/resuspension component. The total contribution of traffic to PM10 was found to be 27% at the urban background station and 48% at the kerbside station, the corresponding values for PM1 are 15% and 39%. These values lie within the range reported in previous literature. The relative share of the different traffic components for PM10 at the kerbside station was 27% exhaust, 15% abrasion, and 58% resuspension (38%, 8%, 54% for PM1). For the urban background, the following relative shares were obtained for PM10: 22% exhaust, 22% abrasion and 56% resuspension (40%, 27%, 33% for PM1). Compared to previous publications we have observed a significantly lower portion of exhaust particles and a significantly higher portion of resuspension particles. The high abundance of resuspension particles underlines their significance for the observed adverse health effects of traffic emissions and for mitigation measures.
Effect of velocity-dependent friction on multiple-vehicle collisions in traffic flow
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2017-01-01
We present the dynamic model for the multiple-vehicle collisions to take into account the velocity-dependent friction force. We study the effect of the velocity-dependent friction on the chain-reaction crash on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle and the friction force depends highly on the vehicular speed. The first crash may induce more collisions. We investigate whether or not the first collision induces the multiple-vehicle collisions, numerically and analytically. The dynamic transitions occur from no collisions, through a single collision and double collisions, to multiple collisions with decreasing the headway. We explore the effect of the velocity-dependent friction on the dynamic transitions and the region maps in the multiple-vehicle collisions.
DOT National Transportation Integrated Search
2008-05-01
This study concerns the development and evaluation of a dynamic speed monitoring (DSM) system for use at rural intersections. The purpose of the DSM system is to give traffic speed feedback to drivers via an advisory sign, with the goals of improving...
Modeling and formal analysis of urban road traffic
NASA Astrophysics Data System (ADS)
Avram, Camelia; Machado, José; Aştilean, Adina
2013-10-01
Modern life in cities leads to complex urban traffic road and, sometimes, to go from one point to another, in a city, is a hard and very complex task. The use of assisted systems for helping drivers on their task of reaching the desired destination is being common, mainly systems like GPS location systems or other similar systems. The main gap of those systems is that they are not able to assist drivers when some unexpected changes occur, like accidents, or another unexpected situations. In this context, it would be desirable to have a dynamic system to inform the drivers, about everything that is happening "online". This work is inserted in this context and the work presented here is one part of a bigger project that has, as main goal, to be a dynamic system for assisting drivers under hard conditions of urban road traffic. In this paper is modeled, and formally analyzed, the intersection of four street segments, in order to take some considerations about this subject. This paper presents the model of the considered system, using timed automata formalism. The validation and verification of the road traffic model it is realized using UPPAAL model-checker.
Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity.
Kesting, Arne; Treiber, Martin; Helbing, Dirk
2010-10-13
With an increasing number of vehicles equipped with adaptive cruise control (ACC), the impact of such vehicles on the collective dynamics of traffic flow becomes relevant. By means of simulation, we investigate the influence of variable percentages of ACC vehicles on traffic flow characteristics. For simulating the ACC vehicles, we propose a new car-following model that also serves as the basis of an ACC implementation in real cars. The model is based on the intelligent driver model (IDM) and inherits its intuitive behavioural parameters: desired velocity, acceleration, comfortable deceleration and desired minimum time headway. It eliminates, however, the sometimes unrealistic behaviour of the IDM in cut-in situations with ensuing small gaps that regularly are caused by lane changes of other vehicles in dense or congested traffic. We simulate the influence of different ACC strategies on the maximum capacity before breakdown and the (dynamic) bottleneck capacity after breakdown. With a suitable strategy, we find sensitivities of the order of 0.3, i.e. 1 per cent more ACC vehicles will lead to an increase in the capacities by about 0.3 per cent. This sensitivity multiplies when considering travel times at actual breakdowns.
Kim, Dae-Hwan; Ramjan, Lucie M; Mak, Kwok-Kei
2016-01-01
Traffic safety is a significant public health challenge, and vehicle crashes account for the majority of injuries. This study aims to identify whether drivers' characteristics and past traffic violations may predict vehicle crashes in Korea. A total of 500,000 drivers were randomly selected from the 11.6 million driver records of the Ministry of Land, Transport and Maritime Affairs in Korea. Records of traffic crashes were obtained from the archives of the Korea Insurance Development Institute. After matching the past violation history for the period 2004-2005 with the number of crashes in year 2006, a total of 488,139 observations were used for the analysis. Zero-inflated negative binomial model was used to determine the incident risk ratio (IRR) of vehicle crashes by past violations of individual drivers. The included covariates were driver's age, gender, district of residence, vehicle choice, and driving experience. Drivers violating (1) a hit-and-run or drunk driving regulation at least once and (2) a signal, central line, or speed regulation more than once had a higher risk of a vehicle crash with respective IRRs of 1.06 and 1.15. Furthermore, female gender, a younger age, fewer years of driving experience, and middle-sized vehicles were all significantly associated with a higher likelihood of vehicle crashes. Drivers' demographic characteristics and past traffic violations could predict vehicle crashes in Korea. Greater resources should be assigned to the provision of traffic safety education programs for the high-risk driver groups.
Modeling left-turn crash occurrence at signalized intersections by conflicting patterns.
Wang, Xuesong; Abdel-Aty, Mohamed
2008-01-01
In order to better understand the underlying crash mechanisms, left-turn crashes occurring at 197 four-legged signalized intersections over 6 years were classified into nine patterns based on vehicle maneuvers and then were assigned to intersection approaches. Crash frequency of each pattern was modeled at the approach level by mainly using Generalized Estimating Equations (GEE) with the Negative Binomial as the link function to account for the correlation among the crash data. GEE with a binomial logit link function was also applied for patterns with fewer crashes. The Cumulative Residuals test shows that, for correlated left-turn crashes, GEE models usually outperformed basic Negative Binomial models. The estimation results show that there are obvious differences in the factors that cause the occurrence of different left-turn collision patterns. For example, for each pattern, the traffic flows to which the colliding vehicles belong are identified to be significant. The width of the crossing distance (represented by the number of through lanes on the opposing approach of the left-turning traffic) is associated with more left-turn traffic colliding with opposing through traffic (Pattern 5), but with less left-turning traffic colliding with near-side crossing through traffic (Pattern 8). The safety effectiveness of the left-turning signal is not consistent for different crash patterns; "protected" phasing is correlated with fewer Pattern 5 crashes, but with more Pattern 8 crashes. The study indicates that in order to develop efficient countermeasures for left-turn crashes and improve safety at signalized intersections, left-turn crashes should be considered in different patterns.
The role of traffic noise on the association between air pollution and children's lung function.
Franklin, Meredith; Fruin, Scott
2017-08-01
Although it has been shown that traffic-related air pollution adversely affects children's lung function, few studies have examined the influence of traffic noise on this association, despite both sharing a common source. Estimates of noise exposure (L dn, dB), and freeway and non-freeway emission concentrations of oxides of nitrogen (NO x , ppb) were spatially assigned to children in Southern California who were tested for forced vital capacity (FVC, n=1345), forced expiratory volume in 1s, (FEV 1, n=1332), and asthma. The associations between traffic-related NO x and these outcomes, with and without adjustment for noise, were examined using mixed effects models. Adjustment for noise strengthened the association between NO x and reduced lung function. A 14.5mL (95% CI -40.0, 11.0mL) decrease in FVC per interquartile range (13.6 ppb) in freeway NO x was strengthened to a 34.6mL decrease after including a non-linear function of noise (95% CI -66.3, -2.78mL). Similarly, a 6.54mL decrease in FEV 1 (95% CI -28.3, 15.3mL) was strengthened to a 21.1mL decrease (95% CI -47.6, 5.51) per interquartile range in freeway NO x . Our results indicate that where possible, noise should be included in epidemiological studies of the association between traffic-related air pollution on lung function. Without taking noise into account, the detrimental effects of traffic-related pollution may be underestimated. Copyright © 2017 Elsevier Inc. All rights reserved.
Pan, Long; Yao, Enjian; Yang, Yang
2016-12-01
With the rapid development of urbanization and motorization in China, traffic-related air pollution has become a major component of air pollution which constantly jeopardizes public health. This study proposes an integrated framework for estimating the concentration of traffic-related air pollution with real-time traffic and basic meteorological information and also for further evaluating the impact of traffic-related air pollution. First, based on the vehicle emission factor models sensitive to traffic status, traffic emissions are calculated according to the real-time link-based average traffic speed, traffic volume, and vehicular fleet composition. Then, based on differences in meteorological conditions, traffic pollution sources are divided into line sources and point sources, and the corresponding methods to determine the dynamic affecting areas are also proposed. Subsequently, with basic meteorological data, Gaussian dispersion model and puff integration model are applied respectively to estimate the concentration of traffic-related air pollution. Finally, the proposed estimating framework is applied to calculate the distribution of CO concentration in the main area of Beijing, and the population exposure is also calculated to evaluate the impact of traffic-related air pollution on public health. Results show that there is a certain correlation between traffic indicators (i.e., traffic speed and traffic intensity) of the affecting area and traffic-related CO concentration of the target grid, which indicates the methods to determine the affecting areas are reliable. Furthermore, the reliability of the proposed estimating framework is verified by comparing the predicted and the observed ambient CO concentration. In addition, results also show that the traffic-related CO concentration is higher in morning and evening peak hours, and has a heavier impact on public health within the Fourth Ring Road of Beijing due to higher population density and higher CO concentration under calm wind condition in this area. Copyright © 2016 Elsevier Ltd. All rights reserved.
A microcomputer based traffic evacuation modeling system for emergency planning application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathi, A.K.
1994-12-01
Vehicular evacuation is one of the major and often preferred protective action options available for emergency management in a real or anticipated disaster. Computer simulation models of evacuation traffic flow are used to estimate the time required for the affected populations to evacuate to safer areas, to evaluate effectiveness of vehicular evacuations as a protective action option. and to develop comprehensive evacuation plans when required. Following a review of the past efforts to simulate traffic flow during emergency evacuations, an overview of the key features in Version 2.0 of the Oak Ridge Evacuation Modeling System (OREMS) are presented in thismore » paper. OREMS is a microcomputer-based model developed to simulate traffic flow during regional emergency evacuations. OREMS integrates a state-of-the-art dynamic traffic flow and simulation model with advanced data editing and output display programs operating under a MS-Windows environment.« less
Classification of Traffic Related Short Texts to Analyse Road Problems in Urban Areas
NASA Astrophysics Data System (ADS)
Saldana-Perez, A. M. M.; Moreno-Ibarra, M.; Tores-Ruiz, M.
2017-09-01
The Volunteer Geographic Information (VGI) can be used to understand the urban dynamics. In the classification of traffic related short texts to analyze road problems in urban areas, a VGI data analysis is done over a social media's publications, in order to classify traffic events at big cities that modify the movement of vehicles and people through the roads, such as car accidents, traffic and closures. The classification of traffic events described in short texts is done by applying a supervised machine learning algorithm. In the approach users are considered as sensors which describe their surroundings and provide their geographic position at the social network. The posts are treated by a text mining process and classified into five groups. Finally, the classified events are grouped in a data corpus and geo-visualized in the study area, to detect the places with more vehicular problems.
An extended macro model accounting for acceleration changes with memory and numerical tests
NASA Astrophysics Data System (ADS)
Cheng, Rongjun; Ge, Hongxia; Sun, Fengxin; Wang, Jufeng
2018-09-01
Considering effect of acceleration changes with memory, an improved continuum model of traffic flow is proposed in this paper. By applying the linear stability theory, we derived the new model's linear stability condition. Through nonlinear analysis, the KdV-Burgers equation is derived to describe the propagating behavior of traffic density wave near the neutral stability line. Numerical simulation is carried out to study the extended traffic flow model, which explores how acceleration changes with memory affected each car's velocity, density and fuel consumption and exhaust emissions. Numerical results demonstrate that acceleration changes with memory have significant negative effect on dynamic characteristic of traffic flow. Furthermore, research results verify that the effect of acceleration changes with memory will deteriorate the stability of traffic flow and increase cars' total fuel consumptions and emissions during the whole evolution of small perturbation.
Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting
Ming-jun, Deng; Shi-ru, Qu
2015-01-01
Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting. PMID:26779258
NASA Technical Reports Server (NTRS)
Edwards, Tamsyn El; Martin, Lynne; Bienert, Nancy; Mercer, Joey
2017-01-01
In air traffic control, task demand and workload have important implications for the safety and efficiency of air traffic. Task demand is dynamic, however, research on demand transitions and associated controller perception and performance is limited. In addition, there is a comparatively restricted understanding of the influence of task demand transitions on workload and performance, in association with automation. This study used an air traffic control simulation to investigate the influence of task demand transitions and two conditions of varying automation, on workload and efficiency-related performance. Findings showed that a both the direction of the task demand variation, and the amount of automation, influenced the relationship between workload and performance. Further research is needed to enhance understanding of demand transition and workload history effects on operator experience and performance, in both air traffic control and other safety-critical domains.
