NASA Astrophysics Data System (ADS)
Wårlind, David; Miller, Paul; Nieradzik, Lars; Söderberg, Fredrik; Anthoni, Peter; Arneth, Almut; Smith, Ben
2017-04-01
There has been great progress in developing an improved European Consortium Earth System Model (EC-Earth) in preparation for the Coupled Model Intercomparison Project Phase 6 (CMIP6) and the next Assessment Report of the IPCC. The new model version has been complemented with ocean biogeochemistry, atmospheric composition (aerosols and chemistry) and dynamic land vegetation components, and has been configured to use the recommended CMIP6 forcing data sets. These new components will give us fresh insights into climate change. This study focuses on the terrestrial biosphere component Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) that simulates vegetation dynamics and compound exchange between the terrestrial biosphere and the atmosphere in EC-Earth. LPJ-GUESS allows for vegetation to dynamically evolve, depending on climate input, and in return provides the climate system and land surface scheme with vegetation-dependent fields such as vegetation types and leaf area index. We present the results of a study to examine the feedbacks between the dynamic terrestrial vegetation and the climate and their impact on the terrestrial ecosystem carbon and nitrogen cycles. Our results are based on a set of global, atmosphere-only historical simulations (1870 to 2014) with and without feedback between climate and vegetation and including or ignoring the effect of nitrogen limitation on plant productivity. These simulations show to what extent the addition degree of freedom in EC-Earth, introduced with the coupling of interactive dynamic vegetation to the atmosphere, has on terrestrial carbon and nitrogen cycling, and represent contributions to CMIP6 (C4MIP and LUMIP) and the EU Horizon 2020 project CRESCENDO.
NASA Astrophysics Data System (ADS)
Miyamoto, Hitoshi
2015-04-01
Vegetation overgrowth in fluvial floodplains, gravel beds, and sand bars has been a serious engineering problem for riparian management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have developed a stochastic model for predicting the vegetation dynamics in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the vegetation dynamics model, the flood discharge (i) is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The component for vegetation dynamics (iv) includes the effects of tree growth, mortality by floods, and infant tree recruitment. Vegetation condition has been observed mainly before and after floods since 2008 at a field site located between 23-24 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth sites in the Kako River floodplains. The predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. This presentation tries to examine effects of anthropogenic river regulations, i.e., thinning and cutting-down, in the vegetated channel in Kako River by using the vegetation dynamics model. Sensitivity of both the flood water level and the vegetation status in the channel is statistically evaluated in terms of the different cutting-down levels, timings and scales of the thinning, etc., by the Monte Carlo simulation of the model.
NASA Astrophysics Data System (ADS)
Li, Qiaoling; Ishidaira, Hiroshi
2012-01-01
SummaryThe biosphere and hydrosphere are intrinsically coupled. The scientific question is if there is a substantial change in one component such as vegetation cover, how will the other components such as transpiration and runoff generation respond, especially under climate change conditions? Stand-alone hydrological models have a detailed description of hydrological processes but do not sufficiently parameterize vegetation as a dynamic component. Dynamic global vegetation models (DGVMs) are able to simulate transient structural changes in major vegetation types but do not simulate runoff generation reliably. Therefore, both hydrological models and DGVMs have their limitations as well as advantages for addressing this question. In this study a biosphere hydrological model (LPJH) is developed by coupling a prominent DGVM (Lund-Postdam-Jena model referred to as LPJ) with a stand-alone hydrological model (HYMOD), with the objective of analyzing the role of vegetation in the hydrological processes at basin scale and evaluating the impact of vegetation change on the hydrological processes under climate change. The application and validation of the LPJH model to four basins representing a variety of climate and vegetation conditions shows that the performance of LPJH is much better than that of the original LPJ and is similar to that of stand-alone hydrological models for monthly and daily runoff simulation at the basin scale. It is argued that the LPJH model gives more reasonable hydrological simulation since it considers both the spatial variability of soil moisture and vegetation dynamics, which make the runoff generation mechanism more reliable. As an example, it is shown that changing atmospheric CO 2 content alone would result in runoff increases in humid basins and decreases in arid basins. Theses changes are mainly attributable to changes in transpiration driven by vegetation dynamics, which are not simulated in stand-alone hydrological models. Therefore LPJH potentially provides a powerful tool for simulating vegetation response to climate changes in the biosphere hydrological cycle.
Regional assessment of trends in vegetation change dynamics using principal component analysis
NASA Astrophysics Data System (ADS)
Osunmadewa, B. A.; Csaplovics, E.; R. A., Majdaldin; Adeofun, C. O.; Aralova, D.
2016-10-01
Vegetation forms the basis for the existence of animal and human. Due to changes in climate and human perturbation, most of the natural vegetation of the world has undergone some form of transformation both in composition and structure. Increased anthropogenic activities over the last decades had pose serious threat on the natural vegetation in Nigeria, many vegetated areas are either transformed to other land use such as deforestation for agricultural purpose or completely lost due to indiscriminate removal of trees for charcoal, fuelwood and timber production. This study therefore aims at examining the rate of change in vegetation cover, the degree of change and the application of Principal Component Analysis (PCA) in the dry sub-humid region of Nigeria using Normalized Difference Vegetation Index (NDVI) data spanning from 1983-2011. The method used for the analysis is the T-mode orientation approach also known as standardized PCA, while trends are examined using ordinary least square, median trend (Theil-Sen) and monotonic trend. The result of the trend analysis shows both positive and negative trend in vegetation change dynamics over the 29 years period examined. Five components were used for the Principal Component Analysis. The results of the first component explains about 98 % of the total variance of the vegetation (NDVI) while components 2-5 have lower variance percentage (< 1%). Two ancillary land use land cover data of 2000 and 2009 from European Space Agency (ESA) were used to further explain changes observed in the Normalized Difference Vegetation Index. The result of the land use data shows changes in land use pattern which can be attributed to anthropogenic activities such as cutting of trees for charcoal production, fuelwood and agricultural practices. The result of this study shows the ability of remote sensing data for monitoring vegetation change in the dry-sub humid region of Nigeria.
Chapter 7 - Mapping potential vegetation type for the LANDFIRE Prototype Project
Tracey S. Frescino; Matthew G. Rollins
2006-01-01
Mapped potential vegetation functioned as a key component in the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE Prototype Project). Disturbance regimes, vegetation response and succession, and wildland fuel dynamics across landscapes are controlled by patterns of the environmental factors (biophysical settings) that entrain the...
An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems
Yu Zhang; Changsheng Li; Carl C. Trettin; Harbin Li; Ge Sun
2002-01-01
Wetland ecosystems are an important component in global carbon (C) cycles and may exert a large influence on global clinlate change. Predictions of C dynamics require us to consider interactions among many critical factors of soil, hydrology, and vegetation. However, few such integrated C models exist for wetland ecosystems. In this paper, we report a simulation model...
Climate change and northern prairie wetlands: Simulations of long-term dynamics
Poiani, Karen A.; Johnson, W. Carter; Swanson, George A.; Winter, Thomas C.
1996-01-01
A mathematical model (WETSIM 2.0) was used to simulate wetland hydrology and vegetation dynamics over a 32-yr period (1961–1992) in a North Dakota prairie wetland. A hydrology component of the model calculated changes in water storage based on precipitation, evapotranspiration, snowpack, surface runoff, and subsurface inflow. A spatially explicit vegetation component in the model calculated changes in distribution of vegetative cover and open water, depending on water depth, seasonality, and existing type of vegetation.The model reproduced four known dry periods and one extremely wet period during the three decades. One simulated dry period in the early 1980s did not actually occur. Simulated water levels compared favorably with continuous observed water levels outside the calibration period (1990–1992). Changes in vegetative cover were realistic except for years when simulated water levels were significantly different than actual levels. These generally positive results support the use of the model for exploring the effects of possible climate changes on wetland resources.
Standardized principal components for vegetation variability monitoring across space and time
NASA Astrophysics Data System (ADS)
Mathew, T. R.; Vohora, V. K.
2016-08-01
Vegetation at any given location changes through time and in space. In what quantity it changes, where and when can help us in identifying sources of ecosystem stress, which is very useful for understanding changes in biodiversity and its effect on climate change. Such changes known for a region are important in prioritizing management. The present study considers the dynamics of savanna vegetation in Kruger National Park (KNP) through the use of temporal satellite remote sensing images. Spatial variability of vegetation is a key characteristic of savanna landscapes and its importance to biodiversity has been demonstrated by field-based studies. The data used for the study were sourced from the U.S. Agency for International Development where AVHRR derived Normalized Difference Vegetation Index (NDVI) images available at spatial resolutions of 8 km and at dekadal scales. The study area was extracted from these images for the time-period 1984-2002. Maximum value composites were derived for individual months resulting in an image dataset of 216 NDVI images. Vegetation dynamics across spatio-temporal domains were analyzed using standardized principal components analysis (SPCA) on the NDVI time-series. Each individual image variability in the time-series is considered. The outcome of this study demonstrated promising results - the variability of vegetation change in the area across space and time, and also indicated changes in landscape on 6 individual principal components (PCs) showing differences not only in magnitude, but also in pattern, of different selected eco-zones with constantly changing and evolving ecosystem.
Measuring the pulse of urban green infrastructure: vegetation dynamics across residential landscapes
Vegetation can be an important component of urban green infrastructure. Its structure is a complex result of the socio-ecological milieu and management decisions, and it can influence numerous ecohydrological processes such as stormwater interception and evapotranspiration. Despi...
Inter-species competition-facilitation in stochastic riparian vegetation dynamics.
Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca
2013-02-07
Riparian vegetation is a highly dynamic community that lives on river banks and which depends to a great extent on the fluvial hydrology. The stochasticity of the discharge and erosion/deposition processes in fact play a key role in determining the distribution of vegetation along a riparian transect. These abiotic processes interact with biotic competition/facilitation mechanisms, such as plant competition for light, water, and nutrients. In this work, we focus on the dynamics of plants characterized by three components: (1) stochastic forcing due to river discharges, (2) competition for resources, and (3) inter-species facilitation due to the interplay between vegetation and fluid dynamics processes. A minimalist stochastic bio-hydrological model is proposed for the dynamics of the biomass of two vegetation species: one species is assumed dominant and slow-growing, the other is subdominant, but fast-growing. The stochastic model is solved analytically and the probability density function of the plant biomasses is obtained as a function of both the hydrologic and biologic parameters. The impact of the competition/facilitation processes on the distribution of vegetation species along the riparian transect is investigated and remarkable effects are observed. Finally, a good qualitative agreement is found between the model results and field data. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schymanski, Stanislaus J.; McDonnell, Jeffrey; Or, Dani
2013-04-01
The behaviour of a catchment is sensitive to the pattern and organisation of its components (hillslopes, land cover etc.). Explaining observed organisation and emergence of pattern requires understanding of key organising principles, recognising that albeit similarities, the larger scale behaviour is likely to differ from that of individual components. In other words, the whole does not necessarily behave like the sum of its parts, because the arrangement of the parts matters. For example, hillslopes involve complex and hydrologically interacting elements (rapid flow pathways, depression storage, slope, and variable soil thickness) that shape hillslope hydrologic response in ways that cannot be represented by a collection of pores as implied by standard hydraulic functions. Additionally, inherent spatial and temporal variability of vegetation prohibits detailed and mechanistic parameterisation of root water uptake and evapotranspiration. The interplay of hydrologic hillslope function, climatic forcing and vegetation dynamics translates into complex catchment behaviour at the outlet. Vegetation, one of the most dynamic determinants of catchment behaviour, may interact with its environment by varying different elements such as root system properties, foliage properties and spatial arrangement. These interactions span different temporal scales from minutes (stomatal conductance) to decades (spatial arrangement) all of which may shape evapotranspiration and hence catchment behaviour. Evidence suggests that vegetation adapts to its environment in a self-organised, predictable way, guided by some overarching goal function, such as maximum net carbon profit or maximum entropy production. Appropriate optimality considerations under prevailing constraints enabled predictions of spatial heterogeneity of vegetation cover, or temporal dynamics of root distribution, canopy properties and water use. The hydrologic hillslope behaviour (e.g., surface and subsurface water fluxes and storage) is a powerful ingredient that defines boundary conditions for vegetation self-organisation. To systematically evaluate the role of this element, we propose a Hillslope Hydraulic Response Function (HHRF) a standardised parameterisation framework based on simplified and analytical representation of a prototypic hillslope. The HHRF uses a few geometrical parameters and intrinsic parameters to represent hillslope response in terms of fluxes and storage dynamics. Such an approach has been instrumental in deducing hydrologic response of watersheds (Kirchner, 2009, WRR) but has not been used for systematic parameterisation of HHRF. Here we separate out the biotic and abiotic components of catchment behaviour and test the sensitivity of vegetation and the catchment water balance to different hypothetical parameterisations of the HHRF.
Modeling the Atmospheric Dynamics within and Above Vegetation Layers
Warren E. Heilman; John Zasada
2000-01-01
A critical component of any silvicultural treatment is the creation of suitable microclimatic conditions for desired plant and animal species. One of the most useful tools for examining the microclimatic implications of different vegetation treatments is the use of atmospheric boundary-layer models that can simulate resulting micrometeorological conditions within and...
Ardö, Jonas
2015-12-01
Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.
An ecohydrological model for studying groundwater-vegetation interactions in wetlands
NASA Astrophysics Data System (ADS)
Chui, Ting Fong May; Low, Swee Yang; Liong, Shie-Yui
2011-10-01
SummaryDespite their importance to the natural environment, wetlands worldwide face drastic degradation from changes in land use and climatic patterns. To help preservation efforts and guide conservation strategies, a clear understanding of the dynamic relationship between coupled hydrology and vegetation systems in wetlands, and their responses to engineering works and climate change, is needed. An ecohydrological model was developed in this study to address this issue. The model combines a hydrology component based on the Richards' equation for characterizing variably saturated groundwater flow, with a vegetation component described by Lotka-Volterra equations tailored for plant growth. Vegetation is represented by two characteristic wetland herbaceous plant types which differ in their flood and drought resistances. Validation of the model on a study site in the Everglades demonstrated the capability of the model in capturing field-measured water table and transpiration dynamics. The model was next applied on a section of the Nee Soon swamp forest, a tropical wetland in Singapore, for studying the impact of possible drainage works on the groundwater hydrology and native vegetation. Drainage of 10 m downstream of the wetland resulted in a localized zone of influence within half a kilometer from the drainage site with significant adverse impacts on groundwater and biomass levels, indicating a strong need for conservation. Simulated water table-plant biomass relationships demonstrated the capability of the model in capturing the time-lag in biomass response to water table changes. To test the significance of taking plant growth into consideration, the performance of the model was compared to one that substituted the vegetation component with a pre-specified evapotranspiration rate. Unlike its revised counterpart, the original ecohydrological model explicitly accounted for the drainage-induced plant biomass decrease and translated the resulting reduced transpiration toll back to the groundwater hydrology for a more accurate soil water balance. This study represents, to our knowledge, the first development of an ecohydrological model for wetland ecosystems that characterizes the coupled relationship between variably-saturated groundwater flow and plant growth dynamics.
NASA Astrophysics Data System (ADS)
Corona, R.; Montaldo, N.; Albertson, J. D.
2016-12-01
Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Historical human influences (e.g., deforestation, urbanization) further altered these ecosystems. Sardinia island is a representative region of Mediterranean ecosystems. It is low urbanized except some plan areas close to the main cities where main agricultural activities are concentrated. Two contrasting case study sites are within the Flumendosa river basin (1700 km2). The first site is a typical grassland on an alluvial plan valley (soil depth > 2m) while the second is a patchy mixture of Mediterranean vegetation species (mainly wild olive trees and C3 herbaceous) that grow in a soil bounded from below by a rocky layer of basalt, partially fractured (soil depth 15 - 40 cm). In both sites land-surface fluxes and CO2 fluxes are estimated by the eddy correlation technique while soil moisture was continuously estimated with water content reflectometers, and periodically leaf area index (LAI) was estimated. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics; 3) evaluate the impact of past and future climate change scenarios on the two contrasting ecosystems. For reaching the objectives an ecohydrologic model that couples a vegetation dynamic model (VDM), and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM) has been used. Historical meteorological data are available from 1922 and hydro-meteorological scenarios are then generated using a weather generator. The VDM-LSM model predict soil water balance and vegetation dynamics for the generated hydrometeorological scenarios in the two contrasting ecosystems. Results demonstrate that vegetation dynamics are influenced by the inter-annual variability of atmospheric forcing, with vegetation density changing significantly according to seasonal rainfall amount. At the same time the vegetation dynamics affect the soil water balance.
NASA Astrophysics Data System (ADS)
Adami, Marcos; Bernardes, Sérgio; Arai, Egidio; Freitas, Ramon M.; Shimabukuro, Yosio E.; Espírito-Santo, Fernando D. B.; Rudorff, Bernardo F. T.; Anderson, Liana O.
2018-07-01
The development, implementation and enforcement of policies involving the rational use of the land and the conservation of natural resources depend on an adequate characterization and understanding of the land cover, including its dynamics. This paper presents an approach for monitoring vegetation dynamics using high-quality time series of MODIS surface reflectance data by generating fraction images using Linear Spectral Mixing Model (LSMM) over South America continent. The approach uses physically-based fraction images, which highlight target information and reduce data dimensionality. Further dimensionality was also reduced by using the vegetation fraction images as input to a Principal Component Analysis (PCA). The RGB composite of the first three PCA components, accounting for 92.9% of the dataset variability, showed good agreement with the main ecological regions of South America continent. The analysis of 21 temporal profiles of vegetation fraction values and precipitation data over South America showed the ability of vegetation fractions to represent phenological cycles over a variety of environments. Comparisons between vegetation fractions and precipitation data indicated the close relationship between water availability and leaf mass/chlorophyll content for several vegetation types. In addition, phenological changes and disturbance resulting from anthropogenic pressure were identified, particularly those associated with agricultural practices and forest removal. Therefore the proposed method supports the management of natural and non-natural ecosystems, and can contribute to the understanding of key conservation issues in South America, including deforestation, disturbance and fire occurrence and management.
NASA Astrophysics Data System (ADS)
Haberlandt, U.; Gerten, D.; Schaphoff, S.; Lucht, W.
Dynamic global vegetation models are developed with the main purpose to describe the spatio-temporal dynamics of vegetation at the global scale. Increasing concern about climate change impacts has put the focus of recent applications on the sim- ulation of the global carbon cycle. Water is a prime driver of biogeochemical and biophysical processes, thus an appropriate representation of the water cycle is crucial for their proper simulation. However, these models usually lack thorough validation of the water balance they produce. Here we present a hydrological validation of the current version of the LPJ (Lund- Potsdam-Jena) model, a dynamic global vegetation model operating at daily time steps. Long-term simulated runoff and evapotranspiration are compared to literature values, results from three global hydrological models, and discharge observations from various macroscale river basins. It was found that the seasonal and spatial patterns of the LPJ-simulated average values correspond well both with the measurements and the results from the stand-alone hy- drological models. However, a general underestimation of runoff occurs, which may be attributable to the low input dynamics of precipitation (equal distribution within a month), to the simulated vegetation pattern (potential vegetation without anthro- pogenic influence), and to some generalizations of the hydrological components in LPJ. Future research will focus on a better representation of the temporal variability of climate forcing, improved description of hydrological processes, and on the consider- ation of anthropogenic land use.
NASA Astrophysics Data System (ADS)
Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.
2014-12-01
Topography plays a commanding role on the organization of ecohydrologic processes and resulting vegetation patterns. In southwestern United States, climate conditions lead to terrain aspect- and elevation-controlled ecosystems, with mesic north-facing and xeric south-facing vegetation types; and changes in biodiversity as a function of elevation from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations and ridge tops. These observed patterns have been attributed to differences in topography-mediated local soil moisture availability, micro-climatology, and life history processes of plants that control chances of plant establishment and survival. While ecohydrologic models represent local vegetation dynamics in sufficient detail up to sub-hourly time scales, plant life history and competition for space and resources has not been adequately represented in models. In this study we develop an ecohydrologic cellular automata model within the Landlab component-based modeling framework. This model couples local vegetation dynamics (biomass production, death) and plant establishment and competition processes for resources and space. This model is used to study the vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. Processes that lead to observed plant types across the landscape are examined by initializing the domain with randomly assigned plant types and systematically changing model parameters that couple plant response with soil moisture dynamics. Climate perturbation experiments are conducted to examine the plant response in space and time. Understanding the inherently transient ecohydrologic systems is critical to improve predictions of climate change impacts on ecosystems.
Michael G. Shelton; Michael D. Cain
1999-01-01
The R.R. Reynolds Research Natural Area is a 32-ha second-growth forest with little human intervention for nearly 60 years. In this paper, the authors characterize the existing vegetation, which represents 60 years of successional change with no major disturbances, and report vegetative changes over a 5-year period, which suggest the future successional direction....
USDA-ARS?s Scientific Manuscript database
To improve the management strategy of riparian restoration, better understanding of the dynamic of eco-hydrological system and its feedback between hydrological and ecological components are needed. The fully distributed eco-hydrological model coupled with a hydrology component was developed based o...
Systems modeling to improve the hydro-ecological performance of diked wetlands
NASA Astrophysics Data System (ADS)
Alminagorta, Omar; Rosenberg, David E.; Kettenring, Karin M.
2016-09-01
Water scarcity and invasive vegetation threaten arid-region wetlands and wetland managers seek ways to enhance wetland ecosystem services with limited water, labor, and financial resources. While prior systems modeling efforts have focused on water management to improve flow-based ecosystem and habitat objectives, here we consider water allocation and invasive vegetation management that jointly target the concurrent hydrologic and vegetation habitat needs of priority wetland bird species. We formulate a composite weighted usable area for wetlands (WU) objective function that represents the wetland surface area that provides suitable water level and vegetation cover conditions for priority bird species. Maximizing the WU is subject to constraints such as water balance, hydraulic infrastructure capacity, invasive vegetation growth and control, and a limited financial budget to control vegetation. We apply the model at the Bear River Migratory Bird Refuge on the Great Salt Lake, Utah, compare model-recommended management actions to past Refuge water and vegetation control activities, and find that managers can almost double the area of suitable habitat by more dynamically managing water levels and managing invasive vegetation in August at the beginning of the window for control operations. Scenario and sensitivity analyses show the importance to jointly consider hydrology and vegetation system components rather than only the hydrological component.
Elevation Control on Vegetation Organization in a Semiarid Ecosystem in Central New Mexico
NASA Astrophysics Data System (ADS)
Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.
2015-12-01
Many semiarid and desert ecosystems are characterized by patchy and dynamic vegetation. Topography plays a commanding role on vegetation patterns. It is observed that plant biomes and biodiversity vary systematically with slope and aspect, from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations. In this study, we investigate the role of elevation dependent climatology on vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. An ecohydrologic cellular automaton model developed within Landlab (component based modeling framework) is used. The model couples local vegetation dynamics (that simulate biomass production based on local soil moisture and potential evapotranspiration) and plant establishment and mortality based on competition for resources and space. This model is driven by elevation dependent rainfall pulses and solar radiation. The domain is initialized with randomly assigned plant types and the model parameters that couple plant response with soil moisture are systematically changed. Climate perturbation experiments are conducted to examine spatial vegetation organization and associated timescales. Model results reproduce elevation and aspect controls on observed vegetation patterns indicating that this model captures necessary and sufficient conditions that explain these observed ecohydrological patterns.
Response of alpine vegetation growth dynamics to snow cover phenology on the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Wang, X.; Wu, C.
2017-12-01
Alpine vegetation plays a crucial role in global energy cycles with snow cover, an essential component of alpine land cover showing high sensitivity to climate change. The Tibetan Plateau (TP) has a typical alpine vegetation ecosystem and is rich of snow resources. With global warming, the snow of the TP has undergone significant changes that will inevitably affect the growth of alpine vegetation, but observed evidence of such interaction is limited. In particular, a comprehensive understanding of the responses of alpine vegetation growth to snow cover variability is still not well characterized on TP region. To investigate this, we calculated three indicators, the start (SOS) and length (LOS) of growing season, and the maximum of normalized difference vegetation index (NDVImax) as proxies of vegetation growth dynamics from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2015. Snow cover duration (SCD) and melt (SCM) dates were also extracted during the same time frame from the combination of MODIS and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data. We found that the snow cover phenology had a strong control on alpine vegetation growth dynamics. Furthermore, the responses of SOS, LOS and NDVImax to snow cover phenology varied among plant functional types, eco-geographical zones, and temperature and precipitation gradients. The alpine steppes showed a much stronger negative correlation between SOS and SCD, and also a more evidently positive relationship between LOS and SCD than other types, indicating a longer SCD would lead to an earlier SOS and longer LOS. Most areas showed positive correlation between SOS and SCM, while a contrary response was also found in the warm but drier areas. Both SCD and SCM showed positive correlations with NDVImax, but the relationship became weaker with the increase of precipitation. Our findings provided strong evidences between vegetation growth and snow cover phenology, and changes in snow cover should be also considered when analyzing alpine vegetation growth dynamics in future.
NASA Astrophysics Data System (ADS)
Zhang, Wenxin; Jansson, Christer; Miller, Paul; Smith, Ben; Samuelsson, Patrick
2014-05-01
Vegetation-climate feedbacks induced by vegetation dynamics under climate change alter biophysical properties of the land surface that regulate energy and water exchange with the atmosphere. Simulations with Earth System Models applied at global scale suggest that the current warming in the Arctic has been amplified, with large contributions from positive feedbacks, dominated by the effect of reduced surface albedo as an increased distribution, cover and taller stature of trees and shrubs mask underlying snow, darkening the surface. However, these models generally employ simplified representation of vegetation dynamics and structure and a coarse grid resolution, overlooking local or regional scale details determined by diverse vegetation composition and landscape heterogeneity. In this study, we perform simulations using an advanced regional coupled vegetation-climate model (RCA-GUESS) applied at high resolution (0.44×0.44° ) over the Arctic Coordinated Regional Climate Downscaling Experiment (CORDEX-Arctic) domain. The climate component (RCA4) is forced with lateral boundary conditions from EC-EARTH CMIP5 simulations for three representative concentration pathways (RCP 2.6, 4.5, 8.5). Vegetation-climate response is simulated by the individual-based dynamic vegetation model (LPJ-GUESS), accounting for phenology, physiology, demography and resource competition of individual-based vegetation, and feeding variations of leaf area index and vegetative cover fraction back to the climate component, thereby adjusting surface properties and surface energy fluxes. The simulated 2m air temperature, precipitation, vegetation distribution and carbon budget for the present period has been evaluated in another paper. The purpose of this study is to elucidate the spatial and temporal characteristics of the biophysical feedbacks arising from vegetation shifts in response to different CO2 concentration pathways and their associated climate change. Our results indicate that the albedo feedback dominates simulated warming in spring in all three scenarios, while in summer, evapotranspiration feedback, governing the partitioning of the return energy flux from the surface to the atmosphere into latent and sensible heat, exerts evaporative cooling effects, the magnitude of which depends on the severity of climate change, in turn driven by the underlying GHG emissions pathway, resulting in shift in the sign of net biophysical at higher levels of warming. Spatially, western Siberia is identified as the most susceptible location, experiencing the potential to reverse biophysical feedbacks in all seasons. We further analyze how the pattern of vegetation shifts triggers different signs of net effects of biophysical feedbacks.
Groundwater controls on river channel pattern
NASA Astrophysics Data System (ADS)
Bätz, Nico; Colombini, Pauline; Cherubini, Paolo; Lane, Stuart N.
2017-04-01
Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of vegetation. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through vegetation, that may determine the long-term geomorphic and biogeomorphic evolution of the river. It follows that with a change in disturbance frequency relative to the rate of vegetation establishment, a systematic geomorphological shift could occur. Research has addressed how changes in disturbance frequency affect river channel pattern, but has rarely addressed the way in which the stabilizing effects of biogeomorphic succession interact with disturbance frequency to maintain a river in a more dynamic or a less dynamic state. Here, we quantify how the interplay between groundwater access, disturbance frequency and vegetation succession, drive changes in channel pattern. We studied this complex interplay on a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Dendroecological analysis demonstrate that vegetation growth is driven by groundwater access. Groundwater access conditions the rate of vegetation stabilization at the sub-reach scale and, due to a reduction in flood-related disturbance frequency over the last 50 years, drives a change in channel pattern. Where groundwater is shallower, vegetation encroachment rates were high and as flood-related disturbance decreased, the river has shifted towards a meandering state. Where groundwater was deeper, vegetation growth was limited by water-access and thus vegetation encroachment rates were low. Even though there was a reduction in flood disturbance, it was still sufficient to maintain a wandering/braided state. Thus, it appears that access to groundwater can control river channel pattern through its impact upon the "engineering effects" of vegetation. The results are important for river management as they highlight the non-linearity of developing vegetation in dynamic alluvial floodplains and the importance of considering the wider environmental setting and associated feedbacks between biotic and abiotic river components in defining long-term geomorphological river response.
Shafer, S.L.; Atkins, J.; Bancroft, B.A.; Bartlein, P.J.; Lawler, J.J.; Smith, B.; Wilsey, C.B.
2012-01-01
The responses of species and ecosystems to future climate changes will present challenges for conservation and natural resource managers attempting to maintain both species populations and essential habitat. This report describes projected future changes in climate and vegetation for three study areas surrounding the military installations of Fort Benning, Georgia, Fort Hood, Texas, and Fort Irwin, California. Projected climate changes are described for the time period 2070–2099 (30-year mean) as compared to 1961–1990 (30-year mean) for each study area using data simulated by the coupled atmosphere-ocean general circulation models CCSM3, CGCM3.1(T47), and UKMO-HadCM3, run under the B1, A1B, and A2 future greenhouse gas emissions scenarios. These climate data are used to simulate potential changes in important components of the vegetation for each study area using LPJ, a dynamic global vegetation model, and LPJ-GUESS, a dynamic vegetation model optimized for regional studies. The simulated vegetation results are compared with observed vegetation data for the study areas. Potential effects of the simulated future climate and vegetation changes for species and habitats of management concern are discussed in each study area, with a particular focus on federally listed threatened and endangered species.
NASA Astrophysics Data System (ADS)
Fatichi, Simone; Manzoni, Stefano; Or, Dani; Paschalis, Athanasios
2016-04-01
The potential of a given ecosystem to store and release carbon is inherently linked to soil biogeochemical processes. These processes are deeply connected to the water, energy, and vegetation dynamics above and belowground. Recently, it has been advocated that a mechanistic representation of soil biogeochemistry require: (i) partitioning of soil organic carbon (SOC) pools according to their functional role; (ii) an explicit representation of microbial dynamics; (iii) coupling of carbon and nutrient cycles. While some of these components have been introduced in specialized models, they have been rarely implemented in terrestrial biosphere models and tested in real cases. In this study, we combine a new soil biogeochemistry model with an existing model of land-surface hydrology and vegetation dynamics (T&C). Specifically the soil biogeochemistry component explicitly separates different litter pools and distinguishes SOC in particulate, dissolved and mineral associated fractions. Extracellular enzymes and microbial pools are explicitly represented differentiating the functional roles of bacteria, saprotrophic and mycorrhizal fungi. Microbial activity depends on temperature, soil moisture and litter or SOC stoichiometry. The activity of macrofauna is also modeled. Nutrient dynamics include the cycles of nitrogen, phosphorous and potassium. The model accounts for feedbacks between nutrient limitations and plant growth as well as for plant stoichiometric flexibility. In turn, litter input is a function of the simulated vegetation dynamics. Root exudation and export to mycorrhiza are computed based on a nutrient uptake cost function. The combined model is tested to reproduce respiration dynamics and nitrogen cycle in few sites where data were available to test plausibility of results across a range of different metrics. For instance in a Swiss grassland ecosystem, fine root, bacteria, fungal and macrofaunal respiration account for 40%, 23%, 33% and 4% of total belowground respiration, respectively. Root exudation and carbon export to mycorrhizal represent about 7% of plant Net Primary Production. The model allows exploring the temporal dynamics of respiration fluxes from the different ecosystem components and designing virtual experiments on the controls exerted by environmental variables and/or soil microbes and mycorrhizal associations on soil carbon storage, plant growth, and nutrient leaching.
NASA Astrophysics Data System (ADS)
Sivandran, G.; Bisht, G.; Ivanov, V. Y.; Bras, R. L.
2008-12-01
A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was applied to the semiarid Walnut Gulch Experimental Watershed in Arizona. The physically-based, distributed nature of the coupled model allows for parameterization and simulation of watershed vegetation-water-energy dynamics on timescales varying from hourly to interannual. The model also allows for explicit spatial representation of processes that vary due to complex topography, such as lateral redistribution of moisture and partitioning of radiation with respect to aspect and slope. Model parameterization and forcing was conducted using readily available databases for topography, soil types, and land use cover as well as the data from network of meteorological stations located within the Walnut Gulch watershed. In order to test the performance of the model, three sets of simulations were conducted over an 11 year period from 1997 to 2007. Two simulations focus on heavily instrumented nested watersheds within the Walnut Gulch basin; (i) Kendall watershed, which is dominated by annual grasses; and (ii) Lucky Hills watershed, which is dominated by a mixture of deciduous and evergreen shrubs. The third set of simulations cover the entire Walnut Gulch Watershed. Model validation and performance were evaluated in relation to three broad categories; (i) energy balance components: the network of meteorological stations were used to validate the key energy fluxes; (ii) water balance components: the network of flumes, rain gauges and soil moisture stations installed within the watershed were utilized to validate the manner in which the model partitions moisture; and (iii) vegetation dynamics: remote sensing products from MODIS were used to validate spatial and temporal vegetation dynamics. Model results demonstrate satisfactory spatial and temporal agreement with observed data, giving confidence that key ecohydrological processes can be adequately represented for future applications of tRIBS+VEGGIE in regional modeling of land-atmosphere interactions.
NASA Astrophysics Data System (ADS)
Defourny, Pierre; Verbeeck, Hans; Moreau, Inès; De Weirdt, Marjolein; Verhegghen, Astrid; Kibambe-Lubamba, Jean-Paul; Jungers, Quentin; Maignan, Fabienne; Najdovski, Nicolas; Poulter, Benjamin; MacBean, Natasha; Peylin, Philippe
2014-05-01
Vegetation is a major carbon sink and is as such a key component of the international response to climate change caused by the build-up of greenhouse gases in the atmosphere. However, anthropogenic disturbances like deforestation are the primary mechanism that changes ecosystems from carbon sinks to sources, and are hardly included in the current carbon modelling approaches. Moreover, in tropical regions, the seasonal/interannual variability of carbon fluxes is still uncertain and a weak or even no seasonality is taken into account in global vegetation models. In the context of climate change and mitigation policies like "Reducing Emissions from Deforestation and Forest Degradation in Developing Countries" (REDD), it is particularly important to be able to quantify and forecast the vegetation dynamics and carbon fluxes in these regions. The overall objective of the VEGECLIM project is to increase our knowledge on the terrestrial carbon cycle in tropical regions and to improve the forecast of the vegetation dynamics and carbon stocks and fluxes under different climate-change and deforestation scenarios. Such an approach aims to determine whether the African terrestrial carbon balance will remain a net sink or could become a carbon source by the end of the century, according to different climate-change and deforestation scenarios. The research strategy is to integrate the information of the land surface characterizations obtained from 13 years of consistent SPOT-VEGETATION time series (land cover, vegetation phenology through vegetation indices such as the Enhanced Vegetation Index (EVI)) as well as in-situ carbon flux data into the process based ORCHIDEE global vegetation model, capable of simulating vegetation dynamics and carbon balance. Key challenge of this project was to bridge the gap between the land cover and the land surface model teams. Several improvements of the ORCHIDEE model have been realized such as a new seasonal leaf dynamics for tropical evergreen forests, the introduction of spatial soil phosphorus to improve the spatial distribution of simulated woody biomass and an assimilation of smoothed seasonal pattern of satellite-based EVI used as a proxy to vegetation productivity. The outputs of the ORCHIDEE simulations over both Amazon and Congo Basins are discussed with regards to the observed phenology by remote sensing.
A review on vegetation models and applicability to climate simulations at regional scale
NASA Astrophysics Data System (ADS)
Myoung, Boksoon; Choi, Yong-Sang; Park, Seon Ki
2011-11-01
The lack of accurate representations of biospheric components and their biophysical and biogeochemical processes is a great source of uncertainty in current climate models. The interactions between terrestrial ecosystems and the climate include exchanges not only of energy, water and momentum, but also of carbon and nitrogen. Reliable simulations of these interactions are crucial for predicting the potential impacts of future climate change and anthropogenic intervention on terrestrial ecosystems. In this paper, two biogeographical (Neilson's rule-based model and BIOME), two biogeochemical (BIOME-BGC and PnET-BGC), and three dynamic global vegetation models (Hybrid, LPJ, and MC1) were reviewed and compared in terms of their biophysical and physiological processes. The advantages and limitations of the models were also addressed. Lastly, the applications of the dynamic global vegetation models to regional climate simulations have been discussed.
Study on the vegetation dynamic change using long time series of remote sensing data
NASA Astrophysics Data System (ADS)
Fan, Jinlong; Zhang, Xiaoyu
2010-10-01
The vegetation covering land surface is main component of biosphere which is one of five significant spheres on the earth. The vegetation plays a very important role on the natural environment conservation and improvement to keep human being's living environment evergreen while the vegetation supplies many natural resources to human living and development continuously. Under the background of global warming, vegetation is changing as climate changes. It is not doubt that human activities have great effects on the vegetation dynamic. In general, there are two aspects of the interaction between vegetation and climate, the climatic adaptation of vegetation and the vegetation feedback on climate. On the base of the research on the long term vegetation growth dynamics, it can be found out the vegetation adaptation to climate change. The dynamic change of vegetation is the direct indicator of the ecological environment changes. Therefore, study on the dynamic change of vegetation will be very interest and useful. In this paper, the vegetation change in special region of China will be described in detail. In addition to the methods of the long term in-situ observation of vegetation, remote sensing technologies can also be used to study the long time series vegetation dynamic. The widely used NDVI was often employed to monitor the status of vegetation growth. Actually, NDVI can indicate the vigor and the fractional cover of vegetation effectively. So the long time series of NDVI datasets are a very valuable data source supporting the study on the long term vegetation dynamics. Since 1980, a series of NOAA satellites have been launched successfully, which have already supplied more than 20 years NOAA/AVHRR satellites data. In this paper, we selected Ningxia Hui autonomic region of China as the case study area and used 20 years pathfinder AVHRR NDVI data to carry out the case study on the vegetation dynamics in order to further understand the phenomena of 20 years vegetation dynamics of the whole Ningxia region. Ningxia Hui autonomic region is one of provinces in west china. Ningxia is a small region with square area of about 66, 4000 km2. Ningxia has special land cover with irrigated crop land in north and natural grass land in central and south. In addition to NDVI data, we also collected land cover and land use data and administrative border vector data with the scale of 1:4,000,000 and other data. The results show that (1)vegetation dynamic of Ningxia presents the characters of one season per year with the length of the growth season from the first decade May to the middle decade October and the range of NDVI value 0.05-0.25; the season characters vary with the local area; the max value of NDVI in the central dry area is only 0.2 and the date of reaching the peak of time series NDVI in the irrigation area is the latest while that in the south mountain area is the earliest; the Helan mountain area presents the characters of forest and the range of NDVI is narrower than those in the irrigation area and the south mountain area and higher in winter than those in two area above; in recent 18 years, the length of growth season in whole Ningxia has prolonged one decade, mainly in spring one decade in advance.(2) from 1982 to 1999, the trend of the whole Ningxia mean NDVI is increasing and presents the stable or better of vegetation growth; compared to NDVI in 1980's, NDVI in 1990's has increased already and the anomaly of growth season mean NDVI is mainly negative in 1980's while mainly positive in 1990's; NDVI in the central dry area is the lowest while NDVI in the Helan mountain is the highest; the values of NDVI in the irrigation area, the Helan mountain area and the south mountain area are higher than that of the whole Ningxia; the increasing trend of vegetation dynamic in the irrigation area, the south mountain area and the central dry area is similar with the whole Ningxia while the trend in the Helan mountain area is increasing from 1982-1988 but decreasing after 1988.
A further assessment of vegetation feedback on decadal Sahel rainfall variability
NASA Astrophysics Data System (ADS)
Kucharski, Fred; Zeng, Ning; Kalnay, Eugenia
2013-03-01
The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM ("SPEEDY") is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.
Regional impacts of Atlantic Forest deforestation on climate and vegetation dynamics
NASA Astrophysics Data System (ADS)
Holm, J. A.; Chambers, J. Q.
2012-12-01
The Brazilian Atlantic Forest was a large and important forest due to its high biodiversity, endemism, range in climate, and complex geography. The original Atlantic Forest was estimated to cover 150 million hectares, spanning large latitudinal, longitudinal, and elevation gradients. This unique environment helped contribute to a diverse assemblage of plants, mammals, birds, and reptiles. Unfortunately, due to land conversion into agriculture, pasture, urban areas, and increased forest fragmentation, only ~8-10% of the original Atlantic Forest remains. Tropical deforestation in the Americas can have considerable effects on local to global climates, and surrounding vegetation growth and survival. This study uses a fully coupled, global climate model (Community Earth System Model, CESM v.1.0.1) to simulate the full removal of the historical Atlantic Forest, and evaluate the regional climatic and vegetation responses due to deforestation. We used the fully coupled atmosphere and land surface components in CESM, and a partially interacting ocean component. The vegetated grid cell portion of the land surface component, the Community Landscape Model (CLM), is divided into 4 of 16 plant functional types (PFTs) with vertical layers of canopy, leaf area index, soil physical properties, and interacting hydrological features all tracking energy, water, and carbon state and flux variables, making CLM highly capable in predicting the complex nature and outcomes of large-scale deforestation. The Atlantic Forest removal (i.e. deforestation) was conducted my converting all woody stem PFTs to grasses in CLM, creating a land-use change from forest to pasture. By comparing the simulated historical Atlantic Forest (pre human alteration) to a deforested Atlantic Forest (close to current conditions) in CLM and CESM we found that live stem carbon, NPP (gC m-2 yr-1), and other vegetation dynamics inside and outside the Atlantic Forest region were largely altered. In addition to vegetation effects, regional surface air temperature (C°), precipitation (mm day-1), and emitted longwave radiation (W m-2) were highly affected in the location of the removed forest, and throughout surrounding areas of South America. For example climate patterns of increased temperature and decreased precipitation were affected as far as the Amazon Forest region. The use of fully coupled global climate and terrestrial models to study the effects of large-scale forest removal have been rarely applied. This study successfully showed the valuation of an important tropical forest, and the consequences of large deforestation through the reporting of complex earth-atmosphere interactions between vegetation dynamics and climate.
A Model-Based Study of Ecohydrological Controls in the Mojave Desert
NASA Astrophysics Data System (ADS)
Ng, G. C.; Bedford, D.; Miller, D. M.
2010-12-01
Desert ecosystems represent extreme conditions near the limits of viability for vegetation. Their dependence on scarce resources make them vulnerable to climate and land use change. Understanding how ecohydrological conditions impact plants in such regions is critical for ecological sustainability. Various relationships have been observed in the field between vegetation growth and meteorology, terrain, and plant physiology. Quantifying the complex interactions of those influences on vegetation dynamics can be facilitated with a physically-based ecohydrological model. To assess ecohydrological controls in the Mojave Desert, we employ the CLM4.0 land-surface model with the Carbon-Nitrogen model component to simulate vegetation dynamics [Olesen et al., 2010]. Using an ecohydrological model with fully prognostic vegetation variables is essential for representing the coupled dynamics between plants and soil moisture. We apply the CLM4.0-CN model to a study basin in the Mojave National Preserve that covers a variety of conditions. Soils range from coarse-textured wash sediments to low-permeability desert pavements. Higher elevations in the basin experience cooler and moister conditions than the lower wash areas. The dominant vegetation types in the basin include the evergreen shrub Larrea tridentata (creosote) and the drought-deciduous shrub Ambrosia dumosa. Simulations are conducted over a 50 year period to investigate both seasonal and interannual dynamics. Sensitivity tests indicate that high temporal resolution rainfall inputs (at least hourly) are important for properly resolving ecohydrological dynamics at the study site. As expected, preliminary results show that both coarser soils and milder climate facilitate vegetation growth in this moisture-limited region. However, results indicate that effects of soil texture variations become subordinate with milder climate. The model also reveals how drought-deciduous and evergreen shrub types respond differently to various conditions. Due to its quick response to sporadic wet episodes, the drought-deciduous Ambrosia thrives under harsher (hotter and drier) climates in simulations. The evergreen Larrea shrub becomes more competitive with more consistent moisture of the relatively milder climates in the basin. Multi-decadal simulations indicate that anomalously wet years can yield a sustained boost in vegetation in following years, especially for Larrea. These model results coincide with many observed vegetation patterns in the field, and they serve to elucidate and quantify the contributing factors that impact desert vegetation.
NASA Technical Reports Server (NTRS)
Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga
2016-01-01
Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.
NASA Astrophysics Data System (ADS)
von Keyserlingk, Jennifer; Paton, Eva Nora; Förster, Saskia; Bronstert, Axel
2017-04-01
Many of the dry rangelands of Southern Europe are threatened by land degradation. This process not only reduces the land's ecological functioning, but also its capacity to provide ecosystem goods and services for local land users. In rangelands, one important aspect is vegetation degradation, which reduces the land's capacity to support livestock. Thus, there is an urgent need to understand the complex dynamics and drivers of land degradation. In the past, both have been difficult to study due to the extensive spatial and temporal scales involved. In the last decade, a large number of remotely sensed imageries has become available for free, which enables a new approach to this topic. The aim of this research is to study land degradation as a multidimensional process incorporating its spatial and temporal components. We developed a methodological approach that makes use of long-term satellite Landsat data. Here, we use imagery of a typical degraded Mediterranean rangeland in Southern Cyprus (Randi Forest) for the years 1998-2015. We have chosen the NDVI as a proxy for vegetation greenness and applied different spatial landscape metrics to calculate changes in vegetation patterns over time. Further, we applied a time-series based approach (BFAST) on selected pixels, to look for sudden changes and trends in the vegetation dynamics. The results promoted our knowledge on how land degradation dynamics in Mediterranean rangelands can be captured through spatio-temporal vegetation dynamics and allowed us to select the most suitable metrics for further analysis. In the long-term, we aim at using Landsat satellite data covering 30 years. To gain a functional understanding of land degradation, we want to overlay our results from the remotely sensed data with results of an eco-hydrological model (SWAT).
Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling
NASA Astrophysics Data System (ADS)
Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.
2008-12-01
Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.
Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand.
Caruso, Brian S; Edmondson, Laura; Pithie, Callum
2013-07-01
In mountain braided rivers, extreme flow variability, floods and high flow pulses are fundamental elements of natural flow regimes and drivers of floodplain processes, understanding of which is essential for management and restoration. This study evaluated flow dynamics and invasive vegetation characteristics and changes in the Ahuriri River, a free-flowing braided, gravel-bed river in the Southern Alps of New Zealand's South Island. Sixty-seven flow metrics based on indicators of hydrologic alteration and environmental flow components (extreme low flows, low flows, high flow pulses, small floods and large floods) were analyzed using a 48-year flow record. Changes in the areal cover of floodplain and invasive vegetation classes and patch characteristics over 20 years (1991-2011) were quantified using five sets of aerial photographs, and the correlation between flow metrics and cover changes were evaluated. The river exhibits considerable hydrologic variability characteristic of mountain braided rivers, with large variation in floods and other flow regime metrics. The flow regime, including flood and high flow pulses, has variable effects on floodplain invasive vegetation, and creates dynamic patch mosaics that demonstrate the concepts of a shifting mosaic steady state and biogeomorphic succession. As much as 25 % of the vegetation cover was removed by the largest flood on record (570 m(3)/s, ~50-year return period), with preferential removal of lupin and less removal of willow. However, most of the vegetation regenerated and spread relatively quickly after floods. Some flow metrics analyzed were highly correlated with vegetation cover, and key metrics included the peak magnitude of the largest flood, flood frequency, and time since the last flood in the interval between photos. These metrics provided a simple multiple regression model of invasive vegetation cover in the aerial photos evaluated. Our analysis of relationships among flow regimes and invasive vegetation cover has implications for braided rivers impacted by hydroelectric power production, where increases in invasive vegetation cover are typically greater than in unimpacted rivers.
Postharvest Physiology and Biochemistry of Fruits and Vegetables.
ERIC Educational Resources Information Center
Haard, Norman F.
1984-01-01
Discusses the diversity and dynamic nature of the chemical components of postharvest crops. Also discusses the role of respiration and genetic control in chemical transformations leading to desirable and undesirable changes in the quality of edible plants after harvest. The role of enzymes in producing these changes is considered. (JN)
USDA-ARS?s Scientific Manuscript database
The responses of eco-hydrological systems to anthropogenic and natural disturbances have attracted much attention in recent years. The coupling and simulating feedback between hydrological and ecological components have been realized in several recently developed eco-hydrological models. However, li...
Investigating carbon dynamics in Siberian peat bogs using molecular-level analyses
NASA Astrophysics Data System (ADS)
Kaiser, K.; Benner, R. H.
2013-12-01
Total hydrolysable carbohydrates, and lignin and cutin acid compounds were analyzed in peat cores collected 56.8 N (SIB04), 58.4 N (SIB06), 63.8 N (G137) and 66.5 N (E113) in the Western Siberian Lowland to investigate vegetation, chemical compositions and the stage of decomposition. Sphagnum mosses dominated peatland vegetation in all four cores. High-resolution molecular analyses revealed rapid vegetation changes on timescales of 50-200 years in the southern cores Sib4 and Sib6. Syringyl and vanillyl (S/V) ratios and cutin acids indicated these vegetation changes were due to varying inputs of angiosperm and gymnosperm and root material. In the G137 and E113 cores lichens briefly replaced sphagnum mosses and vascular plants. Molecular decomposition indicators used in this study tracked the decomposition of different organic constituents of peat organic matter. The carbohydrate decomposition index was sensitive to the polysaccharide component of all peat-forming plants, whereas acid/aldehyde ratios of S and V phenols (Ac/AlS,V) followed the lignin component of vascular plants. Low carbohydrate decomposition indices in peat layers corresponded well with elevated (Ad/Al)S,V ratios. This suggested both classes of biochemicals were simultaneously decomposed, and decomposition processes were associated with extensive total mass loss in these ombrotrophic systems. Selective decomposition or transformation of lignin was observed in the permafrost-influenced northern cores G137 and E113. Both cores exhibited the highest (Ad/Al)S,V ratios, almost four-fold higher than measured in peat-forming plants. The extent of decomposition in the four peat cores did not uniformly increase with age, but showed episodic extensive decomposition events. Variable decomposition events independent of climatic conditions and vegetation shifts highlight the complexity of peatland dynamics.
Simulating Carbon Flux Dynamics with the Product of PAR Absorbed by Chlorophyll (fAPARchl)
NASA Astrophysics Data System (ADS)
Yao, T.; Zhang, Q.
2016-12-01
A common way to estimate the gross primary production (GPP) is to use the fraction of photosynthetically radiation (PAR) absorbed by vegetation (FPAR). However, only the PAR absorbed by chlorophyll of the canopy, not the PAR absorbed by the foliage or by the entire canopy, is used for photosynthesis. MODIS fAPARchl product, which refers to the fraction of PAR absorbed by chlorophyll of the canopy, is derived from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance by using an advanced leaf-canopy-soil-water-snow coupled radiative transfer model PROSAIL4. PROSAIL4 can retrieve surface water cover fraction, snow cover fraction, and physiologically active canopy chemistry components (chlorophyll concentration and water content), fraction of photosynthetically active radiation (PAR) absorbed by a canopy (fAPARcanopy), fraction of PAR absorbed by photosynthetic vegetation (PV) component (mainly chlorophyll) throughout the canopy (fAPARPV, i.e., fAPARchl) and fraction of PAR absorbed by non-photosynthetic vegetation (NPV) component of the canopy (fAPARNPV). We have successfully retrieved these vegetation parameters for selected areas with PROSAIL4 and the MODIS images, or simulated spectrally MODIS-like images. In this study, the product of PAR absorbed by chlorophyll (fAPARchl) has been used to simulate carbon flux over different kinds of vegetation types. The results show that MODIS fAPARchl product has the ability to better characterize phenology than current phenology model in the Community Land Model and it also will likely be able to increase the accuracy of carbon fluxes simulations.
NASA Astrophysics Data System (ADS)
Montaldo, N.; Albertson, J. D.; Corona, R.
2011-12-01
Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Mediterranean regions are characterized by two main ecosystems, grassland and woodland, which for both natural and anthropogenic causes can grow in soils with different characteristics, highly impacting water resources. Water resources and forestal planning need a deep understanding of the dynamics between PFTs, soil and atmosphere and their impacts on water and CO2 distributions of these two main ecosystems. The first step is the monitoring of land surface fluxes, soil moisture, and vegetation dynamics of the two contrasting ecosystems. Moreover, due to the large percentage of soils with low depth (< 50 cm), and due to the quick hydrologic answer to atmospheric forcing in these soils, there is also the need to understand the impact of the soil depth in the vegetation dynamics, and make measurements in these types of soils. Sardinia island is a very interesting and representative region of Mediterranean ecosystems. It is low urbanized, and is not irrigated, except some plan areas close to the main cities where main agricultural activities are concentrated. The case study sites are within the Flumendosa river basin on Sardinia. Two sites, both in the Flumendosa river and with similar height a.s.l., are investigated. The distance between the sites is around 4 km but the first is a typically grass site located on an alluvial plan valley with a soil depth more than 2m, while the second site is a patchy mixture of Mediterranean vegetation types Oaks, creepers of the wild olive trees and C3 herbaceous species and the soil thickness varies from 15-40 cm, bounded from below by a rocky layer of basalt, partially fractured. In both sites land-surface fluxes and CO2 fluxes are estimated by eddy correlation technique based micrometeorological towers. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index PFTs are estimated during the Spring-Summer 2005. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics. For reaching the objectives an ecohydrologic model is also successfully used and applied to the case studies. It couples a vegetation dynamic model, which computes the change in biomass over time for the PFTs, and a 3-component (bare soil, grass and woody vegetation) land surface model.
NASA Astrophysics Data System (ADS)
Tong, X.; Tian, F.; Brandt, M.; Zhang, W.; Liu, Y.; Fensholt, R.
2017-12-01
Changes in vegetation phenological events are among the most sensitive biological responses to climate change. In last decades, facilitating by satellite remote sensing techniques, land surface phenology (LSP) have been monitored at global scale using proxy approaches as tracking the temporal change of a satellite-derived vegetation index. However, the existing global assessments of changes in LSP are all established on the basis of leaf phenology using NDVI derived from optical sensors, being responsive to vegetation canopy cover and greenness. Instead, the vegetation optical depth (VOD) parameter from passive microwave sensors, which is sensitive to the aboveground vegetation water content by including as well the woody components in the observations, provides an alternative, independent and comprehensive means for global vegetation phenology monitoring. We used the unique long-term global VOD record available for the period 1992-2012 to monitoring the dynamics of LSP metrics (length of season, start of season and end of season) in comparison with the dynamics of LSP metrics derived from the latest GIMMS NDVI3G V1. We evaluated the differences in the linear trends of LSP metrics between two datasets. Currently, our results suggest that the level of seasonality variation of vegetation water content is less than the vegetation greenness. We found significant phenological changes in vegetation water content in African woodlands, where has been reported with little leaf phenological change regardless of the delays in rainfall onset. Therefore, VOD might allow us to detect temporal shifts in the timing difference of vegetation water storage vs. leaf emergence and to see if some ecophysiological thresholds seem to be reached, that could cause species turnover as climate change-driven alterations to the African monsoon proceed.
Co-evolution of landforms and vegetation under the influence of orographic precipitation
NASA Astrophysics Data System (ADS)
Yetemen, Omer; Srivastava, Ankur; Saco, Patricia M.
2017-04-01
Landforms are controlled by the interaction between tectonics, climate, and vegetation. Orography induced precipitation not only has implications on erosion resistance through vegetation dynamics but also affects erosive forces through modifying runoff production. The implications of elevated precipitation due to orography on landscape morphology requires a numerical framework that integrates a range of ecohydrologic and geomorphic processes to explore the competition between erosive and resisting forces in catchments where pronounced orographic precipitation prevails. In this study, our aim was to realistically represent ecohydrology driven by orographic precipitation and explore its implications on landscape evolution through a numerical model. The model was used to investigate how ecohydro-geomorphic differences caused by differential precipitation patterns as a result of orographic influence and rain-shadow effect lead to differences in the organization of modelled topography, soil moisture, and plant biomass. We use the CHILD landscape evolution model equipped with a vegetation dynamics component that explicitly tracks above- and below-ground biomass, and a precipitation forcing component that simulates rainfall as a function of elevation and orientation. The preliminary results of the model have shown how the competition between an increased shear stress through runoff production and an enhanced resistance force due to denser canopy cover, shape the landscape. Hillslope asymmetry between polar- and equator-facing hillslopes are enhanced (diminished) when they coincide with windward (leeward) side of the mountain series. The mountain divide accommodates itself by migrating toward the windward direction to increase (decrease) hillslope gradients on windward (leeward) slopes. These results clearly demonstrate the strong coupling between landform evolution and climate processes.
NASA Astrophysics Data System (ADS)
Yetemen, O.; Saco, P. M.
2016-12-01
Orography induced precipitation and its implications on vegetation dynamics and landscape morphology have long been documented in the literature. However a numerical framework that integrates a range of ecohydrologic and geomorphic processes to explore the coupled ecohydro-geomorphic landscape response of catchments where pronounced orographic precipitation prevails has been missing. In this study, our aim is to realistically represent orographic-precipitation-driven ecohydrologic dynamics in a landscape evolution model (LEM). The model is used to investigate how ecohydro-geomorphic differences caused by differential precipitation patterns on the leeward and windward sides of low-relief landscapes lead to differences in the organization of modelled topography, soil moisture and plant biomass. We use the CHILD LEM equipped with a vegetation dynamics component that explicitly tracks above- and below-ground biomass, and a precipitation forcing component that simulates rainfall as a function of elevation and orientation. The preliminary results of the model show how the competition between an increased shear stress through runoff production and an enhanced resistance force due to denser canopy cover shape the landscape. Moreover, orographic precipitation leads to not only the migration of the divide between leeward and windward slopes but also a change in the concavity of streams. These results clearly demonstrate the strong coupling between landform evolution and climate processes.
A blueprint for using climate change predictions in an eco-hydrological study
NASA Astrophysics Data System (ADS)
Caporali, E.; Fatichi, S.; Ivanov, V. Y.
2009-12-01
There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for uncertainties in projections of future climate is discussed and a methodology for propagating these uncertainties into the probability density functions of changes in eco-hydrological variables is presented.
Negative plant soil feedback explaining ring formation in clonal plants.
Cartenì, Fabrizio; Marasco, Addolorata; Bonanomi, Giuliano; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco
2012-11-21
Ring shaped patches of clonal plants have been reported in different environments, but the mechanisms underlying such pattern formation are still poorly explained. Water depletion in the inner tussocks zone has been proposed as a possible cause, although ring patterns have been also observed in ecosystems without limiting water conditions. In this work, a spatially explicit model is presented in order to investigate the role of negative plant-soil feedback as an additional explanation for ring formation. The model describes the dynamics of the plant biomass in the presence of toxicity produced by the decomposition of accumulated litter in the soil. Our model qualitatively reproduces the emergence of ring patterns of a single clonal plant species during colonisation of a bare substrate. The model admits two homogeneous stationary solutions representing bare soil and uniform vegetation cover which depend only on the ratio between the biomass death and growth rates. Moreover, differently from other plant spatial patterns models, but in agreement with real field observations of vegetation dynamics, we demonstrated that the pattern dynamics always lead to spatially homogeneous vegetation covers without creation of stable Turing patterns. Analytical results show that ring formation is a function of two main components, the plant specific susceptibility to toxic compounds released in the soil by the accumulated litter and the decay rate of these same compounds, depending on environmental conditions. These components act at the same time and their respective intensities can give rise to the different ring structures observed in nature, ranging from slight reductions of biomass in patch centres, to the appearance of marked rings with bare inner zones, as well as the occurrence of ephemeral waves of plant cover. Our results highlight the potential role of plant-soil negative feedback depending on decomposition processes for the development of transient vegetation patterns. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moreno-de las Heras, M.; Diaz-Sierra, R.; Turnbull, L.; Wainwright, J.
2015-01-01
Climate change and the widespread alteration of natural habitats are major drivers of vegetation change in drylands. A classic case of vegetation change is the shrub-encroachment process that has been taking place over the last 150 years in the Chihuahuan Desert, where large areas of grasslands dominated by perennial grass species (black grama, Bouteloua eriopoda, and blue grama, B. gracilis) have transitioned to shrublands dominated by woody species (creosotebush, Larrea tridentata, and mesquite, Prosopis glandulosa), accompanied by accelerated water and wind erosion. Multiple mechanisms drive the shrub-encroachment process, including exogenous triggering factors such as precipitation variations and land-use change, and endogenous amplifying mechanisms brought about by soil erosion-vegetation feedbacks. In this study, simulations of plant biomass dynamics with a simple modelling framework indicate that herbaceous (grasses and forbs) and shrub vegetation in drylands have different responses to antecedent precipitation due to functional differences in plant growth and water-use patterns, and therefore shrub encroachment may be reflected in the analysis of landscape-scale vegetation-rainfall relationships. We analyze the structure and dynamics of vegetation at an 18 km2 grassland-shrubland ecotone in the northern edge of the Chihuahuan Desert (McKenzie Flats, Sevilleta National Wildlife Refuge, NM, USA) by investigating the relationship between decade-scale (2000-2013) records of medium-resolution remote sensing of vegetation greenness (MODIS NDVI) and precipitation. Spatial evaluation of NDVI-rainfall relationship at the studied ecotone indicates that herbaceous vegetation shows quick growth pulses associated with short-term (previous 2 months) precipitation, while shrubs show a slow response to medium-term (previous 5 months) precipitation. We use these relationships to (a) classify landscape types as a function of the spatial distribution of dominant vegetation, and to (b) decompose the NDVI signal into partial primary production components for herbaceous vegetation and shrubs across the study site. We further apply remote-sensed annual net primary production (ANPP) estimations and landscape type classification to explore the influence of inter-annual variations in seasonal precipitation on the production of herbaceous and shrub vegetation. Our results suggest that changes in the amount and temporal pattern of precipitation comprising reductions in monsoonal summer rainfall and/or increases in winter precipitation may enhance the shrub-encroachment process in desert grasslands of the American Southwest.
Sampling and modeling visual component dynamics of forested areas
Victor A. Rudis
1990-01-01
A scaling device and sample design have been employed to assess vegetative screening of forested stands as part of an extensive forest inventory.Referenced in a poster presentation are results from East Texas pine and oak-pine stands and Alabama forested areas.Refinements for optimizing measures to distinguish differences in scenic beauty, disturbances, and stand...
Consequences of fire on aquatic nitrate and phosphate dynamics in Yellowstone National Park
James A. Brass; Vincent G. Ambrosia; Philip J. Riggan; Paul D. Sebesta
1996-01-01
Airborne remotely sensed data were collected and analyzed during and following the 1988 Greater Yellowstone Ecosystem (GYE) fires in order to characterize the fire front movements, burn intensities and various vegetative components of selected watersheds. Remotely sensed data were used to categorize the burn intensities as: severely burned, moderately burned, mixed...
An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems
NASA Astrophysics Data System (ADS)
Alemayehu, Tadesse; van Griensven, Ann; Taddesse Woldegiorgis, Befekadu; Bauwens, Willy
2017-09-01
The Soil and Water Assessment Tool (SWAT) is a globally applied river basin ecohydrological model used in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for the development of the best water management practices. However, SWAT has limitations in simulating the seasonal growth cycles for trees and perennial vegetation in the tropics, where rainfall rather than temperature is the dominant plant growth controlling factor. Our goal is to improve the vegetation growth module of SWAT for simulating the vegetation variables - such as the leaf area index (LAI) - for tropical ecosystems. Therefore, we present a modified SWAT version for the tropics (SWAT-T) that uses a straightforward but robust soil moisture index (SMI) - a quotient of rainfall (P) and reference evapotranspiration (ETr) - to dynamically initiate a new growth cycle within a predefined period. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T-simulated LAI corresponds well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for evergreen forest, savanna grassland and shrubland. This indicates that the SMI is reliable for triggering a new annual growth cycle. The water balance components (evapotranspiration and streamflow) simulated by the SWAT-T exhibit a good agreement with remote-sensing-based evapotranspiration (ET-RS) and observed streamflow. The SWAT-T model, with the proposed vegetation growth module for tropical ecosystems, can be a robust tool for simulating the vegetation growth dynamics in hydrologic models in tropical regions.
Leong, Misha; Roderick, George K
2015-01-01
Global change has led to shifts in phenology, potentially disrupting species interactions such as plant-pollinator relationships. Advances in remote sensing techniques allow one to detect vegetation phenological diversity between different land use types, but it is not clear how this translates to other communities in the ecosystem. Here, we investigated the phenological diversity of the vegetation across a human-altered landscape including urban, agricultural, and natural land use types. We found that the patterns of change in the vegetation indices (EVI and NDVI) of human-altered landscapes are out of synchronization with the phenology in neighboring natural California grassland habitat. Comparing these findings to a spatio-temporal pollinator distribution dataset, EVI and NDVI were significant predictors of total bee abundance, a relationship that improved with time lags. This evidence supports the importance of differences in temporal dynamics between land use types. These findings also highlight the potential to utilize remote sensing data to make predictions for components of biodiversity that have tight vegetation associations, such as pollinators.
