Sample records for dynamic viscoelastic behavior

  1. Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord

    PubMed Central

    Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.

    2014-01-01

    Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612

  2. Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer

    PubMed Central

    Lin, Der-Song; Zhuang, Xuefeng; Wong, Serena H.; Kupnik, Mario; Khuri-Yakub, Butrus Thomas

    2010-01-01

    The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as polydimethylsiloxane (PDMS), were investigated for an encapsulation material. In addition, PDMS, with a glass-transition temperature below room temperature, provides a low Young's modulus that preserves the static behavior; at higher frequencies for ultrasonic operation, this material becomes stiffer and acoustically matches to water. In this paper, we demonstrate the modeling and implementation of the viscoelastic polymer as the encapsulation material. We introduce a finite element model (FEM) that addresses viscoelasticity. This enables us to correctly calculate both the static operation point and the dynamic behavior of the CMUT. CMUTs designed for medical imaging and therapeutic ultrasound were fabricated and encapsulated. Static and dynamic measurements were used to verify the FEM and show excellent agreement. This paper will help in the design process for optimizing the static and the dynamic behavior of viscoelastic-polymer-coated CMUTs. PMID:21170294

  3. Creep and dynamic viscoelastic behavior of endodontic fiber-reinforced composite posts.

    PubMed

    Papadogiannis, D; Lakes, R S; Palaghias, G; Papadogiannis, Y

    2009-10-01

    Fiber-reinforced composite (FRC) posts have gained much interest recently and understanding of their viscoelastic properties is important as they can be used in stress-bearing posterior restorations. The aim of this study was to evaluate the creep behavior and the viscoelastic properties of four commercial FRC posts under different temperatures and different storage conditions. The FRC posts tested were Glassix, C-Post, Carbonite and Snowlight. For the creep measurements a constant load below the proportional limit of the posts was applied and the angular deformation of the specimens was recorded. The viscoelastic parameters were determined by using dynamic torsional loading under four different conditions. All materials were susceptible to creep and exhibited linear viscoelastic behavior. Residual strain was observed in all FRC posts. The viscoelastic properties were affected by the increase of temperature and water storage (p<0.001) resulting in their decline. Carbon fiber posts exhibited better performance than glass fiber posts. FRC posts exhibit permanent strains under regular masticatory stresses that can be generated in the oral cavity. Their properties are susceptible to changes in temperature, while direct contact with water also affects them deleteriously.

  4. Linear viscoelasticity and thermorheological simplicity of n-hexadecane fluids under oscillatory shear via non-equilibrium molecular dynamics simulations.

    PubMed

    Tseng, Huan-Chang; Wu, Jiann-Shing; Chang, Rong-Yeu

    2010-04-28

    A small amplitude oscillatory shear flows with the classic characteristic of a phase shift when using non-equilibrium molecular dynamics simulations for n-hexadecane fluids. In a suitable range of strain amplitude, the fluid possesses significant linear viscoelastic behavior. Non-linear viscoelastic behavior of strain thinning, which means the dynamic modulus monotonously decreased with increasing strain amplitudes, was found at extreme strain amplitudes. Under isobaric conditions, different temperatures strongly affected the range of linear viscoelasticity and the slope of strain thinning. The fluid's phase states, containing solid-, liquid-, and gel-like states, can be distinguished through a criterion of the viscoelastic spectrum. As a result, a particular condition for the viscoelastic behavior of n-hexadecane molecules approaching that of the Rouse chain was obtained. Besides, more importantly, evidence of thermorheologically simple materials was presented in which the relaxation modulus obeys the time-temperature superposition principle. Therefore, using shift factors from the time-temperature superposition principle, the estimated Arrhenius flow activation energy was in good agreement with related experimental values. Furthermore, one relaxation modulus master curve well exhibited both transition and terminal zones. Especially regarding non-equilibrium thermodynamic states, variations in the density, with respect to frequencies, were revealed.

  5. THE PASSIVE PROPERTIES OF MUSCLE FIBERS ARE VELOCITY DEPENDENT

    PubMed Central

    Rehorn, Michael R.; Schroer, Alison K.; Blemker, Silvia S.

    2014-01-01

    The passive properties of skeletal muscle play an important role in muscle function. While the passive quasi-static elastic properties of muscle fibers have been well characterized, the dynamic visco-elastic passive behavior of fibers has garnered less attention. In particular, it is unclear how the visco-elastic properties are influenced by lengthening velocity, in particular for the range of physiologically relevant velocities. The goals of this work were to: (i) measure the effects of lengthening velocity on the peak stresses within single muscle fibers to determine how passive behavior changes over a range of physiologically relevant lengthening rates (0.1–10 Lo/s), and (ii) develop a mathematical model of fiber viscoelasticity based on these measurements. We found that passive properties depend on strain rate, in particular at the low loading rates (0.1–3 Lo/s), and that the measured behavior can be predicted across a range of loading rates and time histories with a quasi-linear viscoelastic model. In the future, these results can be used to determine the impact of viscoelastic behavior on intramuscular stresses and forces during a variety of dynamic movements. PMID:24360198

  6. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading.

    PubMed

    Wu, Jiayu; Yuan, Hong; Li, Longyuan; Fan, Kunjie; Qian, Shanguang; Li, Bing

    2018-01-21

    Owing to its viscoelastic nature, tendon exhibits stress rate-dependent breaking and stiffness function. A Kelvin-Voigt viscoelastic shear lag model is proposed to illustrate the micromechanical behavior of the tendon under dynamic tensile conditions. Theoretical closed-form expressions are derived to predict the deformation and stress transfer between fibrils and interfibrillar matrix while tendon is dynamically stretched. The results from the analytical solutions demonstrate that how the fibril overlap length and fibril volume fraction affect the stress transfer and mechanical properties of tendon. We find that the viscoelastic property of interfibrillar matrix mainly results in collagen fibril failure under fast loading rate or creep rupture of tendon. However, discontinuous fibril model and hierarchical structure of tendon ensure relative sliding under slow loading rate, helping dissipate energy and protecting fibril from damage, which may be a key reason why regularly staggering alignment microstructure is widely selected in nature. According to the growth, injury, healing and healed process of tendon observed by many researchers, the conclusions presented in this paper agrees well with the experimental findings. Additionally, the emphasis of this paper is on micromechanical behavior of tendon, whereas this analytical viscoelastic shear lag model can be equally applicable to other soft or hard tissues, owning the similar microstructure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Self-spreading of the wetting ridge during stick-slip on a viscoelastic surface

    DOE PAGES

    Park, S. J.; Bostwick, J. B.; De Andrade, V.; ...

    2017-10-23

    Dynamic wetting behaviors on soft solids are important to interpret complex biological processes from cell–substrate interactions. Despite intensive research studies over the past half-century, the underlying mechanisms of spreading behaviors are not clearly understood. The most interesting feature of wetting on soft matter is the formation of a “wetting ridge”, a surface deformation by a competition between elasticity and capillarity. Dynamics of the wetting ridge formed at the three-phase contact line underlies the dynamic wetting behaviors, but remains largely unexplored mostly due to limitations in indirect observation. Here, we directly visualize wetting ridge dynamics during continuous- and stick-slip motions onmore » a viscoelastic surface using X-ray microscopy. Strikingly, we discover that the ridge spreads spontaneously during stick and triggers contact line depinning (stick-to-slip transition) by changing the ridge geometry which weakens the contact line pinning. Finally, we clarify ‘viscoelastic-braking’, ‘stick-slipping’, and ‘stick-breaking’ spreading behaviors through the ridge dynamics. In stick-breaking, no ridge-spreading occurs and contact line pinning (hysteresis) is enhanced by cusp-bending while preserving a microscopic equilibrium at the ridge tip. We have furthered the understanding of spreading behaviors on soft solids and demonstrated the value of X-ray microscopy in elucidating various dynamic wetting behaviors on soft solids as well as puzzling biological issues.« less

  8. Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan

    1995-01-01

    Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.

  9. Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars

    NASA Astrophysics Data System (ADS)

    Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai

    2018-05-01

    Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.

  10. Interconversion of dynamic modulus to creep compliance and relaxation modulus : numerical modeling and laboratory validation - final report.

    DOT National Transportation Integrated Search

    2016-09-01

    Viscoelastic material functions such as time domain functions, such as, relaxation modulus and creep compliance, : or frequency domain function, such as, complex modulus can be used to characterize the linear viscoelastic behavior : of asphalt concre...

  11. An Indentation Technique for Nanoscale Dynamic Viscoelastic Measurements at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Ye, Jiping

    2012-08-01

    Determination of nano/micro-scale viscoelasticity is very important to understand the local rheological behavior and degradation phenomena of multifunctional polymer blend materials. This article reviews research results concerning the development of indentation techniques for making nanoscale dynamic viscoelastic measurements at elevated temperature. In the last decade, we have achieved breakthroughs in noise floor reduction in air and thermal load drift/noise reduction at high temperature before taking on the challenge of nanoscale viscoelastic measurements. A high-temperature indentation technique has been developed that facilitates viscoelastic measurements up to 200 °C in air and 500 °C in a vacuum. During the last year, two viscoelastic measurement methods have been developed by making a breakthrough in suppressing the contact area change at high temperature. One is a sharp-pointed time-dependent nanoindentation technique for microscale application and the other is a spherical time-dependent nanoindentation technique for nanoscale application. In the near future, we expect to lower the thermal load drift and load noise floor even more substantially.

  12. Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage.

    PubMed

    Han, Guebum; Hess, Cole; Eriten, Melih; Henak, Corinne R

    2018-04-26

    This paper studies uncoupled poroelastic (flow-dependent) and intrinsic viscoelastic (flow-independent) energy dissipation mechanisms via their dependence on characteristic lengths to understand the root of cartilage's broadband dissipation behavior. Phase shift and dynamic modulus were measured from dynamic microindentation tests conducted on hydrated cartilage at different contact radii, as well as on dehydrated cartilage. Cartilage weight and thickness were recorded during dehydration. Phase shifts revealed poroelastic- and viscoelastic-dominant dissipation regimes in hydrated cartilage. Specifically, phase shift at a relatively small radius was governed by poroviscoelasticity, while phase shift at a relatively large radius was dominantly governed by intrinsic viscoelasticity. The uncoupled dissipation mechanisms demonstrated that intrinsic viscoelastic dissipation provided sustained broadband dissipation for all length scales, and additional poroelastic dissipation increased total dissipation at small length scales. Dehydration decreased intrinsic viscoelastic dissipation of cartilage. The findings demonstrated a possibility to measure poroelastic and intrinsic viscoelastic properties of cartilage at similar microscale lengths. Also they encouraged development of broadband cartilage like-dampers and provided important design parameters to maximize their performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Dynamic assessment of nonlinear typical section aeroviscoelastic systems using fractional derivative-based viscoelastic model

    NASA Astrophysics Data System (ADS)

    Sales, T. P.; Marques, Flávio D.; Pereira, Daniel A.; Rade, Domingos A.

    2018-06-01

    Nonlinear aeroelastic systems are prone to the appearance of limit cycle oscillations, bifurcations, and chaos. Such problems are of increasing concern in aircraft design since there is the need to control nonlinear instabilities and improve safety margins, at the same time as aircraft are subjected to increasingly critical operational conditions. On the other hand, in spite of the fact that viscoelastic materials have already been successfully used for the attenuation of undesired vibrations in several types of mechanical systems, a small number of research works have addressed the feasibility of exploring the viscoelastic effect to improve the behavior of nonlinear aeroelastic systems. In this context, the objective of this work is to assess the influence of viscoelastic materials on the aeroelastic features of a three-degrees-of-freedom typical section with hardening structural nonlinearities. The equations of motion are derived accounting for the presence of viscoelastic materials introduced in the resilient elements associated to each degree-of-freedom. A constitutive law based on fractional derivatives is adopted, which allows the modeling of temperature-dependent viscoelastic behavior in time and frequency domains. The unsteady aerodynamic loading is calculated based on the classical linear potential theory for arbitrary airfoil motion. The aeroelastic behavior is investigated through time domain simulations, and subsequent frequency transformations, from which bifurcations are identified from diagrams of limit cycle oscillations amplitudes versus airspeed. The influence of the viscoelastic effect on the aeroelastic behavior, for different values of temperature, is also investigated. The numerical simulations show that viscoelastic damping can increase the flutter speed and reduce the amplitudes of limit cycle oscillations. These results prove the potential that viscoelastic materials have to increase aircraft components safety margins regarding aeroelastic stability.

  14. Water Touch-and-Bounce from a Soft Viscoelastic Substrate: Wetting, Dewetting, and Rebound on Bitumen.

    PubMed

    Lee, Jae Bong; Dos Santos, Salomé; Antonini, Carlo

    2016-08-16

    Understanding the interaction between liquids and deformable solid surfaces is a fascinating fundamental problem, in which interaction and coupling of capillary and viscoelastic effects, due to solid substrate deformation, give rise to complex wetting mechanisms. Here we investigated as a model case the behavior of water drops on two smooth bitumen substrates with different rheological properties, defined as hard and soft (with complex shear moduli in the order of 10(7) and 10(5) Pa, respectively, at 1 Hz), focusing both on wetting and on dewetting behavior. By means of classical quasi-static contact angle measurements and drop impact tests, we show that the water drop behavior can significantly change from the quasi-static to the dynamic regime on soft viscoelastic surfaces, with the transition being defined by the substrate rheological properties. As a result, we also show that on the hard substrate, where the elastic response is dominant under all investigated conditions, classical quasi-static contact angle measurements provide consistent results that can be used to predict the drop dynamic wetting behavior, such as drop deposition or rebound after impact, as typically observed for nondeformable substrates. Differently, on soft surfaces, the formation of wetting ridges did not allow to define uniquely the substrate intrinsic advancing and receding contact angles. In addition, despite showing a high adhesion to the soft surface in quasi-static measurements, the drop was surprisingly able to rebound and escape from the surface after impact, as it is typically observed for hydrophobic surfaces. These results highlight that measurements of wetting properties for viscoelastic substrates need to be critically used and that wetting behavior of a liquid on viscoelastic surfaces is a function of the characteristic time scales.

  15. Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model.

    PubMed

    Solares, Santiago D

    2014-01-01

    This paper presents computational simulations of single-mode and bimodal atomic force microscopy (AFM) with particular focus on the viscoelastic interactions occurring during tip-sample impact. The surface is modeled by using a standard linear solid model, which is the simplest system that can reproduce creep compliance and stress relaxation, which are fundamental behaviors exhibited by viscoelastic surfaces. The relaxation of the surface in combination with the complexities of bimodal tip-sample impacts gives rise to unique dynamic behaviors that have important consequences with regards to the acquisition of quantitative relationships between the sample properties and the AFM observables. The physics of the tip-sample interactions and its effect on the observables are illustrated and discussed, and a brief research outlook on viscoelasticity measurement with intermittent-contact AFM is provided.

  16. Flow interaction with a flexible viscoelastic sheet

    NASA Astrophysics Data System (ADS)

    Shoele, Kourosh

    2017-11-01

    Many new engineered materials and almost all soft biological tissues are made up of heterogeneous multi-scale components with complex viscoelastic behavior. This implies that their macro constitutive relations cannot be modeled sufficiently with a typical integer-order viscoelastic relation and a more general mode is required. Here, we study the flow-induced vibration of a viscoelastic sheet where a generalized fractional constitutive model is employed to represent the relation between the bending stress and the temporal response of the structure. A new method is proposed for the calculation of the convolution integral inside the fractal model and its computational benefits will be discussed. Using a coupled fluid-structure interaction (FSI) methodology based on the immersed boundary technique, dynamic fluttering modes of the structure as a result of the fluid force will be presented and the role of fractal viscoelasticity on the dynamic of the structure will be shown. Finally, it will be argued how the stress relaxation modifies the flow-induced oscillatory responses of this benchmark problem.

  17. Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching.

    PubMed

    Babaei, Behzad; Velasquez-Mao, Aaron J; Thomopoulos, Stavros; Elson, Elliot L; Abramowitch, Steven D; Genin, Guy M

    2017-05-01

    The time- and frequency-dependent properties of connective tissue define their physiological function, but are notoriously difficult to characterize. Well-established tools such as linear viscoelasticity and the Fung quasi-linear viscoelastic (QLV) model impose forms on responses that can mask true tissue behavior. Here, we applied a more general discrete quasi-linear viscoelastic (DQLV) model to identify the static and dynamic time- and frequency-dependent behavior of rabbit medial collateral ligaments. Unlike the Fung QLV approach, the DQLV approach revealed that energy dissipation is elevated at a loading period of ∼10s. The fitting algorithm was applied to the entire loading history on each specimen, enabling accurate estimation of the material's viscoelastic relaxation spectrum from data gathered from transient rather than only steady states. The application of the DQLV method to cyclically loading regimens has broad applicability for the characterization of biological tissues, and the results suggest a mechanistic basis for the stretching regimens most favored by athletic trainers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching

    PubMed Central

    Babaei, Behzad; Velasquez-Mao, Aaron J.; Thomopoulos, Stavros; Elson, Elliot L.; Abramowitch, Steven D.; Genin, Guy M.

    2017-01-01

    The time- and frequency-dependent properties of connective tissue define their physiological function, but are notoriously difficult to characterize. Well-established tools such as linear viscoelasticity and the Fung quasi-linear viscoelastic (QLV) model impose forms on responses that can mask true tissue behavior. Here, we applied a more general discrete quasi-linear viscoelastic (DQLV) model to identify the static and dynamic time- and frequency-dependent behavior of rabbit medial collateral ligaments. Unlike the Fung QLV approach, the DQLV approach revealed that energy dissipation is elevated at a loading period of ~10 seconds. The fitting algorithm was applied to the entire loading history on each specimen, enabling accurate estimation of the material's viscoelastic relaxation spectrum from data gathered from transient rather than only steady states. The application of the DQLV method to cyclically loading regimens has broad applicability for the characterization of biological tissues, and the results suggest a mechanistic basis for the stretching regimens most favored by athletic trainers. PMID:28088071

  19. Investigation of Mechanisms of Viscoelastic Behavior of Collagen Molecule

    PubMed Central

    Ghodsi, Hossein; Darvish, Kurosh

    2015-01-01

    Unique mechanical properties of collagen molecule make it one of the most important and abundant proteins in animals. Many tissues such as connective tissues rely on these properties to function properly. In the past decade, molecular dynamics (MD) simulations have been used extensively to study the mechanical behavior of molecules. For collagen, MD simulations were primarily used to determine its elastic properties. In this study, constant force steered MD simulations were used to perform creep tests on collagen molecule segments. The mechanical behavior of the segments, with lengths of approximately 20 (1X), 38 (2X), 74 (4X), and 290 nm (16X), was characterized using a quasi-linear model to describe the observed viscoelastic responses. To investigate the mechanisms of the viscoelastic behavior, hydrogen bonds (H-bonds) rupture/formation time history of the segments were analyzed and it was shown that the formation growth rate of H-bonds in the system is correlated with the creep growth rate of the segment ( β = 2.41 βH). In addition, a linear relationship between H-bonds formation growth rate and the length of the segment was quantified. Based on these findings, a general viscoelastic model was developed and verified where, using the smallest segment as a building block, the viscoelastic properties of larger segments could be predicted. In addition, the effect of temperature control methods on the mechanical properties were studied, and it was shown that application of Langevin Dynamics had adverse effect on these properties while the Lowe-Anderson method was shown to be more appropriate for this application. This study provides information that is essential for multi-scale modeling of collagen fibrils using a bottom-up approach. PMID:26256473

  20. Investigation of mechanisms of viscoelastic behavior of collagen molecule.

    PubMed

    Ghodsi, Hossein; Darvish, Kurosh

    2015-11-01

    Unique mechanical properties of collagen molecule make it one of the most important and abundant proteins in animals. Many tissues such as connective tissues rely on these properties to function properly. In the past decade, molecular dynamics (MD) simulations have been used extensively to study the mechanical behavior of molecules. For collagen, MD simulations were primarily used to determine its elastic properties. In this study, constant force steered MD simulations were used to perform creep tests on collagen molecule segments. The mechanical behavior of the segments, with lengths of approximately 20 (1X), 38 (2X), 74 (4X), and 290 nm (16X), was characterized using a quasi-linear model to describe the observed viscoelastic responses. To investigate the mechanisms of the viscoelastic behavior, hydrogen bonds (H-bonds) rupture/formation time history of the segments were analyzed and it was shown that the formation growth rate of H-bonds in the system is correlated with the creep growth rate of the segment (β=2.41βH). In addition, a linear relationship between H-bonds formation growth rate and the length of the segment was quantified. Based on these findings, a general viscoelastic model was developed and verified here, using the smallest segment as a building block, the viscoelastic properties of larger segments could be predicted. In addition, the effect of temperature control methods on the mechanical properties were studied, and it was shown that application of Langevin Dynamics had adverse effect on these properties while the Lowe-Anderson method was shown to be more appropriate for this application. This study provides information that is essential for multi-scale modeling of collagen fibrils using a bottom-up approach. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model

    PubMed Central

    2014-01-01

    Summary This paper presents computational simulations of single-mode and bimodal atomic force microscopy (AFM) with particular focus on the viscoelastic interactions occurring during tip–sample impact. The surface is modeled by using a standard linear solid model, which is the simplest system that can reproduce creep compliance and stress relaxation, which are fundamental behaviors exhibited by viscoelastic surfaces. The relaxation of the surface in combination with the complexities of bimodal tip–sample impacts gives rise to unique dynamic behaviors that have important consequences with regards to the acquisition of quantitative relationships between the sample properties and the AFM observables. The physics of the tip–sample interactions and its effect on the observables are illustrated and discussed, and a brief research outlook on viscoelasticity measurement with intermittent-contact AFM is provided. PMID:25383277

  2. Shear test on viscoelastic granular material using Contact Dynamics simulations

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Sagnol, Loba; Chazallon, Cyrille

    2017-06-01

    By means of 3D contact dynamic simulations, the behavior of a viscoelastic granular material under shear loading is investigated. A viscoelastic fluid phase surrounding the solid particles is simulated by a contact model acting between them. This contact law was implemented in the LMGC90 software, based on the Burgers model. This model is able to simulate also the effect of creep relaxation. To validate the proposed contact model, several direct shear tests were performed, experimentally and numerically using the Leutner device. The numerical samples were created using spheres with two particle size distribution, each one identified for two layers from a road structure. Our results show a reasonable agreement between experimental and numerical data regarding the strain-stress evolution curves and the stress levels measured at failure. The proposed model can be used to simulate the mechanical behavior of multi-layer road structure and to study the influence of traffic on road deformation, cracking and particles pull-out induced by traffic loading.

  3. Earthquake sequence simulations of a fault in a viscoelastic material with a spectral boundary integral equation method: The effect of interseismic stress relaxation on a behavior of a rate-weakening patch

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Noda, H.

    2017-12-01

    Earthquake sequences involve many processes in a wide range of time scales, from quasistatic loading to dynamic rupture. At a depth of brittle-plastic transitional and deeper, rock behaves as a viscous fluid in a long timescale, but as an elastic material in a short timescale. Viscoelastic stress relaxation may be important in the interseismic periods at the depth, near the deeper limit of the seismogenic layer or the region of slow slip events (SSEs) [Namiki et al., 2014 and references therein]. In the present study, we implemented the viscoelastic effect (Maxwell material) in fully-dynamic earthquake sequence simulations using a spectral boundary integral equation method (SBIEM) [e.g., Lapusta et al., 2000]. SBIEM is efficient in calculation of convolutional terms for dynamic stress transfer, and the problem size is limited by the amount of memory available. Linear viscoelasticity could be implemented by convolution of slip rate history and Green's function, but this method requires additional memory and thus not suitable for the implementation to the present code. Instead, we integrated the evolution of "effective slip" distribution, which gives static stress distribution when convolved with static elastic Green's function. This method works only for simple viscoelastic property distributions, but such models are suitable for numerical experiments aiming basic understanding of the system behavior because of the virtue of SBIEM, the ability of fine on-fault spatial resolution and efficient computation utilizing the fast Fourier transformation. In the present study, we examined the effect of viscoelasticity on earthquake sequences of a fault with a rate-weakening patch. A series of simulations with various relaxation time tc revealed that as decreasing tc, recurrence intervals of earthquakes increases and seismicity ultimately disappears. As long as studied, this transition to aseismic behavior is NOT associated with SSEs. In a case where the rate-weakening patch produces a series of SSEs in an elastic medium, viscoelasticity causes smaller amplitude of the SSEs or steady-state sliding, consistently with a linear stability analysis. With increasing depth, properties of both the medium and the frictional surface change. Since the former does not promote SSEs, the latter may be the key to generation of SSEs.