NASA Astrophysics Data System (ADS)
Li, Chuan-Yao; Huang, Hai-Jun; Tang, Tie-Qiao
2017-05-01
In this paper, we investigate the effects of staggered shifts on the user equilibrium (UE) state in a single-entry traffic corridor with no late arrivals from the analytical and numerical perspective. The LWR (Lighthill-Whitham-Richards) model and the Greenshields' velocity-density function are used to describe the dynamic properties of traffic flow. Propositions for the properties of flow patterns in UE, and the quasi-analytic solutions for three possible situations in UE are deduced. Numerical tests are carried out to testify the analytical results, where the three-dimensional evolution diagram of traffic flow illustrates that shock and rarefaction wave exist in UE and the space-time diagram indicates that UE solutions satisfy the propagation properties of traffic flow. In addition, the cost curves show that the UE solutions satisfy the UE trip-timing condition.
Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting.
Deng, Ming-jun; Qu, Shi-ru
2015-01-01
Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting.
Stability analysis and wave dynamics of an extended hybrid traffic flow model
NASA Astrophysics Data System (ADS)
Wang, Yu-Qing; Zhou, Chao-Fan; Li, Wei-Kang; Yan, Bo-Wen; Jia, Bin; Wang, Ji-Xin
2018-02-01
The stability analysis and wave dynamic properties of an extended hybrid traffic flow model, WZY model, are intensively studied in this paper. The linear stable condition obtained by the linear stability analysis is presented. Besides, by means of analyzing Korteweg-de Vries equation, we present soliton waves in the metastable region. Moreover, the multiscale perturbation technique is applied to derive the traveling wave solution of the model. Furthermore, by means of performing Darboux transformation, the first-order and second-order doubly-periodic solutions and rational solutions are presented. It can be found that analytical solutions match well with numerical simulations.
Single wheel hub motor failures and their impact on vehicle and driver behaviour
NASA Astrophysics Data System (ADS)
Wanner, Daniel; Kreußlein, Maria; Augusto, Bruno; Drugge, Lars; Stensson Trigell, Annika
2016-10-01
This research work studies the impact of single wheel hub motor failures on the dynamic behaviour of electric vehicles and the corresponding driver reactions. An experimental study in a moving-base driving simulator is conducted to analyse the influence of single wheel hub motor failures for motorway speeds. Driver reaction times are derived from the measured data and discussed in their experimental context. The failure is rated objectively on the dynamic behaviour of the vehicle and compared to the subjective evaluation. Findings indicate that critical traffic situations impairing traffic safety can occur for motorway speeds. Clear counteractions by the drivers had to be taken.
Automated Flight Routing Using Stochastic Dynamic Programming
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time Inspired by Honey Bee Behavior
NASA Astrophysics Data System (ADS)
Wedde, Horst F.; Lehnhoff, Sebastian; van Bonn, Bernhard; Bay, Z.; Becker, S.; Böttcher, S.; Brunner, C.; Büscher, A.; Fürst, T.; Lazarescu, A. M.; Rotaru, E.; Senge, S.; Steinbach, B.; Yilmaz, F.; Zimmermann, T.
Traffic congestions have become a major problem in metropolitan areas world-wide, within and between cities, to an extent where they make driving and transportation times largely unpredictable. Due to the highly dynamic character of congestion building and dissolving this phenomenon appears even to resist a formal treatment. Static approaches, and even more their global management, have proven counterproductive in practice. Given the latest progress in VANET technology and the remarkable commercially driven efforts like in the European C2C consortium, or the VSC Project in the US, allow meanwhile to tackle various aspects of traffic regulation through VANET communication. In this paper we introduce a novel, completely decentralized multi-agent routing algorithm (termed BeeJamA) which we have derived from the foraging behavior of honey bees. It is highly dynamic, adaptive, robust, and scalable, and it allows for both avoiding congestions, and minimizing traveling times to individual destinations. Vehicle guidance is provided well ahead of every intersection, depending on the individual speeds. Thus strict deadlines are imposed on, and respected by, the BeeJamA algorithm. We report on extensive simulation experiments which show the superior performance of BeeJamA over conventional approaches.
The computer coordination method and research of inland river traffic based on ship database
NASA Astrophysics Data System (ADS)
Liu, Shanshan; Li, Gen
2018-04-01
A computer coordinated management method for inland river ship traffic is proposed in this paper, Get the inland ship's position, speed and other navigation information by VTS, building ship's statics and dynamic data bases, writing a program of computer coordinated management of inland river traffic by VB software, Automatic simulation and calculation of the meeting states of ships, Providing ship's long-distance collision avoidance information. The long-distance collision avoidance of ships will be realized. The results show that, Ships avoid or reduce meetings, this method can effectively control the macro collision avoidance of ships.
Real time assessment of dynamic loads on bridges.
DOT National Transportation Integrated Search
2013-05-01
Highway bridges are an important class of civil structures that are subject to continuously : acting and varying dynamic loads due to traffic. A large number of highway bridges in the US : (bridges on interstate highways or state highways which have ...
Evaluation of driver reactions for effective use of dynamic message signs in Richmond, Virginia.
DOT National Transportation Integrated Search
2010-02-01
Dynamic message signs (DMS) are used in conjunction with other media to communicate traffic conditions, general information, and recommended diversion strategies to motorists. Previous studies using loop detector data to estimate diversion rates attr...
Real-time estimation of incident delay in dynamic and stochastic networks
DOT National Transportation Integrated Search
1997-01-01
The ability to predict the link travel times is a necessary requirement for most intelligent transportation systems (ITS) applications such as route guidance systems. In an urban traffic environment, these travel times are dynamic and stochastic and ...
DOT National Transportation Integrated Search
2006-04-01
Little attention has been given to estimating dynamic travel demand in transportation planning in the past. However, when factors influencing travel are changing significantly over time such as with an approaching hurricane - dynamic demand and t...
A dynamic routing strategy with limited buffer on scale-free network
NASA Astrophysics Data System (ADS)
Wang, Yufei; Liu, Feng
2016-04-01
In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.
High-Speed Optical Wide-Area Data-Communication Network
NASA Technical Reports Server (NTRS)
Monacos, Steve P.
1994-01-01
Proposed fiber-optic wide-area network (WAN) for digital communication balances input and output flows of data with its internal capacity by routing traffic via dynamically interconnected routing planes. Data transmitted optically through network by wavelength-division multiplexing in synchronous or asynchronous packets. WAN implemented with currently available technology. Network is multiple-ring cyclic shuffle exchange network ensuring traffic reaches its destination with minimum number of hops.
Next-Generation WDM Network Design and Routing
NASA Astrophysics Data System (ADS)
Tsang, Danny H. K.; Bensaou, Brahim
2003-08-01
Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical Burst Switching - Support of Multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule Paper Submission Deadline: November 1, 2003 Notification to Authors: January 15, 2004 Final Manuscripts to Publisher: February 15, 2004 Publication of Focus Issue: February/March 2004
Next-Generation WDM Network Design and Routing
NASA Astrophysics Data System (ADS)
Tsang, Danny H. K.; Bensaou, Brahim
2003-10-01
Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical burst switching - Support of multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule - Paper Submission Deadline: November 1, 2003 - Notification to Authors: January 15, 2004 - Final Manuscripts to Publisher: February 15, 2004 - Publication of Focus Issue: February/March 2004
Next-Generation WDM Network Design and Routing
NASA Astrophysics Data System (ADS)
Tsang, Danny H. K.; Bensaou, Brahim
2003-09-01
Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical burst switching - Support of multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule - Paper Submission Deadline: November 1, 2003 - Notification to Authors: January 15, 2004 - Final Manuscripts to Publisher: February 15, 2004 - Publication of Focus Issue: February/March 2004
Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON
NASA Astrophysics Data System (ADS)
Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling
2017-12-01
WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.
Kahlert, Daniela; Schlicht, Wolfgang
2015-08-21
Traffic safety and pedestrian friendliness are considered to be important conditions for older people's motivation to walk through their environment. This study uses an experimental study design with computer-simulated living environments to investigate the effect of micro-scale environmental factors (parking spaces and green verges with trees) on older people's perceptions of both motivational antecedents (dependent variables). Seventy-four consecutively recruited older people were randomly assigned watching one of two scenarios (independent variable) on a computer screen. The scenarios simulated a stroll on a sidewalk, as it is 'typical' for a German city. In version 'A,' the subjects take a fictive walk on a sidewalk where a number of cars are parked partially on it. In version 'B', cars are in parking spaces separated from the sidewalk by grass verges and trees. Subjects assessed their impressions of both dependent variables. A multivariate analysis of covariance showed that subjects' ratings on perceived traffic safety and pedestrian friendliness were higher for Version 'B' compared to version 'A'. Cohen's d indicates medium (d = 0.73) and large (d = 1.23) effect sizes for traffic safety and pedestrian friendliness, respectively. The study suggests that elements of the built environment might affect motivational antecedents of older people's walking behavior.
Waiting endurance time estimation of electric two-wheelers at signalized intersections.
Huan, Mei; Yang, Xiao-bao
2014-01-01
The paper proposed a model for estimating waiting endurance times of electric two-wheelers at signalized intersections using survival analysis method. Waiting duration times were collected by video cameras and they were assigned as censored and uncensored data to distinguish between normal crossing and red-light running behavior. A Cox proportional hazard model was introduced, and variables revealing personal characteristics and traffic conditions were defined as covariates to describe the effects of internal and external factors. Empirical results show that riders do not want to wait too long to cross intersections. As signal waiting time increases, electric two-wheelers get impatient and violate the traffic signal. There are 12.8% of electric two-wheelers with negligible wait time. 25.0% of electric two-wheelers are generally nonrisk takers who can obey the traffic rules after waiting for 100 seconds. Half of electric two-wheelers cannot endure 49.0 seconds or longer at red-light phase. Red phase time, motor vehicle volume, and conformity behavior have important effects on riders' waiting times. Waiting endurance times would decrease with the longer red-phase time, the lower traffic volume, or the bigger number of other riders who run against the red light. The proposed model may be applicable in the design, management and control of signalized intersections in other developing cities.
Waiting Endurance Time Estimation of Electric Two-Wheelers at Signalized Intersections
Huan, Mei; Yang, Xiao-bao
2014-01-01
The paper proposed a model for estimating waiting endurance times of electric two-wheelers at signalized intersections using survival analysis method. Waiting duration times were collected by video cameras and they were assigned as censored and uncensored data to distinguish between normal crossing and red-light running behavior. A Cox proportional hazard model was introduced, and variables revealing personal characteristics and traffic conditions were defined as covariates to describe the effects of internal and external factors. Empirical results show that riders do not want to wait too long to cross intersections. As signal waiting time increases, electric two-wheelers get impatient and violate the traffic signal. There are 12.8% of electric two-wheelers with negligible wait time. 25.0% of electric two-wheelers are generally nonrisk takers who can obey the traffic rules after waiting for 100 seconds. Half of electric two-wheelers cannot endure 49.0 seconds or longer at red-light phase. Red phase time, motor vehicle volume, and conformity behavior have important effects on riders' waiting times. Waiting endurance times would decrease with the longer red-phase time, the lower traffic volume, or the bigger number of other riders who run against the red light. The proposed model may be applicable in the design, management and control of signalized intersections in other developing cities. PMID:24895659
An optimal routing strategy on scale-free networks
NASA Astrophysics Data System (ADS)
Yang, Yibo; Zhao, Honglin; Ma, Jinlong; Qi, Zhaohui; Zhao, Yongbin
Traffic is one of the most fundamental dynamical processes in networked systems. With the traditional shortest path routing (SPR) protocol, traffic congestion is likely to occur on the hub nodes on scale-free networks. In this paper, we propose an improved optimal routing (IOR) strategy which is based on the betweenness centrality and the degree centrality of nodes in the scale-free networks. With the proposed strategy, the routing paths can accurately bypass hub nodes in the network to enhance the transport efficiency. Simulation results show that the traffic capacity as well as some other indexes reflecting transportation efficiency are further improved with the IOR strategy. Owing to the significantly improved traffic performance, this study is helpful to design more efficient routing strategies in communication or transportation systems.