NASA Astrophysics Data System (ADS)
Imbrenda, Vito; Coluzzi, Rosa; D'Emilio, Mariagrazia; Lanfredi, Maria; Simoniello, Tiziana
2013-04-01
Vegetation is one of the key components to study land degradation vulnerability because of the complex interactions and feedbacks that link it to soil. In the Mediterranean region, degradation phenomena are due to a mix of predisposing factors (thin soil horizons, low soil organic matter, increasing aridity, etc.) and bad management practices (overgrazing, deforestation, intensification of agriculture, tourism development). In particular, in areas threatened by degradation processes but still covered by vegetation, large scale soil condition evaluation is a hard task and the detection of stressed vegetation can be useful to identify on-going soil degradation phenomena and to reduce their impacts through interventions for recovery/rehabilitation. In this context the use of satellite time series can increase the efficacy and completeness of the land degradation assessment, providing precious information to understand vegetation dynamics. In order to estimate vulnerability levels in Basilicata (a Mediterranean region of Southern Italy) in the framework of PRO-LAND project (PO-FESR Basilicata 2007-2013), we crossed information on potential vegetation vulnerability with information on photosynthetic activity dynamics. Potential vegetation vulnerability represents the vulnerability related to the type of present cover in terms of fire risk, erosion protection, drought resistance and plant cover distribution. It was derived from an updated land cover map by separately analyzing each factor, and then by combining them to obtain concise information on the possible degradation exposure. The analysis of photosynthetic activity dynamics provides information on the status of vegetation, that is fundamental to discriminate the different vulnerability levels within the same land cover, i.e. the same potential vulnerability. For such a purpose, we analyzed a time series (2000-2010) of a satellite vegetation index (MODIS NDVI) with 250m resolution, available as 16-day composite from the NASA LP DAAC dataset. Vegetation activity trends were estimated and then normalized to the starting conditions to obtain the percentage variation (NDVI-PV) for the considered period. Information on the potential vulnerability and vegetation activity dynamics were classified into indexes and combined to obtain the final map of the actual vegetation vulnerability and to identify on-going degradation phenomena and priority sites within areas already compromised. As for the investigated area, this map shows a composite picture in which only a few values of high vulnerability are scattered along areas where medium-high vulnerability values generally prevail. Here, we singled out two kind of areas: one largely devoted to intensive agriculture, and other one mostly characterized by bare soils and sparse vegetation. On the contrary, a large part of natural and seminatural vegetation located along the Apennine chain does not show critical vulnerability values. By comparing the vegetation vulnerability map with the vulnerability map due to anthropic factors (pressure induced by agricultural and grazing activities, estimated by indicators derived from census data), we found correlation, confirming the anthropogenic cause of vulnerability and therefore the major role held by soil management in areas mainly devoted to intensive farming.
Mechanistic ecohydrological modeling with Tethys-Chloris: an attempt to unravel complexity
NASA Astrophysics Data System (ADS)
Fatichi, S.; Ivanov, V. Y.; Caporali, E.
2010-12-01
The role of vegetation in controlling and mediating hydrological states and fluxes at the level of individual processes has been largely explored, which has lead to the improvement of our understanding of mechanisms and patterns in ecohydrological systems. Nonetheless, relatively few efforts have been directed toward the development of continuous, complex, mechanistic ecohydrological models operating at the watershed-scale. This study presents a novel ecohydrological model Tethys-Chloris (T&C) and aims to discuss current limitations and perspectives of the mechanistic approach in ecohydrology. The model attempts to synthesize the state-of-the-art knowledge on individual processes and mechanisms drawn from various disciplines such as hydrology, plant physiology, ecology, and biogeochemistry. The model reproduces all essential components of hydrological cycle resolving the mass and energy budgets at the hourly scale; it includes energy and mass exchanges in the atmospheric boundary layer; a module of saturated and unsaturated soil water dynamics; two layers of vegetation, and a module of snowpack evolution. The vegetation component parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, tissues turnover, and soil biogeochemistry. Quantitative metrics of model performance are discussed and highlight the capabilities of T&C in reproducing ecohydrological dynamics. The simulated patterns mimic the outcome of hydrological dynamics with high realism, given the uncertainty of imposed boundary conditions and limited data availability. Furthermore, highly satisfactory results are obtained without significant (e.g., automated) calibration efforts despite the large phase-space dimensionality of the model. A significant investment into model design and development leads to such desirable behavior. This suggests that while using the presented tool for high-precision predictions can be still problematic, the mechanistic nature of the model can be extremely valuable for designing virtual experiments, testing hypotheses. and focusing questions of scientific inquiry.
[Review of dynamic global vegetation models (DGVMs)].
Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun
2014-01-01
Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project.
Ecohydrologic Dynamics in Areas of Complex Topography in Semiarid Ecosystems
NASA Astrophysics Data System (ADS)
Ivanov, V. Y.; Bras, R. L.; Vivoni, E. R.
2008-12-01
Topography strongly affects the state and distribution of vegetation and this control is normally considered to operate through the regulation of the incoming solar radiation and lateral redistribution of water and elements. One of the areas of active research is how plants adjust to terrain effects relative to their location in a landscape and what the implications are for the spatial distribution of the water balance. This study emphasizes the coupled nature of interactions among vegetation-water-energy dynamics and their corresponding controls in complex topography of a semiarid ecosystem. These dynamics are investigated by constructing a coupled modeling system, tRIBS+VEGGIE, based on physical, biochemical, or mechanistic representation of individual processes. In a set of numerical experiments, linkages between terrain attributes, patterns of grass and shrub productivity, and water balance components are examined. For different imposed regimes of lateral water transfer, regions of relative vegetation "favorability" are identified. Their principal controlling mechanisms, as mediated by topographic features of the landscape, are investigated. It is argued that the long-term effects of site-specific and non-local terrain characteristics are superimposed and the key features of the superposition appear to be of the same form, irrespective of the soil hydraulic type or the actual water transport mechanism involved.
Retrieving pace in vegetation growth using precipitation and soil moisture
NASA Astrophysics Data System (ADS)
Sohoulande Djebou, D. C.; Singh, V. P.
2013-12-01
The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and NDVI. The analysis is performed by combining both scenes 7 and 8 data. Schematic illustration of the two dimension transinformation entropy approach. T(P,SM;VI) stand for the transinformation contained in the couple soil moisture (SM)/precipitation (P) and explaining vegetation growth (VI).
NASA Astrophysics Data System (ADS)
Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John
2015-04-01
Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and surface fuels are modeled in a state and transition framework that accounts for succession, fire effects, and fuels management. Fire effects are modeled using simulated fire intensity (flame length) to calculate expected vegetation impacts for each vegetation state. This talk will describe the mechanics of the simulation system along with initial results of Envision simulations for the Central Oregon study area that explore the dynamics of wildfire, fuel management, and succession over time.
Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.
2010-01-01
Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped into these guilds and related to hydrologic attributes of a specific class of river using probabilistic response curves. 5. Probabilistic models based on riparian response guilds enable prediction of the likelihood of change in each of the response guilds given projected changes in flow, and facilitate examination of trade-offs and risks associated with various flow management strategies. Riparian response guilds can be decomposed to the species level for individual projects or used to develop flow management guidelines for regional water management plans. ?? 2009 Published.
The contribution of brown vegetation to vegetation dynamics
USDA-ARS?s Scientific Manuscript database
Indices of vegetation dynamics that include both green vegetation (GV) and non-photosynthetic vegetation (NPV), that is, brown vegetation, were applied to MODIS surface reflectance data from 2000 to 2006 for the southwestern United States. These indices reveal that the cover of NPV, a measure of veg...
Integrated study of biomass index in La Herreria (Sierra de Guadarrama)
NASA Astrophysics Data System (ADS)
Hernandez Díaz-Ambrona, Carlos G.
2016-04-01
Drought severity has many implications for society, including its impacts on the water supply, water pollution, reservoir management and ecosystem. There have been many attempts to characterize its severity, resulting in the numerous drought indices that have been developed (Niemeyer 2008). The'biomass index', based on satellite image derived Normalized Difference Vegetation Index (NDVI) has been used in several countries for pasture and forage crops for some years (Rao, 2010; Escribano-Rodriguez et al., 2014). NDVI generally provides a broad overview of the vegetation condition and spatial vegetation distribution in a region. Vegetative drought is closely related with weather impacts. However, in NDVI, the weather component gets subdued by the strong ecological component. Another vegetation index is Vegetation Condition Index (VCI) that separates the short-term weather-related NDVI fluctuations from the long-term ecosystem changes (Kogan, 1990). Therefore, while NDVI shows seasonal vegetation dynamics, VCI rescales vegetation dynamics between 0 and 100 to reflect relative changes in the vegetation condition from extremely bad to optimal (Kogan et al., 2003). In this work a pasture area at La Herreria (Sierra de Guadarrama, Spain) has been delimited. Then, NDVI historical data are reconstructed based on remote sensing imaging MODIS, with 500x500m2 resolution. From the closest meteorological station (Santolaria-Canales, 2015) records of weekly precipitation, temperature and evapotranspiration from 2001 till 2012 were obtained. Standard Precipitation Index (SPI), Crop Moisture Index (CMI) (Palmer, 1968) and Evapotranspiration-Precipitation Ratio (EPR) are calculated in an attempt to relate them to several vegetation indexes: NDVI, VCI and NDVI Change Ratio to Median (RMNDVI). The results are discussed in the context of pasture index insurance. References Escribano Rodriguez, J.Agustín, Carlos Gregorio Hernández Díaz-Ambrona and Ana María Tarquis Alfonso. Selection of vegetation indices to estimate pasture production in Dehesas. PASTOS, 44(2), 6-18, 2014. Kogan, F. N., 1990. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sensing, 11(8), pp. 1405-1419. Kogan, F. N., Gitelson, A., Edige, Z., Spivak, l., and Lebed, L., 2003. AVHRR-Based Spectral Vegetation Index for Quantitative Assessment of Vegetation State and Productivity: Calibration and Validation. Photogrammetric Engineering & Remote Sensing, 69(8), pp. 899-906. Niemeyer, S., 2008. New drought indices. First Int. Conf. on Drought Management: Scientific and Technological Innovations, Zaragoza, Spain, Joint Research Centre of the European Commission. Palmer, W.C., 1968. Keeping track of crop moisture conditions, nationwide: The new Crop Moisture Index. Weatherwise 21, 156-161. Rao, K.N. 2010. Index based Crop Insurance. Agriculture and Agricultural Science Procedia 1, 193-203. Santolaria-Canales, Edmundo and the GuMNet Consortium Team (2015). GuMNet - Guadarrama Monitoring Network. Installation and set up of a high altitude monitoring network, north of Madrid. Spain. Geophysical Research Abstracts, 17, EGU2015-13989-2 Web: http://www.ucm.es/gumnet/
Noe, G.B.; Shroder, John F.
2013-01-01
Hydrogeomorphic, vegetative, and biogeochemical processes interact in floodplains resulting in great complexity that provides opportunities to better understand linkages among physical and biological processes in ecosystems. Floodplains and their associated river systems are structured by four-dimensional gradients of hydrogeomorphology: longitudinal, lateral, vertical, and temporal components. These four dimensions create dynamic hydrologic and geomorphologic mosaics that have a large imprint on the vegetation and nutrient biogeochemistry of floodplains. Plant physiology, population dynamics, community structure, and productivity are all very responsive to floodplain hydrogeomorphology. The strength of this relationship between vegetation and hydrogeomorphology is evident in the use of vegetation as an indicator of hydrogeomorphic processes. However, vegetation also influences hydrogeomorphology by modifying hydraulics and sediment entrainment and deposition that typically stabilize geomorphic patterns. Nitrogen and phosphorus biogeochemistry commonly influence plant productivity and community composition, although productivity is not limited by nutrient availability in all floodplains. Conversely, vegetation influences nutrient biogeochemistry through direct uptake and storage as well as production of organic matter that regulates microbial biogeochemical processes. The biogeochemistries of nitrogen and phosphorus cycling are very sensitive to spatial and temporal variation in hydrogeomorphology, in particular floodplain wetness and sedimentation. The least-studied interaction is the direct effect of biogeochemistry on hydrogeomorphology, but the control of nutrient availability over organic matter decomposition and thus soil permeability and elevation is likely important. Biogeochemistry also has the more documented but indirect control of hydrogeomorphology through regulation of plant biomass. In summary, the defining characteristics of floodplain ecosystems are determined by the many interactions among physical and biological processes. Conservation and restoration of the valuable ecosystem services that floodplains provide depend on improved understanding and predictive models of interactive system controls and behavior.
Noe, G.B.
2013-01-01
Hydrogeomorphic, vegetative, and biogeochemical processes interact in floodplains resulting in great complexity that provides opportunities to better understand linkages among physical and biological processes in ecosystems. Floodplains and their associated river systems are structured by four dimensional gradients of hydrogeomorphology: longitudinal, lateral, vertical, and temporal components. These four dimensions create dynamic hydrologic and geomorphologic mosaics that have a large imprint on the vegetation and nutrient biogeochemistry of floodplains. Plant physiology, population dynamics, community structure, and productivity are all very responsive to floodplain hydrogeomorphology. The strength of this relationship between vegetation and hydrogeomorphology is evident in the use of vegetation as an indicator of hydrogeomorphic processes. However, vegetation also influences hydrogeomorphology by modifying hydraulics and sediment entrainment and deposition that typically stabilize geomorphic patterns. Nitrogen and phosphorus biogeochemistry commonly influence plant productivity and community composition, although productivity is not limited by nutrient availability in all floodplains. Conversely, vegetation influences nutrient biogeochemistry through direct uptake and storage as well as production of organic matter that regulates microbial biogeochemical processes. The biogeochemistries of nitrogen and phosphorus cycling are very sensitive to spatial and temporal variation in hydrogeomorphology, in particular floodplain wetness and sedimentation. The least studied interaction is the direct effect of biogeochemistry on hydrogeomorphology, but the control of nutrient availability over organic matter decomposition and thus soil permeability and elevation is likely important. Biogeochemistry also has the more documented but indirect control of hydrogeomorphology through regulation of plant biomass. In summary, the defining characteristics of floodplain ecosystems are determined by the many interactions among physical and biological processes. Conservation and restoration of the valuable ecosystem services that floodplains provide depends on improved understanding and predictive models of interactive system controls and behavior.
Modeling vegetation rooting strategies on a hillslope
NASA Astrophysics Data System (ADS)
Sivandran, G.; Bras, R. L.
2011-12-01
The manner in which water and energy is partitioned and redistributed along a hillslope is the result of complex coupled ecohydrological interactions between the climatic, soils, topography and vegetation operating over a wide range of spatiotemporal scales. Distributed process based modeling creates a framework through which the interaction of vegetation with the subtle differences in the spatial and temporal dynamics of soil moisture that arise under localized abiotic conditions along a hillslope can be simulated and examined. One deficiency in the current dynamic vegetation models is the one sided manner in which vegetation responds to soil moisture dynamics. Above ground, vegetation is given the freedom to dynamically evolve through alterations in fractional vegetation cover and/or canopy height and density; however below ground rooting profiles are simplistically represented and often held constant in time and space. The need to better represent the belowground role of vegetation through dynamic rooting strategies is fundamental in capturing the magnitude and timing of water and energy fluxes between the atmosphere and land surface. In order to allow vegetation to adapt to gradients in soil moisture a dynamic rooting scheme was incorporated into tRIBS+VEGGIE (a physically based distributed ecohydrological model). The dynamic rooting scheme allows vegetation the freedom to adapt their rooting depth and distribution in response abiotic conditions in a way that more closely mimics observed plant behavior. The incorporation of this belowground plasticity results in vegetation employing a suite of rooting strategies based on soil texture, climatic conditions and location on the hillslope.
Wullschleger, Stan D.; Epstein, Howard E.; Box, Elgene O.; Euskirchen, Eugénie S.; Goswami, Santonu; Iversen, Colleen M.; Kattge, Jens; Norby, Richard J.; van Bodegom, Peter M.; Xu, Xiaofeng
2014-01-01
Background Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Scope Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. Conclusions Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait–environment relationships. Surprisingly, despite being important to land–atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology and remote sensing will be required if we are to overcome these and other shortcomings. PMID:24793697
James M. Lenihan; Dominique Bachelet; Raymond Drapek; Ronald P. Neilson
2006-01-01
The objective of this study was to dynamically simulate the response of vegetation distribution, carbon, and fire to three scenarios of future climate change for California using the MAPSS-CENTURY (MCI) dynamic general vegetation model. Under all three scenarios, Alpine/Subalpine Forest cover declined with increased growing season length and warmth, and increases in...
Knorre, Anastasia A; Kirdyanov, Alexander V; Vaganov, Eugene A
2006-02-01
To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha(-1) year(-1) for trees, from 0.05 to 0.18 t ha(-1) year(-1) for shrubs and from 0.54 to 0.66 t ha(-1) year(-1) for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990-1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover.
Zhao Xiaoying; Ren Jizhou
2007-01-01
The leguminous Caragana species are important components of vegetation in the semi-arid Loess-gully region, China. These shrub species are important for maintaining the dynamics and function of the ecosystem in the region. They are potential plant resources for restoration of degraded ecosystems. The germination responses to temperatures in two...
NASA Astrophysics Data System (ADS)
Mildrexler, D. J.; Zhao, M.; Running, S. W.
2014-12-01
Land Surface Temperature (LST) is a good indicator of the surface energy balance because it is determined by interactions and energy fluxes between the atmosphere and the ground. The variability of land surface properties and vegetation densities across the Earth's surface changes these interactions and gives LST a unique biogeographic influence. Natural and human-induced disturbances modify the surface characteristics and alter the expression of LST. This results in a heterogeneous and dynamic thermal environment. Measurements that merge these factors into a single global metric, while maintaining the important biophysical and biogeographical factors of the land surface's thermal environment are needed to better understand integrated temperature changes in the Earth system. Using satellite-based LST we have developed a new global metric that focuses on one critical component of LST that occurs when the relationship between vegetation density and surface temperature is strongly coupled: annual maximum LST (LSTmax). A 10 year evaluation of LSTmax histograms that include every 1-km pixel across the Earth's surface reveals that this integrative measurement is strongly influenced by the biogeographic patterns of the Earth's ecosystems, providing a unique comparative view of the planet every year that can be likened to the Earth's thermal maximum fingerprint. The biogeographical component is controlled by the frequency and distribution of vegetation types across the Earth's land surface and displays a trimodal distribution. The three modes are driven by ice covered polar regions, forests, and hot desert/shrubland environments. In ice covered areas the histograms show that the heat of fusion results in a convergence of surface temperatures around the melting point. The histograms also show low interannual variability reflecting two important global land surface dynamics; 1) only a small fraction of the Earth's surface is disturbed in any given year, and 2) when considered at the global scale, the positive and negative climate forcings resulting from the aggregate effects of the loss of vegetation to disturbances and the regrowth from natural succession are roughly in balance. Changes in any component of the histogram can be tracked and would indicate a major change in the Earth system.
NASA Astrophysics Data System (ADS)
Jia, Duo; Wang, Cangjiao; Lei, Shaogang
2018-01-01
Mapping vegetation dynamic types in mining areas is significant for revealing the mechanisms of environmental damage and for guiding ecological construction. Dynamic types of vegetation can be identified by applying interannual normalized difference vegetation index (NDVI) time series. However, phase differences and time shifts in interannual time series decrease mapping accuracy in mining regions. To overcome these problems and to increase the accuracy of mapping vegetation dynamics, an interannual Landsat time series for optimum vegetation growing status was constructed first by using the enhanced spatial and temporal adaptive reflectance fusion model algorithm. We then proposed a Markov random field optimized semisupervised Gaussian dynamic time warping kernel-based fuzzy c-means (FCM) cluster algorithm for interannual NDVI time series to map dynamic vegetation types in mining regions. The proposed algorithm has been tested in the Shengli mining region and Shendong mining region, which are typical representatives of China's open-pit and underground mining regions, respectively. Experiments show that the proposed algorithm can solve the problems of phase differences and time shifts to achieve better performance when mapping vegetation dynamic types. The overall accuracies for the Shengli and Shendong mining regions were 93.32% and 89.60%, respectively, with improvements of 7.32% and 25.84% when compared with the original semisupervised FCM algorithm.
The SMAP Level-4 ECO Project: Linking the Terrestrial Water and Carbon Cycles
NASA Technical Reports Server (NTRS)
Kolassa, J.; Reichle, R. H.; Liu, Qing; Koster, Randal D.
2017-01-01
The SMAP (Soil Moisture Active Passive) Level-4 projects aims to develop a fully coupled hydrology-vegetation data assimilation algorithm to generate improved estimates of modeled hydrological fields and carbon fluxes. This includes using the new NASA Catchment-CN (Catchment-Carbon-Nitrogen) model, which combines the Catchment land surface hydrology model with dynamic vegetation components from the Community Land Model version 4 (CLM4). As such, Catchment-CN allows a more realistic, fully coupled feedback between the land hydrology and the biosphere. The L4 ECO project further aims to inform the model through the assimilation of Soil Moisture Active Passive (SMAP) brightness temperature observations as well as observations of Moderate Resolution Imaging Spectroradiometer (MODIS) fraction of absorbed photosynthetically active radiation (FPAR). Preliminary results show that the assimilation of SMAP observations leads to consistent improvements in the model soil moisture skill. An evaluation of the Catchment-CN modeled vegetation characteristics showed that a calibration of the model's vegetation parameters is required before an assimilation of MODIS FPAR observations is feasible.
NASA Technical Reports Server (NTRS)
Zhang, Zhengqiu; Xue, Yongkang; MacDonald, Glen; Cox, Peter M.; Collatz, George J.
2015-01-01
Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980s. The effects of the severe drought during 1987-1992 and the last decade in the southwestern U.S. on vegetation are also evident from decreases in the simulated and satellite-derived LAIs. Both simulated and satellite-derived LAIs have the strongest correlations with air temperature at northern middle to high latitudes in spring reflecting the effect of these climatic variables on photosynthesis and phenological processes. Meanwhile, in southwestern dry lands, negative correlations appear due to the heat and moisture stress there during the summer. Furthermore, there are also positive correlations between soil wetness and LAI, which increases from spring to summer. The present study shows both the current improvements and remaining weaknesses in dynamical vegetation models. It also highlights large continental-scale variations that have occurred in NA vegetation over the past six decades and their potential relations to climate. With more observational data availability, more studies with differentmodels and focusing on different regions will be possible and are necessary to achieve comprehensive understanding of the vegetation dynamics and climate interactions.
NASA Astrophysics Data System (ADS)
Zhao, Wenwei; Zhao, Yan; Qin, Feng
2017-10-01
Understanding fire history and its driving mechanisms can provide valuable insights into present fire regime (intensity, severity and frequency), the interplay between vegetation and fire, and trigger of fire activities. Here we reconstruct the Holocene fire history in the Zoige Basin on the eastern Tibetan Plateau, on the basis of sedimentary micro-charcoal record over the last 10.0 ka (1 ka = 1000 cal yr BP) and discuss the influences of vegetation and climate on fire dynamics. Our results show that regional fire was active at 10.0-3.3 ka and a significant decrease in fire activity characterized the period after 3.3 ka. The high regional fire frequency at 10.0-3.3 ka is consistent with the forested landscape suggested by high affinity scores of cool mixed forest biome (mainly consisted of spruce), implying that fire dynamics during this period was generally controlled by the variations of arboreal biomass and summer temperature. During 6.3-4.6 ka the prevailing Asian summer monsoon provided increased moisture to this region and thus suppressed fire activities to an extent, despite the availability of abundant biomass. Declined tree biomass after 3.3 ka probably accounted for the decreased fire activities. In addition, two successive fire events at ca. 3.5-3.3 ka were likely responsible for the subsequent abrupt decline of forest components in the landscape.
NASA Astrophysics Data System (ADS)
Fang, Xiuqin; Zhu, Qiuan; Chen, Huai; Ma, Zhihai; Wang, Weifeng; Song, Xinzhang; Zhao, Pengxiang; Peng, Changhui
2014-01-01
Using time series of moderate-resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data from 2000 to 2009, we assessed decadal vegetation dynamics across Canada and examined the relationship between NDVI and climatic variables (precipitation and temperature). The Palmer drought severity index and vapor pressure difference (VPD) were used to relate the vegetation changes to the climate, especially in cases of drought. Results indicated that MODIS NDVI measurements provided a dynamic picture of interannual variation in Canadian vegetation patterns. Greenness declined in 2000, 2002, and 2009 and increased in 2005, 2006, and 2008. Vegetation dynamics varied across regions during the period. Most forest land shows little change, while vegetation in the ecozone of Pacific Maritime, Prairies, and Taiga Shield shows more dynamics than in the others. Significant correlations were found between NDVI and the climatic variables. The variation of NDVI resulting from climatic variability was more highly correlated to temperature than to precipitation in most ecozones. Vegetation grows better with higher precipitation and temperature in almost all ecozones. However, vegetation grows worse under higher temperature in the Prairies ecozone. The annual changes in NDVI corresponded well with the change in VPD in most ecozones.
Lori J. Kayes; Klaus J. Puettmann; Paul D. Anderson
2011-01-01
How are dynamics of early-seral post-fire vascular plant and bryoid (terrestrial mosses, lichens, and fungi) vegetation impacted by reforestation activities, particularly manual vegetation removal and planting density? Does the relationship between vegetation dynamics and vegetation removal differ between harsh (west-facing) and moderate (east-facing) aspects?...
Dominique Bachelet; James M. Lenihan; Christopher Daly; Ronald P. Neilson; Dennis S. Ojima; William J. Parton
2001-01-01
Assessments of vegetation response to climate change have generally been made only by equilibrium vegetation models that predict vegetation composition under steady-state conditions. These models do not simulate either ecosystem biogeochemical processes or changes in ecosystem structure that may, in turn, act as feedbacks in determining the dynamics of vegetation...
Model-data integration to improve the LPJmL dynamic global vegetation model
NASA Astrophysics Data System (ADS)
Forkel, Matthias; Thonicke, Kirsten; Schaphoff, Sibyll; Thurner, Martin; von Bloh, Werner; Dorigo, Wouter; Carvalhais, Nuno
2017-04-01
Dynamic global vegetation models show large uncertainties regarding the development of the land carbon balance under future climate change conditions. This uncertainty is partly caused by differences in how vegetation carbon turnover is represented in global vegetation models. Model-data integration approaches might help to systematically assess and improve model performances and thus to potentially reduce the uncertainty in terrestrial vegetation responses under future climate change. Here we present several applications of model-data integration with the LPJmL (Lund-Potsdam-Jena managed Lands) dynamic global vegetation model to systematically improve the representation of processes or to estimate model parameters. In a first application, we used global satellite-derived datasets of FAPAR (fraction of absorbed photosynthetic activity), albedo and gross primary production to estimate phenology- and productivity-related model parameters using a genetic optimization algorithm. Thereby we identified major limitations of the phenology module and implemented an alternative empirical phenology model. The new phenology module and optimized model parameters resulted in a better performance of LPJmL in representing global spatial patterns of biomass, tree cover, and the temporal dynamic of atmospheric CO2. Therefore, we used in a second application additionally global datasets of biomass and land cover to estimate model parameters that control vegetation establishment and mortality. The results demonstrate the ability to improve simulations of vegetation dynamics but also highlight the need to improve the representation of mortality processes in dynamic global vegetation models. In a third application, we used multiple site-level observations of ecosystem carbon and water exchange, biomass and soil organic carbon to jointly estimate various model parameters that control ecosystem dynamics. This exercise demonstrates the strong role of individual data streams on the simulated ecosystem dynamics which consequently changed the development of ecosystem carbon stocks and fluxes under future climate and CO2 change. In summary, our results demonstrate challenges and the potential of using model-data integration approaches to improve a dynamic global vegetation model.
NASA Astrophysics Data System (ADS)
Bulgariu, D.; Buzgar, N.; Bulgariu, L.; Rusu, C.; Munteanu, N.
2009-04-01
In ecological systems of vegetable cultivation (hortic antrosols; soils from greenhouses), exists an ensemble of equilibriums between organic-mineral combinations, very sensitive even to relatively small variations of physical-chemical conditions in soils. As such, these can manifest a strong influence on organic matter, clay minerals and microelements from soil, which in turn impacts on the productivity of these soils and the quality of obtained products (vegetables, fruit). Although many studies consider these organic-mineral combinations are meta-stable combinations, our work has shown that the stability of organic-mineral combinations in hortic antrosols (especially for clay-humic, clay-ironhumic combinations and chelates) is higher. We believe that this is due to the higher flexibility of these combinations' structures with the variation of chemical-mineralogical composition and physical-chemical conditions in soil. This paper highlights the results of our research on the differentiation possibility of organic-mineral complexes, depending on their structure and composition (using Raman and FT-IR spectrometry) and the influences manifested by the organic-mineral complexes on the micro-elements dynamic from ecological systems of fresh vegetable cultivation. The non-destructive separation of organic-mineral compounds from soil samples was carried out through iso-dynamic magnetic separation and extraction in aqueous two-phase systems (PEG-based). The Raman and FT-IR spectrometry analyses on raw soil samples, extracts obtained from soil samples and separated mineral fractions have been supplemented by the results obtained through chemical, microscopic and thermal analyses and by UV-VIS absorption spectrometry. Ours experimental studies have been done on representative samples of hortic antrosol from Copou glasshouse (Iasi, Romania), and was studied five micro-elements: Zn, Ni, Cu, Mn, Cr and P. The total contents of the five microelements and their fractions differential bonded on mineral and organic components of hortic antrosols, have been determined by atomic absorption spectrometry after combined sequential extraction in solid phase extraction - aqueous biphasic (PEG based) systems. The specific mechanisms of the microelements interaction with organic components have been estimated on the basis of studies realized on fractions obtained after each extraction step by Raman and FTIR spectrometry. These data have been correlated with those obtained by chemical analysis and UV-VIS spectrometry. In conditions of hortic antrosol, from total contents of Zn, Ni, Cu, Mn and Cr, more than 65 % are binding on organic components. A specific phenomenon of hortic antrosols is the microelements complexation exclusively with the functional groups of organic macromolecules. This phenomenon has two important consequences: (i) the strong fixation of microelements (these can be extracted only in very extremely conditions, which implied the organic part destroying) and (ii) their presence determined major modifications in the structure, conformation and stability of organic macromolecules. Under these conditions, the type and structure of organic-mineral compounds represent determinant factors for the dynamic of micro-elements and organic compounds in ecological systems of vegetables cultivation. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07 an Project PNCDI 2-D5 no. 52141 / 08).
Importance of vegetation distribution for future carbon balance
NASA Astrophysics Data System (ADS)
Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B.
2015-12-01
Projections of future terrestrial carbon uptake vary greatly between simulations. Net primary production (NPP), wild fires, vegetation dynamics (including biome shifts) and soil decomposition constitute the main processes governing the response of the terrestrial carbon cycle in a changing climate. While primary production and soil respiration are relatively well studied and implemented in all global ecosystem models used to project the future land sink of CO2, vegetation dynamics are less studied and not always represented in global models. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality and the associated turnover and proven skill in predicting vegetation distribution and succession. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the CMIP5 ensemble under RCP8.5 radiative forcing at year 2085. We exchanged carbon cycle processes between these 13 simulations and investigate the changes predicted by the emulator. This method allowed us to partition the entire ensemble carbon uptake uncertainty into individual processes. We found that NPP, vegetation dynamics (including biome shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33% respectively of uncertainties in modeled global C-uptake. Uncertainty due to vegetation dynamics was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by shifts in vegetation distribution, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.
Exploring fire dynamics with BFAST approach: case studies in Sardinia, Italy
NASA Astrophysics Data System (ADS)
Quarfeld, Jamie; di Mauro, Biagio; Colombo, Roberto; Verbesselt, Jan
2016-04-01
The synergistic effect of wildfire and extreme post-fire climatic events, (e.g. droughts or torrential rainfall), may result in long windows of disturbance - challenging the overall resilience of Mediterranean ecosystems and communities. The notion that increased fire frequency and severity may reduce ecosystem resilience has received much attention in Mediterranean regions in recent decades. Careful evaluation of vegetation recovery and landscape regeneration after a fire event provides vital information useful in land management. In this study, an extension of Breaks For Additive Seasonal and Trend (BFAST) is proposed as an ideal approach to monitor change and assess fire dynamics at the landscape level based on analysis of the MODerate-resolution Imaging Spectroradiometer (MODIS, TERRA) time series. To this end, satellite images of three vegetation indices (VIs), the Normalized Burn Ratio (NBR), the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) were used. The analysis was conducted on areas affected by wildfires in the Sardinia region (Italy) between 2007 and 2010. Some land surface (LS) descriptors (i.e. mean and maximum VI) and fire characteristics (e.g. pre-fire trend & VI, change magnitude, current VI) were extracted to characterize the post-fire evolution of each site within a fifteen-year period (2000-2015). Resilience was estimated using a classic linear function, whereby recovery rates were compared to regional climate data (e.g. water balance) and local landscape components (e.g.topography, land use and land cover). The methodology was applied according to land cover type (e.g. mixed forest, maquis, shrubland, pasture) within each fire site and highlighted the challenge of isolating effects and quantifying the role of fire regime characteristics on resilience in a dynamic way when considering large, heterogeneous areas. Preliminary findings can be outlined as follows: I. NBR showed it was most effective at detecting fire occurrence. EVI showed it was more sensitive to the influence of the Savitkzy-Golay smoothing filter than NBR or NDVI; II. The quantitative assessment of resilience for different land covers (maquis, mixed forest, shrubland) allows discrimination of diverse post-fire dynamics. Mixed forest showed an overall lower resilience compared to maquis and shrubland. Detection of post-fire breakpoints appears to occur in a similar time sequence with respect to both year of fire occurrence and land cover. III. The combined use of several climate and landscape components enables characterization of different features of post-fire dynamics in a Mediterranean ecosystem. In summary, the approach used in this study provides useful insight into complex post-fire vegetation dynamics in Mediterranean regions from a remote sensing perspective. Tailoring of the methodologies employed this study can inform a broad spectrum of forest and wildfire management activities, from monitoring and decision support during the fire season to long-term fuel management and landscape planning, with the general goal of reducing fire exposure and losses from future wildfires. Results can be expanded to include additional LS descriptors or soil geological aspects that contribute to a stronger integration of remote sensing data in operational natural resource management plans for ecosystem conservation and natural hazard prevention.
NASA Astrophysics Data System (ADS)
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; Yin, Yunhe; Kumar, Jitendra; Ma, Chun; Xu, Xiaofeng
2017-09-01
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. We compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (
Development of a Sediment Transport Component for DHSVM
NASA Astrophysics Data System (ADS)
Doten, C. O.; Bowling, L. C.; Maurer, E. P.; Voisin, N.; Lettenmaier, D. P.
2003-12-01
The effect of forest management and disturbance on aquatic resources is a problem of considerable, contemporary, scientific and public concern in the West. Sediment generation is one of the factors linking land surface conditions with aquatic systems, with implications for fisheries protection and enhancement. Better predictive techniques that allow assessment of the effects of fire and logging, in particular, on sediment transport could help to provide a more scientific basis for the management of forests in the West. We describe the development of a sediment transport component for the Distributed Hydrology Soil Vegetation Model (DHSVM), a spatially distributed hydrologic model that was developed specifically for assessment of the hydrologic consequences of forest management. The sediment transport module extends the hydrologic dynamics of DHSVM to predict sediment generation in response to dynamic meteorological inputs and hydrologic conditions via mass wasting and surface erosion from forest roads and hillslopes. The mass wasting component builds on existing stochastic slope stability models, by incorporating distributed basin hydrology (from DHSVM), and post-failure, rule-based redistribution of sediment downslope. The stochastic nature of the mass wasting component allows specification of probability distributions that describe the spatial variability of soil and vegetation characteristics used in the infinite slope model. The forest roads and hillslope surface erosion algorithms account for erosion from rain drop impact and overland erosion. A simple routing scheme is used to transport eroded sediment from mass wasting and forest roads surface erosion that reaches the channel system to the basin outlet. A sensitivity analysis of the model input parameters and forest cover conditions is described for the Little Wenatchee River basin in the northeastern Washington Cascades.
NASA Astrophysics Data System (ADS)
Liu, S.; Tian, H.; Wang, X.; Li, H.; He, Y.
2018-04-01
Vegetation plays a leading role in ecosystems. Plant communities are the main components of ecosystems. Green plants in ecosystems are the primary producers, and they provide the living organic matter for the survival of other organisms. The dynamics of most landscapes are driven by both natural processes and human activities. In this study, the growing season GIMMS NDVI3g and climatic data were used to analyse the vegetation trends and drivers in Beijing-Tianjin-Hebei region from 1982 to 2013. Result shows that, the vegetation in Beijing-Tianjin-Hebei region shows overall restoration and partial degradation trend. The significant restoration region accounts for 61.5 % of Beijing-Tianjin-Hebei region, while the significant degradation region accounts for 2.1 %. The dominant climatic factor for time series NDVI were analyzed using the multi-linear regression model. Vegetation growth in 17.9 % of Beijing-Tianjin-Hebei region is dominated by temperature, 35.5 % is dominated by precipitation, and 11.68 % is dominated by solar radiance. Human activities play important role for vegetation restoration in Beijing-Tianjin-Hebei Region, where the large scale forest restoration programs are the main human activities, such as the three-north shelterbelt construction project, Beijing-Tianjin-Hebei sandstorm source control project and grain for green projects.
Lem G. Butler; Knut Kielland; T. Scott Rupp; Thomas A. Hanley
2007-01-01
We examined the interactive effects of mammalian herbivory and fluvial dynamics on vegetation dynamics and composition along the Tanana River in interior Alaska between Fairbanks and Manley Hot Springs. We used a spatially explicit model of landscape dynamics (ALFRESCO) to simulate vegetation changes on a 1-year time-step. The model was run for 250 years and was...
Vegetation Sampling for Wetland Delineation: A Review and Synthesis of Methods and Sampling Issues
2010-07-01
different combination of characteristics. Wetlands may exhibit sharp boundaries between plant communities ( ecotones ), a gradual boundary (ecocline), or...and weighted averages as a component of assessment. Wetlands 13(3): 185–193. Attrill, M. J., and S. D. Rundle. 2002. Ecotone or ecocline...Gammon, and M. K. Garrett. 1994. Ecotone dynamics and boundary determination in the Great Dismal Swamp. Ecological Applications 4(1): 189– 203. ERDC
Wullschleger, Stan D; Epstein, Howard E; Box, Elgene O; Euskirchen, Eugénie S; Goswami, Santonu; Iversen, Colleen M; Kattge, Jens; Norby, Richard J; van Bodegom, Peter M; Xu, Xiaofeng
2014-07-01
Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology and remote sensing will be required if we are to overcome these and other shortcomings. Published by Oxford University Press on behalf of the Annals of Botany Company 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Mechanical Analyses for coupled Vegetation-Flow System
NASA Astrophysics Data System (ADS)
Chen, L.; Acharya, K.; Stone, M.
2010-12-01
Vegetation in riparian areas plays important roles in hydrology, geomorphology and ecology in local environment. Mechanical response of the aquatic vegetation to hydraulic forces and its impact on flow hydraulics have received considerable attention due to implications for flood control, habitat restoration, and water resources management. This study aims to advance understanding of the mechanical properties of in-stream vegetation including drag force, moment and stress. Dynamic changes of these properties under various flow conditions largely determine vegetation affected flow field and dynamic resistance with progressive bending, and hydraulic conditions for vegetation failure (rupture or wash-out) thus are critical for understanding the coupled vegetation-flow system. A new approach combining fluid and material mechanics is developed in this study to examine the behavior of both rigid and flexible vegetation. The major advantage of this approach is its capability to treat large deflection (bending) of plants and associated changes of mechanical properties in both vegetation and flow. Starting from simple emergent vegetation, both static and dynamic formulations of the problem are presented and the solutions are compared. Results show the dynamic behavior of a simplified system mimicking complex and real systems, implying the approach is able to disclose the physical essence of the coupled system. The approach is extended to complex vegetation under both submerged and emergent conditions using more realistic representation of biomechanical properties for vegetation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Hongliang; Liang, Shunlin; McClaran, Mitchell P.
2005-01-20
Semi-arid rangelands are very sensitive to global climatic change; studies of their biophysical attributes are crucial to understanding the dynamics of rangeland ecosystems under human disturbance. In the Santa Rita Experimental Range (SRER), Arizona, the vegetation has changed considerably and there have been many management activities applied. This study calculates seven surface variables: the enhanced vegetation index (EVI), the normalized difference vegetation index (NDVI), surface albedos (total shortwave, visible and near-infrared), leaf area index (LAI) and the fraction of photosynthetically active radiation absorbed by green vegetation (FPAR) from the Enhanced Thematic Mapper (ETM+) data. Comparison with the MODIS (Moderate Resolutionmore » Imaging Spectroradiometer) vegetation index and albedo products indicate they agree well with our estimates from ETM+ while their LAI and FPAR are larger than ETM+. Human disturbance has significantly changed the cover types and biophysical conditions. Statistical tests indicate that surface albedos increased and FPAR decreased at all sites. The recovery will require more than 67 years, and is about 50% complete within 40 years at the higher elevation. Grass cover, vegetation indices, albedos and LAI recovered from cutting faster at the higher elevation. Woody plants, vegetation indices and LAI have recovered to their original characteristics after 65 years at the lower elevation. More studies are needed to examine the spectral characteristics of different ground components.« less
Hector Ramirez; Alexander Fernald; Andres Cibils; Michelle Morris; Shad Cox; Michael Rubio
2008-01-01
Clearing oneseed juniper (Juniperus monosperma) may make more water available for aquifer recharge or herbaceous vegetation growth, but the effects of tree treatment on soil moisture dynamics are not fully understood. This study investigated juniper treatment effects on understory herbaceous vegetation concurrently with soil moisture dynamics using vegetation sampling...
Focusing on the big picture: urban vegetation and eco ...
Trees and vegetation can be key components of urban green infrastructure and green spaces such as parks and residential yards. Large trees, characterized by broad canopies, and high leaf and stem volumes, can intercept a substantial amount of stormwater while promoting evapotranspiration and reducing stormwater runoff and pollutant loads. Urban vegetation cover, height, and volume are likely to be affected not only by local climatic characteristics, but also by complex socio-economic dynamics resulting from management practices and resident’s preferences. We examine the benefits provided by private greenspace and present preliminary findings related to the climatic and socio-economic drivers correlated with structural complexity of residential urban vegetation. We use laser (LiDAR) and multispectral remotely-sensed data collected throughout 1400+ neighborhoods and 1.2+ million residential yards across 8 US cities to carry out this analysis. We discuss principles and opportunities to enhance stormwater management using residential greenspace, as well as the larger implications for decentralized stormwater management at city-wide scale. We discuss principles and opportunities to enhance stormwater management using residential greenspace, as well as the larger implications for decentralized stormwater management at city-wide scale.
NASA Astrophysics Data System (ADS)
1994-10-01
This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region.
Combining surface reanalysis and remote sensing data for monitoring evapotranspiration
Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, Pat; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Noubellon, Y.; Scholes, R.; Kutsch, W.
2012-01-01
Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.
Spectral wave dissipation by submerged aquatic vegetation in a back-barrier estuary
Nowacki, Daniel J.; Beudin, Alexis; Ganju, Neil K.
2017-01-01
Submerged aquatic vegetation is generally thought to attenuate waves, but this interaction remains poorly characterized in shallow-water field settings with locally generated wind waves. Better quantification of wave–vegetation interaction can provide insight to morphodynamic changes in a variety of environments and also is relevant to the planning of nature-based coastal protection measures. Toward that end, an instrumented transect was deployed across a Zostera marina (common eelgrass) meadow in Chincoteague Bay, Maryland/Virginia, U.S.A., to characterize wind-wave transformation within the vegetated region. Field observations revealed wave-height reduction, wave-period transformation, and wave-energy dissipation with distance into the meadow, and the data informed and calibrated a spectral wave model of the study area. The field observations and model results agreed well when local wind forcing and vegetation-induced drag were included in the model, either explicitly as rigid vegetation elements or implicitly as large bed-roughness values. Mean modeled parameters were similar for both the explicit and implicit approaches, but the spectral performance of the explicit approach was poor compared to the implicit approach. The explicit approach over-predicted low-frequency energy within the meadow because the vegetation scheme determines dissipation using mean wavenumber and frequency, in contrast to the bed-friction formulations, which dissipate energy in a variable fashion across frequency bands. Regardless of the vegetation scheme used, vegetation was the most important component of wave dissipation within much of the study area. These results help to quantify the influence of submerged aquatic vegetation on wave dynamics in future model parameterizations, field efforts, and coastal-protection measures.
Diversity, Adaptability and Ecosystem Resilience
NASA Astrophysics Data System (ADS)
Keribin, Rozenn; Friend, Andrew
2013-04-01
Our ability to predict climate change and anticipate its impacts depends on Earth System Models (ESMs) and their ability to account for the high number of interacting components of the Earth System and to gauge both their influence on the climate and the feedbacks they induce. The land carbon cycle is a component of ESMs that is still poorly constrained. Since the 1990s dynamic global vegetation models (DGVMs) have become the main tool through which we understand the interactions between plant ecosystems and the climate. While DGVMs have made it clear the impacts of climate change on vegetation could be dramatic, predicting the dieback of rainforests and massive carbon losses from various ecosystems, they are highly variable both in their composition and their predictions. Their treatment of plant diversity and competition in particular vary widely and are based on highly-simplified relationships that do not account for the multiple levels of diversity and adaptability found in real plant ecosystems. The aim of this GREENCYCLES II project is to extend an individual-based DGVM to treat the diversity of physiologies found in plant communities and evaluate their effect if any on the ecosystem's transient dynamics and resilience. In the context of the InterSectoral Impacts Model Intercomparison Project (ISI-MIP), an initiative coordinated by a team at the Potsdam Institute for Climate Impact Research (PIK) that aims to provide fast-track global impact assessments for the IPCC's Fifth Assessment Report, we compare 6 vegetation models including 4 DGVMs under different climate change scenarios and analyse how the very different treatments of plant diversity and interactions from one model to the next affect the models' results. We then investigate a new, more mechanistic method of incorporating plant diversity into the DGVM "Hybrid" based on ecological tradeoffs mediated by plant traits and individual-based competition for light.
An enhanced model of land water and energy for global hydrologic and earth-system studies
Milly, Paul C.D.; Malyshev, Sergey L.; Shevliakova, Elena; Dunne, Krista A.; Findell, Kirsten L.; Gleeson, Tom; Liang, Zhi; Phillips, Peter; Stouffer, Ronald J.; Swenson, Sean
2014-01-01
LM3 is a new model of terrestrial water, energy, and carbon, intended for use in global hydrologic analyses and as a component of earth-system and physical-climate models. It is designed to improve upon the performance and to extend the scope of the predecessor Land Dynamics (LaD) and LM3V models by better quantifying the physical controls of climate and biogeochemistry and by relating more directly to components of the global water system that touch human concerns. LM3 includes multilayer representations of temperature, liquid water content, and ice content of both snowpack and macroporous soil–bedrock; topography-based description of saturated area and groundwater discharge; and transport of runoff to the ocean via a global river and lake network. Sensible heat transport by water mass is accounted throughout for a complete energy balance. Carbon and vegetation dynamics and biophysics are represented as in LM3V. In numerical experiments, LM3 avoids some of the limitations of the LaD model and provides qualitatively (though not always quantitatively) reasonable estimates, from a global perspective, of observed spatial and/or temporal variations of vegetation density, albedo, streamflow, water-table depth, permafrost, and lake levels. Amplitude and phase of annual cycle of total water storage are simulated well. Realism of modeled lake levels varies widely. The water table tends to be consistently too shallow in humid regions. Biophysical properties have an artificial stepwise spatial structure, and equilibrium vegetation is sensitive to initial conditions. Explicit resolution of thick (>100 m) unsaturated zones and permafrost is possible, but only at the cost of long (≫300 yr) model spinup times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; ...
2017-09-09
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less
Costa, Michel Iskin da Silveira; Meza, Magno Enrique Mendoza
2006-12-01
In a plant-herbivore system, a management strategy called threshold policy is proposed to control grazing intensity where the vegetation dynamics is described by a plant-water interaction model. It is shown that this policy can lead the vegetation density to a previously chosen level under an overgrazing regime. This result is obtained despite both the potential occurrence of vegetation collapse due to overgrazing and the possibility of complex dynamics sensitive to vegetation initial densities and parameter uncertainties.
NASA Astrophysics Data System (ADS)
Hernández, H. J.; Gutiérrez, M. A.; Acuña, M. P.
2016-06-01
Latin America is one of the world's most urbanised regions, with more than 80% of inhabitants living in urban areas and over 50 cities with at least 1 million inhabitants. The concept of urban structure types (UST) allows the dynamics of a growing urban environment to be captured in its quantity and quality. They are defined as areas of homogenous appearance in the urban matrix with a recognisable mixture of built-up areas and open spaces. We used the vegetation-impervious-soil (V-I-S) model approach to classify and monitor different types of USTs in Santiago (~800 km2), Chile between 1985 and 2015. The V-I-S model is based on a simplification of the large diversity of urban land cover types in three general categories: vegetation, impervious surfaces and soil. These categories were obtained by processing Landsat-5 TM and Landsat-8 OLI images. First, we applied standard radiometric calibration and co-registration methods to all datasets. Second, using a linear spectral unmixing algorithm we performed a soft classification of urban land cover types (end members): trees, shrubs, herbaceous plants, soils, buildings, roads and water bodies. All end members were validated using a combination of photointerpretation on high-resolution images (~1 m) and field data collection (only for 2015). In each pixel we used the resulting probability scores, logically grouped, to obtain final values for each V-I-S component. Third, we used statistical clustering of V-I-S values to create a set of eight pixel groups, which we interpreted as USTs and mapped them for each date. The overall accuracy for V-I-S components in 1985 and 2015 were 78% and 82%, respectively, and errors did not exhibit any spatial correlation. The main sources of differentiation between USTs were the trade-off proportions between vegetation and impervious components, whereas soil proportions remained near 5% across the city in both dates. To analyse the change in UST spatial configuration between dates, we used a set of selected landscape metrics and discussed their use as indicators for sustainable urban development. These indicators relate to the dispersion pattern of urban growth, the connectivity of open green space and the complexity in the composition of the UST types within the different sectors of the city. We were able to identify, using the dynamics exhibited by the USTs, three main zones: (1) city centre, where USTs of high-intensity development predominate, (2) eastern high-income areas whose spatial structure is marked by a relatively high urbanisation intensity with a very large proportion of vegetated spaces, and (3) peripheral areas, with significant changes in composition and configuration of USTs, in recent decades, showing high rates of urbanisation, shifting from low-medium to high densities. We concluded that these patterns and their dynamics are mainly determined by the spatial socio-economic stratification of the population.
NASA Astrophysics Data System (ADS)
Falge, Eva; Brümmer, Christian; Schmullius, Christiane; Scholes, Robert; Twine, Wayne; Mudau, Azwitamisi; Midgley, Guy; Hickler, Thomas; Bradshaw, Karen; Lück, Wolfgang; Thiel-Clemen, Thomas; du Toit, Justin; Sankaran, Vaith; Kutsch, Werner
2016-04-01
Sub-Saharan Africa currently experiences significant changes in shrubland, savanna and mixed woodland ecosystems driving degradation, affecting fire frequency and water availability, and eventually fueling climate change. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. For a network of research clusters along an aridity gradient in South Africa, we measure greenhouse gas exchange, ecosystem structure and eco-physiological properties as affected by land use change at paired sites with natural and altered vegetation. We set up dynamic vegetation models and individual-based models to predict ecosystem dynamics under (post) disturbance managements. We monitor vegetation amount and heterogeneity using remotely sensed images and aerial photography over several decades to examine time series of land cover change. Finally, we investigate livelihood strategies with focus on carbon balance components to develop sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation of estimates obtained from eddy covariance, model approaches and satellite derivations. We envision our methodological approach on a network of research clusters a valuable means to investigate potential linkages to concepts of adaptive resilience.
Unravelling the Impacts of Climate and People on Vegetation Dynamics in the Sahel 1982- 2002
NASA Astrophysics Data System (ADS)
Seaquist, J. W.; Hickler, T.; Eklundh, L.; Ardö, J.; Heumann, B. W.
2009-05-01
Satellite sensors have recently shown that much of the Sahel belt of north Africa has experienced significant increases in photosynthetic activity since the early 1980s. This has reignited old debates about the role that people play in shaping land surface status at broad geographical extents. If the human 'footprint' on Sahel vegetation dynamics is measurable, then such impacts may be significant enough alter broad-scale both carbon budgets and climate via land surface atmosphere feedbacks. We test the hypothesis that people have had a measurable impact on vegetation dynamics in the Sahel for the period 1982-2002. We accomplish this by mapping the agreement between potential natural vegetation dynamics predicted by a process-based ecosystem model (Lund Potsdam Jena-Dynamic Global Vegetation Model) and satellite-derived greenness observations (Global Inventory Modelling and Mapping Studies data set) across a geographic grid at a spatial resolution of 0.5 degrees. We then relate this agreement metric to state-of-the-art data sets on demographics, pasture, and cropping. Demographic and agricultural pressures in the Sahel are unable to account for differences between simulated and observed vegetation dynamics, even for the most densely populated areas. But we do identify a weak, positive correlation between data-model agreement and pasture intensity at the Sahel-wide level. This indicates that herding or grazing does not appreciably affect vegetation dynamics in the region. Either people have not had a significant impact on vegetation dynamics in the Sahel or the identification of a human 'footprint' is precluded by inconsistent or subtle vegetation response to complex socio-environmental interactions, and/or limitations in the data used for this study. This research showcases untapped potential for combining ecosystem process models with remote sensing at broad spatial extents for examining the underlying causes of ecosystem change.
Soil-geomorphic heterogeneity governs patchy vegetation dynamics at an arid ecotone.
Bestelmeyer, Brandon T; Ward, Judy P; Havstad, Kris M
2006-04-01
Soil properties are well known to affect vegetation, but the role of soil heterogeneity in the patterning of vegetation dynamics is poorly documented. We asked whether the location of an ecotone separating grass-dominated and sparsely vegetated areas reflected only historical variation in degradation or was related to variation in inherent soil properties. We then asked whether changes in the cover and spatial organization of vegetated and bare patches assessed using repeat aerial photography reflected self-organizing dynamics unrelated to soil variation or the stable patterning of soil variation. We found that the present-day ecotone was related to a shift from more weakly to more strongly developed soils. Parts of the ecotone were stable over a 60-year period, but shifts between bare and vegetated states, as well as persistently vegetated and bare states, occurred largely in small (<40 m2) patches throughout the study area. The probability that patches were presently vegetated or bare, as well as the probability that vegetation persisted and/or established over the 60-year period, was negatively related to surface calcium carbonate and positively related to subsurface clay content. Thus, only a fraction of the landscape was susceptible to vegetation change, and the sparsely vegetated area probably featured a higher frequency of susceptible soil patches. Patch dynamics and self-organizing processes can be constrained by subtle (and often unrecognized) soil heterogeneity.
Spectral modelling of multicomponent landscapes in the Sahel
NASA Technical Reports Server (NTRS)
Hanan, N. P.; Prince, S. D.; Hiernaux, P. H. Y.
1991-01-01
Simple additive models are used to examine the infuence of differing soil types on the spatial average spectral reflectance and normalized difference vegetation index (NDVI). The spatial average NDVI is shown to be a function of the brightness (red plus near-infrared reflectances), the NDVI, and the fractional cover of the components. In landscapes where soil and vegetation can be considered the only components, the NDVI-brightness model can be inverted to obtain the NDVI of vegetation. The red and near-infrared component reflectances of soil and vegetation are determined on the basis of aerial photoradiometer data from Mali. The relationship between the vegetation component NDVI and plant cover is found to be better than between the NDVI of the entire landscape and plant cover. It is concluded that the usefulness of this modeling approach depends on the existence of clearly distinguishable landscape components.
NASA Astrophysics Data System (ADS)
Mackay, D. S.
2001-05-01
Recent efforts to measure and model the interacting influences of climate, soil, and vegetation on soil water and nutrient dynamics have identified numerous important feedbacks that produce nonlinear responses. In particular, plant physiological factors that control rates of transpiration respond to soil water deficits and vapor pressure deficits (VPD) in the short-term, and to climate, nutrient cycling and disturbance in the long-term. The starting point of this presentation is the observation that in many systems, in particular forest ecosystems, conservative water use emerges as a result of short-term closure of stomata in response to high evaporative demand, and long-term vegetative canopy development under nutrient limiting conditions. Evidence for important short-term controls is presented from sap flux measurements of stand transpiration, remote sensing, and modeling of transpiration through a combination of physically-based modeling and Monte Carlo analysis. A common result is a strong association between stomatal conductance (gs) and the negative evaporative gain (∂ gs/∂ VPD) associated with the sensitivity of stomatal closure to rates of water loss. The importance of this association from the standpoint of modeling transpiration depends on the degree of canopy-atmosphere coupling. This suggests possible simplifications to future canopy component models for use in watershed and larger-scale hydrologic models for short-term processes. However, further results are presented from theoretical modeling, which suggest that feedbacks between hydrology and vegetation in current long-term (inter-annual to century) models may be too simple, as they do not capture the spatially variable nature of slow nutrient cycling in response to soil water dynamics and site history. Memory effects in the soil nutrient pools can leave lasting effects on more rapid processes associated with soil, vegetation, atmosphere coupling.
Linking models and data on vegetation structure
NASA Astrophysics Data System (ADS)
Hurtt, G. C.; Fisk, J.; Thomas, R. Q.; Dubayah, R.; Moorcroft, P. R.; Shugart, H. H.
2010-06-01
For more than a century, scientists have recognized the importance of vegetation structure in understanding forest dynamics. Now future satellite missions such as Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to provide unprecedented global data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation structure in ecosystem models, develop and analyze theoretical models to quantify model-data requirements, and describe recent progress using a mechanistic modeling approach utilizing a formal scaling method and data on vegetation structure to improve model predictions. Generally, both limited sampling and coarse resolution averaging lead to model initialization error, which in turn is propagated in subsequent model prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tend to compensate at larger spatial scales. However, with inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics, errors in initialization lead to prediction error. A robust model-data framework will require both models and data on vegetation structure sufficient to resolve important environmental gradients and tree-level heterogeneity in forest structure globally.
Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes
NASA Astrophysics Data System (ADS)
Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.
2017-12-01
Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation differences amplify the soil moisture variability of semi-arid landscapes.
NASA Astrophysics Data System (ADS)
Galbraith, D.; Levine, N. M.; Christoffersen, B. O.; Imbuzeiro, H. A.; Powell, T.; Costa, M. H.; Saleska, S. R.; Moorcroft, P. R.; Malhi, Y.
2014-12-01
The mathematical codes embedded within different vegetation models ultimately represent alternative hypotheses of biosphere functioning. While formulations for some processes (e.g. leaf-level photosynthesis) are often shared across vegetation models, other processes (e.g. carbon allocation) are much more variable in their representation across models. This creates the opportunity for equifinality - models can simulate similar values of key metrics such as NPP or biomass through very different underlying causal pathways. Intensive carbon cycle measurements allow for quantification of a comprehensive suite of carbon fluxes such as the productivity and respiration of leaves, roots and wood, allowing for in-depth assessment of carbon flows within ecosystems. Thus, they provide important information on poorly-constrained C-cycle processes such as allocation. We conducted an in-depth evaluation of the ability of four commonly used dynamic global vegetation models (CLM, ED2, IBIS, JULES) to simulate carbon cycle processes at ten lowland Amazonian rainforest sites where individual C-cycle components have been measured. The rigorous model-data comparison procedure allowed identification of biases which were specific to different models, providing clear avenues for model improvement and allowing determination of internal C-cycling pathways that were better supported by data. Furthermore, the intensive C-cycle data allowed for explicit testing of the validity of a number of assumptions made by specific models in the simulation of carbon allocation and plant respiration. For example, the ED2 model assumes that maintenance respiration of stems is negligible while JULES assumes equivalent allocation of NPP to fine roots and leaves. We argue that field studies focusing on simultaneous measurement of a large number of component fluxes are fundamentally important for reducing uncertainty in vegetation model simulations.
NASA Astrophysics Data System (ADS)
Haghighi, E.; Kirchner, J. W.; Entekhabi, D.
2016-12-01
The relationship between soil moisture and evapotranspiration (ET) fluxes is an important component of land-atmosphere interactions controlling hydrology-climate feedback processes. Important as this relationship is, it remains empirical and physical mechanisms governing its dynamics are insufficiently studied. This is particularly of importance for semiarid regions (currently comprising about half of the Earth's land surface) where the shallow surface soil layer is the primary source of ET and direct evaporation from bare soil is likely a large component of the total flux. Hence, ET-soil moisture coupling in these regions is hypothesized to be strongly influenced by soil evaporation and associated mechanisms. Motivated by recent progress in mechanistic modeling of localized heat and mass exchange rates from bare soil surfaces covered by cylindrical bluff-body elements, we developed a physically based ET model explicitly incorporating coupled impacts of soil moisture and vegetation-induced turbulence in the near-surface region. Model predictions of ET and its partitioning were in good agreement with measured data and suggest that the strength and nature of ET-soil moisture interactions in sparsely vegetated areas are strongly influenced by aerodynamic (rather than radiative) forcing namely wind speed and near-surface turbulence generation as a function of vegetation type and cover fraction. The results demonstrated that the relationship between ET and soil moisture varies from a nonlinear function (the dual regime behavior) to a single moisture-limited regime (linear relationship) by increasing wind velocity and enhancing turbulence generation in the near-surface region (small-scale woody vegetation species of low cover fraction). Potential benefits of this study for improving accuracy and predictive capabilities of remote sensing techniques when applied to semiarid environments will also be discussed.
Spatial heterogeneity study of vegetation coverage at Heihe River Basin
NASA Astrophysics Data System (ADS)
Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei
2014-11-01
Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.
Clouds Versus Carbon: Predicting Vegetation Roughness by Maximizing Productivity
NASA Technical Reports Server (NTRS)
Olsen, Lola M.
2004-01-01
Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.
Noise-induced transitions and shifts in a climate-vegetation feedback model.
Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B
2018-04-01
Motivated by the extremely important role of the Earth's vegetation dynamics in climate changes, we study the stochastic variability of a simple climate-vegetation system. In the case of deterministic dynamics, the system has one stable equilibrium and limit cycle or two stable equilibria corresponding to two opposite (cold and warm) climate-vegetation states. These states are divided by a separatrix going across a point of unstable equilibrium. Some possible stochastic scenarios caused by different externally induced natural and anthropogenic processes inherit properties of deterministic behaviour and drastically change the system dynamics. We demonstrate that the system transitions across its separatrix occur with increasing noise intensity. The climate-vegetation system therewith fluctuates, transits and localizes in the vicinity of its attractor. We show that this phenomenon occurs within some critical range of noise intensities. A noise-induced shift into the range of smaller global average temperatures corresponding to substantial oscillations of the Earth's vegetation cover is revealed. Our analysis demonstrates that the climate-vegetation interactions essentially contribute to climate dynamics and should be taken into account in more precise and complex models of climate variability.
NASA Astrophysics Data System (ADS)
Duan, Liangxia; Huang, Mingbin; Zhang, Luodan
2016-06-01
Extensive vegetation restoration practices have been implemented to control soil erosion on the Loess Plateau, China. However, no strict guidelines are available to determine the most suitable plant species for vegetation restoration within a given area. The objective of this study was to quantify the changes of each component (soil water storage, surface runoff, and actual evapotranspiration) of a water balance model and soil loss over time under eight different vegetation types, and to further determine the optimal vegetation type for soil and water conservation and sustainable ecological restoration on the steep slopes (>25°) on the Loess Plateau. The results indicated that vegetation type substantially affected soil water storage and that the greatest soil water storage in both the shallow (0-2 m) and the deep soil layers (2-5 m) occurred under Bothriochloa ischaemum L. (BOI). Vegetation type also affected surface runoff and soil losses. The most effective vegetation types for reducing soil erosion were BOI and Sea-buckthorn (Hippophae rhamnoides L.), while Chinese pine (Pinus tabulaeformis Carr.) and Chinese pine + Black locust (Robinia pseudoacacia L.) were the most ineffective types. Soil water dynamics and evapotranspiration varied considerably among the different vegetation types. A soil water surplus was only found under BOI, while insufficient water replenishment existed under the other seven vegetation types. The higher water consumption rates of the seven vegetation types could result in soil desiccation, which could lead to severe water stresses that would adversely affect plant growth. This study suggested that both vegetation type and its effect on controlling soil erosion should be considered when implementing vegetation restoration and that BOI should be highly recommended for vegetation restoration on the steep slopes of the Loess Plateau. A similar approach to the one used in this study could be applied to other regions of the world confronted by the same problems of water scarcity along with the need for vegetation restoration.
Exploring tropical forest vegetation dynamics using the FATES model
NASA Astrophysics Data System (ADS)
Koven, C. D.; Fisher, R.; Knox, R. G.; Chambers, J.; Kueppers, L. M.; Christoffersen, B. O.; Davies, S. J.; Dietze, M.; Holm, J.; Massoud, E. C.; Muller-Landau, H. C.; Powell, T.; Serbin, S.; Shuman, J. K.; Walker, A. P.; Wright, S. J.; Xu, C.
2017-12-01
Tropical forest vegetation dynamics represent a critical climate feedback in the Earth system, which is poorly represented in current global modeling approaches. We discuss recent progress on exploring these dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model for the CESM and ACME ESMs. We will discuss benchmarks of FATES predictions for forest structure against inventory sites, sensitivity of FATES predictions of size and age structure to model parameter uncertainty, and experiments using the FATES model to explore PFT competitive dynamics and the dynamics of size and age distributions in responses to changing climate and CO2.
Monitoring vegetation phenology using MODIS
Zhang, Xiayong; Friedl, Mark A.; Schaaf, Crystal B.; Strahler, Alan H.; Hodges, John C.F.; Gao, Feng; Reed, Bradley C.; Huete, Alfredo
2003-01-01
Accurate measurements of regional to global scale vegetation dynamics (phenology) are required to improve models and understanding of inter-annual variability in terrestrial ecosystem carbon exchange and climate–biosphere interactions. Since the mid-1980s, satellite data have been used to study these processes. In this paper, a new methodology to monitor global vegetation phenology from time series of satellite data is presented. The method uses series of piecewise logistic functions, which are fit to remotely sensed vegetation index (VI) data, to represent intra-annual vegetation dynamics. Using this approach, transition dates for vegetation activity within annual time series of VI data can be determined from satellite data. The method allows vegetation dynamics to be monitored at large scales in a fashion that it is ecologically meaningful and does not require pre-smoothing of data or the use of user-defined thresholds. Preliminary results based on an annual time series of Moderate Resolution Imaging Spectroradiometer (MODIS) data for the northeastern United States demonstrate that the method is able to monitor vegetation phenology with good success.