  4. Effect of storage time on the viscoelastic properties of elastomeric impression materials.

    PubMed

    Papadogiannis, Dimitris; Lakes, Roderic; Palaghias, George; Papadogiannis, Yiannis

    2012-01-01

    The aim of this study was to evaluate creep and viscoelastic properties of dental impression materials after different storage times. Six commercially available impression materials (one polyether and five silicones) were tested after being stored for 30 min to 2 weeks under both static and dynamic testing. Shear and Young's moduli, dynamic viscosity, loss tangent and other viscoelastic parameters were calculated. Four of the materials were tested 1 h after setting under creep for three hours and recovery was recorder for 50 h. The tested materials showed differences among them, while storage time had significant influence on their properties. Young's modulus E ranged from 1.81 to 12.99 MPa with the polyether material being the stiffest. All of the materials showed linear viscoelastic behavior exhibiting permanent deformation after 50h of creep recovery. As storage time affects the materials' properties, pouring time should be limited in the first 48 h after impression. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  5. Characterization of the viscoelastic behavior of a simplified collagen micro-fibril based on molecular dynamics simulations.

    PubMed

    Ghodsi, Hossein; Darvish, Kurosh

    2016-10-01

    Collagen fibril is a major component of connective tissues such as bone, tendon, blood vessels, and skin. The mechanical properties of this highly hierarchical structure are greatly influenced by the presence of covalent cross-links between individual collagen molecules. This study investigates the viscoelastic behavior of a collagen lysine-lysine cross-link based on creep simulations with applied forces in the range or 10 to 2000pN using steered molecular dynamics (SMD). The viscoelastic model of the cross-link was combined with a system composed by two segments of adjacent collagen molecules hence representing a reduced viscoelastic model for a simplified micro-fibril. It was found that the collagen micro-fibril assembly had a steady-state Young׳s modulus ranging from 2.24 to 3.27GPa, which is in agreement with reported experimental measurements. The propagation of longitudinal force wave along the molecule was implemented by adding a delay element to the model. The force wave speed was found to be correlated with the speed of one-dimensional elastic waves in rods. The presented reduced model with three degrees of freedom can serve as a building block for developing models of the next level of hierarchy, i.e., a collagen fibril. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The development and validation of a numerical integration method for non-linear viscoelastic modeling

    PubMed Central

    Ramo, Nicole L.; Puttlitz, Christian M.

    2018-01-01

    Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558

  7. Fractional viscoelasticity of soft elastomers and auxetic foams

    NASA Astrophysics Data System (ADS)

    Solheim, Hannah; Stanisauskis, Eugenia; Miles, Paul; Oates, William

    2018-03-01

    Dielectric elastomers are commonly implemented in adaptive structures due to their unique capabilities for real time control of a structure's shape, stiffness, and damping. These active polymers are often used in applications where actuator control or dynamic tunability are important, making an accurate understanding of the viscoelastic behavior critical. This challenge is complicated as these elastomers often operate over a broad range of deformation rates. Whereas research has demonstrated success in applying a nonlinear viscoelastic constitutive model to characterize the behavior of Very High Bond (VHB) 4910, robust predictions of the viscoelastic response over the entire range of time scales is still a significant challenge. An alternative formulation for viscoelastic modeling using fractional order calculus has shown significant improvement in predictive capabilities. While fractional calculus has been explored theoretically in the field of linear viscoelasticity, limited experimental validation and statistical evaluation of the underlying phenomena have been considered. In the present study, predictions across several orders of magnitude in deformation rates are validated against data using a single set of model parameters. Moreover, we illustrate the fractional order is material dependent by running complementary experiments and parameter estimation on the elastomer VHB 4949 as well as an auxetic foam. All results are statistically validated using Bayesian uncertainty methods to obtain posterior densities for the fractional order as well as the hyperelastic parameters.

  8. The viscoelastic characterization of polymer materials exposed to the low-Earth orbit environment

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas; Letton, Alan

    1992-01-01

    Recent accomplishments in our research efforts have included the successful measurement of the thermal mechanical properties of polymer materials exposed to the low-earth orbit environment. In particular, viscoelastic properties were recorded using the Rheometrics Solids Analyzer (RSA 2). Dynamic moduli (E', the storage component of the elastic modulus, and E'', the loss component of the elastic modulus) were recorded over three decades of frequency (0.1 to 100 rad/sec) for temperatures ranging from -150 to 150 C. Although this temperature range extends beyond the typical use range of the materials, measurements in this region are necessary in the development of complete viscoelastic constitutive models. The experimental results were used to provide the stress relaxation and creep compliance performance characteristics through viscoelastic correspondence principles. Our results quantify the differences between exposed and control polymer specimens. The characterization is specifically designed to elucidate a constitutive model that accurately predicts the change in behavior of these materials due to exposure. The constitutive model for viscoelastic behavior reflects the level of strain, the rate of strain, and the history of strain as well as the thermal history of the material.

  9. A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity

    NASA Astrophysics Data System (ADS)

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.

    2018-01-01

    Elastomers are known to exhibit viscoelastic behavior under deformation, which is linked to the diffusion processes of the highly mobile and flexible polymer chains. Inspired by the theories of polymer dynamics, a micro-macro constitutive model is developed to study the viscoelastic behaviors and the relaxation process of elastomeric materials under large deformation, in which the material parameters all have a microscopic foundation or a microstructural justification. The proposed model incorporates the nonlinear material viscosity into the continuum finite-deformation viscoelasticity theories which represent the polymer networks of elastomers with an elastic ground network and a few viscous subnetworks. The developed modeling framework is capable of adopting most of strain energy density functions for hyperelastic materials and thermodynamics evolution laws of viscoelastic solids. The modeling capacity of the framework is outlined by comparing the simulation results with the experimental data of three commonly used elastomeric materials, namely, VHB4910, HNBR50 and carbon black (CB) filled elastomers. The comparison shows that the stress responses and some typical behaviors of filled and unfilled elastomers can be quantitatively predicted by the model with suitable strain energy density functions. Particularly, the strain-softening effect of elastomers could be explained by the deformation-dependent (nonlinear) viscosity of the polymer chains. The presented modeling framework is expected to be useful as a modeling platform for further study on the performance of different type of elastomeric materials.

  10. Nonlinear Dynamical Model of a Soft Viscoelastic Dielectric Elastomer

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-12-01

    Actuated by alternating stimulation, dielectric elastomers (DEs) show a behavior of complicated nonlinear vibration, implying a potential application as dynamic electromechanical actuators. As is well known, for a vibrational system, including the DE system, the dynamic properties are significantly affected by the geometrical sizes. In this article, a nonlinear dynamical model is deduced to investigate the geometrical effects on dynamic properties of viscoelastic DEs. The DEs with square and arbitrary rectangular geometries are considered, respectively. Besides, the effects of tensile forces on dynamic performances of rectangular DEs with comparably small and large geometrical sizes are explored. Phase paths and Poincaré maps are utilized to detect the periodicity of the nonlinear vibrations of DEs. The resonance characteristics of DEs incorporating geometrical effects are also investigated. The results indicate that the dynamic properties of DEs, including deformation response, vibrational periodicity, and resonance, are tuned when the geometrical sizes vary.

  11. Viscoelastic damping in crystalline composites and alloys

    NASA Astrophysics Data System (ADS)

    Ranganathan, Raghavan; Ozisik, Rahmi; Keblinski, Pawel

    We use molecular dynamics simulations to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear deformation. The two crystals, namely a soft and a stiff phase, individually show highly elastic behavior and a very small loss modulus. On the other hand, when the stiff phase is included within the soft matrix as a sphere, the composite exhibits significant viscoelastic damping and a large phase shift between stress and strain. In fact, the maximum loss modulus in these model composites was found to be about 20 times greater than that given by the theoretical Hashin-Shtrikman upper bound. We attribute this behavior to the fact that in composites shear strain is highly inhomogeneous and mostly accommodated by the soft phase, corroborated by frequency-dependent Grüneisen parameter analysis. Interestingly, the frequency at which the damping is greatest scales with the microstructural length scale of the composite. Finally, a critical comparison between damping properties of these composites with ordered and disordered alloys and superlattice structures is made.

  12. Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord.

    PubMed

    Ramo, Nicole L; Shetye, Snehal S; Streijger, Femke; Lee, Jae H T; Troyer, Kevin L; Kwon, Brian K; Cripton, Peter; Puttlitz, Christian M

    2018-03-01

    Despite efforts to simulate the in vivo environment, post-mortem degradation and lack of blood perfusion complicate the use of ex vivo derived material models in computational studies of spinal cord injury. In order to quantify the mechanical changes that manifest ex vivo, the viscoelastic behavior of in vivo and ex vivo porcine spinal cord samples were compared. Stress-relaxation data from each condition were fit to a non-linear viscoelastic model using a novel characterization technique called the direct fit method. To validate the presented material models, the parameters obtained for each condition were used to predict the respective dynamic cyclic response. Both ex vivo and in vivo samples displayed non-linear viscoelastic behavior with a significant increase in relaxation with applied strain. However, at all three strain magnitudes compared, ex vivo samples experienced a higher stress and greater relaxation than in vivo samples. Significant differences between model parameters also showed distinct relaxation behaviors, especially in non-linear relaxation modulus components associated with the short-term response (0.1-1 s). The results of this study underscore the necessity of utilizing material models developed from in vivo experimental data for studies of spinal cord injury, where the time-dependent properties are critical. The ability of each material model to accurately predict the dynamic cyclic response validates the presented methodology and supports the use of the in vivo model in future high-resolution finite element modeling efforts. Neural tissues (such as the brain and spinal cord) display time-dependent, or viscoelastic, mechanical behavior making it difficult to model how they respond to various loading conditions, including injury. Methods that aim to characterize the behavior of the spinal cord almost exclusively use ex vivo cadaveric or animal samples, despite evidence that time after death affects the behavior compared to that in a living animal (in vivo response). Therefore, this study directly compared the mechanical response of ex vivo and in vivo samples to quantify these differences for the first time. This will allow researchers to draw more accurate conclusions about spinal cord injuries based on ex vivo data (which are easier to obtain) and emphasizes the importance of future in vivo experimental animal work. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Continuous relaxation and retardation spectrum method for viscoelastic characterization of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudip; Swamy, Aravind Krishna; Daniel, Jo S.

    2012-08-01

    This paper presents a simple and practical approach to obtain the continuous relaxation and retardation spectra of asphalt concrete directly from the complex (dynamic) modulus test data. The spectra thus obtained are continuous functions of relaxation and retardation time. The major advantage of this method is that the continuous form is directly obtained from the master curves which are readily available from the standard characterization tests of linearly viscoelastic behavior of asphalt concrete. The continuous spectrum method offers efficient alternative to the numerical computation of discrete spectra and can be easily used for modeling viscoelastic behavior. In this research, asphalt concrete specimens have been tested for linearly viscoelastic characterization. The linearly viscoelastic test data have been used to develop storage modulus and storage compliance master curves. The continuous spectra are obtained from the fitted sigmoid function of the master curves via the inverse integral transform. The continuous spectra are shown to be the limiting case of the discrete distributions. The continuous spectra and the time-domain viscoelastic functions (relaxation modulus and creep compliance) computed from the spectra matched very well with the approximate solutions. It is observed that the shape of the spectra is dependent on the master curve parameters. The continuous spectra thus obtained can easily be implemented in material mix design process. Prony-series coefficients can be easily obtained from the continuous spectra and used in numerical analysis such as finite element analysis.

  14. Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation.

    PubMed

    Alothman, Othman Y; Fouad, H; Al-Zahrani, S M; Eshra, Ayman; Al Rez, Mohammed Fayez; Ansari, S G

    2014-08-28

    High Density Polyethylene (HDPE) is one of the most often used polymers in biomedical applications. The limitations of HDPE are its visco-elastic behavior, low modulus and poor bioactivity. To improve HDPE properties, HA nanoparticles can be added to form polymer composite that can be used as alternatives to metals for bone substitutes and orthopaedic implant applications. In our previous work (BioMedical Engineering OnLine 2013), different ratios of HDPE/HA nanocomposites were prepared using melt blending in a co-rotating intermeshing twin screw extruder. The accelerated aging effects on the tensile properties and torsional viscoelastic behavior (storage modulus (G') and Loss modulus (G")) at 80°C of irradiated and non-irradiated HDPE/HA was investigated. Also the thermal behavior of HDPE/HA were studied. In this study, the effects of gamma irradiation on the tensile viscoelastic behavior (storage modulus (E') and Loss modulus (E")) at 25°C examined for HDPE/HA nanocomposites at different frequencies using Dynamic Mechanical Analysis (DMA). The DMA was also used to analyze creep-recovery and relaxation properties of the nanocomposites. To analyze the thermal behavior of the HDPE/HA nanocomposite, Differential Scanning Calorimetry (DSC) was used. The microscopic examination of the cryogenically fractured surface revealed a reasonable distribution of HA nanoparticles in the HDPE matrix. The DMA showed that the tensile storage and loss modulus increases with increasing the HA nanoparticles ratio and the test frequency. The creep-recovery behavior improves with increasing the HA nanoparticle content. Finally, the results indicated that the crystallinity, viscoelastic, creep recovery and relaxation behavior of HDPE nanocomposite improved due to gamma irradiation. Based on the experimental results, it is found that prepared HDPE nanocomposite properties improved due to the addition of HA nanoparticles and irradiation. So, the prepared HDPE/HA nanocomposite appears to have fairly good comprehensive properties that make it a good candidate as bone substitute.

  15. Abnormal viscoelastic behavior of side-chain liquid-crystal polymers

    NASA Astrophysics Data System (ADS)

    Gallani, J. L.; Hilliou, L.; Martinoty, P.; Keller, P.

    1994-03-01

    We show that, contrary to what is commonly believed, the isotropic phase of side-chain liquid-crystal polymers has viscoelastic properties which are totally different from those of ordinary flexible melt polymers. The results can be explained by the existence of a transient network created by the dynamic association of mesogenic groups belonging to different chains. The extremely high sensitivity of the compound to the state of the surfaces with which it is in contact offers us an unexpected method of studying surface states.

  16. A numerical and experimental study on optimal design of multi-DOF viscoelastic supports for passive vibration control in rotating machinery

    NASA Astrophysics Data System (ADS)

    Ribeiro, Eduardo Afonso; Lopes, Eduardo Márcio de Oliveira; Bavastri, Carlos Alberto

    2017-12-01

    Viscoelastic materials have played an important role in passive vibration control. Nevertheless, the use of such materials in supports of rotating machines, aiming at controlling vibration, is more recent, mainly when these supports present additional complexities like multiple degrees of freedom and require accurate models to predict the dynamic behavior of viscoelastic materials working in a broad band of frequencies and temperatures. Previously, the authors propose a methodology for an optimal design of viscoelastic supports (VES) for vibration suppression in rotordynamics, which improves the dynamic prediction accuracy, the speed calculation, and the modeling of VES as complex structures. However, a comprehensive numerical study of the dynamics of rotor-VES systems, regarding the types and combinations of translational and rotational degrees of freedom (DOFs), accompanied by the corresponding experimental validation, is still lacking. This paper presents such a study considering different types and combinations of DOFs in addition to the simulation of their number of additional masses/inertias, as well as the kind and association of the applied viscoelastic materials (VEMs). The results - regarding unbalance frequency response, transmissibility and displacement due to static loads - lead to: 1) considering VES as complex structures which allow improving the efficacy in passive vibration control; 2) acknowledging the best configuration concerning DOFs and VEM choice and association for a practical application concerning passive vibration control and load resistance. The specific outcomes of the conducted experimental validation attest the accuracy of the proposed methodology.

  17. Reduced Order Models for Dynamic Behavior of Elastomer Damping Devices

    NASA Astrophysics Data System (ADS)

    Morin, B.; Legay, A.; Deü, J.-F.

    2016-09-01

    In the context of passive damping, various mechanical systems from the space industry use elastomer components (shock absorbers, silent blocks, flexible joints...). The material of these devices has frequency, temperature and amplitude dependent characteristics. The associated numerical models, using viscoelastic and hyperelastic constitutive behaviour, may become computationally too expensive during a design process. The aim of this work is to propose efficient reduced viscoelastic models of rubber devices. The first step is to choose an accurate material model that represent the viscoelasticity. The second step is to reduce the rubber device finite element model to a super-element that keeps the frequency dependence. This reduced model is first built by taking into account the fact that the device's interfaces are much more rigid than the rubber core. To make use of this difference, kinematical constraints enforce the rigid body motion of these interfaces reducing the rubber device model to twelve dofs only on the interfaces (three rotations and three translations per face). Then, the superelement is built by using a component mode synthesis method. As an application, the dynamic behavior of a structure supported by four hourglass shaped rubber devices under harmonic loads is analysed to show the efficiency of the proposed approach.

  18. A comparison of dynamic mechanical properties of processing-tomato peel as affected by hot lye and infrared radiation heating for peeling

    USDA-ARS?s Scientific Manuscript database

    This study investigated the viscoelastic characteristics of tomato skins subjected to conventional hot lye peeling and emerging infrared-dry peeling by using dynamic mechanical analysis (DMA). Three DMA testing modes, including temperature ramp, frequency sweep, and creep behavior test, were conduct...

  19. Electro-elastoviscous response of polyaniline functionalized nano-porous zeolite based colloidal dispersions.

    PubMed

    Chattopadhyay, Ankur; Rani, Poonam; Srivastava, Rajendra; Dhar, Purbarun

    2018-06-01

    The present article discusses the typical influence of grafted conducting polymers in the mesoscale pores of dielectric particles on the static and dynamic electrorheology and electro-viscoelastic behavior of corresponding colloids. Nanocrystalline meso-nanoporous zeolite has been prepared by chemical synthesis and subsequently polyaniline (PANI) coating has been implemented. Electrorheological (ER) suspensions have been formed by dispersing the nanoparticles in silicone oil and their viscoelastic behaviors are examined to understand the nature of such complex colloidal systems under electric fields. PANI-Zeolite ER fluids demonstrate higher static electroviscous effects and yield stress potential than untreated Zeolite, typically studied in literature. Transient electro-viscous characterizations show a stable and negligible hysteresis behavior when both the fluids are exposed to constant as well as time varying electric field intensities. Further oscillatory shear experiments of frequency and strain sweeps exhibit predominant elastic behavior in case of Zeolite based ER suspensions as compared to PANI systems. Detailed investigations reveal Zeolite based ER suspensions display enhanced relative yielding as well as electro-viscoelastic stability than the PANI-Zeolite. The steady state viscous behaviors are scaled against the non-dimensional Mason number to model the system behavior for both fluids. Experimental data of flow behaviors of both the ER fluids are compared with semi-classical models and it is found that the CCJ model possesses a closer proximity than traditional Bingham model, thereby revealing the fluids to be generic pseudo-linear fluids. The present article reveals that while the PANI based fluids are typically hailed superior in literature, it is only restricted to steady shear utilities. In case of dynamic and oscillatory systems, the traditional Zeolite based fluids exhibit superior ER caliber. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads

    NASA Astrophysics Data System (ADS)

    Li, Chenlin; Guo, Huili; Tian, Xiaogeng

    2018-04-01

    This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.

  1. Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange.

    PubMed

    Brown, Tobin E; Carberry, Benjamin J; Worrell, Brady T; Dudaryeva, Oksana Y; McBride, Matthew K; Bowman, Christopher N; Anseth, Kristi S

    2018-04-04

    The extracellular matrix (ECM) constitutes a viscoelastic environment for cells. A growing body of evidence suggests that the behavior of cells cultured in naturally-derived or synthetic ECM mimics is influenced by the viscoelastic properties of these substrates. Adaptable crosslinking strategies provide a means to capture the viscoelasticity found in native soft tissues. In this work, we present a covalent adaptable hydrogel based on thioester exchange as a biomaterial for the in vitro culture of human mesenchymal stem cells. Through control of pH, gel stoichiometry, and crosslinker structure, viscoelastic properties in these crosslinked networks can be modulated across several orders of magnitude. We also propose a strategy to alter these properties in existing networks by the photo-uncaging of the catalyst 4-mercaptophenylacetic acid. Mesenchymal stem cells encapsulated in thioester hydrogels are able to elongate in 3D and display increased proliferation relative to those in static networks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Laser Doppler vibrometer measurement on spiders in moving-coil loudspeakers

    NASA Astrophysics Data System (ADS)

    Kong, Xiaopeng; Zeng, Xinwu; Tian, Zhangfu

    2014-12-01

    The spider is the dominate stiffness to suspend the cone for a moving-coil loudspeaker unit, and is most commonly a concentrically corrugated fabric disk. A subwoofer closed box is designed to excite the tested spiders pneumatically, and the Laser Doppler Vibrometer (LDV) is used to measure the velocity of the moving spiders. The effective stiffness, loss factor and some viscoelastic behaviors such as level dependent stiffness have been investigated. The results find that, this pneumatic non-contact dynamic technique successfully measured the viscoelastic behaviors of spiders from extremely low frequency 5 Hz to 200 Hz, and the effective stiffness of spiders is dependent on the input voltage level, which is higher level with lower stiffness.

  3. Measurement of the linear viscoelastic behavior of antimisting kerosene

    NASA Technical Reports Server (NTRS)

    Ferry, J. D.

    1983-01-01

    Measurements of dynamic viscoelastic properties in very small oscillating shear deformations was made on solutions of a jet fuel, Jet A, containing an antimisting polymeric additive, FM-9. A few measurements were also made on solutions of FM-9 in a mixed solvent of mineral oil, Tetralin, and 0-terphenyl. Two samples of FM-9 had approximate number-average molecular weights of 12,000,000 and 8,100,000 as deduced from analysis of the measurements. The ranges of variables were 2.42 to 4.03 g/1 in concentration (0.3 to 0.5% by weight), 1 to 35 in temperature, 1.3 to 9.4 cp in solvent viscosity, and 103 to 6100 Hz in frequency. Measurements in the Jet A solvent were made both with and without a modifying carrier. The results were compared with the Zimm theory and the viscoelastic behavior was found to resemble rather closely that of ordinary non-polar polymers in theta solvents. The relation of the results to the antithixotropic behavior of such solutions a high shear rates is discussed in terms of intramolecular and intermolecular interactions.

  4. Electrokinetically induced alterations in dynamic response of viscoelastic fluids in narrow confinements.

    PubMed

    Bandopadhyay, Aditya; Chakraborty, Suman

    2012-05-01

    We investigate a dynamical interplay between interfacial electrokinetics and a combined dissipative and elastic behavior of flow through narrow confinements, in analogy with spatiotemporal hydrodynamics of porous media. In particular, we investigate the effects of streaming potential on the pertinent dynamic responses, by choosing a Maxwell fluid model for representing the consequent electro-hydrodynamic characteristics. We transform the pertinent governing equation to the frequency domain, so that a dynamic generalization of Darcy's law in the presence of streaming potential effects can be effectively realized. We show that the frequencies corresponding to local maxima in the dynamic permeability also correspond to local maxima in the induced streaming potential. We also bring out the effects of Stern layer conductivity on the dynamic permeability. Our analytical estimates do reveal that serious overestimations in the commonly portrayed notion of massive amplifications of dynamic permeability at resonating frequencies may be possible, if interactions between spontaneous electrochemical interfacial phenomena and pulsating pressure-gradient-driven viscoelastic transport are trivially ignored.

  5. Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models

    NASA Astrophysics Data System (ADS)

    Rupitsch, Stefan J.; Ilg, Jürgen; Sutor, Alexander; Lerch, Reinhard; Döllinger, Michael

    2011-08-01

    In order to obtain a deeper understanding of the human phonation process and the mechanisms generating sound, realistic setups are built up containing artificial vocal folds. Usually, these vocal folds consist of viscoelastic materials (e.g., polyurethane mixtures). Reliable simulation based studies on the setups require the mechanical properties of the utilized viscoelastic materials. The aim of this work is the identification of mechanical material parameters (Young's modulus, Poisson's ratio, and loss factor) for those materials. Therefore, we suggest a low-cost measurement setup, the so-called vibration transmission analyzer (VTA) enabling to analyze the transfer behavior of viscoelastic materials for propagating mechanical waves. With the aid of a mathematical Inverse Method, the material parameters are adjusted in a convenient way so that the simulation results coincide with the measurement results for the transfer behavior. Contrary to other works, we determine frequency dependent functions for the mechanical properties characterizing the viscoelastic material in the frequency range of human speech (100-250 Hz). The results for three different materials clearly show that the Poisson's ratio is close to 0.5 and that the Young's modulus increases with higher frequencies. For a frequency of 400 Hz, the Young's modulus of the investigated viscoelastic materials is approximately 80% higher than for the static case (0 Hz). We verify the identified mechanical properties with experiments on fabricated vocal fold models. Thereby, only small deviations between measurements and simulations occur.

  6. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.