Web-based Traffic Noise Control Support System for Sustainable Transportation
NASA Astrophysics Data System (ADS)
Fan, Lisa; Dai, Liming; Li, Anson
Traffic noise is considered as one of the major pollutions that will affect our communities in the future. This paper presents a framework of web-based traffic noise control support system (WTNCSS) for a sustainable transportation. WTNCSS is to provide the decision makers, engineers and publics a platform to efficiently access the information, and effectively making decisions related to traffic control. The system is based on a Service Oriented Architecture (SOA) which takes the advantages of the convenience of World Wide Web system with the data format of XML. The whole system is divided into different modules such as the prediction module, ontology-based expert module and dynamic online survey module. Each module of the system provides a distinct information service to the decision support center through the HTTP protocol.
A SPATIOTEMPORAL APPROACH FOR HIGH RESOLUTION TRAFFIC FLOW IMPUTATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Lee; Chin, Shih-Miao; Hwang, Ho-Ling
Along with the rapid development of Intelligent Transportation Systems (ITS), traffic data collection technologies have been evolving dramatically. The emergence of innovative data collection technologies such as Remote Traffic Microwave Sensor (RTMS), Bluetooth sensor, GPS-based Floating Car method, automated license plate recognition (ALPR) (1), etc., creates an explosion of traffic data, which brings transportation engineering into the new era of Big Data. However, despite the advance of technologies, the missing data issue is still inevitable and has posed great challenges for research such as traffic forecasting, real-time incident detection and management, dynamic route guidance, and massive evacuation optimization, because themore » degree of success of these endeavors depends on the timely availability of relatively complete and reasonably accurate traffic data. A thorough literature review suggests most current imputation models, if not all, focus largely on the temporal nature of the traffic data and fail to consider the fact that traffic stream characteristics at a certain location are closely related to those at neighboring locations and utilize these correlations for data imputation. To this end, this paper presents a Kriging based spatiotemporal data imputation approach that is able to fully utilize the spatiotemporal information underlying in traffic data. Imputation performance of the proposed approach was tested using simulated scenarios and achieved stable imputation accuracy. Moreover, the proposed Kriging imputation model is more flexible compared to current models.« less
Improved Throughput with Cooperating Futuristic Airspace Management Components
NASA Technical Reports Server (NTRS)
Glaab, Patricia C.
2013-01-01
An experiment was conducted to integrate airspace management tools that would typically be confined to either the en route or the terminal airspace to explore the potential benefits of their communication to improve arrival capacity. A NAS-wide simulation was configured with a new concept component that used the information to reconfigure the terminal airspace to the capacity benefit of the airport. Reconfiguration included a dynamically expanding and contracting TRACON area and a varying number of active arrival runways, both automatically selected to accommodate predicted volume of traffic. ATL and DFW were selected for the study. Results showed significant throughput increase for scenarios that are considered to be over-capacity for current day airport configurations. During periods of sustained demand for ATL 2018, throughput increased by 26 operations per hour (30%) and average delay was reduced from 18 minutes to 8 minutes per flight when using the dynamic TRACON. Similar results were obtained for DFW with 2018 traffic levels and for ATL with 2006 traffic levels, but with lower benefits due to lower demand.
Packet Traffic Dynamics Near Onset of Congestion in Data Communication Network Model
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-05-01
The dominant technology of data communication networks is the Packet Switching Network (PSN). It is a complex technology organized as various hierarchical layers according to the International Standard Organization (ISO) Open Systems Interconnect (OSI) Reference Model. The Network Layer of the ISO OSI Reference Model is responsible for delivering packets from their sources to their destinations and for dealing with congestion if it arises in a network. Thus, we focus on this layer and present an abstraction of the Network Layer of the ISO OSI Reference Model. Using this abstraction we investigate how onset of traffic congestion is affected for various routing algorithms by changes in network connection topology. We study how aggregate measures of network performance depend on network connection topology and routing. We explore packets traffic spatio-temporal dynamics near the phase transition point from free flow to congestion for various network connection topologies and routing algorithms. We consider static and adaptive routings. We present selected simulation results.
Selective epidemic vaccination under the performant routing algorithms
NASA Astrophysics Data System (ADS)
Bamaarouf, O.; Alweimine, A. Ould Baba; Rachadi, A.; EZ-Zahraouy, H.
2018-04-01
Despite the extensive research on traffic dynamics and epidemic spreading, the effect of the routing algorithms strategies on the traffic-driven epidemic spreading has not received an adequate attention. It is well known that more performant routing algorithm strategies are used to overcome the congestion problem. However, our main result shows unexpectedly that these algorithms favor the virus spreading more than the case where the shortest path based algorithm is used. In this work, we studied the virus spreading in a complex network using the efficient path and the global dynamic routing algorithms as compared to shortest path strategy. Some previous studies have tried to modify the routing rules to limit the virus spreading, but at the expense of reducing the traffic transport efficiency. This work proposed a solution to overcome this drawback by using a selective vaccination procedure instead of a random vaccination used often in the literature. We found that the selective vaccination succeeded in eradicating the virus better than a pure random intervention for the performant routing algorithm strategies.
QUICR-learning for Multi-Agent Coordination
NASA Technical Reports Server (NTRS)
Agogino, Adrian K.; Tumer, Kagan
2006-01-01
Coordinating multiple agents that need to perform a sequence of actions to maximize a system level reward requires solving two distinct credit assignment problems. First, credit must be assigned for an action taken at time step t that results in a reward at time step t > t. Second, credit must be assigned for the contribution of agent i to the overall system performance. The first credit assignment problem is typically addressed with temporal difference methods such as Q-learning. The second credit assignment problem is typically addressed by creating custom reward functions. To address both credit assignment problems simultaneously, we propose the "Q Updates with Immediate Counterfactual Rewards-learning" (QUICR-learning) designed to improve both the convergence properties and performance of Q-learning in large multi-agent problems. QUICR-learning is based on previous work on single-time-step counterfactual rewards described by the collectives framework. Results on a traffic congestion problem shows that QUICR-learning is significantly better than a Q-learner using collectives-based (single-time-step counterfactual) rewards. In addition QUICR-learning provides significant gains over conventional and local Q-learning. Additional results on a multi-agent grid-world problem show that the improvements due to QUICR-learning are not domain specific and can provide up to a ten fold increase in performance over existing methods.
Effectiveness of safety and public service announcement messages on dynamic message signs.
DOT National Transportation Integrated Search
2014-07-01
The number of transportation agencies that use dynamic message signs (DMS) to provide traffic information to motorists has increased dramatically over the past four decades. This growing trend of DMS deployment is a reflection of the public interest ...
Exploring travelers' behavior in response to dynamic message signs (DMS) using a driving simulator.
DOT National Transportation Integrated Search
2013-10-01
This research studies the effectiveness of a dynamic message sign (DMS) using a driving : simulator. Over 100 subjects from different socio-economic and age groups were recruited to : drive the simulator under different traffic and driving conditions...
NASA Astrophysics Data System (ADS)
Iwamura, Yoshiro; Tanimoto, Jun
2018-02-01
To investigate an interesting question as to whether or not social dilemma structures can be found in a realistic traffic flow reproduced by a model, we built a new microscopic model in which an intentional driver may try lane-changing to go in front of other vehicles and may hamper others’ lane-changes. Our model consists of twofold parts; cellular automaton emulating a real traffic flow and evolutionary game theory to implement a driver’s decision making-process. Numerical results reveal that a social dilemma like the multi-player chicken game or prisoner’s dilemma game emerges depending on the traffic phase. This finding implies that a social dilemma, which has been investigated by applied mathematics so far, hides behind a traffic flow, which has been explored by fluid dynamics. Highlight - Complex system of traffic flow with consideration of driver’s decision making process is concerned. - A new model dovetailing cellular automaton with game theory is established. - Statistical result from numerical simulations reveals a social dilemma structure underlying traffic flow. - The social dilemma is triggered by a driver’s egocentric actions of lane-changing and hampering other’s lane-change.
Caselli, Federico; Corradi, Antonio
2018-01-01
The relevance of effective and efficient solutions for vehicle traffic surveillance is widely recognized in order to enable advanced strategies for traffic management, e.g., based on dynamically adaptive and decentralized traffic light management. However, most related solutions in the literature, based on the powerful enabler of cooperative vehicular communications, assume the complete penetration rate of connectivity/communication technologies (and willingness to participate in the collaborative surveillance service) over the targeted vehicle population, thus making them not applicable nowadays. The paper originally proposes an innovative solution for cooperative traffic surveillance based on vehicular communications capable of: (i) working with low penetration rates of the proposed technology and (ii) of collecting a large set of monitoring data about vehicle mobility in targeted areas of interest. The paper presents insights and lessons learnt from the design and implementation work of the proposed solution. Moreover, it reports extensive performance evaluation results collected on realistic simulation scenarios based on the usage of iTETRIS with real traces of vehicular traffic of the city of Bologna. The reported results show the capability of our proposal to consistently estimate the real vehicular traffic even with low penetration rates of our solution (only 10%). PMID:29522427
NASA Astrophysics Data System (ADS)
Treiber, Martin; Kesting, Arne; Helbing, Dirk
2006-07-01
We investigate the adaptation of the time headways in car-following models as a function of the local velocity variance, which is a measure of the inhomogeneity of traffic flow. We apply this mechanism to several car-following models and simulate traffic breakdowns in open systems with an on-ramp as bottleneck and in a closed ring road. Single-vehicle data and one-minute aggregated data generated by several virtual detectors show a semiquantitative agreement with microscopic and flow-density data from the Dutch freeway A9. This includes the observed distributions of the net time headways for free and congested traffic, the velocity variance as a function of density, and the fundamental diagram. The modal value of the time headway distribution is shifted by a factor of about 2 under congested conditions. Macroscopically, this corresponds to the capacity drop at the transition from free to congested traffic. The simulated fundamental diagram shows free, synchronized, and jammed traffic, and a wide scattering in the congested traffic regime. We explain this by a self-organized variance-driven process that leads to the spontaneous formation and decay of long-lived platoons even for a deterministic dynamics on a single lane.
Traffic and outdoor air pollution levels near residences and poorly controlled asthma in adults.
Meng, Ying-Ying; Wilhelm, Michelle; Rull, Rudolph P; English, Paul; Ritz, Beate
2007-05-01
Air pollution may exacerbate asthma. To investigate associations between traffic and outdoor air pollution levels near residences and poorly controlled asthma among adults diagnosed as having asthma in Los Angeles and San Diego counties, California. We estimated traffic density within 500 ft of 2001 California Health Interview Survey respondents' reported residential cross-street intersections. Additionally, we assigned annual average concentrations of ozone, nitrogen dioxide, particulate matter 2.5 and 10 micrometers or less in diameter, and carbon monoxide measured at government monitoring stations within a 5-mile radius of the reported residential cross-street intersections. We observed a 2-fold increase in poorly controlled asthma (odds ratio [OR], 2.11; 95% confidence interval [CI], 1.38-3.23) among asthmatic adults in the highest quintile of traffic density after adjusting for age, sex, race, and poverty. Similar increases were seen for nonelderly adults, men, and women, although associations seemed strongest in elderly adults (OR, 3.00; 95% CI, 1.13-7.91). Ozone exposures were associated with poorly controlled asthma among elderly adults (OR, 1.70; 95% CI, 0.91-3.18 per 1 pphm) and men (OR, 1.76; 95% CI, 1.05-2.94 per 1 pphm), whereas particulate matter 10 micrometers or less seemed to affect primarily women (OR, 2.06; 95% CI, 1.17-3.61), even at levels below the national air quality standard. Heavy traffic and high air pollution levels near residences are associated with poorly controlled asthma.
NASA Astrophysics Data System (ADS)
Davis, L. C.
2015-03-01
The Texas A&M Transportation Institute estimated that traffic congestion cost the United States 121 billion in 2011 (the latest data available). The cost is due to wasted time and fuel. In addition to accidents and road construction, factors contributing to congestion include large demand, instability of high-density free flow and selfish behavior of drivers, which produces self-organized traffic bottlenecks. Extensive data collected on instrumented highways in various countries have led to a better understanding of traffic dynamics. From these measurements, Boris Kerner and colleagues developed a new theory called three-phase theory. They identified three major phases of flow observed in the data: free flow, synchronous flow and wide moving jams. The intermediate phase is called synchronous because vehicles in different lanes tend to have similar velocities. This congested phase, characterized by lower velocities yet modestly high throughput, frequently occurs near on-ramps and lane reductions. At present there are only two widely used methods of congestion mitigation: ramp metering and the display of current travel-time information to drivers. To find more effective methods to reduce congestion, researchers perform large-scale simulations using models based on the new theories. An algorithm has been proposed to realize Wardrop equilibria with real-time route information. Such equilibria have equal travel time on alternative routes between a given origin and destination. An active area of current research is the dynamics of connected vehicles, which communicate wirelessly with other vehicles and the surrounding infrastructure. These systems show great promise for improving traffic flow and safety.