NASA Astrophysics Data System (ADS)
Fischer, Christine; Hohenbrink, Tobias; Leimer, Sophia; Roscher, Christiane; Ravenek, Janneke; de Kroon, Hans; Kreutziger, Yvonne; Wirth, Christian; Eisenhauer, Nico; Gleixner, Gerd; Weigelt, Alexandra; Mommer, Liesje; Beßler, Holger; Schröder, Boris; Hildebrandt, Anke
2015-04-01
Soil moisture is the dynamic link between climate, soil and vegetation and the dynamics and variation are affected by several often interrelated factors such as soil texture, soil structural parameters (soil organic carbon) and vegetation parameters (belowground- and aboveground biomass). For the characterization and estimation of soil moisture and its variability and the resulting water fluxes and solute transports, the knowledge of the relative importance of these factors is of major challenge for hydrology and bioclimatology. Because of the heterogeneity of these factors, soil moisture varies strongly over time and space. Our objective was to assess the spatio-temporal variability of soil moisture and factors which could explain that variability, like soil properties and vegetation cover, in in a long term biodiversity experiment (Jena Experiment). The Jena Experiment consist 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional groups (legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design Soil moisture measurements were performed weekly April to September 2003-2005 and 2008-2013 using Delta T theta probe. Measurements were integrated to three depth intervals: 0.0 - 0.20, 0.20 - 0.40 and 0.40 - 0.70 m. We analyze the spatio-temporal patterns of soil water content on (i) the normalized time series and (ii) the first components obtained from a principal component analysis (PCA). Both were correlated with the design variables of the Jena Experiment (plant species richness and plant functional groups) and other influencing factors such as soil texture, soil structural variables and vegetation parameters. For the time stability of soil water content, the analysis showed that plots containing grasses was consistently drier than average at the soil surface in all observed years while plots containing legumes comparatively moister, but only up to the year 2008. In 0.40 - 0.70 m soil deep plots presence of small herbs led to higher than average soil moisture in some years (2008, 2012, 2013). Interestingly, plant species richness led to moister than average subsoil at the beginning of the experiment (2003 and 2004), which changed to lower than average up to the year 2010 in all depths. There was no effect of species diversity in the years since 2010, although species diversity generally increases leaf area index and aboveground biomass. The first component from the PCA analysis described the mean behavior in time of all soil moisture time series. The second component reflected the impact of soil depth. The first two components explained 76% of the data set total variance. The third component is linked to plant species richness and explained about 4 % of the total variance of soil moisture data. The fourth component, which explained 2.4 %, showed a high correlation to soil texture. Within this study we investigate the dominant factors controlling spatio-temporal patterns of soil moisture at several soil depths. Although climate and soil depths were the most important drivers, other factors like plant species richness and soil texture affected the temporal variation while certain plant functional groups were important for the spatial variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Tirtha; Vercauteren, Nikki; Muste, Marian
Flume experiments with particle imaging velocimetry (PIV) were conducted recently to study a complex flow problem where wind shear acts on the surface of a static water body in presence of flexible emergent vegetation and induces a rich dynamics of wave–turbulence–vegetation interaction inside the water body without any gravitational gradient. The experiments were aimed at mimicking realistic vegetated wetlands and the present work is targeted to improve the understanding of the coherent structures associated with this interaction by employing a combination of techniques such as quadrant analysis, proper orthogonal decomposition (POD), Shannon entropy and mutual information content (MIC). The turbulentmore » transfer of momentum is found to be dominated by organized motions such as sweeps and ejections, while the wave component of vertical momentum transport does not show any such preference. Furthermore, by reducing the data using POD we see that wave energy for large flow depths and turbulent energy for all water depths is concentrated among the top few modes, which can allow development of simple reduced order models. Vegetation flexibility is found to induce several roll type structures, however if the vegetation density is increased, drag effects dominate over flexibility and organize the flow. The interaction between waves and turbulence is also found to be highest among flexible sparse vegetation. But, rapidly evolving parts of the flow such as the air–water interface reduces wave–turbulence interaction.« less
Eco-hydrological Modeling in the Framework of Climate Change
NASA Astrophysics Data System (ADS)
Fatichi, Simone; Ivanov, Valeriy Y.; Caporali, Enrica
2010-05-01
A blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the plot and small catchment scale is presented. Input hydro-meteorological variables for hydrological and eco-hydrological models for present and future climates are reproduced using a stochastic downscaling technique and a weather generator, "AWE-GEN". The generated time series of meteorological variables for the present climate and an ensemble of possible future climates serve as input to a newly developed physically-based eco-hydrological model "Tethys-Chloris". An application of the proposed methodology is realized reproducing the current (1961-2000) and multiple future (2081-2100) climates for the location of Tucson (Arizona). A general reduction of precipitation and a significant increase of air temperature are inferred. The eco-hydrological model is successively applied to detect changes in water recharge and vegetation dynamics for a desert shrub ecosystem, typical of the semi-arid climate of south Arizona. Results for the future climate account for uncertainties in the downscaling and are produced in terms of probability density functions. A comparison of control and future scenarios is discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity. An appreciable effect of climate change can be observed in metrics of vegetation performance. The negative impact on vegetation due to amplification of water stress in a warmer and dryer climate is offset by a positive effect of carbon dioxide augment. This implies a positive shift in plant capabilities to exploit water. Consequently, the plant water use efficiency and rain use efficiency are expected to increase. Interesting differences in the long-term vegetation productivity are also observed for the ensemble of future climates. The reduction of precipitation and the substantial maintenance of vegetation cover ultimately leads to the depletion of soil moisture and recharge to deeper layers. Such an outcome can affect the long-tem water availability in semi-arid systems and expose plants to more severe and frequent periods of stress.
NASA Astrophysics Data System (ADS)
Piliouras, Anastasia; Kim, Wonsuck; Carlson, Brandee
2017-10-01
Vegetation is an important component of constructional landscapes, as plants enhance deposition and provide organic sediment that can increase aggradation rates to combat land loss. We conducted two sets of laboratory experiments using alfalfa (Medicago sativa) to determine the effects of plants on channel organization and large-scale delta dynamics. In the first set, we found that rapid vegetation colonization enhanced deposition but inhibited channelization via increased form drag that reduced the shear stress available for sediment entrainment and transport. A second set of experiments used discharge fluctuations between flood and base flow (or interflood). Interfloods were critical for reworking the topset via channel incision and lateral migration to create channel relief and prevent rapid plant colonization. These low-flow periods also greatly reduced the topset slope in the absence of vegetation by removing topset sediment and delivering it to the shoreline. Floods decreased relief by filling channels with sediment, resulting in periods of rapid progradation and enhanced aggradation over the topset surface, which was amplified by vegetation. The combination of discharge fluctuations and vegetation thus provided a balance of vertical aggradation and lateral progradation. We conclude that plants can inhibit channelization in depositional systems and that discharge fluctuations encourage channel network organization to naturally balance against aggradation. Thus, variations in discharge are an important aspect of understanding the ecomorphodynamics of aggrading surfaces and modeling vegetated deltaic systems, and the combined influences of plants and discharge variations can act to balance vertical and lateral delta growth.
Coherent structures in wind shear induced wave–turbulence–vegetation interaction in water bodies
Banerjee, Tirtha; Vercauteren, Nikki; Muste, Marian; ...
2017-08-26
Flume experiments with particle imaging velocimetry (PIV) were conducted recently to study a complex flow problem where wind shear acts on the surface of a static water body in presence of flexible emergent vegetation and induces a rich dynamics of wave–turbulence–vegetation interaction inside the water body without any gravitational gradient. The experiments were aimed at mimicking realistic vegetated wetlands and the present work is targeted to improve the understanding of the coherent structures associated with this interaction by employing a combination of techniques such as quadrant analysis, proper orthogonal decomposition (POD), Shannon entropy and mutual information content (MIC). The turbulentmore » transfer of momentum is found to be dominated by organized motions such as sweeps and ejections, while the wave component of vertical momentum transport does not show any such preference. Furthermore, by reducing the data using POD we see that wave energy for large flow depths and turbulent energy for all water depths is concentrated among the top few modes, which can allow development of simple reduced order models. Vegetation flexibility is found to induce several roll type structures, however if the vegetation density is increased, drag effects dominate over flexibility and organize the flow. The interaction between waves and turbulence is also found to be highest among flexible sparse vegetation. But, rapidly evolving parts of the flow such as the air–water interface reduces wave–turbulence interaction.« less
Exacerbated degradation and desertification of grassland in Central Asia
NASA Astrophysics Data System (ADS)
Zhang, G.; Xiao, X.; Biradar, C. M.; Dong, J.; Zhou, Y.; Qin, Y.; Zhang, Y.; Liu, F.; Ding, M.; Thomas, R. J.
2016-12-01
Grassland desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies generally did not separate the two components and analyzed them based on time series vegetation indices, which however cannot provide a clear and comprehensive picture for desertification. Here we proposed a desertification zone classification-based grassland degradation strategy to detect the grassland desertification process in Central Asia. First, annual spatially explicit maps of grasslands and deserts were generated to track the conversion between grasslands and deserts. The results showed that 13 % of grasslands were converted to deserts from 2000 to 2014, with an increasing desertification trend northward in the latitude range of 43-48°N. Second, a fragile and unstable Transitional zone was identified in southern Kazakhstan based on desert frequency maps. Third, gradual vegetation dynamics during the thermal growing season (EVITGS) were investigated using linear regression and Mann-Kendall approaches. The results indicated that grasslands generally experienced widespread degradation in Central Asia, with an additional hotspot identified in the northern Kazakhstan. Finally, attribution analyses of desertification were conducted by correlating vegetation dynamics with three different drought indices (Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), and Drought Severity Index (DSI)), precipitation, and temperature, and showed that grassland desertification was exacerbated by droughts, and persistent drought was the main factor for grassland desertification in Central Asia. This study provided essential information for taking practical actions to prevent the further desertification and targeting right spots for better intervention to combat the land degradation in the region.
Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth
NASA Astrophysics Data System (ADS)
Momen, Mostafa; Wood, Jeffrey D.; Novick, Kimberly A.; Pangle, Robert; Pockman, William T.; McDowell, Nate G.; Konings, Alexandra G.
2017-11-01
Remotely sensed microwave observations of vegetation optical depth (VOD) have been widely used for examining vegetation responses to climate. Nevertheless, the relative impacts of phenological changes in leaf biomass and water stress on VOD have not been explicitly disentangled. In particular, determining whether leaf water potential (ψL) affects VOD may allow these data sets as a constraint for plant hydraulic models. Here we test the sensitivity of VOD to variations in ψL and present a conceptual framework that relates VOD to ψL and total biomass including leaves, whose dynamics are measured through leaf area index, and woody components. We used measurements of ψL from three sites across the US—a mixed deciduous forests in Indiana and Missouri and a piñon-juniper woodland in New Mexico—to validate the conceptual model. The temporal dynamics of X-band VOD were similar to those of the VOD signal estimated from the new conceptual model with observed ψL (R2 = 0.6-0.8). At the global scale, accounting for a combination of biomass and estimated ψL (based on satellite surface soil moisture data) increased correlations with VOD by 15% and 30% compared to biomass and water potential, respectively. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions. Our results demonstrate that variations in both phenology and ψL must be considered to accurately interpret the dynamics of VOD observations for ecological applications.
Sun, Guo-Dong; Huo, Jin-Hai; Xie, Rong-Juan; Wang, Wei-Ming
2017-08-01
To analyze the dynamic changes in components in exocarp of Juglans mandshurica at different browning periods. Twenty-six batches of exocarp of J. mandshurica samples from thirteen browning periods were assessed by UPLC-Q-TOF-MS/MS. The formula of different compounds were determined by accurate mass and isotopic abundance ratio from target screening function of Peakview 2.0/masterview1.0 software. Then their structures were determined by analysis of MS/MS fragment or comparison with standard substances and references. The contents of chemical components were changed significantly in different browning periods and twenty five compounds were identified or inferred. Of the 13 naphthoquinone compounds, the contents of 6 compounds with similar parent nucleus as juglone and 3 naphthoquinone glycosides compounds were decreased significantly, and 4 naphthoquinone derivatives such as regiolone were produced; the contents of four flavones and two phenolic acids compounds were decreased significantly; and the contents of 6 diarylheptanoids compounds were increased significantly. UPLC-Q-TOF/MS method can be used to identify and analyze the chemical constituents from exocarp of J. mandshurica rapidly and accurately, and analyze the rules of dynamic changes, to reveal the browning of Chinese medicinal materials and its effects on compositions of fruits and vegetables. Copyright© by the Chinese Pharmaceutical Association.
Hydroclimatic Controls over Global Variations in Phenology and Carbon Flux
NASA Technical Reports Server (NTRS)
Koster, Randal; Walker, G.; Thornton, Patti; Collatz, G. J.
2012-01-01
The connection between phenological and hydroclimatological variations are quantified through joint analyses of global NDVI, LAI, and precipitation datasets. The global distributions of both NDVI and LAI in the warm season are strongly controlled by three quantities: mean annual precipitation, the standard deviation of annual precipitation, and Budyko's index of dryness. Upon demonstrating that these same basic (if biased) relationships are produced by a dynamic vegetation model (the dynamic vegetation and carbon storage components of the NCAR Community Land Model version 4 combined with the water and energy balance framework of the Catchment Land Surface Model of the NASA Global Modeling and Assimilation Office), we use the model to perform a sensitivity study focusing on how phenology and carbon flux might respond to climatic change. The offline (decoupled from the atmosphere) simulations show us, for example, where on the globe a given small increment in precipitation mean or variability would have the greatest impact on carbon uptake. The analysis framework allows us in addition to quantify the degree to which climatic biases in a free-running GCM are manifested as biases in simulated phenology.
Hydroclimatic Controls over Global Variations in Phenology and Carbon Flux
NASA Astrophysics Data System (ADS)
Koster, R. D.; Walker, G.; Thornton, P. E.; Collatz, G. J.
2012-12-01
The connection between phenological and hydroclimatological variations are quantified through joint analyses of global NDVI, LAI, and precipitation datasets. The global distributions of both NDVI and LAI in the warm season are strongly controlled by three quantities: mean annual precipitation, the standard deviation of annual precipitation, and Budyko's index of dryness. Upon demonstrating that these same basic (if somewhat biased) relationships are produced by a dynamic vegetation model (the dynamic vegetation and carbon storage components of the NCAR Community Land Model version 4 combined with the water and energy balance framework of the Catchment Land Surface Model of the NASA Global Modeling and Assimilation Office), we use the model to perform a sensitivity study focusing on how phenology and carbon flux might respond to climatic change. The offline (decoupled from the atmosphere) simulations show us, for example, where on the globe a given small increment in precipitation mean or variability would have the greatest impact on carbon uptake. The analysis framework allows us in addition to quantify the degree to which climatic biases in a free-running GCM are manifested as biases in simulated phenology.
NASA Technical Reports Server (NTRS)
vanLeeuwen, W. J. D.; Huete, A. R.; Duncan, J.; Franklin, J.
1994-01-01
A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (6) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large 6 dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone.
NASA Technical Reports Server (NTRS)
Turcotte, Kevin M.; Kramber, William J.; Venugopal, Gopalan; Lulla, Kamlesh
1989-01-01
Previous studies have shown that a good relationship exists between AVHRR Normalized Difference Vegetation Index (NDVI) measurements, and both regional-scale patterns of vegetation seasonality and productivity. Most of these studies used known samples of vegetation types. An alternative approach, and the objective was to examine the above relationships by analyzing one year of AVHRR NDVI data that was stratified using a small-scale vegetation map of Mexico. The results show that there is a good relationship between AVHRR NDVI measurements and regional-scale vegetation dynamics of Mexico.
Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use
NASA Astrophysics Data System (ADS)
Hantson, Stijn; Knorr, Wolfgang; Schurgers, Guy; Pugh, Thomas A. M.; Arneth, Almut
2017-04-01
Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.). It is therefore necessary to know how isoprene and monoterpene emissions have changed over the past and how future changes in climate, land-use and other factors will impact them. Here we present emission estimates of isoprene and monoterpenes over the period 1901-2 100 based on the dynamic global vegetation model LPJ-GUESS, including the effects of all known important drivers. We find that both isoprene and monoterpene emissions at the beginning of the 20th century were higher than at present. While anthropogenic land-use change largely drives the global decreasing trend for isoprene over the 20th century, changes in natural vegetation composition caused a decreasing trend for monoterpene emissions. Future global isoprene and monoterpene emissions depend strongly on the climate and land-use scenarios considered. Over the 21st century, global isoprene emissions are simulated to either remain stable (RCP 4.5), or decrease further (RCP 8.5), with important differences depending on the underlying land-use scenario. Future monoterpene emissions are expected to continue their present decreasing trend for all scenarios, possibly stabilizing from 2050 onwards (RCP 4.5). These results demonstrate the importance to take both natural vegetation dynamics and anthropogenic changes in land-use into account when estimating past and future BVOC emissions. They also indicate that a future global increase in BVOC emissions is improbable.
Linking runoff and erosion dynamics to nutrient fluxes in a degrading dryland landscape
NASA Astrophysics Data System (ADS)
Michaelides, Katerina; Lister, Debbie; Wainwright, John; Parsons, Anthony J.
2012-12-01
Current theories of land degradation assume that shifts in vegetation communities result in changes to the rates and patterns of water and sediment movement, which are vectors of nutrient redistribution. This nutrient redistribution is hypothesized to reinforce, through positive feedbacks, progressive vegetation changes toward a more degraded ecosystem. A key component of this theory, which is currently poorly resolved, is the relative role of runoff and erosion in driving nutrient fluxes from different vegetation types. We address this gap through a series of field-based, rainfall-simulation experiments designed to explore plant-level dynamics of runoff- and erosion-driven nutrient fluxes of N, P and K species. Our results highlight important linkages between physical and biogeochemical processes that are controlled by plant structure. We found that: 1) the magnitude of sediment-bound nutrient export is determined by the grain-size distribution of the eroded sediment and the total sediment yield; 2) the partitioning of nutrients in dissolved and sediment-bound form is determined by the availability and concentration of different nutrient species in the soil or rainfall; 3) these processes varied according to vegetation type and resulted in stark differences between degrading and invading plant communities. Specifically, we observed that grassland areas consistently exported the highest yields of sediment-bound N, P and K despite producing similar erosion rates to shrub and intershrub areas. Our results have implications for better understanding how grassland areas are being replaced by shrubs and provide insights into the mechanisms of continuing land degradation in drylands.
NASA Astrophysics Data System (ADS)
Hurley, Alexander; Kettridge, Nicholas; Devito, Kevin; Hokanson, Kelly; Krause, Stefan
2017-04-01
Hydrologic connectivity in the sub-humid Western Boreal Plain is largely controlled by storage-threshold dynamics where deep and coarse glacial deposits with high infiltration and storage capacities are prevalent. Here, vertical fluxes generally dominate over surface runoff, which has return periods of several years. Within this landscape, small, ephemeral wetlands with shallow peat soils are embedded in a matrix of other landscape units. They are typically gently-sloped and found in low-lying areas within forests or along margins of other wetlands. These ephemeral wetlands frequently saturate, and thus promote lateral water transfer as surface runoff or subsurface flows to adjacent and downstream systems. In the Western Boreal Plain, the importance of such water transmitting units (WTUs) is exacerbated by regional, multi-year water deficits resulting from inter-annual precipitation variability, and high evapotranspirative (ET) demand coinciding with most of the annual precipitation. Hence, the occurrence of WTUs may be key to maintaining the ecohydrological functioning of systems with temporary or missing connections to ground- or surface water. We present a conceptual model of these shallow, ephemeral wetlands based on our current understanding of dominant, ecohydrological processes promoting water transmission and highlight current knowledge gaps. Ongoing research focuses on quantifying individual water balance components, identifying potential feedback mechanisms between vegetation, soil properties and layering, and how climate modulates them. Key questions are: (1) What are dominant water balance components and their seasonal and internal dynamics? (2) Do vegetation structure and community composition decrease ET losses from the soil surface and wetland vegetation by shading and sheltering (i.e. decoupling from turbulent atmospheric exchange)? (3) Do adjacent upland and wetland systems depend on water transmission to maintain their functioning and productivity? (4) Are saturation and lateral water transport enhanced by the formation of surface-near ice layers by decreasing storage capacity, and does spatial variability of soil properties affect this process? Ultimately, this work will contribute to a growing knowledge base on the ecohydrological functioning of landscape units and catchment dynamics of the Western Boreal Plain.
NASA Astrophysics Data System (ADS)
Piégay, H.; Bornette, G.; Citterio, A.; Hérouin, E.; Moulin, B.; Statiotis, C.
2000-10-01
Many authors have shown that the sedimentology of former channels and subsequent vegetation changes are controlled by temporal (flood events and successional processes) and spatial (e.g. distance to the main channel) factors. River channel instability can disrupt these associations. The Ain River, France, has undergone a fluvial metamorphosis during the past 100 years, its braided pattern being replaced by a sinuous single-thread pattern. As a consequence, former channels have different geometrical characteristics and sediment trap efficiencies. Former meandering channels experience more frequent backflows and are more rapidly silted than the older former braided channels. The recently abandoned channels are characterized by the development of large-sized vegetation species with a relatively slow colonization rate, whereas the older channels are colonized predominantly by flood-tolerant aquatic plants. The locally derived discharge of former channels (from groundwater or from their own basin) may reduce or prevent sediment entry during flood events and thus may decrease the sedimentation rate. In such cases, the oligotrophic component of the water from the hillslope aquifer is high and the former channel is usually nutrient-poor, characterized by oligotrophic species. The main river channel also has experienced local incision, aggradation and horizontal displacement during recent decades, so that the dynamics of the former channels strongly depend on the dynamics of the reach in which they are located. In degraded reaches, former channels are often dry, and helophyte species have been replaced by mesophytes. The frequency and magnitude of flow connection between the river channel and the former channel can increase or decrease owing to the movement of the active river channel within the fluvial corridor, inducing varying modifications of former channel vegetation patterns. River channel instability at various time-scales is a key-factor controlling process diversity and thus biodiversity in the fluvial corridor. It can modify the geometry of abandoned channels, groundwater fluxes, the amount, mobilization and deposition of sediment within the corridor, and consequently the vegetation community patterns. This increases the complexity of successional patterns, because an old former channel may be characterized by pioneer species whereas a younger one can become quickly filled and colonized by terrestrial species.
Selective Cutting Impact on Carbon Storage in Fremont-Winema National Forest, Oregon
NASA Astrophysics Data System (ADS)
Huybrechts, C.; Cleve, C. T.
2004-12-01
Management personnel of the Fremont-Winema National Forest in southern Oregon were interested in investigating how selective cutting or fuel load reduction treatments affect forest carbon sinks and as an ancillary product, fire risk. This study was constructed with the objective of providing this information to the forest administrators, as well as to satisfy a directive to study carbon management, a component of the 2004 NASA's Application Division Program Plan. During the summer of 2004, a request for decision support tools by the forest management was addressed by a NASA sponsored student-led, student-run internship group called DEVELOP. This full-time10-week program was designed to be an introduction to work done by earth scientists, professional business / client relationships and the facilities available at NASA Ames. Four college and graduate students from varying educational backgrounds designed the study and implementation plan. The team collected data for five consecutive days in Oregon throughout the Fremont-Winema forest and the surrounding terrain, consisting of soil sampling for underground carbon dynamics, fire model and vegetation map validation. The goal of the carbon management component of the project was to model current carbon levels, then to gauge the effect of fuel load reduction treatments. To study carbon dynamics, MODIS derived fraction photosynthetically active radiation (FPAR) maps, regional climate data, and Landsat 5 generated dominant vegetation species and land cover maps were used in conjunction with the NASA - Carnegie-Ames-Stanford-Approach (CASA) model. To address fire risk the dominant vegetation species map was used to estimate fuel load based on species biomass in conjunction with a mosaic of digital elevation models (DEMs) as components to the creation of an Anderson-inspired fuel map, a rate of spread in meters/minute map and a flame length map using ArcMap 9 and FlamMap. Fire risk results are to be viewed qualitatively as maps output spatial distribution of data rather then quantitative assessment of risk. For the first time ever, the resource managers at the Fremont-Winema forest will be taking into consideration the value of carbon as a resource in their decision making process for the 2005 Fremont-Winema forest management plan.
The role of ice dynamics in shaping vegetation in flowing waters.
Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine
2014-11-01
Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams and rivers may mitigate some effects of anticipated climate change on ice and vegetation dynamics by, for example, slowing down flows and increasing water depth, thus reducing the potential for massive formation of underwater ice. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. Themore » characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.« less
Representing Northern Peatland Hydrology and Biogeochemistry with ALM Land Surface Model
NASA Astrophysics Data System (ADS)
Shi, X.; Ricciuto, D. M.; Thornton, P. E.; Hanson, P. J.; Xu, X.; Mao, J.; Warren, J.; Yuan, F.; Norby, R. J.; Sebestyen, S.; Griffiths, N.; Weston, D. J.; Walker, A.
2017-12-01
Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pool and vulnerability to hydrological change. Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. Firstly, we introduce a new configuration of the land model (ALM) of Accelerated Climate model for Energy (ACME), which includes a fully prognostic water table calculation for a vegetated peatland. Secondly, we couple our new hydrology treatment with vertically structured soil organic matter pool, and the addition of components from methane biogeochemistry. Thirdly, we introduce a new PFT for mosses and implement the water content dynamics and physiology of mosses. We inform and test our model based on SPRUCE experiment to get the reasonable results for the seasonal dynamics water table depths, water content dynamics and physiology of mosses, and correct soil carbon profiles. Then, we use our new model structure to test the how the water table depth and CH4 emission will respond to elevated CO2 and different warming scenarios.
Disaggregating tree and grass phenology in tropical savannas
NASA Astrophysics Data System (ADS)
Zhou, Qiang
Savannas are mixed tree-grass systems and as one of the world's largest biomes represent an important component of the Earth system affecting water and energy balances, carbon sequestration and biodiversity as well as supporting large human populations. Savanna vegetation structure and its distribution, however, may change because of major anthropogenic disturbances from climate change, wildfire, agriculture, and livestock production. The overstory and understory may have different water use strategies, different nutrient requirements and have different responses to fire and climate variation. The accurate measurement of the spatial distribution and structure of the overstory and understory are essential for understanding the savanna ecosystem. This project developed a workflow for separating the dynamics of the overstory and understory fractional cover in savannas at the continental scale (Australia, South America, and Africa). Previous studies have successfully separated the phenology of Australian savanna vegetation into persistent and seasonal greenness using time series decomposition, and into fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS) using linear unmixing. This study combined these methods to separate the understory and overstory signal in both the green and senescent phenological stages using remotely sensed imagery from the MODIS (MODerate resolution Imaging Spectroradiometer) sensor. The methods and parameters were adjusted based on the vegetation variation. The workflow was first tested at the Australian site. Here the PV estimates for overstory and understory showed best performance, however NPV estimates exhibited spatial variation in validation relationships. At the South American site (Cerrado), an additional method based on frequency unmixing was developed to separate green vegetation components with similar phenology. When the decomposition and frequency methods were compared, the frequency method was better for extracting the green tree phenology, but the original decomposition method was better for retrieval of understory grass phenology. Both methods, however, were less accurate than in the Cerrado than in Australia due to intermingling and intergrading of grass and small woody components. Since African savanna trees are predominantly deciduous, the frequency method was combined with the linear unmixing of fractional cover to attempt to separate the relatively similar phenology of deciduous trees and seasonal grasses. The results for Africa revealed limitations associated with both methods. There was spatial and seasonal variation in the spectral indices used to unmix fractional cover resulting in poor validation for NPV in particular. The frequency analysis revealed significant phase variation indicative of different phenology, but these could not be clearly ascribed to separate grass and tree components. Overall findings indicate that site-specific variation and vegetation structure and composition, along with MODIS pixel resolution, and the simple vegetation index approach used was not robust across the different savanna biomes. The approach showed generally better performance for estimating PV fraction, and separating green phenology, but there were major inconsistencies, errors and biases in estimation of NPV and BS outside of the Australian savanna environment.
The interaction between vegetation and channel dynamics based on experimental findings
NASA Astrophysics Data System (ADS)
Teske, R.; Van Dijk, W. M.; Van De Lageweg, W.; Kleinhans, M. G.
2012-12-01
Strong feedbacks exist between river channel dynamics, floodplain development and riparian vegetation. Several experimental studies showed how uniformly sown vegetation causes a shift from a braided river to a single-thread and sometimes meandering river. The objective of this study is to test what the effect of fluvially distributed seeds and vegetation settling is on channel pattern change and channel dynamics. The experiments were carried out in a flume of 3 m wide and 10 m long. We tested where the vegetation deposited in a braided and meandering river and how the morphology changed. We used a simple hydrograph of 0.25 hour high flow and 3.75 hour low flow, where alfalfa seeds were added during high flow. The bed sediment consisted of a poorly sorted sediment mixture ranging from fine sand to fine gravel. The evolution was recorded by a high-resolution laser-line scanner and a Digital Single Lens Reflex (DSLR) camera used for channel floodplain segmentation, water depth approximation and vegetation distribution. In an initially braided river, vegetation settled on the higher banks and stabilized the banks. In an initially meandering river, vegetation settled in the inner scrolls, and also on the outer banks when water level exceeded bankfull conditions. In agreement with earlier work, the outer bank was stabilized; erosion rate decreased and bends became sharper. The inner bend vegetation stabilized a part of the point bar and hydraulic resistance of the vegetation steered water in the channel and to the non-vegetated part of the inner bend. As result the meander bend became braided as water flows along the vegetation. Vegetation formed patches that grew over time and reduced channel dynamics. We conclude that self-settling vegetation decreased local bank erosion and that vegetated islands leads to a multi-thread system instead of single-threaded.
Stoknes, K; Scholwin, F; Krzesiński, W; Wojciechowska, E; Jasińska, A
2016-10-01
At urban locations certain challenges are concentrated: organic waste production, the need for waste treatment, energy demand, food demand, the need for circular economy and limited area for food production. Based on these factors the project presented here developed a novel technological approach for processing organic waste into new food. In this system, organic waste is converted into biogas and digester residue. The digester residue is being used successfully as a stand-alone fertilizer as well as main substrate component for vegetables and mushrooms for the first time - a "digeponics" system - in a closed new low energy greenhouse system with dynamic soap bubble insulation. Biogas production provides energy for the process and CO2 for the greenhouse. With very limited land use highly efficient resource recycling was established at pilot scale. In the research project it was proven that a low energy dynamic bubble insulated greenhouse can be operated continuously with 80% energy demand reduction compared to conventional greenhouses. Commercial crop yields were achieved based on fertilization with digestate; in individual cases they were even higher than the control yields of vegetables such as tomatoes, cucumber and lettuce among others. For the first time an efficient direct use of digestate as substrate and fertilizer has been developed and demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shengzhi; Huang, Qiang; Leng, Guoyong
It is of importance to investigate watershed water-energy balance variations and to explore their correlations with vegetation and soil moisture dynamics, which helps better understand the interplays between underlying surface dynamics and the terrestrial water cycle. The heuristic segmentation method was adopted to identify change points in the parameter to series in Fu's equation belonging to the Budyko framework in the Wei River Basin (WRB) and its sub-basins aiming to examine the validity of stationary assumptions. Additionally, the cross wavelet analysis was applied to explore the correlations between vegetation and soil moisture dynamics and to variations. Results indicated that (1)more » the omega variations in the WRB are significant, with some change points identified except for the sub-basin above Zhangjiashan, implying that the stationarity of omega series in the WRB is invalid except for the sub-basin above Zhangjiashan; (2) the correlations between soil moisture series and to series are weaker than those between Normalized Difference Vegetation Index (NDVI) series and omega series; (3) vegetation dynamics show significantly negative correlations with omega variations in 1983-2003 with a 4-8 year signal in the whole WRB, and both vegetation and soil moisture dynamics exert strong impacts on the parameter omega changes. This study helps understanding the interactions between underlying land surface dynamics and watershed water-energy balance. (C) 2017 Elsevier B.V. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Hoy, Jerad; Poulter, Benjamin; Emmett, Kristen; Cross, Molly; Al-Chokhachy, Robert; Maneta, Marco
2016-04-01
Integrated terrestrial ecosystem models simulate the dynamics and feedbacks between climate, vegetation, disturbance, and hydrology and are used to better understand biogeography and biogeochemical cycles. Extending dynamic vegetation models to the aquatic interface requires coupling surface and sub-surface runoff to catchment routing schemes and has the potential to enhance how researchers and managers investigate how changes in the environment might impact the availability of water resources for human and natural systems. In an effort towards creating such a coupled model, we developed catchment-based hydrologic routing and stream temperature model to pair with LPJ-GUESS, a dynamic global vegetation model. LPJ-GUESS simulates detailed stand-level vegetation dynamics such as growth, carbon allocation, and mortality, as well as various physical and hydrologic processes such as canopy interception and through-fall, and can be applied at small spatial scales, i.e., 1 km. We demonstrate how the coupled model can be used to investigate the effects of transient vegetation dynamics and CO2 on seasonal and annual stream discharge and temperature regimes. As a direct management application, we extend the modeling framework to predict habitat suitability for fish habitat within the Greater Yellowstone Ecosystem, a 200,000 km2 region that provides critical habitat for a range of aquatic species. The model is used to evaluate, quantitatively, the effects of management practices aimed to enhance hydrologic resilience to climate change, and benefits for water storage and fish habitat in the coming century.
NASA Astrophysics Data System (ADS)
Werner, Christian; Liakka, Johan; Schmid, Manuel; Fuentes, Juan-Pablo; Ehlers, Todd A.; Hickler, Thomas
2017-04-01
Vegetation composition and establishment is strongly dependent on climate conditions but also a result of vegetation dynamics (competition for light, water and nutrients). In addition, vegetation exerts control over the development of landscapes as it mediates the climatic and hydrological forces shaping the terrain via hillslope and fluvial processes. At the same time, topography as well as soil texture and soil depth affect the microclimate, soil water storage and rooting space that is defining the environmental envelope for vegetation development. Within the EarthShape research program (www.earthshape.net) we evaluate these interactions by simulating the co-evolution of landscape and vegetation with a dynamic vegetation model (LPJ-GUESS) and a landscape evolution model (LandLab). LPJ-GUESS is a mechanistic model driven by daily or monthly weather data and explicitly simulates vegetation physiology, succession, competition and water and nutrient cycling. Here we present the results of first transient vegetation simulations from 21kyr BP to present-day using the TraCE-21ka climate dataset for four focus sites along the coastal cordillera of Chile that are exposed to a substantial meridional climate gradient (ranging from hyper-arid to humid-temperate conditions). We show that the warming occurring in the region from LGM to present, in addition to the increase of atmospheric CO2 concentrations, led to a shift in vegetation composition and surface cover. Future work will show how these changes resonate in the dynamics of hillslope and fluvial erosion and ultimately bi-directional feedback mechanisms of vegetation development and landscape evolution/ soil formation (see also companion presentation by Schmid et al., this session).
NASA Astrophysics Data System (ADS)
Wessollek, Christine; Karrasch, Pierre
2016-10-01
In 1989 about 1.5 million soldiers were stationed in Germany. With the political changes in the early 1990s a substantial decline of the staff occurred on currently 200,000 employees in the armed forces and less than 60,000 soldiers of foreign forces. These processes entailed conversions of large areas not longer used for military purposes, especially in the new federal states in the eastern part of Germany. One of these conversion areas is the former military training area Konigsbruck in Saxony. For the analysis of vegetation and its development over time, the Normalized Difference Vegetation Index (NDVI) has established as one of the most important indicators. In this context, the questions arise whether MODIS NDVI products are suitable to determine conversion processes on former military territories like military training areas and what development processes occurred in the "Konigsbrucker Heide" in the past 15 years. First, a decomposition of each series in its trend component, seasonality and the remaining residuals is performed. For the trend component different regression models are tested. Statistical analysis of these trends can reveal different developments, for example in nature development zones (without human impact) and zones of controlled succession. The presented workflow is intended to show the opportunity to support a high temporal resolution monitoring of conversion areas such as former military training areas.
Demonstrating vegetation dynamics using SIMPPLLE
Glenda Scott; Jimmie D. Chew
1997-01-01
Understanding vegetation dynamics, both spatially and temporally, is essential to the management of natural resources. SIMPPLLE has been designed to help us quantify and communicate these concepts: What levels of process, i.e., fire or insect and disease, to expect; how they spread; what the vegetative distribution and composition is over time; and how silvicultural...
Classifying and comparing spatial models of fire dynamics
Geoffrey J. Cary; Robert E. Keane; Mike D. Flannigan
2007-01-01
Wildland fire is a significant disturbance in many ecosystems worldwide and the interaction of fire with climate and vegetation over long time spans has major effects on vegetation dynamics, ecosystem carbon budgets, and patterns of biodiversity. Landscape-Fire-Succession Models (LFSMs) that simulate the linked processes of fire and vegetation development in a spatial...
Disentangling the effects of climate and people on Sahel vegetation dynamics
NASA Astrophysics Data System (ADS)
Seaquist, J. W.; Hickler, T.; Eklundh, L.; Ardö, J.; Heumann, B. W.
2009-03-01
The Sahel belt of Africa has been the focus of intensive scientific research since the 1960s, spurred on by the chronic vulnerability of its population to recurring drought and the threat of long-term land degradation. But satellite sensors have recently shown that much of the region has experienced significant increases in photosynthetic activity since the early 1980s, thus re-energizing long-standing debates about the role that people play in shaping land surface status, and thus climate at regional scales. In this paper, we test the hypothesis that people have had a measurable impact on vegetation dynamics in the Sahel for the period 1982-2002. We compare potential natural vegetation dynamics predicted by a process-based ecosystem model with satellite-derived greenness observations, and map the agreement between the two across a geographic grid at a spatial resolution of 0.5°. As aggregated data-model agreement is very good, any local differences between the two could be due to human impact. We then relate this agreement metric to state-of-the-art data sets on demographics, pasture, and cropping. Our findings suggest that demographic and agricultural pressures in the Sahel are unable to account for differences between simulated and observed vegetation dynamics, even for the most densely populated areas. But we do identify a weak, positive correlation between data-model agreement and pasture intensity at the Sahel-wide level. This indicates that herding or grazing does not appreciably affect vegetation dynamics in the region. Either people have not had a significant impact on vegetation dynamics in the Sahel or the identification of a human "footprint" is precluded by inconsistent or subtle vegetation response to complex socio-environmental interactions, and/or limitations in the data used for this study. We do not exclude the possibility of a greater human influence on vegetation dynamics over the coming decades with changing land use.
Simulation of wetlands forest vegetation dynamics
Phipps, R.L.
1979-01-01
A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, "grows" individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering. ?? 1979.
NASA Astrophysics Data System (ADS)
Ivanov, Valeriy Y.; Bras, Rafael L.; Vivoni, Enrique R.
2008-03-01
Vegetation, particularly its dynamics, is the often-ignored linchpin of the land-surface hydrology. This work emphasizes the coupled nature of vegetation-water-energy dynamics by considering linkages at timescales that vary from hourly to interannual. A series of two papers is presented. A dynamic ecohydrological model [tRIBS + VEGGIE] is described in this paper. It reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. The framework focuses on ecohydrology of semiarid environments exhibiting abundant input of solar energy but limiting soil water that correspondingly affects vegetation structure and organization. The mechanisms through which water limitation influences plant dynamics are related to carbon assimilation via the control of photosynthesis and stomatal behavior, carbon allocation, stress-induced foliage loss, as well as recruitment and phenology patterns. This first introductory paper demonstrates model performance using observations for a site located in a semiarid environment of central New Mexico.
Lifting the Green Veil: A Fresh Look at Synoptic Vegetation Dynamics
NASA Astrophysics Data System (ADS)
Henebry, G. M.; Vina, A.; Gitelson, A. A.
2003-12-01
Observing the dynamics of the vegetated land surface synoptically from spaceborne sensors plays a key role in understanding the global water, carbon, and nitrogen cycles, land cover and land use change, and biodiversity mapping. For the past three decades the study of global and regional vegetation dynamics has relied on satellite observations of the distinctive spectral contrast between red and near infrared reflectance exhibited by photosynthetically active green vegetation. It has long been recognized, however, that the spectral vegetation index with the widest currency-the Normalized Difference Vegetation Index (NDVI)-suffers a rapid decrease of sensitivity even at moderate Leaf Area Index (LAI) values of 2 to 4, as are commonly encountered in croplands and woodlands. This decrease in NDVI sensitivity casts a green veil over the land surface that obscures vegetation dynamics across vast areas during much of the growing season. This veil has important consequences for monitoring vegetation dynamics, developing land surface climatologies, and detecting significant changes. A straightforward modification of the NDVI, developed to increase its sensitivity under higher green biomass conditions, was applied to a standard, widely available AVHRR NDVI dataset for the conterminous US. The new Wide Dynamic Range Vegetation Index (WDRVI) exhibited increases in sensitivity between 30%-50% for Omernik Level III ecoregions dominated by woodlands, croplands, and grasslands. Ecoregions with lower aboveground net primary production, such as aridlands and semi-arid grasslands, showed no increase in sensitivity of the WDRVI over the NDVI. This powerful, new but simple approach creates an opportunity for a fresh look at the satellite data record. Further, it offers the possibility for significant improvements in the retrievals of canopy variables for carbon and nitrogen models, more accurate land surface characterizations for numerical weather prediction models, more sensitive analyses of land cover / land use change, and improvements in habitat mapping for biodiversity management.
NASA Astrophysics Data System (ADS)
Jacquemin, Ingrid; Henrot, Alexandra-Jane; Fontaine, Corentin M.; Dendoncker, Nicolas; Beckers, Veronique; Debusscher, Bos; Tychon, Bernard; Hambuckers, Alain; François, Louis
2016-04-01
Dynamic vegetation models (DVM) were initially designed to describe the dynamics of natural ecosystems as a function of climate and soil, to study the role of the vegetation in the carbon cycle. These models are now directly coupled with climate models in order to evaluate feedbacks between vegetation and climate. But DVM characteristics allow numerous other applications, leading to amelioration of some of their modules (e.g., evaluating sensitivity of the hydrological module to land surface changes) and developments (e.g., coupling with other models like agent-based models), to be used in ecosystem management and land use planning studies. It is in this dynamic context about DVMs that we have adapted the CARAIB (CARbon Assimilation In the Biosphere) model. One of the main improvements is the implementation of a crop module, allowing the assessment of climate change impacts on crop yields. We try to validate this module at different scales: - from the plot level, with the use of eddy-covariance data from agricultural sites in the FLUXNET network, such as Lonzée (Belgium) or other Western European sites (Grignon, Dijkgraaf,…), - to the country level, for which we compare the crop yield calculated by CARAIB to the crop yield statistics for Belgium and for different agricultural regions of the country. Another challenge for the CARAIB DVM was to deal with the landscape dynamics, which is not directly possible due to the lack of consideration of anthropogenic factors in the system. In the framework of the VOTES and the MASC projects, CARAIB is coupled with an agent-based model (ABM), representing the societal component of the system. This coupled module allows the use of climate and socio-economic scenarios, particularly interesting for studies which aim at ensuring a sustainable approach. This module has particularly been exploited in the VOTES project, where the objective was to provide a social, biophysical and economic assessment of the ecosystem services in four municipalities under urban pressure in the center of Belgium. The biophysical valuation was carried out with the coupled module, allowing a quantitative evaluation of key ecosystem services as a function of three climatic and socio-economic scenarios.
NASA Astrophysics Data System (ADS)
Campbell, P. K. E.; Huemmrich, K. F.; Middleton, E.; Voorhis, S.; Landis, D.
2016-12-01
Spatial heterogeneity and seasonal dynamics in vegetation function contribute significantly to the uncertainties in regional and global CO2 budgets. High spectral resolution imaging spectroscopy ( 10 nm, 400-2500 nm) provides an efficient tool for synoptic evaluation of the factors significantly affecting the ability of the vegetation to sequester carbon and to reflect radiation, due to changes in vegetation chemical and structural composition. EO-1 Hyperion has collected more than 15 years of repeated observations for vegetation studies, and currently Hyperion time series are available for study of vegetation carbon dynamics at a number of FLUX sites. This study presents results from the analysis of EO-1 Hyperion and FLUX seasonal composites for a range of ecosystems across the globe. Spectral differences and seasonal trends were evaluated for each vegetation type and specific phenology. Evaluating the relationships between CO2 flux parameters (e.g., Net ecosystem production - NEP; Gross Ecosystem Exchange - GEE, CO2 flux, μmol m-2 s-1) and spectral parameters for these very different ecosystems, high correlations were established to parameters associated with canopy water and chlorophyll content for deciduous, and photosynthetic function for conifers. Imaging spectrometry provided high spatial resolution maps of CO2 fluxes absorbed by vegetation, and was efficient in tracing seasonal flux dynamics. This study will present examples for key ecosystem tipes to demonstrate the ability of imaging spectrometry and EO-1 Hyperion to map and compare CO2 flux dynamics across the globe.
Loranty, Michael M; Berner, Logan T; Taber, Eric D; Kropp, Heather; Natali, Susan M; Alexander, Heather D; Davydov, Sergey P; Zimov, Nikita S
2018-01-01
Arctic ecosystems are characterized by a broad range of plant functional types that are highly heterogeneous at small (~1-2 m) spatial scales. Climatic changes can impact vegetation distribution directly, and also indirectly via impacts on disturbance regimes. Consequent changes in vegetation structure and function have implications for surface energy dynamics that may alter permafrost thermal dynamics, and are therefore of interest in the context of permafrost related climate feedbacks. In this study we examine small-scale heterogeneity in soil thermal properties and ecosystem carbon and water fluxes associated with varying understory vegetation in open-canopy larch forests in northeastern Siberia. We found that lichen mats comprise 16% of understory vegetation cover on average in open canopy larch forests, and lichen abundance was inversely related to canopy cover. Relative to adjacent areas dominated by shrubs and moss, lichen mats had 2-3 times deeper permafrost thaw depths and surface soils warmer by 1-2°C in summer and less than 1°C in autumn. Despite deeper thaw depths, ecosystem respiration did not differ across vegetation types, indicating that autotrophic respiration likely dominates areas with shrubs and moss. Summertime net ecosystem exchange of CO2 was negative (i.e. net uptake) in areas with high shrub cover, while positive (i.e. net loss) in lichen mats and areas with less shrub cover. Our results highlight relationships between vegetation and soil thermal dynamics in permafrost ecosystems, and underscore the necessity of considering both vegetation and permafrost dynamics in shaping carbon cycling in permafrost ecosystems.
[An analysis of nutritional and harmful components of vegetables grown in plastic greenhouses].
Yao, H; Yan, W; Li, G; Chen, Y; Guo, W; Wang, G; Xu, Z; Feng, C; Liu, K; Jin, D
1999-09-01
To study the changes in nutritional and harmful components of vegetables grown in plastic greenhouses. In plastic greenhouses, microclimate and air concentrations of carbon monoxide, carbon dioxide, fluoride and respirable particulate were measured, and chlorophyll, total sugar, crude fiber, nitrite, fluoride, arsenic and some mineral elements in vegetables were determined as compared with those grown in the open-air fields. Greenhouse appeared a lower wind speed and darker illumination. Contents of chlorophyll a an b, total chlorophyll, reduced vitamin C, crude fiber in vegetables grown in greenhouse all were lower than those grown in open-air fields. Contents of potassium, calcium, magnesium, iron, zinc, copper and phosphorous were all lower in the vegetables grown in greenhouse than those grown in open-air fields. The contents of chlorophyll reducing Vitamin C. Lower wind speed and inadequate illumination in greenhouse affected photosynthesis and uptake of water in vegetables causing changes in their nutritional components. But, no contamination of burning coal was found in vegetables grown in greenhouse.
Sun, Jian; Qin, Xiaojing; Yang, Jun
2016-01-01
The spatiotemporal variability of the Normalized Difference Vegetation Index (NDVI) of three vegetation types (alpine steppe, alpine meadow, and alpine desert steppe) across the Tibetan Plateau was analyzed from 1982 to 2013. In addition, the annual mean temperature (MAT) and annual mean precipitation (MAP) trends were quantified to define the spatiotemporal climate patterns. Meanwhile, the relationships between climate factors and NDVI were analyzed in order to understand the impact of climate change on vegetation dynamics. The results indicate that the maximum of NDVI increased by 0.3 and 0.2 % per 10 years in the entire regions of alpine steppe and alpine meadow, respectively. However, no significant change in the NDVI of the alpine desert steppe has been observed since 1982. A negative relationship between NDVI and MAT was found in all these alpine grassland types, while MAP positively impacted the vegetation dynamics of all grasslands. Also, the effects of temperature and precipitation on different vegetation types differed, and the correlation coefficient for MAP and NDVI in alpine meadow is larger than that for other vegetation types. We also explored the percentages of precipitation and temperature influence on NDVI variation, using redundancy analysis at the observation point scale. The results show that precipitation is a primary limiting factor for alpine vegetation dynamic, rather than temperature. Most importantly, the results can serve as a tool for grassland ecosystem management.
NASA Astrophysics Data System (ADS)
Samuel, Boni; Retheesh, R.; Zaheer Ansari, Md; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.
2017-10-01
Quality evaluation of fruits and vegetables is of great concern as there is a shortage of unadulterated items on the market. Even unadulterated fruits and vegetables, especially those with soft tissue, cannot be stored for longer times due to physical and chemical changes. Moreover, damage can occur during harvest and in the post-harvest period, while preserving or transporting the fruits and vegetables. This work describes the use of a laser dynamic speckle imaging technique as a powerful optoelectronic tool for the quality evaluation of certain seasonal fruits and vegetables in an Indian market. A simple optical configuration was designed for developing the dynamic speckle imagining system to record dynamic specklegrams of the specimens under different conditions. These images were analysed using a cross-correlation function and the temporal history of specklegrams. The technique can be effectively adapted to the industrial environment and would be beneficial for all stakeholders in the field.
NASA Astrophysics Data System (ADS)
Gran, K. B.; Michal, T.
2014-12-01
Increased bank stability by riparian vegetation in braided rivers can decrease bed reworking rates and focus the flow. The magnitude of influence and resulting channel morphology are functions of vegetation strength vs. channel dynamics, a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. We investigate this relationship in an aggrading braided river at Mount Pinatubo, Philippines, and compare results to numerical and physical models. Gradual reductions in post-eruption sediment loads have reduced bed reworking rates, allowing vegetation to persist year-round and impact channel dynamics on the Pasig-Potrero and Sacobia Rivers. From 2009-2011, we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into RipRoot and BSTEM models shows cohesion due to roots increased from zero in unvegetated conditions to >10.2 kPa in densely-growing grasses. Field-based parameters were incorporated into a cellular model comparing vegetation growth and sediment mobility effects on braided channel dynamics. The model shows that both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. An estimated T* between 0.8 - 2.3 for the Pasig-Potrero River suggests channels were mobile enough to maintain the braidplain width clear of vegetation and even experience slight gains in area through annual removal of existing vegetation. However, persistent vegetation focused flow and thus aggradation over the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. While physical models predict continued narrowing of the active braidplain as T* declines, the future trajectory of channel-vegetation interactions at Pinatubo as sedimentation rates decline appears more complicated due to strong seasonal variability in precipitation and sediment loads. By 2011, seasonal incision in the dry season had started to occur, lowering the water-table, and impeding vegetation growth.
Piliouras, Anastasia; Kim, Wonsuck; Carlson, Brandee
2017-10-04
Vegetation is an important component of constructional landscapes, as plants enhance deposition and provide organic sediment that can increase aggradation rates to combat land loss. We conducted two sets of laboratory experiments using alfalfa ( Medicago sativa) to determine the effects of plants on channel organization and large-scale delta dynamics. In the first set, we found that rapid vegetation colonization enhanced deposition but inhibited channelization via increased form drag that reduced the shear stress available for sediment entrainment and transport. A second set of experiments used discharge fluctuations between flood and base flow (or interflood). Interfloods were critical for reworkingmore » the topset via channel incision and lateral migration to create channel relief and prevent rapid plant colonization. These low flow periods also greatly reduced the topset slope in the absence of vegetation by removing topset sediment and delivering it to the shoreline. Floods decreased relief by filling channels with sediment, resulting in periods of rapid progradation and enhanced aggradation over the topset surface, which was amplified by vegetation. The combination of discharge fluctuations and vegetation thus provided a balance of vertical aggradation and lateral progradation. We conclude that plants can inhibit channelization in depositional systems, and that discharge fluctuations encourage channel network organization to naturally balance against aggradation. Furthermore, variations in discharge are an important aspect of understanding the ecomorphodynamics of aggrading surfaces and modeling vegetated deltaic systems, and the combined influences of plants and discharge variations can act to balance vertical and lateral delta growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piliouras, Anastasia; Kim, Wonsuck; Carlson, Brandee
Vegetation is an important component of constructional landscapes, as plants enhance deposition and provide organic sediment that can increase aggradation rates to combat land loss. We conducted two sets of laboratory experiments using alfalfa ( Medicago sativa) to determine the effects of plants on channel organization and large-scale delta dynamics. In the first set, we found that rapid vegetation colonization enhanced deposition but inhibited channelization via increased form drag that reduced the shear stress available for sediment entrainment and transport. A second set of experiments used discharge fluctuations between flood and base flow (or interflood). Interfloods were critical for reworkingmore » the topset via channel incision and lateral migration to create channel relief and prevent rapid plant colonization. These low flow periods also greatly reduced the topset slope in the absence of vegetation by removing topset sediment and delivering it to the shoreline. Floods decreased relief by filling channels with sediment, resulting in periods of rapid progradation and enhanced aggradation over the topset surface, which was amplified by vegetation. The combination of discharge fluctuations and vegetation thus provided a balance of vertical aggradation and lateral progradation. We conclude that plants can inhibit channelization in depositional systems, and that discharge fluctuations encourage channel network organization to naturally balance against aggradation. Furthermore, variations in discharge are an important aspect of understanding the ecomorphodynamics of aggrading surfaces and modeling vegetated deltaic systems, and the combined influences of plants and discharge variations can act to balance vertical and lateral delta growth.« less
NASA Astrophysics Data System (ADS)
Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; Smith, Benjamin; Sutanudjaja, Edwin; van Beek, Rens; van Kampenhout, Leo; Wassen, Martin
2017-04-01
In up to 30% of the global land surface ecosystems are potentially influenced by the presence of a shallow groundwater table. In these regions upward water flux by capillary rise increases soil moisture availability in the root zone, which has a strong effect on evapotranspiration, vegetation dynamics, and fluxes of carbon and nitrogen. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure, and biogeochemical processes and are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB, which explicitly simulates groundwater dynamics. This coupled model allows us to explicitly account for groundwater effects on terrestrial ecosystem processes at global scale. Results of global simulations indicate that groundwater strongly influences fluxes of water, carbon and nitrogen, in many regions, adding up to a considerable effect at the global scale.
Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest
Brian M. Wing; Martin W. Ritchie; Kevin Boston; Warren B. Cohen; Alix Gitelman; Michael J. Olsen
2012-01-01
Forest understory communities are important components in forest ecosystems providing wildlife habitat and influencing nutrient cycling, fuel loadings, fire behavior and tree species composition over time. One of the most widely utilized understory component metrics is understory vegetation cover, often used as a measure of vegetation abundance. To date, understory...
Chapter 4. Monitoring vegetation composition and structure as habitat attributes
Thomas E. DeMeo; Mary M. Manning; Mary M. Rowland; Christina D. Vojta; Kevin S. McKelvey; C. Kenneth Brewer; Rebecca S.H. Kennedy; Paul A. Maus; Bethany Schulz; James A. Westfall; Timothy J. Mersmann
2013-01-01
Vegetation composition and structure are key components of wildlife habitat (Mc- Comb et al. 2010, Morrison et al. 2006) and are, therefore, essential components of all wildlife habitat monitoring. The objectives of this chapter are to describe common habitat attributes derived from vegetation composition and structure and to provide guidance for obtaining and using...
Similarity of vegetation dynamics during interglacial periods
Cheddadi, Rachid; de Beaulieu, Jacques-Louis; Jouzel, Jean; Andrieu-Ponel, Valérie; Laurent, Jeanne-Marine; Reille, Maurice; Raynaud, Dominique; Bar-Hen, Avner
2005-01-01
The Velay sequence (France) provides a unique, continuous, palynological record spanning the last four climatic cycles. A pollen-based reconstruction of temperature and precipitation displays marked climatic cycles. An analysis of the climate and vegetation changes during the interglacial periods reveals comparable features and identical major vegetation successions. Although Marine Isotope Stage (MIS) 11.3 and the Holocene had similar earth precessional variations, their correspondence in terms of vegetation dynamics is low. MIS 9.5, 7.5, and especially 5.5 display closer correlation to the Holocene than MIS 11.3. Ecological factors, such as the distribution and composition of glacial refugia or postglacial migration patterns, may explain these discrepancies. Comparison of ecosystem dynamics during the past five interglacials suggests that vegetation development in the current interglacial has no analogue from the past 500,000 years. PMID:16162676
Emergence of nutrient limitation in tropical dry forests: hypotheses from simulation models
NASA Astrophysics Data System (ADS)
Medvigy, D.; Waring, B. G.; Xu, X.; Trierweiler, A.; Werden, L. K.; Wang, G.; Zhu, Q.; Powers, J. S.
2017-12-01
It is unclear to what extent tropical dry forest productivity may be limited by nutrients. Direct assessment of nutrient limitation through fertilization experiments has been rare, and paradigms pertaining to other ecosystems may not extend to tropical dry forests. For example, because dry tropical forests have a lower water supply than moist tropical forests, dry forests can have lower decomposition rates, higher soil carbon and nitrogen concentrations, and a more open nitrogen cycle than moist forests. We used a mechanistic, numerical model to generate hypotheses about nutrient limitation in tropical dry forests. The model dynamically couples ED2 (vegetation dynamics), MEND (biogeochemistry), and N-COM (plant-microbe competition for nutrients). Here, the MEND-component of the model has been extended to include nitrogen (N) and phosphorus (P) cycles. We focus on simulation of sixteen 25m x 25m plots in Costa Rica where a fertilization experiment has been underway since 2015. Baseline simulations are characterized by both nitrogen and phosphorus limitation of vegetation. Fertilization with N and P increased vegetation biomass, with N fertilization having a somewhat stronger effect. Nutrient limitation was also sensitive to climate and was more pronounced during drought periods. Overflow respiration was identified as a key process that mitigated nutrient limitation. These results suggest that, despite often having richer soils than tropical moist forests, tropical dry forests can also become nutrient-limited. If the climate becomes drier in the next century, as is expected for Central America, drier soils may decrease microbial activity and exacerbate nutrient limitation. The importance of overflow respiration underscores the need for appropriate treatment of microbial dynamics in ecosystem models. Ongoing and new nutrient fertilization experiments will present opportunities for testing whether, and how, nutrient limitation may indeed be emerging in tropical dry forests.
Weng, Ensheng; Farrior, Caroline E; Dybzinski, Ray; Pacala, Stephen W
2017-06-01
Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade-offs that determine trait diversity. In this study, we show how physiological trade-offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual-based dynamic vegetation model (i.e., LM3-PPA). The evolutionary analysis shows that these leaf traits set up a trade-off between carbon- and nitrogen-use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen-use efficiency to one that is high in carbon-use efficiency or, equivalently, from high-LMA/long-lived leaves (i.e., evergreen) to low-LMA/short-lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3-PPA from the leaf physiological trade-offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones. © 2016 John Wiley & Sons Ltd.
Ecohydrological dynamics of peatlands and adjacent upland forests in the Rocky Mountains
NASA Astrophysics Data System (ADS)
Millar, D.; Parsekian, A.; Mercer, J.; Ewers, B. E.; Mackay, D. S.; Williams, D. G.; Cooper, D. J.; Ronayne, M. J.
2017-12-01
Mountain peatlands are susceptible to a changing climate via changes in the water cycle. Understanding the impacts of such changes requires knowledge of the hydrological processes within these peatlands and in the upland forests that supply them with water. We investigated hydrological processes in peatland catchments in the Rocky Mountains by developing empirical models of groundwater dynamics, and are working to improve subsurface water dynamics in a ecohydrological process model, the Terrestrial Regional Ecosystem Exchange Simulator (TREES). Results from empirical models showed major differences in water budget components between two peatlands with differing climate, vegetation, and hydrogeological settings. Several-fold higher rates of evapotranspiration from the saturated zone, and groundwater inflow were observed for a sloping fen in southern Wyoming than that of a basin fen in southwestern Colorado, where rainfall was two-fold higher due to stronger influence of the North American monsoon. We also present ongoing work coupling stable water isotope and borehole nuclear magnetic resonance analyses to test which soil water pools (bound or mobile) are used by dominant upland and peatland vegetation in two catchments in southern Wyoming. These data are being used to test whether the root hydraulic mechanisms in TREES can simulate water uptake from these two soil water pools, and sap flux measurements are being used to evaluate simulated transpiration. Preliminary results from this work suggest that upland vegetation utilize tightly-bound soil water pools, as these pools comprise the largest amount of subsurface water (> 80%) in the vadose zone long after snow melt. Conversely, it appears that herbaceous peatland hydrophytes may preferentially utilize mobile soil water pools, since their roots extend below the water table. The results of this work are expected to increase predictive understanding of hydrological processes in these important ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momen, Mostafa; Wood, Jeffrey D.; Novick, Kimberly A.
Remotely sensed microwave observations of vegetation optical depth (VOD) have been widely used for examining vegetation responses to climate. Nevertheless, the relative impacts of phenological changes in leaf biomass and water stress on VOD have not been explicitly disentangled. In particular, determining whether leaf water potential (ψL) affects VOD may allow these data sets as a constraint for plant hydraulic models. Here we test the sensitivity of VOD to variations in ψL and present a conceptual framework that relates VOD to ψL and total biomass including leaves, whose dynamics are measured through leaf area index, and woody components. We usedmore » measurements of ψL from three sites across the US—a mixed deciduous forests in Indiana and Missouri and a piñon-juniper woodland in New Mexico—to validate the conceptual model. The temporal dynamics of X-band VOD were similar to those of the VOD signal estimated from the new conceptual model with observed ψL (R2 = 0.6–0.8). At the global scale, accounting for a combination of biomass and estimated ψL (based on satellite surface soil moisture data) increased correlations with VOD by ~ 15% and 30% compared to biomass and water potential, respectively. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions. Our results demonstrate that variations in both phenology and ψL must be considered to accurately interpret the dynamics of VOD observations for ecological applications.« less
NASA Astrophysics Data System (ADS)
Papagiannopoulou, Christina; Decubber, Stijn; Miralles, Diego; Demuzere, Matthias; Dorigo, Wouter; Verhoest, Niko; Waegeman, Willem
2017-04-01
Satellite data provide an abundance of information about crucial climatic and environmental variables. These data - consisting of global records, spanning up to 35 years and having the form of multivariate time series with different spatial and temporal resolutions - enable the study of key climate-vegetation interactions. Although methods which are based on correlations and linear models are typically used for this purpose, their assumptions for linearity about the climate-vegetation relationships are too simplistic. Therefore, we adopt a recently proposed non-linear Granger causality analysis [1], in which we incorporate spatial information, concatenating data from neighboring pixels and training a joint model on the combined data. Experimental results based on global data sets show that considering non-linear relationships leads to a higher explained variance of past vegetation dynamics, compared to simple linear models. Our approach consists of several steps. First, we compile an extensive database [1], which includes multiple data sets for land surface temperature, near-surface air temperature, surface radiation, precipitation, snow water equivalents and surface soil moisture. Based on this database, high-level features are constructed and considered as predictors in our machine-learning framework. These high-level features include (de-trended) seasonal anomalies, lagged variables, past cumulative variables, and extreme indices, all calculated based on the raw climatic data. Second, we apply a spatiotemporal non-linear Granger causality framework - in which the linear predictive model is substituted for a non-linear machine learning algorithm - in order to assess which of these predictor variables Granger-cause vegetation dynamics at each 1° pixel. We use the de-trended anomalies of Normalized Difference Vegetation Index (NDVI) to characterize vegetation, being the target variable of our framework. Experimental results indicate that climate strongly (Granger-)causes vegetation dynamics in most regions globally. More specifically, water availability is the most dominant vegetation driver, being the dominant vegetation driver in 54% of the vegetated surface. Furthermore, our results show that precipitation and soil moisture have prolonged impacts on vegetation in semiarid regions, with up to 10% of additional explained variance on the vegetation dynamics occurring three months later. Finally, hydro-climatic extremes seem to have a remarkable impact on vegetation, since they also explain up to 10% of additional variance of vegetation in certain regions despite their infrequent occurrence. References [1] Papagiannopoulou, C., Miralles, D. G., Verhoest, N. E. C., Dorigo, W. A., and Waegeman, W.: A non-linear Granger causality framework to investigate climate-vegetation dynamics, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-266, in review, 2016.
NASA Astrophysics Data System (ADS)
Demuzere, Matthias; Coutts, Andrew; Goehler, Maren; Broadbent, Ashley; Wouters, Hendrik; van Lipzig, Nicole; Gebert, Luke
2015-04-01
Urban vegetation is generally considered as a key tool to modify the urban energy balance through enhanced evapotranspiration (ET). Given that vegetation is most effective when it is healthy, stormwater harvesting and retention strategies (such as water sensitive urban design) could be used to support vegetation and promote ET. This study presents the implementation of a vegetated lined bio-filtration system (BFS) combined with a rainwater tank (RWT) and urban irrigation system in the single-layer urban canopy model Community Land Model-Urban. Runoff from roof and impervious road surface fractions is harvested and used to support an adequate soil moisture level for vegetation in the BFS. In a first stage, modelled soil moisture dynamics are evaluated and found reliable compared to observed soil moisture levels from biofiltration pits in Smith Street, Melbourne (Australia). Secondly, the impact of BFS, RWT and urban irrigation on ET is illustrated for a two-month period in 2012 using varying characteristics for all components. Results indicate that (i) a large amount of stormwater is potentially available for indoor and outdoor water demands, including irrigation of urban vegetation, (ii) ET from the BFS is an order of magnitude larger compared to the contributions from the impervious surfaces, even though the former only covers 10% of the surface fraction and (iii) attention should be paid to the cover fraction and soil texture of the BFS, size of the RWT and the surface fractions contributing to the collection of water in the RWT. Overall, this study reveals that this model development can effectuate future research with state-of-the-art urban climate models to further explore the benefits of vegetated biofiltration systems as a water sensitive urban design tool optimised with an urban irrigation system to maintain healthy vegetation.
Multidecadal Land Cover Change in the Los Angeles Basin and its Water Consumption Implications
NASA Astrophysics Data System (ADS)
Colombi, N. K.; Lettenmaier, D. P.; Marlier, M. E.
2017-12-01
Urban irrigation is an important component of the hydrologic cycle in areas with arid and semi-arid climates. In Los Angeles, outdoor irrigation has the largest potential for water conservation. However, there are significant uncertainties in predicting and quantifying irrigated water use due to unavailability of crucial landcover data. Irrigated vegetation must first be identified and mapped before irrigated water use can be modeled, and steps can be taken towards conservation. We utilized Landsat data at 30m spatial resolution from 1985 to present to quantify temporal dynamics of vegetation cover on a seasonal basis in the Los Angeles Basin based on the Normalized Difference Vegetation Index (NDVI). Previous vegetation surveys have estimated tree cover and other vegetation types as isolated "snapshots", but are of limited use in monitoring fine-scale temporal variations, and their implications for municipal water consumption in particular. When the temporal resolution of images is low, it becomes more difficult to distinguish between natural, as contrasted with irrigated, vegetation. Our work therefore should provide a better basis for identifying irrigated vegetation. In addition, we quantified NDVI changes within specific land cover classifications including, but not limited to, grassland, shrub, and developed land classes. These results will be useful in comparing natural and irrigated vegetation within urban and partially urban areas. They will also help us to understand relationships between NDVI and irrigated water use at fine temporal resolutions. Finally, we have created land cover change maps that allow us to examine the impact of historical urban ecosystem changes on the water balance of the Los Angeles Basin (LAB) over the last 30 years. Understanding historical changes is a first step in determining the most practical ways of improving water use sustainability in the Los Angeles urban area.