    PubMed

    Connizzo, Brianne K; Grodzinsky, Alan J

    2017-03-21

    Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora

    2016-02-05

    Coupled length and time scales determine the dynamic behavior of polymers and underlie their unique viscoelastic properties. To resolve the long-time dynamics it is imperative to determine which time and length scales must be correctly modeled. In this paper, we probe the degree of coarse graining required to simultaneously retain significant atomistic details and access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using linear polyethylene as a model system, we probe how the coarse-graining scale affects the measured dynamics. Iterative Boltzmann inversion ismore » used to derive coarse-grained potentials with 2–6 methylene groups per coarse-grained bead from a fully atomistic melt simulation. We show that atomistic detail is critical to capturing large-scale dynamics. Finally, using these models we simulate polyethylene melts for times over 500 μs to study the viscoelastic properties of well-entangled polymer melts.« less

  8. Time-Resolved Imaging Study of Jetting Dynamics during Laser Printing of Viscoelastic Alginate Solutions.

    PubMed

    Zhang, Zhengyi; Xiong, Ruitong; Mei, Renwei; Huang, Yong; Chrisey, Douglas B

    2015-06-16

    Matrix-assisted pulsed-laser evaporation direct-write (MAPLE DW) has been successfully implemented as a promising laser printing technology for various fabrication applications, in particular, three-dimensional bioprinting. Since most bioinks used in bioprinting are viscoelastic, it is of importance to understand the jetting dynamics during the laser printing of viscoelastic fluids in order to control and optimize the laser printing performance. In this study, MAPLE DW was implemented to study the jetting dynamics during the laser printing of representative viscoelastic alginate bioinks and evaluate the effects of operating conditions (e.g., laser fluence) and material properties (e.g., alginate concentration) on the jet formation performance. Through a time-resolved imaging approach, it is found that when the laser fluence increases or the alginate concentration decreases, the jetting behavior changes from no material transferring to well-defined jetting to well-defined jetting with an initial bulgy shape to jetting with a bulgy shape to pluming/splashing. For the desirable well-defined jetting regimes, as the laser fluence increases, the jet velocity and breakup length increase while the breakup time and primary droplet size decrease. As the alginate concentration increases, the jet velocity and breakup length decrease while the breakup time and primary droplet size increase. In addition, Ohnesorge, elasto-capillary, and Weber number based phase diagrams are presented to better appreciate the dependence of jetting regimes on the laser fluence and alginate concentration.

  9. Measurements of vocal fold tissue viscoelasticity: Approaching the male phonatory frequency range

    NASA Astrophysics Data System (ADS)

    Chan, Roger W.

    2004-06-01

    Viscoelastic shear properties of human vocal fold tissues have been reported previously. However, data have only been obtained at very low frequencies (<=15 Hz). This necessitates data extrapolation to the frequency range of phonation based on constitutive modeling and time-temperature superposition. This study attempted to obtain empirical measurements at higher frequencies with the use of a controlled strain torsional rheometer, with a design of directly controlling input strain that introduced significantly smaller system inertial errors compared to controlled stress rheometry. Linear viscoelastic shear properties of the vocal fold mucosa (cover) from 17 canine larynges were quantified at frequencies of up to 50 Hz. Consistent with previous data, results showed that the elastic shear modulus (G'), viscous shear modulus (G''), and damping ratio (ζ) of the vocal fold mucosa were relatively constant across 0.016-50 Hz, whereas the dynamic viscosity (ɛ') decreased monotonically with frequency. Constitutive characterization of the empirical data by a quasilinear viscoelastic model and a statistical network model demonstrated trends of viscoelastic behavior at higher frequencies generally following those observed at lower frequencies. These findings supported the use of controlled strain rheometry for future investigations of the viscoelasticity of vocal fold tissues and phonosurgical biomaterials at phonatory frequencies.

  10. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators

    NASA Astrophysics Data System (ADS)

    Galucio, A. C.; Deü, J.-F.; Ohayon, R.

    This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.

  11. Viscoelastic effects on the actuation performance of a dielectric elastomer actuator under different equal, un-equal biaxial pre-stretches

    NASA Astrophysics Data System (ADS)

    Quang Tran, Danh; Li, Jin; Xuan, Fuzhen; Xiao, Ting

    2018-06-01

    Dielectric elastomers (DEs) are belonged to a group of polymers which cause a time-dependence deformation due to the effect of viscoelastic. In recent years, viscoelasticity has been accounted in the modeling in order to understand the complete electromechanical behavior of dielectric elastomer actuators (DEAs). In this paper, we investigate the actuation performance of a circular DEA under different equal, un-equal biaxial pre-stretches, based on a nonlinear rheological model. The theoretical results are validated by experiments, which verify the electromechanical constitutive equation of the DEs. The viscoelastic mechanical characteristic is analyzed by modeling simulation analysis and experimental to describe the influence of frequency, voltage, pre-stretch, and waveform on the actuation response of the actuator. Our study indicates that: The DEA with different equal or un-equal biaxial pre-stretches undergoes different actuation performance when subject to high voltage. Under an un-equal biaxial pre-stretch, the DEA deforms unequally and shows different deformation abilities in two directions. The relative creep strain behavior of the DEA due to the effect of viscoelasticity can be reduced by increasing pre-stretch ratio. Higher equal biaxial pre-stretch obtains larger deformation strain, improves actuation response time, and reduces the drifting of the equilibrium position in the dynamic response of the DEA when activated by step and period voltage, while increasing the frequency will inhibit the output stretch amplitude. The results in this paper can provide theoretical guidance and application reference for design and control of the viscoelastic DEAs.

  12. Long-Term Viscoelastic Response of E-glass/Bismaleimide Composite in Seawater Environment

    NASA Astrophysics Data System (ADS)

    Yian, Zhao; Zhiying, Wang; Keey, Seah Leong; Boay, Chai Gin

    2015-12-01

    The effect of seawater absorption on the long-term viscoelastic response of E-glass/BMI composite is presented in this paper. The diffusion of seawater into the composite shows a two-stage behavior, dominated by Fickian diffusion initially and followed by polymeric relaxation. The Glass transition temperature (Tg) of the composite with seawater absorption is considerably lowered due to the plasticization effect. However the effect of water absorption at 50 °C is found to be reversible after drying process. The time-temperature superposition (TTS) was performed based on the results of Dynamic Mechanical Analysis to construct the master curve of storage modulus. The shift factors exhibit Arrhenius behavior when temperature is well below Tg and Vogel-Fulcher-Tammann (VFT) like behavior when temperature gets close to glass transition region. As a result, a semi-empirical formulation is proposed to account for the seawater absorption effect in predicting long-term viscoelastic response of BMI composites based on temperature dependent storage modulus and TTS. The predicted master curves show that the degradation of storage modulus accelerates with both seawater exposure and increasing temperature. The proposed formulation can be applied to predict the long-term durability of any thermorheologically simple composite materials in seawater environment.

  13. Local Viscoelastic Properties of Live Cells Investigated Using Dynamic and Quasi-Static Atomic Force Microscopy Methods

    PubMed Central

    Cartagena, Alexander; Raman, Arvind

    2014-01-01

    The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements. PMID:24606928

  14. Dynamics in Complex Coacervates

    NASA Astrophysics Data System (ADS)

    Perry, Sarah

    Understanding the dynamics of a material provides detailed information about the self-assembly, structure, and intermolecular interactions present in a material. While rheological methods have long been used for the characterization of complex coacervate-based materials, it remains a challenge to predict the dynamics for a new system of materials. Furthermore, most work reports only qualitative trends exist as to how parameters such as charge stoichiometry, ionic strength, and polymer chain length impact self-assembly and material dynamics, and there is little information on the effects of polymer architecture or the organization of charges within a polymer. We seek to link thermodynamic studies of coacervation phase behavior with material dynamics through a carefully-controlled, systematic study of coacervate linear viscoelasticity for different polymer chemistries. We couple various methods of characterizing the dynamics of polymer-based complex coacervates, including the time-salt superposition methods developed first by Spruijt and coworkers to establish a more mechanistic strategy for comparing the material dynamics and linear viscoelasticity of different systems. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research.

  15. Flutter suppression of plates using passive constrained viscoelastic layers

    NASA Astrophysics Data System (ADS)

    Cunha-Filho, A. G.; de Lima, A. M. G.; Donadon, M. V.; Leão, L. S.

    2016-10-01

    Flutter in aeronautical panels is a self-excited aeroelastic phenomenon which occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, significantly affecting the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, few works have been proposed to deal with the problem of predicting the flutter boundary of aeroviscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed.

  16. The role of nonlinear viscoelasticity on the functionality of laminating shortenings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macias-Rodriguez, Braulio A.; Peyronel, Fernanda; Marangoni, Alejandro G.

    The rheology of fats is essential for the development of homogeneous and continuous layered structures of doughs. Here, we define laminating shortenings in terms of rheological behavior displayed during linear-to-nonlinear shear deformations, investigated by large amplitude oscillatory shear rheology. Likewise, we associate the rheological behavior of the shortenings with structural length scales elucidated by ultra-small angle x-ray scattering and cryo-electron microscopy. Shortenings exhibited solid-like viscoelastic and viscoelastoplastic behaviors in the linear and nonlinear regimes respectively. In the nonlinear region, laminating shortenings dissipated more viscous energy (larger normalized dynamic viscosities) than a cake bakery shortening. The fat solid-like network of laminatingmore » shortening displayed a three-hierarchy structure and layered crystal aggregates, in comparison to two-hierarchy structure and spherical-like crystal aggregates of a cake shortening. We argue that the observed rheology, correlated to the structural network, is crucial for optimal laminating performance of shortenings.« less

  17. Effect of PMMA polymer on the dynamic viscoelasticity and plasticizer leachability of PEMA-based tissue conditioners.

    PubMed

    Hong, Guang; Maeda, Takeshi; Li, YingAi; Sadamori, Shinsuke; Hamada, Taizo; Murata, Hiroshi

    2010-08-01

    The purpose of this study was to determine the effect of PMMA polymer on dynamic viscoelasticity and plasticizer leachability of PEMA-based tissue conditioners. One PEMA polymer and one PMMA polymer were used in powder form with four formulations. The combination of 80 wt% ATBC, 15 wt% BPBG and 5 wt% ethyl alcohol was used as the liquid phase. The dynamic viscoelasticity and plasticizer leaching of each specimen were measured after 0, 1, 3, 7, and 14 days of immersion (37 degrees C distilled water) using DMA and HPLC. A significant difference was found among the materials in the dynamic viscoelasticity and leaching of plasticizer. The materials containing 10 wt% PMMA showed the most stable dynamic viscoelasticity, and showed the lowest leaching of plasticizer. The results suggest that the addition of the PMMA polymer to the powder of a tissue conditioner can improve the durability of the PEMA-based tissue conditioner.

  18. Impact of Beads and Drops on a Repellent Solid Surface: A Unified Description

    NASA Astrophysics Data System (ADS)

    Arora, S.; Fromental, J.-M.; Mora, S.; Phou, Ty; Ramos, L.; Ligoure, C.

    2018-04-01

    We investigate freely expanding sheets formed by ultrasoft gel beads, and liquid and viscoelastic drops, produced by the impact of the bead or drop on a silicon wafer covered with a thin layer of liquid nitrogen that suppresses viscous dissipation thanks to an inverse Leidenfrost effect. Our experiments show a unified behavior for the impact dynamics that holds for solids, liquids, and viscoelastic fluids and that we rationalize by properly taking into account elastocapillary effects. In this framework, the classical impact dynamics of solids and liquids, as far as viscous dissipation is negligible, appears as the asymptotic limits of a universal theoretical description. A novel material-dependent characteristic velocity that includes both capillary and bulk elasticity emerges from this unified description of the physics of impact.

  19. Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

    Treesearch

    Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng

    2016-01-01

    The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...

  20. Instability of fiber-reinforced viscoelastic composite plates to in-plane compressive loads

    NASA Technical Reports Server (NTRS)

    Chandiramani, N. K.; Librescu, L.

    1990-01-01

    This study analyzes the stability behavior of unidirectional fiber-reinforced composite plates with viscoelastic material behavior subject to in-plane biaxial compressive edge loads. To predict the effective time-dependent material properties, elastic fibers embedded in a linearly viscoelastic matrix are examined. The micromechanical relations developed for a transversely isotropic medium are discussed along with the correspondence principle of linear viscoelasticity. It is concluded that the stability boundary obtained for a viscoelastic plate is lower (more critical) than its elastic counterpart, and the transverse shear deformation effects are more pronounced in viscoelastic plates than in their elastic counterparts.

  1. Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047.

    PubMed

    Moreno, J; Vargas, M A; Madiedo, J M; Muñoz, J; Rivas, J; Guerrero, M G

    2000-02-05

    The cyanobacterium (blue-green alga) Anabaena sp. ATCC 33047 produces an exopolysaccharide (EPS) during the stationary growth phase in batch culture. Chemical analysis of EPS revealed a heteropolysaccharidic nature, with xylose, glucose, galactose, and mannose the main neutral sugars found. The infrared (IR) spectrum of EPS showed absorption bands of carboxylate groups. The average molecular mass of the polymer was 1.35 MDa. Aqueous dispersions at EPS concentrations ranging from 0.2% to 0.6% (w/w) showed marked shear-thinning properties (power-law behavior). Linear dynamic viscoelastic properties showed that the elastic component was always higher than the viscous component. Viscous and viscoelastic properties demonstrated the absence of conformational changes within the concentration range studied. Stress-growth experiments revealed that 0.4% and 0.6% (w/w) EPS dispersions showed thixotropic properties. A detailed comparison of the linear dynamic viscoelasticity, transient flow, and decreasing shear rate flow curve properties was made for 0.4% (w/w) dispersions of xanthan gum (XG), Alkemir 110 (AG), and EPS. Viscoelastic spectra demonstrated that the EPS dispersion turned out to be more "fluidlike" than the AG and XG dispersions. The flow indexes indicated that the EPS dispersion was less shear-sensitive than that of XG, showing essentially the same viscosity, that is, >50 s(-1). The fact that viscosities of EPS and AG dispersions were not substantially different within the shear-rate range covered must be emphasized, in relation to EPS potential applications. The rheological behavior of EPS dispersions indicates the formation of an intermediate structure between a random-coil polysaccharide and a weak gel. Copyright 2000 John Wiley & Sons, Inc.

  2. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.

    PubMed

    Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit

    2018-02-01

    The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Viscoelastic properties of uncured resin composites: Dynamic oscillatory shear test and fractional derivative model.

    PubMed

    Petrovic, Ljubomir M; Zorica, Dusan M; Stojanac, Igor Lj; Krstonosic, Veljko S; Hadnadjev, Miroslav S; Janev, Marko B; Premovic, Milica T; Atanackovic, Teodor M

    2015-08-01

    In this study we analyze viscoelastic properties of three flowable (Wave, Wave MV, Wave HV) and one universal hybrid resin (Ice) composites, prior to setting. We developed a mathematical model containing fractional derivatives in order to describe their properties. Isothermal experimental study was conducted on a rheometer with parallel plates. In dynamic oscillatory shear test, storage and loss modulus, as well as the complex viscosity where determined. We assumed four different fractional viscoelastic models, each belonging to one particular class, derivable from distributed-order fractional constitutive equation. The restrictions following from the Second law of thermodynamics are imposed on each model. The optimal parameters corresponding to each model are obtained by minimizing the error function that takes into account storage and loss modulus, thus obtaining the best fit to the experimental data. In the frequency range considered, we obtained that for Wave HV and Wave MV there exist a critical frequency for which loss and storage modulus curves intersect, defining a boundary between two different types of behavior: one in which storage modulus is larger than loss modulus and the other in which the situation is opposite. Loss and storage modulus curves for Ice and Wave do not show this type of behavior, having either elastic, or viscous effects dominating in entire frequency range considered. The developed models may be used to predict behavior of four tested composites in different flow conditions (different deformation speed), thus helping to estimate optimal handling characteristics for specific clinical applications. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyang; Deng, Xiao-Long

    2016-04-01

    In this paper, an improved weakly compressible smoothed particle hydrodynamics (SPH) method is proposed to simulate transient free surface flows of viscous and viscoelastic fluids. The improved SPH algorithm includes the implementation of (i) the mixed symmetric correction of kernel gradient to improve the accuracy and stability of traditional SPH method and (ii) the Rusanov flux in the continuity equation for improving the computation of pressure distributions in the dynamics of liquids. To assess the effectiveness of the improved SPH algorithm, a number of numerical examples including the stretching of an initially circular water drop, dam breaking flow against a vertical wall, the impact of viscous and viscoelastic fluid drop with a rigid wall, and the extrudate swell of viscoelastic fluid have been presented and compared with available numerical and experimental data in literature. The convergent behavior of the improved SPH algorithm has also been studied by using different number of particles. All numerical results demonstrate that the improved SPH algorithm proposed here is capable of modeling free surface flows of viscous and viscoelastic fluids accurately and stably, and even more important, also computing an accurate and little oscillatory pressure field.

  5. Modeling of viscoelastic properties of nonpermeable porous rocks saturated with highly viscous fluid at seismic frequencies at the core scale

    NASA Astrophysics Data System (ADS)