Koehoorn, Mieke; Tamburic, Lillian; Davies, Hugh W.; Brauer, Michael
2014-01-01
Background: The risk of rheumatoid arthritis (RA) has been associated with living near traffic; however, there is evidence suggesting that air pollution may not be responsible for this association. Noise, another traffic-generated exposure, has not been studied as a risk factor for RA. Objectives: We investigated proximity to traffic, ambient air pollution, and community noise in relation to RA in the Vancouver and Victoria regions of British Columbia, Canada. Methods: Cases and controls were identified in a cohort of adults that was assembled using health insurance registration records. Incident RA cases from 1999 through 2002 were identified by diagnostic codes in combination with prescriptions and type of physician (e.g., rheumatologist). Controls were matched to RA cases by age and sex. Environmental exposures were assigned to each member of the study population by their residential postal code(s). We estimated relative risks using conditional logistic regression, with additional adjustment for median income at the postal code. Results: RA incidence was increased with proximity to traffic, with an odds ratio (OR) of 1.37 (95% CI: 1.11, 1.68) for residence ≤ 50 m from a highway compared with residence > 150 m away. We found no association with traffic-related exposures such as PM2.5, nitrogen oxides, or noise. Ground-level ozone, which was highest in suburban areas, was associated with an increased risk of RA (OR = 1.26; 95% CI: 1.18, 1.36 per interquartile range increase). Conclusions: Our study confirms a previously observed association of RA risk with proximity to traffic and suggests that neither noise levels nor traffic-related air pollutants are responsible for this relationship. Additional investigation of neighborhood and individual correlates of residence near roadways may provide new insight into risk factors for RA. Citation: De Roos AJ, Koehoorn M, Tamburic L, Davies HW, Brauer M. 2014. Proximity to traffic, ambient air pollution, and community noise in relation to incident rheumatoid arthritis. Environ Health Perspect 122:1075–1080; http://dx.doi.org/10.1289/ehp.1307413 PMID:24905961
NASA Astrophysics Data System (ADS)
Ramdhani, M. N.; Baihaqi, I.; Siswanto, N.
2018-04-01
Waste collection and disposal become a major problem for many metropolitan cities. Growing population, limited vehicles, and increased road traffic make the waste transportation become more complex. Waste collection involves some key considerations, such as vehicle assignment, vehicle routes, and vehicle scheduling. In the scheduling process, each vehicle has a scheduled departure that serve each route. Therefore, vehicle’s assignments should consider the time required to finish one assigment on that route. The objective of this study is to minimize the number of vehicles needed to serve all routes by developing a mathematical model which uses assignment problem approach. The first step is to generated possible routes from the existing routes, followed by vehicle assignments for those certain routes. The result of the model shows fewer vehicles required to perform waste collection asa well as the the number of journeys that the vehicle to collect the waste to the landfill. The comparison of existing conditions with the model result indicates that the latter’s has better condition than the existing condition because each vehicle with certain route has an equal workload, all the result’s model has the maximum of two journeys for each route.
Self-control of traffic lights and vehicle flows in urban road networks
NASA Astrophysics Data System (ADS)
Lämmer, Stefan; Helbing, Dirk
2008-04-01
Based on fluid-dynamic and many-particle (car-following) simulations of traffic flows in (urban) networks, we study the problem of coordinating incompatible traffic flows at intersections. Inspired by the observation of self-organized oscillations of pedestrian flows at bottlenecks, we propose a self-organization approach to traffic light control. The problem can be treated as a multi-agent problem with interactions between vehicles and traffic lights. Specifically, our approach assumes a priority-based control of traffic lights by the vehicle flows themselves, taking into account short-sighted anticipation of vehicle flows and platoons. The considered local interactions lead to emergent coordination patterns such as 'green waves' and achieve an efficient, decentralized traffic light control. While the proposed self-control adapts flexibly to local flow conditions and often leads to non-cyclical switching patterns with changing service sequences of different traffic flows, an almost periodic service may evolve under certain conditions and suggests the existence of a spontaneous synchronization of traffic lights despite the varying delays due to variable vehicle queues and travel times. The self-organized traffic light control is based on an optimization and a stabilization rule, each of which performs poorly at high utilizations of the road network, while their proper combination reaches a superior performance. The result is a considerable reduction not only in the average travel times, but also of their variation. Similar control approaches could be applied to the coordination of logistic and production processes.
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.
Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan
2018-02-02
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management
2018-01-01
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network. PMID:29393884
Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate.
Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing
2017-07-19
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.
Supporting the Future Air Traffic Control Projection Process
NASA Technical Reports Server (NTRS)
Davison, Hayley J.; Hansman, R. John, Jr.
2002-01-01
In air traffic control, projecting what the air traffic situation will be over the next 30 seconds to 30 minutes is a key process in identifying conflicts that may arise so that evasive action can be taken upon discovery of these conflicts. A series of field visits in the Boston and New York terminal radar approach control (TRACON) facilities and in the oceanic air traffic control facilities in New York and Reykjavik, Iceland were conducted to investigate the projection process in two different ATC domains. The results from the site visits suggest that two types of projection are currently used in ATC tasks, depending on the type of separation minima and/or traffic restriction and information display used by the controller. As technologies improve and procedures change, care should be taken by designers to support projection through displays, automation, and procedures. It is critical to prevent time/space mismatches between interfaces and restrictions. Existing structure in traffic dynamics could be utilized to provide controllers with useful behavioral models on which to build projections. Subtle structure that the controllers are unable to internalize could be incorporated into an ATC projection aid.
A Vision and Roadmap for Increasing User Autonomy in Flight Operations in the National Airspace
NASA Technical Reports Server (NTRS)
Cotton, William B.; Hilb, Robert; Koczo, Stefan; Wing, David
2016-01-01
The purpose of Air Transportation is to move people and cargo safely, efficiently and swiftly to their destinations. The companies and individuals who use aircraft for this purpose, the airspace users, desire to operate their aircraft according to a dynamically optimized business trajectory for their specific mission and operational business model. In current operations, the dynamic optimization of business trajectories is limited by constraints built into operations in the National Airspace System (NAS) for reasons of safety and operational needs of the air navigation service providers. NASA has been developing and testing means to overcome many of these constraints and permit operations to be conducted closer to the airspace user's changing business trajectory as conditions unfold before and during the flight. A roadmap of logical steps progressing toward increased user autonomy is proposed, beginning with NASA's Traffic Aware Strategic Aircrew Requests (TASAR) concept that enables flight crews to make informed, deconflicted flight-optimization requests to air traffic control. These steps include the use of data communications for route change requests and approvals, integration with time-based arrival flow management processes under development by the Federal Aviation Administration (FAA), increased user authority for defining and modifying downstream, strategic portions of the trajectory, and ultimately application of self-separation. This progression takes advantage of existing FAA NextGen programs and RTCA standards development, and it is designed to minimize the number of hardware upgrades required of airspace users to take advantage of these advanced capabilities to achieve dynamically optimized business trajectories in NAS operations. The roadmap is designed to provide operational benefits to first adopters so that investment decisions do not depend upon a large segment of the user community becoming equipped before benefits can be realized. The issues of equipment certification and operational approval of new procedures are addressed in a way that minimizes their impact on the transition by deferring a change in the assignment of separation responsibility until a large body of operational data is available to support the safety case for this change in the last roadmap step.This paper will relate the roadmap steps to ongoing activities to clarify the economics-based transition to these technologies for operational use.
[Dynamic road vehicle emission inventory simulation study based on real time traffic information].
Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan
2012-11-01
The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.
Two-dimensional priority-based dynamic resource allocation algorithm for QoS in WDM/TDM PON networks
NASA Astrophysics Data System (ADS)
Sun, Yixin; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Rao, Lan
2018-01-01
Wavelength division multiplexing/time division multiplexing (WDM/TDM) passive optical networks (PON) is being viewed as a promising solution for delivering multiple services and applications. The hybrid WDM / TDM PON uses the wavelength and bandwidth allocation strategy to control the distribution of the wavelength channels in the uplink direction, so that it can ensure the high bandwidth requirements of multiple Optical Network Units (ONUs) while improving the wavelength resource utilization. Through the investigation of the presented dynamic bandwidth allocation algorithms, these algorithms can't satisfy the requirements of different levels of service very well while adapting to the structural characteristics of mixed WDM / TDM PON system. This paper introduces a novel wavelength and bandwidth allocation algorithm to efficiently utilize the bandwidth and support QoS (Quality of Service) guarantees in WDM/TDM PON. Two priority based polling subcycles are introduced in order to increase system efficiency and improve system performance. The fixed priority polling subcycle and dynamic priority polling subcycle follow different principles to implement wavelength and bandwidth allocation according to the priority of different levels of service. A simulation was conducted to study the performance of the priority based polling in dynamic resource allocation algorithm in WDM/TDM PON. The results show that the performance of delay-sensitive services is greatly improved without degrading QoS guarantees for other services. Compared with the traditional dynamic bandwidth allocation algorithms, this algorithm can meet bandwidth needs of different priority traffic class, achieve low loss rate performance, and ensure real-time of high priority traffic class in terms of overall traffic on the network.
49 CFR 213.333 - Automated vehicle inspection systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... hours of the inspection, output reports that— (1) Provide a continuous plot, on a constant-distance axis... instrumented car having dynamic response characteristics that are representative of other equipment assigned to... instrumented car having dynamic response characteristics that are representative of other equipment assigned to...
49 CFR 213.333 - Automated vehicle inspection systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hours of the inspection, output reports that— (1) Provide a continuous plot, on a constant-distance axis... instrumented car having dynamic response characteristics that are representative of other equipment assigned to... instrumented car having dynamic response characteristics that are representative of other equipment assigned to...
NASA Technical Reports Server (NTRS)
Robinson, John E.
2014-01-01
The Federal Aviation Administration's Next Generation Air Transportation System will combine advanced air traffic management technologies, performance-based procedures, and state-of-the-art avionics to maintain efficient operations throughout the entire arrival phase of flight. Flight deck Interval Management (FIM) operations are expected to use sophisticated airborne spacing capabilities to meet precise in-trail spacing from top-of-descent to touchdown. Recent human-in-the-loop simulations by the National Aeronautics and Space Administration have found that selection of the assigned spacing goal using the runway schedule can lead to premature interruptions of the FIM operation during periods of high traffic demand. This study compares three methods for calculating the assigned spacing goal for a FIM operation that is also subject to time-based metering constraints. The particular paradigms investigated include: one based upon the desired runway spacing interval, one based upon the desired meter fix spacing interval, and a composite method that combines both intervals. These three paradigms are evaluated for the primary arrival procedures to Phoenix Sky Harbor International Airport using the entire set of Rapid Update Cycle wind forecasts from 2011. For typical meter fix and runway spacing intervals, the runway- and meter fix-based paradigms exhibit moderate FIM interruption rates due to their inability to consider multiple metering constraints. The addition of larger separation buffers decreases the FIM interruption rate but also significantly reduces the achievable runway throughput. The composite paradigm causes no FIM interruptions, and maintains higher runway throughput more often than the other paradigms. A key implication of the results with respect to time-based metering is that FIM operations using a single assigned spacing goal will not allow reduction of the arrival schedule's excess spacing buffer. Alternative solutions for conducting the FIM operation in a manner more compatible with the arrival schedule are discussed in detail.
DOT National Transportation Integrated Search
2013-10-16
The Maryland State Highway Administration (SHA) uses dynamic message signs : (DMS) for traffic and incident management and for providing travel time information. : Previous research in Maryland has shown that a DMS can be an accurate, effective, and ...
DOT National Transportation Integrated Search
2013-10-01
This research studies the effectiveness of a dynamic message sign (DMS) using a driving : simulator. Over 100 subjects from different socio-economic and age groups were recruited to : drive the simulator under different traffic and driving conditions...