Alemu, Henok; Senay, Gabriel B.; Kaptue, Armel T.; Kovalskyy, Valeriy
2014-01-01
Evapotranspiration (ET) is a vital component in land-atmosphere interactions. In drylands, over 90% of annual rainfall evaporates. The Nile Basin in Africa is about 42% dryland in a region experiencing rapid population growth and development. The relationship of ET with climate, vegetation and land cover in the basin during 2002–2011 is analyzed using thermal-based Simplified Surface Energy Balance Operational (SSEBop) ET, Normalized Difference Vegetation Index (NDVI)-based MODIS Terrestrial (MOD16) ET, MODIS-derived NDVI as a proxy for vegetation productivity and rainfall from Tropical Rainfall Measuring Mission (TRMM). Interannual variability and trends are analyzed using established statistical methods. Analysis based on thermal-based ET revealed that >50% of the study area exhibited negative ET anomalies for 7 years (2009, driest), while >60% exhibited positive ET anomalies for 3 years (2007, wettest). NDVI-based monthly ET correlated strongly (r > 0.77) with vegetation than thermal-based ET (0.52 < r < 0.73) at p < 0.001. Climate-zone averaged thermal-based ET anomalies positively correlated (r = 0.6, p < 0.05) with rainfall in 4 of the 9 investigated climate zones. Thermal-based and NDVI-based ET estimates revealed minor discrepancies over rainfed croplands (60 mm/yr higher for thermal-based ET), but a significant divergence over wetlands (440 mm/yr higher for thermal-based ET). Only 5% of the study area exhibited statistically significant trends in ET.
Disentangling the effects of climate and people on Sahel vegetation dynamics
NASA Astrophysics Data System (ADS)
Seaquist, J. W.; Hickler, T.; Eklundh, L.; Ardö, J.; Heumann, B. W.
2008-08-01
The Sahel belt of Africa has been the focus of intensive scientific research since the 1960s, spurred on by the chronic vulnerability of its population to recurring drought and the threat of long-term land degradation. But satellite sensors have recently shown that much of the region has experienced significant increases in photosynthetic activity since the early 1980s, thus re-energizing long-standing debates about the role that people play in shaping land surface status, and thus climate at regional scales. In this paper, we test the hypothesis that people have had a measurable impact on vegetation dynamics in the Sahel for the period 1982 2002. We compare potential natural vegetation dynamics predicted by a process-based ecosystem model with satellite-derived greenness observations, and map the agreement between the two across a geographic grid at a spatial resolution of 0.5°. As aggregated data-model agreement is very good, any local differences between the two could be due to human impact. We then relate this agreement metric to state-of-the-art data sets on demographics, pasture, and cropping. Our findings suggest that demographic and agricultural pressures in the Sahel are unable to account for differences between simulated and observed vegetation dynamics, even for the most densely populated areas. But we do identify a weak, positive correlation between data-model agreement and pasture intensity at the Sahel-wide level. This indicates that herding or grazing does not appreciably affect vegetation dynamics in the region. Either people have not had a significant impact on vegetation dynamics in the Sahel or the identification of a human "footprint" is precluded by inconsistent or subtle vegetation response to complex socio-environmental interactions, and/or limitations in the data used for this study.
Lu Hao; Cen Pan; Peilong Liu; Decheng Zhou; Liangxia Zhang; Zhe Xiong; Yongqiang Liu; Ge Sun
2016-01-01
Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphereâbiosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past...
Influence of vegetation dynamic modeling on the allocation of green and blue waters
NASA Astrophysics Data System (ADS)
Ruiz-Pérez, Guiomar; Francés, Félix
2015-04-01
The long history of the Mediterranean region is dominated by the interactions and co-evolution between man and its natural environment. It is important to consider that the Mediterranean region is recurrently or permanently confronted with the scarcity of the water. The issue of climate change is (and will be) aggravating this situation. This raises the question of a loss of services that ecosystems provide to human and also the amount of available water to be used by vegetation. The question of the water cycle, therefore, should be considered in an integrated manner by taking into account both blue water (water in liquid form used for the human needs or which flows into the oceans) and green water (water having the vapor for resulting from evaporation and transpiration processes). In spite of this, traditionally, very few hydrological models have incorporated the vegetation dynamic as a state variable. In fact, most of them are able to represent fairly well the observed discharge, but usually including the vegetation as a static parameter. However, in the last decade, the number of hydrological models which explicitly take into account the vegetation development as a state variable has increased substantially. In this work, we want to analyze if it is really necessary to use a dynamic vegetation model to quantify adequately the distribution of water into blue and green water. The study site is located in the Public Forest Monte de la Hunde y Palomeras (Spain). The vegetation in the study area is dominated by Aleppo pine of high tree density with scant presence of other species. Two different daily models were applied (with static and dynamic vegetation representation respectively) in three different scenarios: dry year (2005), normal year (2008) and wet year (2010). The static vegetation model simulates the evapotranspiration considering the vegetation as a stationary parameter. Contrarily, the dynamic vegetation model connects the hydrological model with a parsimonious dynamic vegetation sub-model which assumes the vegetation biomass as a state variable. Using both models, we estimated the amount of 'blue' water and the amount of 'green' water (according to the previous definitions) in each scenario. Comparing the results, we observed that the static model underestimated the amount of green water in any case (dry, normal or wet year). In fact, the value of the ratio between blue and green water is higher in all scenarios for the static option (0.23 in the dry year, 0.42 in the normal year and 0.96 in the wet year) than the obtained ones for the dynamic model (0.098, 0.29 and 0.76, respectively). It means that we are overestimating the amount of water available for human needs if we assume vegetation as static. This type of error can be very dangerous for water resources predictions with future climates, especially in Mediterranean areas due to their water scarcity.
Assessing global vegetation activity using spatio-temporal Bayesian modelling
NASA Astrophysics Data System (ADS)
Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.
2016-04-01
This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.
30-year Dynamics of Terrestrial Vegetation Activity and the Relationship with Climatologies
NASA Astrophysics Data System (ADS)
de Jong, R.; Schaepman, M. E.; Furrer, R.; de Bruin, S.; Verburg, P. H.
2013-12-01
The climate governs the seasonal activity of terrestrial vegetation while humankind influences it. The relative role of these drivers in changing vegetation activity is crucial information for accurate modeling of vegetation and climate dynamics and for adaptation and mitigation strategies. Disentangling the two, however, is an ongoing scientific challenge, because of limited data availability, mainly regarding non-climatic drivers, and complex biosphere-atmosphere feedback mechanisms. Here, we contribute to this quest by modeling the spatial relationship between climatologies and changes in global vegetation activity (de Jong et al., 2013a). Vegetation activity is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature, including the detection of shifts (de Jong et al., 2013b), which may be related to climate (e.g. Zhao & Running, 2010). However, little remains known about the exact processes underlying vegetation change at large spatial scales. Depending on eco-region, three climatologies potentially constrain plant growth (Churkina and Running, 1998). In the humid mid-latitudes, for example, temperature is the largest influencing factor; in (semi) arid regions it is the availability of water and in the tropics incident solar radiation. Based on this logic, we developed a mixed-effect model to relate changes in these climatologies to changes in vegetation activity and to quantify the spatial process underlying the other drivers, including human land use. Little over 50% of the spatial variation in vegetation change could be attributed to changes in climatologies; conspicuously, many of the global ';greening' trends and the ';browning' hotspots in Argentina and Australia. Browning hotspots in the non-climatic component were especially located in subequatorial Africa (e.g. parts of Zimbabwe and Tanzania), where human drivers may be responsible. Indications for browning under warming conditions were found in some boreal regions. These results are examples of relationships we can find within readily available datasets, without a-priori information, and may be used as indicator for drivers of biospheric change. Churkina G, Running SW (1998) Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems, 1, 206-215 de Jong R, Schaepman ME, Furrer R, De Bruin S, Verburg PH (2013a) Spatial relationship between climatologies and changes in global vegetation activity. Global Change Biology, 19, 1953-1964 de Jong, R, Verbesselt, J, Zeileis, A, & Schaepman, ME (2013b) Shifts in Global Vegetation Activity Trends. Remote Sensing, 5, 1117-1133 Zhao M, Running SW (2010) Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science, 329, 940-943
Resilience of riverbed vegetation to uprooting by flow
NASA Astrophysics Data System (ADS)
Perona, P.; Crouzy, B.
2018-03-01
Riverine ecosystem biodiversity is largely maintained by ecogeomorphic processes including vegetation renewal via uprooting and recovery times to flow disturbances. Plant roots thus heavily contribute to engineering resilience to perturbation of such ecosystems. We show that vegetation uprooting by flow occurs as a fatigue-like mechanism, which statistically requires a given exposure time to imposed riverbed flow erosion rates before the plant collapses. We formulate a physically based stochastic model for the actual plant rooting depth and the time-to-uprooting, which allows us to define plant resilience to uprooting for generic time-dependent flow erosion dynamics. This theory shows that plant resilience to uprooting depends on the time-to-uprooting and that root mechanical anchoring acts as a process memory stored within the plant-soil system. The model is validated against measured data of time-to-uprooting of Avena sativa seedlings with various root lengths under different flow conditions. This allows for assessing the natural variance of the uprooting-by-flow process and to compute the prediction entropy, which quantifies the relative importance of the deterministic and the random components affecting the process.
Automated In-Situ Laser Scanner for Monitoring Forest Leaf Area Index
Culvenor, Darius S.; Newnham, Glenn J.; Mellor, Andrew; Sims, Neil C.; Haywood, Andrew
2014-01-01
An automated laser rangefinding instrument was developed to characterize overstorey and understorey vegetation dynamics over time. Design criteria were based on information needs within the statewide forest monitoring program in Victoria, Australia. The ground-based monitoring instrument captures the key vegetation structural information needed to overcome ambiguity in the estimation of forest Leaf Area Index (LAI) from satellite sensors. The scanning lidar instrument was developed primarily from low cost, commercially accessible components. While the 635 nm wavelength lidar is not ideally suited to vegetation studies, there was an acceptable trade-off between cost and performance. Tests demonstrated reliable range estimates to live foliage up to a distance of 60 m during night-time operation. Given the instrument's scan angle of 57.5 degrees zenith, the instrument is an effective tool for monitoring LAI in forest canopies up to a height of 30 m. An 18 month field trial of three co-located instruments showed consistent seasonal trends and mean LAI of between 1.32 to 1.56 and a temporal LAI variation of 8 to 17% relative to the mean. PMID:25196006
Proceedings: Shrubland ecosystem dynamics in a changing environment
Jerry R. Barrow; E. Durant McArthur; Ronald E. Sosebee; Robin J. Tausch
1996-01-01
This proceedings contains 50 papers including an overview of shrubland ecosystem dynamics in a changing environment and several papers each on vegetation dynamics, management concerns and options, and plant ecophysiology as well as an account of a Jornada Basin field trip. Contributions emphasize the impact of changing environmental conditions on vegetative composition...
Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements
NASA Astrophysics Data System (ADS)
Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.
2013-12-01
The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch structural measurements (space between leaves, min. and max. season's growth and diameter) of two 1m branches harvested from each canopy level. Both leaf and canopy-level observations where collected monthly when trees where not in flush and weekly during the period of leaf flushing. Here, we present our leaf spectral and physiochemical results. Results show 1) changes in leaf spectral and physiochemical properties related to leaf age, 2) the most significant changes in the leaves' spectrum during different stages in their life cycle, and 3) how leaf spectral changes are related to changes in the chemical and physical properties of the leaves as they progress through their life cycle. Future work will involve the incorporation of leaf and canopy observations into a light canopy interaction model to investigate the possibility that seasonal variation in VIs may be driven by leaf aging as well as by the shedding or appearance of new leaves.
Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support
NASA Astrophysics Data System (ADS)
Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.
2017-12-01
The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.
Revina, N E
2006-01-01
Differentiated role of segmental and suprasegmental levels of cardiac rhythm variability regulation in dynamics of motivational human conflict was studied for the first time. The author used an original method allowing simultaneous analysis of psychological and physiological parameters of human activity. The study demonstrates that will and anxiety, as components of motivational activity spectrum, form the "energetic" basis of voluntary-constructive and involuntary-affective behavioral strategies, selectively uniting various levels of suprasegmental and segmental control of human heart functioning in a conflict situation.
Riparian vegetation controls on braided stream dynamics
NASA Astrophysics Data System (ADS)
Gran, Karen; Paola, Chris
2001-12-01
Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. To examine the effects of riparian vegetation on gravel bed braided streams, we conducted a series of physical experiments at the St. Anthony Falls Laboratory with varying densities of bar and bank vegetation. Water discharge, sediment discharge, and grain size were held constant between runs. For each run, we allowed a braided system to develop, then seeded the flume with alfalfa (Medicago sativa), allowed the seeds to grow, and then continued the run. We collected data on water depth, surface velocity, and bed elevation throughout each run using image-based techniques designed to collect data over a large spatial area with minimal disturbance to the flow. Our results show that the influence of vegetation on overall river patterns varied systematically with the spatial density of plant stems. Vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and increased channel relief. These effects increased with vegetation density. Vegetation influenced flow dynamics, increasing the variance of flow direction in vegetated runs and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision also provides a new mechanism for producing secondary flows. We found it to be more important than the classical curvature-driven mechanism in vegetated runs.
Phenolic Component Profiles of Mustard Greens, Yu Choy, and 15 Other Brassica Vegetables
Lin, Long-Ze; Harnly, James M
2013-01-01
A liquid chromatography–mass spectrometry (LC-MS) profiling method was used to characterize the phenolic components of 17 leafy vegetables from Brassica species other than Brassica oleracea. The vegetables studied were mustard green, baby mustard green, gai choy, baby gai choy, yu choy, yu choy tip, bok choy, bok choy tip, baby bok choy, bok choy sum, Taiwan bok choy, Shanghai bok choy, baby Shanghai bok choy, rapini broccoli, turnip green, napa, and baby napa. This work led to the tentative identification of 71 phenolic compounds consisting of kaempferol 3-O-diglucoside-7-O-glucoside derivatives, isorhamnetin 3-O-glucoside-7-O-glucoside hydroxycinnamoyl gentiobioses, hydroxycinnamoylmalic acids, and hydroxycinnamoylquinic acids. Ten of the compounds, 3-O-diacyltriglucoside-7-O-glucosides of kaempferol and quercetin, had not been previously reported. The phenolic component profiles of these vegetables were significantly different than those of the leafy vegetables from B. oleracea. This is the first comparative study of these leafy vegetables. Ten of the vegetables had never been previously studied by LC-MS. PMID:20465307
Alvin L. Medina; Jonathan W. Long
2012-01-01
Streamside environments are inherently dynamic, yet streamside vegetation plays a key stabilizing role on riparian and aquatic habitats (Van Devender and Spaulding 1979; Van Devender and others 1987). Because of its dynamism, streamside vegetation is rarely the subject of classification analyses, yet it is a focal point for land managers regulating land uses, such as...
Seasonality of a boreal forest: a remote sensing perspective
NASA Astrophysics Data System (ADS)
Rautiainen, Miina; Heiskanen, Janne; Lukes, Petr; Majasalmi, Titta; Mottus, Matti; Pisek, Jan
2016-04-01
Understanding the seasonal dynamics of boreal ecosystems through interpretation of satellite reflectance data is needed for efficient large-scale monitoring of northern vegetation dynamics and productivity trends. Satellite remote sensing enables continuous global monitoring of vegetation status and is not limited to single-date phenological metrics. Using remote sensing also enables gaining a wider perspective to the seasonality of vegetation dynamics. The seasonal reflectance cycles of boreal forests observed in optical satellite images are explained by changes in biochemical properties and geometrical structure of vegetation as well as seasonal variation in solar illumination. This poster provides a synthesis of a research project (2010-2015) dedicated to monitoring the seasonal cycle of boreal forests. It is based on satellite and field data collected from the Hyytiälä Forestry Field Station in Finland. The results highlight the role understory vegetation has in forming the forest reflectance measured by satellite instruments.
NASA Astrophysics Data System (ADS)
Zharnikova, M. A.; Alymbaeva, ZH B.; Ayurzhanaev, A. A.; Garmaev, E. ZH
2016-11-01
At present much attention is given to the spatio-temporal dynamics of plant communities of steppes to assess their response to the current climate changes. In this study, a mapping of a selected modeling polygon was carried out on the basis of data decoding and field surveys of vegetation cover in the semi-arid zone. The resulting large-scale map of actual vegetation reflects the current state of the vegetation cover and its horizontal structure. It is a valuable material for monitoring of changes in the chosen area. With multi-temporal satellite Landsat imagery we consider the vegetation cover dynamics of the test range. To analyze the transformation of the environment by the climatic factors, we compared series of NDVI versus the precipitation and of NDVI versus the temperatures. Then we calculated the degree of correlation between them.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zeng, Z.; Piao, S.
2014-12-01
Tropical vegetation plays an essential role for global biogeochemical cycles. An abundant literature focused on the vegetation dynamics in Amazon. It is shown that the Amazonian rainforest is strongly controlled by radiation, even during dry season. However, only few researches deal with tropical rainforest in Southeast Asia; the vegetation dynamics in Southeast Asia remain poorly understood. In this study, we investigated the spatio-temporal dynamics of vegetation in Southeast Asia with three independent satellite derived Normalized Difference Vegetation Index (NDVI) products (GIMMS AVHRR NDVI3g, SPOT, and MODIS) as well as the recently developed Sun Induced chlorophyll Fluorescence (SIF). We furthermore examined how climate drivers (precipitation, temperature and radiation) exert influences on the vegetation dynamics. We find that the three NDVI datasets are generally consistent with each other. At seasonal scale, NDVI decreases from the beginning to the end of the dry season; at interannual scale, dry season NDVI is positively correlated to precipitation but negatively correlated to radiation, while wet season NDVI is positively correlated to radiation. Compared to evergreen forests, deciduous forests have a larger NDVI decrease rate and more extended area with positive relationships between NDVI and precipitation during the dry season. SIF is lower during dry season than during wet season. Our results indicate that most forests in Southeast Asia, unlike in the Amazonian basin, are water-limited in the dry season but radiation-limited in the wet season. These results imply that droughts may have a stronger impact on forests in Southeast Asia than in Amazon.
Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.
Krishnaswamy, Jagdish; John, Robert; Joseph, Shijo
2014-01-01
Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the world's mountain ecosystems located in the pan-tropical belt (30°N-30°S). We analyzed decadal-scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982-2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid-1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time-dependent regression parameters to study the time evolution of NDVI-climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature-induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global-scale effects of climate warming and associated moisture stresses. © 2013 John Wiley & Sons Ltd.
Relations between Vegetation and Geologic Framework in Barrier Island
NASA Astrophysics Data System (ADS)
Smart, N. H.; Ferguson, J. B.; Lehner, J. D.; Taylor, D.; Tuttle, L. F., II; Wernette, P. A.
2017-12-01
Barrier islands provide valuable ecosystems and protective services to coastal communities. The longevity of barrier islands is threatened by sea-level rise, human impacts, and extreme storms. The purpose of this research is to evaluate how vegetation dynamics interact with the subsurface and offshore framework geology to influence the beach and dune morphology. Beach and dune morphology can be viewed as free and/or forced behavior, where free systems are stochastic and the morphology is dependent on variations in the storm surge run-up, aeolian sediment supply and transport potential, and vegetation dynamics and persistence. Forced systems are those where patterns in the coastal morphology are determined by some other structural control, such as the underlying and offshore framework geology. Previous studies have documented the effects of geologic framework or vegetation dynamics on the beach and dunes, although none have examined possible control by vegetation dynamics in context of the geologic framework (i.e. combined free and forced behavior). Padre Island National Seashore (PAIS) was used to examine the interaction of free and forced morphology because the subsurface framework geology and surface beach and dune morphology are variable along the island. Vegetation dynamics were assessed by classifying geographically referenced historical aerial imagery into areas with vegetation and areas without vegetation, as well as LiDAR data to verify this imagery. The subsurface geologic structure was assessed using a combination of geophysical surveys (i.e. electromagnetic induction, ground-penetrating radar, and offshore seismic surveys). Comparison of the observed vegetation patterns and geologic framework leads to a series of questions surrounding how mechanistically these two drivers of coastal morphology are related. Upcoming coring and geophysical surveys will enable us to validate new and existing geophysical data. Results of this paper will help us better understand how barrier islands have responded to environmental change in the past should be integrated into current models of barrier island evolution in order to more accurately predict how the island will change over time in response to continued climatic variability.
Fruits, vegetables and their components and mild cognitive impairment and dementia: A review
USDA-ARS?s Scientific Manuscript database
The aim of this review is to evaluate the current literature on the role of fruit and vegetable (F&V) consumption and their components in the prevention of mild cognitive impairment (MCI) and dementia. The components investigated include vitamins C and E, carotenoids, polyphenols, and B-vitamins. Th...
Huot, Hermine; Séré, Geoffroy; Charbonnier, Patrick; Simonnot, Marie-Odile; Morel, Jean Louis
2015-09-01
To assess the impact of metal-rich brownfields on groundwater quality, the fluxes in a Technosol developed on a former iron industry settling pond were studied. Intact soil monoliths (1 m(2) × 2 m) were extracted and placed in lysimeters. Dynamics of fluxes of metals and solutes under varying vegetation cover were monitored over the course of four years. Soil hydraulic properties were also determined. Results showed that the Technosol has a high retention capacity for water and metals, in relation to its mineral components and resulting chemical and physical properties. As a consequence, metal fluxes were limited. However, soluble compounds, such as SO4(2-), were found at significant concentrations in the leachates. The presence of a dense and deeply-rooted vegetation cover limited water- and solute-fluxes by increasing evapotranspiration and water uptake, thereby reducing the risks of transfer of potentially toxic compounds to local groundwater sources. However, vegetation development may induce changes in soil chemical (e.g. pH, redox potential) and physical properties (e.g. structure), favoring metal mobilization and transport. Revegetation is a valuable management solution for former iron industry settling ponds, provided vegetation does not change soil physico-chemical conditions in the long term. Monitored natural attenuation is required. Copyright © 2015 Elsevier B.V. All rights reserved.
Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0
NASA Astrophysics Data System (ADS)
Melton, J. R.; Arora, V. K.
2015-06-01
The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition, and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverages of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverages of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.
Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0
NASA Astrophysics Data System (ADS)
Melton, J. R.; Arora, V. K.
2016-01-01
The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM, which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs, which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverage of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large-scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverage of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.
Peilong Liu; Lu Hao; Cen Pan; Decheng Zhou; Yongqiang Liu; Ge Sun
2017-01-01
Leaf area index (LAI) is a key parameter to characterize vegetation dynamics and ecosystemstructure that determines the ecosystem functions and services such as cleanwater supply and carbon sequestration in awatershed. However, linking LAI dynamics and environmental controls (i.e., coupling biosphere, atmosphere, and anthroposphere) remains challenging and such type of...
Rivaes, Rui; Pinheiro, António N; Egger, Gregory; Ferreira, Teresa
2017-01-01
Fluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data, confirming the results of the general model. The patch shape model explained nearly 13% of the patch shape variability, in which the disturbances came to have less influence on driving this feature. However, grndh continues to be the primary driver of riparian vegetation between the two disturbance factors, despite the proportional increase of the mrphd effect to approximately a third of the grndh effect.
Rivaes, Rui; Pinheiro, António N.; Egger, Gregory; Ferreira, Teresa
2017-01-01
Fluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data, confirming the results of the general model. The patch shape model explained nearly 13% of the patch shape variability, in which the disturbances came to have less influence on driving this feature. However, grndh continues to be the primary driver of riparian vegetation between the two disturbance factors, despite the proportional increase of the mrphd effect to approximately a third of the grndh effect. PMID:28979278
Wallace, Cynthia S.A.; Advised by Marsh, Stuart E.
2002-01-01
The research accomplished in this dissertation used both mathematical and statistical techniques to extract and evaluate measures of landscape temporal dynamics and spatial structure from remotely sensed data for the purpose of mapping wildlife habitat. By coupling the landscape measures gleaned from the remotely sensed data with various sets of animal sightings and population data, effective models of habitat preference were created.Measures of temporal dynamics of vegetation greenness as measured by National Oceanographic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (AVHRR) satellite were used to effectively characterize and map season specific habitat of the Sonoran pronghorn antelope, as well as produce preliminary models of potential yellow-billed cuckoo habitat in Arizona. Various measures that capture different aspects of the temporal dynamics of the landscape were derived from AVHRR Normalized Difference Vegetation Index composite data using three main classes of calculations: basic statistics, standardized principal components analysis, and Fourier analysis. Pronghorn habitat models based on the AVHRR measures correspond visually and statistically to GIS-based models produced using data that represent detailed knowledge of ground-condition.Measures of temporal dynamics also revealed statistically significant correlations with annual estimates of elk population in selected Arizona Game Management Units, suggesting elk respond to regional environmental changes that can be measured using satellite data. Such relationships, once verified and established, can be used to help indirectly monitor the population.Measures of landscape spatial structure derived from IKONOS high spatial resolution (1-m) satellite data using geostatistics effectively map details of Sonoran pronghorn antelope habitat. Local estimates of the nugget, sill, and range variogram parameters calculated within 25 x 25-meter image windows describe the spatial autocorrelation of the image, permitting classification of all pixels into coherent units whose signature graphs exhibit a classic variogram shape. The variogram parameters captured in these signatures have been shown in previous studies to discriminate between different species-specific vegetation associations.The synoptic view of the landscape provided by satellite data can inform resource management efforts. The ability to characterize the spatial structure and temporal dynamics of habitat using repeatable remote sensing data allows closer monitoring of the relationship between a species and its landscape.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203
Climate change and long-term fire management impacts on Australian savannas.
Scheiter, Simon; Higgins, Steven I; Beringer, Jason; Hutley, Lindsay B
2015-02-01
Tropical savannas cover a large proportion of the Earth's land surface and many people are dependent on the ecosystem services that savannas supply. Their sustainable management is crucial. Owing to the complexity of savanna vegetation dynamics, climate change and land use impacts on savannas are highly uncertain. We used a dynamic vegetation model, the adaptive dynamic global vegetation model (aDGVM), to project how climate change and fire management might influence future vegetation in northern Australian savannas. Under future climate conditions, vegetation can store more carbon than under ambient conditions. Changes in rainfall seasonality influence future carbon storage but do not turn vegetation into a carbon source, suggesting that CO₂ fertilization is the main driver of vegetation change. The application of prescribed fires with varying return intervals and burning season influences vegetation and fire impacts. Carbon sequestration is maximized with early dry season fires and long fire return intervals, while grass productivity is maximized with late dry season fires and intermediate fire return intervals. The study has implications for management policy across Australian savannas because it identifies how fire management strategies may influence grazing yield, carbon sequestration and greenhouse gas emissions. This knowledge is crucial to maintaining important ecosystem services of Australian savannas. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Zhengchao, Ren; Huazhong, Zhu; Shi, Hua; Xiaoni, Liu
2016-01-01
Rangeland systems play an important role in ecological stabilization and the terrestrial carbon cycle in arid and semiarid regions. However, little is known about the vegetative carbon dynamics and climatic and topographical factors that affect vegetative carbon stock in these rangelands. Our goal was to assess vegetative carbon stock by examining meteorological data in conjunction with NDVI (normalized difference vegetation index) time series datasets from 2001–2012. An improved CASA (Carnegie Ames Stanford Approach) model was then applied to simulate the spatiotemporal dynamic variation of vegetative carbon stock, and analyze its response to climatic and topographical factors. We estimated the vegetative carbon stock of rangeland in Gansu province, China to be 4.4× 1014 gC, increasing linearly at an annual rate of 9.8×1011 gC. The mean vegetative carbon density of the whole rangeland was 136.5 gC m-2. Vegetative carbon density and total carbon varied temporally and spatially and were highly associated with temperature, precipitation and solar radiation. Vegetative carbon density reached the maximal value on elevation at 2500–3500 m, a slope of >30°and easterly aspect. The effect of precipitation, temperature and solar radiation on the vegetative carbon density of five rangeland types (desert and salinized meadow, steppe, alpine meadow, shrub and tussock, and marginal grassland in the forest) depends on the acquired quantity of water and heat for rangeland plants at all spatial scales. The results of this study provide new evidence for explaining spatiotemporal heterogeneity in vegetative carbon dynamics and responses to global change for rangeland vegetative carbon stock, and offer a theoretical and practical basis for grassland agriculture management in arid and semiarid regions.
Effects of Telecoupling on Global Vegetation Dynamics
NASA Astrophysics Data System (ADS)
Viña, A.; Liu, J.
2016-12-01
With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.
On modeling the organization of landscapes and vegetation patterns controlled by solar radiation
NASA Astrophysics Data System (ADS)
Istanbulluoglu, E.; Yetemen, O.
2014-12-01
Solar radiation is a critical driver of ecohydrologic processes and vegetation dynamics. Patterns of runoff generation and vegetation dictate landscape geomorphic response. Distinct patterns in the organization of soil moisture, vegetation type, and landscape morphology have been documented in close relation to aspect in a range of climates. Within catchments, from north to south facing slopes, studies have shown ecotone shifts from forest to shrub species, and steep diffusion-dominated landforms to fluvial landforms. Over the long term differential evolution of ecohydrology and geomorphology leads to observed asymmetric structure in the planform of channel network and valley morphology. In this talk we present examples of coupled modeling of ecohydrology and geomorphology driven by solar radiation. In a cellular automata model of vegetation dynamics we will first show how plants organize in north and south facing slopes and how biodiversity changes with elevation. When vegetation-erosion feedbacks are coupled emergent properties of the coupled system are observed in the modeled elevation and vegetation fields. Integrating processes at a range of temporal and spatial scales, coupled models of ecohydrologic and geomorphic dynamics enable examination of global change impacts on landscapes and ecosystems.
Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.
2018-01-01
Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor.
A SIMPLE CELLULAR AUTOMATON MODEL FOR HIGH-LEVEL VEGETATION DYNAMICS
We have produced a simple two-dimensional (ground-plan) cellular automata model of vegetation dynamics specifically to investigate high-level community processes. The model is probabilistic, with individual plant behavior determined by physiologically-based rules derived from a w...
Next generation dynamic global vegetation models: learning from community ecology (Invited)
NASA Astrophysics Data System (ADS)
Scheiter, S.; Higgins, S.; Langan, L.
2013-12-01
Dynamic global vegetation models are a powerful tool to project past, current and future vegetation patterns and the associated biogeochemical cycles. However, most models are limited by their representation of vegetation by using static and pre-defined plant functional types and by their simplistic representation of competition. We discuss how concepts from community assembly theory and coexistence theory can help to improve dynamic vegetation models. We present a trait- and individual-based dynamic vegetation model, the aDGVM2, that allows individual plants to adopt a unique combination of trait values. These traits define how individual plants grow, compete and reproduce under the given biotic and abiotic conditions. A genetic optimization algorithm is used to simulate trait inheritance and reproductive isolation between individuals. These model properties allow the assembly of plant communities that are adapted to biotic and abiotic conditions. We show (1) that the aDGVM2 can simulate coarse vegetation patterns in Africa, (2) that changes in the environmental conditions and disturbances strongly influence trait diversity and the assembled plant communities by influencing traits such as leaf phenology and carbon allocation patterns of individual plants and (3) that communities do not necessarily return to the initial state when environmental conditions return to the initial state. The aDGVM2 deals with functional diversity and competition fundamentally differently from current models and allows novel insights as to how vegetation may respond to climate change. We believe that the aDGVM2 approach could foster collaborations between research communities that focus on functional plant ecology, plant competition, plant physiology and Earth system science.
Natural vegetation of Oregon and Washington.
Jerry F. Franklin; C.T. Dyrness
1973-01-01
Major vegetational units of Oregon and Washington and their environmental relationships are described and illustrated. After an initial consideration of the vegetation components in the two States, major geographic areas and vegetation zones are detailed. Descriptions of each vegetation zone include composition and succession, as well as discussion of variations...
Robert E. Keane; Geoffrey J. Cary; Mike D. Flannigan; Russell A. Parsons; Ian D. Davies; Karen J. King; Chao Li; Ross A. Bradstock; Malcolm Gill
2013-01-01
An assessment of the relative importance of vegetation change and disturbance as agents of landscape change under current and future climates would (1) provide insight into the controls of landscape dynamics, (2) help inform the design and development of coarse scale spatially explicit ecosystem models such as Dynamic Global Vegetation Models (DGVMs), and (3) guide...
Woody-Herbaceous Species Coexistence in Mulga Hillslopes: Modelling Structure and Function
NASA Astrophysics Data System (ADS)
Soltanjalili, M. J.; Saco, P. M.; Willgoose, G. R.
2016-12-01
The fundamental processes underlying the coexistence of woody and herbaceous species in arid and semi-arid areas have been a topic of intense research during the last few decades. Experimental and modelling studies have both supported and disputed alternative hypotheses explaining this phenomenon. Vegetation models including the key processes that drive coexistence can be used to understand vegetation pattern dynamics and structure under current climate conditions, and to predict changes under future conditions. Here we present work done towards linking the observations to modelling. The model captures woody-herbaceous coexistence along a rainfall gradient characteristic of typical conditions on Mulga ecosystems in Australia. The dynamic vegetation model simulates the spatial dynamics of overland flow, soil moisture and vegetation growth of two species. It incorporates key mechanisms for coexistence and pattern formation, including facilitation by evaporation reduction through shading, and infiltration feedbacks, local and non-local seed dispersal, competition for water uptake. Model outcomes, obtained including diflerent mechanisms, are qualitatively compared to typical vegetation cover patterns in the Australian Mulga bioregion where bush fire is very infrequent and the fate of vegetation cover is mostly determined by intra- and interspecies interactions. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the dynamics of such ecosystems, we identify main mechanisms that need an improved representation in the dynamic vegetation models. We show that a realistic parameterization of the model leads to results which are aligned with the observations reported in the literature. At the lower end of the rainfall gradient woody species coexist with herbaceous species within a sparse banded pattern, while at higher rainfall woody species tend to dominate the landscape.
Classification of simple vegetation types using POLSAR image data
NASA Technical Reports Server (NTRS)
Freeman, A.
1993-01-01
Mapping basic vegetation or land cover types is a fairly common problem in remote sensing. Knowledge of the land cover type is a key input to algorithms which estimate geophysical parameters, such as soil moisture, surface roughness, leaf area index or biomass from remotely sensed data. In an earlier paper, an algorithm for fitting a simple three-component scattering model to POLSAR data was presented. The algorithm yielded estimates for surface scatter, double-bounce scatter and volume scatter for each pixel in a POLSAR image data set. In this paper, we show how the relative levels of each of the three components can be used as inputs to simple classifier for vegetation type. Vegetation classes include no vegetation cover (e.g. bare soil or desert), low vegetation cover (e.g. grassland), moderate vegetation cover (e.g. fully developed crops), forest and urban areas. Implementation of the approach requires estimates for the three components from all three frequencies available using the NASA/JPL AIRSAR, i.e. C-, L- and P-bands. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.
Lidar and Hyperspectral Remote Sensing for the Analysis of Coniferous Biomass Stocks and Fluxes
NASA Astrophysics Data System (ADS)
Halligan, K. Q.; Roberts, D. A.
2006-12-01
Airborne lidar and hyperspectral data can improve estimates of aboveground carbon stocks and fluxes through their complimentary responses to vegetation structure and biochemistry. While strong relationships have been demonstrated between lidar-estimated vegetation structural parameters and field data, research is needed to explore the portability of these methods across a range of topographic conditions, disturbance histories, vegetation type and climate. Additionally, research is needed to evaluate contributions of hyperspectral data in refining biomass estimates and determination of fluxes. To address these questions we are a conducting study of lidar and hyperspectral remote sensing data across sites including coniferous forests, broadleaf deciduous forests and a tropical rainforest. Here we focus on a single study site, Yellowstone National Park, where tree heights, stem locations, above ground biomass and basal area were mapped using first-return small-footprint lidar data. A new method using lidar intensity data was developed for separating the terrain and vegetation components in lidar data using a two-scale iterative local minima filter. Resulting Digital Terrain Models (DTM) and Digital Canopy Models (DCM) were then processed to retrieve a diversity of vertical and horizontal structure metrics. Univariate linear models were used to estimate individual tree heights while stepwise linear regression was used to estimate aboveground biomass and basal area. Three small-area field datasets were compared for their utility in model building and validation of vegetation structure parameters. All structural parameters were linearly correlated with lidar-derived metrics, with higher accuracies obtained where field and imagery data were precisely collocated . Initial analysis of hyperspectral data suggests that vegetation health metrics including measures of live and dead vegetation and stress indices may provide good indicators of carbon flux by mapping vegetation vigor or senescence. Additionally, the strength of hyperspectral data for vegetation classification suggests these data have additional utility for modeling carbon flux dynamics by allowing more accurate plant functional type mapping.
Escobar-Henriques, Mafalda; Langer, Thomas
2006-01-01
A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.
NASA Astrophysics Data System (ADS)
Daliakopoulos, Ioannis; Tsanis, Ioannis
2017-04-01
Mitigating the vulnerability of Mediterranean rangelands against degradation is limited by our ability to understand and accurately characterize those impacts in space and time. The Normalized Difference Vegetation Index (NDVI) is a radiometric measure of the photosynthetically active radiation absorbed by green vegetation canopy chlorophyll and is therefore a good surrogate measure of vegetation dynamics. On the other hand, meteorological indices such as the drought assessing Standardised Precipitation Index (SPI) are can be easily estimated from historical and projected datasets at the global scale. This work investigates the potential of driving Random Forest (RF) models with meteorological indices to approximate NDVI-based vegetation dynamics. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The updated E-OBS-v13.1 dataset of the ENSEMBLES EU FP6 program provides observed monthly meteorological input to estimate SPI over the Mediterranean rangelands. RF models are trained to depict vegetation dynamics using the latest version (3g.v1) of the third generation GIMMS NDVI generated from NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensors. Analysis is conducted for the period 1981-2015 at a gridded spatial resolution of 25 km. Preliminary results demonstrate the potential of machine learning algorithms to effectively mimic the underlying physical relationship of drought and Earth Observation vegetation indices to provide estimates based on precipitation variability.
Impacts of phenology on estimation of actual evapotranspiration with VegET model
NASA Astrophysics Data System (ADS)
Kovalskyy, V.; Henebry, G. M.
2009-12-01
The VegET model provides spatially explicit estimation of actual evapotranspiration (AET). Currently, it uses a climatology based on AVHRR NDVI image time series to modulate fluxes during growing seasons (Senay 2008). This step simplifies the model formulation, but it also introduces errors by ignoring the interannual variation in phenology. We report on a study to evaluate the effects of using an NDVI climatology in VegET rather than current season values. Using flux tower data from three sites across the US Corn Belt, we found that currently the model overestimates the duration of season. With the standard deviation of more than one week, the model results in an additional 50 to 70 mm of AET per season, which can account for about 10% of seasonal AET in drier western sites. The model showed only modest sensitivity to variation in growing season weather. This lack of sensitivity greatly decreased model accuracy during drought years: Pearson correlation coefficients between model estimates and observed values dropped from about 0.7 to 0.5, depending on vegetation type. We also evaluated an alternative approach to drive the canopy component of evapotranspiration, the Event Driven Phenology Model (EDPM). The parameterization of VegET with EDPM-simulated canopy dynamics improved the correlation by 0.1 or more and reduced the RMSE on daily AET estimates by 0.3 mm. By accounting for the progress of phenology during a particular growing season, the EDPM improves AET estimation over an NDVI climatology.
Dynamics of riparian plant communities, a new integrative ecohydrological modelling approach
NASA Astrophysics Data System (ADS)
García-Arias, Alicia; Francés, Félix
2015-04-01
The Riparian Vegetation Dynamic Model (RVDM) integrates the impacts of the hydrological extremes on the vegetation, the vegetation evolution and the competition between different vegetation classes. Considering a daily time step and a detailed spatial resolution, RVDM allows the analysis of the dynamic vegetation distribution in riverine areas during a simulated period. The riparian vegetation wellbeing and distribution are considered to be conditioned by the river hydrodynamics in RVDM. Using biomass loss functions, the stress caused by hydrological extreme events is translated into changes on the distribution of the vegetation. These extreme events are considered as removal and asphyxia associated to floods, and wilt related to droughts. The variables considered to determine the impacts are water shear stress, water table elevation and the soil moisture, respectively. RVDM includes the modelling of the natural evolution of the vegetation. The potential recruitment in bared areas, the plant growth and the succession/retrogression between plant categories are included in the model conceptualization. The recruitment takes place when seeds presence, germination and seedlings establishment overcome, so it depends on the plant reproductive period and the environmental conditions. Light use efficiency determines the vegetation growth in terms of biomass production while the soil moisture limits this biomass production and the successional evolution. Finally, the competition modelling considers the advantages between successional patterns under the specific soil moisture conditions of each unit area. Several meteorological, morphological, hydrological and hydraulic inputs are required. In addition, an initial vegetation condition is required for RVDM to start the simulation period. The model results on new vegetation maps that are considered as new inputs in the next model step. Following this approach the model simulates iteratively al the processes day by day. This model represents an improvement respect to previous models in the way of understanding the riparian dynamics. Currently, RVDM has been already implemented in a Mediterranean semi-arid river reach and a sensitivity analysis to analyze the influence of the different vegetation parameters has been performed. The good results obtained indicate that the model is suitable for scenarios analysis and for environmental flows establishment.
Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model
NASA Astrophysics Data System (ADS)
Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin
2017-05-01
Dynamic global vegetation models (DGVMs) are designed for the study of past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks. However, most DGVMs do not yet have detailed representations of permafrost and non-permafrost peatlands, which are an important store of carbon, particularly at high latitudes. We demonstrate a new implementation of peatland dynamics in a customized Arctic
version of the LPJ-GUESS DGVM, simulating the long-term evolution of selected northern peatland ecosystems and assessing the effect of changing climate on peatland carbon balance. Our approach employs a dynamic multi-layer soil with representation of freeze-thaw processes and litter inputs from a dynamically varying mixture of the main peatland plant functional types: mosses, shrubs and graminoids. The model was calibrated and tested for a sub-Arctic mire in Stordalen, Sweden, and validated at a temperate bog site in Mer Bleue, Canada. A regional evaluation of simulated carbon fluxes, hydrology and vegetation dynamics encompassed additional locations spread across Scandinavia. Simulated peat accumulation was found to be generally consistent with published data and the model was able to capture reported long-term vegetation dynamics, water table position and carbon fluxes. A series of sensitivity experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We found that the Stordalen mire may be expected to sequester more carbon in the first half of the 21st century due to milder and wetter climate conditions, a longer growing season, and the CO2 fertilization effect, turning into a carbon source after mid-century because of higher decomposition rates in response to warming soils.
Sammy L. King; Terry J. Antrobus; Sarah Billups
2000-01-01
A disturbance can be defined as "any relatively discrete event in time that disrupts ecosystem, community, or population structure and changes resources, substrate availability, or the physical environment" (Pickett and White 1985). Vegetation dynamics are a function of the temporal and spatial patterns of the disturbance regime. Natural disturbance regimes...
NASA Astrophysics Data System (ADS)
Smith, W. K.; Biederman, J. A.; Scott, R. L.; Moore, D. J. P.; He, M.; Kimball, J. S.; Yan, D.; Hudson, A.; Barnes, M. L.; MacBean, N.; Fox, A. M.; Litvak, M. E.
2018-01-01
Satellite remote sensing provides unmatched spatiotemporal information on vegetation gross primary productivity (GPP). Yet understanding of the relationship between GPP and remote sensing observations and how it changes with factors such as scale, biophysical constraint, and vegetation type remains limited. This knowledge gap is especially apparent for dryland ecosystems, which have characteristic high spatiotemporal variability and are under-represented by long-term field measurements. Here we utilize an eddy covariance (EC) data synthesis for southwestern North America in an assessment of how accurately satellite-derived vegetation proxies capture seasonal to interannual GPP dynamics across dryland gradients. We evaluate the enhanced vegetation index, solar-induced fluorescence (SIF), and the photochemical reflectivity index. We find evidence that SIF is more accurately capturing seasonal GPP dynamics particularly for evergreen-dominated EC sites and more accurately estimating the full magnitude of interannual GPP dynamics for all dryland EC sites. These results suggest that incorporation of SIF could significantly improve satellite-based GPP estimates.
Analysis of Decadal Vegetation Dynamics Using Multi-Scale Satellite Images
NASA Astrophysics Data System (ADS)
Chiang, Y.; Chen, K.
2013-12-01
This study aims at quantifying vegetation fractional cover (VFC) by incorporating multi-resolution satellite images, including Formosat-2(RSI), SPOT(HRV/HRG), Landsat (MSS/TM) and Terra/Aqua(MODIS), to investigate long-term and seasonal vegetation dynamics in Taiwan. We used 40-year NDVI records for derivation of VFC, with field campaigns routinely conducted to calibrate the critical NDVI threshold. Given different sensor capabilities in terms of their spatial and spectral properties, translation and infusion of NDVIs was used to assure NDVI coherence and to determine the fraction of vegetation cover at different spatio-temporal scales. Based on the proposed method, a bimodal sequence of intra-annual VFC which corresponds to the dual-cropping agriculture pattern was observed. Compared to seasonal VFC variation (78~90%), decadal VFC reveals moderate oscillations (81~86%), which were strongly linked with landuse changes and several major disturbances. This time-series mapping of VFC can be used to examine vegetation dynamics and its response associated with short-term and long-term anthropogenic/natural events.
Deciphering structural and temporal interplays during the architectural development of mango trees.
Dambreville, Anaëlle; Lauri, Pierre-Éric; Trottier, Catherine; Guédon, Yann; Normand, Frédéric
2013-05-01
Plant architecture is commonly defined by the adjacency of organs within the structure and their properties. Few studies consider the effect of endogenous temporal factors, namely phenological factors, on the establishment of plant architecture. This study hypothesized that, in addition to the effect of environmental factors, the observed plant architecture results from both endogenous structural and temporal components, and their interplays. Mango tree, which is characterized by strong phenological asynchronisms within and between trees and by repeated vegetative and reproductive flushes during a growing cycle, was chosen as a plant model. During two consecutive growing cycles, this study described vegetative and reproductive development of 20 trees submitted to the same environmental conditions. Four mango cultivars were considered to assess possible cultivar-specific patterns. Integrative vegetative and reproductive development models incorporating generalized linear models as components were built. These models described the occurrence, intensity, and timing of vegetative and reproductive development at the growth unit scale. This study showed significant interplays between structural and temporal components of plant architectural development at two temporal scales. Within a growing cycle, earliness of bud burst was highly and positively related to earliness of vegetative development and flowering. Between growing cycles, flowering growth units delayed vegetative development compared to growth units that did not flower. These interplays explained how vegetative and reproductive phenological asynchronisms within and between trees were generated and maintained. It is suggested that causation networks involving structural and temporal components may give rise to contrasted tree architectures.
NASA Astrophysics Data System (ADS)
Brandt, M.; Wigneron, J. P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A.; Rodriguez-Fernandez, N.; Zhang, W.; Kerr, Y. H.; Tucker, C. J.; Mialon, A.; Verger, A.; Fensholt, R.
2017-12-01
The African continent is facing one of the driest periods in the past three decades and continuing deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for an operational tool for monitoring carbon stock dynamics. Knowledge of the amount, distribution, and turnover of carbon in African vegetation is crucial for understanding the effects of human pressure and climate change, but the shortcomings of optical and radar satellite products and the lack of systematic field inventories have led to considerable uncertainty in documenting patterns and dynamics of carbon stocks, in particular for drylands. Static carbon maps have been developed, but the temporal dynamics of carbon stocks cannot be derived from the benchmark maps, impeding timely, repeated, and reliable carbon assessments. The Soil Moisture and Ocean Salinity (SMOS) mission launched in 2009 was the first passive microwave-based satellite system operating at L-band (1.4 GHz) frequency. The low frequencies allow the satellite to sense deep within the canopy layer with less influence by the green non-woody plant components. The vegetation optical depth (VOD) derived from SMOS, henceforth L-VOD, is thus less sensitive to saturation effects, marking an important step forward in the monitoring of carbon as a natural resource. In this study, we apply for the first time L-VOD to quantify the inter-annual dynamics of aboveground carbon stocks for the period 2010-2016. We use this new technique to document patterns of carbon gains and losses in sub-Saharan Africa with a focus of dryland response to recent dry years. Results show that drylands lost carbon at a rate of -0.06 Pg C y-1 associated with drying trends, while humid areas lost only -0.02 Pg C y-1. These trends reflect a high inter-annual variability with a very wet (2011) and a very dry year (2016) associated with carbon gains and losses respectively. This study demonstrates, first, the operational applicability of L-VOD to monitor the dynamics of carbon loss and gain due to climate variations and deforestation, and second, the importance of the highly dynamic and drought prone carbon pool of dryland savannahs for the global carbon balance, despite the relatively low carbon stock per unit area.
Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model
NASA Astrophysics Data System (ADS)
Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin
2016-04-01
Dynamic global vegetation models (DGVMs) are an important platform to study past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks (e.g. Sitch et al. 2008, Smith et al. 2001). However, very few attempts have been made to simulate peatlands using DGVMs (Kleinen et al. 2012, Tang et al. 2015, Wania et al. 2009a). In the present study, we have improved the peatland dynamics in the state-of-the-art dynamic vegetation model (LPJ-GUESS) in order to understand the long-term evolution of northern peatland ecosystems and to assess the effect of changing climate on peatland carbon balance. We combined a dynamic multi-layer approach (Frolking et al. 2010, Hilbert et al. 2000) with soil freezing-thawing functionality (Ekici et al. 2015, Wania et al. 2009a) in LPJ-GUESS. The new model is named LPJ-GUESS Peatland (LPJ-GUESS-P) (Chaudhary et al. in prep). The model was calibrated and tested at the sub-arctic mire in Stordalen, Sweden, and the model was able to capture the reported long-term vegetation dynamics and peat accumulation patterns in the mire (Kokfelt et al. 2010). For evaluation, the model was run at 13 grid points across a north to south transect in Europe. The modelled peat accumulation values were found to be consistent with the published data for each grid point (Loisel et al. 2014). Finally, a series of additional experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We find that the Stordalen mire will sequester more carbon in the future due to milder and wetter climate conditions, longer growing seasons, and the carbon fertilization effect. References: - Chaudhary et al. (in prep.). Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model - Ekici A, et al. 2015. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. The Cryosphere 9: 1343-1361. - Frolking S, Roulet NT, Tuittila E, Bubier JL, Quillet A, Talbot J, Richard PJH. 2010. A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth Syst. Dynam., 1, 1-21, doi:10.5194/esd-1-1-2010, 2010. - Hilbert DW, Roulet N, Moore T. 2000. Modelling and analysis of peatlands as dynamical systems. Journal of Ecology 88: 230-242. - Kleinen T, Brovkin V, Schuldt RJ. 2012. A dynamic model of wetland extent and peat accumulation: results for the Holocene. Biogeosciences 9: 235-248. - Kokfelt U, Reuss N, Struyf E, Sonesson M, Rundgren M, Skog G, Rosen P, Hammarlund D. 2010. Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden. Journal of Paleolimnology 44: 327-342. - Loisel J, et al. 2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24: 1028-1042. - Sitch S, et al. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology 14: 2015-2039. - Smith B, Prentice IC, Sykes MT. 2001. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeography 10: 621-637. - Tang J, et al. 2015. Carbon budget estimation of a subarctic catchment using a dynamic ecosystem model at high spatial resolution. Biogeosciences 12: 2791-2808. - Wania R, Ross I, Prentice IC. 2009a. Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Global Biogeochemical Cycles 23.
Jennifer L. Long; Melanie Miller; James P. Menakis; Robert E. Keane
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required a system for classifying vegetation composition, biophysical settings, and vegetation structure to facilitate the mapping of vegetation and wildland fuel characteristics and the simulation of vegetation dynamics using landscape modeling. We developed...
Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management
NASA Technical Reports Server (NTRS)
Tucker, Compton; Puma, Michael
2015-01-01
Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.
NASA Astrophysics Data System (ADS)
Hernandez-Soriano, Maria C.; Maclean, Jamie L.; Dalal, Ram C.; Menzies, Neal W.; Kopittke, Peter M.
2015-04-01
The dissolved organic carbon (DOC) is a highly dynamic pool, directly related to biological functions and to the stabilization of organic carbon (OC) through interaction with the mineral phase. Therefore, the characterization of the main components of DOC can be linked to the metabolic status of soil and the turnover of OC and provides a sensitive approach to evaluate the impact of land use on OC turnover in soils. Accordingly, the objective of this study was to derive relationships between DOC characteristics and biochemical activity in soils under contrasting land management. The soil solution was isolated from topsoil and subsoil for three soils (Vertisol, Ferralsol, Acrisol, World Reference Base 2014) collected from undisturbed areas and from a location(s) immediately adjacent which has a long history of agricultural, pasture or afforestation use (>20 years) by centrifugation at 4000 rpm (20 min, 25 °C. The fingerprint of DOC was obtained to identify OC functionalities by spectrofluorometric analyses and Excitation-Emission matrices (EEM) were obtained for all samples. The excitation wavelengths were increased from 250 to 400 nm in 5-nm steps for each excitation wavelength, and emission was detected from 250 to 500 nm in 0.5-nm steps and. Humification index (HIX), freshness index (FrI), fluorescence index (FI) and redox index (RI) were derived from the EEMs. Extracellular laccase activity was examined by monitoring the oxidation of 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) at 420 nm. The EEMs revealed a depletion of the humic-like component (250
NASA Astrophysics Data System (ADS)
Cheng, Lei; Zhang, Lu; Chiew, Francis H. S.; Canadell, Josep G.; Zhao, Fangfang; Wang, Ying-Ping; Hu, Xianqun; Lin, Kairong
2017-07-01
It is widely recognized that vegetation changes can significantly affect the local water availability. Methods have been developed to predict the effects of vegetation change on water yield or total streamflow. However, it is still a challenge to predict changes in base flow following vegetation change due to limited understanding of catchment storage-discharge dynamics. In this study, the power law relationship for describing catchment storage-discharge dynamics is reformulated to quantify the changes in storage-discharge relationship resulting from vegetation changes using streamflow data from six paired-catchment experiments, of which two are deforestation catchments and four are afforestation catchments. Streamflow observations from the paired-catchment experiments clearly demonstrate that vegetation changes have led to significant changes in catchment storage-discharge relationships, accounting for about 83-128% of the changes in groundwater discharge in the treated catchments. Deforestation has led to increases in groundwater discharge (or base flow) but afforestation has resulted in decreases in groundwater discharge. Further analysis shows that the contribution of changes in groundwater discharge to the total changes in streamflow varies greatly among experimental catchments ranging from 12% to 80% with a mean of 38 ± 22% (μ ± σ). This study proposed a new method to quantify the effects of vegetation changes on groundwater discharge from catchment storage and will improve our predictability about the impacts of vegetation changes on catchment water yields.
Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)
Sakaguchi, K.; Zeng, X.; Leung, L. R.; ...
2016-12-21
Land carbon sensitivity to atmospheric CO 2 concentration (β L) and climate warming (γ L) is a crucial part of carbon-climate feedbacks in the earth system. Using the Community Land Model version 4 with a coupled carbon-nitrogen cycle, we examine whether the inclusion of a dynamic global vegetation model (CNDV) significantly changes the land carbon sensitivity from that obtained with prescribed vegetation cover (CN). For decadal timescale in the late twentieth century, β L is not substantially different between the two models but γ L of CNDV is stronger (more negative) than that of CN. The main reason for themore » difference in γL is not the concurrent change in vegetation cover driving the carbon dynamics, but rather the smaller nitrogen constraint on plant growth in CNDV compared with CN, which arises from the deviation of CNDV's near-equilibrium vegetation distribution from CN’s prescribed, historical land cover. The smaller nitrogen constraint makes the enhanced nitrogen mineralization with warming less effective in stimulating plant productivity to counter moisture stress in a warmer climate, leading to a more negative γ L. This represents a new indirect pathway that has not been identified for dynamic vegetation in the coupled carbon-nitrogen cycle to affect the terrestrial carbon-climate feedbacks in the earth system.« less
Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, K.; Zeng, X.; Leung, L. R.
Land carbon sensitivity to atmospheric CO 2 concentration (β L) and climate warming (γ L) is a crucial part of carbon-climate feedbacks in the earth system. Using the Community Land Model version 4 with a coupled carbon-nitrogen cycle, we examine whether the inclusion of a dynamic global vegetation model (CNDV) significantly changes the land carbon sensitivity from that obtained with prescribed vegetation cover (CN). For decadal timescale in the late twentieth century, β L is not substantially different between the two models but γ L of CNDV is stronger (more negative) than that of CN. The main reason for themore » difference in γL is not the concurrent change in vegetation cover driving the carbon dynamics, but rather the smaller nitrogen constraint on plant growth in CNDV compared with CN, which arises from the deviation of CNDV's near-equilibrium vegetation distribution from CN’s prescribed, historical land cover. The smaller nitrogen constraint makes the enhanced nitrogen mineralization with warming less effective in stimulating plant productivity to counter moisture stress in a warmer climate, leading to a more negative γ L. This represents a new indirect pathway that has not been identified for dynamic vegetation in the coupled carbon-nitrogen cycle to affect the terrestrial carbon-climate feedbacks in the earth system.« less
NASA Astrophysics Data System (ADS)
Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing
2017-08-01
Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of eco-hydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965-1969) from -0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010-2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Yang; Lei, Huimin; Yang, Dawen
Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of themore » Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.« less
NASA Astrophysics Data System (ADS)
Menzer, Olaf; McFadden, Joseph P.
2017-12-01
Eddy covariance flux measurements are increasingly used to quantify the net carbon dioxide exchange (FC) in urban areas. FC represents the sum of anthropogenic emissions, biogenic carbon release from plant and soil respiration, and carbon uptake by plant photosynthesis. When FC is measured in natural ecosystems, partitioning into respiration and photosynthesis is a well-established procedure. In contrast, few studies have partitioned FC at urban flux tower sites due to the difficulty of accounting for the temporal and spatial variability of the multiple sources and sinks. Here, we partitioned a three-year time series of flux measurements from a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. We segregated FC into one subset that captured fluxes from a residential neighborhood and into another subset that covered a golf course. For both land use types we modeled anthropogenic flux components based on winter data and extrapolated them to the growing season, to estimate gross primary production (GPP) and ecosystem respiration (Reco) at half-hourly, daily, monthly and annual scales. During the growing season, GPP had the largest magnitude (up to - 9.83 g C m-2 d-1) of any component CO2 flux, biogenic or anthropogenic, and both GPP and Reco were more dynamic seasonally than anthropogenic fluxes. Owing to the balancing of Reco against GPP, and the limitations of the growing season in a cold temperate climate zone, the net biogenic flux was only 1.5%-4.5% of the anthropogenic flux in the dominant residential land use type, and between 25%-31% of the anthropogenic flux in highly managed greenspace. Still, the vegetation sink at our site was stronger than net anthropogenic emissions on 16-20 days over the residential area and on 66-91 days over the recreational area. The reported carbon flux sums and dynamics are a critical step toward developing models of urban CO2 fluxes within and across cities that differ in vegetation cover.
Earth Observation for monitoring phenology for european land use and ecosystems over 1998-2011
NASA Astrophysics Data System (ADS)
Ceccherini, Guido; Gobron, Nadine
2013-04-01
Long-term measurements of plant phenology have been used to track vegetation responses to climate change but are often limited to particular species and locations and may not represent synoptic patterns. Given the limitations of working directly with in-situ data, many researchers have instead used available satellite remote sensing. Remote sensing extends the possible spatial coverage and temporal range of phenological assessments of environmental change due to the greater availability of observations. Variations and trends of vegetation dynamics are important because they alter the surface carbon, water and energy balance. For example, the net ecosystem CO2 exchange of vegetation is strongly linked to length of the growing season: extentions and decreases in length of growing season modify carbon uptake and the amount of CO2 in the atmosphere. Advances and delays in starting of growing season also affect the surface energy balance and consequently transpiration. The Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) is a key climate variable identified by Global Terrestrial Observing System (GTOS) that can be monitored from space. This dimensionless variable - varying between 0 and 1- is directly linked to the photosynthetic activity of vegetation, and therefore, can monitor changes in phenology. In this study, we identify the spatio/temporal patterns of vegetation dynamics using a long-term remotely sensed FAPAR dataset over Europe. Our aim is to provide a quantitative analysis of vegetation dynamics relevant to climate studies in Europe. As part of this analysis, six vegetation phenological metrics have been defined and made routinely in Europe. Over time, such metrics can track simple, yet critical, impacts of climate change on ecosystems. Validation has been performed through a direct comparison against ground-based data over ecological sites. Subsequently, using the spatio/temporal variability of this suite of metrics, we classify areas with similar vegetation dynamics. This permits assessment of variations and trends of vegetation dynamics over Europe. Statistical tests to assess the significance of temporal changes are used to evaluate trends in the metrics derived from the recorded time series of the FAPAR.
Importance of vegetation dynamics for future terrestrial carbon cycling
NASA Astrophysics Data System (ADS)
Ahlström, Anders; Xia, Jianyang; Arneth, Almut; Luo, Yiqi; Smith, Benjamin
2015-05-01
Terrestrial ecosystems currently sequester about one third of anthropogenic CO2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by biome shifts, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.
Dynamic modeling of the cesium, strontium, and ruthenium transfer to grass and vegetables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, P.; Real, J.; Maubert, H.
1999-05-01
From 1988 to 1993, the Nuclear Safety and Protection Institute (Institut de Protection et de Surete Nucleaire -- IPSN) conducted experimental programs focused on transfers to vegetation following accidental localized deposits of radioactive aerosols. In relation to vegetable crops (fruit, leaves, and root vegetables) and meadow grass these experiments have enabled a determination of the factors involved in the transfer of cesium, strontium, and ruthenium at successive harvests, or cuttings, in respect of various time lags after contamination. The dynamic modeling given by these results allows an evaluation of changes in the mass activity of vegetables and grass during themore » months following deposit. It constitutes part of the ASTRAL post-accident radioecology model.« less
Riparian vegetation controls on channels formed in non-cohesive sediment
NASA Astrophysics Data System (ADS)
Gran, K.; Tal, M.; Paola, C.
2002-05-01
Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. In channels formed in non-cohesive material, vegetation is the main source of bank cohesion and could affect the overall behavior of the river, potentially constraining the flow from a multi-thread channel to a single-thread channel. To examine the effects of riparian vegetation on streams formed in non-cohesive material, we conducted a series of physical experiments at the St. Anthony Falls Laboratory. The first set of experiments examines the effects of varying densities of vegetation on braided stream dynamics. Water discharge, sediment discharge, and grain size were held constant. For each run, we allowed a braided system to develop, then halved the discharge, and seeded the flume with alfalfa (Medicago sativa). After ten to fourteen days of growth, we returned the discharge to its original value and continued the run for 30-36 hours. Our results show that the influence of vegetation on the overall river pattern varied systematically with the spatial density of plant stems. The vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and an increase in channel relief. All these effects increased with vegetation density. Vegetation also influenced flow dynamics, increasing the variance of flow direction in the vegetated runs, and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision provides a new mechanism for producing secondary flows. We found these bank collision driven secondary flows to be more important than the classical curvature-driven mechanism in the vegetated runs. The next set of experiments examines more closely how the channel pattern evolves through time, allowing for both channel migration and successive vegetation growth. In these on-going experiments, vegetation is reseeded following repeat high flow events, simulating the natural process of vegetation encroachment on the floodplain and channel.
NASA Astrophysics Data System (ADS)
Ane Dionizio, Emily; Heil Costa, Marcos; de Almeida Castanho, Andrea D.; Ferreira Pires, Gabrielle; Schwantes Marimon, Beatriz; Hur Marimon-Junior, Ben; Lenza, Eddie; Martins Pimenta, Fernando; Yang, Xiaojuan; Jain, Atul K.
2018-02-01
Climate, fire and soil nutrient limitation are important elements that affect vegetation dynamics in areas of the forest-savanna transition. In this paper, we use the dynamic vegetation model INLAND to evaluate the influence of interannual climate variability, fire and phosphorus (P) limitation on Amazon-Cerrado transitional vegetation structure and dynamics. We assess how each environmental factor affects net primary production, leaf area index and aboveground biomass (AGB), and compare the AGB simulations to an observed AGB map. We used two climate data sets (monthly average climate for 1961-1990 and interannual climate variability for 1948-2008), two data sets of total soil P content (one based on regional field measurements and one based on global data), and the INLAND fire module. Our results show that the inclusion of interannual climate variability, P limitation and fire occurrence each contribute to simulating vegetation types that more closely match observations. These effects are spatially heterogeneous and synergistic. In terms of magnitude, the effect of fire is strongest and is the main driver of vegetation changes along the transition. Phosphorus limitation, in turn, has a stronger effect on transitional ecosystem dynamics than interannual climate variability does. Overall, INLAND typically simulates more than 80 % of the AGB variability in the transition zone. However, the AGB in many places is clearly not well simulated, indicating that important soil and physiological factors in the Amazon-Cerrado border region, such as lithology, water table depth, carbon allocation strategies and mortality rates, still need to be included in the model.
Satellite remote sensing assessment of climate impact on forest vegetation dynamics
NASA Astrophysics Data System (ADS)
Zoran, M.
2009-04-01
Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modelling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2007 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.
NASA Astrophysics Data System (ADS)
Sheehan, T.; Bachelet, D. M.; Ferschweiler, K.
2016-12-01
For Oregon and Washington west of the Cascade Mountain crest, results from the MC2 global dynamic vegetation model have projected a shift in potential vegetation type from predominantly conifer to predominantly mixed forest over the 21st century, with a shift from mixed to conifer in some areas. Carbon stocks have been projected to fall over this period. We ran MC2 using the CCSM4 RCP 8.5 climate future downscaled to 2.5 arc minute resolution with 5 different configurations: no fire; assumed ignitions without fire suppression; assumed ignitions with fire suppression; assumed ignitions with fire suppression and with CO2 concentration held at the preindustrial level; and stochastic ignitions without fire suppression. Results show that vegetation change is the result of climate change alone, while carbon is influenced by both fire occurrence and CO2-induced increased water use efficiency. While model results do not indicate a large change in carbon dynamics concomitant with the shift in vegetation, it is reasonable to expect that a change in conditions resulting in such a change in vegetation type would stress the existing vegetation resulting in some mortality and loss of live carbon.
Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices
Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia
2014-01-01
In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.
Ecogeomorphological feedbacks in a tidal freshwater marsh
NASA Astrophysics Data System (ADS)
Palinkas, C. M.; Engelhardt, K.
2013-12-01
Tidal freshwater marshes are critical components of fluvial and estuarine ecosystems. However, ecogeomorphological feedbacks (i.e., feedbacks between sediment dynamics and the vegetation community) in freshwater marshes have not received as much attention as within their saltwater counterparts. This study evaluates the role of these feedbacks in stabilizing marsh-surface elevation, relative to sea-level rise, in Dyke Marsh Preserve (Potomac River, USA). Specifically, we relate the composition of the vegetation community to current and historical patterns of sedimentation that occur on bimonthly to decadal time scales. Along with a ~3-year time series of bimonthly and seasonal-scale observations, 210Pb (half-life 22.3 y) profiles are used to identify sites with relatively steady sediment accumulation (i.e., stable sediments) and those with numerous deposition/erosion events (i.e., unstable sediments). Differences in the vegetation community (e.g., composition, stem density) and sediment character (e.g., organic content, grain size) among sites in each of these stability categories are examined with statistical techniques and compared to observations of marsh-surface elevation change. The resulting insights are placed into a geomorphological context to assess the potential response of this marsh to rapid global environmental change.