    Wang, Zizhen; Schmitt, Douglas R.; Wang, Ruihe

    2017-08-01

    A core scale modeling method for viscoelastic properties of rocks saturated with viscous fluid at low frequencies is developed based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. Based on this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the storage moduli and the stress-strain phase lag of saturated rocks. And we also compared the modeling results to the Hashin-Shtrikman bounds and the coherent potential approximation (CPA). The dynamic moduli calculated from the modeling are lower than the predictions of CPA, and both of these fall between the Hashin-Shtrikman bounds. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and aspect ratio affect the rock frame stiffness and result in different viscoelastic behaviors of the saturated rocks. The stress-strain phase lags are larger with smaller stiffness contrasts between the rock frame and the pore fluid. The viscoelastic properties of saturated rocks are more sensitive to aspect ratio compared to other pore structure parameters. The results suggest that significant seismic dispersion (at about 50-200 Hz) might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids.Plain Language SummaryWe develop a core scale modeling method to simulate the viscoelastic properties of rocks saturated with viscous fluid at low frequencies based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. By using this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the composite's viscoelastic properties. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and pore aspect ratio affect the rock frame stiffness and result in different viscoelastic behavior of the saturated rocks. The lower the rock frame stiffness, the larger the stress-strain phase lags. The viscoelastic properties of saturated rocks are more sensitive to the pore aspect ratio. The results suggest that significant seismic dispersion might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids. This will be important in the context of heavy hydrocarbon reservoirs and igneous rocks saturated with silicate melt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29859416','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29859416"><span>Dynamic rheological comparison of silicones for podiatry applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Díaz-Díaz, Ana-María; Sánchez-Silva, Bárbara; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Janeiro-Arocas, Julia; Gracia-Fernández, Carlos; Artiaga, Ramón</p> <p>2018-05-26</p> <p>This work shows an effective methodology to evaluate the dynamic viscoelastic behavior of silicones for application in podiatry. The aim is to characterize, compare their viscoelastic properties according to the dynamic stresses they can be presumably subjected when used in podiatry orthotic applications. These results provide a deeper insight which extends the previous creep-recovery results to the world of dynamic stresses developed in physical activity. In this context, it shoulod be taken into account that an orthoses can subjected to a set of static and dynamic shear and compressive forces. Two different podiatric silicones, Blanda-blanda and Master, from Herbitas, are characterized by dynamic rheological methods. Three kinds of rheological tests are considered: shear stress sweep, compression frequency sweep and shear frequency sweep, all the three with simultaneous control of the static force at three different levels. The static force represents a static load like that produced by the weight of a human body on a shoe insole. In a practical sense, dynamic stresses are related to physical activity and are needed to evaluate the frequency effect on the viscoelastic behavior of the material. It is considered that the dynamic stresses can be applied in compression and shear since, in practice, the way the stresses are applied in real life depends on the orthoses geometry and its exact location with respect to the foot and shoe. The effects of static and dynamic loads are individualized and compared to each other through the relations between the elastic constants for isotropic materials. The overall proposed experimental methodology can provide very insightful information for better selection of materials in podiatry applications. This study focuses on the rheological characterization to choose the right silicone for each podiatric application, taking into account the dynamic viscoelastic requirements associated to the physical activity of user. Accordingly, one soft and one hard silicones of common use in podiatry were tested. Each of the two silicones exhibit not only different moduli values, but also, a different kind of dependence of the dynamic moduli with respect to the static load. In the case of the soft sample a linear trend is observed but in the case of of the hard one the dependence is of the power law type. Moreover, these samples exhibit very different Poisson's coefficient values for compression stresses lower than 20 kPa, and almost the same values for stresses above 40 kPa. That different dependence of the Poisson's ratio on the static load should also be taken into account for material selection in customized podiatry applications, where static and dynamic loads are strongly dependent on the individual weight and activity. Copyright © 2018. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22482454-linear-oscillation-gas-bubbles-viscoelastic-material-under-ultrasound-irradiation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22482454-linear-oscillation-gas-bubbles-viscoelastic-material-under-ultrasound-irradiation"><span>Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hamaguchi, Fumiya; Ando, Keita, E-mail: kando@mech.keio.ac.jp</p> <p>2015-11-15</p> <p>Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows frommore » the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA542757','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA542757"><span>Constitutive Modeling, Nonlinear Behavior, and the Stress-Optic Law</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-01-01</p> <p>estimates of D̂ from dynamic mechanical measurements. Some results are shown in Figure 58 for a filled EPDM rubber [116]. There is rough agreement with...elastomers and filler-reinforced rubber . 5.1 Linearity and the superposition principle The problem of analyzing viscoelastic mechanical behavior is greatly...deformation such as shear. For crosslinked rubber the strain can be defined in terms of the strain function suggested by the statistical theories of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CoPhC.195...14R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CoPhC.195...14R"><span>A discrete-element model for viscoelastic deformation and fracture of glacial ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.</p> <p>2015-10-01</p> <p>A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24967977','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24967977"><span>Identification of the viscoelastic properties of soft materials at low frequency: performance, ill-conditioning and extrapolation capabilities of fractional and exponential models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ciambella, J; Paolone, A; Vidoli, S</p> <p>2014-09-01</p> <p>We report about the experimental identification of viscoelastic constitutive models for frequencies ranging within 0-10Hz. Dynamic moduli data are fitted forseveral materials of interest to medical applications: liver tissue (Chatelin et al., 2011), bioadhesive gel (Andrews et al., 2005), spleen tissue (Nicolle et al., 2012) and synthetic elastomer (Osanaiye, 1996). These materials actually represent a rather wide class of soft viscoelastic materials which are usually subjected to low frequencies deformations. We also provide prescriptions for the correct extrapolation of the material behavior at higher frequencies. Indeed, while experimental tests are more easily carried out at low frequency, the identified viscoelastic models are often used outside the frequency range of the actual test. We consider two different classes of models according to their relaxation function: Debye models, whose kernel decays exponentially fast, and fractional models, including Cole-Cole, Davidson-Cole, Nutting and Havriliak-Negami, characterized by a slower decay rate of the material memory. Candidate constitutive models are hence rated according to the accurateness of the identification and to their robustness to extrapolation. It is shown that all kernels whose decay rate is too fast lead to a poor fitting and high errors when the material behavior is extrapolated to broader frequency ranges. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29673956','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29673956"><span>Systematic dynamic viscoelasticity measurements for chitin nanofibers prepared with various concentrations, disintegration times, acidities, and crystalline structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suenaga, Shin; Osada, Mitsumasa</p> <p>2018-04-17</p> <p>Dynamic viscoelasticities were measured for chitin nanofiber (ChNF) dispersions prepared with various concentrations, disintegration times, acidities, and crystalline structures. The 0.05 w/v% dispersions of pH neutral ChNFs continuously exhibited elastic behavior. The 0.05 w/v% dispersions of acidified ChNFs, on the other hand, transitioned from a colloidal dispersion to a critical gel and then exhibited elastic behavior with increasing ChNF concentration. A double-logarithmic chart of the concentration vs. the storage modulus was prepared and indicated the fractal dimension and the nanostructure in the dispersion. The results determined that the neutral α- and β-ChNFs were dispersed but showed some remaining aggregations and that the acidified β-ChNFs were completely individualized. In addition, the α-chitin steadily disintegrated with increasing disintegration time, and the aspect ratio of the β-chitin decreased as a result of the exscessive disintegration. The storage moduli of the ChNFs were greater than those of chitin solutions, nanorods, and nanowhiskers with the same solids concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14710010','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14710010"><span>Viscoelasticity of rabbit vocal folds after injection augmentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dahlqvist, Ake; Gärskog, Ola; Laurent, Claude; Hertegård, Stellan; Ambrosio, Luigi; Borzacchiello, Assunta</p> <p>2004-01-01</p> <p>Vocal fold function is related to the viscoelasticity of the vocal fold tissue. Augmentation substances used for injection treatment of voice insufficiency may alter the viscoelastic properties of vocal folds and their vibratory capacity. The objective was to compare the mechanical properties (viscoelasticity) of various injectable substances and the viscoelasticity of rabbit vocal folds, 6 months after injection with one of these substances. Animal model. Cross-linked collagen (Zyplast), double cross-linked hyaluronan (hylan B gel), dextranomers in hyaluronan (DHIA), and polytetrafluoroethylene (Teflon) were injected into rabbit vocal folds. Six months after the injection, the animals were killed and the right- and left-side vocal folds were removed. Dynamic viscosity of the injected substances and the vocal folds was measured with a Bohlin parallel-plate rheometer during small-amplitude oscillation. All injected vocal folds showed a decreasing dynamic viscosity with increasing frequency. Hylan B gel and DiHA showed the lowest dynamic viscosity values, and vocal folds injected with these substances also showed the lowest dynamic viscosity (similar to noninjected control samples). Teflon (and vocal folds injected with Teflon) showed the highest dynamic viscosity values, followed by the collagen samples. Substances with low viscoelasticity alter the mechanical properties of the vocal fold to a lesser degree than substances with a high viscoelasticity. The data indicated that hylan B gel and DiHA render the most natural viscoelastic properties to the vocal folds. These substances seem to be appropriate for preserving or restoring the vibratory capacity of the vocal folds when glottal insufficiency is treated with augmentative injections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011OptLE..49..632G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011OptLE..49..632G"><span>Optical method of caustics applied in viscoelastic fracture analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Guiyun; Li, Zheng; Xu, Jie</p> <p>2011-05-01</p> <p>The optical method of caustics is developed here to study the fracture of viscoelastic materials. By adopting a distribution of viscoelastic stress fields near the crack tip, the method of caustics is used to determine the viscoelastic fracture parameters from the caustic patterns near the crack tip. Two viscoelastic materials are studied. These are PMMA and ternary composites of HDPE/POE-g-MA/CaCO 3. The transmitted and reflective methods of caustics are performed separately to investigate viscoelastic fracture behaviors. The stress intensity factors (SIFs) versus time is determined by a series of shadow spot patterns combined with viscoelastic parameters evaluated by creep tests. In order to understand the viscoelastic fracture mechanisms of HDPE/POE-g-MA/CaCO 3 composites, their fracture surfaces are observed by a Scanning Electron Microscope (SEM). The results indicate that the method of caustics can be used to characterize the fracture behaviors of viscoelastic materials and further to optimize the design of polymer composites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23021503','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23021503"><span>Tension-compression viscoelastic behaviors of the periodontal ligament.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Chen-Ying; Su, Ming-Zen; Chang, Hao-Hueng; Chiang, Yu-Chih; Tao, Shao-Huan; Cheng, Jung-Ho; Fuh, Lih-Jyh; Lin, Chun-Pin</p> <p>2012-09-01</p> <p>Although exhaustively studied, the mechanism responsible for tooth support and the mechanical properties of the periodontal ligament (PDL) remain a subject of considerable controversy. In the past, various experimental techniques and theoretical analyses have been employed to tackle this intricate problem. The aim of this study was to investigate the viscoelastic behaviors of the PDL using three-dimensional finite element analysis. Three dentoalveolar complex models were established to simulate the tissue behaviors of the PDL: (1) deviatoric viscoelastic model; (2) volumetric viscoelastic model; and (3) tension-compression volumetric viscoelastic model. These modified models took into consideration the presence of tension and compression along the PDL during both loading and unloading. The inverse parameter identification process was developed to determine the mechanical properties of the PDL from the results of previously reported in vitro and in vivo experiments. The results suggest that the tension-compression volumetric viscoelastic model is a good approximation of normal PDL behavior during the loading-unloading process, and the deviatoric viscoelastic model is a good representation of how a damaged PDL behaves under loading conditions. Moreover, fluid appears to be the main creep source in the PDL. We believe that the biomechanical properties of the PDL established via retrograde calculation in this study can lead to the construction of more accurate extra-oral models and a comprehensive understanding of the biomechanical behavior of the PDL. Copyright © 2012. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PMB....60.4295A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PMB....60.4295A"><span>The dynamic deformation of a layered viscoelastic medium under surface excitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aglyamov, Salavat R.; Wang, Shang; Karpiouk, Andrei B.; Li, Jiasong; Twa, Michael; Emelianov, Stanislav Y.; Larin, Kirill V.</p> <p>2015-06-01</p> <p>In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..DFD.EK001M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..DFD.EK001M"><span>Coiling and Folding of Viscoelastic Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth</p> <p>2007-11-01</p> <p>The study of fluid jets impacting on a flat surface has industrial applications in many areas, including processing of foods and consumer goods, bottle filling, and polymer melt processing. Previous studies have focused primarily on purely viscous, Newtonian fluids, which exhibit a number of different dynamical regimes including dripping, steady jetting, folding, and steady coiling. Here we add another dimension to the problem by focusing on mobile (low viscosity) viscoelastic fluids, with the study of two wormlike-micellar fluids, a cetylpyridinum-salicylic acid salt (CPyCl/NaSal) solution, and an industrially relevant shampoo base. We investigate the effects of viscosity and elasticity on the dynamics of axi-symmetric jets. The viscoelasticity of the fluids is systematically controlled by varying the concentration of salt counterions. Experimental methods include shear and extensional rheology measurements to characterize the fluids, and high-speed digital video imaging. In addition to the regimes observed in purely viscous systems, we also find a novel regime in which the elastic jet buckles and folds on itself, and alternates between coiling and folding behavior. We suggest phase diagrams and scaling laws for the coiling and folding frequencies through a systematic exploration of the experimental parameter space (height of fall, imposed flow rate, elasticity of the solution).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT.........8Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT.........8Z"><span>Thermodynamic and dynamic behaviors of self-organizing polymeric systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Yiqiang</p> <p></p> <p>Two topics of self-organizing polymeric systems are explored in this work: thermodynamic and dynamic properties of liquid crystal polymers in solutions and rheological behaviors of self-organizing gels. For dilute nematic solutions of end-on side-chain liquid crystal polysiloxanes (SCLCP) dissolved in 5CB, the chain anisotropies R∥/R ⊥, obtained from electrorheological(ER) analysis based on the Brochard model, are consistent with independent measurements of Rg∥/R g⊥ via small-angle neutron scattering (SANS), which unambiguously demonstrating a slightly prolate SCLCP chain conformation. Dissolution of this prolate SCLCP in flow-aligning 5CB produces a tumbling flow, clearly indicating a discrepancy with the Brochard hydrodynamic theory which predicts such a transition only for oblate conformation. A numerical comparison using a modified version of the Brochard model leads to improved self-consistent agreement between SANS, ER and shear transient experiments. The molecular weight dependence of the chain conformational relaxation time it indicates an extended SCLCP chain conformation in 5CB. SANS analysis suggests that the SCLCP conformation is sensitive to the solvent interaction, i.e. a more extended conformation is observed in isotropic acetone-d6 than in nematic 5CB. A SANS conformational study of SCLCCs with methoxyphenylbenzoate mesogenic side group in CDC13 demonstrates that the form factor of a single comb-like SCLCP chain is well described by a wormlike chain model with finite cross-sectional thickness over the entire q range, taking into account the molecular weight polydispersity. Consistent with measurement of a large R g from low q analysis, the resulting persistence length lp is in the range 28˜32 A, substantially larger than that of unsubstituted polydimethylsiloxane (PDMS) chain (l p =5.8 A), which suggests a relatively rigid SCLCP chain due to the influence of densely attached mesogenic groups. For nematic mixtures of copolysiloxane SCLCP in 5OCB, a metastably extended miscible nematic range is observed at low SCLCP concentration upon cooling. Onset of an induced smectic phase occurs upon cooling at 60%wt SCLCP concentration which corresponds to 48:52 molar ratio of mesogens. Dielectric spectra of these mixtures over a wide concentration range exhibit two distinct regimes of relaxation behavior reflecting the crossover from dilute and semidilute to concentrated regime. Rheological behavior of a metallo-supramolecular gel with thixotropic feature is explored to understand the viscoelastic behaviors of self-assembling networks consisting of "living polymers". A well-defined yield point and non-linear viscoelasticity at small strain are probed via the controlled-stress and controlled-strain measurements, respectively. The self-assembled network is readily presheared into a Newtonian sol and displays a three-stage kinetic recovery process, closely associated with the metal ion-ligand binding kinetics and related phase behaviors. Finally, we investigate the viscoelastic properties of a novel colloidal gel in which macrocycles self-assemble into interconnected self-organized clusters. A series of rheological experiments are combined to reveal the shear responsive nature as well as linear and nonlinear viscoelasticity of this gel. Certain features of observed viscoelastic properties demonstrate the characteristics of the behavior of colloidal gels which show slow glassy dynamics. The negative temperature dependence of the storage modulus at low frequency suggests that enthalpic contributions to elasticity need to be considered, presumably due to internal energy changes upon deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyB..538...74R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyB..538...74R"><span>A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Radwan, Ahmed F.; Sobhy, Mohammed</p> <p>2018-06-01</p> <p>This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JSV...300..709E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JSV...300..709E"><span>Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eshmatov, B. Kh.</p> <p>2007-03-01</p> <p>This paper describes the analyses of the nonlinear vibrations and dynamic stability of viscoelastic orthotropic plates. The models are based on the Kirchhoff-Love (K.L.) hypothesis and Reissner-Mindlin (R.M.) generalized theory (with the incorporation of shear deformation and rotatory inertia) in geometrically nonlinear statements. It provides justification for the choice of the weakly singular Koltunov-Rzhanitsyn type kernel, with three rheological parameters. In addition, the implication of each relaxation kernel parameter has been studied. To solve problems of viscoelastic systems with weakly singular kernels of relaxation, a numerical method has been used, based on quadrature formulae. With a combination of the Bubnov-Galerkin and the presented method, problems of nonlinear vibrations and dynamic stability in viscoelastic orthotropic rectangular plates have been solved, according to the K.L. and R.M. hypotheses. A comparison of the results obtained via these theories is also presented. In all problems, the convergence of the Bubnov-Galerkin method has been investigated. The implications of material viscoelasticity on vibration and dynamic stability are presented graphically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20483330','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20483330"><span>A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em</p> <p>2010-05-19</p> <p>Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2872218','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2872218"><span>A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em</p> <p>2010-01-01</p> <p>Abstract Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. PMID:20483330</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT........48F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT........48F"><span>A theoretical and experimental technique to measure fracture properties in viscoelastic solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Freitas, Felipe Araujo Colares De</p> <p></p> <p>Prediction of crack growth in engineering structures is necessary for better analysis and design. However, this prediction becomes quite complex for certain materials in which the fracture behavior is both rate and path dependent. Asphaltic materials used in pavements have that intrinsic complexity in their behavior. A lot of research effort has been devoted to better understanding viscoelastic behavior and fracture in such materials. This dissertation presents a further refinement of an experimental test setup, which is significantly different from standard testing protocols, to measure viscoelastic and fracture properties of nonlinear viscoelastic solids, such as asphaltic materials. The results presented herein are primarily for experiments with asphalt, but the test procedure can be used for other viscoelastic materials as well. Even though the test is designed as a fracture test, experiments on the investigated materials have uncovered very complex phenomena prior to fracture. Viscoelasticity and micromechanics are used to explain some of the physical phenomena observed in the tests. The material behavior prior to fracture includes both viscoelastic behavior and a necking effect, which is further discussed in the appendix of the present study. The dissertation outlines a theoretical model for the prediction of tractions ahead of the crack tip. The major contribution herein lies in the development of the experimental procedure for evaluating the material parameters necessary for deploying the model in the prediction of ductile crack growth. Finally, predictions of crack growth in a double cantilever beam specimens and asphalt concrete samples are presented in order to demonstrate the power of this approach for predicting crack growth in viscoelastic media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2684675','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2684675"><span>TEMPERATURE-DEPENDENT VISCOELASTIC PROPERTIES OF THE HUMAN SUPRASPINATUS TENDON</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, Chun-Yuh; Wang, Vincent M.; Flatow, Evan L.; Mow, Van C.</p> <p>2009-01-01</p> <p>Temperature effects on the viscoelastic properties of the human supraspinatus tendon were investigated using static stress-relaxation experiments and Quasi-Linear Viscoelastic (QLV) theory. Twelve supraspinatus tendons were randomly assigned to one of two test groups for tensile testing using the following sequence of temperatures: (1) 37°C, 27°C, and 17°C (Group I, n=6), or (2) 42°C, 32°C, and 22°C (Group II, n=6). QLV parameter C was found to increase at elevated temperatures, suggesting greater viscous mechanical behavior at higher temperatures. Elastic parameters A and B showed no significant difference among the six temperatures studied, implying that the viscoelastic stress response of the supraspinatus tendon is not sensitive to temperature over shorter testing durations. Using regression analysis, an exponential relationship between parameter C and test temperature was implemented into QLV theory to model temperature-dependent viscoelastic behavior. This modified approach facilitates the theoretical determination of the viscoelastic behavior of tendons at arbitrary temperatures. PMID:19159888</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12646844','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12646844"><span>Viscoelastic properties of rabbit vocal folds after augmentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hertegård, Stellan; Dahlqvist, Ake; Laurent, Claude; Borzacchiello, Assunta; Ambrosio, Luigi</p> <p>2003-03-01</p> <p>Vocal fold function is closely related to tissue viscoelasticity. Augmentation substances may alter the viscoelastic properties of vocal fold tissues and hence their vibratory capacity. We sought to investigate the viscoelastic properties of rabbit vocal folds in vitro after injections of various augmentation substances. Polytetrafluoroethylene (Teflon), cross-linked collagen (Zyplast), and cross-linked hyaluronan, hylan b gel (Hylaform) were injected into the lamina propria and the thyroarytenoid muscle of rabbit vocal folds. Dynamic viscosity of the injected vocal fold as a function of frequency was measured with a Bohlin parallel-plate rheometer during small-amplitude oscillation. All injected vocal folds showed a decreasing dynamic viscosity with increasing frequency. Vocal fold samples injected with hylan b gel showed the lowest dynamic viscosity, quite close to noninjected control samples. Vocal folds injected with polytetrafluoroethylene showed the highest dynamic viscosity followed by the collagen samples. The data indicated that hylan b gel in short-term renders the most natural viscoelastic properties to the vocal fold among the substances tested. This is of importance to restore/preserve the vibratory capacity of the vocal folds when glottal insufficiency is treated with injections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25460411','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25460411"><span>Quantitative diagnostics of soft tissue through viscoelastic characterization using time-based instrumented palpation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Palacio-Torralba, Javier; Hammer, Steven; Good, Daniel W; Alan McNeill, S; Stewart, Grant D; Reuben, Robert L; Chen, Yuhang</p> <p>2015-01-01</p> <p>Although palpation has been successfully employed for centuries to assess soft tissue quality, it is a subjective test, and is therefore qualitative and depends on the experience of the practitioner. To reproduce what the medical practitioner feels needs more than a simple quasi-static stiffness measurement. This paper assesses the capacity of dynamic mechanical palpation to measure the changes in viscoelastic properties that soft tissue can exhibit under certain pathological conditions. A diagnostic framework is proposed to measure elastic and viscous behaviors simultaneously using a reduced set of viscoelastic parameters, giving a reliable index for quantitative assessment of tissue quality. The approach is illustrated on prostate models reconstructed from prostate MRI scans. The examples show that the change in viscoelastic time constant between healthy and cancerous tissue is a key index for quantitative diagnostics using point probing. The method is not limited to any particular tissue or material and is therefore useful for tissue where defining a unique time constant is not trivial. The proposed framework of quantitative assessment could become a useful tool in clinical diagnostics for soft tissue. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MTDM...19..209S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MTDM...19..209S"><span>Fractional calculus model of articular cartilage based on experimental stress-relaxation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smyth, P. A.; Green, I.