Son, Sanghyun; Baek, Yunju
2015-01-01
As society has developed, the number of vehicles has increased and road conditions have become complicated, increasing the risk of crashes. Therefore, a service that provides safe vehicle control and various types of information to the driver is urgently needed. In this study, we designed and implemented a real-time traffic information system and a smart camera device for smart driver assistance systems. We selected a commercial device for the smart driver assistance systems, and applied a computer vision algorithm to perform image recognition. For application to the dynamic region of interest, dynamic frame skip methods were implemented to perform parallel processing in order to enable real-time operation. In addition, we designed and implemented a model to estimate congestion by analyzing traffic information. The performance of the proposed method was evaluated using images of a real road environment. We found that the processing time improved by 15.4 times when all the proposed methods were applied in the application. Further, we found experimentally that there was little or no change in the recognition accuracy when the proposed method was applied. Using the traffic congestion estimation model, we also found that the average error rate of the proposed model was 5.3%. PMID:26295230
Son, Sanghyun; Baek, Yunju
2015-08-18
As society has developed, the number of vehicles has increased and road conditions have become complicated, increasing the risk of crashes. Therefore, a service that provides safe vehicle control and various types of information to the driver is urgently needed. In this study, we designed and implemented a real-time traffic information system and a smart camera device for smart driver assistance systems. We selected a commercial device for the smart driver assistance systems, and applied a computer vision algorithm to perform image recognition. For application to the dynamic region of interest, dynamic frame skip methods were implemented to perform parallel processing in order to enable real-time operation. In addition, we designed and implemented a model to estimate congestion by analyzing traffic information. The performance of the proposed method was evaluated using images of a real road environment. We found that the processing time improved by 15.4 times when all the proposed methods were applied in the application. Further, we found experimentally that there was little or no change in the recognition accuracy when the proposed method was applied. Using the traffic congestion estimation model, we also found that the average error rate of the proposed model was 5.3%.
Effective distance adaptation traffic dispatching in software defined IP over optical network
NASA Astrophysics Data System (ADS)
Duan, Zhiwei; Li, Hui; Liu, Yuze; Ji, Yuefeng; Li, Hongfa; Lin, Yi
2017-10-01
The rapid growth of IP traffic has contributed to the wide deployment of optical devices (ROADM/OXC, etc.). Meanwhile, with the emergence and application of high-performance network services such as ultra-high video transmission, people are increasingly becoming more and more particular about the quality of service (QoS) of network. However, the pass-band shape of WSSs which is utilized in the ROADM/OXC is not ideal, causing narrowing of spectrum. Spectral narrowing can lead to signal impairment. Therefore, guard-bands need to be inserted between adjacent paths. In order to minimize the bandwidth waste due to guard bands, we propose an effective distance-adaptation traffic dispatching algorithm in IP over optical network based on SDON architecture. We use virtualization technology to set up virtual resources direct links by extracting part of the resources on paths which meet certain specific constraints. We also assign different bandwidth to each IP request based on path length. There is no need for guard-bands between the adjacent paths on the virtual link, which can effectively reduce the number of guard-bands and save the spectrum.
Cycling transport safety quantification
NASA Astrophysics Data System (ADS)
Drbohlav, Jiri; Kocourek, Josef
2018-05-01
Dynamic interest in cycling transport brings the necessity to design safety cycling infrastructure. In las few years, couple of norms with safety elements have been designed and suggested for the cycling infrastructure. But these were not fully examined. The main parameter of suitable and fully functional transport infrastructure is the evaluation of its safety. Common evaluation of transport infrastructure safety is based on accident statistics. These statistics are suitable for motor vehicle transport but unsuitable for the cycling transport. Cycling infrastructure evaluation of safety is suitable for the traffic conflicts monitoring. The results of this method are fast, based on real traffic situations and can be applied on any traffic situations.
Distributed Method to Optimal Profile Descent
NASA Astrophysics Data System (ADS)
Kim, Geun I.
Current ground automation tools for Optimal Profile Descent (OPD) procedures utilize path stretching and speed profile change to maintain proper merging and spacing requirements at high traffic terminal area. However, low predictability of aircraft's vertical profile and path deviation during decent add uncertainty to computing estimated time of arrival, a key information that enables the ground control center to manage airspace traffic effectively. This paper uses an OPD procedure that is based on a constant flight path angle to increase the predictability of the vertical profile and defines an OPD optimization problem that uses both path stretching and speed profile change while largely maintaining the original OPD procedure. This problem minimizes the cumulative cost of performing OPD procedures for a group of aircraft by assigning a time cost function to each aircraft and a separation cost function to a pair of aircraft. The OPD optimization problem is then solved in a decentralized manner using dual decomposition techniques under inter-aircraft ADS-B mechanism. This method divides the optimization problem into more manageable sub-problems which are then distributed to the group of aircraft. Each aircraft solves its assigned sub-problem and communicate the solutions to other aircraft in an iterative process until an optimal solution is achieved thus decentralizing the computation of the optimization problem.
Integrated Display System for Low Visibility Landing and Surface Operations
NASA Technical Reports Server (NTRS)
Beskenis, Sharon Otero; Green, David F., Jr.; Hyer, Paul V.; Johnson, Edward J., Jr.
1998-01-01
This report summarizes the software products and system architectures developed by Lockheed Martin in support of the Low Visibility Landing and Surface Operations (LVLASO) program at NASA Langley Research Center. It presents an overview of the technical aspects, capabilities, and system integration issues associated with an integrated display system (IDS) that collects, processes and presents information to an aircraft flight crew during all phases of landing, roll-out, turn-off, inbound taxi, outbound taxi and takeoff. Communications hardware, drivers, and software provide continuous real-time data at varying rates and from many different sources to the display programs for presentation on a head-down display (HDD) and/or a head-up display (HUD). An electronic moving map of the airport surface is implemented on the HDD which includes the taxi route assigned by air traffic control, a text messaging system, and surface traffic and runway status information. Typical HUD symbology for navigation and control of the aircraft is augmented to provide aircraft deceleration guidance after touchdown to a pilot selected exit and taxi guidance along the route assigned by ATC. HUD displays include scene-linked symbolic runways, runway exits and taxiways that are conformal with the actual locations on the airport surface. Display formats, system architectures, and the various IDS programs are discussed.
Energy Efficient, Cross-Layer Enabled, Dynamic Aggregation Networks for Next Generation Internet
NASA Astrophysics Data System (ADS)
Wang, Michael S.
Today, the Internet traffic is growing at a near exponential rate, driven predominately by data center-based applications and Internet-of-Things services. This fast-paced growth in Internet traffic calls into question the ability of the existing optical network infrastructure to support this continued growth. The overall optical networking equipment efficiency has not been able to keep up with the traffic growth, creating a energy gap that makes energy and cost expenditures scale linearly with the traffic growth. The implication of this energy gap is that it is infeasible to continue using existing networking equipment to meet the growing bandwidth demand. A redesign of the optical networking platform is needed. The focus of this dissertation is on the design and implementation of energy efficient, cross-layer enabled, dynamic optical networking platforms, which is a promising approach to address the exponentially growing Internet bandwidth demand. Chapter 1 explains the motivation for this work by detailing the huge Internet traffic growth and the unsustainable energy growth of today's networking equipment. Chapter 2 describes the challenges and objectives of enabling agile, dynamic optical networking platforms and the vision of the Center for Integrated Access Networks (CIAN) to realize these objectives; the research objectives of this dissertation and the large body of related work in this field is also summarized. Chapter 3 details the design and implementation of dynamic networking platforms that support wavelength switching granularity. The main contribution of this work involves the experimental validation of deep cross-layer communication across the optical performance monitoring (OPM), data, and control planes. The first experiment shows QoS-aware video streaming over a metro-scale test-bed through optical power monitoring of the transmission wavelength and cross-layer feedback control of the power level. The second experiment extends the performance monitoring capabilities to include real-time monitoring of OSNR and polarization mode dispersion (PMD) to enable dynamic wavelength switching and selective restoration. Chapter 4 explains the author?s contributions in designing dynamic networking at the sub-wavelength switching granularity, which can provide greater network efficiency due to its finer granularity. To support dynamic switching, regeneration, adding/dropping, and control decisions on each individual packet, the cross-layer enabled node architecture is enhanced with a FPGA controller that brings much more precise timing and control to the switching, OPM, and control planes. Furthermore, QoS-aware packet protection and dynamic switching, dropping, and regeneration functionalities were experimentally demonstrated in a multi-node network. Chapter 5 describes a technique to perform optical grooming, a process of optically combining multiple incoming data streams into a single data stream, which can simultaneously achieve greater bandwidth utilization and increased spectral efficiency. In addition, an experimental demonstration highlighting a fully functioning multi-node, agile optical networking platform is detailed. Finally, a summary and discussion of future work is provided in Chapter 6. The future of the Internet is very exciting, filled with not-yet-invented applications and services driven by cloud computing and Internet-of-Things. The author is cautiously optimistic that agile, dynamically reconfigurable optical networking is the solution to realizing this future.
Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.
2012-01-01
Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.
Variable cycle control model for intersection based on multi-source information
NASA Astrophysics Data System (ADS)
Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan
2018-05-01
In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.
Characteristics of traffic flow at a non-signalized intersection in the framework of game theory
NASA Astrophysics Data System (ADS)
Fan, Hongqiang; Jia, Bin; Tian, Junfang; Yun, Lifen
2014-12-01
At a non-signalized intersection, some vehicles violate the traffic rules to pass the intersection as soon as possible. These behaviors may cause many traffic conflicts even traffic accidents. In this paper, a simulation model is proposed to research the effects of these behaviors at a non-signalized intersection. Vehicle’s movement is simulated by the cellular automaton (CA) model. The game theory is introduced for simulating the intersection dynamics. Two types of driver participate the game process: cooperator (C) and defector (D). The cooperator obey the traffic rules, but the defector does not. A transition process may occur when the cooperator is waiting before the intersection. The critical value of waiting time follows the Weibull distribution. One transition regime is found in the phase diagram. The simulation results illustrate the applicability of the proposed model and reveal a number of interesting insights into the intersection management, including that the existence of defectors is benefit for the capacity of intersection, but also reduce the safety of intersection.
Studies in integrated line-and packet-switched computer communication systems
NASA Astrophysics Data System (ADS)
Maglaris, B. S.
1980-06-01
The problem of efficiently allocating the bandwidth of a trunk to both types of traffic is handled for various system and traffic models. A performance analysis is carried out both for variable and fixed frame schemes. It is shown that variable frame schemes, adjusting the frame length according to the traffic variations, offer better trunk utilization at the cost of the additional hardware and software complexity needed because of the lack of synchronization. An optimization study on the fixed frame schemes follows. The problem of dynamically allocating the fixed frame to both types of traffic is formulated as a Markovian Decision process. It is shown that the movable boundary scheme, suggested for commercial implementations of integrated multiplexors, offers optimal or near optimal performance and simplicity of implementation. Finally, the behavior of the movable boundary integrated scheme is studied for tandem link connections. Under the assumptions made for the line-switched traffic, the forward allocation technique is found to offer the best alternative among different path set-up strategies.
Weighted complex network analysis of the Beijing subway system: Train and passenger flows
NASA Astrophysics Data System (ADS)
Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun
2017-05-01
In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.
NASA Technical Reports Server (NTRS)
Conway, Sheila R.
2006-01-01
Simple agent-based models may be useful for investigating air traffic control strategies as a precursory screening for more costly, higher fidelity simulation. Of concern is the ability of the models to capture the essence of the system and provide insight into system behavior in a timely manner and without breaking the bank. The method is put to the test with the development of a model to address situations where capacity is overburdened and potential for propagation of the resultant delay though later flights is possible via flight dependencies. The resultant model includes primitive representations of principal air traffic system attributes, namely system capacity, demand, airline schedules and strategy, and aircraft capability. It affords a venue to explore their interdependence in a time-dependent, dynamic system simulation. The scope of the research question and the carefully-chosen modeling fidelity did allow for the development of an agent-based model in short order. The model predicted non-linear behavior given certain initial conditions and system control strategies. Additionally, a combination of the model and dimensionless techniques borrowed from fluid systems was demonstrated that can predict the system s dynamic behavior across a wide range of parametric settings.
The transmission dynamics and diversity of human metapneumovirus in Peru.