Assessment of soil-vegetation cover condition in river basins applying remote sensing data
NASA Astrophysics Data System (ADS)
Mishchenko, Natalia; Petrosian, Janna; Shirkin, Leonid; Repkin, Roman
2017-04-01
Constant observation of vegetation and soil cover is one of the key issues of river basins ecologic monitoring. Lately remotely determining vegetation indices have been used for this purpose alongside with terrestrial data. It is necessary to consider that observation objects have been continuously changing and these changes are comprehensive and depend on temporal and dimensional parameters. Remote sensing data, embracing vast areas and reflecting various interrelations, allow excluding accidental and short-term changes though concentrating on the transformation of the observed river basin ecosystem environmental condition. The research objective is to assess spatial - temporal peculiarities and the dynamics of soil-vegetation condition of the Klyazma basin as whole and minor river basins within the area. Research objects are located in the centre of European Russia. Data used in our research include both statistic and published data, characterizing soil-vegetation cover of the area, space images («Landsat» ETM+ etc.) Research methods. 1. Dynamics analysis NDVI (Normalized difference vegetation index) 2. Remote data have been correlated to terrestrial measurement results of phytomass reserve, phytoproductivity, soil fertility characteristics, crop capacity (http://biodat.ru) 3. For the digital processing of space images software Erdas Imagine has been used, GIS analysis has been carried out applying Arc GIS. NDVI computation for each image pixel helped to map general condition of the Klyazma vegetation cover and to determine geographic ranges without vegetation or with depressed vegetation. For instance high vegetation index geographic range has been defined which corresponded to Vladimir Opolye characterized with the most fertile grey forest soil in the region. Comparative assessment of soil vegetation cover of minor river basins within the Klyazma basin, judging by the terrestrial data, revealed its better condition in the Koloksha basin which is also located in the area of grey forest soil. Besides here the maximum value of vegetation index for all phytocenosis was detected. In the research the most dynamically changing parts of the Klyazma basin have been determined according to NDVI dynamics analysis. Analyzing the reasons for such changes of NDVI the most significant ecologic processes in the region connected to the changes of vegetation cover condition have been revealed. Fields overgrowing and agricultural crops replacement are the most important of them.
NASA Technical Reports Server (NTRS)
McDonald, K. C.; Qualls, B.; Hardy, J.
2002-01-01
We examine the sensitivity of ERS-1 C-band synthetic aperture radar (SAR) backscatter to springtime snow and vegetation thaw dynamics for boreal forest stands within the BOREAS Southern Study Area (SSA) in Canada during the 1994 winter-spring thaw transition.
Multitemporal satellite images are the standard basis for regional-scale land-cover (LC) change detection. However, embedded in the data are the confounding effects of vegetation dynamics (phenology). As photosynthetic vegetation progresses through its annual cycle, the spectral ...
Kent, Rafi; Michael, Yaron; Shnerb, Nadav M.
2017-01-01
The process of desertification in the semi-arid climatic zone is considered by many as a catastrophic regime shift, since the positive feedback of vegetation density on growth rates yields a system that admits alternative steady states. Some support to this idea comes from the analysis of static patterns, where peaks of the vegetation density histogram were associated with these alternative states. Here we present a large-scale empirical study of vegetation dynamics, aimed at identifying and quantifying directly the effects of positive feedback. To do that, we have analyzed vegetation density across 2.5 × 106 km2 of the African Sahel region, with spatial resolution of 30 × 30 meters, using three consecutive snapshots. The results are mixed. The local vegetation density (measured at a single pixel) moves towards the average of the corresponding rainfall line, indicating a purely negative feedback. On the other hand, the chance of spatial clusters (of many “green” pixels) to expand in the next census is growing with their size, suggesting some positive feedback. We show that these apparently contradicting results emerge naturally in a model with positive feedback and strong demographic stochasticity, a model that allows for a catastrophic shift only in a certain range of parameters. Static patterns, like the double peak in the histogram of vegetation density, are shown to vary between censuses, with no apparent correlation with the actual dynamical features. Our work emphasizes the importance of dynamic response patterns as indicators of the state of the system, while the usefulness of static modality features appears to be quite limited. PMID:29261678
NASA Astrophysics Data System (ADS)
Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen
2015-06-01
Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.
Predicting Changes in Arctic Tundra Vegetation: Towards an Understanding of Plant Trait Uncertainty
NASA Astrophysics Data System (ADS)
Euskirchen, E. S.; Serbin, S.; Carman, T.; Iversen, C. M.; Salmon, V.; Helene, G.; McGuire, A. D.
2017-12-01
Arctic tundra plant communities are currently undergoing unprecedented changes in both composition and distribution under a warming climate. Predicting how these dynamics may play out in the future is important since these vegetation shifts impact both biogeochemical and biogeophysical processes. More precise estimates of these future vegetation shifts is a key challenge due to both a scarcity of data with which to parameterize vegetation models, particularly in the Arctic, as well as a limited understanding of the importance of each of the model parameters and how they may vary over space and time. Here, we incorporate newly available field data from arctic Alaska into a dynamic vegetation model specifically developed to take into account a particularly wide array of plant species as well as the permafrost soils of the arctic tundra (the Terrestrial Ecosystem Model with Dynamic Vegetation and Dynamic Organic Soil, Terrestrial Ecosystem Model; DVM-DOS-TEM). We integrate the model within the Predicative Ecosystem Analyzer (PEcAn), an open-source integrated ecological bioinformatics toolbox that facilitates the flows of information into and out of process models and model-data integration. We use PEcAn to evaluate the plant functional traits that contribute most to model variability based on a sensitivity analysis. We perform this analysis for the dominant types of tundra in arctic Alaska, including heath, shrub, tussock and wet sedge tundra. The results from this analysis will help inform future data collection in arctic tundra and reduce model uncertainty, thereby improving our ability to simulate Arctic vegetation structure and function in response to global change.
Weissmann, Haim; Kent, Rafi; Michael, Yaron; Shnerb, Nadav M
2017-01-01
The process of desertification in the semi-arid climatic zone is considered by many as a catastrophic regime shift, since the positive feedback of vegetation density on growth rates yields a system that admits alternative steady states. Some support to this idea comes from the analysis of static patterns, where peaks of the vegetation density histogram were associated with these alternative states. Here we present a large-scale empirical study of vegetation dynamics, aimed at identifying and quantifying directly the effects of positive feedback. To do that, we have analyzed vegetation density across 2.5 × 106 km2 of the African Sahel region, with spatial resolution of 30 × 30 meters, using three consecutive snapshots. The results are mixed. The local vegetation density (measured at a single pixel) moves towards the average of the corresponding rainfall line, indicating a purely negative feedback. On the other hand, the chance of spatial clusters (of many "green" pixels) to expand in the next census is growing with their size, suggesting some positive feedback. We show that these apparently contradicting results emerge naturally in a model with positive feedback and strong demographic stochasticity, a model that allows for a catastrophic shift only in a certain range of parameters. Static patterns, like the double peak in the histogram of vegetation density, are shown to vary between censuses, with no apparent correlation with the actual dynamical features. Our work emphasizes the importance of dynamic response patterns as indicators of the state of the system, while the usefulness of static modality features appears to be quite limited.
Calculations of radar backscattering coefficient of vegetation-covered soils
NASA Technical Reports Server (NTRS)
Mo, T.; Schmugge, T. J.; Jackson, T. J. (Principal Investigator)
1983-01-01
A model for simulating the measured backscattering coefficient of vegetation-covered soil surfaces includes both coherent and incoherent components of the backscattered radar pulses from a rough sil surface. The effect of vegetation canopy scattering is also incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. Model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. It was found that the coherent scattering component is very important at angles near nadir, while the vegetation volume scattering is dominant at incident angles 30 degrees.
Double Bounce Component in Cross-Polarimetric SAR from a New Scattering Target Decomposition
NASA Astrophysics Data System (ADS)
Hong, Sang-Hoon; Wdowinski, Shimon
2013-08-01
Common vegetation scattering theories assume that the Synthetic Aperture Radar (SAR) cross-polarization (cross-pol) signal represents solely volume scattering. We found this assumption incorrect based on SAR phase measurements acquired over the south Florida Everglades wetlands indicating that the cross-pol radar signal often samples the water surface beneath the vegetation. Based on these new observations, we propose that the cross-pol measurement consists of both volume scattering and double bounce components. The simplest multi-bounce scattering mechanism that generates cross-pol signal occurs by rotated dihedrals. Thus, we use the rotated dihedral mechanism with probability density function to revise some of the vegetation scattering theories and develop a three- component decomposition algorithm with single bounce, double bounce from both co-pol and cross-pol, and volume scattering components. We applied the new decomposition analysis to both urban and rural environments using Radarsat-2 quad-pol datasets. The decomposition of the San Francisco's urban area shows higher double bounce scattering and reduced volume scattering compared to other common three-component decomposition. The decomposition of the rural Everglades area shows that the relations between volume and cross-pol double bounce depend on the vegetation density. The new decomposition can be useful to better understand vegetation scattering behavior over the various surfaces and the estimation of above ground biomass using SAR observations.
Climate and anthropogenic impacts on forest vegetation derived from satellite data
NASA Astrophysics Data System (ADS)
Zoran, M.; Savastru, R.; Savastru, D.; Tautan, M.; Miclos, S.; Baschir, L.
2010-09-01
Vegetation and climate interact through a series of complex feedbacks, which are not very well understood. The patterns of forest vegetation are largely determined by temperature, precipitation, solar irradiance, soil conditions and CO2 concentration. Vegetation impacts climate directly through moisture, energy, and momentum exchanges with the atmosphere and indirectly through biogeochemical processes that alter atmospheric CO2 concentration. Changes in forest vegetation land cover/use alter the surface albedo and radiation fluxes, leading to a local temperature change and eventually a vegetation response. This albedo (energy) feedback is particularly important when forests mask snow cover. Forest vegetation-climate feedback regimes are designated based on the temporal correlations between the vegetation and the surface temperature and precipitation. The different feedback regimes are linked to the relative importance of vegetation and soil moisture in determining land-atmosphere interactions. Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modeling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal forest vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images over 1989 - 2009 period for a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, from IKONOS and LANDSAT TM and ETM satellite images and meteorological data. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. For investigated test area, considerable NDVI decline was observed for drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation .
Improvement and extension of a radar forest backscattering model
NASA Technical Reports Server (NTRS)
Simonett, David S.; Wang, Yong
1988-01-01
Research to-date has focused on modeling development and programming based on model components proposed during the past several months and research progress made by the Simonett team. The model components and programs (in C language under UNIX) finished to date are summarized. These model components may help explain the contributions of various vegetation structural components to the attenuation and backscattering of vegetated surfaces to extract useful data concerning forest stands and their underlying surfaces for both the seawater-on and seawater-off.
Earth Observation and Science: Monitoring Vegetation Dynamics from Deep Space Gateway
NASA Astrophysics Data System (ADS)
Knyazikhin, Y.; Park, T.; Hu, B.
2018-02-01
Retrieving diurnal courses of sunlit (SLAI) and shaded (ShLAI) leaf area indices, fraction of photosynthetically active radiation (PAR) absorbed by vegetation (FPAR), and Normalized Difference Vegetation Index (NDVI) from Deep Space Gateway data.
NASA Astrophysics Data System (ADS)
Haraldsson, Hörður V.; Ólafsdóttir, Rannveig
2003-09-01
Iceland is facing severe land degradation in many parts of the country. This study aims to increase the understanding of the complex interactions and interconnectivity between the critical factors that help maintain the land degradation processes in sub-arctic environments. A holistic approach in the form of a causal loop diagram (CLD) is applied for diagnosing the influencing factors. To further study the relationship between vegetation cover and its degradation, a dynamic model that uses a long-term temperature data as the main indicator function is constructed to simulate potential vegetation cover during the Holocene. The results depict an oscillating vegetation cover. Gradual degradation in potential vegetation cover begins ca. 3000 BP and accelerates greatly after ca. 2500 BP. From the time of the Norse settlement in the latter halve of the 9th century to present time, the simulated vegetation cover retreats ca. 25% in relation to climatic cooling.
Simulations of moving effect of coastal vegetation on tsunami damping
NASA Astrophysics Data System (ADS)
Tsai, Ching-Piao; Chen, Ying-Chi; Octaviani Sihombing, Tri; Lin, Chang
2017-05-01
A coupled wave-vegetation simulation is presented for the moving effect of the coastal vegetation on tsunami wave height damping. The problem is idealized by solitary wave propagation on a group of emergent cylinders. The numerical model is based on general Reynolds-averaged Navier-Stokes equations with renormalization group turbulent closure model by using volume of fluid technique. The general moving object (GMO) model developed in computational fluid dynamics (CFD) code Flow-3D is applied to simulate the coupled motion of vegetation with wave dynamically. The damping of wave height and the turbulent kinetic energy along moving and stationary cylinders are discussed. The simulated results show that the damping of wave height and the turbulent kinetic energy by the moving cylinders are clearly less than by the stationary cylinders. The result implies that the wave decay by the coastal vegetation may be overestimated if the vegetation was represented as stationary state.
Implementing seasonal carbon allocation into a dynamic vegetation model
NASA Astrophysics Data System (ADS)
Vermeulen, Marleen; Kruijt, Bart; Hickler, Thomas; Forrest, Matthew; Kabat, Pavel
2014-05-01
Long-term measurements of terrestrial fluxes through the FLUXNET Eddy Covariance network have revealed that carbon and water fluxes can be highly variable from year-to-year. This so-called interannual variability (IAV) of ecosystems is not fully understood because a direct relation with environmental drivers cannot always be found. Many dynamic vegetation models allocate NPP to leaves, stems, and root compartments on an annual basis, and thus do not account for seasonal changes in productivity in response to changes in environmental stressors. We introduce this vegetation seasonality into dynamic vegetation model LPJ-GUESS by implementing a new carbon allocation scheme on a daily basis. We focus in particular on modelling the observed flux seasonality of the Amazon basin, and validate our new model against fluxdata and MODIS GPP products. We expect that introducing seasonal variability into the model improves estimates of annual productivity and IAV, and therefore the model's representation of ecosystem carbon budgets as a whole.
NASA Astrophysics Data System (ADS)
Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.
2014-11-01
Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.
Co-evolution and thresholds in arid floodplain wetland ecosystems.
NASA Astrophysics Data System (ADS)
Sandi, Steven; Rodriguez, Jose; Riccardi, Gerardo; Wen, Li; Saintilan, Neil
2017-04-01
Vegetation in arid floodplain wetlands consist of water dependent and flood tolerant species that rely on periodical floods in order to maintain healthy conditions. The floodplain often consist of a complex system of marshes, swamps and lagoons interconnected by a network of streams and poorly defined rills. Over time, feedbacks develop between vegetation and flow paths producing areas of flow obstruction and flow concentration, which combined with depositional and erosional process lead to a continuous change on the position and characteristics of inundation areas. This coevolution of flow paths and vegetation can reach a threshold that triggers major channel transformations and abandonment of wetland areas, in a process that is irreversible. The Macquarie Marshes is a floodplain wetland complex in the semi-arid region of north western NSW, Australia. The site is characterised by a low-gradient topography that leads to channel breakdown processes where the river network becomes practically non-existent and the flow extends over large areas of wetland that later re-join and reform channels exiting the system. Due to a combination of climatic and anthropogenic pressures, the wetland ecosystem in the Macquarie Marshes has deteriorated over the past few decades. This has been linked to decreasing inundation frequencies and extent, with whole areas of flood dependent species such as Water Couch and Common Reed undergoing complete succession to terrestrial species and dryland. In this presentation we provide an overview of an ecogeomorphological model that we have developed in order to simulate the complex dynamics of the marshes. The model combines hydrodynamic, vegetation and channel evolution modules. We focus on the vegetation component of the model and the transitional rules to predict wetland invasion by terrestrial vegetation.
Sentinel-1 backscatter sensitivity to vegetation dynamics at the field scale.
NASA Astrophysics Data System (ADS)
Vreugdenhil, Mariette; Eder, Alexander; Bauer-Marschallinger, Bernhard; Cao, Senmao; Naeimi, Vahid; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang
2017-04-01
Vegetation monitoring is pivotal to improve our understanding of the role vegetation dynamics play in the global carbon-, energy- and hydrological cycle. And with the increasing stress on food supply due to the growing world populating and changing climate, vegetation monitoring is of great importance in agricultural areas. By closely tracking crop conditions, droughts and subsequent crop losses could be mitigated. Sensors operating in the microwave domain are sensitive to several surface characteristics, including soil moisture and vegetation. Hence, spaceborne microwave remote sensing provides the means to monitor vegetation and soil conditions on different scales, ranging from field scale to global scale. However, it also presents a challenge since multiple combinations of soil and vegetation characteristics can lead to a similar measurement. Copernicus Sentinel-1 (S-1) is a series of two satellites, developed by the European Space Agency (ESA) , which carry C-band Synthetic Aperture Radars. The C-SAR sensors provide VV, HH, VH and HV backscatter at a 5 m by 20 m spatial resolution. The temporal revisit time of the two satellites is 3-6 days. With their unique capacity for temporally dense and spatially detailed data, the S-1 satellite series provides for the first time the chance to investigate vegetation dynamics at high temporal and spatial resolution. The aim of this study is to assess the sensitivity of Sentinel-1 backscatter to vegetation dynamics. The study is performed in the Hydrological Open Air Laboratory (HOAL), which is a 66 hectare large catchment located in Petzenkirchen, Austria. In the HOAL several vegetation parameters were measured during the course of the growing season (2016) at the overpass time of S-1a. Vegetation height was obtained ten times for the whole catchment, using georeferenced photos made by a motorized paraglider and a Land Surface Model. In addition, vegetation water content, Leaf Area Index and soil moisture were measured in four different cropfields. An in situ soil moisture network provides continuous soil moisture measurements at 31 locations within the catchment. Different polarizations and ratios thereof were calculated and compared, both spatially and temporally, to the in situ measurements of vegetation height, LAI, vegetation water content and soil moisture. Preliminary results show a clear spatial pattern in cross-polarized backscatter, which is related to different crop types. Time series analysis suggests that a ratio between cross- and co-polarized backscatter is affected by both vegetation water content and vegetation structure. This presentation will provide a comprehensive assessment of Sentinel-1's capability for monitoring of vegetation over croplands, using in situ reference data obtained over a full growing season.
1973-01-01
This EREP photograph of the Uncompahgre Plateau area of Colorado illustrates the land use classification using the hierarchical numbering system to depict land forms and vegetative patterns. The numerator is a three-digit number with decimal components identifying the vegetation analog or land use conditions. The denominator uses a three-component decimal system for landscape characterization.
USDA-ARS?s Scientific Manuscript database
Soil and vegetation component temperatures in non-isothermal pixels encapsulate more physical meaning and are more applicable than composite temperatures. The component temperatures however are difficult to be obtained from thermal infrared (TIR) remote sensing data provided by single view angle obs...
NASA Astrophysics Data System (ADS)
Montes, C.; Kiang, N. Y.; Ni-Meister, W.; Yang, W.; Schaaf, C.; Aleinov, I. D.; Jonas, J.; Zhao, F. A.; Yao, T.; Wang, Z.; Sun, Q.; Carrer, D.
2016-12-01
Land surface albedo is a major controlling factor in vegetation-atmosphere transfers, modifying the components of the energy budget, the ecosystem productivity and patterns of regional and global climate. General Circulation Models (GCMs) are coupled to Dynamic Global Vegetation Models (DGVMs) to solve vegetation albedo by using simple schemes prescribing albedo based on vegetation classification, and approximations of canopy radiation transport for multiple plant functional types (PFTs). In this work, we aim at evaluating the sensitivity of the NASA Ent Terrestrial Biosphere Model (TBM), a demographic DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM, in estimating VIS and NIR surface albedo by using variable forcing leaf area index (LAI). The Ent TBM utilizes a new Global Vegetation Structure Dataset (GVSD) to account for geographically varying vegetation tree heights and densities, as boundary conditions to the gap-probability based Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010). Land surface and vegetation characteristics for the Ent GVSD are obtained from a number of earth observation platforms and algorithms, including the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), and vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three LAI products are used as input to ACTS/Ent TBM: MODIS MOD15A2H product (Yang et al., 2006), Beijing Normal University LAI (Yuan et al., 2011), and Global Data Sets of Vegetation (LAI3g) (Zhu et al. 2013). The sensitivity of the Ent TBM VIS and NIR albedo to the three LAI products is assessed, compared against the previous GISS GCM vegetation classification and prescribed Lambertian albedoes (Matthews, 1984), and against MODIS snow-free black-sky and white-sky albedo estimates. In addition, we test the sensitivity of the Ent/ACTS albedo to different sets of leaf spectral albedos derived from the literature.
Fuel dynamics and fire behaviour in Australian mallee and heath vegetation
Juanita Myers; Jim Gould; Miguel Cruz; Meredith Henderson
2007-01-01
In southern Australia, shrubby heath vegetation together with woodlands dominated by multistemmed eucalypts (mallee) comprise areas of native vegetation with important biodiversity values. These vegetation types occur in semiarid and mediterranean climates and can experience large frequent fires. This study is investigating changes in the fuel complex with time, fuel...
Future vegetation ecosystem response to warming climate over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Bao, Y.; Gao, Y.; Wang, Y.
2017-12-01
The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)
Detecting changes in water limitation in the West using integrated ecosystem modeling approaches
NASA Astrophysics Data System (ADS)
Poulter, B.; Hoy, J.; Emmett, K.; Cross, M.; Maneta, M. P.; Al-Chokhachy, R.
2016-12-01
Water in the western United States is the critical currency for determining a range of ecosystem services, such as wildlife habitat, carbon sequestration, and timber and water resources for an expanding human population. The current generation of catchment models trades a detailed representation of hydrologic processes for a generalization of vegetation processes and thus ignores many land-surface feedbacks that are driven by physiological responses to atmospheric CO2 and changes in vegetation structure following disturbance and climate change. Here we demonstrate how catchment scale modeling can better couple vegetation dynamics and disturbance processes to reconstruct historic streamflow, stream temperature and vegetation greening for the Greater Yellowstone Ecosystem. Using a new catchment routing model coupled to the LPJ-GUESS dynamic global vegetation model, simulations are made at 1 km spatial resolution using two different climate products. Decreased winter snowpack has led to increasing spring runoff and declines in summertime slow, and increasing the likelihood that stream temperature exceeds thresholds for cold-water fish growth. Since the mid-1980s, vegetation greening is projected by both the model and detected from space-borne normalized difference vegetation index observations. These greening trends are superimposed on a landscape matrix defined by frequent disturbance and intensive land management, making the climate and CO2 fingerprint difficult to discern. Integrating dynamical vegetation models with in-situ and spaceborne measurements to understand and interpret catchment-scale trends in water availability has potential to better disentangle historical climate, CO2, and human drivers and their ecosystem consequences.
MODELING DYNAMIC VEGETATION RESPONSE TO RAPID CLIMATE CHANGE USING BIOCLIMATIC CLASSIFICATION
Modeling potential global redistribution of terrestrial vegetation frequently is based on bioclimatic classifications which relate static regional vegetation zones (biomes) to a set of static climate parameters. The equilibrium character of the relationships limits our confidence...
Jonathan P. Dandois; Erle C. Ellis
2013-01-01
High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing...
Global simulation of interactions between groundwater and terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Braakhekke, M. C.; Rebel, K.; Dekker, S. C.; Smith, B.; Van Beek, L. P.; Sutanudjaja, E.; van Kampenhout, L.; Wassen, M. J.
2016-12-01
In many places in the world ecosystems are influenced by the presence of a shallow groundwater table. In these regions upward water flux due to capillary rise increases soil moisture availability in the root zone, which has strong positive effect on evapotranspiration. Additionally it has important consequences for vegetation dynamics and fluxes of carbon and nitrogen. Under water limited conditions shallow groundwater stimulates vegetation productivity, and soil organic matter decomposition while under saturated conditions groundwater may have a negative effect on these processes due to lack of oxygen. Furthermore, since plant species differ with respect to their root distribution, preference for moisture conditions, and resistance to oxygen stress, shallow groundwater also influences vegetation type. Finally, processes such as denitrification and methane production occur under strictly anaerobic conditions and are thus strongly influenced by moisture availability. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure and are therefore less suitable to represent effects of groundwater on biogeochemical fluxes. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure and biogeochemical processes. These models are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB. Using this coupled model we aim to study the influence of shallow groundwater on terrestrial ecosystem processes. We will present results of global simulations to demonstrate the effects on C, N, and water fluxes.
Land Cover Classification of the Jornada Experimental Range with Simulated HyspIRI Data
NASA Astrophysics Data System (ADS)
Thorp, K. R.; French, A. N.
2011-12-01
The proposed NASA mission, HyspIRI, would facilitate the use of hyperspectral satellite remote sensing images for monitoring a variety of Earth system processes. We utilized four years of AVIRIS data of the USDA Jornada Experimental Range in southern New Mexico to simulate the visible and near-infrared bands of the planned HyspIRI satellite. Vegetation dynamics at Jornada has been the subject of several recent studies due to concerns of invasive plant species encroaching on native rangeland grasses. Our objective was to assess the added value of simulated HyspIRI images to appropriately classify rangeland vegetation. The AVIRIS images were georeferenced to an orthophoto of the region and 's6' was implemented for atmospheric correction. Images were resampled to simulate HyspIRI wavebands in the visible and near-infrared. Supervised image classification based on observed spectra of rangeland vegetation species was used to map spatial vegetation cover class and temporal dynamics over four years. Forthcoming results will identify the added value of hyperspectral images, as compared to broadband images, for monitoring vegetation dynamics at Jornada.
Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms
Tang, Guo-Yi; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Liu, Qing
2017-01-01
Epidemiological studies have shown that vegetable consumption is inversely related to the risk of cardiovascular diseases. Moreover, research has indicated that many vegetables like potatoes, soybeans, sesame, tomatoes, dioscorea, onions, celery, broccoli, lettuce and asparagus showed great potential in preventing and treating cardiovascular diseases, and vitamins, essential elements, dietary fibers, botanic proteins and phytochemicals were bioactive components. The cardioprotective effects of vegetables might involve antioxidation; anti-inflammation; anti-platelet; regulating blood pressure, blood glucose, and lipid profile; attenuating myocardial damage; and modulating relevant enzyme activities, gene expression, and signaling pathways as well as some other biomarkers associated to cardiovascular diseases. In addition, several vegetables and their bioactive components have been proven to protect against cardiovascular diseases in clinical trials. In this review, we analyze and summarize the effects of vegetables on cardiovascular diseases based on epidemiological studies, experimental research, and clinical trials, which are significant to the application of vegetables in prevention and treatment of cardiovascular diseases. PMID:28796173
Stereophotogrammetry in studies of riparian vegetation dynamics
NASA Astrophysics Data System (ADS)
Hortobagyi, Borbala; Vautier, Franck; Corenblit, Dov; Steiger, Johannes
2014-05-01
Riparian vegetation responds to hydrogeomorphic disturbances and also controls sediment deposition and erosion. Spatio-temporal riparian vegetation dynamics within fluvial corridors have been quantified in many studies using aerial photographs and GIS. However, this approach does not allow the consideration of woody vegetation growth rates (i.e. vertical dimension) which are fundamental when studying feedbacks between the processes of fluvial landform construction and vegetation establishment and succession. We built 3D photogrammetric models of vegetation height based on aerial argentic and digital photographs from sites of the Allier and Garonne Rivers (France). The models were realized at two different spatial scales and with two different methods. The "large" scale corresponds to the reach of the river corridor on the Allier river (photograph taken in 2009) and the "small" scale to river bars of the Allier (photographs taken in 2002, 2009) and Garonne Rivers (photographs taken in 2000, 2002, 2006 and 2010). At the corridor scale, we generated vegetation height models using an automatic procedure. This method is fast but can only be used with digital photographs. At the bar scale, we constructed the models manually using a 3D visualization on the screen. This technique showed good results for digital and also argentic photographs but is very time-consuming. A diachronic study was performed in order to investigate vegetation succession by distinguishing three different classes according to the vegetation height: herbs (<1 m), shrubs (1-4 m) or trees (>4 m). Both methods, i.e. automatic and manual, were employed to study the evolution of the three vegetation classes and the recruitment of new vegetation patches. A comparison was conducted between the vegetation height given by models (automatic and manual) and the vegetation height measured in the field. The manually produced models (small scale) were of a precision of 0.5-1 m, allowing the quantification of woody vegetation growth rates. Thus, our results show that the manual method we developed is accurate to quantify vegetation growth rates at small scales, whereas the less accurate automatic method is appropriate to study vegetation succession at the corridor scale. Both methods are complementary and will contribute to a further exploration of the mutual relationships between hydrogeomorphic processes, topography and vegetation dynamics within alluvial systems, adding the quantification of the vertical dimension of riparian vegetation to their spatio-temporal characteristics.
Potential role of vegetation dynamics on recent extreme droughts over tropical South America
NASA Astrophysics Data System (ADS)
Wang, G.; Erfanian, A.; Fomenko, L.
2017-12-01
Tropical South America is a drought hot spot. In slightly over a decade (2005-2016), the region encountered three extreme droughts (2005, 2010, and 2016). Recurrent extreme droughts not only impact the region's eco-hydrology and socio-economy, but are also globally important as they can transform the planet's largest rainforest, the Amazon, from a carbon sink to a carbon source. Understanding drought drivers and mechanisms underlying extreme droughts in tropical South America can help better project the fate of the Amazon rainforest in a changing climate. In this study we use a regional climate model (RegCM4.3.4) coupled with a comprehensive land-surface model (CLM4.5) to study the present-day hydroclimate of the region, focusing specifically on what might have caused the frequent recurrence of extreme droughts. In the context of observation natural variability of the global oceanic forcing, we tackle the role of land-atmosphere interactions and ran the model with and without dynamic vegetation to study how vegetation dynamics and carbon-nitrogen cycles may have influenced the drought characteristics. Our results demonstrate skillful simulation of the South American climate in the model, and indicate substantial sensitivity of the region's hydroclimatology to vegetation dynamics. This presentation will compare the role of global oceanic forcing versus regional land surface feedback in the recent recurrent droughts, and will characterize the effects of vegetation dynamics in enhancing the drought severity. Preliminary results on future projections of the regional ecosystem and droughts perspective will be also presented.
McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.
2002-01-01
The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.
Tiwari, Ashok K; Reddy, K Srikanth; Radhakrishnan, Janani; Kumar, D Anand; Zehra, Amtul; Agawane, Sachin B; Madhusudana, K
2011-09-01
This research analyzed the major chemical components and multiple antioxidant activities present in the fresh juice of eight vegetables, and studied their influence on starch induced postprandial glycemia in rats. A SDS-PAGE based protein fingerprint of each vegetable juice was also prepared. The yields of juice, chemical components like total proteins, total polyphenols, total flavonoids, total anthocyanins and free radicals like the ABTS˙(+) cation, DPPH, H(2)O(2), scavenging activities and reducing properties for NBT and FeCl(3) showed wide variations. Vegetable juice from brinjal ranked first in displaying total antioxidant capacity. Pretreatment of rats with vegetable juices moderated starch induced postprandial glycemia. The fresh juice from the vegetables ridge gourd, bottle gourd, ash gourd and chayote significantly mitigated postprandial hyperglycemic excursion. Total polyphenol concentrations present in vegetable juices positively influenced ABTS˙(+) scavenging activity and total antioxidant capacity. However, NBT reducing activity of juices was positively affected by total protein concentration. Contrarily, however, high polyphenol content in vegetable juice was observed to adversely affect the postprandial antihyperglycemic activity of vegetable juices. This is the first report exploring antihyperglycemic activity in these vegetable juices and highlights the possible adverse influence of high polyphenol content on the antihyperglycemic activity of the vegetable juices. This journal is © The Royal Society of Chemistry 2011
Arctic Tundra Greening and Browning at Circumpolar and Regional Scales
NASA Astrophysics Data System (ADS)
Epstein, H. E.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Yang, X.
2017-12-01
Remote sensing data have historically been used to assess the dynamics of arctic tundra vegetation. Until recently the scientific literature has largely described the "greening" of the Arctic; from a remote sensing perspective, an increase in the Normalized Difference Vegetation Index (NDVI), or a similar satellite-based vegetation index. Vegetation increases have been heterogeneous throughout the Arctic, and were reported to be up to 25% in certain areas over a 30-year timespan. However, more recently, arctic tundra vegetation dynamics have gotten more complex, with observations of more widespread tundra "browning" being reported. We used a combination of remote sensing data, including the Global Inventory Monitoring and Modeling System (GIMMS), as well as higher spatial resolution Landsat data, to evaluate the spatio-temporal patterns of arctic tundra vegetation dynamics (greening and browning) at circumpolar and regional scales over the past 3-4 decades. At the circumpolar scale, we focus on the spatial heterogeneity (by tundra subzone and continent) of tundra browning over the past 5-15 years, followed by a more recent recovery (greening since 2015). Landsat time series allow us to evaluate the landscape-scale heterogeneity of tundra greening and browning for northern Alaska and the Yamal Peninsula in northwestern Siberia, Russia. Multi-dataset analyses reveal that tundra greening and browning (i.e. increases or decreases in the NDVI respectively) are generated by different sets of processes. Tundra greening is largely a result of either climate warming, lengthening of the growing season, or responses to disturbances, such as fires, landslides, and freeze-thaw processes. Browning on the other hand tends to be more event-driven, such as the shorter-term decline in vegetation due to fire, insect defoliation, consumption by larger herbivores, or extreme weather events (e.g. winter warming or early summer frost damage). Browning can also be caused by local or regional cooling, or changes in the snow regime (e.g. depth, timing of melt). The spatio-temporal dynamics of tundra vegetation are only now beginning to get serious attention from the scientific community and the continual use of remote sensing data across spatial scales allows us to monitor these dynamics and elucidate their controls.
Towards quantifying uncertainty in predictions of Amazon 'dieback'.
Huntingford, Chris; Fisher, Rosie A; Mercado, Lina; Booth, Ben B B; Sitch, Stephen; Harris, Phil P; Cox, Peter M; Jones, Chris D; Betts, Richard A; Malhi, Yadvinder; Harris, Glen R; Collins, Mat; Moorcroft, Paul
2008-05-27
Simulations with the Hadley Centre general circulation model (HadCM3), including carbon cycle model and forced by a 'business-as-usual' emissions scenario, predict a rapid loss of Amazonian rainforest from the middle of this century onwards. The robustness of this projection to both uncertainty in physical climate drivers and the formulation of the land surface scheme is investigated. We analyse how the modelled vegetation cover in Amazonia responds to (i) uncertainty in the parameters specified in the atmosphere component of HadCM3 and their associated influence on predicted surface climate. We then enhance the land surface description and (ii) implement a multilayer canopy light interception model and compare with the simple 'big-leaf' approach used in the original simulations. Finally, (iii) we investigate the effect of changing the method of simulating vegetation dynamics from an area-based model (TRIFFID) to a more complex size- and age-structured approximation of an individual-based model (ecosystem demography). We find that the loss of Amazonian rainforest is robust across the climate uncertainty explored by perturbed physics simulations covering a wide range of global climate sensitivity. The introduction of the refined light interception model leads to an increase in simulated gross plant carbon uptake for the present day, but, with altered respiration, the net effect is a decrease in net primary productivity. However, this does not significantly affect the carbon loss from vegetation and soil as a consequence of future simulated depletion in soil moisture; the Amazon forest is still lost. The introduction of the more sophisticated dynamic vegetation model reduces but does not halt the rate of forest dieback. The potential for human-induced climate change to trigger the loss of Amazon rainforest appears robust within the context of the uncertainties explored in this paper. Some further uncertainties should be explored, particularly with respect to the representation of rooting depth.
Carbon Storage in Urban Areas in the USA
NASA Astrophysics Data System (ADS)
Churkina, G.; Brown, D.; Keoleian, G.
2007-12-01
It is widely accepted that human settlements occupy a small proportion of the landmass and therefore play a relatively small role in the dynamics of the global carbon cycle. Most modeling studies focusing on the land carbon cycle use models of varying complexity to estimate carbon fluxes through forests, grasses, and croplands, but completely omit urban areas from their scope. Here, we estimate carbon storage in urban areas within the United States, defined to encompass a range of observed settlement densities, and its changes from 1950 to 2000. We show that this storage is not negligible and has been continuously increasing. We include natural- and human-related components of urban areas in our estimates. The natural component includes carbon storage in urban soil and vegetation. The human related component encompasses carbon stored long term in buildings, furniture, cars, and waste. The study suggests that urban areas should receive continued attention in efforts to accurately account for carbon uptake and storage in terrestrial systems.
NASA Astrophysics Data System (ADS)
Gibbes, C.; Southworth, J.; Waylen, P. R.
2013-05-01
How do climate variability and climate change influence vegetation cover and vegetation change in savannas? A landscape scale investigation of the effect of changes in precipitation on vegetation is undertaken through the employment of a time series analysis. The multi-national study region is located within the Kavango-Zambezi region, and is delineated by the Okavango, Kwando, and Zambezi watersheds. A mean-variance time-series analysis quantifies vegetation dynamics and characterizes vegetation response to climate. The spatially explicit approach used to quantify the persistence of vegetation productivity permits the extraction of information regarding long term climate-landscape dynamics. Results show a pattern of reduced mean annual precipitation and increased precipitation variability across key social and ecological areas within the study region. Despite decreased mean annual precipitation since the mid to late 1970's vegetation trends predominantly indicate increasing biomass. The limited areas which have diminished vegetative cover relate to specific vegetation types, and are associated with declines in precipitation variability. Results indicate that in addition to short term changes in vegetation cover, long term trends in productive biomass are apparent, relate to spatial differences in precipitation variability, and potentially represent shifts vegetation composition. This work highlights the importance of time-series analyses for examining climate-vegetation linkages in a spatially explicit manner within a highly vulnerable region of the world.
NASA Astrophysics Data System (ADS)
Di Mauro, Biagio; Fava, Francesco; Busetto, Lorenzo; Crosta, Giovanni Franco; Colombo, Roberto
2013-04-01
In this study a method based on the analysis of MODerate-resolution Imaging Spectroradiometer (MODIS) time series is proposed to estimate the post-fire resilience of mountain vegetation (broadleaf forest and prairies) in the Italian Alps. Resilience is defined herewith as the ability of a dynamical system to counteract disturbances. It can be quantified by the amount of time the disturbed system takes to resume, in statistical terms, an ecological functionality comparable with its undisturbed behavior. Satellite images of the Normalized Difference Vegetation Index (NDVI) and of the Enhanced Vegetation Index (EVI) with spatial resolution of 250m and temporal resolution of 16 days in the 2000-2012 time period were used. Wildfire affected areas in the Lombardy region between the years 2000 and 2010 were analysed. Only large fires (affected area >40ha) were selected. For each burned area, an undisturbed adjacent control site was located. Data pre-processing consisted in the smoothing of MODIS time series for noise removal and then a double logistic function was fitted. Land surface phenology descriptors (proxies for growing season start/end/length and green biomass) were extracted in order to characterize the time evolution of the vegetation. Descriptors from a burned area were compared to those extracted from the respective control site by means of the one-way analysis of variance. According to the number of subsequent years which exhibit statistically meaningful difference between burned and control site, five classes of resilience were identified and a set of thematic maps was created for each descriptor. The same method was applied to all 84 aggregated events and to events aggregated by main land cover. EVI index results more sensitive to fire impact than NDVI index. Analysis shows that fire causes both a reduction of the biomass and a variation in the phenology of the Alpine vegetation. Results suggest an average ecosystem resilience of 6-7 years. Moreover, broadleaf forest and prairies show different post-fire behavior in terms of land surface phenology descriptors. In addition to the above analysis, another method is proposed, which derives from the qualitative theory of dynamical systems. The (time dependent) spectral index of a burned area over the period of one year was plotted against its counterpart from the control site. Yearly plots (or scattergrams) before and after the fire were obtained. Each plot is a sequence of points on the plane, which are the vertices of a generally self-intersecting polygonal chain. Some geometrical descriptors were obtained from the yearly chains of each fire. Principal Components Analysis (PCA) of geometrical descriptors was applied to a set of case studies and the obtained results provide a system dynamics interpretation of the natural process.
NASA Astrophysics Data System (ADS)
Lowman, L.; Barros, A. P.
2016-12-01
Representation of plant photosynthesis in modeling studies requires phenologic indicators to scale carbon assimilation by plants. These indicators are typically the fraction of photosynthetically active radiation (FPAR) and leaf area index (LAI) which represent plant responses to light and water availability, as well as temperature constraints. In this study, a prognostic phenology model based on the growing season index is adapted to determine the phenologic indicators of LAI and FPAR at the sub-daily scale based on meteorological and soil conditions. Specifically, we directly model vegetation green-up and die-off responses to temperature, vapor pressure deficit, soil water potential, and incoming solar radiation. The indices are based on the properties of individual plant functional types, driven by observational data and prior modeling applications. First, we describe and test the sensitivity of the carbon uptake response to predicted phenology for different vegetation types. Second, the prognostic phenology model is incorporated into a land-surface hydrology model, the Duke Coupled Hydrology Model with Prognostic Vegetation (DCHM-PV), to demonstrate the impact of dynamic phenology on modeled carbon assimilation rates and hydrologic feedbacks. Preliminary results show reduced carbon uptake rates when incorporating a prognostic phenology model that match well against the eddy-covariance flux tower observations. Additionally, grassland vegetation shows the most variability in LAI and FPAR tied to meteorological and soil conditions. These results highlight the need to incorporate vegetation-specific responses to water limitation in order to accurately estimate the terrestrial carbon storage component of the global carbon budget.
NASA Astrophysics Data System (ADS)
Murthy, T. V. R.; Panigrahy, S.
2011-09-01
The hydrologic variability greatly influences the structural components of wetlands that have a great bearing on habitats for avifauna, aquatic fauna including fish etc. This paper highlights the results of a study carried out to derive changes in open-water and vegetation, and also water balance for Nalsarovar Lake, Gujarat. MODIS 8-day composite data for three consecutive years viz 2002/03, 2003/04 and 2004/05 were used to study the seasonal and inter annual dynamics of water regime in the lake. Digital elevation model derived using Shuttle Radar Topographic Mission data with interpolated bottom topography was used to generate elevation contours and compute water volume from water spread data. The reference data of 2002 (drought year) shows the maximum extent of wetland to be 8.06 km2 with emergent vegetation of recorded as 2.36 km2 and open-water as 5.70 km2. The rainfall has an impact on the preferred habitat availability for various species of avifauna and it is noted that emergent vegetation present in the lake completely dried up by summer 2002, a rainfall deficit year but revived again in the preceding year i.e. 2003 which was a good rainfall year with 46.68 km2 under emergent vegetation and 61.96 km2 under open-water. The 2002 being a drought year has shown very low reference storage (0.256 MCM), which has shown a gradual decrease in the storage to 0.00019 MCM in March 2003. The reference storage also registered a steep increase to 18.165 MCM in October 2003 and decreased 1.264 MCM in March 2004. From this study it is evident that water level of about 9 m elevation at the end of the rainy season is found to be optimal for maintaining various habitats that in turn support the avifauna for the rest of the lean period.
Assessment of Climate Impact Changes on Forest Vegetation Dynamics by Satellite Remote Sensing
NASA Astrophysics Data System (ADS)
Zoran, Maria
Climate variability represents the ensemble of net radiation, precipitation, wind and temper-ature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Forest vegetation phenology constitutes an efficient bio-indicator of climate and anthropogenic changes impacts and a key parameter for understanding and modelling vegetation-climate in-teractions. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vege-tation Index (NDVIs), which requires NDVI time-series with good time resolution, over homo-geneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2008 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and to-pography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.
A regression-adjusted approach can estimate competing biomass
James H. Miller
1983-01-01
A method is presented for estimating above-ground herbaceous and woody biomass on competition research plots. On a set of destructively-sampled plots, an ocular estimate of biomass by vegetative component is first made, after which vegetation is clipped, dried, and weighed. Linear regressions are then calculated for each component between estimated and actual weights...
[Soils salinity content of greenhouse in Shanghai suburb].
Yao, Chun-Xia; Chen, Zhen-Lou; Xu, Shi-Yuan
2007-06-01
Salinity content and characteristic of farmland soil in Shanghai suburb was studied. Result indicates that soils in greenhouse in Shanghai suburb are partially salted. Soils of suburb where melons or vegetables grow in Shanghai city, 88.52% soil is non-salted while 10.37% mildly salted, 0.74% obviously salted and 0.37% badly salted. Anions component of salt salinity in soil are mainly SO4(2-), Cl-, NO3(-) and cations component are mainly Ca2+, Na+, Mg2+, K+. These ions are mostly from fertilizer auxiliary component or fertilizer transformation component besides some original deposition in soil. The formation of soil secondary salted in greenhouse cultivation in suburbs of Shanghai has a close relationship with improper fertilization or employing too much fertilizer. Soil salinity is different with different cultivation mode and utilization time. From high to low, sequence of soil salinity content in 0 - 20 cm cultivation layer of different crop mode is greenhouse vegetable soil, melon soil, vegetable melon rotation soil and hypaethral vegetable soil respectively. In the same region, salinity in greenhouse soil continually increases and accumulates from underlayer to surface along with more utilization years.
Yando, Erik S.; Osland, Michael J.; Hester, Mark H.
2018-01-01
Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh–mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant–soil dynamics across the salt marsh–mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.
Yando, E S; Osland, M J; Hester, M W
2018-05-01
Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh-mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant-soil dynamics across the salt marsh-mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.
Experimental investigation into the impact of vegetation on fan morphology and flow
NASA Astrophysics Data System (ADS)
Clarke, Lucy; McLelland, Stuart; Coulthard, Tom
2013-04-01
Riparian vegetation can significantly influence the geomorphology of fluvial systems, affecting channel geometry and flow dynamics. However, there is still limited understanding of the role vegetation plays in the development of alluvial fans, despite the large number of vegetated fans located in temperate and humid climates. An understanding of the feedback loops between water flow, sediment dynamics and vegetation is key to understanding the geomorphological response of alluvial fans. But it is difficult to investigate these relationships in the natural world due to the complexity of the geomorphic and biological processes and timescales involved. To examine the effects of vegetation on channel form, flow dynamics and morphology during fan evolution, a series of experiments were conducted using the Total Environment Simulator at the Deep, an experimental facility operated by the University of Hull. The experiments followed a 'similarity of processes' approach and so were not scaled to a specific field prototype. Live vegetation (alfalfa) was used to simulate the influence of vegetation on the fan development. A range of experiments were conducted on fan plots 2x2m in size, the same initial conditions and constant water discharge and sediment feed rates were used, but the vegetation density and amount of geomorphic time (when the sediment and water were running and there was active fan development) between seeding / vegetation growth varied between runs. The fan morphology was recorded at regular intervals using a laser scanner (at 1mm resolution) and high resolution video recording and overhead photography was also used to gain near-continuous data quantifying fan topography, flow patterns, channel migration and avulsion frequency. Image analysis also monitored the spatial extent of vegetation establishment. The use of these techniques allowed collection of high resolution spatial and temporal data on fan development with minimal disruption to the experiments. The results of the preliminary experiments showed that vegetation did influence the morphology and flow conditions during fan evolution. Vegetation reduced the number of active channels, and increasing the vegetation density also led to lower lateral migration rates, the formation of narrower and deeper channels and an increase in fan slope.
Diane De Steven; Maureen M. Toner
2004-01-01
Reference wetlands play an important role in efforts to protect wetlands and assess wetland condition. Because wetland vegetation integrates the influence of many ecological factors, a useful reference system would identify natural vegetation types and include models relating vegetation to important regional geomorphic, hydrologic, and geochemical properties. Across...
B. Choi; J.C. Dewey; J. A. Hatten; A.W. Ezell; Z. Fan
2012-01-01
In order to better understand the relationship between vegetation communities and water table in the uppermost portions (ephemeralâintermittent streams) of headwater systems, seasonal plot-based field characterizations of vegetation were used in conjunction with monthly water table measurements. Vegetation, soils, and water table data were examined to determine...
Validated scales to assess adult self-efficacy to eat fruits and vegetables.
Mainvil, Louise A; Lawson, Rob; Horwath, Caroline C; McKenzie, Joanne E; Reeder, Anthony I
2009-01-01
An audience-centered approach was used to develop valid and reliable scales to measure adult self-efficacy to eat fruit and vegetables. Cross-sectional survey of a national population. New Zealand. A sample of 350 adults ages 25 to 60 years was randomly selected from a nationally representative sampling frame. Overall, 231 questionnaires were returned, producing a 72% response rate. The mean age of subjects was 42.7years; 58% were female; 80% were of European descent; 11% were indigenous Maori. The 76-item, self-administered questionnaire collected data on demographics, fruit and vegetable intakes, stages of change, decisional balance, and self-efficacy (24 items). Principal components analysis with oblimin rotation was performed. Principal components analysis yielded three distinct and reliable scales for self-efficacy to eat "vegetables," "fruit," and "fruit and vegetables" (Cronbach alpha = .80, .85, and .73, respectively). These scales were correlated, but only the "vegetable" scale was positively correlated with the "fruit and vegetable" scale (Kendall tau r = 0.30, -0.26 [fruit, "fruit and vegetables"], -0.38 [fruit, vegetable]). As predicted, self-efficacy was associated with intake (r = 0.30 [fruit], 0.34 [vegetables]). Assuming the factor structure is confirmed in independent samples, these brief psychometrically sound scales may be used to assess adult self-efficacy to eat fruit and to eat vegetables (separately) but not self-efficacy to eat "fruit and vegetables."
Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II
Brian R. Sturtevant; Robert M. Scheller; Brian R. Miranda; Douglas Shinneman; Alexandra Syphard
2009-01-01
Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and...
Barron J. Orr; Grant M. Casady; Daniel G. Tuttle; Willem J. D. van Leeuwen; Laura E. Baker; Colleen I. McDonald; Stuart E. Marsh
2005-01-01
Ground-based ecosystem monitoring presents some practical challenges to natural resource managers and ecologists tasked with assessing vegetation dynamics across large areas through time. RangeView (http://rangeview.arizona.edu) provides online access to spatially and temporally explicit biweekly vegetation indices derived from satellite data. It also permits side-by-...
Effect of climate fluctuation on long-term vegetation dynamics in Carolina bay wetlands
Chrissa Stroh; Diane De Steven; Glenn Guntenspergen
2008-01-01
Carolina bays and similar depression wetlands of the U. S. Southeastern Coastal Plain have hydrologic regimes that are driven primarily by rainfall. Therefore, climate fluctuations such as drought cycles have the potential to shape long-term vegetation dynamics. Models suggest two potential long-term responses to hydrologic fluctuations, either cyclic change...
Vegetation in drylands: Effects on wind flow and aeolian sediment transport
USDA-ARS?s Scientific Manuscript database
Drylands are characterised by patchy vegetation, erodible surfaces and erosive aeolian processes. Empirical and modelling studies have shown that vegetation elements provide drag on the overlying airflow, thus affecting wind velocity profiles and altering erosive dynamics on desert surfaces. However...
NASA Astrophysics Data System (ADS)
Boulain, N.; Cappelaere, B.; Ramier, D.; Issoufou, H. B. A.; Halilou, O.; Seghieri, J.; Guillemin, F.; Oï, M.; Gignoux, J.; Timouk, F.
2009-08-01
SummaryThis paper analyses the dynamics of vegetation and carbon during the West African monsoon season, for millet crop and fallow vegetation covers in the cultivated area of the Sahel. Comparing these two dominant land cover types informs on the impact of cultivation on productivity and carbon fluxes. Biomass, leaf area index (LAI) and carbon fluxes were monitored over a 2-year period for these two vegetation systems in the Wankama catchment of the AMMA (African monsoon multidisciplinary analyses) experimental super-site in West Niger. Carbon fluxes and water use efficiency observed at the field scale are confronted with ecophysiological measurements (photosynthetic response to light, and relation of water use efficiency to air humidity) made at the leaf scale for the dominant plant species in the two vegetation systems. The two rainy seasons monitored were dissimilar with respect to rain patterns, reflecting some of the interannual variability. Distinct responses in vegetation development and in carbon dynamics were observed between the two vegetation systems. Vegetation development in the fallow was found to depend more on rainfall distribution along the season than on its starting date. A quite opposite behaviour was observed for the crop vegetation: the date of first rain appears as a principal factor of millet growth. Carbon flux exchanges were well correlated to vegetation development. High responses of photosynthesis to light were observed for the dominant herbaceous and shrub species of the fallow at the leaf and field scales. Millet showed high response at the leaf scale, but a much lesser response at the field scale. This pattern, also observed for water use efficiency, is to be related to the low density of the millet cover. A simple LAI-based model for scaling up the photosynthetic response from leaf to field scale was found quite successful for the fallow, but was less conclusive for the crop, due to spatial variability of LAI. Time/space variations in leaf distribution for the dominant species are key to scale transition of carbon dynamics. Results obtained for the two vegetation covers are important in light of the major land use/cover change experienced in the Sahel region due to extensive savanna clearing for food production.
NASA Astrophysics Data System (ADS)
Cerasoli, Sofia; Costa e Silva, Filipe; Silva, João M. N.
2016-06-01
The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus ( Cistus salviifolius) and ulex ( Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence ( ΔF/ Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.
Cerasoli, Sofia; Costa E Silva, Filipe; Silva, João M N
2016-06-01
The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus (Cistus salviifolius) and ulex (Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence (ΔF/Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.
Effects of Emergent Vegetation on Sediment Dynamics within a Retreating Coastal Marshland
NASA Astrophysics Data System (ADS)
Stellern, C.; Grossman, E.; Fuller, R.; Wallin, D.; Linneman, S. R.
2015-12-01
Coastal emergent vegetation in estuaries physically interrupts flow within the water column, reduces wave energy and increases sediment deposition. Previous workers conclude that wave attenuation rates decrease exponentially with distance from the marsh edge and are dependent on site and species-specific plant characteristics (Yang et al., 2011). Sediment deposition may exhibit similar patterns; however, sediment, geomorphic and habitat models seldom integrate site-specific biophysical plant parameters into change analyses. We paired vegetation and sediment dynamic studies to: (1) characterize vegetation structure, (2) estimate sediment available for deposition, (3) estimate rate, distribution and composition of sediment deposits, (4) determine sediment accumulation on vegetation, (5) compare sediment deposition within dense tidal wetland relative to non-vegetated tidal flat. These studies integrate a variety of monitoring methods, including the use of sediment traps, turbidity sensors, side-on photographs of vegetation and remote sensing image analysis. We compared sedimentation data with vegetation characteristics and spatial distribution data to examine the relative role of vegetation morphologic traits (species, stem density, biomass, distribution, tidal channels, etc.) on sediment dynamics. Our study is focused on Port Susan Bay of Washington State; a protected delta that has experienced up to 1 kilometer of marsh retreat (loss) over the past fifty years. Preliminary results show that the highest winter deposition occurred in the high marsh/mid-marsh boundary, up to 300m inland of the marsh edge, where bulrush species are most dense. These results will inform restoration efforts aimed at reestablishing sediment supply to the retreating marshland. This research is necessary to understand the vulnerability and adaptability of coastal marshlands to climate change related stressors such as, increased water levels (sea-level rise) and wave energy.
Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands
Gonzales, Howell B.; Ravi, Sujith; Li, Junran; Sankey, Joel B.
2018-01-01
Aeolian processes are important drivers of ecosystem dynamics in drylands, and important feedbacks exist among aeolian – hydrological processes and vegetation. The trapping of wind-borne sediments by vegetation may result in changes in soil properties beneath the vegetation, which, in turn, can alter hydrological and biogeochemical processes. Despite the relevance of aeolian transport to ecosystem dynamics, the interactions between aeolian transport and vegetation in shaping dryland landscapes where sediment distribution is altered by relatively rapid changes in vegetation composition such as shrub encroachment, is not well understood. Here, we used a computational fluid dynamics (CFD) modeling framework to investigate the sediment trapping efficiencies of vegetation canopies commonly found in a shrub-grass ecotone in the Chihuahuan Desert (New Mexico, USA) and related the results to spatial heterogeneity in soil texture and infiltration measured in the field. A CFD open-source software package was used to simulate aeolian sediment movement through three-dimensional architectural depictions of Creosote shrub (Larrea tridentata) and Black Grama grass (Bouteloua eriopoda) vegetation types. The vegetation structures were created using a computer-aided design software (Blender), with inherent canopy porosities, which were derived using LIDAR (Light Detection and Ranging) measurements of plant canopies. Results show that considerable heterogeneity in infiltration and soil grain size distribution exist between the microsites, with higher infiltration and coarser soil texture under shrubs. Numerical simulations also indicate that the differential trapping of canopies might contribute to the observed heterogeneity in soil texture. In the early stages of encroachment, the shrub canopies, by trapping coarser particles more efficiently, might maintain higher infiltration rates leading to faster development of the microsites (among other factors) with enhanced ecological productivity, which might provide positive feedbacks to shrub encroachment.
The combined effects of topography and vegetation on catchment connectivity
NASA Astrophysics Data System (ADS)
Nippgen, F.; McGlynn, B. L.; Emanuel, R. E.
2012-12-01
The deconvolution of whole catchment runoff response into its temporally dynamic source areas is a grand challenge in hydrology. The extent to which the intersection of static and dynamic catchment characteristics (e.g. topography and vegetation) influences water redistribution within a catchment and the hydrologic connectivity of hillslopes to the riparian and stream system is largely unknown. Over time, patterns of catchment storage shift and, because of threshold connectivity behavior, catchment areas become disconnected from the stream network. We developed a simple but spatially distributed modeling framework that explicitly incorporates static (topography) and dynamic (vegetation) catchment structure to document the evolution of catchment connectivity over the course of a water year. We employed directly measured eddy-covariance evapotranspiration data co-located within a highly instrumented (>150 recording groundwater wells) and gauged catchment to parse the effect of current and zero vegetation scenarios on the temporal evolution of hydrologic connectivity. In the absence of vegetation, and thus in the absence of evapotranspiration, modeled absolute connectivity was 4.5% greater during peak flow and 3.9% greater during late summer baseflow when compared to the actual vegetation scenario. The most significant differences in connected catchment area between current and zero vegetation (14.9%) occurred during the recession period in early July, when water and energy availability were at an optimum. However, the greatest relative difference in connected area occurs during the late summer baseflow period when the absence of evapotranspiration results in a connected area approximately 500% greater than when vegetation is present, while the relative increase during peak flow is just 6%. Changes in connected areas ultimately lead to propose a biologically modified geomorphic width function. This biogeomorphic width function is the result of lateral water redistribution driven by topography and water uptake by vegetation.
NASA Astrophysics Data System (ADS)
Ramos, E.; Alexander, H. D.; Natali, S.
2014-12-01
In Arctic ecosystems, climate-driven changes to the thermal regime of permafrost soils have the potential to create surface disturbances that influence vegetation dynamics and underlying soil properties. Disturbance-mediated changes in vegetation are important because vegetation and the accumulation of soil organic matter drive ecosystem carbon (C) dynamics and contribute to the insulation of soils and protection of permafrost from thaw. We examined the effect of two disturbance types—thermokarsts and frost boils—to determine disturbance effects on the vegetation community and soil properties in northeast Siberia. In summer 2014, we measured vegetation cover, soil moisture, soil temperature, and thaw depth in two thermokarst sites within boreal forests, two frost boil sites in tundra, and in adjacent undisturbed sites within both ecosystems. Both thermokarst and frost boils resulted in decreased vegetation cover and greater exposure of mineral soils (10-40% bare soils vs. 0% in undisturbed), and consequently, 2-3 times higher soil temperature and deeper thaw depth. Compared to undisturbed areas, soil moisture was 3-4 times higher in thermokarst areas but 1.2-2 times lower in frost boil areas, which reflected differences in microtopography between these two disturbance types. In both thermokarst and frost boil disturbed areas, deciduous and evergreen shrubs covered only 5 and 10%, respectively, compared to approximately 10 and 20%, respectively, in undisturbed areas. In general, graminoids were substantially more abundant (2-20 times) in disturbed areas than in those undisturbed. These results highlight important linkages between disturbances, vegetation communities, and permafrost soils, and contribute to our understanding of how changes in arctic vegetation dynamics as direct and/or indirect consequences of climate change have the potential to impact permafrost C pools.
ERIC Educational Resources Information Center
Vale, Angela; Schumacher, Julie Raeder; Cullen, Robert W.; Gam, Hae Jin
2014-01-01
Purpose/Objectives: Recent US Department of Agriculture regulations increased the amount and variety of vegetables required for school lunches. Vegetables are the most wasted components of lunch while entrées are selected and consumed by the majority of children. This study examined how adding vegetable purée to an elementary school lunch entrée…
Ecology of pinon-juniper vegetation in the Southwest and Great Basin
Rex D. Pieper
2008-01-01
Pinon-juniper vegetation is conspicuous in foothills surrounding most mountain ranges in the Great Basin and the Southwest. Utah has the largest percentage of pinon-juniper vegetation, followed by New Mexico, Nevada, Arizona, and Colorado. Although pinon-juniper stands may appear to be similar, the vegetation component varies. The most abundant junipers are Juniperus...
[Modeling of carbon cycling in terrestrial ecosystem: a review].
Mao, Liuxi; Sun, Yanling; Yan, Xiaodong
2006-11-01
Terrestrial carbon cycling is one of the important issues in global change research, while carbon cycling modeling has become a necessary method and tool in understanding this cycling. This paper reviewed the research progress in terrestrial carbon cycling, with the focus on the basic framework of simulation modeling, two essential models of carbon cycling, and the classes of terrestrial carbon cycling modeling, and analyzed the present situation of terrestrial carbon cycling modeling. It was pointed out that the future research direction could be based on the biophysical modeling of dynamic vegetation, and this modeling could be an important component in the earth system modeling.
Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem
White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.
2008-01-01
Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire disturbance. Simulations generated from this model are expected to be the subject of subsequent studies on landscape dynamics with specific regard to prediction of wildlife distributions associated with fire management and climate change.
Riparian vegetation controls on the hydraulic geometry of streams
NASA Astrophysics Data System (ADS)
McBride, M.
2010-12-01
A synthesis of field measurements, remote observations, and numerical modeling techniques highlights the significance of riparian vegetation in determining the geometry of streams and impacting sediment transport dynamics in temperate, Piedmont regions. Specifically, forested and grassy riparian vegetation establish streams with significantly different widths and with different timescales for attaining a state of dynamic equilibrium. The interactions between riparian vegetation, channel form, and channel dynamics are scale dependent. Scale dependency arises because of variations in ratios of vegetation length scales and geomorphic scales (e.g., channel width and depth). Stream reaches with grassy vegetation experience more frequent overbank discharges, migrate more quickly, and exhibit a more classic dynamic equilibrium than forested reaches. These phenomena are relevant to current watershed management efforts that aim to reduce sediment and nutrient loads to receiving water bodies, such as the Chesapeake Bay. The reforestation of riparian buffers is a common restoration technique that intends to improve water quality, temperature regimes, and in-stream physical habitat. Passive reforestation of riparian areas along a tributary to Sleepers River in Danville, VT, USA caused an increase in channel width and cross-sectional area over a 40-year period. From a comparison of historical records and current cross-sectional dimensions, the channel widening resulted in the mobilization of approximately 85 kg/ha/yr of floodplain sediments. Long-term monitoring of suspended sediments in an adjacent watershed indicates that this sediment source may account for roughly 40 percent of the total suspended sediment load. In some instances, increased sediment loads associated with channel widening may be an unforeseen consequence that compromises riparian restoration efforts.
Jia, Duo; Wang, Cang Jiao; Mu, Shou Guo; Zhao, Hua
2017-06-18
The spatiotemporal dynamic patterns of vegetation in mining area are still unclear. This study utilized time series trajectory segmentation algorithm to fit Landsat NDVI time series which generated from fusion images at the most prosperous period of growth based on ESTARFM algorithm. Combining with the shape features of the fitted trajectory, this paper extracted five vegetation dynamic patterns including pre-disturbance type, continuous disturbance type, stabilization after disturbance type, stabilization between disturbance and recovery type, and recovery after disturbance type. The result indicated that recovery after disturbance type was the dominant vegetation change pattern among the five types of vegetation dynamic pattern, which accounted for 55.2% of the total number of pixels. The follows were stabilization after disturbance type and continuous disturbance type, accounting for 25.6% and 11.0%, respectively. The pre-disturbance type and stabilization between disturbance and recovery type accounted for 3.5% and 4.7%, respectively. Vegetation disturbance mainly occurred from 2004 to 2009 in Shengli mining area. The onset time of stable state was 2008 and the spatial locations mainlydistributed in open-pit stope and waste dump. The reco-very state mainly started since the year of 2008 and 2010, while the areas were small and mainly distributed at the periphery of open-pit stope and waste dump. Duration of disturbance was mainly 1 year. The duration of stable period usually sustained 7 years. The duration of recovery state of the type of stabilization between disturbances continued 2 to 5 years, while the type of recovery after disturbance often sustained 8 years.
Can ecological land classification increase the utility of vegetation monitoring data
USDA-ARS?s Scientific Manuscript database
Vegetation dynamics in rangelands and other ecosystems are known to be mediated by topoedaphic properties. Vegetation monitoring programs, however, often do not consider the impact of soils and other sources of landscape heterogeneity on the temporal patterns observed. Ecological sites (ES) comprise...