</p> <p>2015-05-01</p> <p>Articular cartilage is a unique substance that protects joints from damage and wear. Many decades of research have led to detailed biphasic and triphasic models for the intricate structure and behavior of cartilage. However, the models contain many assumptions on boundary conditions, permeability, viscosity, model size, loading, etc., that complicate the description of cartilage. For impact studies or biomimetic applications, cartilage can be studied phenomenologically to reduce modeling complexity. This work reports experimental results on the stress-relaxation of equine articular cartilage in unconfined loading. The response is described by a fractional calculus viscoelastic model, which gives storage and loss moduli as functions of frequency, rendering multiple advantages: (1) the fractional calculus model is robust, meaning that fewer constants are needed to accurately capture a wide spectrum of viscoelastic behavior compared to other viscoelastic models (e.g., Prony series), (2) in the special case where the fractional derivative is 1/2, it is shown that there is a straightforward time-domain representation, (3) the eigenvalue problem is simplified in subsequent dynamic studies, and (4) cartilage stress-relaxation can be described with as few as three constants, giving an advantage for large-scale dynamic studies that account for joint motion or impact. Moreover, the resulting storage and loss moduli can quantify healthy, damaged, or cultured cartilage, as well as artificial joints. The proposed characterization is suited for high-level analysis of multiphase materials, where the separate contribution of each phase is not desired. Potential uses of this analysis include biomimetic dampers and bearings, or artificial joints where the effective stiffness and damping are fundamental parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015KARJ...27..241K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015KARJ...27..241K"><span>Rheological investigation of body cream and body lotion in actual application conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwak, Min-Sun; Ahn, Hye-Jin; Song, Ki-Won</p> <p>2015-08-01</p> <p>The objective of the present study is to systematically evaluate and compare the rheological behaviors of body cream and body lotion in actual usage situations. Using a strain-controlled rheometer, the steady shear flow properties of commercially available body cream and body lotion were measured over a wide range of shear rates, and the linear viscoelastic properties of these two materials in small amplitude oscillatory shear flow fields were measured over a broad range of angular frequencies. The temperature dependency of the linear viscoelastic behaviors was additionally investigated over a temperature range most relevant to usual human life. The main findings obtained from this study are summarized as follows: (1) Body cream and body lotion exhibit a finite magnitude of yield stress. This feature is directly related to the primary (initial) skin feel that consumers usually experience during actual usage. (2) Body cream and body lotion exhibit a pronounced shear-thinning behavior. This feature is closely connected with the spreadability when cosmetics are applied onto the human skin. (3) The linear viscoelastic behaviors of body cream and body lotion are dominated by an elastic nature. These solid-like properties become a criterion to assess the selfstorage stability of cosmetic products. (4) A modified form of the Cox-Merz rule provides a good ability to predict the relationship between steady shear flow and dynamic viscoelastic properties for body cream and body lotion. (5) The storage modulus and loss modulus of body cream show a qualitatively similar tendency to gradually decrease with an increase in temperature. In the case of body lotion, with an increase in temperature, the storage modulus is progressively decreased while the loss modulus is slightly increased and then decreased. This information gives us a criterion to judge how the characteristics of cosmetic products are changed by the usual human environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896c0003D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896c0003D"><span>On the relevance of modeling viscoelastic bending behavior in finite element forming simulation of continuously fiber reinforced thermoplastics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dörr, Dominik; Schirmaier, Fabian J.; Henning, Frank; Kärger, Luise</p> <p>2017-10-01</p> <p>Finite Element (FE) forming simulation offers the possibility of a detailed analysis of the deformation behavior of multilayered thermoplastic blanks during forming, considering material behavior and process conditions. Rate-dependent bending behavior is a material characteristic, which is so far not considered in FE forming simulation of pre-impregnated, continuously fiber reinforced polymers (CFRPs). Therefore, an approach for modeling viscoelastic bending behavior in FE composite forming simulation is presented in this work. The presented approach accounts for the distinct rate-dependent bending behavior of e.g. thermoplastic CFRPs at process conditions. The approach is based on a Voigt-Kelvin (VK) and a generalized Maxwell (GM) approach, implemented within a FE forming simulation framework implemented in several user-subroutines of the commercially available FE solver Abaqus. The VK, GM, as well as purely elastic bending modeling approaches are parameterized according to dynamic bending characterization results for a PA6-CF UD-tape. It is found that only the GM approach is capable to represent the bending deformation characteristic for all of the considered bending deformation rates. The parameterized bending modeling approaches are applied to a hemisphere test and to a generic geometry. A comparison of the forming simulation results of the generic geometry to experimental tests show a good agreement between simulation and experiments. Furthermore, the simulation results reveal that especially a correct modeling of the initial bending stiffness is relevant for the prediction of wrinkling behavior, as a similar onset of wrinkles is observed for the GM, the VK and an elastic approach, fitted to the stiffness observed in the dynamic rheometer test for low curvatures. Hence, characterization and modeling of rate-dependent bending behavior is crucial for FE forming simulation of thermoplastic CFRPs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..MARH20001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..MARH20001A"><span>Swimming & Propulsion in Viscoelastic Media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arratia, Paulo</p> <p>2012-02-01</p> <p>Many microorganisms have evolved within complex fluids, which include soil, intestinal fluid, and mucus. The material properties or rheology of such fluids can strongly affect an organism's swimming behavior. A major challenge is to understand the mechanism of propulsion in media that exhibit both solid- and fluid-like behavior, such as viscoelastic fluids. In this talk, we present experiments that explore the swimming behavior of biological organisms and artificial particles in viscoelastic media. The organism is the nematode Caenorhabditis elegans, a roundworm widely used for biological research that swims by generating traveling waves along its body. Overall, we find that fluid elasticity hinders self-propulsion compared to Newtonian fluids due to the enhanced resistance to flow near hyperbolic points for viscoelastic fluids. As fluid elasticity increases, the nematode's propulsion speed decreases. These results are consistent with recent theoretical models for undulating sheets and cylinders. In order to gain further understanding on propulsion in viscoelastic media, we perform experiments with simple reciprocal artificial `swimmers' (magnetic dumbbell particles) in polymeric and micellar solutions. We find that self-propulsion is possible in viscoelastic media even if the motion is reciprocal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatPh..13..771R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatPh..13..771R"><span>High-frequency microrheology reveals cytoskeleton dynamics in living cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix</p> <p>2017-08-01</p> <p>Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AcAau.143..255H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AcAau.143..255H"><span>Mechanical properties of multifunctional structure with viscoelastic components based on FVE model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hao, Dong; Zhang, Lin; Yu, Jing; Mao, Daiyong</p> <p>2018-02-01</p> <p>Based on the models of Lion and Kardelky (2004) and Hofer and Lion (2009), a finite viscoelastic (FVE) constitutive model, considering the predeformation-, frequency- and amplitude-dependent properties, has been proposed in our earlier paper [1]. FVE model is applied to investigating the dynamic characteristics of the multifunctional structure with the viscoelastic components. Combing FVE model with the finite element theory, the dynamic model of the multifunctional structure could be obtained. Additionally, the parametric identification and the experimental verification are also given via the frequency-sweep tests. The results show that the computational data agree well with the experimental data. FVE model has made a success of expressing the dynamic characteristics of the viscoelastic materials utilized in the multifunctional structure. The multifunctional structure technology has been verified by in-orbit experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23684353','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23684353"><span>Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richard, F; Villars, M; Thibaud, S</p> <p>2013-08-01</p> <p>The viscoelastic behavior of articular cartilage changes with progression of osteoarthritis. The objective of this study is to quantify this progression and to propose a viscoelastic model of articular cartilage taking into account the degree of osteoarthritis that which be easily used in predictive numerical simulations of the hip joint behavior. To quantify the effects of osteoarthritis (OA) on the viscoelastic behavior of human articular cartilage, samples were obtained from the hip arthroplasty due to femoral neck fracture (normal cartilage) or advanced coxarthrosis (OA cartilage). Experimental data were obtained from instrumented indentation tests on unfrozen femoral cartilage collected and studied in the day following the prosthetic hip surgery pose. By using an inverse method coupled with a numerical modeling (FEM) of all experimental data of the indentation tests, the viscoelastic properties of the two states were quantified. Mean values of viscoelastic parameters were significantly lower for OA cartilage than normal (instantaneous and relaxed tension moduli, viscosity coefficient). Based on the results and in the thermodynamic framework, a constitutive viscoelastic model taking into account the degree of osteoarthritis as an internal variable of damage is proposed. The isotropic phenomenological viscoelastic model including degradation provides an accurate prediction of the mechanical response of the normal human cartilage and OA cartilage with advanced coxarthrosis but should be further validated for intermediate degrees of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3f3301D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3f3301D"><span>Viscoelastic fluid-structure interactions between a flexible cylinder and wormlike micelle solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dey, Anita A.; Modarres-Sadeghi, Yahya; Rothstein, Jonathan P.</p> <p>2018-06-01</p> <p>It is well known that when a flexible or flexibly mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable even at infinitesimal Reynolds numbers due to a purely elastic flow instability that can occur at large Weissenberg numbers. Recent work has shown that these elastic flow instabilities can drive the motion of flexible sheets. The fluctuating fluid forces exerted on the structure from the elastic flow instabilities can lead to a coupling between an oscillatory structural motion and the state of stress in the fluid flow. In this paper, we present the results of an investigation into the flow of a viscoelastic wormlike micelle solution past a flexible circular cylinder. The time variation of the flow field and the state of stress in the fluid are shown using a combination of particle image tracking and flow-induced birefringence images. The static and dynamic responses of the flexible cylinder are presented for a range of flow velocities. The nonlinear dynamics of the structural motion is studied to better understand an observed transition from a symmetric to an asymmetric structural deformation and oscillation behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMPSo.111..134M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMPSo.111..134M"><span>Fractional viscoelasticity in fractal and non-fractal media: Theory, experimental validation, and uncertainty analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mashayekhi, Somayeh; Miles, Paul; Hussaini, M. Yousuff; Oates, William S.</p> <p>2018-02-01</p> <p>In this paper, fractional and non-fractional viscoelastic models for elastomeric materials are derived and analyzed in comparison to experimental results. The viscoelastic models are derived by expanding thermodynamic balance equations for both fractal and non-fractal media. The order of the fractional time derivative is shown to strongly affect the accuracy of the viscoelastic constitutive predictions. Model validation uses experimental data describing viscoelasticity of the dielectric elastomer Very High Bond (VHB) 4910. Since these materials are known for their broad applications in smart structures, it is important to characterize and accurately predict their behavior across a large range of time scales. Whereas integer order viscoelastic models can yield reasonable agreement with data, the model parameters often lack robustness in prediction at different deformation rates. Alternatively, fractional order models of viscoelasticity provide an alternative framework to more accurately quantify complex rate-dependent behavior. Prior research that has considered fractional order viscoelasticity lacks experimental validation and contains limited links between viscoelastic theory and fractional order derivatives. To address these issues, we use fractional order operators to experimentally validate fractional and non-fractional viscoelastic models in elastomeric solids using Bayesian uncertainty quantification. The fractional order model is found to be advantageous as predictions are significantly more accurate than integer order viscoelastic models for deformation rates spanning four orders of magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvE..89d2309K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvE..89d2309K"><span>Random walks of colloidal probes in viscoelastic materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, Manas; Mason, Thomas G.</p> <p>2014-04-01</p> <p>To overcome limitations of using a single fixed time step in random walk simulations, such as those that rely on the classic Wiener approach, we have developed an algorithm for exploring random walks based on random temporal steps that are uniformly distributed in logarithmic time. This improvement enables us to generate random-walk trajectories of probe particles that span a highly extended dynamic range in time, thereby facilitating the exploration of probe motion in soft viscoelastic materials. By combining this faster approach with a Maxwell-Voigt model (MVM) of linear viscoelasticity, based on a slowly diffusing harmonically bound Brownian particle, we rapidly create trajectories of spherical probes in soft viscoelastic materials over more than 12 orders of magnitude in time. Appropriate windowing of these trajectories over different time intervals demonstrates that random walk for the MVM is neither self-similar nor self-affine, even if the viscoelastic material is isotropic. We extend this approach to spatially anisotropic viscoelastic materials, using binning to calculate the anisotropic mean square displacements and creep compliances along different orthogonal directions. The elimination of a fixed time step in simulations of random processes, including random walks, opens up interesting possibilities for modeling dynamics and response over a highly extended temporal dynamic range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29083478','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29083478"><span>Steady and dynamic shear rheological behavior of semi dilute Alyssum homolocarpum seed gum solutions: influence of concentration, temperature and heating-cooling rate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak</p> <p>2018-05-01</p> <p>Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AcMSn..34..162L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AcMSn..34..162L"><span>Effect of a viscoelastic target on the impact response of a flat-nosed projectile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Hu; Yang, Jialing; Liu, Hua</p> <p>2018-02-01</p> <p>Taylor impact is a widely used strategy in which a flat-nosed projectile is fired onto a rigid anvil directly to determine the dynamic strength of rod specimens. Nowadays, the rigid anvil is often replaced by an output target bar to ensure the accuracy of measurement via recording strain signals in the output bar. For testing the dynamic strength of low-density materials, a low-impedance target bar, which exhibits viscoelastic characteristics is often employed. In this paper, an extended Taylor model is proposed to improve the idealization of treating the target bar as perfectly rigid material in the classic Taylor model, and the viscoelastic effect of the target bar is incorporated. The viscoelastic target bar is depicted by two elastic springs and one dashpot. Based on the plastic shock wave theory in the flat-nosed projectile associated with the viscoelastic wave analysis in the target bar, the viscoelastic effect of the target bar on the impact response of the flat-nosed projectile is investigated. The finite element simulation is also carried out to verify the theoretical model, and good agreement is found. The present theoretical model is also called the Taylor-cylinder Hopkinson impact, which provides a more accurate way to identify the dynamic material parameters. The dynamic responses of the present model are further compared with previous elastic and rigid target bar models. It is found that the viscoelastic effect of the target bar should be taken into consideration in the Taylor-cylinder Hopkinson impact test for low-impedance materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27618230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27618230"><span>Viscoelastic Properties of Human Tracheal Tissues.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B</p> <p>2017-01-01</p> <p>The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28858648','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28858648"><span>Viscoelastic dynamic arterial response.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Charalambous, Haralambia P; Roussis, Panayiotis C; Giannakopoulos, Antonios E</p> <p>2017-10-01</p> <p>Arteries undergo large deformations under applied intraluminal pressure and may exhibit small hysteresis due to creep or relaxation process. The mechanical response of arteries depends, among others, on their topology along the arterial tree. Viscoelasticity of arterial tissues, which is the topic investigated in this study, is mainly a characteristic mechanical response of arteries that are located away from the heart and have increased smooth muscle cells content. The arterial wall viscosity is simulated by adopting a generalized Maxwell model and the method of internal variables, as proposed by Bonet and Holzapfel et al. The total stresses consist of elastic long-term stresses and viscoelastic stresses, requiring an iterative procedure for their calculation. The cross-section of the artery is modeled as a circular ring, consisting of a single homogenized layer, under a time-varying blood pressure. Two different loading approximations for the aortic pressure vs time are considered. A novel numerical method is developed in order to solve the controlling integro-differential equation. A large number of numerical investigations are performed and typical response time-profiles are presented in pictorial form. Results suggest that the viscoelastic arterial response is mainly affected by the ratio of the relaxation time to the characteristic time of the response and by the pressure-time approximation. Numerical examples, based on data available in the literature, are conducted. The investigation presented in this study reveals the effect of each material parameter on the viscoelastic arterial response. Thus, a better understanding of the behavior of viscoelastic arteries is achieved. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4743766','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4743766"><span>Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, G. -J.; Karimi, A.</p> <p>2015-01-01</p> <p>We numerically study the effect of solid boundaries on the swimming behavior of a motile microorganism in viscoelastic media. Understanding the swimmer-wall hydrodynamic interactions is crucial to elucidate the adhesion of bacterial cells to nearby substrates which is precursor to the formation of the microbial biofilms. The microorganism is simulated using a squirmer model that captures the major swimming mechanisms of potential, extensile, and contractile types of swimmers, while neglecting the biological complexities. A Giesekus constitutive equation is utilized to describe both viscoelasticity and shear-thinning behavior of the background fluid. We found that the viscoelasticity strongly affects the near-wall motion of a squirmer by generating an opposing polymeric torque which impedes the rotation of the swimmer away from the wall. In particular, the time a neutral squirmer spends at the close proximity of the wall is shown to increase with polymer relaxation time and reaches a maximum at Weissenberg number of unity. The shear-thinning effect is found to weaken the solvent stress and therefore, increases the swimmer-wall contact time. For a puller swimmer, the polymer stretching mainly occurs around its lateral sides, leading to reduced elastic resistance against its locomotion. The neutral and puller swimmers eventually escape the wall attraction effect due to a releasing force generated by the Newtonian viscous stress. In contrast, the pusher is found to be perpetually trapped near the wall as a result of the formation of a highly stretched region behind its body. It is shown that the shear-thinning property of the fluid weakens the wall-trapping effect for the pusher squirmer. PMID:26855446</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4658031','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4658031"><span>Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jóźwiak, Bertrand; Orczykowska, Magdalena; Dziubiński, Marek</p> <p>2015-01-01</p> <p>The paper proposes a fractional generalization of the Maxwell and Kelvin-Voigt rheological models for a description of dynamic behavior of biopolymer materials. It was found that the rheological models of Maxwell-type do not work in the case of modeling of viscoelastic solids, and the model which significantly better describes the nature of changes in rheological properties of such media is the modified fractional Kelvin-Voigt model with two built-in springpots (MFKVM2). The proposed model was used to describe the experimental data from the oscillatory and creep tests of 3% (w/v) kuzu starch pastes, and to determine the values of their rheological parameters as a function of pasting time. These parameters provide a lot of additional information about structure and viscoelastic properties of the medium in comparison to the classical analysis of dynamic curves G’ and G” and shear creep compliance J(t). It allowed for a comprehensive description of a wide range of properties of kuzu starch pastes, depending on the conditions of pasting process. PMID:26599756</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26071732','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26071732"><span>Inertial and viscoelastic forces on rigid colloids in microfluidic channels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash</p> <p>2015-06-14</p> <p>We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..MAR.P1244N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..MAR.P1244N"><span>Viscoelastic properties of levan polysaccharides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noll, Kenneth; Rende, Deniz; Ozisik, Rahmi; Toksoy-Oner, Ebru</p> <p>2014-03-01</p> <p>Levan is a naturally occurring polysaccharide that is composed of β-D-fructofuranose units with β(2-6) linkages between fructose rings. It is synthesized by the action of a secreted levansucrase (EC 2.4.1.10) that converts sucrose into the levan externally (exopolysaccharide). Levan is a homopolysaccharide that is non-toxic, water soluble,, and has anti-tumor activity and low immunological response. Therefore, levan presents great potential to be used as a novel functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Despite these favorable properties, levan has a moderately low mechanical properties and poor film forming capability. In the current study, the agglomeration behavior of levan in water and in saline solutions was investigated at 298 and 310 K by dynamic light scattering and transmission electron microscopy (TEM). The viscoelastic properties of neat and oxidized levan films were studied via nanoindentation experiments in the quasi-static and dynamic modes The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and TUBITAK 111M232.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006ApCM...13..305M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006ApCM...13..305M"><span>Reduction of Noise from Disc Brake Systems Using Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Masoomi, Mohsen; Katbab, Ali Asghar; Nazockdast, Hossein</p> <p>2006-09-01</p> <p>Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E‧) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26894883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26894883"><span>Tensiometric and Phase Domain Behavior of Lung Surfactant on Mucus-like Viscoelastic Hydrogels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schenck, Daniel M; Fiegel, Jennifer</p> <p>2016-03-09</p> <p>Lung surfactant has been observed at all surfaces of the airway lining fluids and is an important contributor to normal lung function. In the conducting airways, the surfactant film lies atop a viscoelastic mucus gel. In this work, we report on the characterization of the tensiometric and phase domain behavior of lung surfactant at the air-liquid interface of mucus-like viscoelastic gels. Poly(acrylic acid) hydrogels were formulated to serve as a model mucus with bulk rheological properties that matched those of tracheobronchial mucus secretions. Infasurf (Calfactant), a commercially available pulmonary surfactant derived from calf lung extract, was spread onto the hydrogel surface. The surface tension lowering ability and relaxation of Infasurf films on the hydrogels was quantified and compared to Infasurf behavior on an aqueous subphase. Infasurf phase domains during surface compression were characterized by fluorescence microscopy and phase shifting interferometry. We observed that increasing the bulk viscoelastic properties of the model mucus hydrogels reduced the ability of Infasurf films to lower surface tension and inhibited film relaxation. A shift in the formation of Infasurf condensed phase domains from smaller, more spherical domains to large, agglomerated, multilayer structures was observed with increasing viscoelastic properties of the subphase. These studies demonstrate that the surface behavior of lung surfactant on viscoelastic surfaces, such as those found in the conducting airways, differs significantly from aqueous, surfactant-laden systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97c2610I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97c2610I"><span>Magnetic susceptibility, nanorheology, and magnetoviscosity of magnetic nanoparticles in viscoelastic environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ilg, Patrick; Evangelopoulos, Apostolos E. A. S.</p> <p>2018-03-01</p> <p>While magnetic nanoparticles suspended in Newtonian solvents (ferrofluids) have been intensively studied in recent years, the effects of viscoelasticity of the surrounding medium on the nanoparticle dynamics are much less understood. Here we investigate a mesoscopic model for the orientational dynamics of isolated magnetic nanoparticles subject to external fields, viscous and viscoelastic friction, as well as the corresponding random torques. We solve the model analytically in the overdamped limit for weak viscoelasticity. By comparison to Brownian dynamics simulations we establish the limits of validity of the analytical solution. We find that viscoelasticity not only slows down the magnetization relaxation, shifts the peak of the imaginary magnetic susceptibility χ″ to lower frequencies, and increases the magnetoviscosity but also leads to nonexponential relaxation and a broadening of χ″. The model we study also allows us to test a recent proposal for using magnetic susceptibility measurements as a nanorheological tool using a variant of the Germant-DiMarzio-Bishop relation. We find for the present model and certain parameter ranges that the relation of the magnetic susceptibility to the shear modulus is satisfied to a good approximation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24532003','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24532003"><span>Design and development of a novel viscoelastic ankle-foot prosthesis based on the human ankle biomechanics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Safaeepour, Zahra; Esteki, Ali; Tabatabai Ghomshe, Farhad; Mousavai, Mohammad E</p> <p>2014-10-01</p> <p>In the present study, a new approach was applied to design and develop a viscoelastic ankle-foot prosthesis. The aim was to replicate the intact ankle moment-angle loop in the normal walking speed. The moment-angle loop of intact ankle was divided into four parts, and the appropriate models including two viscoelastic units of spring-damper mechanism were considered to replicate the passive ankle dynamics. The developed prototype was then tested on a healthy subject with the amputee gait simulator. The result showed that prosthetic ankle moment-angle loop was similar to that of intact ankle with the distinct four periods. The findings suggest that the prototype successfully provided the human ankle passive dynamics. Therefore, the viscoelastic units could imitate the four periods of a normal gait. The novel viscoelastic foot prosthesis could provide natural ankle dynamics in a gait cycle. Applying simple but biomechanical approach is suggested in conception of new designs for prosthetic ankle-foot mechanisms. © The International Society for Prosthetics and Orthotics 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28642920','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28642920"><span>Elastic, viscoelastic and viscoplastic contributions to compliance during deformation under stress in prosthodontic temporization materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vaidyanathan, Tritala K; Vaidyanathan, Jayalakshmi; Arghavani, David</p> <p>2016-12-01</p> <p>Purpose: The goal of this investigation was to characterize the compliance properties in selected polymers used for temporary (provisional crown and bridge) applications. Method: Polymethyl methacrylate (PMMA)- and polyethyl methacrylate (PEMA)-based JET and TRIM II were investigated along with two bisacryl composite resins (LUXATEMP and PROTEMP 3 GARANT). Rectangular samples of the resins were subjected to creep-recovery tests in a dynamic mechanical analyzer at and near the oral temperature (27 °C, 37 °C and 47 °C). The instantaneous (elastic), and time-dependent viscoelastic, and viscoplastic compliance profiles of the materials were determined and analyzed as a function of materials and temperature. Results: Highly significant ( p = 0.0001) differences among means of elastic, viscoelastic and viscoplastic compliance values were found as a function of materials. TRIM II showed an order of magnitude higher viscoplastic deformation than the other three materials (LUXATEMP, PROTEMP 3 GARANT and JET). Conclusions: The results indicate that PEMA is susceptible to significantly greater elastic, viscoelastic, and more importantly to viscoplastic compliant behavior compared with bisacryl composite and PMMA provisional crown and bridge materials. This indicates high-dimensional instability and poor stiffness and resiliency in PEMA appliances vis-à-vis those of PMMA and bisacryl composites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27018832','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27018832"><span>Viscoelastic properties of a spinal posterior dynamic stabilisation device.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lawless, Bernard M; Barnes, Spencer C; Espino, Daniel M; Shepherd, Duncan E T</p> <p>2016-06-01</p> <p>The purpose of this study was to quantify the frequency dependent viscoelastic properties of two types of spinal posterior dynamic stabilisation devices. In air at 37°C, the viscoelastic properties of six BDyn 1 level, six BDyn 2 level posterior dynamic stabilisation devices (S14 Implants, Pessac, France) and its elastomeric components (polycarbonate urethane and silicone) were measured using Dynamic Mechanical Analysis. The viscoelastic properties were measured over the frequency range 0.01-30Hz. The BDyn devices and its components were viscoelastic throughout the frequency range tested. The mean storage stiffness and mean loss stiffness of the BDyn 1 level device, BDyn 2 level device, silicone component and polycarbonate urethane component all presented a logarithmic relationship with respect to frequency. The storage stiffness of the BDyn 1 level device ranged from 95.56N/mm to 119.29N/mm, while the BDyn 2 level storage stiffness ranged from 39.41N/mm to 42.82N/mm. BDyn 1 level device and BDyn 2 level device loss stiffness ranged from 10.72N/mm to 23.42N/mm and 4.26N/mm to 9.57N/mm, respectively. No resonant frequencies were recorded for the devices or its components. The elastic property of BDyn 1 level device is influenced by the PCU and silicone components, in the physiological frequency range. The viscoelastic properties calculated in this study may be compared to spinal devices and spinal structures. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2756063','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2756063"><span>Reduced Nucleus Pulposus Glycosaminoglycan Content Alters Intervertebral Disc Dynamic Viscoelastic Mechanics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Boxberger, John I.; Orlansky, Amy S.; Sen, Sounok; Elliott, Dawn M.</p> <p>2009-01-01</p> <p>The intervertebral disc functions over a range of dynamic loading regimes including axial loads applied across a spectrum of frequencies at varying compressive loads. Biochemical changes occurring in early degeneration, including reduced nucleus pulposus glycosaminoglycan content, may alter disc mechanical behavior and thus may contribute to the progression of degeneration. The objective of this study was to determine disc dynamic viscoelastic properties under several equilibrium loads and loading frequencies, and further, to determine how reduced nucleus glycosaminglycan content alters dynamic mechanics. We hypothesized (1) that dynamic stiffness would be elevated with increasing equilibrium load and increasing frequency, (2) that the disc would behave more elastically at higher frequencies, and finally, (3) that dynamic stiffness would be reduced at low equilibrium loads under all frequencies due to nucleus glycosaminoglycan loss. We mechanically tested control and chondroitinase-ABC injected rat lumbar motion segments at several equilibrium loads using oscillatory loading at frequencies ranging from 0.05 to 5 Hz. The rat lumbar disc behaved non-linearly with higher dynamic stiffness at elevated compressive loads irrespective of frequency. Phase angle was not affected by equilibrium load, although it decreased as frequency was increased. Reduced glycosaminoglycan decreased dynamic stiffness at low loads but not at high equilibrium loads and led to increased phase angle at all loads and frequencies. The findings of this study demonstrate the effect of equilibrium load and loading frequencies on dynamic disc mechanics and indicate possible mechanical mechanisms through which disc degeneration can progress. PMID:19539936</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17935728','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17935728"><span>Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, H M; Lee, W M</p> <p>2008-01-15</p> <p>Many biofluids such as blood and DNA solutions are viscoelastic and exhibit extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. However, the governing equations for viscoelastic flows are not easily solvable, especially for electroosmotic flows where the streamwise velocity varies rapidly from zero at the wall to a nearly uniform velocity at the outside of the very thin electric double layer. In the present investigation, we have devised a simple method to find the volumetric flow rate of viscoelastic electroosmotic flows through microchannels. It is based on the concept of the Helmholtz-Smoluchowski velocity which is widely adopted in the electroosmotic flows of Newtonian fluids. It is shown that the Helmholtz-Smoluchowski velocity for viscoelastic fluids can be found by solving a simple cubic algebraic equation. The volumetric flow rate obtained using this Helmholtz-Smoluchowski velocity is found to be almost the same as that obtained by solving the governing partial differential equations for various viscoelastic fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28085484','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28085484"><span>Droplet impact on soft viscoelastic surfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Longquan; Bonaccurso, Elmar; Deng, Peigang; Zhang, Haibo</p> <p>2016-12-01</p> <p>In this work, we experimentally investigate the impact of water droplets onto soft viscoelastic surfaces with a wide range of impact velocities. Several impact phenomena, which depend on the dynamic interaction between the droplets and viscoelastic surfaces, have been identified and analyzed. At low We, complete rebound is observed when the impact velocity is between a lower and an upper threshold, beyond which droplets are deposited on the surface after impact. At intermediate We, entrapment of an air bubble inside the impinging droplets is found on soft surfaces, while a bubble entrapment on the surface is observed on rigid surfaces. At high We, partial rebound is only identified on the most rigid surface at We≳92. Rebounding droplets behave similarly to elastic drops rebounding on superhydrophobic surfaces and the impact process is independent of surface viscoelasticity. Further, surface viscoelasticity does not influence drop spreading after impact-as the surfaces behave like rigid surfaces-but it does affect drop recoiling. Also, the postimpact drop oscillation on soft viscoelastic surfaces is influenced by dynamic wettability of these surfaces. Comparing sessile drop oscillation with a damped harmonic oscillator allows us to conclude that surface viscoelasticity affects the damping coefficient and liquid surface tension sets the spring constant of the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDH27003W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDH27003W"><span>Spatial-temporal dynamics of Newtonian and viscoelastic turbulence in channel flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Sung-Ning; Shekar, Ashwin; Graham, Michael</p> <p>2016-11-01</p> <p>Introducing a trace amount of polymer into liquid turbulent flows can result in substantial reduction of friction drag. This phenomenon has been widely used in fluid transport; however, the mechanism is not well understood. Past studies have found that in minimal domain turbulent simulations, there areoccasional time periods when flow exhibits features such as weaker vortices, lower friction drag and larger log-law slope; these have been denoted as "hibernatingturbulence". Here we address the question of whether similar behavior arises spatio-temporally in extended domains, focusing on turbulence at friction Reynolds numbers near transition and Weissenberg numbers resulting in low-medium drag reduction. By using image analysis and conditional sampling tools, we identify the hibernating states in extended domains and show that they display striking similarity as those in minimal domains. The hibernating states among different Weissenberg numbers exhibit similar flow statistics, suggesting they are unaltered by low to medium viscoelasticity. In addition, the polymer is much less stretched during hibernation. Finally, these hibernating states vanish as Reynolds number increases. However, they reoccur and gradually become dominant with increasing viscoelasticity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5824668','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5824668"><span>Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sousa, P. C.; Pinho, F. T.