Pollett, Simon; Trovão, Nidia S; Tan, Yi; Eden, John-Sebastian; Halpin, Rebecca A; Bera, Jayati; Das, Suman R; Wentworth, David; Ocaña, Victor; Mendocilla, Silvia M; Álvarez, Carlos; Calisto, Maria E; Garcia, Josefina; Halsey, Eric; Ampuero, Julia S; Nelson, Martha I; Leguia, Mariana
2017-12-29
The transmission dynamics of human metapneumovirus (HMPV) in tropical countries remain unclear. Further understanding of the genetic diversity of the virus could aid in HMPV vaccine design and improve our understanding of respiratory virus transmission dynamics in low- and middle-income countries. We examined the evolution of HMPV in Peru through phylogenetic analysis of 61 full genome HMPV sequences collected in three ecologically diverse regions of Peru (Lima, Piura, and Iquitos) during 2008-2012, comprising the largest data set of HMPV whole genomes sequenced from any tropical country to date. We revealed extensive genetic diversity generated by frequent viral introductions, with little evidence of local persistence. While considerable viral traffic between non-Peruvian countries and Peru was observed, HMPV epidemics in Peruvian locales were more frequently epidemiologically linked with other sites within Peru. We showed that Iquitos experienced greater HMPV traffic than the similar sized city of Piura by both Bayesian and maximum likelihood methods. There is extensive HMPV genetic diversity even within smaller and relatively less connected cities of Peru and this virus is spatially fluid. Greater diversity of HMPV in Iquitos compared to Piura may relate to higher volumes of human movement, including air traffic to this location. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
Improved efficient routing strategy on two-layer complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Han, Weizhan; Guo, Qing; Zhang, Shuai; Wang, Junfang; Wang, Zhihao
2016-10-01
The traffic dynamics of multi-layer networks has become a hot research topic since many networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the traditional shortest path routing (SPR) protocol is susceptible to congestion on two-layer complex networks. In this paper, we propose an efficient routing strategy named improved global awareness routing (IGAR) strategy which is based on the betweenness centrality of nodes in the two layers. With the proposed strategy, the routing paths can bypass hub nodes of both layers to enhance the transport efficiency. Simulation results show that the IGAR strategy can bring much better traffic capacity than the SPR and the global awareness routing (GAR) strategies. Because of the significantly improved traffic performance, this study is helpful to alleviate congestion of the two-layer complex networks.
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Will, R. W.; Grantham, C.
1972-01-01
A concept for automating the control of air traffic in the terminal area in which the primary man-machine interface is the cockpit is described. The ground and airborne inputs required for implementing this concept are discussed. Digital data link requirements of 10,000 bits per second are explained. A particular implementation of this concept including a sequencing and separation algorithm which generates flight paths and implements a natural order landing sequence is presented. Onboard computer/display avionics utilizing a traffic situation display is described. A preliminary simulation of this concept has been developed which includes a simple, efficient sequencing algorithm and a complete aircraft dynamics model. This simulated jet transport was flown through automated terminal-area traffic situations by pilots using relatively sophisticated displays, and pilot performance and observations are discussed.
NASA Astrophysics Data System (ADS)
Fourrate, K.; Loulidi, M.
2006-01-01
We suggest a disordered traffic flow model that captures many features of traffic flow. It is an extension of the Nagel-Schreckenberg (NaSch) stochastic cellular automata for single line vehicular traffic model. It incorporates random acceleration and deceleration terms that may be greater than one unit. Our model leads under its intrinsic dynamics, for high values of braking probability pr, to a constant flow at intermediate densities without introducing any spatial inhomogeneities. For a system of fast drivers pr→0, the model exhibits a density wave behavior that was observed in car following models with optimal velocity. The gap of the disordered model we present exhibits, for high values of pr and random deceleration, at a critical density, a power law distribution which is a hall mark of a self organized criticality phenomena.
Green-wave control of an unbalanced two-route traffic system with signals
NASA Astrophysics Data System (ADS)
Tobita, Kazuhiro; Nagatani, Takashi
2013-11-01
We introduce the preference parameter into the two-route dynamic model proposed by Wahle et al. The parameter represents the driver’s preference for the route choice. When the driver prefers a route, the traffic flow on route A does not balance with that on route B. We study the signal control for the unbalanced two-route traffic flow at the tour-time feedback strategy where the vehicles move ahead through a series of signals. The traffic signals are controlled by both cycle time and phase shift (offset time). We find that the mean tour time can be balanced by selecting the offset time successfully. We derive the relationship between the mean tour time and offset time (phase shift). Also, the dependences of the mean density and mean current on the offset time are derived.
Myocardial Infarction Risk Due to Aircraft, Road, and Rail Traffic Noise.
Seidler, Andreas; Wagner, Mandy; Schubert, Melanie; Dröge, Patrik; Pons-Kühnemann, Jörn; Swart, Enno; Zeeb, Hajo; Hegewald, Janice
2016-06-17
Traffic noise can induce stress reactions that have effects on the cardiovascular system. The exposure-risk relationship between aircraft, road, and rail traffic noise and myocardial infarction is currently unknown. 19 632 patients from the Rhine-Main region of Germany who were diagnosed with myocardial infarction in the years 2006-2010 were compared with 834 734 control subjects. The assignment of persons to groups was performed on the basis of billing and prescription data from three statutory health insurance carriers. The exposure of all insurees to aircraft, road, and rail traffic noise in 2005 was determined from their residence addresses. As estimators of risk, odds ratios (OR) were calculated by logistic regression analysis, with adjustment for age, sex, regional social status variables, and individual social status (if available). The evaluation was performed on the basis of the continuous 24-hour noise level and the categorized noise level (in 5 decibel classes). The linear model revealed a statistically significant risk increase due to road noise (2.8% per 10 dB rise, 95% confidence interval [1.2; 4.5]) and railroad noise (2.3% per 10 dB rise [0.5; 4.2]), but not airplane noise. Airplane noise levels of 60 dB and above were associated with a higher risk of myocardial infarction (OR 1.42 [0.62; 3.25]). This higher risk is statistically significant if the analysis is restricted to patients who had died of myocardial infarction by 2014/2015 (OR 2.70 [1.08; 6.74]. In this subgroup, the risk estimators for all three types of traffic noise were of comparable magnitude (3.2% to 3.9% per 10 dB rise in noise level). In this study, a substantial proportion of the population was exposed to traffic noise levels that were associated with an albeit small increase in the risk of myocardial infarction. These findings underscore the importance of effective traffic noise prevention.
Cellular automaton model for molecular traffic jams
NASA Astrophysics Data System (ADS)
Belitsky, V.; Schütz, G. M.
2011-07-01
We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.
NASA Astrophysics Data System (ADS)
Wang, Yang; Chen, Yan-Yan
2016-12-01
The signalized traffic is considerably complex due to the fact that various driving behaviors have emerged to respond to traffic signals. However, the existing cellular automaton models take the signal-vehicle interactions into account inadequately, resulting in a potential risk that vehicular traffic flow dynamics may not be completely explored. To remedy this defect, this paper proposes a more realistic cellular automaton model by incorporating a number of the driving behaviors typically observed when the vehicles are approaching a traffic light. In particular, the anticipatory behavior proposed in this paper is realized with a perception factor designed by considering the vehicle speed implicitly and the gap to its preceding vehicle explicitly. Numerical simulations have been performed based on a signal controlled road which is partitioned into three sections according to the different reactions of drivers. The effects of microscopic driving behaviors on Kerner's time-delayed traffic breakdown at signal (Kerner 2011, 2013) have been investigated with the assistance of spatiotemporal pattern and trajectory analysis. Furthermore, the contributions of the driving behaviors on the traffic breakdown have been statistically examined. Finally, with the activation of the anticipatory behavior, the influences of the other driving behaviors on the formation of platoon have been investigated in terms of the number of platoons, the averaged platoon size, and the averaged flow rate.
Analysis of Trajectory Flexibility Preservation Impact on Traffic Complexity
NASA Technical Reports Server (NTRS)
Idris, Husni; El-Wakil, Tarek; Wing, David J.
2009-01-01
The growing demand for air travel is increasing the need for mitigation of air traffic congestion and complexity problems, which are already at high levels. At the same time new information and automation technologies are enabling the distribution of tasks and decisions from the service providers to the users of the air traffic system, with potential capacity and cost benefits. This distribution of tasks and decisions raises the concern that independent user actions will decrease the predictability and increase the complexity of the traffic system, hence inhibiting and possibly reversing any potential benefits. In answer to this concern, the authors proposed the introduction of decision-making metrics for preserving user trajectory flexibility. The hypothesis is that such metrics will make user actions naturally mitigate traffic complexity. In this paper, the impact of using these metrics on traffic complexity is investigated. The scenarios analyzed include aircraft in en route airspace with each aircraft meeting a required time of arrival in a one-hour time horizon while mitigating the risk of loss of separation with the other aircraft, thus preserving its trajectory flexibility. The experiments showed promising results in that the individual trajectory flexibility preservation induced self-separation and self-organization effects in the overall traffic situation. The effects were quantified using traffic complexity metrics, namely dynamic density indicators, which indicated that using the flexibility metrics reduced aircraft density and the potential of loss of separation.
Improving Memory for Optimization and Learning in Dynamic Environments
2011-07-01
algorithm uses simple, in- cremental clustering to separate solutions into memory entries. The cluster centers are used as the models in the memory. This is...entire days of traffic with realistic traffic de - mands and turning ratios on a 32 intersection network modeled on downtown Pittsburgh, Pennsyl- vania...early/tardy problem. Management Science, 35(2):177–191, 1989. [78] Daniel Parrott and Xiaodong Li. A particle swarm model for tracking multiple peaks in
Inferring the background traffic arrival process in the Internet.
Hága, Péter; Csabai, István; Vattay, Gábor
2009-12-01
Phase transition has been found in many complex interactivity systems. Complex networks are not exception either but there are quite few real systems where we can directly understand the emergence of this nontrivial behavior from the microscopic view. In this paper, we present the emergence of the phase transition between the congested and uncongested phases of a network link. We demonstrate a method to infer the background traffic arrival process, which is one of the key state parameters of the Internet traffic. The traffic arrival process in the Internet has been investigated in several studies, since the recognition of its self-similar nature. The statistical properties of the traffic arrival process are very important since they are fundamental in modeling the dynamical behavior. Here, we demonstrate how the widely used packet train technique can be used to determine the main properties of the traffic arrival process. We show that the packet train dispersion is sensitive to the congestion on the network path. We introduce the packet train stretch as an order parameter to describe the phase transition between the congested and uncongested phases of the bottleneck link in the path. We find that the distribution of the background traffic arrival process can be determined from the average packet train dispersion at the critical point of the system.
Prospective Memory and Task Interference in a Continuous Monitoring Dynamic Display Task
ERIC Educational Resources Information Center
Loft, Shayne; Remington, Roger W.
2010-01-01
Theories and methods from the prospective memory literature were used to anticipate how individuals would maintain and retrieve intentions in a continuous monitoring dynamic display task. Participants accepted aircraft into sectors and detected aircraft conflicts during an air traffic control simulation. They were sometimes required to substitute…
The effects of closer monitoring on driver compliance with interlock restrictions.
Zador, Paul L; Ahlin, Eileen M; Rauch, William J; Howard, Jan M; Duncan, G Doug
2011-11-01
This randomized controlled trial of 2168 DWI multiple offenders assigned to a state-wide ignition interlock program in Maryland compared non-compliance with interlock requirements among drivers who were closely monitored (by Westat staff) and drivers who received standard monitoring (by the Motor Vehicle Administration). Compliance comparisons relied on datalogger data from MVA's interlock providers plus driver records that contained demographic information, prior alcohol-related traffic violations, their dispositions, and interlock duration. Measures for quantifying non-compliance included rates per 1000 engine starts for initial breath test failures at varying BAC levels and time periods, retest failures, retest refusals, interlock disconnects, startup violations, and summation measures. Regression analysis estimated the effects of closer monitoring on non-compliance, using linear mixed models that included random driver effects and fixed effects for study-group assignment, prior alcohol-related traffic violations, and months of continuous datalogger data with a quadratic function that assessed changes and rates of change in interlock non-compliance over time. All the separate non-compliance rates and summary measures derived from them were lower for closer monitored than control drivers for continuous data series of at least 6, 12, or 24 months. The differences for initial test failures and the two summary measures were statistically significant. Most measures of non-compliance decreased significantly as continuous time on the interlock increased. Parallel trends in each study group indicated that drivers learned to improve their compliance over time. Thus, this study convincingly demonstrates that closer monitoring substantially enhanced compliance with requirements of the ignition interlock and that regardless of group assignment, compliance increased over time. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Shanhua; Yang, Zhongzhen
2018-07-01
This paper aims to optimize the locations of manufacturing industries in the context of economic globalization by proposing a bi-level programming model which integrates the location optimization model with the traffic assignment model. In the model, the transport network is divided into the subnetworks of raw materials and products respectively. The upper-level model is used to determine the location of industries and the OD matrices of raw materials and products. The lower-level model is used to calculate the attributes of traffic flow under given OD matrices. To solve the model, the genetic algorithm is designed. The proposed method is tested using the Chinese steel industry as an example. The result indicates that the proposed method could help the decision-makers to implement the location decisions for the manufacturing industries effectively.