Trofholz, Amanda C; Tate, Allan D; Draxten, Michelle L; Rowley, Seth S; Schulte, Anna K; Neumark-Sztainer, Dianne; MacLehose, Richard F; Berge, Jerica M
2017-01-01
Little is known about the healthfulness of foods offered at family meals or the relationship between the food's healthfulness and child overall dietary intake. This exploratory study uses a newly developed Healthfulness of Meal Index to examine the association between the healthfulness of foods served at family dinners and child dietary intake. Direct observational, cross-sectional study. Primarily low-income, minority families (n=120) video recorded 8 days of family dinners and completed a corresponding meal screener. Dietary recalls were completed on the target child (6 to 12 years old). The Healthfulness of Meal Index was used to measure meal healthfulness and included component scores for whole fruit, 100% juice, vegetables, dark green vegetables, dairy, protein, added sugars, and high-sodium foods. Child dietary intake measured by three 24-hour dietary recalls. Linear regression models estimated the association between the healthfulness of foods served at dinner meals and overall child HEI. The majority of coded meals included foods from protein and high-sodium components; more than half included foods from dairy and vegetable components. Nearly half of the meals had an added-sugar component food (eg, soda or dessert). Few meals served foods from fruit, 100% juice, or dark green vegetable components. Many components served at family dinner meals were significantly associated with child daily intake of those same foods (ie, dark green vegetable, non-dark green vegetables, dairy, and added sugars). The Healthfulness of Meal Index total score was significantly associated with child HEI score. This study represents the first report of a new methodology to collect data of foods served at family dinners. Results indicated a significant association between the majority of components served at family dinner meals and child overall dietary intake. Validation of the Healthfulness of Meal Index and video-recorded family meal methodology is needed to strengthen these research methods for use in future studies. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Li, Fei; Hullar, Meredith A J; Schwarz, Yvonne; Lampe, Johanna W
2009-09-01
In the human gut, commensal bacteria metabolize food components that typically serve as energy sources. These components have the potential to influence gut bacterial community composition. Cruciferous vegetables, such as broccoli and cabbage, contain distinctive compounds that can be utilized by gut bacteria. For example, glucosinolates can be hydrolyzed by certain bacteria, and dietary fibers can be fermented by a range of species. We hypothesized that cruciferous vegetable consumption would alter growth of certain bacteria, thereby altering bacterial community composition. We tested this hypothesis in a randomized, crossover, controlled feeding study. Fecal samples were collected from 17 participants at the end of 2 14-d intake periods: a low-phytochemical, low-fiber basal diet (i.e. refined grains without fruits or vegetables) and a high ("double") cruciferous vegetable diet [basal diet + 14 g cruciferous vegetables/(kg body weightd)]. Fecal bacterial composition was analyzed by the terminal restriction fragment length polymorphism (tRFLP) method using the bacterial 16S ribosomal RNA gene and nucleotide sequencing. Using blocked multi-response permutation procedures analysis, we found that overall bacterial community composition differed between the 2 consumption periods (delta = 0.603; P = 0.011). The bacterial community response to cruciferous vegetables was individual-specific, as revealed by nonmetric multidimensional scaling ordination analysis. Specific tRFLP fragments that characterized each of the diets were identified using indicator species analysis. Putative species corresponding to these fragments were identified through gene sequencing as Eubacterium hallii, Phascolarctobacterium faecium, Burkholderiales spp., Alistipes putredinis, and Eggerthella spp. In conclusion, human gut bacterial community composition was altered by cruciferous vegetable consumption, which could ultimately influence gut metabolism of bioactive food components and host exposure to these compounds.
NASA Astrophysics Data System (ADS)
Hasselquist, Niles; Metcalfe, Daniel; Högberg, Peter
2013-04-01
Vegetation research in boreal forests has traditionally been focused on trees, with little attention given to understory vegetation. However, understory vegetation has been identified as a key driver for the functioning of boreal forests and may play an important role in the amount of carbon (C) that is entering and leaving these forested ecosystems. We conducted a large-scale 13C pulse labeling experiment to better understand how recently fixed C is allocated in the understory vegetation characteristic of boreal forests. We used transparent plastic chambers to pulse label the understory vegetation with enriched 13CO2 in the early (June) and late (August) growing seasons. This study was also replicated across a nitrogen (N) fertilization treatment to better understand the effects of N availability on C allocation patterns. We present data on the amount of 13C label found in different components of the understory vegetation (i.e. leaves, stems, lichens, mosses, rhizomes and fine roots) as well as CO2 efflux. Additionally, we provide estimates of C residence time (MRT) among the different components and examine how MRT of C is affected by seasonality and N availability. Seasonality had a large effect on how recently fixed C is allocated in understory vegetation, whereas N fertilization influenced the MRT of C in the different components of ericaceous vegetation. Moreover, there was a general trend that N additions increased the amount of 13C in CO2 efflux compared to the amount of 13C in biomass, suggesting that N fertilization may lead to an increase in the utilization of recently fixed C, whereas N-limitation promotes the storage of recently fixed C.
Simulation of Dynamic Soil Crusting Processes and Vegetative Feedbacks in Semi-Arid Regions
NASA Astrophysics Data System (ADS)
Sivandran, G.; Bras, R. L.
2009-12-01
Many soils, especially those in arid and semi-arid regions, develop compacted surface layers with hydrologic properties different to those of the underlying layers. These layers, referred to as soil crusts when dry and soil seals when wet, may be only a few millimeters thick but can have a significant impact by altering the partitioning of rainfall, increasing surface runoff and reducing infiltration. This reduces the quantity of water entering the root zone, limiting the amount of water available for primary productivity, while increasing erosion and negatively impacting seedling establishment and growth. Vegetation significantly alters soil hydraulic properties in the immediate vicinity of a vegetation patch. Root action has been shown to create macropores, increasing infiltration capacity around the base of vegetation. Shading protects the soil from evaporation and the formation of soil seals/crusts. Experiments have confirmed large variations in infiltration rates in below canopy and bare soil patches. It is believed that a positive feedback may occur between seals/crusts and vegetation patches resulting in systems that exhibit ‘islands of fertility’. The bare soil patches act to increase the micro-catchment area of the vegetation patch, thereby collecting moisture from a far greater area than the immediate footprint of its rooting system. Vegetation then alters the soil conditions directly beneath it, allowing for increased infiltration of this extra moisture. A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was used to explore the role of dynamic soil properties on hydrologic and energy fluxes. Rather than assigning the hydraulic properties of the surface soils a priori, soil seals/crusts were allowed to develop in the model depending on vegetation cover, soil type and rainfall intensity. The effects of plant shading and root action on infiltration in the immediate vicinity of vegetation patches were also included. These changes introduced both spatial and temporal heterogeneity into soil hydraulic properties and allowed for simulation of plant-soil feedbacks. The semi-arid Lucky Hills basin in the Walnut Gulch Experimental Watershed in Arizona was used as a case study to investigate the role of dynamic soil properties, which occur at patch scales, on the larger basin scale hydrologic and energy fluxes (sensible and latent heats, net radiation and rainfall partitioning). The model was used to test the contribution of dynamic soil properties to the establishment of a positive feedback between vegetation and soils that leads to the ‘islands of fertility’ that have been observed in many semi-arid systems. The model was also used to investigate the role that plant-soil interactions play in providing both stability to the larger system during periods of consistent climate forcing and some resilience to disturbance during climate perturbations.
NASA Astrophysics Data System (ADS)
Wu, Minchao; Smith, Benjamin; Schurgers, Guy; Lindström, Joe; Rummukainen, Markku; Samuelsson, Patrick
2013-04-01
Terrestrial ecosystems have been demonstrated to play a significant role within the climate system, amplifying or dampening climate change via biogeophysical and biogeochemical exchange with the atmosphere and vice versa (Cox et al. 2000; Betts et al. 2004). Africa is particularly vulnerable to climate change and studies of vegetation-climate feedback mechanisms on Africa are still limited. Our study is the first application of A coupled Earth system model at regional scale and resolution over Africa. We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feedback to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feedback to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical rainforest and reduced precipitation over the Amazon Basin (Cox et al. 2000; Betts et al. 2004; Malhi et al. 2009). Opposite effects are seen in southern Senegal, southern Mali, northern Guinea and Guinea-Bissau, positive evapotranspiration feedback enhancing the cover of trees in forest and savannah, mitigating warming and promoting local moisture recycling as rainfall. We reveal that LAI-driven evapotranspiration feedback may reduced rainfall in parts of Africa, vegetation-climate feedbacks may significantly impact the magnitude and character of simulated changes in climate as well as vegetation and ecosystems in future scenario studies of this region. They should be accounted for in future studies of climate change and its impacts on Africa. Keywords: vegetation-climate feedback, regional climate model, evapotranspiration, CORDEX. References: Betts, R.A., Cox, P.M., Collins, M., Harris, P.P., Huntingford, C. & Jones, C.D. 2004. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology 78: 157-175. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. & Totterdell, I.J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184-187. Samuelsson, P., Jones, C., Wilĺen, U., Gollvik, S., Hansson, U. and coauthors. 2011. The Rossby Centre Regional Climate Model RCA3:Model description and performance. Tellus 63A, 4-23. Smith, B., Prentice, I. C. and Sykes, M. T. 2001. Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecol. Biogeog. 10, 621-637 Smith, B., Samuelsson, P., Wramneby, A. & Rummukainen, M. 2011. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications. Tellus 63A: 87-106.
Ecosystem-Vegetation Dynamics in sub-arctic Stordalen Mire, Sweden
NASA Astrophysics Data System (ADS)
Mugnani, M. P.; Varner, R. K.; Steele, K.; Frey, S. D.; Crill, P. M.
2012-12-01
Increased global temperatures have contributed to the thaw of permafrost and a subsequent atmospheric release of stored methane (CH4) from sub-arctic ecosystems. Palsas, small frost uplifted mounds that support specialized dry-tolerant vegetation species, degrade when permafrost thaws, allowing other species such a Sphagnum and Eriophorum to encroach on the microhabitats and outcompete other species, altering the carbon feedback into the thin arctic soil. Other climate change-related events including increased precipitation, seasonal temperature abnormalities and changes in humidity and nutrient availability may alter vegetation dynamics in terms of diversity and abundance in sub-arctic regions. During July 2012, measurements of vegetation composition and species abundance estimates were made in Stordalen Mire (68° 21' N, 19° 03' E), Abisko Sweden, two hundred kilometers north of the Arctic Circle. The mire is an area of discontinuous permafrost populated by micro-ecosystems that vary in vegetation species and abundance depending on growth conditions. All ecosystems provide beneficial services to support a range of life forms including rodents, birds, insects and reindeer. Five representative ecosystems of the mire were chosen to conduct studies on vegetation diversity and percent cover-based abundance: palsa, Eriophorum-dominated fen, Sphagnum-dominated peatland, lakeshore edge and lakeside heath. In each ecosystem vegetation species were recorded in six transects with quadrats along with a corresponding percent cover estimation and scale number based on the Braun-Blanquet percent cover method. To determine nutrient dynamics between ecosystems, soil peat samples were also taken at random from all ecosystem transects. These were analyzed for carbon and inorganic nitrogen as well as ammonium and nitrate. In the vegetation data analysis, the Shannon-Wiener Diversity Index showed that the lakeside heath ecosystem was the most diverse and even in species distribution followed by lakeshore edge, palsa, Sphagnum and Eriophorum fen. These results, in addition to species composition data, suggested correlations between ecosystem dynamics and species diversity that could be used to extrapolate predictions about future mire ecosystem status and vegetation composition as climate change and permafrost thaw continues.
Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem
NASA Astrophysics Data System (ADS)
Biber, P.; Seifert, S.; Zaplata, M. K.; Schaaf, W.; Pretzsch, H.; Fischer, A.
2013-12-01
We investigated surface and vegetation dynamics in the artificial initial ecosystem "Chicken Creek" (Lusatia, Germany) in the years 2006-2011 across a wide spectrum of empirical data. We scrutinized three overarching hypotheses concerning (1) the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2) the effects of the latter on the occurrence of grouped plant species, and (3) vegetation density effects on terrain surface change. Our data comprise and conflate annual vegetation monitoring results, biennial terrestrial laser scans (starting in 2008), annual groundwater levels, and initially measured soil characteristics. The empirical evidence mostly confirms the hypotheses, revealing statistically significant relations for several goal variables: (1) the surface structure properties, local rill density, local relief energy and terrain surface height change; (2) the cover of different plant groups (annual, herbaceous, grass-like, woody, Fabaceae), and local vegetation height; and (3) terrain surface height change showed significant time-dependent relations with a variable that proxies local plant biomass. Additionally, period specific effects (like a calendar-year optimum effect for the occurrence of Fabaceae) were proven. Further and beyond the hypotheses, our findings on the spatiotemporal dynamics during the system's early development grasp processes which generally mark the transition from a geo-hydro-system towards a bio-geo-hydro system (weakening geomorphology effects on substrate surface dynamics, while vegetation effects intensify with time), where pure geomorphology or substrate feedbacks are changing into vegetation-substrate feedback processes.
NASA Astrophysics Data System (ADS)
Argaman, E.; Egozi, R.; Goldshlager, N.
2012-04-01
Water availability in arid regions is a major limiting factor, which affect plant development. Therefore, knowledge about preliminary and ongoing spatial & temporal conditions (e.g. land surface properties, hydrological regime and vegetation dynamics) can improve greatly afforestation practice. The Ambassadors forest is one of the Jewish National Fund (JNF) new afforestation projects (initiated on 2005), which rely on water harvesting irrigation systems, located at the northern Negev region, Israel. Temporal and spatial processes are studied utilizing ground, air-borne and space-borne techniques for assessment of surface processes, that take place due to significant land-use change. Since 2005 the area shows significant variation of surface energy balance components which impact the spatial and temporal forest generation. Both human and climate affect these parameters, hence their influence is essential for future study of the region. Parameters of surface Albedo & Temperature and Vegetation dynamics are gathered by space-borne sensors (e.g. MODIS, Landsat & ALI) and verified at field scale in conjunction with ground-truth measurements of climate and soil properties. In addition, the project study various scenarios that might result from diverse climate trajectories that impact soil formation factors and therefore forest development. Preliminary results show that surface physical & ecoligical properties had changed significantly since the aforestation project began, comparing previous years. Sharp increase of surface albedo detected since 2005 that raised from 0.25 to 0.32, while vegetation density, estimated from NDVI, had dropped from annaul average of 0.21 down to 0.13 during 10-year time period. These changes are related to human interferance. The current paper presents the first phase of the long-term study of the Remote Sensing analysis and the current surface monitoring phase.
Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen
2015-01-01
In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.
Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen
2015-01-01
In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum. PMID:25560310
R.E. Haugo; C.B. Halpern; J.D. Bakker
2011-01-01
Forest-meadow ecotones are prominent and dynamic features of mountain ecosystems. Understanding how vegetation changes are shaped by long-term interactions with trees and are mediated by the physical environment is critical to predicting future trends in biological diversity across these landscapes. We examined 26 yr of vegetation change (1983-2009) across 20 forest-...
Becky K. Kerns; Margeret M. Moore; Stephen C. Hart
2001-01-01
Our objectives were to examine the relationship between contemporary vegetation and surface soil phytolith assemblages, and use phytoliths and δ13C of soil organic matter (SOM) to explore forest-grassland vegetation dynamics. We established plots within three canopy types (open, old-growth, and dense young pine) with different grass species compositions in a...
The Fire and Fuels Extension to the Forest Vegetation Simulator
Elizabeth Reinhardt; Nicholas L. Crookston
2003-01-01
The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behaviour over time, in the context of stand development and management. Existing models of fire behavior and fire effects were added to FVS to form this extension. New submodels representing snag and fuel dynamics were created to complete the linkages...
James H. Miller; Bruce R. Zutter; Ray A. Newbold; M. Boyd Edwards; Shepard M. Zedaker
2003-01-01
Increasingly, pine plantations worldwide are grown using early control of woodv and/or herbaceous vegetation. Assuredsustainablepractices require long-term data on pine plantation development detailing patterns and processes to understand both crop-competition dynamics and the role of stand participants in providing multiple attributes such as biodiversity conservation...
Differentiating climatic and successional influences on long-term development of a marsh
Singer, Darren K.; Jackson, Stephen T.; Madsen, Barbara J.; Wilcox, Douglas A.
1996-01-01
Comparison of long—term records of local wetland vegetation dynamics with regional, climate—forced terrestrial vegetation changes can be used to differentiate the rates and effects of autogenic successional processes and allogenic environmental change on wetland vegetation dynamics. We studied Holocene plant macrofossil and pollen sequences from Portage Marsh, a shallow, 18—ha marsh in northeastern Indiana. Between 10 000 and 5700 yr BP the basin was occupied by a shallow, open lake, while upland vegetation consisted of mesic forests of Pinus, Quercus, Ulmus, and Carya. At 5700 yr BP the open lake was replaced rapidly by a shallow marsh, while simultaneously Quercus savanna developed on the surrounding uplands. The marsh was characterized by periodic drawdowns, and the uplands by periodic fires. Species composition of the marsh underwent further changes between 3000 and 2000 yr BP. Upland pollen spectra at Portage Marsh and other sites in the region shifted towards more mesic vegetation during that period. The consistency and temporal correspondence between the changes in upland vegetation and marsh vegetation indicate that the major vegetational changes in the marsh during the Holocene resulted from hydrologic changes forced by regional climate change. Progressive shallowing of the basin by autogenic accumulation of organic sediment constrained vegetational responses to climate change but did not serve as the direct mechanism of change.
Very High Spectral Resolution Imaging Spectroscopy: the Fluorescence Explorer (FLEX) Mission
NASA Technical Reports Server (NTRS)
Moreno, Jose F.; Goulas, Yves; Huth, Andreas; Middleton, Elizabeth; Miglietta, Franco; Mohammed, Gina; Nedbal, Ladislav; Rascher, Uwe; Verhoef, Wouter; Drusch, Matthias
2016-01-01
The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the FLORIS spectrometer, with a spectral resolution in the range of 0.3 nm, and is designed to fly in tandem with Copernicus Sentinel-3, in order to provide all the necessary spectral / angular information to disentangle emitted fluorescence from reflected radiance, and to allow proper interpretation of the observed fluorescence spatial and temporal dynamics.
NASA Astrophysics Data System (ADS)
Dildora, Aralova; Toderich, Kristina; Dilshod, Gafurov
2016-08-01
Steadily rising temperature anomalies in last decades are causing changes in vegetation patterns for sensitive to climate change in arid and semi-arid dryland ecosystems. After desiccation of the Aral Sea, Uzbekistan has been left with the challenge to develop drought and heat stress monitoring system and tools (e.g., to monitor vegetation status and/crop pattern dynamics) with using remote sensing technologies in broad scale. This study examines several climate parameters, NDVI and drought indexes within geostatistical method to predict further vegetation status in arid and semi-arid zones of landscapes. This approaches aimed to extract and utilize certain variable environmental data (temperature and precipitation) for assessment and inter-linkages of vegetation cover dynamics, specifically related to predict degraded and recovered zones or desertification process in the drylands due to scarcity of water resources and high risks of climate anomalies in fragile ecosystem of Uzbekistan.
NASA Astrophysics Data System (ADS)
Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team
As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.
DOT National Transportation Integrated Search
2008-10-01
This alternative vegetation study is an important component of NYSDOTs efforts to pursue : environmentally sensitive, lower maintenance, and cost effective vegetation management : techniques that can be integrated into the overall vegetation manag...
Incorporating geometrically complex vegetation in a computational fluid dynamic framework
NASA Astrophysics Data System (ADS)
Boothroyd, Richard; Hardy, Richard; Warburton, Jeff; Rosser, Nick
2015-04-01
Vegetation is known to have a significant influence on the hydraulic, geomorphological, and ecological functioning of river systems. Vegetation acts as a blockage to flow, thereby causing additional flow resistance and influencing flow dynamics, in particular flow conveyance. These processes need to be incorporated into flood models to improve predictions used in river management. However, the current practice in representing vegetation in hydraulic models is either through roughness parameterisation or process understanding derived experimentally from flow through highly simplified configurations of fixed, rigid cylinders. It is suggested that such simplifications inadequately describe the geometric complexity that characterises vegetation, and therefore the modelled flow dynamics may be oversimplified. This paper addresses this issue by using an approach combining field and numerical modelling techniques. Terrestrial Laser Scanning (TLS) with waveform processing has been applied to collect a sub-mm, 3-dimensional representation of Prunus laurocerasus, an invasive species to the UK that has been increasingly recorded in riparian zones. Multiple scan perspectives produce a highly detailed point cloud (>5,000,000 individual data points) which is reduced in post processing using an octree-based voxelisation technique. The method retains the geometric complexity of the vegetation by subdividing the point cloud into 0.01 m3 cubic voxels. The voxelised representation is subsequently read into a computational fluid dynamic (CFD) model using a Mass Flux Scaling Algorithm, allowing the vegetation to be directly represented in the modelling framework. Results demonstrate the development of a complex flow field around the vegetation. The downstream velocity profile is characterised by two distinct inflection points. A high velocity zone in the near-bed (plant-stem) region is apparent due to the lack of significant near-bed foliage. Above this, a zone of reduced velocity is found where the bulk of the vegetation blockage is more evenly distributed. Finally, flow rapidly recovers towards the free-stream region. Analysis of the pressure field demonstrates that drag force is non-linearly distributed over the vegetation. In the downstream direction, the drag force decreases through the vegetation. The experiment is extended to emulate vegetation reconfiguration in the flow, and is achieved through rotation of the vegetation about a fixed position (roots) on the bed. The experiment demonstrates a reduction in the total drag force and a shift in the contribution of different drag mechanisms as the degree of rotation increases. In the upright state, form drag dominates, but with additional rotation, the contribution of viscous drag increases. Consequently, the total drag force is found to decrease by approximately one third between the upright and fully rotated states of reconfiguration. Explicit representation of vegetation geometry therefore enables a re-evaluation of vegetative flow resistance. This presents an opportunity to move away from the conventional methods of representing vegetation in hydraulic models, i.e. roughness parameterisation, in favour of a more physically determined approach.
Vegetation dynamics and responses to climate change and human activities in Central Asia.
Jiang, Liangliang; Guli Jiapaer; Bao, Anming; Guo, Hao; Ndayisaba, Felix
2017-12-01
Knowledge of the current changes and dynamics of different types of vegetation in relation to climatic changes and anthropogenic activities is critical for developing adaptation strategies to address the challenges posed by climate change and human activities for ecosystems. Based on a regression analysis and the Hurst exponent index method, this research investigated the spatial and temporal characteristics and relationships between vegetation greenness and climatic factors in Central Asia using the Normalized Difference Vegetation Index (NDVI) and gridded high-resolution station (land) data for the period 1984-2013. Further analysis distinguished between the effects of climatic change and those of human activities on vegetation dynamics by means of a residual analysis trend method. The results show that vegetation pixels significantly decreased for shrubs and sparse vegetation compared with those for the other vegetation types and that the degradation of sparse vegetation was more serious in the Karakum and Kyzylkum Deserts, the Ustyurt Plateau and the wetland delta of the Large Aral Sea than in other regions. The Hurst exponent results indicated that forests are more sustainable than grasslands, shrubs and sparse vegetation. Precipitation is the main factor affecting vegetation growth in the Kazakhskiy Melkosopochnik. Moreover, temperature is a controlling factor that influences the seasonal variation of vegetation greenness in the mountains and the Aral Sea basin. Drought is the main factor affecting vegetation degradation as a result of both increased temperature and decreased precipitation in the Kyzylkum Desert and the northern Ustyurt Plateau. The residual analysis highlighted that sparse vegetation and the degradation of some shrubs in the southern part of the Karakum Desert, the southern Ustyurt Plateau and the wetland delta of the Large Aral Sea were mainly triggered by human activities: the excessive exploitation of water resources in the upstream areas of the Amu Darya basin and oil and natural gas extraction in the southern part of the Karakum Desert and the southern Ustyurt Plateau. The results also indicated that after the collapse of the Soviet Union, abandoned pastures gave rise to increased vegetation in eastern Kazakhstan, Kyrgyzstan and Tajikistan, and abandoned croplands reverted to grasslands in northern Kazakhstan, leading to a decrease in cropland greenness. Shrubs and sparse vegetation were extremely sensitive to short-term climatic variations, and our results demonstrated that these vegetation types were the most seriously degraded by human activities. Therefore, regional governments should strive to restore vegetation to sustain this fragile arid ecological environment. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bere, E.; Veierod, M. B.; Bjelland, M.; Klepp, K.-I.
2006-01-01
This study reports the effect of the Fruits and Vegetables Make the Marks intervention, a school-based fruit and vegetable intervention consisting of a home economics classroom component and parental involvement and encouraged participation in the Norwegian School Fruit Programme, all delivered during the school year of 2001-02. Nine randomly…
Satellite observed global variations in ecosystem-scale plant water storage
NASA Astrophysics Data System (ADS)
Tian, F.; Wigneron, J. P.; Brandt, M.; Fensholt, R.
2017-12-01
Plant water storage is a key component in ecohydrological processes and tightly coupled with global carbon and energy budgets. Field measurements of individual trees have revealed diurnal and seasonal variations in plant water storage across different tree species and sizes. However, global estimation of plant water storage is challenged by up-scaling from individual trees to an ecosystem scale. The L-band passive microwaves are sensitive to water stored in the stems, branches and leaves, with dependence on the vegetation structure. Thus, the L-band vegetation optical depth (L-VOD) parameter retrieved from satellite passive microwave observations can be used as a proxy for ecosystem-scale plant water storage. Here, we employ the recently developed SMOS (Soil Moisture and Ocean Salinity) L-VOD dataset to investigate spatial patterns in global plant water storage and its diurnal and seasonal variations. In addition, we compare the spatiotemporal patterns between plant water storage and canopy greenness (i.e., enhanced vegetation indices, EVI) to gain ecohydrological insights among different territorial biomes, including boreal forest and tropical woodland. Generally, seasonal dynamics of plant water storage is much smaller than canopy greenness, yet the temporal coupling of these two traits is totally different between boreal and tropical regions, which could be related to their strategies in plant water regulation.
Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model
NASA Astrophysics Data System (ADS)
Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom
2013-04-01
It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C pools and/or the surface pools vary with sand and silt richness, the highest values being reached with a combination of 50% silt and 25% sand while the lowest are for a 100% clay soil. Finally, LPJ is run for three cases corresponding to a stable, erosive and depositional soil profile. These simulations show how the model reacts and performs under erosion/deposition conditions which are recreated by changing the soil's texture and soil depth over time. We discuss the performance of the LPJ model in the context of accelerated erosion and conclusions drawn from the sensitivity analysis.
Fires: Pushing the Reset Button or a Flash in the Pan?
NASA Astrophysics Data System (ADS)
MacDonald, L. H.; Wagenbrenner, J. W.; Robichaud, P. R.; Nelson, P. A.; Kampf, S. K.; Brogan, D. J.
2016-12-01
High and moderate severity wildfires can reduce infiltration rates to less than 10 mm/hr, and the resulting surface runoff can increase small-scale peak flows by one or more orders of magnitude. Fires can increase hillslope erosion rates by several orders of magnitude, but this increase is less linear with rainfall intensity because it also depends on sediment supply and detachment processes as well as transport capacity. These localized and shorter-term effects have been relatively well documented, but there is much more uncertainty in how these fire-induced changes can lead to larger-scale and/or longer-term effects. The goal of this presentation is to provide a process-based analysis of how, where, and when wildfires can cause either longer-term or larger-scale changes, effectively resetting the system as opposed to a more transient "flash in the pan". An understanding of vegetation, climatic, and geomorphic dynamics are are critical for predicting larger-scale and longer-term effects. First is the potential for the vegetation to return to pre-fire conditions, and this depends on vegetation type, spatial extent of the fire, and if the pre-fire vegetation is marginalized by climate change, land use, or other factors. The trajectory of post-fire regrowth controls the duration of increased runoff and erosion as well as the size and severity of future fires, which then sets the scene for longer-term hydrologic and geomorphic change. Climate defines the dominant storm type and how they match up with the spatial extent of a fire. Historic data help estimate the extent and magnitude of post-fire rainfall, but there is a strong stochastic component and the more extreme events are of greatest concern. Geomorphic controls on larger-scale effects include the valley and drainage network characteristics that help govern the storage and delivery of water and sediment. Assessing each component involves multiple site factors, but the biggest problem is understanding their complex interactions to predict resource impacts, landscape change over different temporal and spatial scales, and the potential to ameliorate adverse impacts. Data from multiple field studies are used to illustrate the range of post-fire effects, selected interactions of the different components, and identify key research needs.
Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T
2015-01-01
Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.
Coverage-dependent amplifiers of vegetation change on global water cycle dynamics
NASA Astrophysics Data System (ADS)
Feng, Huihui; Zou, Bin; Luo, Juhua
2017-07-01
The terrestrial water cycle describes the circulation of water worldwide from one store to another via repeated evapotranspiration (E) from land and precipitation (P) back to the surface. The cycle presents significant spatial variability, which is strongly affected by natural climate and anthropogenic influences. As one of the major anthropogenic influences, vegetation change unavoidably alters surface property and subsequent the terrestrial water cycle, while its contribution is yet difficult to isolate from the mixed influences. Here, we use satellite and in-situ datasets to identify the terrestrial water cycle dynamics in spatial detail and to evaluate the impact of vegetation change. Methodologically, the water cycle is identified by the indicator of difference between evapotranspiration and precipitation (E-P). Then the scalar form of the indicator's trend (ΔE + ΔP) is used for evaluating the dynamics of water cycle, with the positive value means acceleration and negative means deceleration. Then, the contributions of climate and vegetation change are isolated by the trajectory-based method. Our results indicate that 4 accelerating and 4 decelerating water cycles can be identified, affecting 42.11% of global land. The major water cycle type is characterized by non-changing precipitation and increasing evapotranspiration (PNO-EIN), which covers 20.88% of globally land. Vegetation change amplifies both accelerating and decelerating water cycles. It tends to intensify the trend of the decelerating water cycles, while climate change weakens the trend. In the accelerating water cycles, both vegetation and climate change present positive effect to intensify the trend. The effect of plant cover change varies with the coverage. In particular, vegetation change intensifies the water cycle in moderately vegetated regions (0.1 < NDVI < 0.6), but weakens the cycle in sparsely or highly vegetated regions (NDVI < 0.1 or 0.6 < NDVI < 0.8). In extremely vegetated regions (NDVI > 0.85), the water cycle is accelerated because of the significant increase of precipitation. We conclude that vegetation change acts as an amplifier for both accelerating and decelerating terrestrial water cycles, depending on the degree of vegetation coverage.
On Budyko curve as a consequence of climate-soil-vegetation equilibrium hypothesis
NASA Astrophysics Data System (ADS)
Pande, S.
2012-04-01
A hypothesis that Budyko curve is a consequence of stable equilibriums of climate-soil-vegetation co-evolution is tested at biome scale. We assume that i) distribution of vegetation, soil and climate within a biome is a distribution of equilibriums of similar soil-vegetation dynamics and that this dynamics is different across different biomes and ii) soil and vegetation are in dynamic equilibrium with climate while in static equilibrium with each other. In order to test the hypothesis, a two stage regression is considered using MOPEX/Hydrologic Synthesis Project dataset for basins in eastern United States. In the first stage, multivariate regression (Seemingly Unrelated Regression) is performed for each biome with soil (estimated porosity and slope of soil water retention curve) and vegetation characteristics (5-week NDVI gradient) as dependent variables and aridity index, vegetation and soil characteristics as independent variables for respective dependent variables. The regression residuals of the first stage along with aridity index then serve as second stage independent variables while actual vaporization to precipitation ratio (vapor index) serving as dependent variable. Insignificance, if revealed, of a first stage parameter allows us to reject the role of corresponding soil or vegetation characteristics in the co-evolution hypothesis. Meanwhile the significance of second stage regression parameter corresponding to a first stage residual allow us to reject the hypothesis that Budyko curve is a locus "solely" of climate-soil-vegetation co-evolution equilibrium points. Results suggest lack of evidence for soil-vegetation co-evolution in Prairies and Mixed/SouthEast Forests (unlike in Deciduous Forests) though climate plays a dominant role in explaining within biome soil and vegetation characteristics across all the biomes. Preliminary results indicate absence of effects beyond climate-soil-vegetation co-evolution in explaining the ratio of annual total minimum monthly flows to precipitation in Deciduous Forests though other three biome types show presence of effects beyond co-evolutionary. Such an analysis can yield insights into the nature of hydrologic change when assessed along the Budyko curve as well as non co-evolutionary effects such as anthropogenic effects on basin scale annual water balances.
NASA Astrophysics Data System (ADS)
van Eck, C. M.; Morfopoulos, C.; Betts, R. A.; Chang, J.; Ciais, P.; Friedlingstein, P.; Regnier, P. A. G.
2016-12-01
The frequency and severity of extreme climate events such as droughts, extreme precipitation and heatwaves are expected to increase in our changing climate. These extreme climate events will have an effect on vegetation either by enhanced or reduced productivity. Subsequently, this can have a substantial impact on the terrestrial carbon sink and thus the global carbon cycle, especially as extreme climate events are expected to increase in frequency and severity. Connecting observational datasets with modelling studies provides new insights into these climate-vegetation interactions. This study aims to compare extremes in vegetation productivity as derived from observations with that of Dynamic Global Vegetation Models (DGVMs). In this case GIMMS-NDVI 3g is selected as the observational dataset and both JULES (Joint UK Land Environment Simulator) and ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) as the DGVMs. Both models are forced with PGFv2 Global Meteorological Forcing Dataset according to the ISI-MIP2 protocol for historical runs. Extremes in vegetation productivity are the focal point, which are identified as NDVI anomalies below the 10th percentile or above the 90th percentile during the growing season, referred to as browning or greening events respectively. The monthly NDVI dataset GIMMS-NDVI 3g is used to obtain the location in time and space of the vegetation extremes. The global GIMMS-NDVI 3g dataset has been subdivided into IPCC's SREX-regions for which the NDVI anomalies are calculated and the extreme thresholds are determined. With this information we can identify the location in time and space of the browning and greening events in remotely-sensed vegetation productivity. The same procedure is applied to the modelled Gross Primary Productivity (GPP) allowing a comparison between the spatial and temporal occurrence of the browning and greening events in the observational dataset and the models' output. The capacity of the models to catch observed extremes in vegetation productivity is assessed and compared. Factors contributing to observed and modelled vegetation browning/greening extremes are analysed. The results of this study provide a stepping stone to modelling future extremes in vegetation productivity.
USDA-ARS?s Scientific Manuscript database
The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation; interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-year longitudinal study of spatially explicit growth patterns of woody ve...
2012-01-01
Background The aim of the paper is to assess by the principal components analysis (PCA) the heavy metal contamination of soil and vegetables widely used as food for people who live in areas contaminated by heavy metals (HMs) due to long-lasting mining activities. This chemometric technique allowed us to select the best model for determining the risk of HMs on the food chain as well as on people's health. Results Many PCA models were computed with different variables: heavy metals contents and some agro-chemical parameters which characterize the soil samples from contaminated and uncontaminated areas, HMs contents of different types of vegetables grown and consumed in these areas, and the complex parameter target hazard quotients (THQ). Results were discussed in terms of principal component analysis. Conclusion There were two major benefits in processing the data PCA: firstly, it helped in optimizing the number and type of data that are best in rendering the HMs contamination of the soil and vegetables. Secondly, it was valuable for selecting the vegetable species which present the highest/minimum risk of a negative impact on the food chain and human health. PMID:23234365
Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid
2017-09-05
Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.
Ai, Shiwei; Guo, Rui; Liu, Bailin; Ren, Liang; Naeem, Sajid; Zhang, Wenya; Zhang, Yingmei
2016-10-01
Vegetables and crops can take up heavy metals when grown on polluted lands. The concentrations and dynamic uptake of heavy metals vary at different growth points for different vegetables. In order to assess the safe consumption of vegetables in weak alkaline farmlands, Chinese cabbage and radish were planted on the farmlands of Baiyin (polluted site) and Liujiaxia (relatively unpolluted site). Firstly, the growth processes of two vegetables were recorded. The growth curves of the two vegetables observed a slow growth at the beginning, an exponential growth period, and a plateau towards the end. Maximum concentrations of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were presented at the slow growth period and showed a downtrend except the radish shoot. The concentrations of heavy metals (Cu, Zn, and Cd) in vegetables of Baiyin were higher than those of Liujiaxia. In the meanwhile, the uptake contents continued to increase during the growth or halted at maximum at a certain stage. The maximum uptake rates were found on the maturity except for the shoot of radish which took place at the exponential growth stages of root. The sigmoid model could simulate the dynamic processes of growth and heavy metals uptake of Chinese cabbage and radish. Conclusively, heavy metals have higher bioaccumulation tendency for roots in Chinese cabbage and for shoots in radish.
Plant functional coexistence and influence on the eco-hydrologic response of semiarid hillslopes
NASA Astrophysics Data System (ADS)
Soltanjalili, Mohammadjafar; Saco, Patricia M.; Willgoose, Garry
2016-04-01
Through its influence on rainfall-runoff and erosion-deposition processes, vegetation remarkably regulates different aspects of landscape processes. Here, the influence of different plant functional dynamics on the coexistence of different species in arid and semi-arid regions with banded vegetation patterns is investigated. Simulations capture the coevolution and coexistence of two different species interacting with hydrology in hillslopes with gentle slopes. The dynamic vegetation model simulates the dynamics of overland runoff, soil moisture, facilitation mechanisms (evaporation reduction through shading and enhanced infiltration by vegetation), local and non-local seed dispersal, competition through water uptake and changes in the biomass of the two species. Here for simplicity the two species are assumed to use water from the same soil depth. Results of the coexistence of the two species capture differences in facilitation-competition interactions caused by specific types of vegetation with varying hydrologic traits. The results illustrate that the dominance of facilitation or competition feedbacks which determine either the coexistence of the two species or survival of only one of them strongly depends on the characteristics and hydrologic traits of the coexisting species and the severity of water stresses. We therefore argue that our results should stimulate further research into the role of interspecific and intraspecific feedbacks between different plant species and specifically the influence of the resulting vegetation community on landform evolution processes.
USDA-ARS?s Scientific Manuscript database
The consumption of vegetables is widespread in the world and represents a major component of the human diet. Microorganisms (mainly lactic acid bacteria, yeasts, Enterobacteriaceae, Propionibacterium and Clostridium species) play a significant role in vegetable fermentations, affecting the quality a...
Trofholz, Amanda C.; Tate, Allan D.; Draxten, Michelle L.; Rowley, Seth S.; Schulte, Anna K.; Neumark-Sztainer, Dianne; MacLehose, Richard F.; Berge, Jerica M.
2016-01-01
Background Little is known about the healthfulness of foods offered at family meals or the relationship between the food’s healthfulness and child overall dietary intake. Objective This exploratory study uses a newly-developed Healthfulness of Meal (HOM) index to examine the association between the healthfulness of foods served at family dinners and child dietary intake. Design Direct observational, cross-sectional study. Participants/setting Primarily low-income, minority families (n=120) video-recorded 8 days of family dinners and completed a corresponding meal screener. Dietary recalls were completed on the target child (6–12 years old). The HOM index was used to measure meal healthfulness and included component scores for whole fruit, 100% juice, vegetables, dark green vegetables, dairy, protein, added sugars, and high sodium foods. Main outcome measures Child dietary intake measured by three 24-hour dietary recalls. Statistical analyses performed Linear regression models estimated the association between the foods served at dinner meals and overall child dietary intake. Results The majority of coded meals included foods from protein and high sodium components; over half included foods from dairy and vegetable components. Nearly half of the meals had an added sugar component food (e.g., soda, dessert). Few meals served foods from fruit, 100% juice, or dark green vegetable components. Many components served at family dinner meals were significantly associated with child daily intake of those same foods (i.e., dark green, non-dark green vegetables, dairy, and added sugars). The HOM index total score was significantly associated with child HEI score. Conclusions This study represents the first report of a new methodology to collect data of foods served at family dinners. Results indicated a significant association between the majority of components served at family dinner meals and child overall dietary intake. Validation of the HOM index and video-recorded family meal methodology is needed to strengthen these research methods for use in future studies. PMID:27666378
Dynamics of active layer in wooded palsas of northern Quebec
NASA Astrophysics Data System (ADS)
Jean, Mélanie; Payette, Serge
2014-02-01
Palsas are organic or mineral soil mounds having a permafrost core. Palsas are widespread in the circumpolar discontinuous permafrost zone. The annual dynamics and evolution of the active layer, which is the uppermost layer over the permafrost table and subjected to the annual freeze-thaw cycle, are influenced by organic layer thickness, snow depth, vegetation type, topography and exposure. This study examines the influence of vegetation types, with an emphasis on forest cover, on active layer dynamics of palsas in the Boniface River watershed (57°45‧ N, 76°00‧ W). In this area, palsas are often colonized by black spruce trees (Picea mariana (Mill.) B.S.P.). Thaw depth and active layer thickness were monitored on 11 wooded or non-wooded mineral and organic palsas in 2009, 2010 and 2011. Snow depth, organic layer thickness, and vegetation types were assessed. The mapping of a palsa covered by various vegetation types and a large range of organic layer thickness were used to identify the factors influencing the spatial patterns of thaw depth and active layer. The active layer was thinner and the thaw rate slower in wooded palsas, whereas it was the opposite in more exposed sites such as forest openings, shrubs and bare ground. Thicker organic layers were associated with thinner active layers and slower thaw rates. Snow depth was not an important factor influencing active layer dynamics. The topography of the mapped palsa was uneven, and the environmental factors such as organic layer, snow depth, and vegetation types were heterogeneously distributed. These factors explain a part of the spatial variation of the active layer. Over the 3-year long study, the area of one studied palsa decreased by 70%. In a context of widespread permafrost decay, increasing our understanding of factors that influence the dynamics of wooded and non-wooded palsas and understanding of the role of vegetation cover will help to define the response of discontinuous permafrost landforms to changing climatic conditions.
A nonlinear coupled soil moisture-vegetation model
NASA Astrophysics Data System (ADS)
Liu, Shikuo; Liu, Shida; Fu, Zuntao; Sun, Lan
2005-06-01
Based on the physical analysis that the soil moisture and vegetation depend mainly on the precipitation and evaporation as well as the growth, decay and consumption of vegetation a nonlinear dynamic coupled system of soil moisture-vegetation is established. Using this model, the stabilities of the steady states of vegetation are analyzed. This paper focuses on the research of the vegetation catastrophe point which represents the transition between aridness and wetness to a great extent. It is shown that the catastrophe point of steady states of vegetation depends mainly on the rainfall P and saturation value v0, which is selected to balance the growth and decay of vegetation. In addition, when the consumption of vegetation remains constant, the analytic solution of the vegetation equation is obtained.
An overview of the fire and fuels extension to the forest vegetation simulator
Sarah J. Beukema; Elizabeth D. Reinhardt; Werner A. Kurz; Nicholas L. Crookston
2000-01-01
The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) has been developed to assess the risk, behavior, and impact of fire in forest ecosystems. This extension to the widely-used stand-dynamics model FVS simulates the dynamics of snags and surface fuels as they are affected by stand management (of trees or fuels), live tree growth and mortality,...
Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk
2017-01-01
In frequent fire forests of the western United States, a legacy of fire suppression coupled with increases in fire weather severity have altered fire regimes and vegetation dynamics. When coupled with projected climate change, these conditions have the potential to lead to vegetation type change and altered carbon (C) dynamics. In the Sierra Nevada, fuels...
Contribution of LANDSAT-4 thematic mapper data to geologic exploration
NASA Technical Reports Server (NTRS)
Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.
1983-01-01
The increased number of carefully selected narrow spectral bands and the increased spatial resolution of thematic mapper data over previously available satellite data contribute greatly to geologic exploration, both by providing spectral information that permits lithologic differentiation and recognition of alteration and spatial information that reveals structure. As vegetation and soil cover increase, the value of spectral components of TM data decreases relative to the value of the spatial component of the data. However, even in vegetated areas, the greater spectral breadth and discrimination of TM data permits improved recognition and mapping of spatial elements of the terrain. As our understanding of the spectral manifestations of the responses of soils and vegetation to unusual chemical environments increases, the value of spectral components of TM data to exploration will greatly improve in covered areas.
Wu, Jianping; Liu, Zhanfeng; Huang, Guomin; Chen, Dima; Zhang, Weixin; Shao, Yuanhu; Wan, Songze; Fu, Shenglei
2014-09-02
Reforested plantations have substantial effects on terrestrial carbon cycling due to their large coverage area. Although understory plants are important components of reforested plantations, their effects on ecosystem carbon dynamics remain unclear. This study was designed to investigate the effects of vegetation removal/understory removal and tree girdling on soil respiration and ecosystem carbon dynamics in Eucalyptus plantations of South China with contrasting ages (2 and 24 years old). We conducted a field manipulation experiment from 2008 to 2009. Understory removal reduced soil respiration in both plantations, whereas tree girdling decreased soil respiration only in the 2-year-old plantations. The net ecosystem production was approximately three times greater in the 2-year-old plantations (13.4 t C ha(-1) yr(-1)) than in the 24-year-old plantations (4.2 t C h(-1) yr(-1)). The biomass increase of understory plants was 12.6 t ha(-1) yr(-1) in the 2-year-old plantations and 2.9 t ha(-1) yr(-1) in the 24-year-old plantations, accounting for 33.9% nd 14.1% of the net primary production, respectively. Our findings confirm the ecological importance of understory plants in subtropical plantations based on the 2 years of data. These results also indicate that Eucalyptus plantations in China may be an important carbon sink due to the large plantation area.
Atmospheric teleconnection influence on North American land surface phenology
NASA Astrophysics Data System (ADS)
Dannenberg, Matthew P.; Wise, Erika K.; Janko, Mark; Hwang, Taehee; Kolby Smith, W.
2018-03-01
Short-term forecasts of vegetation activity are currently not well constrained due largely to our lack of understanding of coupled climate-vegetation dynamics mediated by complex interactions between atmospheric teleconnection patterns. Using ecoregion-scale estimates of North American vegetation activity inferred from remote sensing (1982-2015), we examined seasonal and spatial relationships between land surface phenology and the atmospheric components of five teleconnection patterns over the tropical Pacific, north Pacific, and north Atlantic. Using a set of regression experiments, we also tested for interactions among these teleconnection patterns and assessed predictability of vegetation activity solely based on knowledge of atmospheric teleconnection indices. Autumn-to-winter composites of the Southern Oscillation Index (SOI) were strongly correlated with start of growing season timing, especially in the Pacific Northwest. The two leading modes of north Pacific variability (the Pacific-North American, PNA, and West Pacific patterns) were significantly correlated with start of growing season timing across much of southern Canada and the upper Great Lakes. Regression models based on these Pacific teleconnections were skillful predictors of spring phenology across an east-west swath of temperate and boreal North America, between 40°N-60°N. While the North Atlantic Oscillation (NAO) was not strongly correlated with start of growing season timing on its own, we found compelling evidence of widespread NAO-SOI and NAO-PNA interaction effects. These results suggest that knowledge of atmospheric conditions over the Pacific and Atlantic Oceans increases the predictability of North American spring phenology. A more robust consideration of the complexity of the atmospheric circulation system, including interactions across multiple ocean basins, is an important step towards accurate forecasts of vegetation activity.
Vegetation ecogeomorphology, dynamic equilibrium, and disturbance: chapter 7
Hupp, Cliff R.
2013-01-01
Early ecologists understood the need to document geomorphic form and process to explain plant species distributions. Although this relationship has been acknowledged for over a century, with the exception of a few landmark papers, only the past few decades have experienced intensive research on this interdisciplinary topic. Here the authors provide a summary of the intimate relations between vegetation and geomorphic/process on hillslopes and fluvial systems. These relations are separated into systems (primarily fluvial) in dynamic equilibrium and those that are in nonequilibrium conditions including the impacts of various human disturbances affecting landforms, geomorphic processes, and interrelated, attendant vegetation patterns and processes. The authors conclude with a conceptual model of stream regime focusing on sediment deposition, erosion, and equilibrium that can be expanded to organize and predict vegetation patterns and life history strategies.
Modeling Vegetation Growth Impact on Groundwater Recharge
NASA Astrophysics Data System (ADS)
Anurag, H.; Ng, G. H. C.; Tipping, R.
2017-12-01
Vegetation growth is affected by variability in climate and land-cover / land-use over a range of temporal and spatial scales. Vegetation also modifies water budget through interception and evapotranspiration and thus has a significant impact on groundwater recharge. Most groundwater recharge assessments represent vegetation using specified, static parameter, such as for leaf-area-index, but this neglects the effect of vegetation dynamics on recharge estimates. Our study addresses this gap by including vegetation growth in model simulations of recharge. We use NCAR's Community Land Model v4.5 with its BGC module (BGC is the new CLM4.5 biogeochemistry). It integrates prognostic vegetation growth with land-surface and subsurface hydrological processes and can thus capture the effect of vegetation on groundwater. A challenge, however, is the need to resolve uncertainties in model inputs ranging from vegetation growth parameters all the way down to the water table. We have compiled diverse data spanning meteorological inputs to subsurface geology and use these to implement ensemble model simulations to evaluate the possible effects of dynamic vegetation growth (versus specified, static vegetation parameterizations) on estimating groundwater recharge. We present preliminary results for select data-intensive test locations throughout the state of Minnesota (USA), which has a sharp east-west precipitation gradient that makes it an apt testbed for examining ecohydrologic relationships across different temperate climatic settings and ecosystems. Using the ensemble simulations, we examine the effect of seasonal to interannual variability of vegetation growth on recharge and water table depths, which has implications for predicting the combined impact of climate, vegetation, and geology on groundwater resources. Future work will include distributed model simulations over the entire state, as well as conditioning uncertain vegetation and subsurface parameters on remote sensing data and statewide water table records using data assimilation.
A vital link: water and vegetation in the Anthropocene
NASA Astrophysics Data System (ADS)
Gerten, D.
2013-10-01
This paper argues that the interplay of water, carbon and vegetation dynamics fundamentally links some global trends in the current and conceivable future Anthropocene, such as cropland expansion, freshwater use, and climate change and its impacts. Based on a review of recent literature including geographically explicit simulation studies with the process-based LPJmL global biosphere model, it demonstrates that the connectivity of water and vegetation dynamics is vital for water security, food security and (terrestrial) ecosystem dynamics alike. The water limitation of net primary production of both natural and agricultural plants - already pronounced in many regions - is shown to increase in many places under projected climate change, though this development is partially offset by water-saving direct CO2 effects. Natural vegetation can to some degree adapt dynamically to higher water limitation, but agricultural crops usually require some form of active management to overcome it - among them irrigation, soil conservation and eventually shifts of cropland to areas that are less water-limited due to more favourable climatic conditions. While crucial to secure food production for a growing world population, such human interventions in water-vegetation systems have, as also shown, repercussions on the water cycle. Indeed, land use changes are shown to be the second-most important influence on the terrestrial water balance in recent times. Furthermore, climate change (warming and precipitation changes) will in many regions increase irrigation demand and decrease water availability, impeding rainfed and irrigated food production (if not CO2 effects counterbalance this impact - which is unlikely at least in poorly managed systems). Drawing from these exemplary investigations, some research perspectives on how to further improve our knowledge of human-water-vegetation interactions in the Anthropocene are outlined.
Identification and Analysis of Bioactive Components of Fruit and Vegetable Products
ERIC Educational Resources Information Center
Mann, Francis M.
2015-01-01
Many small-molecule antioxidants found in whole fruits and vegetables are analyzed and identified in this laboratory module for upper-division biochemistry courses. During this experiment, students develop their knowledge of the bioactivity of fruit and vegetable products while learning techniques to identify vitamins and nutritionally derived…
DOT National Transportation Integrated Search
2012-03-01
"Re-vegetation strategies and programs for highway rights of way in both rural and urban areas are an importatn component of any : highway construction project. Vegetation is ued to stabilize soils to prevent sheet and gully erosion and to help in so...
NASA Astrophysics Data System (ADS)
Sivandran, Gajan; Bras, Rafael L.
2013-06-01
Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. In particular, the rooting strategies employed by vegetation can be critical to their survival. However, land surface models currently prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. Additionally, these models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings or competition from other plant species and therefore tend to underestimate the resilience of these ecosystems. To address the simplicity of the current representation of roots in land surface models, a new dynamic rooting scheme was incorporated into the framework of the distributed ecohydrological model tRIBS+VEGGIE. The new scheme optimizes the allocation of carbon to the root zone to reduce the perceived stress of the vegetation, so that root profiles evolve based upon local climate and soil conditions. The ability of the new scheme to capture the complex dynamics of natural systems was evaluated by comparisons to hourly timescale energy flux, soil moisture, and vegetation growth observations from the Walnut Gulch Experimental Watershed, Arizona. Robust agreement was found between the model and observations, providing confidence that the improved model is able to capture the multidirectional interactions between climate, soil, and vegetation at this site.
NASA Astrophysics Data System (ADS)
Lamb, B. T.; Tzortziou, M.; McDonald, K. C.
2017-12-01
Wetlands play a key role in Earth's carbon cycle. However, wetland carbon cycling exhibits a high level of spatiotemporal dynamism, and thus, is not as well understood as carbon cycling in other ecosystems. In order to accurately characterize wetland carbon cycling and fluxes, wetland vegetation phenology, seasonal inundation dynamics, and tidal regimes must be understood as these factors influence carbon generation and transport. Here, we use radar remote sensing to map wetland properties in the Chesapeake Bay, the largest estuary in the United States with more than 1,500 square miles of tidal wetlands, across a range of tidal amplitudes, salinity regimes, and soil organic matter content levels. We have been using Sentinel-1 and ALOS PALSAR-1 radar measurements to characterize vegetation and seasonal inundation dynamics with the future goal of characterizing salinity gradients and tidal regimes. Differences in radar backscatter from various surface targets has been shown to effectively discriminate between dry soil, wet soil, vegetated areas, and open water. Radar polarization differences and ratios are particularly effective at distinguishing between vegetated and non-vegetated areas. Utilizing these principles, we have been characterizing wetland types using supervised classification techniques including: Random Forest, Maximum Likelihood, and Minimum Distance. The National Wetlands Inventory has been used as training and validation data. Ideally, the techniques we outline in this research will be applicable to the characterization of wetlands in coastal areas outside of Chesapeake Bay.
Determination of Component Contents of Blend Oil Based on Characteristics Peak Value Integration.
Xu, Jing; Hou, Pei-guo; Wang, Yu-tian; Pan, Zhao
2016-01-01
Edible blend oil market is confused at present. It has some problems such as confusing concepts, randomly named, shoddy and especially the fuzzy standard of compositions and ratios in blend oil. The national standard fails to come on time after eight years. The basic reason is the lack of qualitative and quantitative detection of vegetable oils in blend oil. Edible blend oil is mixed by different vegetable oils according to a certain proportion. Its nutrition is rich. Blend oil is eaten frequently in daily life. Different vegetable oil contains a certain components. The mixed vegetable oil can make full use of their nutrients and make the nutrients more balanced in blend oil. It is conducive to people's health. It is an effectively way to monitor blend oil market by the accurate determination of single vegetable oil content in blend oil. The types of blend oil are known, so we only need for accurate determination of its content. Three dimensional fluorescence spectra are used for the contents in blend oil. A new method of data processing is proposed with calculation of characteristics peak value integration in chosen characteristic area based on Quasi-Monte Carlo method, combined with Neural network method to solve nonlinear equations to obtain single vegetable oil content in blend oil. Peanut oil, soybean oil and sunflower oil are used as research object to reconcile into edible blend oil, with single oil regarded whole, not considered each oil's components. Recovery rates of 10 configurations of edible harmonic oil is measured to verify the validity of the method of characteristics peak value integration. An effective method is provided to detect components content of complex mixture in high sensitivity. Accuracy of recovery rats is increased, compared the common method of solution of linear equations used to detect components content of mixture. It can be used in the testing of kinds and content of edible vegetable oil in blend oil for the food quality detection, and provide an effective reference for the creation of national standards.
Buffers and vegetative filter strips
Matthew J. Helmers; Thomas M. Isenhart; Michael G. Dosskey; Seth M. Dabney
2008-01-01
This chapter describes the use of buffers and vegetative filter strips relative to water quality. In particular, we primarily discuss the herbaceous components of the following NRCS Conservation Practice Standards.
Herbivore Impact on Tundra Plant Community Dynamics Using Long-term Remote Sensing Observation
NASA Astrophysics Data System (ADS)
Yu, Q.; Engstrom, R.; Shiklomanov, N. I.
2014-12-01
Arctic tundra biome is now experiencing dramatic environmental changes accentuated by summer sea-ice decline, permafrost thaw, and shrub expansion. Multi-decadal time-series of the Normalized Difference Vegetation Index (NDVI, a spectral metric of vegetation productivity) shows an overall "greening" trend across the Arctic tundra biome. Regional trends in climate plausibly explain large-scale patterns of increasing plant productivity, as diminished summer sea-ice extent warms the adjacent land causing tundra vegetation to respond positively (increased photosynthetic aboveground biomass). However, at more local scales, there is a great deal of spatial variability in NDVI trends that likely reflects differences in hydrology and soil conditions, disturbance history, and use by wildlife and humans. Particularly, habitat use by large herbivores, such as reindeer and caribou, has large impacts on vegetation dynamics at local and regional scales, but the role of herbivores in modulating the response of vegetation to warming climate has received little attention. This study investigates regional tundra plant community dynamics within inhabits of different sizes of wild caribou/reindeer herds across the Arctic using GIMMS NDVI (Normalized Difference Vegetation Index) 3g data product. The Taimyr herd in Russia is one of the largest herds in the world with a population increase from 450,000 in 1975 to about 1 million animals in 2000. The population of the porcupine caribou herd has fluctuated in the past three decades between 100,000 and 180,000. Time-series of the maximum NDVI within the inhabit area of the Taimyr herd has increased about 2% per decade over the past three decades, while within the inhabit area of the Porcupine herd the maximum NDVI has increased about 5% per decade. Our results indicate that the impact of large herbivores can be detected from space and further analyses on seasonal dynamics of vegetation indices and herbivore behavior may provide more understanding of the plant-herbivore interactions within the context of a 'greening' Arctic.
Negrin, Vanesa L; Spetter, Carla V; Asteasuain, Raúl O; Perillo, Gerardo M E; Marcovecchio, Jorge E
2011-01-01
Four sites were selected in a salt marsh in the Bahia Blanca Estuary (Argentina): (1) low marsh (flooded by the tide twice daily) vegetated by S. alterniflora; (2) non-vegetated low marsh; (3) high marsh (flooded only in spring tides) vegetated by S. alterniflora; (4) non-vegetated high marsh. The pH and Eh were measured in sediments, while dissolved nutrients (ammonium, nitrate, nitrite and phosphate) and particulate organic matter (POM) were determined in pore water. pH (6.2-8.7) was only affected by vegetation in low areas. Eh (from -300 to 250 mV) was lower at low sites than at high ones; in the latter, the values were higher in the non-vegetated sediments. The POM concentration was greater in the high marsh than in the low marsh, with no effect of vegetation. Ammonium was the most abundant nitrogen nutrient species in pore water, except in the non-vegetated high marsh where nitrate concentration was higher. All nitrogen nutrients were affected by both flooding and vegetation. Phosphate was always present in pore water at all sites throughout the year and its concentration varied within narrow limits, with no effect of flooding and greater values always at non-vegetated sites. Our results showed that the variability of the pore water composition within the marsh is greater than the temporal variation, meaning that both tidal flooding and vegetation are important in the dynamics of nutrients and organic matter in the sediment pore water.
Wang, Siyang; Xu, Xiaoting; Shrestha, Nawal; Zimmermann, Niklaus E.; Tang, Zhiyao; Wang, Zhiheng
2017-01-01
Analyzing how climate change affects vegetation distribution is one of the central issues of global change ecology as this has important implications for the carbon budget of terrestrial vegetation. Mapping vegetation distribution under historical climate scenarios is essential for understanding the response of vegetation distribution to future climatic changes. The reconstructions of palaeovegetation based on pollen data provide a useful method to understand the relationship between climate and vegetation distribution. However, this method is limited in time and space. Here, using species distribution model (SDM) approaches, we explored the climatic determinants of contemporary vegetation distribution and reconstructed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM, 18,000 14C yr BP) and Middle-Holocene (MH, 6000 14C yr BP). The dynamics of vegetation distribution since the LGM reconstructed by SDMs were largely consistent with those based on pollen data, suggesting that the SDM approach is a useful tool for studying historical vegetation dynamics and its response to climate change across time and space. Comparison between the modeled contemporary potential natural vegetation distribution and the observed contemporary distribution suggests that temperate deciduous forests, subtropical evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have low range fillings and are strongly influenced by human activities. In general, the Tibetan Plateau, North and Northeast China, and the areas near the 30°N in Central and Southeast China appeared to have experienced the highest turnover in vegetation due to climate change from the LGM to the present. PMID:28426780
NASA Astrophysics Data System (ADS)
Martinelli, Elisa; Michetti, Alessandro Maria; Colombaroli, Daniele; Mazzola, Eleonora; Motella De Carlo, Sila; Livio, Franz; Gilli, Adrian; Ferrario, Maria Francesca; Höbig, Nicole; Brunamonte, Fabio; Castelletti, Lanfredo; Tinner, Willy
2017-04-01
Combined pollen, charcoal and modeling evidence from the Insubria Region suggests that fire was a major driver of late Holocene vegetation change. However, the extent and timing of fire response dynamics are not clear yet. We use lacustrine sediments from Lago di Como (N-Italy, S-Alps) to assess if the reconstructed vegetation and fire dynamics were relevant at large scales and if they coincided in time with those observed at smaller sites. The lake, due to its size (142 km2) and economic potential, was very attractive for early land use and human presence in this area is well documented since ca. 10,000 yrs ago (Mesolithic). We used pollen, plant macrofossils and charcoal to reconstruct the vegetation composition and fire activity. During the Younger Dryas and the Early Holocene until ca. 8000 cal BP natural dynamics prevailed. Subsequently, land use and slash-and-burn activities increased at the Mesolithic-Neolithic transition and became widespread around ca. 6500 cal BP. Microscopic charcoal and numerical analyses demonstrate that anthropogenic fires had a determinant influence on long-term vegetation dynamics at regional scales in Insubria. Microscopic charcoal and pollen and spores indicative of land use show that human pressure intensified after ca. 5300 cal yr BP and even more since ca. 4300 cal yr BP. Our results suggest that important species which disappeared or were strongly reduced by land use and fire (e.g. Abies alba, Tilia, Ulmus) will potentially reestablish in the Lago di Como area and elsewhere in Insubria, if land abandonment initiated in the 1950s will continue.
NASA Astrophysics Data System (ADS)
Papastefanou, P.; Fleischer, K.; Hickler, T.; Grams, T.; Lapola, D.; Quesada, C. A.; Zang, C.; Rammig, A.
2017-12-01
The Amazon basin was recently hit by severe drought events that were unprecedented in their severity and spatial extent, e.g. during 2005, 2010 and 2015/2016. Significant amounts of biomass were lost, turning large parts of the rainforest from a carbon sink into a carbon source. It is assumed that drought-induced tree mortality from hydraulic failure played an important role during these events and may become more frequent in the Amazon region in the future. Many state-of-the-art dynamic vegetation models do not include plant hydraulic processes and fail to reproduce observed rainforest responses to drought events, such as e.g. increased tree mortality. We address this research gap by developing a simple plant-hydraulic module for the dynamic vegetation model LPJ-GUESS. This plant-hydraulic module uses leaf water potential and cavitation as baseline processes to simulate tree mortality under drought stress. Furthermore, we introduce different plant strategies in the model, which describe e.g. differences in the stomatal regulation under drought stress. To parameterize and evaluate our hydraulic module, we use a set of available observational data from the Amazon region. We apply our model to the Amazon Basin and highlight similarities and differences across other measured and predicted drought responses, e.g. extrapolated observations and data derived from satellite measurements. Our results highlight the importance of including plant hydraulic processes in dynamic vegetation models to correctly predict vegetation dynamics under drought stress and show major differences on the vegetation dynamics depending on the selected plant strategies. We also identify gaps in process understanding of the triggering factors, the extent and the consequences of drought responses that hampers our ability to predict potential impact of future drought events on the Amazon rainforest.
Competition between hardwood hammocks and mangroves
Sternberg, L.D.S.L.; Teh, S.Y.; Ewe, S.M.L.; Miralles-Wilhelm, F.; DeAngelis, D.L.
2007-01-01
The boundaries between mangroves and freshwater hammocks in coastal ecotones of South Florida are sharp. Further, previous studies indicate that there is a discontinuity in plant predawn water potentials, with woody plants either showing predawn water potentials reflecting exposure to saline water or exposure to freshwater. This abrupt concurrent change in community type and plant water status suggests that there might be feedback dynamics between vegetation and salinity. A model examining the salinity of the aerated zone of soil overlying a saline body of water, known as the vadose layer, as a function of precipitation, evaporation and plant water uptake is presented here. The model predicts that mixtures of saline and freshwater vegetative species represent unstable states. Depending on the initial vegetation composition, subsequent vegetative change will lead either to patches of mangrove coverage having a high salinity vadose zone or to freshwater hammock coverage having a low salinity vadose zone. Complete or nearly complete coverage by either freshwater or saltwater vegetation represents two stable steady-state points. This model can explain many of the previous observations of vegetation patterns in coastal South Florida as well as observations on the dynamics of vegetation shifts caused by sea level rise and climate change. ?? 2007 Springer Science+Business Media, LLC.
Charles G. Johnson; Rodrick R. Clausnitzer; Peter J. Mehringer; Chadwick D. Oliver
1994-01-01
Paleo-vegetation studies have shown that vegetation has changed in composition and extent in the intermountain Pacific Northwest over the past 20,000 years. Today, both natural and human-induced disturbances have long-term influence on the structure and composition of eastside vegetation. Disturbance may enhance landscape diversity, therefore, the scale of modifying...
Multi-centennial ecosystem modelling in northeastern America at the species level
NASA Astrophysics Data System (ADS)
Steinkamp, J.; Biskupovic, A.; Rollinson, C.; Dawson, A.; Goring, S. J.; McLachlan, J. S.; Mladenoff, D. J.; Williams, J.; Hickler, T.
2016-12-01
Most dynamic global vegetation models (DGVM) are based on a small set of plant functional types (PFTs) to simulate biome distribution, vegetation dynamics, and carbon and nutrient cycles, which is of limited use for more regional studies and stakeholders. We tested a tree-species-based parameterization approach of the LPJ-GUESS DGVM in the northeastern USA, which previously has been successful in simulating the main potential natural vegetation zones in Europe. A transient model run was carried out from 850 A.D. to today, and the model results have been evaluated against pre-settlement vegetation maps and reconstructed vegetation from pollen within the PalEON project and hypothesized potential natural vegetation zones. We will analyze the simulation with respect to long term carbon cycling and the driving forces. Main reconstructed vegetation features were reproduced by the model, which implies that the general processes shaping the forested vegetation in parts of Europe and the northeastern USA are similar. However, so far the decrease in biomass towards the prairie in the west could not fully be captured by the model, which is currently analyzed with additional simulations. Moisture and fire are the important driver at the prairie forest transition zone, which we need to better constrain for this model domain.
Isabelle, Boulangeat; Damien, Georges; Wilfried, Thuiller
2014-01-01
During the last decade, despite strenuous efforts to develop new models and compare different approaches, few conclusions have been drawn on their ability to provide robust biodiversity projections in an environmental change context. The recurring suggestions are that models should explicitly (i) include spatiotemporal dynamics; (ii) consider multiple species in interactions; and (iii) account for the processes shaping biodiversity distribution. This paper presents a biodiversity model (FATE-HD) that meets this challenge at regional scale by combining phenomenological and process-based approaches and using well-defined plant functional groups. FATE-HD has been tested and validated in a French National Park, demonstrating its ability to simulate vegetation dynamics, structure and diversity in response to disturbances and climate change. The analysis demonstrated the importance of considering biotic interactions, spatio-temporal dynamics, and disturbances in addition to abiotic drivers to simulate vegetation dynamics. The distribution of pioneer trees was particularly improved, as were all undergrowth functional groups. PMID:24214499
Landscape matrix mediates occupancy dynamics of Neotropical avian insectivores
Kennedy, Christina M.; Campbell Grant, Evan H.; Neel, Maile C.; Fagan, William F.; Marpa, Peter P.