</p> <p>2018-01-01</p> <p>We experimentally investigate the dynamics of viscoelastic fluid flows in cross-slot microgeometries under creeping flow conditions. We focus on the unsteady flow regime observed at high Weissenberg numbers (Wi) with the purpose of understanding the underlying flow signature of elastic turbulence. The effects of the device aspect ratio and fluid rheology on the unsteady flow state are investigated. Visualization of the flow patterns and time-resolved micro-particle image velocimetry were carried out to study the fluid flow behavior for a wide range of Weissenberg numbers. A periodic flow behavior is observed at low Weissenberg numbers followed by a more complex dynamics as Wi increases, eventually leading to the onset of elastic turbulence for very high Weissenberg numbers. PMID:29376533</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApCM...24...23N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApCM...24...23N"><span>A New Approach for Quantitative Evaluation of Ultrasonic Wave Attenuation in Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ni, Qing-Qing; Li, Ran; Xia, Hong</p> <p>2017-02-01</p> <p>When ultrasonic waves propagate in composite materials, the propagation behaviors result from the combination effects of various factors, such as material anisotropy and viscoelastic property, internal microstructure and defects, incident wave characteristics and interface condition between composite components. It is essential to make it clear how these factors affect the ultrasonic wave propagation and attenuation characteristics, and how they mutually interact on each other. In the present paper, based on a newly developed time-domain finite element analysis code, PZflex, a unique approach for clarifying the detailed influence mechanism of aforementioned factors is proposed, in which each attenuation component can be extracted from the overall attenuation and analyzed respectively. By taking into consideration the interrelation between each individual attenuation component, the variation behaviors of each component and internal dynamic stress distribution against material anisotropy and matrix viscosity are separately and quantitatively evaluated. From the detailed analysis results of each attenuation component, the energy dissipation at interface is a major component in ultrasonic wave attenuation characteristics, which can provide a maximum contribution rate of 68.2 % to the overall attenuation, and each attenuation component is closely related to the material anisotropy and viscoelasticity. The results clarify the correlation between ultrasonic wave propagation characteristics and material viscoelastic properties, which will be useful in the further development of ultrasonic technology in defect detection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008853','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008853"><span>Viscoelastic Response of the Titanium Alloy Ti-6-4: Experimental Identification of Time- and Rate-Dependent Reversible and Irreversible Deformation Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lerch, Bradley A.; Arnold, Steven M.</p> <p>2014-01-01</p> <p>In support of an effort on damage prognosis, the viscoelastic behavior of Ti-6Al-4V (Ti-6-4) was investigated. This report documents the experimental characterization of this titanium alloy. Various uniaxial tests were conducted to low load levels over the temperature range of 20 to 538 C to define tensile, creep, and relaxation behavior. A range of strain rates (6x10(exp -7) to 0.001/s) were used to document rate effects. All tests were designed to include an unloading portion, followed by a hold time at temperature to allow recovery to occur either at zero stress or strain. The titanium alloy was found to exhibit viscoelastic behavior below the "yield" point and over the entire range of temperatures (although at lower temperatures the magnitude is extremely small). These experimental data will be used for future characterization of a viscoelastic model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18584093','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18584093"><span>Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, H M; Lee, W M</p> <p>2008-07-01</p> <p>Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960028587','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960028587"><span>A viscoelastic higher-order beam finite element</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Arthur R.; Tressler, Alexander</p> <p>1996-01-01</p> <p>A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29793157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29793157"><span>Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Babaei, Behzad; Velasquez-Mao, A J; Pryse, Kenneth M; McConnaughey, William B; Elson, Elliot L; Genin, Guy M</p> <p>2018-05-21</p> <p>Characterizing how a tissue's constituents give rise to its viscoelasticity is important for uncovering how hidden timescales underlie multiscale biomechanics. These constituents are viscoelastic in nature, and their mechanics must typically be assessed from the uniaxial behavior of a tissue. Confounding the challenge is that tissue viscoelasticity is typically associated with nonlinear elastic responses. Here, we experimentally assessed how fibroblasts and extracellular matrix (ECM) within engineered tissue constructs give rise to the nonlinear viscoelastic responses of a tissue. We applied a constant strain rate, "triangular-wave" loading and interpreted responses using the Fung quasi-linear viscoelastic (QLV) material model. Although the Fung QLV model has several well-known weaknesses, it was well suited to the behaviors of the tissue constructs, cells, and ECM tested. Cells showed relatively high damping over certain loading frequency ranges. Analysis revealed that, even in cases where the Fung QLV model provided an excellent fit to data, the the time constant derived from the model was not in general a material parameter. Results have implications for design of protocols for the mechanical characterization of biological materials, and for the mechanobiology of cells within viscoelastic tissues. Copyright © 2018. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29495708','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29495708"><span>Design optimization of a viscoelastic dynamic vibration absorber using a modified fixed-points theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wong, W O; Fan, R P; Cheng, F</p> <p>2018-02-01</p> <p>A viscoelastic dynamic vibration absorber (VDVA) is proposed for suppressing infrasonic vibrations of heavy structures because the traditional dynamic vibration absorber equipped with a viscous damper is not effective in suppressing low frequency vibrations. The proposed VDVA has an elastic spring and a viscoelastic damper with frequency dependent modulus and damping properties. The standard fixed-points theory cannot be applied to derive the optimum design parameters of the VDVA because both its stiffness and damping are frequency dependent. A modified fixed-points theory is therefore proposed to solve this problem. H ∞ design optimization of the proposed VDVA have been derived for the minimization of resonant vibration amplitude of a single degree-of-freedom system excited by harmonic forces or due to ground motions. The stiffness and damping of the proposed VDVA can be decoupled such that both of these two properties of the absorber can be tuned independently to their optimal values by following a specified procedure. The proposed VDVA with optimized design is tested numerically using two real commercial viscoelastic damping materials. It is found that the proposed viscoelastic absorber can provide much stronger vibration reduction effect than the conventional VDVA without the elastic spring.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032514','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032514"><span>Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhang, K.; Luo, Y.; Xia, J.; Chen, C.</p> <p>2011-01-01</p> <p>Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P and S waves. ?? 2011 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARH14006T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARH14006T"><span>Viscoelasticity promotes collective swimming of sperm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tung, Chih-Kuan; Harvey, Benedict B.; Fiore, Alyssa G.; Ardon, Florencia; Suarez, Susan S.; Wu, Mingming</p> <p></p> <p>From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm, with sperm orienting in the same direction within each cluster, enabled by the viscoelasticity of the fluid. A long-chain polyacrylamide solution was used as a model viscoelastic fluid such that its rheology can be fine-tuned to mimic that of bovine cervical mucus. In viscoelastic fluid, sperm formed dynamic clusters, and the cluster size increased with elasticity of the polyacrylamide solution. In contrast, sperm swam randomly and individually in Newtonian fluids of similar viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction is facilitated by the elastic component of the fluid. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, this finding highlights the importance of fluid elasticity in biological function. We will discuss what the orientation fluctuation within a cluster reveals about the interaction strength. Supported by NIH Grant 1R01HD070038.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17949102','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17949102"><span>Interfacial rheology of surface-active biopolymers: Acacia senegal gum versus hydrophobically modified starch.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Erni, Philipp; Windhab, Erich J; Gunde, Rok; Graber, Muriel; Pfister, Bruno; Parker, Alan; Fischer, Peter</p> <p>2007-11-01</p> <p>Acacia gum is a hybrid polyelectrolyte containing both protein and polysaccharide subunits. We study the interfacial rheology of its adsorption layers at the oil/water interface and compare it with adsorbed layers of hydrophobically modified starch, which for economic and political reasons is often used as a substitute for Acacia gum in technological applications. Both the shear and the dilatational rheological responses of the interfaces are considered. In dilatational experiments, the viscoelastic response of the starch derivative is just slightly weaker than that for Acacia gum, whereas we found pronounced differences in shear flow: The interfaces covered with the plant gum flow like a rigid, solidlike material with large storage moduli and a linear viscoelastic regime limited to small shear deformations, above which we observe apparent yielding behavior. In contrast, the films formed by hydrophobically modified starch are predominantly viscous, and the shear moduli are only weakly dependent on the deformation. Concerning their most important technological use as emulsion stabilizers, the dynamic interfacial responses imply not only distinct interfacial dynamics but also different stabilizing mechanisms for these two biopolymers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3406245','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3406245"><span>Effects of Dehydration on the Viscoelastic Properties of Vocal Folds in Large Deformations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Miri, Amir K.; Barthelat, François; Mongeau, Luc</p> <p>2012-01-01</p> <p>Summary Dehydration may alter vocal fold viscoelastic properties, which may hamper phonation. The effects of water loss induced by an osmotic-pressure potential on vocal fold tissue viscoelastic properties were investigated. Porcine vocal folds were dehydrated by immersion in a hypertonic solution, and quasi-static and low-frequency dynamic traction tests were performed for elongations of up to 50%. Digital image correlation was used to determine local strains from surface deformations. The elastic modulus and the loss factor were then determined for normal and dehydrated tissues. An eight-chain hyperelastic model was used to describe the observed nonlinear stress-stretch behavior. Contrary to expectations, the mass history indicated that the tissue absorbed water during cyclic extension when submerged in a hypertonic solution. During loading history, the elastic modulus was increased for dehydrated tissues as a function of strain. The response of dehydrated tissues was much less affected when the load was releasing. This calls more attention to the modeling of vocal folds in micromechanics modeling. The internal hysteresis, which is often linked to phonation effort, increased significantly with water loss. The effects of dehydration on the viscoelastic properties of vocal fold tissue were quantified in a systematic way. The results will contribute to a better understanding of the basic biomechanics of voice production and ultimately will help establish objective dehydration and phonotrauma criteria. PMID:22483778</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JSV...262..391D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JSV...262..391D"><span>Flexible polyurethane foam modelling and identification of viscoelastic parameters for automotive seating applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deng, R.; Davies, P.; Bajaj, A. K.</p> <p>2003-05-01</p> <p>A hereditary model and a fractional derivative model for the dynamic properties of flexible polyurethane foams used in automotive seat cushions are presented. Non-linear elastic and linear viscoelastic properties are incorporated into these two models. A polynomial function of compression is used to represent the non-linear elastic behavior. The viscoelastic property is modelled by a hereditary integral with a relaxation kernel consisting of two exponential terms in the hereditary model and by a fractional derivative term in the fractional derivative model. The foam is used as the only viscoelastic component in a foam-mass system undergoing uniaxial compression. One-term harmonic balance solutions are developed to approximate the steady state response of the foam-mass system to the harmonic base excitation. System identification procedures based on the direct non-linear optimization and a sub-optimal method are formulated to estimate the material parameters. The effects of the choice of the cost function, frequency resolution of data and imperfections in experiments are discussed. The system identification procedures are also applied to experimental data from a foam-mass system. The performances of the two models for data at different compression and input excitation levels are compared, and modifications to the structure of the fractional derivative model are briefly explored. The role of the viscous damping term in both types of model is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19483257','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19483257"><span>The analysis of axisymmetric viscoelasticity, time-dependent recovery, and hydration in rat tail intervertebral discs by radial compression test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Leou-Chyr; Hedman, Thomas P; Wang, Shyu-Jye; Huoh, Michael; Chang, Shih-Youeng</p> <p>2009-05-01</p> <p>The goal of this study was to develop a nondestructive radial compression technique and to investigate the viscoelastic behavior of the rat tail disc under repeated radial compression. Rat tail intervertebral disc underwent radial compression relaxation testing and creep testing using a custom-made gravitational creep machine. The axisymmetric viscoelasticity and time-dependent recovery were determined. Different levels of hydration (with or without normal saline spray) were supplied to evaluate the effect of changes in viscoelastic properties. Viscoelasticity was found to be axisymmetric in rat-tail intervertebral discs at four equidistant locations. Complete relaxation recovery was found to take 20 min, whereas creep recovery required 25 min. Hydration was required for obtaining viscoelastic axisymmetry and complete viscoelastic recovery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MTDM...19...87K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MTDM...19...87K"><span>An approach to predict the shape-memory behavior of amorphous polymers from Dynamic Mechanical Analysis (DMA) data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor</p> <p>2015-02-01</p> <p>The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PMB....53.4063H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PMB....53.4063H"><span>Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoyt, Kenneth; Kneezel, Timothy; Castaneda, Benjamin; Parker, Kevin J.</p> <p>2008-08-01</p> <p>A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. In experiments, a viscoelastic model was fit to dispersive shear wave speed sonoelastographic data using nonlinear least-squares techniques to determine frequency-independent shear modulus and viscosity estimates. Shear modulus estimates derived using the viscoelastic model were in agreement with that obtained by mechanical testing on phantom samples. Preliminary sonoelastographic data acquired in healthy human skeletal muscles confirm that high-quality quantitative elasticity data can be acquired in vivo. Studies on relaxed muscle indicate discernible differences in both shear modulus and viscosity estimates between different skeletal muscle groups. Investigations into the dynamic viscoelastic properties of (healthy) human skeletal muscles revealed that voluntarily contracted muscles exhibit considerable increases in both shear modulus and viscosity estimates as compared to the relaxed state. Overall, preliminary results are encouraging and quantitative sonoelastography may prove clinically feasible for in vivo characterization of the dynamic viscoelastic properties of human skeletal muscle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MTDM...21..597H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MTDM...21..597H"><span>Micromechanics of transformation fields in ageing linear viscoelastic composites: effects of phase dissolution or precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Honorio, Tulio</p> <p>2017-11-01</p> <p>Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA189545','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA189545"><span>Viscoelastic Behavior of a Polyetheretherketone (PEEK) Composite.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-12-01</p> <p>Nonlinear viscoelastic behavior has been observed with increasing crystallinity. Other measured properties are listed in Table 2. An acid digestion tech...I. ’ -- ’~mire .nzic at all.,-;; temperatu : r- ,,,r-,- ", 71 ". -ct.: f f: r n e :7 r y... ... tr 1. 1 i - -f t ’. -.. L-e er: i-; -_ re until :;e</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4416946','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4416946"><span>A dynamic mechanical analysis technique for porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pattison, Adam J; McGarry, Matthew; Weaver, John B; Paulsen, Keith D</p> <p>2015-01-01</p> <p>Dynamic mechanical analysis (DMA) is a common way to measure the mechanical properties of materials as functions of frequency. Traditionally, a viscoelastic mechanical model is applied and current DMA techniques fit an analytical approximation to measured dynamic motion data by neglecting inertial forces and adding empirical correction factors to account for transverse boundary displacements. Here, a finite element (FE) approach to processing DMA data was developed to estimate poroelastic material properties. Frequency-dependent inertial forces, which are significant in soft media and often neglected in DMA, were included in the FE model. The technique applies a constitutive relation to the DMA measurements and exploits a non-linear inversion to estimate the material properties in the model that best fit the model response to the DMA data. A viscoelastic version of this approach was developed to validate the approach by comparing complex modulus estimates to the direct DMA results. Both analytical and FE poroelastic models were also developed to explore their behavior in the DMA testing environment. All of the models were applied to tofu as a representative soft poroelastic material that is a common phantom in elastography imaging studies. Five samples of three different stiffnesses were tested from 1 – 14 Hz with rough platens placed on the top and bottom surfaces of the material specimen under test to restrict transverse displacements and promote fluid-solid interaction. The viscoelastic models were identical in the static case, and nearly the same at frequency with inertial forces accounting for some of the discrepancy. The poroelastic analytical method was not sufficient when the relevant physical boundary constraints were applied, whereas the poroelastic FE approach produced high quality estimates of shear modulus and hydraulic conductivity. These results illustrated appropriate shear modulus contrast between tofu samples and yielded a consistent contrast in hydraulic conductivity as well. PMID:25248170</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002cosp...34E1697S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002cosp...34E1697S"><span>Special Considerations for Qualifying Thin Films for Supper Pressure Pumpkin Ultra Long Duration Balloon (ULDB) Missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Said, M.</p> <p></p> <p>Pumpkin type super pressure balloons require much less stringent mechanical requirements on the envelope film material when compared to spherical super pressure type balloons. However, since suitable thin films are typically viscoelastic in nature, their creep characteristics must be fully characterized and must not exceed specific and predetermined design limits. Proper assessment of materials limits to meet these design limits requires creep-load-temperature data that characterizes the performance of the material over a time that exceeds the duration of the design service life by some specified margin. Contrary to the behavior of materials with purely elastic response, visco-elastic materials such as these considered for the ULDB design, change their geometry under sustained loading over time. This change is usually reflected by exhibiting a significant visco-elastic component over the service life of the mission. For that regime of large visco-elastic response, where the material is highly nonlinear, a certain load-temperature threshold can be reached where the creep is limited by an asymptote that depends on both the temperature and load level. Such creep is recoverable, although the recovery period may be much longer than the 100 day design service life of the ULDB structure plus the factor of safety required for the design. For a typical flight, the most significant creep occurs at the highest temperature, which also produces the highest internal pressure. At mid- latitudes a significant portion of the service life is spent at night, i.e. at low temperature and low load; for the ULDB film, this nighttime contribution to creep is insignificant in comparison to any daytime contribution. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This response behavior must be sufficiently characterized to serve the needs of the structural design and performance predictions of the vehicle in service. In this work, a special emphasis will be given to the creep and dynamic characteristics of selected coextruded films and their dependence on the loading level and temperature. Preliminary testing has suggested t at the creep behavior of theh coextruded linear low density resin films is highly dependent on temperature and that the dynamic response depends on the make up of the composite film. In addition, the paper will, in general, highlight the process of qualify ing thin films for the pumpkin class of super pressure balloons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5871432','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5871432"><span>Mechanically dynamic PDMS substrates to investigate changing cell environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yeh, Yi-Cheun; Corbin, Elise A.; Caliari, Steven R.; Ouyang, Liu; Vega, Sebastián L.; Truitt, Rachel; Han, Lin; Margulies, Kenneth B.; Burdick, Jason A.</p> <p>2018-01-01</p> <p>Mechanics of the extracellular matrix (ECM) play a pivotal role in governing cell behavior, such as cell spreading and differentiation. ECM mechanics have been recapitulated primarily in elastic hydrogels, including with dynamic properties to mimic complex behaviors (e.g., fibrosis); however, these dynamic hydrogels fail to introduce the viscoelastic nature of many tissues. Here, we developed a two-step crosslinking strategy to first form (via platinum-catalyzed crosslinking) networks of polydimethylsiloxane (PDMS) and then to increase PDMS crosslinking (via thiol-ene click reaction) in a temporally-controlled manner. This photoinitiated reaction increased the compressive modulus of PDMS up to 10-fold within minutes and was conducted under cytocompatible conditions. With stiffening, cells displayed increased spreading, changing from ~1300 to 1900 μm2 and from ~2700 to 4600 μm2 for fibroblasts and mesenchymal stem cells, respectively. In addition, higher myofibroblast activation (from ~2 to 20%) for cardiac fibroblasts was observed with increasing PDMS substrate stiffness. These results indicate a cellular response to changes in PDMS substrate mechanics, along with a demonstration of a mechanically dynamic and photoresponsive PDMS substrate platform to model the dynamic behavior of ECM. PMID:28843064</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28843064','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28843064"><span>Mechanically dynamic PDMS substrates to investigate changing cell environments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yeh, Yi-Cheun; Corbin, Elise A; Caliari, Steven R; Ouyang, Liu; Vega, Sebastián L; Truitt, Rachel; Han, Lin; Margulies, Kenneth B; Burdick, Jason A</p> <p>2017-11-01</p> <p>Mechanics of the extracellular matrix (ECM) play a pivotal role in governing cell behavior, such as cell spreading and differentiation. ECM mechanics have been recapitulated primarily in elastic hydrogels, including with dynamic properties to mimic complex behaviors (e.g., fibrosis); however, these dynamic hydrogels fail to introduce the viscoelastic nature of many tissues. Here, we developed a two-step crosslinking strategy to first form (via platinum-catalyzed crosslinking) networks of polydimethylsiloxane (PDMS) and then to increase PDMS crosslinking (via thiol-ene click reaction) in a temporally-controlled manner. This photoinitiated reaction increased the compressive modulus of PDMS up to 10-fold within minutes and was conducted under cytocompatible conditions. With stiffening, cells displayed increased spreading, changing from ∼1300 to 1900 μm 2 and from ∼2700 to 4600 μm 2 for fibroblasts and mesenchymal stem cells, respectively. In addition, higher myofibroblast activation (from ∼2 to 20%) for cardiac fibroblasts was observed with increasing PDMS substrate stiffness. These results indicate a cellular response to changes in PDMS substrate mechanics, along with a demonstration of a mechanically dynamic and photoresponsive PDMS substrate platform to model the dynamic behavior of ECM. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000058166','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000058166"><span>Synergistic Effects of Physical Aging and Damage on Long-Term Behavior of Polymer Matrix Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brinson, L. Cate</p> <p>1999-01-01</p> <p>The research consisted of two major parts, first modeling and simulation of the combined effects of aging and damage on polymer composites and secondly an experimental phase examining composite response at elevated temperatures, again activating both aging and damage. For the simulation, a damage model for polymeric composite laminates operating at elevated temperatures was developed. Viscoelastic behavior of the material is accounted for via the correspondence principle and a variational approach is adopted to compute the temporal stresses within the laminate. Also, the effect of physical aging on ply level stress and on overall laminate behavior is included. An important feature of the model is that damage evolution predictions for viscoelastic laminates can be made. This allows us to track the mechanical response of the laminate up to large load levels though within the confines of linear viscoelastic constitutive behavior. An experimental investigation of microcracking and physical aging effects in polymer matrix composites was also pursued. The goal of the study was to assess the impact of aging on damage accumulation, in ten-ns of microcracking, and the impact of damage on aging and viscoelastic behavior. The testing was performed both at room and elevated temperatures on [+/- 45/903](sub s) and [02/903](sub s) laminates, both containing a set of 90 deg plies centrally located to facilitate investigation of microcracking. Edge replication and X-ray-radiography were utilized to quantify damage. Sequenced creep tests were performed to characterize viscoelastic and aging parameters. Results indicate that while the aging times studied have limited ]Influence on damage evolution, elevated temperature and viscoelastic effects have a profound effect on the damage mode seen. Some results are counterintuitive, including the lower strain to failure for elevated temperature tests and the catastrophic failure mode observed for the [+/- 45/9O3](sub s), specimens. The fracture toughness for transverse cracks increases with increasing temperature for both systems: transverse cracking was completely absent prior to failure in [+/- 45/903](sub s), and was suppressed for [02/903](sub s). No significant effect of damage on aging or viscoelastic parameters was observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFD.H9010K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFD.H9010K"><span>Effect of solid boundaries on a motile microorganism in a viscoelastic fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karimi, Alireza; Li, Gaojin; Ardekani, Arezoo</p> <p>2014-11-01</p> <p>Microorganisms swimming in viscoelastic fluids are ubiquitous in nature; this includes biofilms grown on surfaces, Helicobacter pylori colonizing in the mucus layer covering the stomach and spermatozoa swimming through cervical mucus inside the mammalian female reproductive tract. Previous studies have focused on the locomotion of microorganisms in an unbounded viscoelastic fluid. However in many situations, microorganisms interact with solid boundaries and their hydrodynamic interaction is poorly understood. In this work, we numerically study the effect of solid boundaries on the swimming behavior of an archetypal low-Reynolds number swimmer, called ``squirmer,'' in a viscoelastic fluid. A Giesekus constitutive equation is used to model both viscoelasticity and shear-thinning behavior of the background fluid. We found that the time a neutral squirmer spends in the close proximity of the wall increases with polymer relaxation time and reaches a maximum at Weissenberg number of unity. A pusher is found to be trapped near the wall in a viscoelastic fluid, but the puller is less affected. This publication was made possible, in part, with support from NSF (Grant No. CBET-1150348-CAREER) and Indiana Clinical and Translational Sciences Institute Collaboration in Biomedical/Translational Research (Grant No. TR000006) from NIH.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12417177','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12417177"><span>Crystalline and dynamic mechanical behaviors of synthesized poly(sebacic anhydride-co-ethylene glycol).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, Cheng-Kuang; Chu, I-Ming</p> <p>2003-01-01</p> <p>A novel biomaterial: poly(sebacic anhydride-co-ethylene glycol) was synthesized by introducing poly(ethylene glycol) (PEG) into a polyanhydride system. This copolymer was synthesized using sebacic acid and PEG via melt-condensation polymerization. The crystalline behavior of these synthesized products was studied, and compared to that of polymer blends of poly(sebacic anhydride) (PSA) and PEG. The crystallinity of PSA chain segments can be significantly enhanced by increasing chain mobility via the introduction of PEG. The crystallinity of the PSA component in copolymers was substantially greater than that of blends. However, the crystalline growth of the PEG segments was totally hindered by the presence of PSA chain segments, such that no crystal for PEG component was found in these copolymers. Besides, a dynamic mechanical analysis of these materials was also performed to provide additional information concerning visco-elastic behavior for other biomedical applications, where it was found that the viscous behavior in copolymers was more significant than in neat PSA and PEG. Copyright 2002 Elsevier Science Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...121a5103W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...121a5103W"><span>Strong size-dependent stress relaxation in electrospun polymer nanofibers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wingert, Matthew C.; Jiang, Zhang; Chen, Renkun; Cai, Shengqiang</p> <p>2017-01-01</p> <p>Electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with the dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1421770','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1421770"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wingert, Matthew C.; Jiang, Zhang; Chen, Renkun</p> <p></p> <p>Here, electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with themore » dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1421770-strong-size-dependent-stress-relaxation-electrospun-polymer-nanofibers','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1421770-strong-size-dependent-stress-relaxation-electrospun-polymer-nanofibers"><span>Strong size-dependent stress relaxation in electrospun polymer nanofibers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wingert, Matthew C.; Jiang, Zhang; Chen, Renkun; ...