NASA Astrophysics Data System (ADS)
Felix, J.
The management center and new circuit switching services offered by the French Telecom I network are described. Attention is focused on business services. The satellite has a 125 Mbit/sec capability distributed over 5 frequency bands, yielding the equivalent of 1800 channels. Data are transmitted in digitized bursts with TDMA techniques. Besides the management center, Telecom I interfaces with 310 local network antennas with access managed by the center through a reservation service and protocol assignment. The center logs and supervises alarms and network events, monitors traffic, logs taxation charges and manages the man-machine dialog for TDMA and terrestrial operations. Time slots are arranged in terms of minimal 10 min segments. The reservations can be directly accessed by up to 1000 terminals. All traffic is handled on a call-by-call basis.
A Vision of the Future Air Traffic Control System
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
2000-01-01
The air transportation system is on the verge of gridlock, with delays and cancelled flights this summer reaching all time highs. As demand for air transportation continues to increase, the capacity needed to accommodate the growth in traffic is falling farther and farther behind. Moreover, it has become increasingly apparent that the present system cannot be scaled up to provide the capacity increases needed to meet demand over the next 25 years. NASA, working with the Federal Aviation Administration and industry, is pursuing a major research program to develop air traffic management technologies that have the ultimate goal of doubling capacity while increasing safety and efficiency. This seminar will describe how the current system operates, what its limitations are and why a revolutionary "shift in paradigm" is needed to overcome fundamental limitations in capacity and safety. For the near term, NASA has developed a portfolio of software tools for air traffic controllers, called the Center-TRACON Automation System (CTAS), that provides modest gains in capacity and efficiency while staying within the current paradigm. The outline of a concept for the long term, with a deployment date of 2015 at the earliest, has recently been formulated and presented by NASA to a select group of industry and government stakeholders. Automated decision making software, combined with an Internet in the sky that enables sharing of information and distributes control between the cockpit and the ground, is key to this concept. However, its most revolutionary feature is a fundamental change in the roles and responsibilities assigned to air traffic controllers.
Changes in crash risk following re-timing of traffic signal change intervals.
Retting, Richard A; Chapline, Janella F; Williams, Allan F
2002-03-01
More than I million motor vehicle crashes occur annually at signalized intersections in the USA. The principal method used to prevent crashes associated with routine changes in signal indications is employment of a traffic signal change interval--a brief yellow and all-red period that follows the green indication. No universal practice exists for selecting the duration of change intervals, and little is known about the influence of the duration of the change interval on crash risk. The purpose of this study was to estimate potential crash effects of modifying the duration of traffic signal change intervals to conform with values associated with a proposed recommended practice published by the Institute of Transportation Engineers. A sample of 122 intersections was identified and randomly assigned to experimental and control groups. Of 51 eligible experimental sites, 40 (78%) needed signal timing changes. For the 3-year period following implementation of signal timing changes, there was an 8% reduction in reportable crashes at experimental sites relative to those occurring at control sites (P = 0.08). For injury crashes, a 12% reduction at experimental sites relative to those occurring at control sites was found (P = 0.03). Pedestrian and bicycle crashes at experimental sites decreased 37% (P = 0.03) relative to controls. Given these results and the relatively low cost of re-timing traffic signals, modifying the duration of traffic signal change intervals to conform with values associated with the Institute of Transportation Engineers' proposed recommended practice should be strongly considered by transportation agencies to reduce the frequency of urban motor vehicle crashes.
Impact of Health and Fitness-Related Behavior on Quality of Life
1990-12-31
physical activity: running, bicycling, swimming, playing racket sports, continuous walking, performing 7 aerobics, doing calisthenics , weight lifting, and...generally spent in one workout period for each activity (duration). A rate of kilocalories expended per minute was assigned to each activity using the...e.g., protein additives, wheat germ, bran, lecithin). 11. I do things that will improve my health. Traffic Risk 1. I cross busy streets in the middle
A Highly Flexible and Efficient Passive Optical Network Employing Dynamic Wavelength Allocation
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li; Rogge, Matthew S.; Yamamoto, Shu; Kazovsky, Leonid G.
2005-01-01
A novel and high-performance passive optical network (PON), the SUCCESS-DWA PON, employs dynamic wavelength allocation to provide bandwidth sharing across multiple physical PONs. In the downstream, tunable lasers, an arrayed waveguide grating, and coarse/fine filtering combine to create a flexible new optical access solution. In the upstream, several distributed and centralized schemes are proposed and investigated. The network performance is compared to conventional TDM-PONs under different traffic models, including the self-similar traffic model and the transaction-oriented model. Broadcast support and deployment issues are addressed. The network's excellent scalability can bridge the gap between conventional TDM-PONs and WDM-PONs. The powerful architecture is a promising candidate for next generation optical access networks.
An understanding of human dynamics in urban subway traffic from the Maximum Entropy Principle
NASA Astrophysics Data System (ADS)
Yong, Nuo; Ni, Shunjiang; Shen, Shifei; Ji, Xuewei
2016-08-01
We studied the distribution of entry time interval in Beijing subway traffic by analyzing the smart card transaction data, and then deduced the probability distribution function of entry time interval based on the Maximum Entropy Principle. Both theoretical derivation and data statistics indicated that the entry time interval obeys power-law distribution with an exponential cutoff. In addition, we pointed out the constraint conditions for the distribution form and discussed how the constraints affect the distribution function. It is speculated that for bursts and heavy tails in human dynamics, when the fitted power exponent is less than 1.0, it cannot be a pure power-law distribution, but with an exponential cutoff, which may be ignored in the previous studies.
DOT National Transportation Integrated Search
2015-10-17
It has been perceived that the travelers do not respond to the incident messages on the dynamic message signs in the Las Vegas area in Nevada. The objective of the study is to evaluate whether dynamic message signs (DMS) in the Las Vegas freeway syst...
Using Grid Benchmarks for Dynamic Scheduling of Grid Applications
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert
2003-01-01
Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.
NASA Astrophysics Data System (ADS)
Yang, Bo; Yoon, Ji Wei; Monterola, Christopher
We present large scale, detailed analysis of the microscopic empirical data of the congested traffic flow, focusing on the non-linear interactions between the components of the many-body traffic system. By implementing a systematic procedure that averages over relatively unimportant factors, we extract the effective dependence of the acceleration on the gap between the vehicles, velocity and relative velocity. Such relationship is characterised not just by a few vehicles but the traffic system as a whole. Several interesting features of the detailed vehicle-to-vehicle interactions are revealed, including the stochastic distribution of the human responses, relative importance of the non-linear terms in different density regimes, symmetric response to the relative velocity, and the insensitivity of the acceleration to the velocity within a certain gap and velocity range. The latter leads to a multitude of steady-states without a fundamental diagram. The empirically constructed functional dependence of the acceleration on the important dynamical quantities not only gives the detailed collective driving behaviours of the traffic system, it also serves as the fundamental reference for the validations of the deterministic and stochastic microscopic traffic models in the literature.
Kahlert, Daniela; Schlicht, Wolfgang
2015-01-01
Traffic safety and pedestrian friendliness are considered to be important conditions for older people’s motivation to walk through their environment. This study uses an experimental study design with computer-simulated living environments to investigate the effect of micro-scale environmental factors (parking spaces and green verges with trees) on older people’s perceptions of both motivational antecedents (dependent variables). Seventy-four consecutively recruited older people were randomly assigned watching one of two scenarios (independent variable) on a computer screen. The scenarios simulated a stroll on a sidewalk, as it is ‘typical’ for a German city. In version ‘A,’ the subjects take a fictive walk on a sidewalk where a number of cars are parked partially on it. In version ‘B’, cars are in parking spaces separated from the sidewalk by grass verges and trees. Subjects assessed their impressions of both dependent variables. A multivariate analysis of covariance showed that subjects’ ratings on perceived traffic safety and pedestrian friendliness were higher for Version ‘B’ compared to version ‘A’. Cohen’s d indicates medium (d = 0.73) and large (d = 1.23) effect sizes for traffic safety and pedestrian friendliness, respectively. The study suggests that elements of the built environment might affect motivational antecedents of older people’s walking behavior. PMID:26308026
Self-Organized Criticality and Scaling in Lifetime of Traffic Jams
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1995-01-01
The deterministic cellular automaton 184 (the one-dimensional asymmetric simple-exclusion model with parallel dynamics) is extended to take into account injection or extraction of particles. The model presents the traffic flow on a highway with inflow or outflow of cars.Introducing injection or extraction of particles into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. The typical lifetime
Automatic Data Traffic Control on DSM Architecture
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry; Kwak, Dochan (Technical Monitor)
2000-01-01
We study data traffic on distributed shared memory machines and conclude that data placement and grouping improve performance of scientific codes. We present several methods which user can employ to improve data traffic in his code. We report on implementation of a tool which detects the code fragments causing data congestions and advises user on improvements of data routing in these fragments. The capabilities of the tool include deduction of data alignment and affinity from the source code; detection of the code constructs having abnormally high cache or TLB misses; generation of data placement constructs. We demonstrate the capabilities of the tool on experiments with NAS parallel benchmarks and with a simple computational fluid dynamics application ARC3D.
Cue competition affects temporal dynamics of edge-assignment in human visual cortex.
Brooks, Joseph L; Palmer, Stephen E
2011-03-01
Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.
A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.
Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming
2015-01-01
Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity.
Mobile Crowd Sensing for Traffic Prediction in Internet of Vehicles.
Wan, Jiafu; Liu, Jianqi; Shao, Zehui; Vasilakos, Athanasios V; Imran, Muhammad; Zhou, Keliang
2016-01-11
The advances in wireless communication techniques, mobile cloud computing, automotive and intelligent terminal technology are driving the evolution of vehicle ad hoc networks into the Internet of Vehicles (IoV) paradigm. This leads to a change in the vehicle routing problem from a calculation based on static data towards real-time traffic prediction. In this paper, we first address the taxonomy of cloud-assisted IoV from the viewpoint of the service relationship between cloud computing and IoV. Then, we review the traditional traffic prediction approached used by both Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) communications. On this basis, we propose a mobile crowd sensing technology to support the creation of dynamic route choices for drivers wishing to avoid congestion. Experiments were carried out to verify the proposed approaches. Finally, we discuss the outlook of reliable traffic prediction.
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1982-01-01
In connection with the necessity to provide greater terminal area capacity, attention is given to approaches in which the required increase in capacity will be obtained by making use of more automation and by involving the pilot to a larger degree in the air traffic control (ATC) process. It was recommended that NASA should make extensive use of its research aircraft and cockpit simulators to assist the FAA in examining the capabilities and limitations of cockpit displays of traffic information (CDTI). A program was organized which utilizes FAA ATC (ground-based) simulators and NASA aircraft and associated cockpit simulators in a research project which explores applications of the CDTI system. The present investigation is concerned with several questions related to the CDTI-based terminal area traffic tactical control concepts. Attention is given to longitudinal separation criteria, a longitudinal following model, longitudinal capture, combined longitudinal/vertical control, and lateral control.
Mobile Crowd Sensing for Traffic Prediction in Internet of Vehicles
Wan, Jiafu; Liu, Jianqi; Shao, Zehui; Vasilakos, Athanasios V.; Imran, Muhammad; Zhou, Keliang
2016-01-01
The advances in wireless communication techniques, mobile cloud computing, automotive and intelligent terminal technology are driving the evolution of vehicle ad hoc networks into the Internet of Vehicles (IoV) paradigm. This leads to a change in the vehicle routing problem from a calculation based on static data towards real-time traffic prediction. In this paper, we first address the taxonomy of cloud-assisted IoV from the viewpoint of the service relationship between cloud computing and IoV. Then, we review the traditional traffic prediction approached used by both Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) communications. On this basis, we propose a mobile crowd sensing technology to support the creation of dynamic route choices for drivers wishing to avoid congestion. Experiments were carried out to verify the proposed approaches. Finally, we discuss the outlook of reliable traffic prediction. PMID:26761013
NASA Technical Reports Server (NTRS)
Hoang, Ty; Swenson, Harry N.
1997-01-01
The Traffic Management Advisor (TMA), the sequence and schedule tool of the Center/TRACON Automation System (CTAS), was evaluated at the Fort Worth Center (ZFW) in the summer of 1996. This paper describes the challenges encountered during the various phases of the TMA field evaluation, which included system (hardware and software) installation, personnel training, and data collection. Operational procedures were developed and applied to the evaluation process that would ensure air safety. The five weeks of field evaluation imposed minimal impact on the hosting facility and provided valuable engineering and human factors data. The collection of data was very much an opportunistic affair, due to dynamic traffic conditions. One measure of the success of the TMA evaluation is that, rather than remove TMA after the evaluation until it could be fully implemented, the prototype TMA is in continual use at ZFW as the fully operational version is readied for implementation.