2011-01-01
In addition to patch-level attributes (i.e., area and isolation), the nature of land cover between habitat patches (the matrix) may drive colonization and extinction dynamics in fragmented landscapes. Despite a long-standing recognition of matrix effects in fragmented systems, an understanding of the relative impacts of different types of land cover on patterns and dynamics of species occurrence remains limited. We employed multi-season occupancy models to determine the relative influence of patch area, patch isolation, within-patch vegetation structure, and landscape matrix on occupancy dynamics of nine Neotropical nsectivorous birds in 99 forest patches embedded in four matrix types (agriculture, suburban evelopment, bauxite mining, and forest) in central Jamaica. We found that within-patch vegetation structure and the matrix type between patches were more important than patch area and patch isolation in determining local colonization and local extinction probabilities, and that the effects of patch area, isolation, and vegetation structure on occupancy dynamics tended to be matrix and species dependent. Across the avian community, the landscape matrix influenced local extinction more than local colonization, indicating that extinction processes, rather than movement, likely drive interspecific differences in occupancy dynamics. These findings lend crucial empirical support to the hypothesis that species occupancy dynamics in fragmented systems may depend greatly upon the landscape context.
C. I. Millar
1996-01-01
The Tertiary period, from 2.5 to 65 million years ago, was the time oforigin of the modern Sierra Nevada landscape. Climates, geology,and vegetation changed drastically in the Sierra Nevada during thistime, and analyses of this period provide both context for and insightinto vegetation dynamics of the current and future Sierra. During theearly Tertiary, warm-humid,...
Echohydrological implications of drought for forests in the United States
James M. Vose; Chelcy Ford Miniat; Charles H. Luce; Heidi Asbjornsen; Peter V. Caldwell; John L. Campbell; Gordon E. Grant; Daniel J. Isaak; Steven P. Loheide; Ge Sun
2016-01-01
The relationships among drought, surface water flow, and groundwater recharge are not straightforward for most forest ecosystems due to the strong role that vegetation plays in the forest water balance. Hydrologic responses to drought can be either mitigated or exacerbated by forest vegetation depending upon vegetation water use and how forest population dynamics...
Predicting landscape vegetation dynamics using state-and-transition simulation models
Colin J. Daniel; Leonardo Frid
2012-01-01
This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...
Chapter 7: Developing climate-informed state-and-transition models
Miles A. Hemstrom; Jessica E. Halofsky; David R. Conklin; Joshua S. Halofsky; Dominique Bachelet; Becky K. Kerns
2014-01-01
Land managers and others need ways to understand the potential effects of climate change on local vegetation types and how management activities might be impacted by climate change. To date, climate change impact models have not included localized vegetation communities or the integrated effects of vegetation development dynamics, natural disturbances, and management...
USDA-ARS?s Scientific Manuscript database
Sichuan Basin in southwestern China is a region of great conservation concern due to poor vegetation recovery on steep roadside slopes, yet little is known about the influence of edaphic factors on plant community dynamics of disturbed slopes. A greater understanding of vegetation patterns across va...
Assessing and monitoring of urban vegetation using multiple endmember spectral mixture analysis
NASA Astrophysics Data System (ADS)
Zoran, M. A.; Savastru, R. S.; Savastru, D. M.
2013-08-01
During last years urban vegetation with significant health, biological and economical values had experienced dramatic changes due to urbanization and human activities in the metropolitan area of Bucharest in Romania. We investigated the utility of remote sensing approaches of multiple endmember spectral mixture analysis (MESMA) applied to IKONOS and Landsat TM/ETM satellite data for estimating fractional cover of urban/periurban forest, parks, agricultural vegetation areas. Because of the spectral heterogeneity of same physical features of urban vegetation increases with the increase of image resolution, the traditional spectral information-based statistical method may not be useful to classify land cover dynamics from high resolution imageries like IKONOS. So we used hierarchy tree classification method in classification and MESMA for vegetation land cover dynamics assessment based on available IKONOS high-resolution imagery of Bucharest town. This study employs thirty two endmembers and six hundred and sixty spectral models to identify all Earth's features (vegetation, water, soil, impervious) and shade in the Bucharest area. The mean RMS error for the selected vegetation land cover classes range from 0.0027 to 0.018. The Pearson correlation between the fraction outputs from MESMA and reference data from all IKONOS images 1m panchromatic resolution data for urban/periurban vegetation were ranging in the domain 0.7048 - 0.8287. The framework in this study can be applied to other urban vegetation areas in Romania.
Teh, Su Yean; Turtora, Michael; DeAngelis, Donald L.; Jiang Jiang,; Pearlstine, Leonard G.; Smith, Thomas; Koh, Hock Lye
2015-01-01
Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR) and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM) is integrated into the USGS groundwater model (SUTRA) to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.
NASA Astrophysics Data System (ADS)
Monteleone, M.; Lanorte, A.; Lasaponara, R.
2009-04-01
Cyberpark 2000 is a project funded by the UE Regional Operating Program of the Apulia Region (2000-2006). The main objective of the Cyberpark 2000 project is to develop a new assessment model for the management and monitoring of protected areas in Foggia Province (Apulia Region) based on Information and Communication Technologies. The results herein described are placed inside the research activities finalized to develop an environmental monitoring system knowledge based on the use of satellite time series. This study include: - A- satellite time series of high spatial resolution data for supporting the analysis of fire static risk factors through land use mapping and spectral/quantitative characterization of vegetation fuels; - B- satellite time series of MODIS for supporting fire dynamic risk evaluation of study area - Integrated fire detection by using thermal imaging cameras placed on panoramic view-points; - C - integrated high spatial and high temporal satellite time series for supporting studies in change detection factors or anomalies in vegetation covers; - D - satellite time-series for monitoring: (i) post fire vegetation recovery and (ii) spatio/temporal vegetation dynamics in unburned and burned vegetation covers.
Monitoring height and greenness of non-woody floodplain vegetation with UAV time series
NASA Astrophysics Data System (ADS)
van Iersel, Wimala; Straatsma, Menno; Addink, Elisabeth; Middelkoop, Hans
2018-07-01
Vegetation in river floodplains has important functions for biodiversity, but can also have a negative influence on flood safety. Floodplain vegetation is becoming increasingly heterogeneous in space and time as a result of river restoration projects. To document the spatio-temporal patterns of the floodplain vegetation, the need arises for efficient monitoring techniques. Monitoring is commonly performed by mapping floodplains based on single-epoch remote sensing data, thereby not considering seasonal dynamics of vegetation. The rising availability of unmanned airborne vehicles (UAV) increases monitoring frequency potential. Therefore, we aimed to evaluate the performance of multi-temporal high-spatial-resolution imagery, collected with a UAV, to record the dynamics in floodplain vegetation height and greenness over a growing season. Since the classification accuracy of current airborne surveys remains insufficient for low vegetation types, we focussed on seasonal variation of herbaceous and grassy vegetation with a height up to 3 m. Field reference data on vegetation height were collected six times during one year in 28 field plots within a single floodplain along the Waal River, the main distributary of the Rhine River in the Netherlands. Simultaneously with each field survey, we recorded UAV true-colour and false-colour imagery from which normalized digital surface models (nDSMs) and a consumer-grade camera vegetation index (CGCVI) were calculated. We observed that: (1) the accuracy of a UAV-derived digital terrain model (DTM) varies over the growing season and is most accurate during winter when the vegetation is dormant, (2) vegetation height can be determined from the nDSMs in leaf-on conditions via linear regression (RSME = 0.17-0.33 m), (3) the multitemporal nDSMs yielded meaningful temporal profiles of greenness and vegetation height and (4) herbaceous vegetation shows hysteresis for greenness and vegetation height, but no clear hysteresis was observed for grassland vegetation. These results show the high potential of using UAV-borne sensors for increasing the classification accuracy of low floodplain vegetation within the framework of floodplain monitoring.
NASA Astrophysics Data System (ADS)
Tulbure, M. G.; Kingsford, R.; Broich, M.
2012-12-01
Australia is the driest inhabited continent and river systems have highly variable flows in space and time. The Murray-Darling Basin (MDB), a catchment covering 14% of the continent contains the nation's largest rivers and important groundwater systems. The basin has highly variable rainfall patterns in space and time and the vast majority of rainfall is lost to evapotranspiration with only 4% becoming runoff. The basin is home to several wetlands of high hydrological and ecological value with a number of them being recognised as wetlands of international importance. The basin produces more than a third of Australia's food supply, making it the most important agricultural area in the country. However, variation in surface and ground water availability exacerbated by a long period of drought, combined with high water demands for irrigation and in several major cities, and the need for water to maintain ecosystem health in the floodplains have led to the need of managing water resources in an integrated fashion. Several dams have been constructed in the basin, which store water during wet periods which is released during dry periods as environmental flows. Assessment of water resources and understanding of the effectiveness of environmental flows requires knowledge of 1) long term trends in occurrence and extent of surface water, 2) what is the vegetation response to flooding and 3) whether water reached target vegetation communities. However, such information does not exist at the basin level. Satellite remote sensing is the only viable way for synoptically mapping and monitoring the extent and dynamic of flooding and vegetation response to flooding. Moreover, recent La Nina -induced, extreme flooding broke a decade long of drought and made 2010 the wettest calendar year on record in the MDB and across vast areas of Australia. This represents a unique opportunity to develop predictive models relating flow regime to vegetation response and identify trends over long term and across a large space in a drying yet variable climate. Using an internally consistent method, Landsat TM and ETM+ data were used to synoptically map the extent and dynamic of surface water bodies and track the response of vegetation communities to flooding in space and time at selected sites. Per pixel trajectory of surface water and vegetation index time series were used. Results show high interannual variability in number and size of flooded areas and a positive relationship with rainfall. Response of vegetation communities to flooding varied in space and time and with vegetation types and densities. Knowledge of the spatial and temporal dynamic of flooding and the response of vegetation communities to flooding is important for management of floodplain wetlands and vegetation communities and for investigating effectiveness of environmental flows and flow regimes in the MDB. The approach presented here can be transferred to other river systems around the world where high demand for water requires informed management decisions.
NASA Astrophysics Data System (ADS)
Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.
2018-01-01
Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor. Supplementary Fig. 2 Relation between the total site and high-elevation discharge-volume relation slope for all sites where both relations are available (n = 33). Supplementary Fig. 3 Change in sandbar volume since 1990 for Marble versus Grand Canyon sites. Solid vertical gray lines indicate controlled floods, and dashed vertical gray lines indicate other high test flows in 1997 and 2000 as discussed in the text. Photographs by U.S. Geological Survey, 2008-2015.
Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming
2017-09-01
Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-09-21
vehicles, environmental sensor networks, distributed hydrologic modeling, vegetation dynamics, soil moisture, evapotranspiration , remote sensing, North...Received Paper 1.00 5.00 3.00 8.00 9.00 E. Vivoni, J. Rodriguez, C. Watts. On the spatiotemporal variability of soil moisture and evapotranspiration ...Vegetation Impacts on Evapotranspiration and Its Partitioning at the Catchment Scale during SMEX04–NAME, Journal of Hydrometeorology, (10 2012
Robert Keane; Rachel Loehman
2010-01-01
Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be...
Stochastic simulation of ecohydrological interactions between vegetation and groundwater
NASA Astrophysics Data System (ADS)
Dwelle, M. C.; Ivanov, V. Y.; Sargsyan, K.
2017-12-01
The complex interactions between groundwater and vegetation in the Amazon rainforest may yield vital ecophysiological interactions in specific landscape niches such as buffering plant water stress during dry season or suppression of water uptake due to anoxic conditions. Representation of such processes is greatly impacted by both external and internal sources of uncertainty: inaccurate data and subjective choice of model representation. The models that can simulate these processes are complex and computationally expensive, and therefore make it difficult to address uncertainty using traditional methods. We use the ecohydrologic model tRIBS+VEGGIE and a novel uncertainty quantification framework applied to the ZF2 watershed near Manaus, Brazil. We showcase the capability of this framework for stochastic simulation of vegetation-hydrology dynamics. This framework is useful for simulation with internal and external stochasticity, but this work will focus on internal variability of groundwater depth distribution and model parameterizations. We demonstrate the capability of this framework to make inferences on uncertain states of groundwater depth from limited in situ data, and how the realizations of these inferences affect the ecohydrological interactions between groundwater dynamics and vegetation function. We place an emphasis on the probabilistic representation of quantities of interest and how this impacts the understanding and interpretation of the dynamics at the groundwater-vegetation interface.
Toward a comprehensive landscape vegetation monitoring framework
NASA Astrophysics Data System (ADS)
Kennedy, Robert; Hughes, Joseph; Neeti, Neeti; Larrue, Tara; Gregory, Matthew; Roberts, Heather; Ohmann, Janet; Kane, Van; Kane, Jonathan; Hooper, Sam; Nelson, Peder; Cohen, Warren; Yang, Zhiqiang
2016-04-01
Blossoming Earth observation resources provide great opportunity to better understand land vegetation dynamics, but also require new techniques and frameworks to exploit their potential. Here, I describe several parallel projects that leverage time-series Landsat imagery to describe vegetation dynamics at regional and continental scales. At the core of these projects are the LandTrendr algorithms, which distill time-series earth observation data into periods of consistent long or short-duration dynamics. In one approach, we built an integrated, empirical framework to blend these algorithmically-processed time-series data with field data and lidar data to ascribe yearly change in forest biomass across the US states of Washington, Oregon, and California. In a separate project, we expanded from forest-only monitoring to full landscape land cover monitoring over the same regional scale, including both categorical class labels and continuous-field estimates. In these and other projects, we apply machine-learning approaches to ascribe all changes in vegetation to driving processes such as harvest, fire, urbanization, etc., allowing full description of both disturbance and recovery processes and drivers. Finally, we are moving toward extension of these same techniques to continental and eventually global scales using Google Earth Engine. Taken together, these approaches provide one framework for describing and understanding processes of change in vegetation communities at broad scales.
Vegetation dynamics of the Guatemalan lowlands from MIS7 to MIS5: Evidence from Lake Petén-Itzá
NASA Astrophysics Data System (ADS)
Cruz-Silva, E.; Correa-Metrio, A.; Bush, M. B.
2013-05-01
Reconstructing vegetation patterns of past warm climatic stages is critical for understanding modern processes that affect diversity and climate. Tropical lowlands are of special interest because of the high biodiversity they foster and the risks they face under a scenario of rapid climate change. With a basal age of more that 191,000 years, core PI-1 from Lake Petén-Itzá, Guatemalan lowlands, offer an exceptional opportunity to investigate the dynamics of the vegetation of the area during climatic stages that might be analogous to today. Pollen analysis of the lower part of this sedimentary record shows a sequence of five different climatic stages of alternating warm and cold conditions. According to our interpretation, tropical forests extended in the area during MIS7 and MIS5, with the former characterized by drier conditions than the latter. Apparently forest dynamics closely followed global climatic changes that were recorded in the Antarctic and the Marine Stack records. Our results confirm that vegetation of the Peninsula, although highly resilient, has been very sensitive to global climatic changes.
NASA Astrophysics Data System (ADS)
van der Kolk, Henk-Jan; Heijmans, Monique M. P. D.; van Huissteden, Jacobus; Pullens, Jeroen W. M.; Berendse, Frank
2016-11-01
Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation simulations suggest that a wetter tundra can be responsible for local shrub decline instead of shrub expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, T; Carlsen, T
2003-11-21
We present a spatially-explicit individual-based computational model of rodent dynamics, customized for the prairie vole species, M. Ochrogaster. The model is based on trophic relationships and represents important features such as territorial competition, mating behavior, density-dependent predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are dependent on climatic components. The results of simulations show that the model correctly predicts the overall temporal dynamics of the population density. Time-series analysis shows a very good match between the periods corresponding to the peak population density frequencies predicted by the model and the ones reported in themore » literature. The model is used to study the relation between persistence, landscape area and predation. We introduce the notions of average time to extinction (ATE) and persistence frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped function of the predation level: increasing for 'small' and decreasing for 'large' predation levels.« less
Brent R. Frey; Ellen M. Boerger
2015-01-01
Groundstory vegetation typically accounts for the greatest proportion of plant diversity in temperate forests, representing a critical structural component and mediating numerous ecosystem processes, including tree regeneration. The effects of thinning on groundstory vegetation have received limited study in bottomland hardwood stands. This study investigated...
NASA Astrophysics Data System (ADS)
Haghighi, Erfan; Gianotti, Daniel J.; Rigden, Angela J.; Salvucci, Guido D.; Kirchner, James W.; Entekhabi, Dara
2017-04-01
Being located in the transitional zone between dry and wet climate areas, semiarid ecosystems (and their associated ecohydrological processes) play a critical role in controlling climate change and global warming. Land evapotranspiration (ET), which is a central process in the climate system and a nexus of the water, energy and carbon cycles, typically accounts for up to 95% of the water budget in semiarid areas. Thus, the manner in which ET is partitioned into soil evaporation and plant transpiration in these settings is of practical importance for water and carbon cycling and their feedbacks to the climate system. ET (and its partitioning) in these regions is primarily controlled by surface soil moisture which varies episodically under stochastic precipitation inputs. Important as the ET-soil moisture relationship is, it remains empirical, and physical mechanisms governing its nature and dynamics are underexplored. Thus, the objective of this study is twofold: (1) to provide observational evidence for the influence of surface cover conditions on ET-soil moisture coupling in semiarid regions using soil moisture data from NASA's SMAP satellite mission combined with independent observationally based ET estimates, and (2) to develop a relatively simple mechanistic modeling platform improving our physical understanding of interactions between micro and macroscale processes controlling ET and its partitioning in partially vegetated areas. To this end, we invoked concepts from recent progress in mechanistic modeling of turbulent energy flux exchange in bluff-rough regions, and developed a physically based ET model that explicitly accounts for how vegetation-induced turbulence in the near-surface region influences soil drying and thus ET rates and dynamics. Model predictions revealed nonlinearities in the strength of the ET-soil moisture relationship (i.e., ∂ET/∂θ) as vegetation cover fraction increases, accounted for by the nonlinearity of surface-cover-dependent turbulent interactions. We identified a (predictable) critical vegetation cover fraction (as a function of vegetation stature and environmental conditions) that yields the strongest ET-soil moisture relationship under prescribed atmospheric conditions. Overall, the results suggest that ∂ET/ ∂θ varies more widely in regions with tall-stature woody vegetation that experience higher rates of change in turbulence intensity as the cover fraction increases. Our results facilitate a mathematically tractable description of ∂ET/ ∂θ, which is a core component of models that seek to predict hydrology-climate feedback processes in a changing climate.
Riparian Vegetation: Controls on Channel Planform in Noncohesive Beds
NASA Astrophysics Data System (ADS)
Tal, M.; Paola, C.; Gran, K.
2001-12-01
Riparian vegetation has strong consequences for the channel planform and dynamics. An understanding of this role is key to accurate modeling of river systems, and may provide answers to fundamental questions concerning stream dynamics as well as bridge the various approaches to modeling channel evolution. Vegetation on the flood plain works to constrain the flow of the river to a single channel by stabilizing banks and offering resistance to overbank flow. These controls were recently established through a set of controlled experiments at the St. Anthony Falls Laboratory. The runs were designed to determine how addition of vegetation affects channel form and flow dynamics. This was achieved by holding water discharge, sediment discharge, grain size, and slope constant, while making vegetation density the only variable between runs. Plants were grown while water discharge was half its channel-forming value. This work showed that as vegetation density increased there was a decrease in braiding intensity, lateral mobility, and width to depth ratios, and an increase in maximum scour hole depth, and channel relief. While producing braiding experimentally has proven simple, no one has yet produced true dynamic meanders (i.e. high-amplitude bends that grow, cut off, and grow again). Present experimental studies at St. Anthony Falls Laboratory aim to investigate the role of vegetation in the development of a meandering river in otherwise insufficiently cohesive sand that would favor a more stable braided river system. The experiments begin with an unseeded bed into which a straight channel has been carved. Each cycle comprises a period of low discharge during which the bed is seeded with alfalfa seeds. The discharge is raised to a higher discharge only after the plants have grown to a height of about 20 mm (approximately 7 days). The duration of the high-flow stage is such that not more than 10-20% of the channel width is eroded. In addition to offering insight as to the several possible states that a river might be in, the experimental studies are intended to provide an understanding of how vegetation stabilizes single-thread channels, identify the nondimensional parameters that measure the stabilizing effects of vegetation, and realize the role of discharge variation in allowing plant colonization.
Remote sensing methods to classify a desert wetland
NASA Astrophysics Data System (ADS)
Mexicano Vargas, Maria de Lourdes
The Cienega de Santa Clara is a 5600 ha, anthropogenic wetland in the delta of the Colorado River in Mexico. It is the inadvertent creation of the disposal of brackish agricultural waste water from the U.S. into the intertidal zone of the river delta in Mexico, but has become an internationally important wetland for resident and migratory water birds. The marsh is dominated by Typha domengensis with Phragmites australis as a sub-dominant species in shallower marsh areas. The most important factor controlling vegetation density was fire. The second significant (P < 0.01) factor controlling NDVI was flow rate of agricultural drain water from the U.S. into the marsh. Reduced summer flows in 2001 due to canal repairs, and in 2010 during the YDP test run, produced the two lowest NDVI values of the time series from 2000 to 2011 (P < 0.05). Salinity is a further determinant of vegetation dynamics as determined by greenhouse experiments, but was nearly constant over the period 2000 to 2011, so it was not a significant variable in regression analyses. Evapotranspiration (ET) and other water balance components were measured in Cienega de Santa Clara; we used a remote sensing algorithm to estimate ET from meteorological data and Enhanced Vegetation Index values from the Moderate Resolution Imaging Spectrometer (MODIS) sensors on the Terra satellite. We used Landsat NDVI imagery from 1978--2011 to determine the area and intensity of vegetation and to estimate evapotranspiration (ET) to construct a water balance. Remote sensing data was supplemented with hydrological data, site surveys and literature citations. The vegetated area increased from 1978 to 1995 and has been constant at about 4200 ha since then. The dominant vegetation type is Typha domingensis (southern cattail), and peak summer NDVI since 1995 has been stable at 0.379 (SD = 0.016), about half of NDVImax. About 30% of the inflow water is consumed in ET, with the remainder exiting the Cienega as outflow water, mainly during winter months when T. domingensis is dormant.
NASA Astrophysics Data System (ADS)
Qiu, Bingwen; Chen, Gong; Tang, Zhenghong; Lu, Difei; Wang, Zhuangzhuang; Chen, Chongchen
2017-11-01
The Three-North Shelter Forest Program (TNSFP) in China has been intensely invested for approximately 40 years. However, the efficacy of the TNSFP has been debatable due to the spatiotemporal complexity of vegetation changes. A novel framework was proposed for characterizing vegetation changes in the TNSFP region through Combining Trend and Temporal Similarity trajectory (COTTS). This framework could automatically and continuously address the fundamental questions on where, what, how and when vegetation changes have occurred. Vegetation trend was measured by a non-parametric method. The temporal similarity trajectory was tracked by the Jeffries-Matusita (JM) distance of the inter-annual vegetation indices temporal profiles and modeled using the logistic function. The COTTS approach was applied to examine the afforestation efforts of the TNSFP using 500 m 8-day composites MODIS datasets from 2001 to 2015. Accuracy assessment from the 1109 reference sites reveals that the COTTS is capable of automatically determining vegetation dynamic patterns, with an overall accuracy of 90.08% and a kappa coefficient of 0.8688. The efficacy of the TNSFP was evaluated through comprehensive considerations of vegetation, soil and wetness. Around 45.78% areas obtained increasing vegetation trend, 2.96% areas achieved bare soil decline and 4.50% areas exhibited increasing surface wetness. There were 4.49% areas under vegetation degradation & desertification. Spatiotemporal heterogeneity of efficacy of the TNSFP was revealed: great vegetation gain through the abrupt dynamic pattern in the semi-humid and humid regions, bare soil decline & potential efficacy in the semi-arid region and remarkable efficacy in functional region of Eastern Ordos.
Hop, Kevin D.; Drake, Jim; Strassman, Andrew C.; Hoy, Erin E.; Jakusz, Joseph; Menard, Shannon; Dieck, Jennifer
2015-01-01
The Mississippi National River and Recreation Area (MISS) vegetation mapping project is an initiative of the National Park Service (NPS) Vegetation Inventory Program (VIP) to classify and map vegetation types of MISS. (Note: “MISS” is also referred to as “park” throughout this report.) The goals of the project are to adequately describe and map vegetation types of the park and to provide the NPS Natural Resource Inventory and Monitoring (I&M) Program, resource managers, and biological researchers with useful baseline vegetation information.The MISS vegetation mapping project was officially started in spring 2012, with a scoping meeting wherein partners discussed project objectives, goals, and methods. Major collaborators at this meeting included staff from the NPS MISS, the NPS Great Lakes Network (GLKN), NatureServe, and the USGS Upper Midwest Environmental Sciences Center. The Minnesota Department of Natural Resources (DNR) was also in attendance. Common to all NPS VIP projects, the three main components of the MISS vegetation mapping project are as follows: (1) vegetation classification, (2) vegetation mapping, and (3) map accuracy assessment (AA). In this report, each of these fundamental components is discussed in detail.With the completion of the MISS vegetation mapping project, all nine park units within the NPS GLKN have received vegetation classification and mapping products from the NPS and USGS vegetation programs. Voyageurs National Park and Isle Royale National Park were completed during 1996–2001 (as program pilot projects) and another six park units were completed during 2004–11, including the Apostle Islands National Lakeshore, Grand Portage National Monument, Indiana Dunes National Lakeshore, Pictured Rocks National Lakeshore, Saint Croix National Scenic Riverway, and Sleeping Bear Dunes National Lakeshore.
Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models
NASA Astrophysics Data System (ADS)
Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca
2017-12-01
Several decades of field observations, laboratory experiments and mathematical modelings have demonstrated that the riparian environment is a disturbance-driven ecosystem, and that the main source of disturbance is river flow fluctuations. The focus of the present work has been on the key role that flow fluctuations play in determining the abundance, zonation and species composition of patches of riparian vegetation. To this aim, the scientific literature on the subject, over the last 20 years, has been reviewed. First, the most relevant ecological, morphological and chemical mechanisms induced by river flow fluctuations are described from a process-based perspective. The role of flow variability is discussed for the processes that affect the recruitment of vegetation, the vegetation during its adult life, and the morphological and nutrient dynamics occurring in the riparian habitat. Particular emphasis has been given to studies that were aimed at quantifying the effect of these processes on vegetation, and at linking them to the statistical characteristics of the river hydrology. Second, the advances made, from a modeling point of view, have been considered and discussed. The main models that have been developed to describe the dynamics of riparian vegetation have been presented. Different modeling approaches have been compared, and the corresponding advantages and drawbacks have been pointed out. Finally, attention has been paid to identifying the processes considered by the models, and these processes have been compared with those that have actually been observed or measured in field/laboratory studies.
Ecological controls on water-cycle response to climate variability in deserts.
Scanlon, B R; Levitt, D G; Reedy, R C; Keese, K E; Sully, M J
2005-04-26
The impact of climate variability on the water cycle in desert ecosystems is controlled by biospheric feedback at interannual to millennial timescales. This paper describes a unique field dataset from weighing lysimeters beneath nonvegetated and vegetated systems that unequivocally demonstrates the role of vegetation dynamics in controlling water cycle response to interannual climate variability related to El Nino southern oscillation in the Mojave Desert. Extreme El Nino winter precipitation (2.3-2.5 times normal) typical of the U.S. Southwest would be expected to increase groundwater recharge, which is critical for water resources in semiarid and arid regions. However, lysimeter data indicate that rapid increases in vegetation productivity in response to elevated winter precipitation reduced soil water storage to half of that in a nonvegetated lysimeter, thereby precluding deep drainage below the root zone that would otherwise result in groundwater recharge. Vegetation dynamics have been controlling the water cycle in interdrainage desert areas throughout the U.S. Southwest, maintaining dry soil conditions and upward soil water flow since the last glacial period (10,000-15,000 yr ago), as shown by soil water chloride accumulations. Although measurements are specific to the U.S. Southwest, correlations between satellite-based vegetation productivity and elevated precipitation related to El Nino southern oscillation indicate this model may be applicable to desert basins globally. Understanding the two-way coupling between vegetation dynamics and the water cycle is critical for predicting how climate variability influences hydrology and water resources in water-limited landscapes.
A vital link: water and vegetation in the Anthropocene
NASA Astrophysics Data System (ADS)
Gerten, D.
2013-04-01
This paper argues that the interplay of water, carbon and vegetation dynamics is fundamental to some global trends in the current and conceivable future Anthropocene. Supported by simulations with a process-based biosphere model and a literature review, it demonstrates that the connectivity of freshwater and vegetation dynamics is vital for water security, food security and (terrestrial) ecosystem integrity alike. The water limitation of net primary production of both natural and agricultural plants - already pronounced in many regions - is shown to increase in many places under projected climate change, though this development is partially offset by water-saving direct CO2 effects. Natural vegetation can to some degree adapt dynamically to higher water limitation, but agricultural crops require some form of active management to overcome it - among them irrigation, soil conservation and expansion into still uncultivated areas. While crucial to secure food production for a growing world population, such human interventions in water-vegetation systems have, as also shown, repercussions to the water cycle. Indeed, land use changes have been shown to be the second-most important influence on the terrestrial water balance in recent times. Furthermore, climate change regionally increases irrigation demand and decreases freshwater availability, impeding on rainfed and irrigated food production (if not CO2 effects counterbalance this impact - which is unlikely at least in poorly managed systems). Drawing from these exemplary investigations, some research perspectives on how to further improve our quantitative knowledge of human-water-vegetation interactions in the Anthropocene are outlined.
Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades
NASA Technical Reports Server (NTRS)
Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.
2012-01-01
Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.
NASA Astrophysics Data System (ADS)
de C. Teixeira, Antônio H.; Leivas, Janice F.; Ronquim, Carlos C.; Bayma-Silva, Gustavo; de C. Victoria, Daniel
2016-10-01
Under land and climate change scenarios, agriculture has experienced water competitions among other sectors in the São Paulo state, Brazil. On the one hand, in several occasions, in the northeastern side of this state, nowadays sugar-cane is expanding, while coffee plantations are losing space. On the other hand, both crops have replaced the natural vegetation composed by Savannah and Atlantic Coastal Forest species. Under this dynamic situation, geosciences are valuable tools for evaluating the large-scale energy and mass exchanges between these different agro-ecosystems and the lower atmosphere. For quantification of the energy balance components in these mixed agro-ecosystems, the bands 1 and 2 from the MODIS product MOD13Q1 were used throughout SAFER (Surface Algorithm for Evapotranspiration Retrieving) algorithm, which was applied together with a net of 12 automatic weather stations, during the year 2015 in the main sugar cane and coffee growing regions, located at the northeastern side of the state. The fraction of the global solar radiation (RG) transformed into net radiation (Rn) was 52% for sugar cane and 53% for both, coffee and natural vegetation. The respective annual fractions of Rn used as λE were 0.68, 0.87 and 0.77, while for the sensible heat (H) fluxes they were 0.27, 0.07 and 0.16. From April to July, heat advection raised λE values above Rn promoting negative H, however these effects were much and less strong in coffee and sugar cane crops, respectively. The smallest daily Rn fraction for all agro-ecosystems was for the soil heat flux (G), with averages of 5%, 6% and 7% in sugar cane, coffee and natural vegetation. From the energy balance analyses, we could conclude that, sugar-cane crop presented lower annual water consumption than that for coffee crop, what can be seen as an advantage in situations of water scarcity. However, the replacement of natural vegetation by sugar cane can contribute for warming the environment, while when this occur with coffee crop there was noticed cooling conditions. The large scale modeling satisfactory results confirm the suitability of using MODIS products together with weather stations to study the energy balance components in mixed agro-ecosystems under land-use and climate change conditions.
Richard Tran Mills; Jitendra Kumar; Forrest M. Hoffman; William W. Hargrove; Joseph P. Spruce; Steven P. Norman
2013-01-01
We investigated the use of principal components analysis (PCA) to visualize dominant patterns and identify anomalies in a multi-year land surface phenology data set (231 m à 231 m normalized difference vegetation index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)) used for detecting threats to forest health in the conterminous...
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Goetz, Alexander F. H.
1992-01-01
Over the last decade, technological advances in airborne imaging spectrometers, having spectral resolution comparable with laboratory spectrometers, have made it possible to estimate biochemical constituents of vegetation canopies. Wessman estimated lignin concentration from data acquired with NASA's Airborne Imaging Spectrometer (AIS) over Blackhawk Island in Wisconsin. A stepwise linear regression technique was used to determine the single spectral channel or channels in the AIS data that best correlated with measured lignin contents using chemical methods. The regression technique does not take advantage of the spectral shape of the lignin reflectance feature as a diagnostic tool nor the increased discrimination among other leaf components with overlapping spectral features. A nonlinear least squares spectral matching technique was recently reported for deriving both the equivalent water thicknesses of surface vegetation and the amounts of water vapor in the atmosphere from contiguous spectra measured with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The same technique was applied to a laboratory reflectance spectrum of fresh, green leaves. The result demonstrates that the fresh leaf spectrum in the 1.0-2.5 microns region consists of spectral components of dry leaves and the spectral component of liquid water. A linear least squares spectral matching technique for retrieving equivalent water thickness and biochemical components of green vegetation is described.
Modeling dynamics of western juniper under climate change in a semiarid ecosystem
NASA Astrophysics Data System (ADS)
Shrestha, R.; Glenn, N. F.; Flores, A. N.
2013-12-01
Modeling future vegetation dynamics in response to climate change and disturbances such as fire relies heavily on model parameterization. Fine-scale field-based measurements can provide the necessary parameters for constraining models at a larger scale. But the time- and labor-intensive nature of field-based data collection leads to sparse sampling and significant spatial uncertainties in retrieved parameters. In this study we quantify the fine-scale carbon dynamics and uncertainty of juniper woodland in the Reynolds Creek Experimental Watershed (RCEW) in southern Idaho, which is a proposed critical zone observatory (CZO) site for soil carbon processes. We leverage field-measured vegetation data along with airborne lidar and timeseries Landsat imagery to initialize a state-and-transition model (VDDT) and a process-based fire-model (FlamMap) to examine the vegetation dynamics in response to stochastic fire events and climate change. We utilize recently developed and novel techniques to measure biomass and canopy characteristics of western juniper at the individual tree scale using terrestrial and airborne laser scanning techniques in RCEW. These fine-scale data are upscaled across the watershed for the VDDT and FlamMap models. The results will immediately improve our understanding of fine-scale dynamics and carbon stocks and fluxes of woody vegetation in a semi-arid ecosystem. Moreover, quantification of uncertainty will also provide a basis for generating ensembles of spatially-explicit alternative scenarios to guide future land management decisions in the region.
Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?
Yulong Zhang; Conghe Song; Lawrence E. Band; Ge Sun; Junxiang Li
2017-01-01
Accurately monitoring global vegetation dynamics with modern remote sensing is critical for understanding the functions and processes of the biosphere and its interactions with the planetary climate. The MODerate resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) product has been a primary data source for this purpose. To date, theMODIS teamhad released...
Jeffrey E. Ott; E. Durant McArthur; Stewart C. Sanderson
2001-01-01
Fire ecology of sagebrush and pinyon-juniper vegetation in the Great Basin has been influenced by human disturbances and exotic plant introductions. Late-seral woody vegetation, which increased following Euro-American settlement, is now decreasing because of wildfire and exotic annuals. Multiple successional pathways following fire have been observed in these...
USDA-ARS?s Scientific Manuscript database
Climate warming over the past half century has led to observable changes in vegetation phenology and growing season length; which can be measured globally using remote sensing derived vegetation indices. Previous studies in mid- and high northern latitude systems show temperature driven earlier spri...
NASA Astrophysics Data System (ADS)
Saiz, Gustavo; Goodrick, Iain; Wurster, Christopher; Nelson, Paul N.; Wynn, Jonathan; Bird, Michael
2017-12-01
Understanding the main factors driving fire regimes in grasslands and savannas is critical to better manage their biodiversity and functions. Moreover, improving our knowledge on pyrogenic carbon (PyC) dynamics, including formation, transport and deposition, is fundamental to better understand a significant slow-cycling component of the global carbon cycle, particularly as these ecosystems account for a substantial proportion of the area globally burnt. However, a thorough assessment of past fire regimes in grass-dominated ecosystems is problematic due to challenges in interpreting the charcoal record of sediments. It is therefore critical to adopt appropriate sampling and analytical methods to allow the acquisition of reliable data and information on savanna fire dynamics. This study uses hydrogen pyrolysis (HyPy) to quantify PyC abundance and stable isotope composition (δ13C) in recent sediments across 38 micro-catchments covering a wide range of mixed C3/C4 vegetation in north Queensland, Australia. We exploited the contrasting δ13C values of grasses (i.e. C4; δ13C >-15‰) and woody vegetation (i.e. C3; δ13C <-24‰) to assess the preferential production and transport of grass-derived PyC in savanna ecosystems. Analyses were conducted on bulk and size-fractionated samples to determine the fractions into which PyC preferentially accumulates. Our data show that the δ13C value of PyC in the sediments is decoupled from the δ13C value of total organic carbon, which suggests that a significant component of PyC may be derived from incomplete grass combustion, even when the proportion of C4 grass biomass in the catchment was relatively small. Furthermore, we conducted 16 experimental burns that indicate that there is a comminution of PyC produced in-situ to smaller particles, which facilitates the transport of this material, potentially affecting its preservation potential. Savanna fires preferentially burn the grass understory rather than large trees, leading to a bias toward the finer C4–derived PyC in the sedimentary record. This in turn, provides further evidence for the preferential production and transport of C4-derived PyC in mixed ecosystems where grass and woody vegetation coexist. Moreover, our isotopic approach provides independent validation of findings derived from conventional charcoal counting techniques concerning the appropriateness of adopting a relatively small particle size threshold.
Stability measures in arid ecosystems
NASA Astrophysics Data System (ADS)
Nosshi, M. I.; Brunsell, N. A.; Koerner, S.
2015-12-01
Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, T.E.; Bennett, D.H.
2002-08-01
In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analyticalmore » solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.« less
NASA Astrophysics Data System (ADS)
El Vilaly, M. M.; Van Leeuwen, W. J.; Didan, K.; Marsh, S. E.; Crimmins, , M. A.
2012-12-01
The Hopi Tribe and Navajo Nation are situated in the Northeastern corner of Arizona in the Colorado River Plateau. For more than a decade, the area has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. Moreover, these persistent droughts threaten ecosystem services, agriculture, and livestock production activities, and make this region sensitive to inter-annual climate variability and change. The limited hydroclimatic observations, bolstered by numerous anecdotal drought impact reports, indicate that the region has been suffering through an almost 15-year long drought which is threatening its socio-economic development. The objective of this research is to employ remote sensing data to monitor the ongoing drought and inform management and decision-making. The overall goals of this study are to develop a common understanding of the current status of drought across the area in order to understand the existing seasonal and inter-annual relationships between climate variability and vegetation dynamics. To analyze and investigate vegetation responses to climate variability, land use practices, and environmental factors in Hopi and Navajo nation during the last 22 years, a drought assessment framework was developed that integrates climate and topographical data with land surface remote sensing time series data. Multi-sensor Normalized Difference Vegetation Index time series data were acquired from the vegetation index and phenology project (vip.arizona.edu) from 1989 to 2010 at 5.6 km, were analyzed to characterize the intra-annual changes of vegetation, seasonal phenology and inter-annual vegetation response to climate variability and environmental factors. Due to the low number of retrieval obtained from TIMESAT software, we developed a new framework that can maximize the number of retrieval. Four vegetation development stages, annual integrated NDVI (Net Primary Production (NPP)), minimum annual NDVI, maximum annual NDVI, and annual amplitude, were extracted using that new framework. A multi-linear regression has been applied to these vegetation phenology metrics as well as to the relationship between pheno-metrics and environmental variables, to detect potential vegetation changes and to examine the existing relationship between vegetation dynamics and rainfall and elevation gradients. The results suggest that vegetation behavior is foremost governed by rainfall gradients (R-square =0.74). Trend analyses confirmed that around 80 percent of pixels showed a general decline of greenness with confidence level of 95% (p< 0.05), while 4 percent showed a general greening up. Vegetation in the area showed a significant and strong relationship with elevation and precipitation gradients. This correlation was more prominent at mid-elevations, which could be explained by the snowmelt dynamics and hydrological redistribution of water at that elevation. These tools, methods and results can be used to aid in monitoring and understanding climate change and variability impacts on vegetation productivity, ecosystem services, and water resources of the region, and to inform decision-makers and range managers at Hopi Tribe and Navajo nation. Keywords: drought, remote sensing, time series, vegetation dynamics, Hopi Tribe and Navajo Nations
Quantifying the influence of the terrestrial biosphere on glacial-interglacial climate dynamics
NASA Astrophysics Data System (ADS)
Davies-Barnard, Taraka; Ridgwell, Andy; Singarayer, Joy; Valdes, Paul
2017-10-01
The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects) and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects) and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial-interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere-ocean-vegetation general circulation model (GCM) to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional -0.91 °C global mean cooling, with regional cooling as large as -5 °C, but with considerable variability across the glacial-interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial) baseline atmospheric CO2 mixing ratio. In contrast to shorter (century) timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a -0.26 °C effect on temperature, with -0.58 °C at the Last Glacial Maximum. Depending on assumptions made about the destination of terrestrial carbon under ice sheets and where sea level has changed, the average terrestrial biosphere contribution over the last 120 kyr could be as much as -50 °C and -0.83 °C at the Last Glacial Maximum.
Modeling long-term changes in forested landscapes and their relation to the Earth's energy balance
NASA Technical Reports Server (NTRS)
Shugart, H. H.; Emanuel, W. R.; Solomon, A. M.
1984-01-01
The dynamics of the forested parts of the Earth's surface on time scales from decades to centuries are discussed. A set of computer models developed at Oak Ridge National Laboratory and elsewhere are applied as tools. These models simulate a landscape by duplicating the dynamics of growth, death and birth of each tree living on a 0.10 ha element of the landscape. This spatial unit is generally referred to as a gap in the case of the forest models. The models were tested against and applied to a diverse array of forests and appear to provide a reasonable representation for investigating forest-cover dynamics. Because of the climate linkage, one important test is the reconstruction of paleo-landscapes. Detailed reconstructions of changes in vegetation in response to changes in climate are crucial to understanding the association of the Earth's vegetation and climate and the response of the vegetation to climate change.
Simulation Based Exploration of Critical Zone Dynamics in Intensively Managed Landscapes
NASA Astrophysics Data System (ADS)
Kumar, P.
2017-12-01
The advent of high-resolution measurements of topographic and (vertical) vegetation features using areal LiDAR are enabling us to resolve micro-scale ( 1m) landscape structural characteristics over large areas. Availability of hyperspectral measurements is further augmenting these LiDAR data by enabling the biogeochemical characterization of vegetation and soils at unprecedented spatial resolutions ( 1-10m). Such data have opened up novel opportunities for modeling Critical Zone processes and exploring questions that were not possible before. We show how an integrated 3-D model at 1m grid resolution can enable us to resolve micro-topographic and ecological dynamics and their control on hydrologic and biogeochemical processes over large areas. We address the computational challenge of such detailed modeling by exploiting hybrid CPU and GPU computing technologies. We show results of moisture, biogeochemical, and vegetation dynamics from studies in the Critical Zone Observatory for Intensively managed Landscapes (IMLCZO) in the Midwestern United States.
Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.
2015-01-01
Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.
Fluvial processes and vegetation - Glimpses of the past, the present, and perhaps the future
Osterkamp, W.R.; Hupp, C.R.
2010-01-01
Most research before 1960 into interactions among fluvial processes, resulting landforms, and vegetation was descriptive. Since then, however, research has become more detailed and quantitative permitting numerical modeling and applications including agricultural-erosion abatement and rehabilitation of altered bottomlands. Although progress was largely observational, the empiricism increasingly yielded to objective recognition of how vegetation interacts with and influences geomorphic process. A review of advances relating fluvial processes and vegetation during the last 50 years centers on hydrologic reconstructions from tree rings, plant indicators of flow- and flood-frequency parameters, hydrologic controls on plant species, regulation of sediment movement by vegetation, vegetative controls on mass movement, and relations between plant cover and sediment movement. Extension of present studies of vegetation as a regulator of bottomland hydrologic and geomorphic processes may become markedly more sophisticated and widespread than at present. Research emphases that are likely to continue include vegetative considerations for erosion modeling, response of riparian-zone forests to disturbance such as dams and water diversion, the effect of vegetation on channel and bottomland dynamics, and rehabilitation of stream corridors. Research topics that presently are receiving attention are the effect of woody vegetation on the roughness of stream corridors and, hence, processes of flood conveyance and flood-plain sedimentation, the development of a theoretical basis for rehabilitation projects as opposed to fully empirical approaches, the effect of invasive plant species on the dynamics of bottomland vegetation, the quantification of below-surface biomass and related soil-stability factors for use in erosion-prediction models, and the effect of impoundments on downstream narrowing of channels and accompanying encroachment of vegetation. Bottomland vegetation partially controls and is controlled by fluvial-geomorphic processes. The purposes of this paper are to identify and review investigations that have related vegetation to bottomland features and processes, to distinguish the present status of these investigations, and to anticipate future research into how hydrologic and fluvial-geomorphic processes of bottomlands interact with vegetation.
Shafer, Sarah L.; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.
2015-01-01
Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas. PMID:26488750
Modeling forest dynamics along climate gradients in Bolivia
NASA Astrophysics Data System (ADS)
Seiler, C.; Hutjes, R. W. A.; Kruijt, B.; Quispe, J.; Añez, S.; Arora, V. K.; Melton, J. R.; Hickler, T.; Kabat, P.
2014-05-01
Dynamic vegetation models have been used to assess the resilience of tropical forests to climate change, but the global application of these modeling experiments often misrepresents carbon dynamics at a regional level, limiting the validity of future projections. Here a dynamic vegetation model (Lund Potsdam Jena General Ecosystem Simulator) was adapted to simulate present-day potential vegetation as a baseline for climate change impact assessments in the evergreen and deciduous forests of Bolivia. Results were compared to biomass measurements (819 plots) and remote sensing data. Using regional parameter values for allometric relations, specific leaf area, wood density, and disturbance interval, a realistic transition from the evergreen Amazon to the deciduous dry forest was simulated. This transition coincided with threshold values for precipitation (1400 mm yr-1) and water deficit (i.e., potential evapotranspiration minus precipitation) (-830 mm yr-1), beyond which leaf abscission became a competitive advantage. Significant correlations were found between modeled and observed values of seasonal leaf abscission (R2 = 0.6, p <0.001) and vegetation carbon (R2 = 0.31, p <0.01). Modeled Gross Primary Productivity (GPP) and remotely sensed normalized difference vegetation index showed that dry forests were more sensitive to rainfall anomalies than wet forests. GPP was positively correlated to the El Niño-Southern Oscillation index in the Amazon and negatively correlated to consecutive dry days. Decreasing rainfall trends were simulated to reduce GPP in the Amazon. The current model setup provides a baseline for assessing the potential impacts of climate change in the transition zone from wet to dry tropical forests in Bolivia.
The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA
NASA Astrophysics Data System (ADS)
Guan, Yujuan; Zhang, Liquan
2006-10-01
The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.
Impact of dynamic vegetation phenology on the simulated pan-Arctic land surface state
NASA Astrophysics Data System (ADS)
Teufel, Bernardo; Sushama, Laxmi; Arora, Vivek K.; Verseghy, Diana
2018-03-01
The pan-Arctic land surface is undergoing rapid changes in a warming climate, with near-surface permafrost projected to degrade significantly during the twenty-first century. Vegetation-related feedbacks have the potential to influence the rate of degradation of permafrost. In this study, the impact of dynamic phenology on the pan-Arctic land surface state, particularly near-surface permafrost, for the 1961-2100 period, is assessed by comparing two simulations of the Canadian Land Surface Scheme (CLASS)—one with dynamic phenology, modelled using the Canadian Terrestrial Ecosystem Model (CTEM), and the other with prescribed phenology. These simulations are forced by atmospheric data from a transient climate change simulation of the 5th generation Canadian Regional Climate Model (CRCM5) for the Representative Concentration Pathway 8.5 (RCP8.5). Comparison of the CLASS coupled to CTEM simulation to available observational estimates of plant area index, spatial distribution of permafrost and active layer thickness suggests that the model captures reasonably well the overall distribution of vegetation and permafrost. It is shown that the most important impact of dynamic phenology on the land surface occurs through albedo and it is demonstrated for the first time that vegetation control on albedo during late spring and early summer has the highest potential to impact the degradation of permafrost. While both simulations show extensive near-surface permafrost degradation by the end of the twenty-first century, the strong projected response of vegetation to climate warming and increasing CO2 concentrations in the coupled simulation results in accelerated permafrost degradation in the northernmost continuous permafrost regions.
Vegetation patterns and dynamics within riparian corridors are controlled largely by geomorphic position, substrate characteristics and hydrologic regimes. Understanding management and restoration options for riparian meadow complexes exhibiting stream incision requires knowledge...
NASA Astrophysics Data System (ADS)
Lacaze, Roselyne; Smets, Bruno; Calvet, Jean-Christophe; Camacho, Fernando; Swinnen, Else; Verger, Aleixandre
2017-04-01
The Global component of the Copernicus Land Monitoring Service (CGLS) provides continuously a set of bio-geophysical variables describing the dynamics of vegetation, the energy budget at the continental surface, the water cycle and the cryosphere. Products are generated on a reliable and automatic basis from Earth Observation satellite data, at a frequency ranging from one hour to 10 days. They are accessible free of charge through the GCLS website (http://land.copernicus.eu/global/), associated with documentation describing the physical methodologies, the technical properties of products, and the quality of variables based on the results of validation exercises. The portfolio of the CGLS contains some Essential Climate Variables (ECV) like the Leaf Area Index (LAI), the Fraction of PAR absorbed by the vegetation (FAPAR), the surface albedo, and additional vegetation indices. These products were derived from SPOT/VEGETATION sensor data till December 2013, are currently derived from PROBA-V sensor data, and will be derived in the future from Sentinel-3 data. This talk will show how challenging is the transition between sensors to ensure the sustainability of the production while keeping the consistency of the time series. We will discuss the various sources of differences from input data, the impact of these differences on the biophysical variables and, in turn, on some final users' applications as such those based upon anomalies or assimilation of time series. We will present the mitigation measures taken to reduce as much as possible this impact. We will conclude with the lessons learnt and how this experience will be exploited to manage the transition towards Sentinel-3.
Using vegetation cover type to predict and scale peatland methane dynamics.
NASA Astrophysics Data System (ADS)
McArthur, K. J.; McCalley, C. K.; Palace, M. W.; Varner, R. K.; Herrick, C.; DelGreco, J. L.
2015-12-01
Permafrost ecosystems contain about 50% of the global soil carbon. As these northern ecosystems experience warmer temperature, permafrost thaws and may result in an increase in atmospheric methane. We examined a thawing and discontinuous permafrost boundary at Stordalen Mire, in Northern Sweden, in an effort to better understand methane emissions. Stable isotope analysis of methane in peatland porewater can give insights into the pathway of methane production. By measuring δ13CH4 we can predict whether a system is dominated by either hydrogenotrophic or acetaclastic methane production. Currently, it is a challenge to scale these isotopic patterns, thus, atmospheric inversion models simply assume that acetoclastic production dominates. We analyzed porewater samples collected across a range of vegetation cover types for δ13CH4 using a QCL (Quantum Cascade Laser Spectrometer) in conjunction with highly accurate GPS (3-10cm) measurements and high-resolution UAV imaging. We found δ13CH4 values ranging from -88‰ to -41‰, with averages based on cover type and other vegetation features showing differences of up to -15‰. We then used a computer neural network to predict cover types across Stordalen Mire from UAV imagery based on field-based plot measurements and training samples.. This prediction map was used to scale methane flux and isotope measurements. Our results suggest that the current values used in atmospheric inversion studies may oversimplify the relationship between plant and microbial communities in complex permafrost landscapes. As we gain a deeper understanding of how vegetation relates to methanogenic communities, understanding the spatial component of ecosystem methane metabolism and distribution will be increasingly valuable.
NASA Astrophysics Data System (ADS)
Gwate, O.; Mantel, Sukhmani K.; Palmer, Anthony R.; Gibson, Lesley A.
2016-10-01
Evapotranspiration (ET) is one of the least understood components of the water cycle, particularly in data scarce areas. In a context of climate change, evaluating water vapour fluxes of a particular area is crucial to help understand dynamics in water balance. In data scarce areas, ET modelling becomes vital. The study modelled ET using the Penman-Monteith- Leuning (PML) equation forced by Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) and MODIS albedo with ancillary meteorological data from an automatic weather station. The study area is located on the Albany Thicket (AT) biome of South Africa and the dominant plant species is Portulacaria afra. The biggest challenge to the implementation of the PML is the parameterisation of surface and stomatal conductance. We tested the use of volumetric soil water content (fswc), precipitation and equilibrium evaporation ratio (fzhang) and soil drying after precipitation (f) approaches to account for the fraction (f) of evaporation from the soil. ET from the model was validated using an eddy covariance system (EC). Post processing of eddy covariance data was implement using EddyPro software. The fdrying method performed better with a root mean square observations standard deviation ratio (RSR) of 0.97. The results suggest that modelling ET over the AT vegetation is delicate owing to strong vegetation phenological control of the ET process. The convergent evolution of the vegetation has resulted in high plant available water than the model can detect. It is vital to quantify plant available water in order to improve ET modelling in thicket vegetation.
Do understorey or overstorey traits drive tree encroachment on a drained raised bog?
Jagodziński, A M; Horodecki, P; Rawlik, K; Dyderski, M K
2017-07-01
One of the most important threats to peatland ecosystems is drainage, resulting in encroachment of woody species. Our main aim was to check which features - overstorey or understorey vegetation - are more important for shaping the seedling bank of pioneer trees colonising peatlands (Pinus sylvestris and Betula pubescens). We hypothesised that tree stand parameters will be more important predictors of natural regeneration density than understorey vegetation parameters, and the former will be negatively correlated with species diversity and richness and also with functional richness and functional dispersion, which indicate a high level of habitat filtering. The study was conducted in the 'Zielone Bagna' nature reserve (NW Poland). We assessed the structure of tree stands and natural regeneration (of B. pubescens and P. sylvestris) and vegetation species composition. Random forest and DCA were applied to assess relationships between variables studied. Understorey vegetation traits affected tree seedling density (up to 0.5-m height) more than tree stand traits. Density of older seedlings depended more on tree stand traits. We did not find statistically significant relationships between natural regeneration densities and functional diversity components, except for functional richness, which was positively correlated with density of the youngest tree seedlings. Seedling densities were higher in plots with lower functional dispersion and functional divergence, which indicated that habitat filtering is more important than competition. Presence of an abundant seedling bank is crucial for the process of woody species encroachment on drained peatlands, thus its dynamics should be monitored in protected areas. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Longstaffe, Fred J.; Zazula, Grant
2018-01-01
A magnificent repository of Late Pleistocene terrestrial megafauna fossils is contained in ice-rich loess deposits of Alaska and Yukon, collectively eastern Beringia. The stable carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone collagen from these fossils are routinely used to determine paleodiet and reconstruct the paleoecosystem. This approach requires consideration of changes in C- and N-isotope dynamics over time and their effects on the terrestrial vegetation isotopic baseline. To test for such changes between the Late Pleistocene and modern time, we compared δ13C and δ15N for vegetation and bone collagen and structural carbonate of some modern, Yukon, arctic ground squirrels with vegetation and bones from Late Pleistocene fossil arctic ground squirrel nests preserved in Yukon loess deposits. The isotopic discrimination between arctic ground squirrel bone collagen and their diet was measured using modern samples, as were isotopic changes during plant decomposition; Over-wintering decomposition of typical vegetation following senescence resulted in a minor change (~0–1 ‰) in δ13C of modern Yukon grasses. A major change (~2–10 ‰) in δ15N was measured for decomposing Yukon grasses thinly covered by loess. As expected, the collagen-diet C-isotope discrimination measured for modern samples confirms that modern vegetation δ13C is a suitable proxy for the Late Pleistocene vegetation in Yukon Territory, after correction for the Suess effect. The N-isotope composition of vegetation from the fossil arctic ground squirrel nests, however, is determined to be ~2.8 ‰ higher than modern grasslands in the region, after correction for decomposition effects. This result suggests a change in N dynamics in this region between the Late Pleistocene and modern time. PMID:29447202
Demographic analysis of tree colonization in a 20-year-old right-of-way.
Mercier, C; Brison, J; Bouchard, A
2001-12-01
Past tree colonization dynamics of a powerline-right-of-way (ROW) corridor in the Haut-Saint-Laurent region of Quebec was studied based on the present age distribution of its tree populations. This colonization study spans 20 years, from 1977 (ROW clearance) to 1996. The sampled quadrats were classified into six vegetation types. Tree colonization dynamics were interpreted in each type, and three distinct patterns were identified. (1) Communities adapted to acidic conditions were heavily colonized by Acer rubrum, at least for the last 12 years. (2) Communities adapted to mesic or to hydric conditions were more intensely colonized in the period 1985-1987 than in the following 9 years; this past success in tree colonization may have been caused by herbicide treatments, which could have facilitated tree establishment by damaging the herbaceous and shrub vegetation. (3) Cattail, vine-raspberry, and reed-dominated communities contained few tree individuals, with almost all trees establishing between 1979 and 1990; those three vegetation types appear as the most resistant to tree invasion in the ROW studied. This study supports the need for an integrated approach in ROW vegetation management, in which the selection of vegetation treatment methods would depend on the tree colonization dynamics in each vegetation type. Minimizing disturbances inflicted on ROW herbaceous and shrub covers should be the central strategy because disturbances jeopardize natural resistance to future tree invasion, except in communities adapted to acidic conditions where the existing vegetation does not prevent invasion by A. rubrum. Many trees are surviving the successive cutting operations by producing new sprouts each time, particularly in communities adapted to mesic and hydric conditions. In these cases, mechanical cutting should be replaced by a one-time stump-killing operation, to avoid repeated and unsuccessful treatments of the same individuals over time.
NASA Astrophysics Data System (ADS)
Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald
2017-05-01
West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.
Tahmasebi, Farnoush; Longstaffe, Fred J; Zazula, Grant
2018-01-01
A magnificent repository of Late Pleistocene terrestrial megafauna fossils is contained in ice-rich loess deposits of Alaska and Yukon, collectively eastern Beringia. The stable carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone collagen from these fossils are routinely used to determine paleodiet and reconstruct the paleoecosystem. This approach requires consideration of changes in C- and N-isotope dynamics over time and their effects on the terrestrial vegetation isotopic baseline. To test for such changes between the Late Pleistocene and modern time, we compared δ13C and δ15N for vegetation and bone collagen and structural carbonate of some modern, Yukon, arctic ground squirrels with vegetation and bones from Late Pleistocene fossil arctic ground squirrel nests preserved in Yukon loess deposits. The isotopic discrimination between arctic ground squirrel bone collagen and their diet was measured using modern samples, as were isotopic changes during plant decomposition; Over-wintering decomposition of typical vegetation following senescence resulted in a minor change (~0-1 ‰) in δ13C of modern Yukon grasses. A major change (~2-10 ‰) in δ15N was measured for decomposing Yukon grasses thinly covered by loess. As expected, the collagen-diet C-isotope discrimination measured for modern samples confirms that modern vegetation δ13C is a suitable proxy for the Late Pleistocene vegetation in Yukon Territory, after correction for the Suess effect. The N-isotope composition of vegetation from the fossil arctic ground squirrel nests, however, is determined to be ~2.8 ‰ higher than modern grasslands in the region, after correction for decomposition effects. This result suggests a change in N dynamics in this region between the Late Pleistocene and modern time.
Paleoclimate reconstruction through Bayesian data assimilation
NASA Astrophysics Data System (ADS)
Fer, I.; Raiho, A.; Rollinson, C.; Dietze, M.
2017-12-01
Methods of paleoclimate reconstruction from plant-based proxy data rely on assumptions of static vegetation-climate link which is often established between modern climate and vegetation. This approach might result in biased climate constructions as it does not account for vegetation dynamics. Predictive tools such as process-based dynamic vegetation models (DVM) and their Bayesian inversion could be used to construct the link between plant-based proxy data and palaeoclimate more realistically. In other words, given the proxy data, it is possible to infer the climate that could result in that particular vegetation composition, by comparing the DVM outputs to the proxy data within a Bayesian state data assimilation framework. In this study, using fossil pollen data from five sites across the northern hardwood region of the US, we assimilate fractional composition and aboveground biomass into dynamic vegetation models, LINKAGES, LPJ-GUESS and ED2. To do this, starting from 4 Global Climate Model outputs, we generate an ensemble of downscaled meteorological drivers for the period 850-2015. Then, as a first pass, we weigh these ensembles based on their fidelity with independent paleoclimate proxies. Next, we run the models with this ensemble of drivers, and comparing the ensemble model output to the vegetation data, adjust the model state estimates towards the data. At each iteration, we also reweight the climate values that make the model and data consistent, producing a reconstructed climate time-series dataset. We validated the method using present-day datasets, as well as a synthetic dataset, and then assessed the consistency of results across ecosystem models. Our method allows the combination of multiple data types to reconstruct the paleoclimate, with associated uncertainty estimates, based on ecophysiological and ecological processes rather than phenomenological correlations with proxy data.
Broader perspective on ecosystem sustainability: consequences for decision making.
Sidle, Roy C; Benson, William H; Carriger, John F; Kamai, Toshitaka
2013-06-04
Although the concept of ecosystem sustainability has a long-term focus, it is often viewed from a static system perspective. Because most ecosystems are dynamic, we explore sustainability assessments from three additional perspectives: resilient systems; systems where tipping points occur; and systems subject to episodic resetting. Whereas foundations of ecosystem resilience originated in ecology, recent discussions have focused on geophysical attributes, and it is recognized that dynamic system components may not return to their former state following perturbations. Tipping points emerge when chronic changes (typically anthropogenic, but sometimes natural) push ecosystems to thresholds that cause collapse of process and function and may become permanent. Ecosystem resetting occurs when episodic natural disasters breach thresholds with little or no warning, resulting in long-term changes to environmental attributes or ecosystem function. An example of sustainability assessment of ecosystem goods and services along the Gulf Coast (USA) demonstrates the need to include both the resilient and dynamic nature of biogeomorphic components. Mountain road development in northwest Yunnan, China, makes rivers and related habitat vulnerable to tipping points. Ecosystems reset by natural disasters are also presented, emphasizing the need to understand the magnitude frequency and interrelationships among major disturbances, as shown by (i) the 2011 Great East Japan Earthquake and resulting tsunami, including how unsustainable urban development exacerbates geodisaster propagation, and (ii) repeated major earthquakes and associated geomorphic and vegetation disturbances in Papua New Guinea. Although all of these ecosystem perturbations and shifts are individually recognized, they are not embraced in contemporary sustainable decision making.
High-fidelity simulation capability for virtual testing of seismic and acoustic sensors
NASA Astrophysics Data System (ADS)
Wilson, D. Keith; Moran, Mark L.; Ketcham, Stephen A.; Lacombe, James; Anderson, Thomas S.; Symons, Neill P.; Aldridge, David F.; Marlin, David H.; Collier, Sandra L.; Ostashev, Vladimir E.
2005-05-01
This paper describes development and application of a high-fidelity, seismic/acoustic simulation capability for battlefield sensors. The purpose is to provide simulated sensor data so realistic that they cannot be distinguished by experts from actual field data. This emerging capability provides rapid, low-cost trade studies of unattended ground sensor network configurations, data processing and fusion strategies, and signatures emitted by prototype vehicles. There are three essential components to the modeling: (1) detailed mechanical signature models for vehicles and walkers, (2) high-resolution characterization of the subsurface and atmospheric environments, and (3) state-of-the-art seismic/acoustic models for propagating moving-vehicle signatures through realistic, complex environments. With regard to the first of these components, dynamic models of wheeled and tracked vehicles have been developed to generate ground force inputs to seismic propagation models. Vehicle models range from simple, 2D representations to highly detailed, 3D representations of entire linked-track suspension systems. Similarly detailed models of acoustic emissions from vehicle engines are under development. The propagation calculations for both the seismics and acoustics are based on finite-difference, time-domain (FDTD) methodologies capable of handling complex environmental features such as heterogeneous geologies, urban structures, surface vegetation, and dynamic atmospheric turbulence. Any number of dynamic sources and virtual sensors may be incorporated into the FDTD model. The computational demands of 3D FDTD simulation over tactical distances require massively parallel computers. Several example calculations of seismic/acoustic wave propagation through complex atmospheric and terrain environments are shown.
Broader perspective on ecosystem sustainability: Consequences for decision making
Sidle, Roy C.; Benson, William H.; Carriger, John F.; Kamai, Toshitaka
2013-01-01
Although the concept of ecosystem sustainability has a long-term focus, it is often viewed from a static system perspective. Because most ecosystems are dynamic, we explore sustainability assessments from three additional perspectives: resilient systems; systems where tipping points occur; and systems subject to episodic resetting. Whereas foundations of ecosystem resilience originated in ecology, recent discussions have focused on geophysical attributes, and it is recognized that dynamic system components may not return to their former state following perturbations. Tipping points emerge when chronic changes (typically anthropogenic, but sometimes natural) push ecosystems to thresholds that cause collapse of process and function and may become permanent. Ecosystem resetting occurs when episodic natural disasters breach thresholds with little or no warning, resulting in long-term changes to environmental attributes or ecosystem function. An example of sustainability assessment of ecosystem goods and services along the Gulf Coast (USA) demonstrates the need to include both the resilient and dynamic nature of biogeomorphic components. Mountain road development in northwest Yunnan, China, makes rivers and related habitat vulnerable to tipping points. Ecosystems reset by natural disasters are also presented, emphasizing the need to understand the magnitude frequency and interrelationships among major disturbances, as shown by (i) the 2011 Great East Japan Earthquake and resulting tsunami, including how unsustainable urban development exacerbates geodisaster propagation, and (ii) repeated major earthquakes and associated geomorphic and vegetation disturbances in Papua New Guinea. Although all of these ecosystem perturbations and shifts are individually recognized, they are not embraced in contemporary sustainable decision making. PMID:23686583
Near ground level sensing for spatial analysis of vegetation
NASA Technical Reports Server (NTRS)
Sauer, Tom; Rasure, John; Gage, Charlie
1991-01-01
Measured changes in vegetation indicate the dynamics of ecological processes and can identify the impacts from disturbances. Traditional methods of vegetation analysis tend to be slow because they are labor intensive; as a result, these methods are often confined to small local area measurements. Scientists need new algorithms and instruments that will allow them to efficiently study environmental dynamics across a range of different spatial scales. A new methodology that addresses this problem is presented. This methodology includes the acquisition, processing, and presentation of near ground level image data and its corresponding spatial characteristics. The systematic approach taken encompasses a feature extraction process, a supervised and unsupervised classification process, and a region labeling process yielding spatial information.