</p> <p>2017-01-04</p> <p>Here, electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with themore » dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FML....1150031H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FML....1150031H"><span>Thermorheological characteristics and comparison of shape memory polymers fabricated by novel 3D printing technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hassan, Rizwan Ul; Jo, Soohwan; Seok, Jongwon</p> <p></p> <p>The feasibility of fabrication of shape memory polymers (SMPs) was investigated using a customized 3-dimensional (3D) printing technique with an excellent resolution that could be less than 100 microns. The thermorheological effects of SMPs were adjusted by contact and non-contact triggering, which led to the respective excellent shape recoveries of 100% and 99.89%. Thermogravimetric analyses of SMPs resulted in a minor weight loss, thereby revealing good thermal stability at higher temperatures. The viscoelastic properties of SMPs were measured using dynamic mechanical analyses, exhibiting increased viscous and elastic characteristics. Mechanical strength, thermal stability and viscoelastic properties, of the two SMPs were compared [di(ethylene) glycol dimethacrylate (DEGDMA) and poly (ethylene glycol) dimethacrylate (PEGDMA)] to investigate the shape memory behavior. This novel 3D printing technique can be used as a promising method for fabricating smart materials with increased accuracy in a cost-effective manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhFl...27f2004G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhFl...27f2004G"><span>Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghosh, Uddipta; Chakraborty, Suman</p> <p>2015-06-01</p> <p>In the present work, we attempt to analyze the electroosmotic flow of a viscoelastic fluid, following quasi-linear constitutive behavior, over charge modulated surfaces in narrow confinements. We obtain analytical solutions for the flow field for thin electrical double layer (EDL) limit through asymptotic analysis for small Deborah numbers. We show that a combination of matched and regular asymptotic expansion is needed for the thin EDL limit. We subsequently determine the modified Smoluchowski slip velocity for viscoelastic fluids and show that the quasi-linear nature of the constitutive behavior adds to the periodicity of the flow. We also obtain the net throughput in the channel and demonstrate its relative decrement as compared to that of a Newtonian fluid. Our results may have potential implications towards augmenting microfluidic mixing by exploiting electrokinetic transport of viscoelastic fluids over charge modulated surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29602267','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29602267"><span>Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rassoli, Aisa; Fatouraee, Nasser; Guidoin, Robert</p> <p>2018-03-30</p> <p>The benefit of bioprosthetic aortic valve over mechanical valve replacements is the release of thromboembolism and digression of long-term anticoagulation treatment. The function of bioprostheses and their efficiency is known to depend on the mechanical properties of the leaflet tissue. So it is necessary to select a suitable tissue for the bioprosthesis. The purpose of the present study is to clarify the viscoelastic behavior of bovine, equine, and porcine pericardium. In this study, pericardiums were compared mechanically from the viscoelastic aspect. After fixation of the tissues in glutaraldehyde, first uniaxial tests with different extension rates in the fiber direction were performed. Then, the stress relaxation tests in the fiber direction were done on these pericardial tissues by exerting 20, 30,40, and 50% strains. After evaluation of viscoelastic linearity, the Prony series, quasilinear viscoelastic (QLV) and modified superposition theory were applied to the stress relaxation data. Finally, the parameters of these constitutive models were extracted for each pericardium tissue. All three tissues exhibited a decrease in relaxation rate with elevating strain, indicating the nonlinear viscoelastic behavior of these tissues. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the QLV model was best able to capture the relaxation behavior of the pericardium tissues. More stiffness of porcine pericardium was observed in comparison to the two other pericardium tissues. The relaxation percentage of porcine pericardium was less than the two others. It can be concluded that porcine pericardium behaves more as an elastic and less like a viscous tissue in comparison to the bovine and equine pericardium. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMEP...25.5314R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMEP...25.5314R"><span>Effect of Cross-linking Density on Creep and Recovery Behavior in Epoxy-Based Shape Memory Polymers (SMEPs) for Structural Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rao, Kavitha V.; Ananthapadmanabha, G. S.; Dayananda, G. N.</p> <p>2016-12-01</p> <p>Epoxy-based shape memory polymers (SMEPs) are gaining importance in the area of aerospace structures due to their high strength and stiffness which is a primary requirement for an SMEP in structural applications. The understanding of viscoelastic behavior of SMEPs is very essential to assess their shape memory effect. In the present work, three types of SMEPs with varying cross-linking densities were developed by curing an aromatic epoxy resin with aliphatic amines. Glass transition temperature ( T g) was measured for these SMEPs using advanced rheometric expansion system, and from the T g measurements, a range of temperatures from glassy to rubbery regimes were chosen. At selected temperatures, creep-recovery tests were performed in order to evaluate the viscoelastic behavior of SMEPs and also to investigate the effect of temperature on creep-recovery. Further, a three-parameter viscoelastic model (Zener) was used to fit the data obtained from experiments. Model parameters like moduli of the springs and viscosity of the dashpot were evaluated by curve fitting. Results revealed that Zener model was well suited to describe the viscoelastic behavior of SMEPs as a function of test temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5959278','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5959278"><span>Nonlinear viscoelastic characterization of human vocal fold tissues under large-amplitude oscillatory shear (LAOS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chan, Roger W.</p> <p>2018-01-01</p> <p>Viscoelastic shear properties of human vocal fold tissues were previously quantified by the shear moduli (G′ and G″). Yet these small-strain linear measures were unable to describe any nonlinear tissue behavior. This study attempted to characterize the nonlinear viscoelastic response of the vocal fold lamina propria under large-amplitude oscillatory shear (LAOS) with a stress decomposition approach. Human vocal fold cover and vocal ligament specimens from eight subjects were subjected to LAOS rheometric testing with a simple-shear rheometer. The empirical total stress response was decomposed into elastic and viscous stress components, based on odd-integer harmonic decomposition approach with Fourier transform. Nonlinear viscoelastic measures derived from the decomposition were plotted in Pipkin space and as rheological fingerprints to observe the onset of nonlinearity and the type of nonlinear behavior. Results showed that both the vocal fold cover and the vocal ligament experienced intercycle strain softening, intracycle strain stiffening, as well as shear thinning both intercycle and intracycle. The vocal ligament appeared to demonstrate an earlier onset of nonlinearity at phonatory frequencies, and higher sensitivity to changes in frequency and strain. In summary, the stress decomposition approach provided much better insights into the nonlinear viscoelastic behavior of the vocal fold lamina propria than the traditional linear measures. PMID:29780189</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29780189','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29780189"><span>Nonlinear viscoelastic characterization of human vocal fold tissues under large-amplitude oscillatory shear (LAOS).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, Roger W</p> <p>2018-05-01</p> <p>Viscoelastic shear properties of human vocal fold tissues were previously quantified by the shear moduli ( G' and G″ ). Yet these small-strain linear measures were unable to describe any nonlinear tissue behavior. This study attempted to characterize the nonlinear viscoelastic response of the vocal fold lamina propria under large-amplitude oscillatory shear (LAOS) with a stress decomposition approach. Human vocal fold cover and vocal ligament specimens from eight subjects were subjected to LAOS rheometric testing with a simple-shear rheometer. The empirical total stress response was decomposed into elastic and viscous stress components, based on odd-integer harmonic decomposition approach with Fourier transform. Nonlinear viscoelastic measures derived from the decomposition were plotted in Pipkin space and as rheological fingerprints to observe the onset of nonlinearity and the type of nonlinear behavior. Results showed that both the vocal fold cover and the vocal ligament experienced intercycle strain softening, intracycle strain stiffening, as well as shear thinning both intercycle and intracycle. The vocal ligament appeared to demonstrate an earlier onset of nonlinearity at phonatory frequencies, and higher sensitivity to changes in frequency and strain. In summary, the stress decomposition approach provided much better insights into the nonlinear viscoelastic behavior of the vocal fold lamina propria than the traditional linear measures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18999470','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18999470"><span>Power-law creep behavior of a semiflexible chain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Majumdar, Arnab; Suki, Béla; Rosenblatt, Noah; Alencar, Adriano M; Stamenović, Dimitrije</p> <p>2008-10-01</p> <p>Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CPL...678....1W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CPL...678....1W"><span>Molecular origin of limiting shear stress of elastohydrodynamic lubrication oil film studied by molecular dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Washizu, Hitoshi; Ohmori, Toshihide; Suzuki, Atsushi</p> <p>2017-06-01</p> <p>All-atom molecular dynamics simulations of an elastohydrodynamic lubrication oil film are performed to study the effect of pressure. Fluid molecules of n-hexane are confined between two solid plates under a constant normal force of 0.1-8.0 GPa. Traction simulations are performed by applying relative sliding motion to the solid plates. A transition in the traction behavior is observed around 0.5-2.0 GPa, which corresponds to the viscoelastic region to the plastic-elastic region, which are experimentally observed. This phase transition is related to the suppression of the fluctuation in molecular motion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25597890','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25597890"><span>Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Demirci, Nagehan; Tönük, Ergin</p> <p>2014-01-01</p> <p>During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28069450','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28069450"><span>Micromechanical modeling of rate-dependent behavior of Connective tissues.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M</p> <p>2017-03-07</p> <p>In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130010716','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130010716"><span>Experimental Identification and Simulation of Time and/or Rate Dependent Reversible and Irreversible Deformation Regions for both a Titanium and Nickel Alloy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arnold, Steven M.; Lerch, Bradley A.; Sellers, Cory</p> <p>2013-01-01</p> <p>In this paper time and/or rate dependent deformation regions are experimentally mapped out as a function of temperature. It is clearly demonstrated that the concept of a threshold stress (a stress that delineate reversible and irreversible behavior) is valid and necessary at elevated temperatures and corresponds to the classical yield stress at lower temperatures. Also the infinitely slow modulus, (Es) i.e. the elastic modulus of the material if it was loaded at an infinitely slow strain rate, and the "dynamic modulus", modulus, Ed, which represents the modulus of the material if it is loaded at an infinitely fast rate are used to delineate rate dependent from rate independent regions. As demonstrated at elevated temperatures there is a significant difference between the two modulus values, thus indicating both significant time-dependence and rate dependence. In the case of the nickel-based super alloy, ME3, this behavior is also shown to be grain size specific. Consequently, at higher temperatures viscoelastic behavior exist below k (i.e., the threshold stress) and at stresses above k the behavior is viscoplastic. Finally a multi-mechanism, stress partitioned viscoelastic model, capable of being consistently coupled to a viscoplastic model is characterized over the full temperature range investigated for Ti-6-4 and ME3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EaSci..27..421Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EaSci..27..421Z"><span>Viscoelastic representation of surface waves in patchy saturated poroelastic media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yu; Xu, Yixian; Xia, Jianghai; Ping, Ping; Zhang, Shuangxi</p> <p>2014-08-01</p> <p>Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1-1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot's differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5553523','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5553523"><span>Development of Viscoelastic Multi-Body Simulation and Impact Response Analysis of a Ballasted Railway Track under Cyclic Loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nishiura, Daisuke; Sakaguchi, Hide; Aikawa, Akira</p> <p>2017-01-01</p> <p>Simulation of a large number of deformable bodies is often difficult because complex high-level modeling is required to address both multi-body contact and viscoelastic deformation. This necessitates the combined use of a discrete element method (DEM) and a finite element method (FEM). In this study, a quadruple discrete element method (QDEM) was developed for dynamic analysis of viscoelastic materials using a simpler algorithm compared to the standard FEM. QDEM easily incorporates the contact algorithm used in DEM. As the first step toward multi-body simulation, the fundamental performance of QDEM was investigated for viscoelastic analysis. The amplitude and frequency of cantilever elastic vibration were nearly equal to those obtained by the standard FEM. A comparison of creep recovery tests with an analytical solution showed good agreement between them. In addition, good correlation between the attenuation degree and the real physical viscosity was confirmed for viscoelastic vibration analysis. Therefore, the high accuracy of QDEM in the fundamental analysis of infinitesimal viscoelastic deformations was verified. Finally, the impact response of a ballast and sleeper under cyclic loading on a railway track was analyzed using QDEM as an application of deformable multi-body dynamics. The results showed that the vibration of the ballasted track was qualitatively in good agreement with the actual measurements. Moreover, the ballast layer with high friction reduced the ballasted track deterioration. This study suggests that QDEM, as an alternative to DEM and FEM, can provide deeper insights into the contact dynamics of a large number of deformable bodies. PMID:28772974</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28772974','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28772974"><span>Development of Viscoelastic Multi-Body Simulation and Impact Response Analysis of a Ballasted Railway Track under Cyclic Loading.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nishiura, Daisuke; Sakaguchi, Hide; Aikawa, Akira</p> <p>2017-06-03</p> <p>Simulation of a large number of deformable bodies is often difficult because complex high-level modeling is required to address both multi-body contact and viscoelastic deformation. This necessitates the combined use of a discrete element method (DEM) and a finite element method (FEM). In this study, a quadruple discrete element method (QDEM) was developed for dynamic analysis of viscoelastic materials using a simpler algorithm compared to the standard FEM. QDEM easily incorporates the contact algorithm used in DEM. As the first step toward multi-body simulation, the fundamental performance of QDEM was investigated for viscoelastic analysis. The amplitude and frequency of cantilever elastic vibration were nearly equal to those obtained by the standard FEM. A comparison of creep recovery tests with an analytical solution showed good agreement between them. In addition, good correlation between the attenuation degree and the real physical viscosity was confirmed for viscoelastic vibration analysis. Therefore, the high accuracy of QDEM in the fundamental analysis of infinitesimal viscoelastic deformations was verified. Finally, the impact response of a ballast and sleeper under cyclic loading on a railway track was analyzed using QDEM as an application of deformable multi-body dynamics. The results showed that the vibration of the ballasted track was qualitatively in good agreement with the actual measurements. Moreover, the ballast layer with high friction reduced the ballasted track deterioration. This study suggests that QDEM, as an alternative to DEM and FEM, can provide deeper insights into the contact dynamics of a large number of deformable bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26117102','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26117102"><span>Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yu; Li, Feng-Ming; Wang, Yi-Ze</p> <p>2015-06-01</p> <p>The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22402564-homoclinic-behaviors-chaotic-motions-double-layered-viscoelastic-nanoplates-based-nonlocal-theory-extended-melnikov-method','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22402564-homoclinic-behaviors-chaotic-motions-double-layered-viscoelastic-nanoplates-based-nonlocal-theory-extended-melnikov-method"><span>Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Yu; Wang, Yi-Ze; Li, Feng-Ming, E-mail: fmli@bjut.edu.cn</p> <p>2015-06-15</p> <p>The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two bucklingmore » cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27769593','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27769593"><span>Viscoelastic properties of orthodontic adhesives used for lingual fixed retainer bonding.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Papadogiannis, D; Iliadi, A; Bradley, T G; Silikas, N; Eliades, G; Eliades, T</p> <p>2017-01-01</p> <p>To evaluate the viscoelastic properties of two experimental BPA-free and one BisGMA-based orthodontic resin composite adhesives for bonding fixed retainers. A commercially available BisGMA-based (TXA: Transbond LR) and two bisphenol A-free experimental adhesives (EXA and EXB) were included in the study. The viscoelastic behavior of the adhesives was evaluated under static and dynamic conditions at dry and wet states and at various temperatures (21, 37, 50°C). The parameters determined were shear modulus (G), Young's modulus (E) under static testing and storage modulus (G 1 ), loss tangent (tanδ) and dynamic viscosity (n*) under dynamic testing. Statistical analysis was performed by 2-way ANOVA and Bonferroni post-hoc tests (α=0.05). For static testing, a significant difference was found within material and storage condition variables and a significant interaction between the two independent variables (p<0.001 for G and E). EXA demonstrated the highest G and E values at 21°C/dry group. Dry specimens showed the highest G and E values, but with no significant difference from 21°C/wet specimens, except EXA in G. Wet storage at higher temperatures (37°C and 50°C) adversely affected all the materials to a degree ranging from 40 to 60% (p<0.001). For dynamic testing, a significant difference was also found in material and testing condition groups, with a significant interaction between the two independent variables (p<0.001 for G 1 and n*, p<0.01 for tanδ). Reduction in G 1 , and n* values, and increase in tanδ values were encountered at increased water temperatures. The apparent detrimental effect of high temperature on the reduction of properties of adhesives may contribute to the loss of stiffness of the fixed retainer configuration under ordinary clinical conditions with unfavorable effects on tooth position and stability of the orthodontic treatment result. Copyright © 2016 The Academy of Dental Materials. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JSV...330.3930M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JSV...330.3930M"><span>Dynamic characterization of high damping viscoelastic materials from vibration test data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martinez-Agirre, Manex; Elejabarrieta, María Jesús</p> <p>2011-08-01</p> <p>The numerical analysis and design of structural systems involving viscoelastic damping materials require knowledge of material properties and proper mathematical models. A new inverse method for the dynamic characterization of high damping and strong frequency-dependent viscoelastic materials from vibration test data measured by forced vibration tests with resonance is presented. Classical material parameter extraction methods are reviewed; their accuracy for characterizing high damping materials is discussed; and the bases of the new analysis method are detailed. The proposed inverse method minimizes the residue between the experimental and theoretical dynamic response at certain discrete frequencies selected by the user in order to identify the parameters of the material constitutive model. Thus, the material properties are identified in the whole bandwidth under study and not just at resonances. Moreover, the use of control frequencies makes the method insensitive to experimental noise and the efficiency is notably enhanced. Therefore, the number of tests required is drastically reduced and the overall process is carried out faster and more accurately. The effectiveness of the proposed method is demonstrated with the characterization of a CLD (constrained layer damping) cantilever beam. First, the elastic properties of the constraining layers are identified from the dynamic response of a metallic cantilever beam. Then, the viscoelastic properties of the core, represented by a four-parameter fractional derivative model, are identified from the dynamic response of a CLD cantilever beam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeoJI.176..822C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeoJI.176..822C"><span>Temperature-dependent poroelastic and viscoelastic effects on microscale-modelling of seismic reflections in heavy oil reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ciz, Radim; Saenger, Erik H.; Gurevich, Boris; Shapiro, Serge A.</p> <p>2009-03-01</p> <p>We develop a new model for elastic properties of rocks saturated with heavy oil. The heavy oil is represented by a viscoelastic material, which at low frequencies and/or high temperatures behaves as a Newtonian fluid, and at high frequencies and/or low temperatures as a nearly elastic solid. The bulk and shear moduli of a porous rock saturated with such viscoelastic material are then computed using approximate extended Gassmann equations of Ciz and Shapiro by replacing the elastic moduli of the pore filling material with complex and frequency-dependent moduli of the viscoelastic pore fill. We test the proposed model by comparing its predictions with numerical simulations based on a direct finite-difference solution of equations of dynamic viscoelasticity. The simulations are performed for the reflection coefficient from an interface between a homogeneous fluid and a porous medium. The numerical tests are performed both for an idealized porous medium consisting of alternating solid and viscoelastic layers, and for a more realistic 3-D geometry of the pore space. Both sets of numerical tests show a good agreement between the predictions of the proposed viscoelastic workflow and numerical simulations for relatively high viscosities where viscoelastic effects are important. The results confirm that application of extended Gassmann equations in conjunction with the complex and frequency-dependent moduli of viscoelastic pore filling material, such as heavy oil, provides a good approximation for the elastic moduli of rocks saturated with such material. By construction, this approximation is exactly consistent with the classical Gassmann's equation for sufficiently low frequencies or high temperature when heavy oil behaves like a fluid. For higher frequencies and/or lower temperatures, the predictions are in good agreement with the direct numerical solution of equations of dynamic viscoelasticity on the microscale. This demonstrates that the proposed methodology provides realistic estimates of elastic properties of heavy oil rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhRvE..82a6211K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhRvE..82a6211K"><span>Influence of viscoelastic nature on the intermittent peel-front dynamics of adhesive tape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Jagadish; Ananthakrishna, G.</p> <p>2010-07-01</p> <p>We investigate the influence of viscoelastic nature of the adhesive on the intermittent peel front dynamics by extending a recently introduced model for peeling of an adhesive tape. As time and rate-dependent deformation of the adhesives are measured in stationary conditions, a crucial step in incorporating the viscoelastic effects applicable to unstable intermittent peel dynamics is the introduction of a dynamization scheme that eliminates the explicit time dependence in terms of dynamical variables. We find contrasting influences of viscoelastic contribution in different regions of tape mass, roller inertia, and pull velocity. As the model acoustic energy dissipated depends on the nature of the peel front and its dynamical evolution, the combined effect of the roller inertia and pull velocity makes the acoustic energy noisier for small tape mass and low-pull velocity while it is burstlike for low-tape mass, intermediate values of the roller inertia and high-pull velocity. The changes are quantified by calculating the largest Lyapunov exponent and analyzing the statistical distributions of the amplitudes and durations of the model acoustic energy signals. Both single and two stage power-law distributions are observed. Scaling relations between the exponents are derived which show that the exponents corresponding to large values of event sizes and durations are completely determined by those for small values. The scaling relations are found to be satisfied in all cases studied. Interestingly, we find only five types of model acoustic emission signals among multitude of possibilities of the peel front configurations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.175..549F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.175..549F"><span>Characteristics of Viscoelastic Crustal Deformation Following a Megathrust Earthquake: Discrepancy Between the Apparent and Intrinsic Relaxation Time Constants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro</p> <p>2018-02-01</p> <p>The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22483778','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22483778"><span>Effects of dehydration on the viscoelastic properties of vocal folds in large deformations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miri, Amir K; Barthelat, François; Mongeau, Luc</p> <p>2012-11-01</p> <p>Dehydration may alter vocal fold viscoelastic properties, thereby hampering phonation. The effects of water loss induced by an osmotic pressure potential on vocal fold tissue viscoelastic properties were investigated. Porcine vocal folds were dehydrated by immersion in a hypertonic solution, and quasi-static and low-frequency dynamic traction tests were performed for elongations of up to 50%. Digital image correlation was used to determine local strains from surface deformations. The elastic modulus and the loss factor were then determined for normal and dehydrated tissues. An eight-chain hyperelastic model was used to describe the observed nonlinear stress-stretch behavior. Contrary to the expectations, the mass history indicated that the tissue absorbed water during cyclic extension when submerged in a hypertonic solution. During loading history, the elastic modulus was increased for dehydrated tissues as a function of strain. The response of dehydrated tissues was much less affected when the load was released. This observation suggests that hydration should be considered in micromechanical models of the vocal folds. The internal hysteresis, which is often linked to phonation effort, increased significantly with water loss. The effects of dehydration on the viscoelastic properties of vocal fold tissue were quantified in a systematic way. A better understanding of the role of hydration on the mechanical properties of vocal fold tissue may help to establish objective dehydration and phonotrauma criteria. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT.......201L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT.......201L"><span>Characterization and modeling of viscoelastic behavior of carbon nanotube reinforced polymers: The influence of interphase and nanotube morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Hua</p> <p></p> <p>The addition of nanoparticles into polymer materials has been observed to dramatically change the mechanical, thermal, electrical, and diffusion properties of the host polymers, promising a novel class of polymer matrix composite materials with superior properties and added functionalities that are ideal candidates in many applications, including aerospace, automobile, medical devices, and sporting goods. Understanding the behavior and underlying mechanisms of these polymer nanocomposites is critical. The research work presented in this dissertation represents one of the initial efforts in the long journey pursuing the ultimate understanding of nanoparticle reinforced polymer systems. Particular focal points are experimental evaluation and the development of appropriate modeling methods to capture the influence of the interphase on the overall viscoelastic behavior of carbon nanotube reinforced polymer nanocomposites. The first portion of this dissertation study investigates the viscoelastic behavior of MWCNT based PMMA nanocomposites, which complements our previous study of SWCNT/PMMA systems to confirm functionalization of nanotubes as an effective way to manipulate the interaction between nanotube and polymers and control the properties of the interphase region forming around the nanotubes and consequently change the overall performance of nanotube based polymer nanocomposites. In the second portion of this dissertation, we present a novel hybrid numerical-analytical modeling method that is capable of predicting viscoelastic behavior of multiphase polymer nanocomposites, in which the nanoscopic fillers can assume complex configurations. By combining the finite element technique and a micromechanical approach (particularly, the Mori-Tanaka method) with local phase properties, this method operates at low computational cost and effectively accounts for the influence of the interphase as well as in situ nanoparticle morphology. This modeling method is implemented two-dimensionally on nanotube and nanoplatelet based polymer nanocomposites. Given the experimentally measured frequency domain response of the bulk polymer, the viscoelastic behavior of the nanocomposites in both frequency and temperature domains can be calculated. The predicted pattern of influence of the interphase on the overall performance of the nanocomposites is consistent with the experimental observation. 3D parametric studies utilizing this modeling technique reveal that the nanotube morphology "modifies" the effect of interphase and hence profoundly influences the overall viscoelastic behavior. The findings help explain some experimental observations and furthermore, draw attention to the importance of morphology control through appropriate synthesis and processing techniques to further tune the thermomechanical behavior of the nanocomposites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27492734','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27492734"><span>3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L</p> <p>2017-06-01</p> <p>Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930042254&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930042254&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dviscoelastic"><span>The viscoelastic behavior of notched glassy polymers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crook, R. A.; Letton, Alan</p> <p>1993-01-01</p> <p>In the bulk, glassy polymers exhibit a nonlinear viscoelastic response during deformation. Stress or strain induced damage (i.e. crazing, microshear banding) results in the production of nonrecoverable work and observed nonlinearity. Stress or strain dependent shift factors have been used to mathematically model the mechanical behavior of these polymers. Glassy polymers that have been notched, may exhibit very different load displacement response compared to the same material under bulk deformation. If a sharp notch is introduced into the body then loaded, the load displacement trace may appear to be single-valued in the absence of viscoelasticity and crack growth. This suggests the volume of damaged material is small compared to the overall dimensions of the specimen. The ability to produce a single-valued load-load-line displacement trace through the use of the Correspondence Principle may prove to be useful for fracture of viscoelastic materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870046434&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870046434&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dviscoelastic"><span>Dynamic response of a viscoelastic Timoshenko beam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kalyanasundaram, S.; Allen, D. H.; Schapery, R. A.</p> <p>1987-01-01</p> <p>The analysis presented in this study deals with the vibratory response of viscoelastic Timoshenko (1955) beams under the assumption of small material loss tangents. The appropriate method of analysis employed here may be applied to more complex structures. This study compares the damping ratios obtained from the Timoshenko and Euler-Bernoulli theories for a given viscoelastic material system. From this study the effect of shear deformation and rotary inertia on damping ratios can be identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARB36008H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARB36008H"><span>Viscoelastic and elastomeric active matter: linear instability and nonlinear dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hemingway, Ewan J.; Cates, M. E.; Marchetti, M. C.; Fielding, S. M.