NASA Technical Reports Server (NTRS)
Johnson, Eric N.; Davidson, John B.; Murphy, Patrick C.
1994-01-01
When using eigenspace assignment to design an aircraft flight control system, one must first develop a model of the plant. Certain questions arise when creating this model as to which dynamics of the plant need to be included in the model and which dynamics can be left out or approximated. The answers to these questions are important because a poor choice can lead to closed-loop dynamics that are unpredicted by the design model. To alleviate this problem, a method has been developed for predicting the effect of not including certain dynamics in the design model on the final closed-loop eigenspace. This development provides insight as to which characteristics of unmodeled dynamics will ultimately affect the closed-loop rigid-body dynamics. What results from this insight is a guide for eigenstructure control law designers to aid them in determining which dynamics need or do not need to be included and a new way to include these dynamics in the flight control system design model to achieve a required accuracy in the closed-loop rigid-body dynamics. The method is illustrated for a lateral-directional flight control system design using eigenspace assignment for the NASA High Alpha Research Vehicle (HARV).
1991-09-05
Traffic and Driving and Y Ishii, Oki Electric Industry, Japan " Mazda Car Communication System" Mazda Car Corporation , FRG IMPROVING TRAFFIC FLOW... Strategy to Reduce 151 Blocking-Back During Oversaturation using the Microsimulation Model Nemis" S Shepherd, Institute for Transport Studies, UK 910085...J Garber, C W Lynn and W S Ferguson, University of Virginia, USA 910087 "Ramp Metering Strategies for Motorways Incorporating Dynamic 177 Origin
Sonification of network traffic flow for monitoring and situational awareness
2018-01-01
Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators’ situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen. PMID:29672543
Sonification of network traffic flow for monitoring and situational awareness.
Debashi, Mohamed; Vickers, Paul
2018-01-01
Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators' situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen.
Chaos in a dynamic model of traffic flows in an origin-destination network.
Zhang, Xiaoyan; Jarrett, David F.
1998-06-01
In this paper we investigate the dynamic behavior of road traffic flows in an area represented by an origin-destination (O-D) network. Probably the most widely used model for estimating the distribution of O-D flows is the gravity model, [J. de D. Ortuzar and L. G. Willumsen, Modelling Transport (Wiley, New York, 1990)] which originated from an analogy with Newton's gravitational law. The conventional gravity model, however, is static. The investigation in this paper is based on a dynamic version of the gravity model proposed by Dendrinos and Sonis by modifying the conventional gravity model [D. S. Dendrinos and M. Sonis, Chaos and Social-Spatial Dynamics (Springer-Verlag, Berlin, 1990)]. The dynamic model describes the variations of O-D flows over discrete-time periods, such as each day, each week, and so on. It is shown that when the dimension of the system is one or two, the O-D flow pattern either approaches an equilibrium or oscillates. When the dimension is higher, the behavior found in the model includes equilibria, oscillations, periodic doubling, and chaos. Chaotic attractors are characterized by (positive) Liapunov exponents and fractal dimensions.(c) 1998 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Dyachenko, Leonid K.; Benin, Andrey V.
2017-06-01
When the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR). Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.
Neural networks for continuous online learning and control.
Choy, Min Chee; Srinivasan, Dipti; Cheu, Ruey Long
2006-11-01
This paper proposes a new hybrid neural network (NN) model that employs a multistage online learning process to solve the distributed control problem with an infinite horizon. Various techniques such as reinforcement learning and evolutionary algorithm are used to design the multistage online learning process. For this paper, the infinite horizon distributed control problem is implemented in the form of real-time distributed traffic signal control for intersections in a large-scale traffic network. The hybrid neural network model is used to design each of the local traffic signal controllers at the respective intersections. As the state of the traffic network changes due to random fluctuation of traffic volumes, the NN-based local controllers will need to adapt to the changing dynamics in order to provide effective traffic signal control and to prevent the traffic network from becoming overcongested. Such a problem is especially challenging if the local controllers are used for an infinite horizon problem where online learning has to take place continuously once the controllers are implemented into the traffic network. A comprehensive simulation model of a section of the Central Business District (CBD) of Singapore has been developed using PARAMICS microscopic simulation program. As the complexity of the simulation increases, results show that the hybrid NN model provides significant improvement in traffic conditions when evaluated against an existing traffic signal control algorithm as well as a new, continuously updated simultaneous perturbation stochastic approximation-based neural network (SPSA-NN). Using the hybrid NN model, the total mean delay of each vehicle has been reduced by 78% and the total mean stoppage time of each vehicle has been reduced by 84% compared to the existing traffic signal control algorithm. This shows the efficacy of the hybrid NN model in solving large-scale traffic signal control problem in a distributed manner. Also, it indicates the possibility of using the hybrid NN model for other applications that are similar in nature as the infinite horizon distributed control problem.
Model results and measurements were analyzed to determine the extent of change in concentrations of nitrogen oxides (NOx) during morning weekday high traffic periods from different summer seasons that could be related to change in mobile source emissions. The dynamic evaluation ...
Analysis of a Dynamic Multi-Track Airway Concept for Air Traffic Management
NASA Technical Reports Server (NTRS)
Wing, David J.; Smith, Jeremy C.; Ballin, Mark G.
2008-01-01
The Dynamic Multi-track Airways (DMA) Concept for Air Traffic Management (ATM) proposes a network of high-altitude airways constructed of multiple, closely spaced, parallel tracks designed to increase en-route capacity in high-demand airspace corridors. Segregated from non-airway operations, these multi-track airways establish high-priority traffic flow corridors along optimal routes between major terminal areas throughout the National Airspace System (NAS). Air traffic controllers transition aircraft equipped for DMA operations to DMA entry points, the aircraft use autonomous control of airspeed to fly the continuous-airspace airway and achieve an economic benefit, and controllers then transition the aircraft from the DMA exit to the terminal area. Aircraft authority within the DMA includes responsibility for spacing and/or separation from other DMA aircraft. The DMA controller is responsible for coordinating the entry and exit of traffic to and from the DMA and for traffic flow management (TFM), including adjusting DMA routing on a daily basis to account for predicted weather and wind patterns and re-routing DMAs in real time to accommodate unpredicted weather changes. However, the DMA controller is not responsible for monitoring the DMA for traffic separation. This report defines the mature state concept, explores its feasibility and performance, and identifies potential benefits. The report also discusses (a) an analysis of a single DMA, which was modeled within the NAS to assess capacity and determine the impact of a single DMA on regional sector loads and conflict potential; (b) a demand analysis, which was conducted to determine likely city-pair candidates for a nationwide DMA network and to determine the expected demand fraction; (c) two track configurations, which were modeled and analyzed for their operational characteristic; (d) software-prototype airborne capabilities developed for DMA operations research; (e) a feasibility analysis of key attributes in the concept design; (f) a near-term, transitional application of the DMA concept as a proving ground for new airborne technologies; and (g) conclusions. The analysis indicates that the operational feasibility of a national DMA network faces significant challenges, especially for interactions between DMAs and between DMA and non-DMA traffic. Provided these issues are resolved, sectors near DMAs could experience significant local capacity benefits.
An improved global dynamic routing strategy for scale-free network with tunable clustering
NASA Astrophysics Data System (ADS)
Sun, Lina; Huang, Ning; Zhang, Yue; Bai, Yannan
2016-08-01
An efficient routing strategy can deliver packets quickly to improve the network capacity. Node congestion and transmission path length are inevitable real-time factors for a good routing strategy. Existing dynamic global routing strategies only consider the congestion of neighbor nodes and the shortest path, which ignores other key nodes’ congestion on the path. With the development of detection methods and techniques, global traffic information is readily available and important for the routing choice. Reasonable use of this information can effectively improve the network routing. So, an improved global dynamic routing strategy is proposed, which considers the congestion of all nodes on the shortest path and incorporates the waiting time of the most congested node into the path. We investigate the effectiveness of the proposed routing for scale-free network with different clustering coefficients. The shortest path routing strategy and the traffic awareness routing strategy only considering the waiting time of neighbor node are analyzed comparatively. Simulation results show that network capacity is greatly enhanced compared with the shortest path; congestion state increase is relatively slow compared with the traffic awareness routing strategy. Clustering coefficient increase will not only reduce the network throughput, but also result in transmission average path length increase for scale-free network with tunable clustering. The proposed routing is favorable to ease network congestion and network routing strategy design.
A case study predicting environmental impacts of urban transport planning in China.
Chen, Chong; Shao, Li-guo; Xu, Ling; Shang, Jin-cheng
2009-10-01
Predicting environmental impacts is essential when performing an environmental assessment on urban transport planning. System dynamics (SD) is usually used to solve complex nonlinear problems. In this study, we utilized system dynamics (SD) to evaluate the environmental impacts associated with urban transport planning in Jilin City, China with respect to the local economy, society, transport, the environment and resources. To accomplish this, we generated simulation models comprising interrelated subsystems designed to utilize changes in the economy, society, road construction, changes in the number of vehicles, the capacity of the road network capacity, nitrogen oxides emission, traffic noise, land used for road construction and fuel consumption associated with traffic to estimate dynamic trends in the environmental impacts associated with Jilin's transport planning. Two simulation scenarios were then analyzed comparatively. The results of this study indicated that implementation of Jilin transport planning would improve the current urban traffic conditions and boost the local economy and development while benefiting the environment in Jilin City. In addition, comparative analysis of the two scenarios provided additional information that can be used to aid in scientific decision-making regarding which aspects of the transport planning to implement in Jilin City. This study demonstrates that our application of the SD method, which is referred to as the Strategic Environmental Assessment (SEA), is feasible for use in urban transport planning.
An improved car-following model with multiple preceding cars' velocity fluctuation feedback
NASA Astrophysics Data System (ADS)
Guo, Lantian; Zhao, Xiangmo; Yu, Shaowei; Li, Xiuhai; Shi, Zhongke
2017-04-01
In order to explore and evaluate the effects of velocity variation trend of multiple preceding cars used in the Cooperative Adaptive Cruise Control (CACC) strategy on the dynamic characteristic, fuel economy and emission of the corresponding traffic flow, we conduct a study as follows: firstly, with the real-time car-following (CF) data, the close relationship between multiple preceding cars' velocity fluctuation feedback and the host car's behaviors is explored, the evaluation results clearly show that multiple preceding cars' velocity fluctuation with different time window-width are highly correlated to the host car's acceleration/deceleration. Then, a microscopic traffic flow model is proposed to evaluate the effects of multiple preceding cars' velocity fluctuation feedback in the CACC strategy on the traffic flow evolution process. Finally, numerical simulations on fuel economy and exhaust emission of the traffic flow are also implemented by utilizing VT-micro model. Simulation results prove that considering multiple preceding cars' velocity fluctuation feedback in the control strategy of the CACC system can improve roadway traffic mobility, fuel economy and exhaust emission performance.
CoMoDo: identifying dynamic protein domains based on covariances of motion.
Wieninger, Silke A; Ullmann, G Matthias
2015-06-09
Most large proteins are built of several domains, compact units which enable functional protein motions. Different domain assignment approaches exist, which mostly rely on concepts of stability, folding, and evolution. We describe the automatic assignment method CoMoDo, which identifies domains based on protein dynamics. Covariances of atomic fluctuations, here calculated by an Elastic Network Model, are used to group residues into domains of different hierarchical levels. The so-called dynamic domains facilitate the study of functional protein motions involved in biological processes like ligand binding and signal transduction. By applying CoMoDo to a large number of proteins, we demonstrate that dynamic domains exhibit features absent in the commonly assigned structural domains, which can deliver insight into the interactions between domains and between subunits of multimeric proteins. CoMoDo is distributed as free open source software at www.bisb.uni-bayreuth.de/CoMoDo.html .
2007-03-01
Traffic Control Assigned Airspace ATG Adversary Tactics Group AWACS Airborne Warning and Control System BAQ Bureau of Air Quality BLM Bureau of Land...Department of Interior Actions BLM The BLM manages millions of acres of public lands in southern Nevada which include portions of NTTR and...within NTTR and would not affect BLM lands adjacent to the base. Therefore, there are no cumulative impacts. USFWS Aircraft operate within the
Effects of ATC automation on precision approaches to closely space parallel runways
NASA Technical Reports Server (NTRS)
Slattery, R.; Lee, K.; Sanford, B.
1995-01-01
Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.