NASA Astrophysics Data System (ADS)
Di Martino, Gerardo; Iodice, Antonio; Natale, Antonio; Riccio, Daniele; Ruello, Giuseppe
2015-04-01
The recently proposed polarimetric two-scale two- component model (PTSTCM) in principle allows us obtaining a reasonable estimation of the soil moisture even in moderately vegetated areas, where the volumetric scattering contribution is non-negligible, provided that the surface component is dominant and the double-bounce component is negligible. Here we test the PTSTCM validity range by applying it to polarimetric SAR data acquired on areas for which, at the same times of SAR acquisitions, ground measurements of soil moisture were performed. In particular, we employ the AGRISAR'06 database, which includes data from several fields covering a period that spans all the phases of vegetation growth.
NASA Astrophysics Data System (ADS)
Yang, Y.
2014-12-01
Extensive permafrost degradation starting from 1970s is observed at the Qinghai-Tibet Plateau , China. Degradation is attributed to an increase in mean annual ground temperature 0.1◦-0.5◦ C with mainly winter warming. The construction of Qinghai-Tibet Railway also influenced a state of permafrost in the area Permafrost degradation caused negative environmental consequences in the area. The areas covered by sand are expanding steadily making large concern of accelerating desertification. The general pathway of future joint dynamics of permafrost, vegetation and hydrological status at the Qinghai-Tibet Plateau is still poorly understood and foreseeable. Hydrology in the area is determined by heat-moisture dynamics of active layer. This dynamics is highly non-linear and depends as on external climatic variables temperature and precipitation, so on soil and rock properties (amount of sand against aeolian deposits in the Plateau) as well as vegetation cover, which determine thaw and freeze processes in the active layer and evaporation and run-off. SEVER DGVM was modified to include heat-moisture dynamics of active layer in the Qinghai-Tibet Plateau. SEVER DGVM imitates processes in 10 plant functional types at coarse resolution of 0.5 degrees. This model imitates behavior of average individual of each plant type in each grid cell through simulation years. Each of those grid cells processed independently. First, this model starts from "bare soil", placing a bit of each plant type and giving them some time to grow and achieve equilibrium. Then, including active layer thickness and soil moisture dynamics into this layer, it allows assessment of potential environmental dynamics in this area. Simulations demonstrate further degradation of pastureland and accelerating desertification processes in this vitally important water feed area for many Asian rivers. Negative environmental problems related to operation of Qinghai-Tibet are also assessed.
Evaluating the impact of a wide range of vegetation densities on river channel pattern
NASA Astrophysics Data System (ADS)
Pattison, Ian; Roucou, Ron
2016-04-01
Braided rivers are very dynamic systems which have complex controls over their planform and flow dynamics. Vegetation is one variable which influences channel geometry and pattern, through its effect on local flow hydraulics and the process continuum of sediment erosion-transport-deposition. Furthermore, where in the braided floodplain stable vegetation develops depends on the temporal sequencing of the river discharge i.e. floods. Understanding the effect of vegetation in these highly dynamic systems has multiple consequences for human activity and floodplain management. This paper focusses on the specific role of vegetation density in controlling braided river form and processes. Previous research in this field has been contradictory; with Gran and Paola (2001) finding that increasing vegetation density decreased the number of active channels. In contrast, Coulthard (2005] observed that as vegetation become denser there was an increase in the number of channels. This was hypothesized to be caused by flow separation around vegetation and the development of bars immediately downstream of the plant. This paper reports the results from a set of experiments in a 4m by 1m flume, where discharge, slope and sediment size were kept constant. Artificial grass was used to represent vegetation with a density ranging from 50 plants/m2 to 400 plants/m2. Digital photographs, using a GoPro camera with a fish eye lens, were taken from ~1m above the flume at an interval of 30 seconds during the 3 hour experiment. The experiments showed that as the vegetation density increased from 50 to 150 plants/m2, the number of channel bars developing doubled from 12 to 24. At vegetation densities greater than 150 plants/m2 there was a decline in the number of bars created to a minimum of 8 bars for a density of 400 plants/m2. We attribute these patterns to the effect that the vegetation has on flow hydraulics, sediment transport processes and the spatial patterns of erosion and deposition. We develop a simple conceptual model to explain the observations along the wide range of vegetation densities investigated. At low plant densities, each plant acted independently and caused flow separation and convergence around each plant, similar to in the Coulthard (2005] experiment. At medium densities, individual plants start to interact together with narrow channels developing longitudinally between vegetative bars. Finally at very high densities, there was both lateral and longitudinal interaction between plants meaning that flow was diverted around them forming wandering, meandering channels. In summary, the relationship between vegetation density and channel braiding is more complex than previous thought, taking a parabolic shape, with maximum braiding occurring at medium vegetation densities.
NASA Astrophysics Data System (ADS)
Song, Lisheng; Kustas, William P.; Liu, Shaomin; Colaizzi, Paul D.; Nieto, Hector; Xu, Ziwei; Ma, Yanfei; Li, Mingsong; Xu, Tongren; Agam, Nurit; Tolk, Judy A.; Evett, Steven R.
2016-09-01
In this study ground measured soil and vegetation component temperatures and composite temperature from a high spatial resolution thermal camera and a network of thermal-IR sensors collected in an irrigated maize field and in an irrigated cotton field are used to assess and refine the component temperature partitioning approach in the Two-Source Energy Balance (TSEB) model. A refinement to TSEB using a non-iterative approach based on the application of the Priestley-Taylor formulation for surface temperature partitioning and estimating soil evaporation from soil moisture observations under advective conditions (TSEB-A) was developed. This modified TSEB formulation improved the agreement between observed and modeled soil and vegetation temperatures. In addition, the TSEB-A model output of evapotranspiration (ET) and the components evaporation (E), transpiration (T) when compared to ground observations using the stable isotopic method and eddy covariance (EC) technique from the HiWATER experiment and with microlysimeters and a large monolithic weighing lysimeter from the BEAREX08 experiment showed good agreement. Difference between the modeled and measured ET measurements were less than 10% and 20% on a daytime basis for HiWATER and BEAREX08 data sets, respectively. The TSEB-A model was found to accurately reproduce the temporal dynamics of E, T and ET over a full growing season under the advective conditions existing for these irrigated crops located in arid/semi-arid climates. With satellite data this TSEB-A modeling framework could potentially be used as a tool for improving water use efficiency and conservation practices in water limited regions. However, TSEB-A requires soil moisture information which is not currently available routinely from satellite at the field scale.
NASA Astrophysics Data System (ADS)
Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.
2014-01-01
Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use the dynamic vegetation model LPJ-GUESS to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one exemplary "business-as-usual" climate scenario). Single factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model, as documented in previous studies. Under a RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics until present. However, during the 21st century nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contradicts earlier model results that showed an 8 to 37% decrease in carbon uptake, questioning the often stated assumption that projections of future terrestrial C dynamics from C-only models are too optimistic.
Aszalós, Réka; Lengyel, Attila
2017-01-01
Climate change and land use change are two major elements of human-induced global environmental change. In temperate grasslands and woodlands, increasing frequency of extreme weather events like droughts and increasing severity of wildfires has altered the structure and dynamics of vegetation. In this paper, we studied the impact of wildfires and the year-to-year differences in precipitation on species composition changes in semi-arid grasslands of a forest-steppe complex ecosystem which has been partially disturbed by wildfires. Particularly, we investigated both how long-term compositional dissimilarity changes and species richness are affected by year-to-year precipitation differences on burnt and unburnt areas. Study sites were located in central Hungary, in protected areas characterized by partially-burnt, juniper-poplar forest-steppe complexes of high biodiversity. Data were used from two long-term monitoring sites in the Kiskunság National Park, both characterized by the same habitat complex. We investigated the variation in species composition as a function of time using distance decay methodology. In each sampling area, compositional dissimilarity increased with the time elapsed between the sampling events, and species richness differences increased with increasing precipitation differences between consecutive years. We found that both the long-term compositional dissimilarity, and the year-to-year changes in species richness were higher in the burnt areas than in the unburnt ones. The long-term compositional dissimilarities were mostly caused by perennial species, while the year-to-year changes of species richness were driven by annual and biennial species. As the effect of the year-to-year variation in precipitation was more pronounced in the burnt areas, we conclude that canopy removal by wildfires and extreme inter-annual variability of precipitation, two components of global environmental change, act in a synergistic way. They enhance the effect of one another, resulting in greater long-term and year-to-year changes in the composition of grasslands. PMID:29149208
Kertész, Miklós; Aszalós, Réka; Lengyel, Attila; Ónodi, Gábor
2017-01-01
Climate change and land use change are two major elements of human-induced global environmental change. In temperate grasslands and woodlands, increasing frequency of extreme weather events like droughts and increasing severity of wildfires has altered the structure and dynamics of vegetation. In this paper, we studied the impact of wildfires and the year-to-year differences in precipitation on species composition changes in semi-arid grasslands of a forest-steppe complex ecosystem which has been partially disturbed by wildfires. Particularly, we investigated both how long-term compositional dissimilarity changes and species richness are affected by year-to-year precipitation differences on burnt and unburnt areas. Study sites were located in central Hungary, in protected areas characterized by partially-burnt, juniper-poplar forest-steppe complexes of high biodiversity. Data were used from two long-term monitoring sites in the Kiskunság National Park, both characterized by the same habitat complex. We investigated the variation in species composition as a function of time using distance decay methodology. In each sampling area, compositional dissimilarity increased with the time elapsed between the sampling events, and species richness differences increased with increasing precipitation differences between consecutive years. We found that both the long-term compositional dissimilarity, and the year-to-year changes in species richness were higher in the burnt areas than in the unburnt ones. The long-term compositional dissimilarities were mostly caused by perennial species, while the year-to-year changes of species richness were driven by annual and biennial species. As the effect of the year-to-year variation in precipitation was more pronounced in the burnt areas, we conclude that canopy removal by wildfires and extreme inter-annual variability of precipitation, two components of global environmental change, act in a synergistic way. They enhance the effect of one another, resulting in greater long-term and year-to-year changes in the composition of grasslands.
NASA Astrophysics Data System (ADS)
Hewitt, R. E.; Helene, G.; Taylor, D. L.; McGuire, A. D.; Mack, M. C.
2017-12-01
The release of permafrost-derived nitrogen (N) has the potential to fertilize tundra vegetation, modulating plant competition, stimulating productivity, and offsetting carbon losses from thawing permafrost. Dynamic rooting, mycorrhizal interactions, and coupling of N availability and root N uptake have been identified as gaps in ecosystem models. As a first step towards understanding whether Arctic plants can access deep permafrost-derived N, we characterized rooting profiles and quantified acquisition of 15N tracer applied at the permafrost boundary by moist acidic tundra plants subjected to almost three decades of warming at Toolik Lake, Alaska. In the ambient control plots the vegetation biomass is distributed between five plant functional types (PFTs): sedges, evergreen and deciduous shrubs, mosses and in lower abundance, forbs. The warming treatment has resulted in the increase of deciduous shrub biomass and the loss of sedges, evergreen shrubs, and mosses. We harvested roots by depth increment down to the top of the permafrost. Roots were classified by size class and PFT. The average thaw depth in the warmed plots was 58.3 cm ± 6.4 S.E., close to 18 cm deeper than the average thaw depth in the ambient plots (40.8 cm ± 1.8 S.E.). Across treatments the deepest rooting species was Rubus chamaemorus (ambient 40.8 cm ± 1.8 S.E., warmed 50.3 cm ± 9.8 S.E.), a non-mycorrhizal forb, followed by Eriophorum vaginatum, a non-mycorrhizal sedge. Ectomycorrhizal deciduous and ericoid mycorrhizal evergreen shrubs were rooted at more shallow depths. Deeply rooted non-mycorrhizal species had the greatest uptake of 15N tracer within 24 hours across treatments. Tracer uptake was greatest for roots of E. vaginatum in ambient plots and R. chamaemorus in warmed plots. Root profiles were integrated into a process-based ecosystem model coupled with a dynamic vegetation model. Functions modeling dynamic rooting profile relative to thaw depth were implemented for each PFT. The goal of the model simulations is to evaluate the relative effect of deep N acquisition and dynamic rooting profile on site level vegetation productivity. This modeling exercise will contribute to more accurate predictions of vegetation change in the Arctic modulated by belowground plant traits and changing soil resources with warming.
Delayed transition to new cell fates during cellular reprogramming
Cheng, Xianrui; Lyons, Deirdre C.; Socolar, Joshua E. S.; McClay, David R.
2014-01-01
In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues. PMID:24780626
NASA Astrophysics Data System (ADS)
Sakashita, W.; Onda, Y.; Boutefnouchet, M. R.; Kato, H.; Gomi, T.
2017-12-01
Evapotranspiration is an important controlling factor of the hydrological cycle in forested watershed. In general, the evapotranspiration is partitioned into three components (evaporation, transpiration, and interception). In a Japanese cypress plantation, our previous work using hydrometric method revealed that total evapotranspiration rate was 47.5% of the total rainfall amount during the growing season. This research also provided the contribution rates of three evapotranspiration components. Our previous study reported the difference of forest floor evaporation between pre-thinning and post-thinning periods (pre-thinning: Nov 2010-Oct 2011; post-thinning: Nov 2011-Oct 2012), indicating that a significant change appeared in the evaporation flux after the thinning. To examine the long-term changes of evapotranspiration, we have to consider the influence of increased understory vegetation. However, hydrometric-based method using such as weighting lysimeter is sensitive to vegetation conditions inside and outside lysimeter. This disadvantage makes it difficult to evaluate the contribution rates of each evapotranspiration components. In this study, we focus on the isotope-based method to obtain each flux of evapotranspiration under the condition including understory vegetation. Our study site is Mt. Karasawa, Tochigi Prefecture, in central Japan (139°36'E, 36°22'N; 198 m a.s.l.), and we prepare both sparse and dense areas of understory vegetation. In these two plots, we collect soil water samples from shallow depth profiles after various intensity precipitation events. Throughfall and understory-intercepted water are also obtained. Stable water isotope measurements of these samples may provide information about (a) effects of understory vegetation on shallow soil water movement and (b) interception flux of understory vegetation. In this paper, we report the results and interpretations of our measurements.
Behling, Hermann; Pillar, Valério DePatta
2007-02-28
Palaeoecological background information is needed for management and conservation of the highly diverse mosaic of Araucaria forest and Campos (grassland) in southern Brazil. Questions on the origin of Araucaria forest and grasslands; its development, dynamic and stability; its response to environmental change such as climate; and the role of human impact are essential. Further questions on its natural stage of vegetation or its alteration by pre- and post-Columbian anthropogenic activity are also important. To answer these questions, palaeoecological and palaeoenvironmental data based on pollen, charcoal and multivariate data analysis of radiocarbon dated sedimentary archives from southern Brazil are used to provide an insight into past vegetation changes, which allows us to improve our understanding of the modern vegetation and to develop conservation and management strategies for the strongly affected ecosystems in southern Brazil.
Kooistra, Lammert; Bergsma, Aldo; Chuma, Beatus; de Bruin, Sytze
2009-01-01
This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources. PMID:22574019
NASA Astrophysics Data System (ADS)
Sakschewski, B.; Kirsten, T.; von Bloh, W.; Poorter, L.; Pena-Claros, M.; Boit, A.
2016-12-01
Functional diversity of ecosystems has been found to increase ecosystem functions and therefore enhance ecosystem resilience against environmental stressors. However, global carbon-cycle and biosphere models still classify the global vegetation into a relatively small number of distinct plant functional types (PFT) with constant features over space and time. Therefore, those models might underestimate the resilience and adaptive capacity of natural vegetation under climate change by ignoring positive effects that functional diversity might bring about. We diversified a set a of selected tree traits in a dynamic global vegetation model (LPJmL). In the new subversion, called LPJmL-FIT, Amazon region biomass stocks and forest structure appear significantly more resilient against climate change. Enhanced tree trait diversity enables the simulated rainforests to adjust to new environmental conditions via ecological sorting. These results may stimulate a new debate on the value of biodiversity for climate change mitigation.
A Stochastic Water Balance Framework for Lowland Watersheds
NASA Astrophysics Data System (ADS)
Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu
2017-11-01
The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.
NASA Astrophysics Data System (ADS)
Handiani, D.; Paul, A.; Dupont, L.
2011-06-01
Abrupt climate changes associated with Heinrich Event 1 (HE1) about 18 to 15 thousand years before present (ka BP) strongly affected climate and vegetation patterns not only in the Northern Hemisphere, but also in tropical regions in the South Atlantic Ocean. We used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era (PI), the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). The HE1-like simulation with a glacial climate background produced sea surface temperature patterns and enhanced interhemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. It allowed us to investigate the vegetation changes that result from a transition to a drier climate as predicted for northern tropical Africa due to a southward shift of the Intertropical Convergence Zone (ITCZ). We found that a cooling of the Northern Hemisphere caused a southward shift of those plant-functional types (PFTs) in Northern Tropical Africa that are indicative of an increased desertification, and a retreat of broadleaf forests in Western Africa and Northern South America. We used the PFTs generated by the model to calculate mega-biomes to allow for a direct comparison between paleodata and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well to the modern and LGM sites of the BIOME6000 (v.4.2) reconstruction, except that our present-day simulation predicted the dominance of grassland in Southern Europe and our LGM simulation simulated more forest cover in tropical and sub-tropical South America. The mega-biomes from the HE1 simulation with glacial background climate were in agreement with paleovegetation data from land and ocean proxies in West, Central, and Northern Tropical Africa as well as Northeast South America. However, our model did not agree well with predicted biome distributions in Eastern South America.
NASA Technical Reports Server (NTRS)
Macdonald, R. B.; Houston, A. G.; Heydorn, R. P.; Botkin, D. B.; Estes, J. E.; Strahler, A. H.
1981-01-01
An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth.
Paula Durkin; Esteban Muldavin; Mike Bradley; Stacey E. Carr
1996-01-01
The riparian wetland vegetation communities of the upper and middle Rio Grande watersheds in New Mexico were surveyed in 1992 through 1994. The communities are hierarchically classified in terms of species composition and vegetation structure. The resulting Community Types are related to soil conditions, hydrological regime, and temporal dynamics. The classification is...
James M. Lenihan; Dominique Bachelet; Ronald P. Neilson; Raymond Drapeck
2008-01-01
The response of vegetation distribution, carbon, and fire to three scenarios of future climate change was simulated for California using the MC1 Dynamic General Vegetation Model. Under all three scenarios, Alpine/Subalpine Forest cover declined, and increases in the productivity of evergreen hardwoods led to the displacement of Evergreen Conifer Forest by Mixed...
Geneva Chong; David Barnett; Benjamin Chemel; Roy Renkin; Pamela Sikkink
2011-01-01
A 2002 National Research Council (NRC) evaluation of ungulate management practices in Yellowstone specifically concluded that previous (1957 to present) vegetation monitoring efforts were insufficient to determine whether climate or ungulates were more influential on shrub/steppe dynamics on the northern ungulate winter range. The NRC further recommended that the...
NASA Astrophysics Data System (ADS)
Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y.
2015-11-01
The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002-2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days, respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation and increasing temperature at the early growing period because of global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.
del Jesus, Manuel; Foti, Romano; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio
2012-01-01
The spatial organization of functional vegetation types in river basins is a major determinant of their runoff production, biodiversity, and ecosystem services. The optimization of different objective functions has been suggested to control the adaptive behavior of plants and ecosystems, often without a compelling justification. Maximum entropy production (MEP), rooted in thermodynamics principles, provides a tool to justify the choice of the objective function controlling vegetation organization. The application of MEP at the ecosystem scale results in maximum productivity (i.e., maximum canopy photosynthesis) as the thermodynamic limit toward which the organization of vegetation appears to evolve. Maximum productivity, which incorporates complex hydrologic feedbacks, allows us to reproduce the spatial macroscopic organization of functional types of vegetation in a thoroughly monitored river basin, without the need for a reductionist description of the underlying microscopic dynamics. The methodology incorporates the stochastic characteristics of precipitation and the associated soil moisture on a spatially disaggregated framework. Our results suggest that the spatial organization of functional vegetation types in river basins naturally evolves toward configurations corresponding to dynamically accessible local maxima of the maximum productivity of the ecosystem. PMID:23213227
Climate-vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene
NASA Astrophysics Data System (ADS)
Forrest, M.; Eronen, J. T.; Utescher, T.; Knorr, G.; Stepanek, C.; Lohmann, G.; Hickler, T.
2015-12-01
There is an increasing need to understand the pre-Quaternary warm climates, how climate-vegetation interactions functioned in the past, and how we can use this information to understand the present. Here we report vegetation modelling results for the Late Miocene (11-7 Ma) to study the mechanisms of vegetation dynamics and the role of different forcing factors that influence the spatial patterns of vegetation coverage. One of the key uncertainties is the atmospheric concentration of CO2 during past climates. Estimates for the last 20 million years range from 280 to 500 ppm. We simulated Late Miocene vegetation using two plausible CO2 concentrations, 280 ppm CO2 and 450 ppm CO2, with a dynamic global vegetation model (LPJ-GUESS) driven by climate input from a coupled AOGCM (Atmosphere-Ocean General Circulation Model). The simulated vegetation was compared to existing plant fossil data for the whole Northern Hemisphere. For the comparison we developed a novel approach that uses information of the relative dominance of different plant functional types (PFTs) in the palaeobotanical data to provide a quantitative estimate of the agreement between the simulated and reconstructed vegetation. Based on this quantitative assessment we find that pre-industrial CO2 levels are largely consistent with the presence of seasonal temperate forests in Europe (suggested by fossil data) and open vegetation in North America (suggested by multiple lines of evidence). This suggests that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.
NASA Astrophysics Data System (ADS)
Zhang, Wenxin; Miller, Paul A.; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf
2013-09-01
One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.
A spatial simulation model of hydrology and vegetation dynamics in semi-permanent prairie wetlands
Poiani, Karen A.; Johnson, W. Carter
1993-01-01
The objective of this study was to construct a spatial simulation model of the vegetation dynamics in semi-permanent prairie wetlands. A hydrologic submodel estimated water levels based on precipitation, runoff, and potential evapotranspiration. A vegetation submodel calculated the amount and distribution of emergent cover and open water using a geographic information system. The response of vegetation to water-level changes was based on seed bank composition, seedling recruitment and establishment, and plant survivorship. The model was developed and tested using data from the Cottonwood Lake study site in North Dakota. Data from semi-permanent wetland P1 were used to calibrate the model. Data from a second wetland, P4, were used to evaluate model performance. Simulation results were compared with actual water data from 1797 through 1989. Test results showed that differences between calculated and observed water levels were within 10 cm 75% of the time. Open water over the past decade ranged from 0 to 7% in wetland P4 and from 0 to 8% in submodel simulations. Several model parameters including evapotranspiration and timing of seedling germination could be improved with more complex techniques or relatively minor adjustments. Despite these differences the model adequately represented vegetation dynamics of prairie wetlands and can be used to examine wetland response to natural or human-induced climate change.
Vegetation Water Content (VWC) dynamics in during SMAPVEX16
NASA Astrophysics Data System (ADS)
Steele-Dunne, S. C.; Polo Bermejo, J.; Judge, J.; Bongiovanni, T. E.; Chakrabarti, S.; Liu, P. W.; Bragdon, J.; Hornbuckle, B. K.
2016-12-01
Vegetation water content has a confounding effect on the retrieval of soil moisture from microwave brightness temperatures. The presence of water in the overlying canopy influences the emission from the canopy itself and attenuates the emission from the soil. The purpose of this study is to gain insight into the dynamics of vegetation water content in the context of microwave remote sensing. The key questions are: (1) How is moisture distributed in an agricultural canopy? (2) How does that vertical distribution change in time? (3) How do these dynamics influence the observed brightness temperature? To address these questions, a detailed sampling campaign was undertaken in one corn field and one soybean field at an intensively monitored site near Buckeye, Iowa within the SMAPVEX16 domain. The experiment duration extends from the beginning of IOP1 to the end of IOP2, i.e. from May 18 to August 16 2016. Vegetation sampling was performed on days upon which SMAP had both an ascending and a descending pass. On these days, destructive vegetation samples were generally collected at 6pm and 6pm unless the weather conditions were bad. In addition to measuring the bulk vegetation water content for comparison to the SMAP retrieved VWC, the samples were split into leaves and stems. For the corn plants, leaf moisture content was also measured as a function of height and the stem was cut into 10cm sections. Results will be presented to show the changes in VWC associated with plant development through the vegetative and reproductive stages as well as diurnal variations associated with water availability in the root zone and variations in evaporative demand. In addition, fresh biomass, dry biomass and vegetation water content will be related to brightness temperature observations from (1) the SMAP and SMOS satellite missions, (2) the PALS instrument flown during the SMAPVEX16 IOPs in Iowa (3) the tower-based radiometers located at the soybean and corn fields.
Model estimation of land-use effects on water levels of northern Prairie wetlands
Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V.
2007-01-01
Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.
Global change and terrestrial plant community dynamics
Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...
2016-02-29
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less
Global change and terrestrial plant community dynamics
Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.
2016-01-01
Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338
Simulating drought impacts on energy balance in an Amazonian rainforest
NASA Astrophysics Data System (ADS)
Imbuzeiro, H. A.; Costa, M. H.; Galbraith, D.; Christoffersen, B. O.; Powell, T.; Harper, A. B.; Levine, N. M.; Rowland, L.; Moorcroft, P. R.; Benezoli, V. H.; Meir, P.; da Costa, A. C. L.; Brando, P. M.; Malhi, Y.; Saleska, S. R.; Williams, M. D.
2014-12-01
The studies of the interaction between vegetation and climate change in the Amazon Basin indicate that up to half of the region's forests may be displaced by savanna vegetation by the end of the century. Additional analyses suggest that complex interactions among land use, fire-frequency, and episodic drought are driving an even more rapid process of the forest impoverishment and displacement referred here as "savannization". But it is not clear whether surface/ecosystem models are suitable to analyze extreme events like a drought. Long-term simulations of throughfall exclusion experiments has provided unique insights into the energy dynamics of Amazonian rainforests during drought conditions. In this study, we evaluate how well six surface/ecosystem models quantify the energy dynamics from two Amazonian throughfall exclusion experiments. All models were run for the Tapajós and Caxiuanã sites with one control plot using normal precipitation (i.e. do not impose a drought) and then the drought manipulation was imposed for several drought treatments (10 to 90% rainfall exclusion). The sap flow, net radiation (Rn), sensible (H), latent (LE) and ground (G) heat flux are used to analyze if the models are able to capture the dynamics of water stress and what the implications for the energy dynamics are. With respect to the model validation, when we compare the sap flow observed and transpiration simulated, models are more accurate to simulate control plots than drought treatments (50% rainfall exclusion). The results show that the models overestimate the sap flow data during the drought conditions, but they were able to capture the changes in the main energy balance components for different drought treatments. The Rn and LE decreased and H increased with more intensity of drought. The models sensitivity analysis indicate that models are more sensitive to drought when rainfall is excluded for more than 60% and when this reduction occurs during the dry season.
[Review on water eco-environment in vegetation restoration in Loess Plateau].
Hu, Liangjun; Shao, Mingan
2002-08-01
Water is the crucial factor influencing vegetation restoration and eco-environmental reconstruction in Loess Plateau region. In this paper, the previous studies on water eco-environment under vegetation construction were summarized from seven aspects, i.e., soil water resource, background of soil water, dynamics of soil water, dry soil layer, relationship between soil water and vegetarian productivity, classification of soil water position, and strategy for vegetation construction. Meanwhile, some problems in the relevant researches were pointed out and discussed.
Holocene fire activity and vegetation response in South-Eastern Iberia
NASA Astrophysics Data System (ADS)
Gil-Romera, Graciela; Carrión, José S.; Pausas, Juli G.; Sevilla-Callejo, Miguel; Lamb, Henry F.; Fernández, Santiago; Burjachs, Francesc
2010-05-01
Since fire has been recognized as an essential disturbance in Mediterranean landscapes, the study of long-term fire ecology has developed rapidly. We have reconstructed a sequence of vegetation dynamics and fire changes across south-eastern Iberia by coupling records of climate, fire, vegetation and human activities. We calculated fire activity anomalies (FAAs) in relation to 3 ka cal BP for 10-8 ka cal BP, 6 ka cal BP, 4 ka cal BP and the present. For most of the Early to the Mid-Holocene uneven, but low fire events were the main vegetation driver at high altitudes where broadleaved and coniferous trees presented a highly dynamic post-fire response. At mid-altitudes in the mainland Segura Mountains, fire activity remained relatively stable, at similar levels to recent times. We hypothesize that coastal areas, both mountains and lowlands, were more fire-prone landscapes as biomass was more likely to have accumulated than in the inland regions, triggering regular fire events. The wet and warm phase towards the Mid-Holocene (between ca 8 and 6 ka cal BP) affected the whole region and promoted the spread of mesophytic forest co-existing with Pinus, as FAAs appear strongly negative at 6 ka cal BP, with a less important role of fire. Mid and Late Holocene landscapes were shaped by an increasing aridity trend and the rise of human occupation, especially in the coastal mountains where forest disappeared from ca 2 ka cal BP. Mediterranean-type vegetation (evergreen oaks and Pinus pinaster- halepensis types) showed the fastest post-fire vegetation dynamics over time.
Ecological controls on water-cycle response to climate variability in deserts
Scanlon, B. R.; Levitt, D. G.; Reedy, R. C.; Keese, K. E.; Sully, M. J.
2005-01-01
The impact of climate variability on the water cycle in desert ecosystems is controlled by biospheric feedback at interannual to millennial timescales. This paper describes a unique field dataset from weighing lysimeters beneath nonvegetated and vegetated systems that unequivocally demonstrates the role of vegetation dynamics in controlling water cycle response to interannual climate variability related to El Niño southern oscillation in the Mojave Desert. Extreme El Niño winter precipitation (2.3-2.5 times normal) typical of the U.S. Southwest would be expected to increase groundwater recharge, which is critical for water resources in semiarid and arid regions. However, lysimeter data indicate that rapid increases in vegetation productivity in response to elevated winter precipitation reduced soil water storage to half of that in a nonvegetated lysimeter, thereby precluding deep drainage below the root zone that would otherwise result in groundwater recharge. Vegetation dynamics have been controlling the water cycle in interdrainage desert areas throughout the U.S. Southwest, maintaining dry soil conditions and upward soil water flow since the last glacial period (10,000-15,000 yr ago), as shown by soil water chloride accumulations. Although measurements are specific to the U.S. Southwest, correlations between satellite-based vegetation productivity and elevated precipitation related to El Niño southern oscillation indicate this model may be applicable to desert basins globally. Understanding the two-way coupling between vegetation dynamics and the water cycle is critical for predicting how climate variability influences hydrology and water resources in water-limited landscapes. PMID:15837922
Sarah Pratt; Lisa Holsinger; Robert E. Keane
2006-01-01
A critical component of the Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, was the development of a nationally consistent method for estimating historical reference conditions for vegetation composition and structure and wildland fire regimes. These estimates of past vegetation composition and condition are used...
Wu, Jianping; Liu, Zhanfeng; Huang, Guomin; Chen, Dima; Zhang, Weixin; Shao, Yuanhu; Wan, Songze; Fu, Shenglei
2014-01-01
Reforested plantations have substantial effects on terrestrial carbon cycling due to their large coverage area. Although understory plants are important components of reforested plantations, their effects on ecosystem carbon dynamics remain unclear. This study was designed to investigate the effects of vegetation removal/understory removal and tree girdling on soil respiration and ecosystem carbon dynamics in Eucalyptus plantations of South China with contrasting ages (2 and 24 years old). We conducted a field manipulation experiment from 2008 to 2009. Understory removal reduced soil respiration in both plantations, whereas tree girdling decreased soil respiration only in the 2-year-old plantations. The net ecosystem production was approximately three times greater in the 2-year-old plantations (13.4 t C ha−1 yr−1) than in the 24-year-old plantations (4.2 t C h−1 yr−1). The biomass increase of understory plants was 12.6 t ha−1 yr−1 in the 2-year-old plantations and 2.9 t ha−1 yr−1 in the 24-year-old plantations, accounting for 33.9% and 14.1% of the net primary production, respectively. Our findings confirm the ecological importance of understory plants in subtropical plantations based on the 2 years of data. These results also indicate that Eucalyptus plantations in China may be an important carbon sink due to the large plantation area. PMID:25179343
NASA Astrophysics Data System (ADS)
Clark, D. B.; Mercado, L. M.; Sitch, S.; Jones, C. D.; Gedney, N.; Best, M. J.; Pryor, M.; Rooney, G. G.; Essery, R. L. H.; Blyth, E.; Boucher, O.; Harding, R. J.; Huntingford, C.; Cox, P. M.
2011-09-01
The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Many studies have demonstrated the important role of the land surface in the functioning of the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of climate change, increasing atmospheric carbon dioxide concentrations, changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. This paper describes the consolidation of these advances in the modelling of carbon fluxes and stores, in both the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutowski, William J.
This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASMmore » can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes in the freshwater flux between arctic climate system components resulting from decadal changes in land and sea ice, seasonal snow, vegetation, and ocean circulation. - Changing energetics due to decadal changes in ice mass, vegetation, and air-sea interactions. - The role of small-scale atmospheric and oceanic processes that influence decadal variability. This research has been addressing modes of natural climate variability as well as extreme and rapid climate change. RASM can facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts.« less
Hao, Lu; Pan, Cen; Fang, Di; Zhang, Xiaoyu; Zhou, Decheng; Liu, Peilong; Liu, Yongqiang; Sun, Ge
2018-10-15
Grazing is a major ecosystem disturbance in arid regions that are increasingly threatened by climate change. Understanding the long-term impacts of grazing on rangeland vegetation dynamics in a complex terrain in mountainous regions is important for quantifying dry land ecosystem services for integrated watershed management and climate change adaptation. However, data on the detailed long-term spatial distribution of grazing activities are rare, which prevents trend detection and environmental impact assessments of grazing. This study quantified the impacts of grazing on vegetation dynamics for the period of 1983-2010 in the Upper Heihe River basin, a complex multiple-use watershed in northwestern China. We also examined the relative contributions of grazing and climate to vegetation change using a dynamic grazing pressure method. Spatial grazing patterns and temporal dynamics were mapped at a 1 km × 1 km pixel scale using satellite-derived leaf area index (LAI) data. We found that overgrazing was a dominant driver for LAI reduction in alpine grasslands and shrubs, especially for the periods of 1985-1991 and 1997-2004. Although the recent decade-long active grazing management contributed to the improvement of LAI and partially offset the negative effects of increased livestock, overgrazing has posed significant challenges to shrub-grassland ecosystem recovery in the eastern part of the study basin. We conclude that the positive effects of a warming and wetting climate on vegetation could be underestimated if the negative long-term grazing effects are not considered. Findings from the present case study show that assessing long-term climate change impacts on watersheds must include the influences of human activities. Our study provides important guidance for ecological restoration efforts in locating vulnerable areas and designing effective management practices in the study watershed. Such information is essential for natural resource management that aims at meeting multiple demands of watershed ecosystem services in arid and semiarid rangelands. Copyright © 2018 Elsevier B.V. All rights reserved.
Richard F. Miller; Jeanne C. Chambers; Mike Pellant
2014-01-01
This field guide identifies seven primary components that largely determine resilience to disturbance, as well as resistance to invasive grasses and plant succession following treatment of areas of concern. The primary components are (1) characteristics of the ecological site, (2) current vegetation prior to treatment, (3) disturbance history, (4) type, timing, and...
Hydrologic dynamics and ecosystem structure.
Rodríguez-Iturbe, I
2003-01-01
Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.
Turnbull, Laura; Brazier, Richard E; Wainwright, John; Dixon, Liz; Bol, Roland
2008-06-01
Many semi-arid areas worldwide are becoming degraded, in the form of C(4) grasslands being replaced by C(3) shrublands, which causes an increase in surface runoff and erosion, and altered nutrient cycling, which may affect global biogeochemical cycling. The prevention or control of vegetation transitions is hindered by a lack of understanding of their temporal and spatial dynamics, particularly in terms of interactions between biotic and abiotic processes. This research investigates (1) the effects of soil erosion on the delta(13)C values of soil organic matter (SOM) throughout the soil profile and its implications for reconstructing vegetation change using carbon-isotope analysis and (2) the spatial properties of erosion over a grass-shrub transition to increase understanding of biotic-abiotic interactions by using delta(13)C signals of eroded material as a sediment tracer. Results demonstrate that the soils over grass-shrub transitions are not in steady state. A complex interplay of factors determines the input of SOM to the surface horizon of the soil and its subsequent retention and turnover through the soil profile. A positive correlation between event runoff and delta(13)C signatures of eroded sediment was found in all plots. This indicates that the delta(13)C signatures of eroded sediment may provide a means of distinguishing between changes in erosion dynamics over runoff events of different magnitudes and over different vegetation types. The development of this technique using delta(13)C signatures of eroded sediment provides a new means of furthering existing understanding of erosion dynamics over vegetation transitions. This is critical in terms of understanding biotic-abiotic feedbacks and the evolution of areas subject to vegetation change in semi-arid environments. John Wiley & Sons, Ltd
Linking Vital Rates of Landbirds on a Tropical Island to Rainfall and Vegetation Greenness
Saracco, James F.; Radley, Paul; Pyle, Peter; Rowan, Erin; Taylor, Ron; Helton, Lauren
2016-01-01
Remote tropical oceanic islands are of high conservation priority, and they are exemplified by range-restricted species with small global populations. Spatial and temporal patterns in rainfall and plant productivity may be important in driving dynamics of these species. Yet, little is known about environmental influences on population dynamics for most islands and species. Here we leveraged avian capture-recapture, rainfall, and remote-sensed habitat data (enhanced vegetation index [EVI]) to assess relationships between rainfall, vegetation greenness, and demographic rates (productivity, adult apparent survival) of three native bird species on Saipan, Northern Mariana Islands: rufous fantail (Rhipidura rufifrons), bridled white-eye (Zosterops conspicillatus), and golden white-eye (Cleptornis marchei). Rainfall was positively related to vegetation greenness at all but the highest rainfall levels. Temporal variation in greenness affected the productivity of each bird species in unique ways. Predicted productivity of rufous fantail was highest when dry and wet season greenness values were high relative to site-specific 5-year seasonal mean values (i.e., relative greenness); while the white-eye species had highest predicted productivity when relative greenness contrasted between wet and dry seasons. Survival of rufous fantail and bridled white eye was positively related to relative dry-season greenness and negatively related to relative wet-season greenness. Bridled white-eye survival also showed evidence of a positive response to overall greenness. Our results highlight the potentially important role of rainfall regimes in affecting population dynamics of species on oceanic tropical islands. Understanding linkages between rainfall, vegetation, and animal population dynamics will be critical for developing effective conservation strategies in this and other regions where the seasonal timing, extent, and variability of rainfall is expected to change in the coming decades. PMID:26863013
Linking Vital Rates of Landbirds on a Tropical Island to Rainfall and Vegetation Greenness.
Saracco, James F; Radley, Paul; Pyle, Peter; Rowan, Erin; Taylor, Ron; Helton, Lauren
2016-01-01
Remote tropical oceanic islands are of high conservation priority, and they are exemplified by range-restricted species with small global populations. Spatial and temporal patterns in rainfall and plant productivity may be important in driving dynamics of these species. Yet, little is known about environmental influences on population dynamics for most islands and species. Here we leveraged avian capture-recapture, rainfall, and remote-sensed habitat data (enhanced vegetation index [EVI]) to assess relationships between rainfall, vegetation greenness, and demographic rates (productivity, adult apparent survival) of three native bird species on Saipan, Northern Mariana Islands: rufous fantail (Rhipidura rufifrons), bridled white-eye (Zosterops conspicillatus), and golden white-eye (Cleptornis marchei). Rainfall was positively related to vegetation greenness at all but the highest rainfall levels. Temporal variation in greenness affected the productivity of each bird species in unique ways. Predicted productivity of rufous fantail was highest when dry and wet season greenness values were high relative to site-specific 5-year seasonal mean values (i.e., relative greenness); while the white-eye species had highest predicted productivity when relative greenness contrasted between wet and dry seasons. Survival of rufous fantail and bridled white eye was positively related to relative dry-season greenness and negatively related to relative wet-season greenness. Bridled white-eye survival also showed evidence of a positive response to overall greenness. Our results highlight the potentially important role of rainfall regimes in affecting population dynamics of species on oceanic tropical islands. Understanding linkages between rainfall, vegetation, and animal population dynamics will be critical for developing effective conservation strategies in this and other regions where the seasonal timing, extent, and variability of rainfall is expected to change in the coming decades.
CFD simulation of fatty acid methyl ester production in bubble column reactor
NASA Astrophysics Data System (ADS)
Salleh, N. S. Mohd; Nasir, N. F.
2017-09-01
Non-catalytic transesterification is one of the method that was used to produce the fatty acid methyl ester (FAME) by blowing superheated methanol bubbles continuously into the vegetable oil without using any catalyst. This research aimed to simulate the production of FAME from palm oil in a bubble column reactor. Computational Fluid Dynamic (CFD) simulation was used to predict the distribution of fatty acid methyl ester and other product in the reactor. The fluid flow and component of concentration along the reaction time was investigated and the effects of reaction temperature (523 K and 563 K) on the non-catalytic transesterification process has been examined. The study was carried out using ANSYS CFX 17.1. The finding from the study shows that increasing the temperature leads to higher amount of fatty acid methyl ester can be produced in shorter time. On the other hand, concentration of the component such as triglyceride (TG), glycerol (GL) and fatty acid methyl ester (FAME) can be known when reaching the optimum condition.
Noothalapati, Hemanth; Sasaki, Takahiro; Kaino, Tomohiro; Kawamukai, Makoto; Ando, Masahiro; Hamaguchi, Hiro-o; Yamamoto, Tatsuyuki
2016-01-01
Fungal cell walls are medically important since they represent a drug target site for antifungal medication. So far there is no method to directly visualize structurally similar cell wall components such as α-glucan, β-glucan and mannan with high specificity, especially in a label-free manner. In this study, we have developed a Raman spectroscopy based molecular imaging method and combined multivariate curve resolution analysis to enable detection and visualization of multiple polysaccharide components simultaneously at the single cell level. Our results show that vegetative cell and ascus walls are made up of both α- and β-glucans while spore wall is exclusively made of α-glucan. Co-localization studies reveal the absence of mannans in ascus wall but are distributed primarily in spores. Such detailed picture is believed to further enhance our understanding of the dynamic spore wall architecture, eventually leading to advancements in drug discovery and development in the near future. PMID:27278218
Ecology, mobility and labour: dynamic pastoral herd management in an uncertain world.
Butt, B
2016-11-01
In this review, the author discusses how pastoralism, and its many constituent components, is increasingly being recognised as in tune with the changing political and ecological nature of rangelands. He describes ways in which the literature reflects this changing attitude, outlines how rangelands respond to changes in climate and explores the evolving use of livestock resources. In addition, he describes the growing recognition of factors other than livestock density that affect rangeland vegetation (i.e. density-independent relationships). The author explains how terms such as 'carrying capacity', 'overgrazing' and 'desertification' are often taken out of their social and political context when describing rangeland pastoralism. Next, he describes the growing recognition by the development community of the importance of the mobility model, particularly in relation to changing ecologies and politics. Finally, he outlines how labour, a central focus of pastoral herd management, is a fluid component of pastoral systems in response to changing political and ecological circumstances.
Robert E. Keane; Geoffrey J. Cary; Ian D. Davies; Michael D. Flannigan; Robert H. Gardner; Sandra Lavorel; James M. Lenihan; Chao Li; T. Scott Rupp
2007-01-01
Wildland fire is a major disturbance in most ecosystems worldwide (Crutzen and Goldammer 1993). The interaction of fire with climate and vegetation over long time spans, often referred to as the fire regime (Agee 1993; Clark 1993; Swetnam and Baisan 1996; Swetnam 1997), has major effects on dominant vegetation, ecosystem carbon budget, and biodiversity (Gardner et aL...
William H. Romme; Craig D. Allen; John D. Bailey; William L. Baker; Brandon T. Bestelmeyer; Peter M. Brown; Karen S. Eisenhart; Lisa Floyd-Hanna; Dustin W. Huffman; Brian F. Jacobs; Richard F. Miller; Esteban H. Muldavin; Thomas W. Swetnam; Robin J. Tausch; Peter J. Weisberg
2008-01-01
Pinon-juniper is one of the major vegetation types in western North America. It covers a huge area, provides many resources and ecosystem services, and is of great management concern. Management of pinon-juniper vegetation has been hindered, especially where ecological restoration is a goal, by inadequate understanding of the variability in historical and modern...
NASA Astrophysics Data System (ADS)
Zhang, Q.; Yao, T.
2017-12-01
Photosynthesis is a basic physiological function of vegetation that relies on PAR provided through photosynthetic pigments (mainly chlorophyll) for plant growth and biomass accumulation. Vegetation chlorophyll (chl) content and non-chlorophyll (non-chl) components vary with plant functional types (PFTs) and growing stages. The PAR absorbed by canopy chlorophyll (APARchl) is associated with photosynthesis (i.e., gross primary production, GPP) while the PAR absorbed by canopy non-chl components (APARnon-chl) is not associated with photosynthesis. Under non-optimal environmental conditions, vegetation is "stressed" and both photosynthesis (GPP) and light use efficiency are reduced, therefore, excess portions of APARchl are discarded as fluorescence or non-photochemical quenching (NPQ). The photochemical reflectance index (PRI) is a measurement related to NPQ. Both PRI and yield of solar induced chlorophyll fluorescence (SIFyield = SIF/APARchl) have been proposed as possible bio-indicators of LUEchl. We have successfully developed an algorithm to distinguish between chlorophyll and non-chl components of vegetation, and to retrieve fractional absorptions of PAR by chlorophyll (fAPARchl) and by non-chl components (fAPARnon-chl) with surface reflectance of MODIS bands 1 - 7. A method originally pioneered by Hanan et al. (2002) has been used to retrieve fAPAR for vegetation photosynthesis (fAPARPSN) at flux tower sites based on the light response curve of tower net ecosystem exchange (NEE) and incident PAR at low light intensity. We have also retrieved the PRI from MODIS data (bands 11 and 1) and have derived SIFyield with the Global Ozone Monitoring Experiment - 2 (GOME-2) SIF data. We find that fAPARPSN at flux tower sites matches well with site fAPARchl, and ratio fAPARnon-chl/fAPARchl varies largely. APARchl can explain >=78% variation in seasonal GPP . We disentangle the possible impact of fAPARchl on PRI from physiological stress response, disentangle the possible impact of APARchl on SIFyield from physiological stress response, and find that integrating three bio-parameters fAPARchl, PRI and SIFyield can explain >=87% variation in seasonal GPP . Therefore, quantifying fAPARchl, PRI and SIF has the best potential to monitor vegetation function and physiology.
Jiang, Yueyang; Zhuang, Qianlai; Schaphoff, Sibyll; Sitch, Stephen; Sokolov, Andrei; Kicklighter, David; Melillo, Jerry
2012-03-01
This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares to the uncertainty induced by various climates. The analysis was based on a set of 10,000 Monte Carlo ensemble Lund-Potsdam-Jena (LPJ) simulations for the northern high latitudes (45(o)N and polewards) for the period 1900-2100. The LPJ Dynamic Global Vegetation Model (LPJ-DGVM) was run under contemporary and future climates from four Special Report Emission Scenarios (SRES), A1FI, A2, B1, and B2, based on the Hadley Centre General Circulation Model (GCM), and six climate scenarios, X901M, X902L, X903H, X904M, X905L, and X906H from the Integrated Global System Model (IGSM) at the Massachusetts Institute of Technology (MIT). In the current dynamic vegetation model, some parameters are more important than others in determining the vegetation distribution. Parameters that control plant carbon uptake and light-use efficiency have the predominant influence on the vegetation distribution of both woody and herbaceous plant functional types. The relative importance of different parameters varies temporally and spatially and is influenced by climate inputs. In addition to climate, these parameters play an important role in determining the vegetation distribution in the region. The parameter-based uncertainties contribute most to the total uncertainty. The current warming conditions lead to a complexity of vegetation responses in the region. Temperate trees will be more sensitive to climate variability, compared with boreal forest trees and C3 perennial grasses. This sensitivity would result in a unanimous northward greenness migration due to anomalous warming in the northern high latitudes. Temporally, boreal needleleaved evergreen plants are projected to decline considerably, and a large portion of C3 perennial grass is projected to disappear by the end of the 21st century. In contrast, the area of temperate trees would increase, especially under the most extreme A1FI scenario. As the warming continues, the northward greenness expansion in the Arctic region could continue.
Resolving the percentage of component terrains within single resolution elements
NASA Technical Reports Server (NTRS)
Marsh, S. E.; Switzer, P.; Kowalik, W. S.; Lyon, R. J. P.
1980-01-01
An approximate maximum likelihood technique employing a widely available discriminant analysis program is discussed that has been developed for resolving the percentage of component terrains within single resolution elements. The method uses all four channels of Landsat data simultaneously and does not require prior knowledge of the percentage of components in mixed pixels. It was tested in five cases that were chosen to represent mixtures of outcrop, soil and vegetation which would typically be encountered in geologic studies with Landsat data. For all five cases, the method proved to be superior to single band weighted average and linear regression techniques and permitted an estimate of the total area occupied by component terrains to within plus or minus 6% of the true area covered. Its major drawback is a consistent overestimation of the pixel component percent of the darker materials (vegetation) and an underestimation of the pixel component percent of the brighter materials (sand).
Liu, Peilong; Hao, Lu; Pan, Cen; Zhou, Decheng; Liu, Yongqiang; Sun, Ge
2017-07-01
Leaf area index (LAI) is a key parameter to characterize vegetation dynamics and ecosystem structure that determines the ecosystem functions and services such as clean water supply and carbon sequestration in a watershed. However, linking LAI dynamics and environmental controls (i.e., coupling biosphere, atmosphere, and anthroposphere) remains challenging and such type of studies have rarely been done at a watershed scale due to data availability. The present study examined the spatial and temporal variations of LAI for five ecosystem types within a watershed with a complex topography in the Upper Heihe River Basin, a major inland river in the arid and semi-arid western China. We integrated remote sensing-based GLASS (Global Land Surface Satellite) LAI products, interpolated climate data, watershed characteristics, and land management records for the period of 2001-2012. We determined the relationships among LAI, topography, air temperature and precipitation, and grazing history by five ecosystem types using several advanced statistical methods. We show that long-term mean LAI distribution had an obvious vertical pattern as controlled by precipitation and temperature in a hilly watershed. Overall, watershed-wide mean LAI had an increasing trend overtime for all ecosystem types during 2001-2012, presumably as a result of global warming and a wetting climate. However, the fluctuations of observed LAI at a pixel scale (1km) varied greatly across the watershed. We classified the vegetation changes within the watershed as 'Improved', 'Stabilized', and 'Degraded' according their respective LAI changes. We found that climate was not the only driver for temporal vegetation changes for all land cover types. Grazing partially contributed to the decline of LAI in some areas and masked the positive climate warming effects in other areas. Extreme weathers such as cold spells and droughts could substantially affect inter-annual variability of LAI dynamics. We concluded that temporal and spatial LAI dynamics were rather complex and were affected by both climate variations and human disturbances in the study basin. Future monitoring studies should focus on the functional interactions among vegetation dynamics, climate variations, land management, and human disturbances. Published by Elsevier B.V.
Measuring urban tree loss dynamics across residential landscapes
The spatial arrangement of urban vegetation depends on urban morphology and socio-economic settings. Urban vegetation changes over time because of human management. Urban trees are removed due to hazard prevention or aesthetic preferences. Previous research attributed tree loss t...
IN SITU ESTIMATES OF FOREST LAI FOR MODIS DATA VALIDATION
Satellite remote sensor data are commonly used to assess ecosystem conditions through synoptic monitoring of terrestrial vegetation extent, biomass, and seasonal dynamics. Two commonly used vegetation indices that can be derived from various remote sensor systems include the Norm...
Ecosystem management can mitigate vegetation shifts induced by climate change in African savannas
NASA Astrophysics Data System (ADS)
Scheiter, Simon; Savadogo, Patrice
2017-04-01
The welfare of people in the tropics and sub-tropics strongly depends on goods and services that ecosystems supply. Flows of these ecosystem services are strongly influenced by interactions between climate change and land use. A prominent example are savannas, covering approximately 20% of the Earth's land surface. Key ecosystem services in these areas are fuel wood for cooking and heating, food production and livestock. Changes in the structure and dynamics of savanna vegetation may strongly influence local people's living conditions, as well as the climate system and biogeochemical cycles. We used a dynamic vegetation model to explore interactive effects of climate and land use on the vegetation structure, distribution and carbon cycling of African savannas under current and future conditions. More specifically, we simulate long term impacts of fire management, grazing and fuel wood harvesting. The model projects that under future climate without human land use impacts, large savanna areas would shift towards more wood dominated vegetation due to CO2 fertilization effects and changes in water use efficiency. However, land use activities can mitigate climate change impacts on vegetation to maintain desired ecosystem states that ensure fluxes of important ecosystem services. We then use optimization algorithms to identify sustainable land use strategies that maximize the utility of people managing savannas while preserving a stable vegetation state. Our results highlight that the development of land use policy for tropical and sub-tropical areas needs to account for climate change impacts on vegetation.
Using participant hedonic ratings of food images to construct data driven food groupings.
Johnson, Susan L; Boles, Richard E; Burger, Kyle S
2014-08-01
Little is known regarding how individuals' hedonic ratings of a variety of foods interrelate and how hedonic ratings correspond to habitual dietary intake. Participant ratings of food appeal of 104 food images were collected while participants were in a fed state (n = 129). Self-reported frequency of intake of the food items, perceived hunger, body mass index (BMI), and dietary restraint were also assessed. Principal components analysis (PCA) was employed to analyze hedonic ratings of the foods, to identify component structures and to reduce the number of variables. The resulting component structures comprised 63 images loading on seven components including Energy-Dense Main Courses, Light Main Courses and Seafood as well as components more analogous to traditional food groups (e.g., Fruits, Grains, Desserts, Meats). However, vegetables were not represented in a unique, independent component. All components were positively correlated with reported intake of the food items (r's = .26-.52, p <.05), except for the Light Main Course component (r = .10). BMI showed a small positive relation with aggregated food appeal ratings (r = .19; p <.05), which was largely driven by the relations between BMI and appeal ratings for Energy-Dense Main Courses (r = .24; p <.01) and Desserts (r = .27; p <.01). Dietary restraint showed a small significant negative relation to Energy-Dense Main Courses (r = -.21; p <.05), and Meats (r = -.18; p <.05). The present investigation provides novel evidence regarding how individuals' hedonic ratings of foods aggregate into food components and how these component ratings relate to dietary intake. The notable absence of a vegetable component suggests that individuals' liking for vegetables is highly variable and, from an empirical standpoint, not related to how they respond hedonically to other food categories. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei
2015-04-01
Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.
Controlling factors for infiltration on undisturbed hillslopes in unmanaged plantation forests
NASA Astrophysics Data System (ADS)
Hiraoka, Marino; Onda, Yuichi; Gomi, Takashi; Mizugaki, Shigeru; Nanko, Kazuki; Kato, Hiroaki
2017-04-01
Infiltration into the soil is a crucial factor for predicting overland flow generation. Infiltration capacity strongly relates to ground vegetation, soil characteristics, or both. For revealing controlling factors for infiltration capacity, we conducted in-situ rainfall simulation using an oscillating-nozzle type rainfall simulator at 26 plots with different ground cover conditions of unmanaged Japanese cypress (Chamaecyparis obtusa) plantations. For wide-ranging vegetation cover condition (0-100%), infiltration capacity widely varied (5-322 mm/h) and had positive correlations with indices of ground vegetation and ground litter (p < 0.01). For a limited vegetation cover condition (0-20%), the range of infiltration capacity (7-114 mm/h) was associated with ground litter thickness (p < 0.05), and difference in soil organic matter and difference in soil bulk density. Principal component analysis showed that the first and second principal components (70% of total variation) related to changes in above- and below-ground biomass and changes in pores in soil. Our findings showed that development of ground vegetation alters hydrological processes of surface soil through changes in soil characteristics via the propagation of belowground biomass development.
Vegetation dielectric characterization using an open-ended coaxial probe
NASA Astrophysics Data System (ADS)
Mavrovic, A.; Roy, A.; Royer, A.; Boone, F.; Pappas, C.; Filali, B.
2017-12-01
The detection of freeze/thaw (F/T) physical state of soil is one of the main objectives of the SMAP mission as well as one of the secondary objectives of the SMOS mission. Annual F/T cycles have substantial impacts on surface energy budgets, permafrost conditions, as well as forest water and carbon dynamics. It has been shown that spaceborne L-band passive radiometry is a promising tool to monitor F/T due to the substantial differences between the permittivity of water and ice at these frequencies. However, the decoupling of the signal between soil and vegetation components remains challenging for all microwave remote sensing applications at various spatial scales. Radiative transfer models in the microwave domain are generally poorly parameterized to consider the non-negligible contribution of vegetation. The main objective of this research is to assess the skill of a recently developed Open-Ended Coaxial Probe (OECP) to measure the complex microwave permittivity of vegetation and soils and to derive a relation between the impact of vegetation on the microwave signal and the vegetation permittivity that could serve as a validation tool for soil models especially in frozen state. Results show that the OECP is a suitable tool to infer the radial profile of the complex permittivity in L-band of trees. A clear distinction can be made between the dielectric characterization of the sapwood where the permittivity is high because of the high permittivity of water but decrease with depth, and the heartwood where the permittivity is low and relatively constant. The seasonal cycle of the F/T state of the vegetation can also be observed since it is strongly correlated with the permittivity of the wood. The permittivity of a tree over the winter season is very low and homogenous since the permittivity of ice is significantly lower than water and the sap flow is negligible. The fluctuation of the frozen and thawed permittivity for different tree species was evaluated, focusing on four widespread boreal tree species. Future work will focus on observing the effect of the tree permittivity on the vegetation emission and brightness temperature (Tb) and to upscale that information for satellite-borne passive microwave observations and global monitoring of freeze/thaw and soil moisture.
The Southwest Regional Gap Analysis Project (SW ReGAP) improves upon previous GAP projects conducted in Arizona, Colorado, Nevada, New Mexico, and Utah to provide a
consistent, seamless vegetation map for this large and ecologically diverse geographic region. Nevada's compone...
K.M. Bergen; S.J. Goetz; R.O. Dubayah; G.M. Henebry; C.T. Hunsaker; M.L. Imhoff; R.F. Nelson; G.G. Parker; V.C. Radeloff
2009-01-01
Biodiversity and habitat face increasing pressures due to human and natural influences that alter vegetation structure. Because of the inherent difficulty of measuring forested vegetation three-dimensional (3-D) structure on the ground, this important component of biodiversity and habitat has been, until recently, largely restricted to local measurements, or at larger...
Subsurface flow and vegetation patterns in tidal environments
NASA Astrophysics Data System (ADS)
Ursino, Nadia; Silvestri, Sonia; Marani, Marco
2004-05-01
Tidal environments are characterized by a complex interplay of hydrological, geomorphic, and biological processes, and their understanding and modeling thus require the explicit description of both their biotic and abiotic components. In particular, the presence and spatial distribution of salt marsh vegetation (a key factor in the stabilization of the surface soil) have been suggested to be related to topographic factors and to soil moisture patterns, but a general, process-based comprehension of this relationship has not yet been achieved. The present paper describes a finite element model of saturated-unsaturated subsurface flow in a schematic salt marsh, driven by tidal fluctuations and evapotranspiration. The conditions leading to the establishment of preferentially aerated subsurface zones are studied, and inferences regarding the development and spatial distribution of salt marsh vegetation are drawn, with important implications for the overall ecogeomorphological dynamics of tidal environments. Our results show that subsurface water flow in the marsh induces complex water table dynamics, even when the tidal forcing has a simple sinusoidal form. The definition of a space-dependent aeration time is then proposed to characterize root aeration. The model shows that salt marsh subsurface flow depends on the distance from the nearest creek or channel and that the subsurface water movement near tidal creeks is both vertical and horizontal, while farther from creeks, it is primarily vertical. Moreover, the study shows that if the soil saturated conductivity is relatively low (10-6 m s-1, values quite common in salt marsh areas), a persistently unsaturated zone is present below the soil surface even after the tide has flooded the marsh; this provides evidence of the presence of an aerated layer allowing a prolonged presence of oxygen for aerobic root respiration. The results further show that plant transpiration increases the extent and persistence of the aerated layer, thereby introducing a strong positive feedback: Pioneer plants on marsh edges have the effect of increasing soil oxygen availability, thus creating the conditions for the further development of other plant communities.
Quantifying the effects of land use and climate on Holocene vegetation in Europe
NASA Astrophysics Data System (ADS)
Marquer, Laurent; Gaillard, Marie-José; Sugita, Shinya; Poska, Anneli; Trondman, Anna-Kari; Mazier, Florence; Nielsen, Anne Birgitte; Fyfe, Ralph M.; Jönsson, Anna Maria; Smith, Benjamin; Kaplan, Jed O.; Alenius, Teija; Birks, H. John B.; Bjune, Anne E.; Christiansen, Jörg; Dodson, John; Edwards, Kevin J.; Giesecke, Thomas; Herzschuh, Ulrike; Kangur, Mihkel; Koff, Tiiu; Latałowa, Małgorzata; Lechterbeck, Jutta; Olofsson, Jörgen; Seppä, Heikki
2017-09-01
Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen-based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change.
The impact of flood variables on riparian vegetation
NASA Astrophysics Data System (ADS)
Dzubakova, Katarina; Molnar, Peter
2016-04-01
The riparian vegetation of Alpine rivers often grows in temporally dynamic riverine environments which are characterized by pronounced meteorological and hydrological fluctuations and high resource competition. Within these relatively rough conditions, riparian vegetation fulfils essential ecosystem functions such as water retention, biomass production and habitat to endangered species. The identification of relevant flood attributes impacting riparian vegetation is crucial for a better understanding of the vegetation dynamics in the riverine ecosystem. Hence, in this contribution we aim to quantify the ecological effects of flood attributes on riparian vegetation and to analyze the spatial coherence of flood-vegetation interaction patterns. We analyzed a 500 m long and 300-400 m wide study reach located on the Maggia River in southern Switzerland. Altogether five floods between 2008 and 2011 with return periods ranging from 1.4 to 20.1 years were studied. To assess the significance of the flood attributes, we compared post-flood to pre-flood vegetation vigour to flood intensity. Pre- and post-flood vegetation vigour was represented by the Normalized Difference Vegetation Index (NDVI) which was computed from images recorded by high resolution ground-based cameras. Flood intensity was expressed in space in the study reach by six flood attributes (inundation duration, maximum depth, maximum and total velocity, maximum and total shear stress) which were simulated by the 2D hydrodynamic model BASEMENT (VAW, ETH Zurich). We considered three floodplain units separately (main bar, secondary bar, transitional zone). Based on our results, pre-flood vegetation vigour largely determined vegetation reaction to the less intense floods (R = 0.59-0.96). However for larger floods with a strong erosive effect, its contribution was significantly lower (R = 0.59-0.68). Using multivariate regression analysis we show that pre-flood vegetation vigour and maximum velocity proved to be the most significant variables impacting vegetation response. Generally, maximal flood attributes had more significant impacts than integrated attributes over the flood duration. Additional explanatory variables in the model should account for vegetation heterogeneity, groundwater conditions and different effects of lateral and surface erosion.
The ecohydrology of water limited landscapes
NASA Astrophysics Data System (ADS)
Huxman, T. E.
2011-12-01
Developing a mechanistic understanding of the coupling of ecological and hydrological systems is crucial for understanding the land-surface response of large areas of the globe to changes in climate. The distribution of biodiversity, the quantity and quality of streamflow, the biogeochemistry that constrains vegetation cover and production, and the stability of soil systems in watersheds are all functions of water-life coupling. Many key ecosystem services are governed by the dynamics of near-surface hydrology and biological feedbacks on the landscape occur through plant influence over available soil moisture. Thus, ecohydrology has tremendous potential to contribute to a predictive framework for understanding earth system dynamics. Despite the importance of such couplings and water as a major limiting resource in ecosystems throughout the globe, ecology still struggles with a mechanistic understanding of how changes in rainfall affect the biology of plants and microbes, or how changes in plant communities affect hydrological dynamics in watersheds. Part of the problem comes from our lack of understanding of how plants effectively partition available water among individuals in communities and how that modifies the physical environment, affecting additional resource availability and the passage of water along other hydrological pathways. The partitioning of evapotranspiration between transpiration by plants and evaporation from the soil surface is key to interrelated ecological, hydrological, and atmospheric processes and likely varies with vegetation structure and atmospheric dynamics. In addition, the vertical stratification of autotrophic and heterotrophic components in the soil profile, and the speed at which each respond to increased water, exert strong control over the carbon cycle. The magnitude of biosphere-atmosphere carbon exchange depends on the time-depth-distribution of soil moisture, a fundamental consequence of local precipitation pulse characteristics, soil texture and plant functional type. The transport of metabolic products within plants and their differential activation result in non-intuitive patterns of exchange associated with the major drivers creating problems with the scaling of physiological processes of individual plants to ecosystems. Such dynamics, along with hysteretic behavior creates challenges for measurement, evaluation, modeling and predicting ecosystem behavior. New frameworks and conceptual approaches to modeling ecosystem metabolism and the role of water are helping to describe the consequences of precipitation variability and change.
The carbon isotopic composition of ecosystem breath
NASA Astrophysics Data System (ADS)
Ehleringer, J.
2008-05-01
At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance. The mechanistic basis for this pattern is defined; the implications of climate change on ring-porous versus diffuse-porous vegetation and therefore on future atmospheric carbon dioxide isotope-concentration patterns is discussed.
Isabelle, Boulangeat; Pauline, Philippe; Sylvain, Abdulhak; Roland, Douzet; Luc, Garraud; Sébastien, Lavergne; Sandra, Lavorel; Jérémie, Van Es; Pascal, Vittoz; Wilfried, Thuiller
2013-01-01
The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling. PMID:24403847
DOT National Transportation Integrated Search
2002-01-01
Riprap is commonly used for roadway protection at streams. However, vegetation is generally not a component of such protection. Environmental impacts such as increased water temperature and decreased quality of stream habitat may result from the remo...
Roadway applications of vegetation and riprap for streambank protection : synthesis report.
DOT National Transportation Integrated Search
2002-01-01
Riprap is commonly used for roadway protection at streams. However, vegetation is generally not a component of such protection. Environmental impacts such as increased water temperature and decreased quality of stream habitat may result from the remo...
Global sea surface temperature (SST) anomalies have a demonstrable effect on vegetation dynamics and precipitation patterns throughout the continental U.S. SST variations have been correlated with greenness (vegetation densities) and precipitation via ocean-atmospheric interactio...