</p> <p></p> <p>We consider a continuum model of active viscoelastic matter, whereby a model of an active nematic liquid-crystal is coupled to a minimal model of polymer dynamics with a viscoelastic relaxation time τc. To explore the resulting interplay between active and polymeric dynamics, we first generalise a linear stability analysis (from earlier studies without polymer) to derive criteria for the onset of spontaneous flow. Perhaps surprisingly, our results show that the spontaneous flow instability persists even for divergent polymer relaxation times. We explore the novel dynamical states to which these instabilities lead by means of nonlinear numerical simulations. This reveals oscillatory shear-banded states in 1D, and activity-driven turbulence in 2D, even in the limit τc --> ∞ . Adding polymer can also have calming effects, increasing the net throughput of spontaneous flow along a channel in a new type of ''drag-reduction'', an effect that may have implications for cytoplasmic streaming processes within the cell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2847897','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2847897"><span>A Comparison of the Quasi-static Mechanical and Nonlinear Viscoelastic Properties of the Human Semitendinosus and Gracilis Tendons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Abramowitch, Steven D.; Zhang, Xiaoyan; Curran, Molly; Kilger, Robert</p> <p>2010-01-01</p> <p>Background Over fifty-percent of anterior cruciate ligament reconstructions are performed using semitendinosus and gracilis tendon autografts. Despite their increased use, there remains little quantitative data on their mechanical behavior. Therefore, the objective of this study was to investigate the quasi-static mechanical and nonlinear viscoelastic properties of human semitendinosus and gracilis tendons, as well as the variation of these properties along their length. Methods Specimens were subjected to a series of uniaxial tensile tests: one-hour static stress-relaxation test, 30-cycle cyclic stress-relaxation test and load to failure test. To describe the nonlinear viscoelastic behavior, the quasi-linear viscoelastic theory was utilized to model data from the static stress relaxation experiment. Findings The constants describing the viscoelastic behavior were similar between the proximal and distal halves of the gracilis tendon. The proximal half of the semitendinosus tendon, however, had a greater viscous response than its distal half, which was also significantly higher than the proximal gracilis tendon. In terms of the quasi-static mechanical properties, the properties were similar between the proximal and distal halves of the semitendinosus tendon. However, the distal gracilis tendon showed a significantly higher tangent modulus and ultimate stress compared to its proximal half, which was also significantly higher than the distal semitendinosus tendon. Interpretation The results of this study demonstrate differences between the semitendinosus and gracilis tendons in terms of their quasi-static mechanical and nonlinear viscoelastic properties. These results are important for establishing surgical preconditioning protocols and graft selection. PMID:20092917</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvL.113s8101A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvL.113s8101A"><span>Dissipative Dynamics of Enzymes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ariyaratne, Amila; Wu, Chenhao; Tseng, Chiao-Yu; Zocchi, Giovanni</p> <p>2014-11-01</p> <p>We explore enzyme conformational dynamics at sub-Å resolution, specifically, temperature effects. The ensemble-averaged mechanical response of the folded enzyme is viscoelastic in the whole temperature range between the warm and cold denaturation transitions. The dissipation parameter γ of the viscoelastic description decreases by a factor of 2 as the temperature is raised from 10 to 45 °C ; the elastic parameter K shows a similar decrease. Thus, when probed dynamically, the enzyme softens for increasing temperature. Equilibrium mechanical experiments with the DNA spring (and a different enzyme) also show, qualitatively, a small softening for increasing temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MAR.P1080A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MAR.P1080A"><span>Dissipative Dynamics of Enzymes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ariyaratne, Amila; Wu, Chenhao; Tseng, Chiao-Yu; Zocchi, Giovanni; Zocchi LabMolecular Biophysics Team</p> <p>2015-03-01</p> <p>We explore enzyme conformational dynamics at sub - Å resolution, specifically temperature effects. The ensemble averaged mechanical response of the folded enzyme is viscoelastic in the whole temperature range between the warm and cold denaturation transitions. The dissipation parameter γ of the viscoelastic description decreases by a factor 2 as the temperature is raised from 10 C to 45 C; the elastic parameter K shows a similar decrease. Thus when probed dynamically, the enzyme softens for increasing temperature. Equilibrium mechanical experiments with the DNA spring (and a different enzyme) also show, qualitatively, a small softening for increasing temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25415926','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25415926"><span>Dissipative dynamics of enzymes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ariyaratne, Amila; Wu, Chenhao; Tseng, Chiao-Yu; Zocchi, Giovanni</p> <p>2014-11-07</p> <p>We explore enzyme conformational dynamics at sub-Å resolution, specifically, temperature effects. The ensemble-averaged mechanical response of the folded enzyme is viscoelastic in the whole temperature range between the warm and cold denaturation transitions. The dissipation parameter γ of the viscoelastic description decreases by a factor of 2 as the temperature is raised from 10 to 45 °C; the elastic parameter K shows a similar decrease. Thus, when probed dynamically, the enzyme softens for increasing temperature. Equilibrium mechanical experiments with the DNA spring (and a different enzyme) also show, qualitatively, a small softening for increasing temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4568357','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4568357"><span>Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Xuemei; Wang, Ruiyi; Li, Yunhua; Song, Dongdong</p> <p>2015-01-01</p> <p>We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery. PMID:26417380</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDR36003R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDR36003R"><span>Simulations of Non-spherical Bubble Collapse Dynamics in Viscous and Viscoelastic Media Near a Compliant Object</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodriguez, Mauro; Johnsen, Eric</p> <p>2015-11-01</p> <p>Understanding the dynamics of cavitation bubbles and the shock waves emitted by their collapse in and near viscoelastic media is important for various naval and medical applications, particularly in the context of cavitation damage. Two examples are histotripsy, which utilizes this phenomenon for the ablation of pathogenic tissue, and erosion to elastomeric coatings on propellers. Although not fully understood, the damage mechanism combines the effect of the incoming pulses and cavitation produced by the high tension. Additionally, the influence of the shock on the material and the response of the material to the shock are not well known. A novel numerical approach for simulating shock and acoustic wave propagation in Zener-like viscoelastic media is proposed. This Eulerian method is based on a high-order accurate weighted essentially non-oscillatory scheme for shock capturing and introduces evolution equations for the components of the shear stress tensor. Validation studies between high-fidelity two-dimensional simulations of the bubble collapse dynamics for various experimental configurations (i.e. the viscous or viscoelastic material surrounding the bubble and the nearby compliant object are varied) will be presented. This work is supported by ONR grant N00014-12-1-0751.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27434752','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27434752"><span>Understanding about How Different Foaming Gases Effect the Interfacial Array Behaviors of Surfactants and the Foam Properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Yange; Qi, Xiaoqing; Sun, Haoyang; Zhao, Hui; Li, Ying</p> <p>2016-08-02</p> <p>In this paper, the detailed behaviors of all the molecules, especially the interfacial array behaviors of surfactants and diffusion behaviors of gas molecules, in foam systems with different gases (N2, O2, and CO2) being used as foaming agents were investigated by combining molecular dynamics simulation and experimental approaches for the purpose of interpreting how the molecular behaviors effect the properties of the foam and find out the key factors which fundamentally determine the foam stability. Sodium dodecyl sulfate SDS was used as the foam stabilizer. The foam decay and the drainage process were determined by Foamscan. A texture analyzer (TA) was utilized to measure the stiffness and viscoelasticity of the foam films. The experimental results agreed very well with the simulation results by which how the different gas components affect the interfacial behaviors of surfactant molecules and thereby bring influence on foam properties was described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MAR.P9006Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MAR.P9006Y"><span>Molecular Mobility in Phase Segregated Bottlebrush Block Copolymer Melts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yavitt, Benjamin; Gai, Yue; Song, Dongpo; Winter, H. Henning; Watkins, James</p> <p></p> <p>We investigate the linear viscoelastic behavior of poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO) brush block copolymer (BBCP) materials over a range of vol. fractions and with side chain lengths below the entanglement molecular weights. The high chain mobility of the brush architecture results in rapid micro-phase segregation of the brush copolymer segments, which occurs during thermal annealing at mild temperatures. Master curves of the dynamic moduli were obtained by time-temperature superposition. The reduced degree of chain entanglements leads to a unique liquid-like rheology similar to that of bottlebrush homopolymers, even in the phase segregated state. We also explore the alignment of phase segregated domains at exceptionally low strain amplitudes (γ = 0.01) and mild processing temperatures using small angle X-ray scattering (SAXS). Domain orientation occurred readily at strains within the linear viscoelastic regime without noticeable effect on the moduli. This interplay of high molecular mobility and rapid phase segregation that are exhibited simultaneously in BBCPs is in contrast to the behavior of conventional linear block copolymer (LBCP) analogs and opens up new possibilities for processing BBCP materials for a wide range of nanotechnology applications. NSF Center for Hierarchical Manufacturing at the University of Massachusetts, Amherst (CMMI-1025020).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhRvE..81c6308Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhRvE..81c6308Y"><span>Multiscale modeling and simulation for polymer melt flows between parallel plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yasuda, Shugo; Yamamoto, Ryoichi</p> <p>2010-03-01</p> <p>The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20365855','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20365855"><span>Multiscale modeling and simulation for polymer melt flows between parallel plates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yasuda, Shugo; Yamamoto, Ryoichi</p> <p>2010-03-01</p> <p>The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18532854','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18532854"><span>The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Groth, Kevin M; Granata, Kevin P</p> <p>2008-06-01</p> <p>Due to the mathematical complexity of current musculoskeletal spine models, there is a need for computationally efficient models of the intervertebral disk (IVD). The aim of this study is to develop a mathematical model that will adequately describe the motion of the IVD under axial cyclic loading as well as maintain computational efficiency for use in future musculoskeletal spine models. Several studies have successfully modeled the creep characteristics of the IVD using the three-parameter viscoelastic standard linear solid (SLS) model. However, when the SLS model is subjected to cyclic loading, it underestimates the load relaxation, the cyclic modulus, and the hysteresis of the human lumbar IVD. A viscoelastic standard nonlinear solid (SNS) model was used to predict the response of the human lumbar IVD subjected to low-frequency vibration. Nonlinear behavior of the SNS model was simulated by a strain-dependent elastic modulus on the SLS model. Parameters of the SNS model were estimated from experimental load deformation and stress-relaxation curves obtained from the literature. The SNS model was able to predict the cyclic modulus of the IVD at frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Furthermore, the SNS model was able to quantitatively predict the load relaxation at a frequency of 0.01 Hz. However, model performance was unsatisfactory when predicting load relaxation and hysteresis at higher frequencies (0.1 Hz and 1 Hz). The SLS model of the lumbar IVD may require strain-dependent elastic and viscous behavior to represent the dynamic response to compressive strain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.760a2037U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.760a2037U"><span>Modelling water hammer in viscoelastic pipelines: short brief</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urbanowicz, K.; Firkowski, M.; Zarzycki, Z.</p> <p>2016-10-01</p> <p>The model of water hammer in viscoelastic pipelines is analyzed. An appropriate mathematical model of water hammer in polymer pipelines is presented. An additional term has been added to continuity equation to describe the retarded deformation of the pipe wall. The mechanical behavior of viscoelastic material is described by generalized Kelvin-Voigt model. The comparison of numerical simulation and experimental data from well known papers is presented. Short discussion about obtained results are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012MTDM...16..317Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012MTDM...16..317Y"><span>Dynamic response of polyurea subjected to nanosecond rise-time stress waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Youssef, George; Gupta, Vijay</p> <p>2012-08-01</p> <p>Shaped charges and explosively formed projectiles used in modern warfare can attain speeds as high as 30,000 ft/s. Impacts from these threats are expected to load the armor materials in the 10 to 100 ns timeframe. During this time, the material strains are quite limited but the strain rates are extremely high. To develop armors against such threats it is imperative to understand the dynamic constitutive behavior of materials in the tens of nanoseconds timeframe. Material behavior in this parameter space cannot be obtained by even the most sophisticated plate-impact and split-Hopkinson bar setups that exist within the high energy materials field today. This paper introduces an apparatus and a test method that are based on laser-generated stress waves to obtain such material behaviors. Although applicable to any material system, the test procedures are demonstrated on polyurea which shows unusual dynamic properties. Thin polyurea layers were deformed using laser-generated stress waves with 1-2 ns rise times and 16 ns total duration. The total strain in the samples was less than 3%. Because of the transient nature of the stress wave, the strain rate varied throughout the deformation history of the sample. A peak value of 1.1×105 s-1 was calculated. It was found that the stress-strain characteristics, determined from experimentally recorded incident and transmitted wave profiles, matched satisfactorily with those computed from a 2D wave mechanics simulation in which the polyurea was modeled as a linearly viscoelastic solid with constants derived from the quasi-static experiments. Thus, the test data conformed to the Time-Temperature Superposition (TTS) principle even at extremely high strain rates of our test. This then extends the previous observations of Zhao et al. (Mech. Time-Depend. Mater. 11:289-308, 2007) who showed the applicability of the TTS principle for polyurea in the linearly viscoelastic regime up to peak strain rates of 1200 s-1.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26563615','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26563615"><span>Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tai, Jiayan; Lim, Chun Ping; Lam, Yee Cheong</p> <p>2015-11-13</p> <p>In micro-channels, the flow of viscous liquids e.g. water, is laminar due to the low Reynolds number in miniaturized dimensions. An aqueous solution becomes viscoelastic with a minute amount of polymer additives; its flow behavior can become drastically different and turbulent. However, the molecules are typically invisible. Here we have developed a novel visualization technique to examine the extension and relaxation of polymer molecules at high flow velocities in a viscoelastic turbulent flow. Using high speed videography to observe the fluorescein labeled molecules, we show that viscoelastic turbulence is caused by the sporadic, non-uniform release of energy by the polymer molecules. This developed technique allows the examination of a viscoelastic liquid at the molecular level, and demonstrates the inhomogeneity of viscoelastic liquids as a result of molecular aggregation. It paves the way for a deeper understanding of viscoelastic turbulence, and could provide some insights on the high Weissenberg number problem. In addition, the technique may serve as a useful tool for the investigations of polymer drag reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...516633T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...516633T"><span>Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tai, Jiayan; Lim, Chun Ping; Lam, Yee Cheong</p> <p>2015-11-01</p> <p>In micro-channels, the flow of viscous liquids e.g. water, is laminar due to the low Reynolds number in miniaturized dimensions. An aqueous solution becomes viscoelastic with a minute amount of polymer additives; its flow behavior can become drastically different and turbulent. However, the molecules are typically invisible. Here we have developed a novel visualization technique to examine the extension and relaxation of polymer molecules at high flow velocities in a viscoelastic turbulent flow. Using high speed videography to observe the fluorescein labeled molecules, we show that viscoelastic turbulence is caused by the sporadic, non-uniform release of energy by the polymer molecules. This developed technique allows the examination of a viscoelastic liquid at the molecular level, and demonstrates the inhomogeneity of viscoelastic liquids as a result of molecular aggregation. It paves the way for a deeper understanding of viscoelastic turbulence, and could provide some insights on the high Weissenberg number problem. In addition, the technique may serve as a useful tool for the investigations of polymer drag reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMPSo..98..309L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMPSo..98..309L"><span>Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey</p> <p>2017-01-01</p> <p>Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4643225','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4643225"><span>Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tai, Jiayan; Lim, Chun Ping; Lam, Yee Cheong</p> <p>2015-01-01</p> <p>In micro-channels, the flow of viscous liquids e.g. water, is laminar due to the low Reynolds number in miniaturized dimensions. An aqueous solution becomes viscoelastic with a minute amount of polymer additives; its flow behavior can become drastically different and turbulent. However, the molecules are typically invisible. Here we have developed a novel visualization technique to examine the extension and relaxation of polymer molecules at high flow velocities in a viscoelastic turbulent flow. Using high speed videography to observe the fluorescein labeled molecules, we show that viscoelastic turbulence is caused by the sporadic, non-uniform release of energy by the polymer molecules. This developed technique allows the examination of a viscoelastic liquid at the molecular level, and demonstrates the inhomogeneity of viscoelastic liquids as a result of molecular aggregation. It paves the way for a deeper understanding of viscoelastic turbulence, and could provide some insights on the high Weissenberg number problem. In addition, the technique may serve as a useful tool for the investigations of polymer drag reduction. PMID:26563615</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27083350','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27083350"><span>The effect of gum tragacanth on the rheological properties of salep based ice cream mix.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kurt, Abdullah; Cengiz, Alime; Kahyaoglu, Talip</p> <p>2016-06-05</p> <p>The influence of concentration (0-0.5%, w/w) of gum tragacanth (GT) on thixotropy, dynamic, and creep-recovery rheological properties of ice cream mixes prepared with milk or water based were investigated. These properties were used to evaluate the viscoelastic behavior and internal structure of ice cream network. The textural properties of ice cream were also evaluated. Thixotropy values of samples were reduced by increasing GT concentration. The dynamic and creep-recovery analyses exhibited that GT addition increased both ice cream elastic and viscous behaviors. The increasing of Burger's model parameters with GT concentration indicated higher resistance network to the stress and more elastic behavior of samples. The applying of Cox-Merz rule is possible by using shift factor (α). GT also led to an increase in Young's modulus and the stickiness of ice creams. The obtained results highlighted the possible application of GT as a valuable member to promote structural properties of ice cream. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16770610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16770610"><span>Mathematical model for rhythmic protoplasmic movement in the true slime mold.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kobayashi, Ryo; Tero, Atsushi; Nakagaki, Toshiyuki</p> <p>2006-08-01</p> <p>The plasmodium of the true slime mold Physarum polycephalum is a large amoeboid organism that displays "smart" behavior such as chemotaxis and the ability to solve mazes and geometrical puzzles. These amoeboid behaviors are based on the dynamics of the viscoelastic protoplasm and its biochemical rhythms. By incorporating both these aspects, we constructed a mathematical model for the dynamics of the organism as a first step towards understanding the relation between protoplasmic movement and its unusual abilities. We tested the validity of the model by comparing it with physiological observation. Our model reproduces fundamental characteristics of the spatio-temporal pattern of the rhythmic movement: (1) the antiphase oscillation between frontal tip and rear when the front is freely extending; (2) the asynchronous oscillation pattern when the front is not freely extending; and (3) the formation of protoplasmic mounds over a longer time scale. Both our model and physiological observation suggest that cell stiffness plays a primary role in plasmodial behaviors, in contrast to the conventional theory of coupled oscillator systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MTDM...21..383K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MTDM...21..383K"><span>Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam</p> <p>2017-08-01</p> <p>Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PMag...90.2817S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PMag...90.2817S"><span>A composite viscoelastic model for incorporating grain boundary sliding and transient diffusion creep; correlating creep and attenuation responses for materials with a fine grain size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sundberg, Marshall; Cooper, Reid F.</p> <p>2010-07-01</p> <p>A new viscoelastic creep function that incorporates both the effects of elastically-accommodated grain boundary sliding (GBS) and transient diffusion creep is proposed. It is demonstrated that this model can simultaneously describe both the transient microcreep curves and the shear attenuation/modulus dispersion in a fine-grained (d ∼ 5 µm) peridotite (olivine + 39 vol. % orthopyroxene) specimen. Low-frequency shear attenuation, ? , and modulus dispersion, G(ω), spectra were measured in a one-atmosphere reciprocating torsion apparatus at temperatures of 1200 ≤ T ≤ 1300°C and frequencies of 10-2.25 ≤ f ≤ 100 Hz. Reciprocating tests were complemented by a series of small stress (τ ∼ 90 kPa) microcreep experiments at the same temperatures. In contrast to previous models where the parameters of viscoelastic models are derived by fitting the Laplace transform of the creep function to measured attenuation spectra, the parameters are derived solely from the fit of the creep function to the experimental microcreep curves using different published expressions for the relaxation strength of elastically-accommodated GBS. This approach may allow future studies to better link the large dataset of steady-state creep response to the dynamic attenuation behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.......196M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.......196M"><span>Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Merrett, Craig G.</p> <p></p> <p>Modern flight vehicles are fabricated from composite materials resulting in flexible structures that behave differently from the more traditional elastic metal structures. Composite materials offer a number of advantages compared to metals, such as improved strength to mass ratio, and intentional material property anisotropy. Flexible aircraft structures date from the Wright brothers' first aircraft with fabric covered wooden frames. The flexibility of the structure was used to warp the lifting surface for flight control, a concept that has reappeared as aircraft morphing. These early structures occasionally exhibited undesirable characteristics during flight such as interactions between the empennage and the aft fuselage, or control problems with the elevators. The research to discover the cause and correction of these undesirable characteristics formed the first foray into the field of aeroelasticity. Aeroelasticity is the intersection and interaction between aerodynamics, elasticity, and inertia or dynamics. Aeroelasticity is well suited for metal aircraft, but requires expansion to improve its applicability to composite vehicles. The first is a change from elasticity to viscoelasticity to more accurately capture the solid mechanics of the composite material. The second change is to include control systems. While the inclusion of control systems in aeroelasticity lead to aero-servo-elasticity, more control possibilities exist for a viscoelastic composite material. As an example, during the lay-up of carbon-epoxy plies, piezoelectric control patches are inserted between different plies to give a variety of control options. The expanded field is called aero-servo-viscoelasticity. The phenomena of interest in aero-servo-viscoelasticity are best classified according to the type of structure considered, either a lifting surface or a panel, and the type of dynamic stability present. For both types of structures, the governing equations are integral-partial differential equations. The spatial component of the governing equations is eliminated using a series expansion of basis functions and by applying Galerkin's method. The number of terms in the series expansion affects the convergence of the spatial component, and convergence is best determined by the von Koch rules that previously appeared for column buckling problems. After elimination of the spatial component, an ordinary integral-differential equation in time remains. The dynamic stability of elastic and viscoelastic problems is assessed using the determinant of the governing system of equations and the time component of the solution in the form exp (lambda t). The determinant is in terms of lambda where the values of lambda are the latent roots of the aero-servo-viscoelastic system. The real component of lambda dictates the stability of the system. If all the real components are negative, the system is stable. If at least one real component is zero and all others are negative, the system is neutrally stable. If one or more real components are positive, the system is unstable. In aero-servo-viscoelasticity, the neutrally stable condition is termed flutter. For an aero-servo-viscoelastic lifting surface, the unstable condition is historically termed torsional divergence. The more general aero-servo-viscoelastic theory has produced a number of important results, enumerated in the following list: 1. Subsonic panel flutter can occur before panel instability. This result overturned a long held assumption in aeroelasticity, and was produced by the novel application of the von Koch rules for convergence. Further, experimental results from the 1950s by the Air Force were retrieved to provide additional proof. 2. An expanded definition for flutter of a lifting surface. The legacy definition is that flutter is the first occurrence of simple harmonic motion of a structure, and the flight velocity at which this motion occurs is taken as the flutter speed. The expanded definition indicates that the flutter condition should be taken when simple harmonic motion occurs and certain additional velocity derivatives are satisfied. 3. The viscoelastic material behavior imposes a flutter time indicating that the presence of flutter should be verified for the entire life time of a flight vehicle. 4. An expanded definition for instability of a lifting surface or panel. Traditionally, instability is treated as a static phenomenon. The static case is only a limiting case of dynamic instability for a viscoelastic structure. Instability occurs when a particular combination of flight velocity and time are reached leading to growing displacements of the structure. 5. The inclusion of flight velocity transients that occur during maneuvers. Two- and three-dimensional unsteady incompressible and compressible aerodynamics were reformulated for a time dependent velocity. The inclusion of flight velocity transients does affect the flutter and instability conditions for a lifting surface and a panel. The applications of aero-servo-viscoelasticity are to aircraft design, wind turbine blades, submarine's stealth coatings and hulls, and land transportation to name a few examples. One caveat regarding this field of research is that general predictions for an application are not always possible as the stability of a structure depends on the phase relations between the various parameters such as mass, stiffness, damping, and the aerodynamic loads. The viscoelastic material parameters in particular alter the system parameters in directions that are difficult to predict. The inclusion of servo controls permits an additional design factor and can improve the performance of a structure beyond the native performance; however over-control is possible so a maximum limit to useful control does exist. Lastly, the number of material and control parameters present in aero-servo-viscoelasticity are amenable to optimization protocols to produce the optimal structure for a given mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023066','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023066"><span>Viscoelastic shear zone model of a strike-slip earthquake cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pollitz, F.F.</p> <p>2001-01-01</p> <p>I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault-parallel motion distributed between the San Andreas fault system and Eastern California Shear Zone. Copyright 2001 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22954368','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22954368"><span>Aggregation behaviors of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO at an air/water interface: experimental study and molecular dynamics simulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gong, Houjian; Xu, Guiying; Liu, Teng; Xu, Long; Zhai, Xueru; Zhang, Jian; Lv, Xin</p> <p>2012-09-25</p> <p>The block polyethers PEO-PPO-ph-PPO-PEO (BPE) and PPO-PEO-ph-PEO-PPO (BEP) are synthesized by anionic polymerization using bisphenol A as initiator. Compared with Pluronic P123, the aggregation behaviors of BPE and BEP at an air/water interface are investigated by the surface tension and dilational viscoelasticity. The molecular construction can influence the efficiency and effectiveness of block polyethers in decreasing surface tension. BPE has the most efficient ability to decrease surface tension of water among the three block polyethers. The maximum surface excess concentration (Γ(max)) of BPE is larger than that of BEP or P123. Moreover, the dilational modulus of BPE is almost the same as that of P123, but much larger than that of BEP. The molecular dynamics simulation provides the conformational variations of block polyethers at the air/water interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28396292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28396292"><span>Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schierbaum, Nicolas; Rheinlaender, Johannes; Schäffer, Tilman E</p> <p>2017-06-01</p> <p>Malignant transformation drastically alters the mechanical properties of the cell and its response to the surrounding cellular environment. We studied the influence of the physical contact between adjacent cells in an epithelial monolayer on the viscoelastic behavior of normal MCF10A, non-invasive cancerous MCF7, and invasive cancerous MDA-MB-231 human breast cells. Using an atomic force microscopy (AFM) imaging technique termed force clamp force mapping (FCFM) to record images of the viscoelastic material properties, we found that normal MCF10A cells are stiffer and have a lower fluidity at confluent than at sparse density. Contrarily, cancerous MCF7 and MDA-MB-231 cells do not stiffen and do not decrease their fluidity when progressing from sparse to confluent density. The behavior of normal MCF10A cells appears to be governed by the formation of stable cell-cell contacts, because their disruption with a calcium-chelator (EGTA) causes the stiffness and fluidity values to return to those at sparse density. In contrast, EGTA-treatment of MCF7 and MDA-MB-231 cells does not change their viscoelastic properties. Confocal fluorescence microscopy showed that the change of the viscoelastic behavior in MCF10A cells when going from sparse to confluent density is accompanied by a remodeling of the actin cytoskeleton into thick stress fiber bundles, while in MCF7 and MDA-MB-231 cells the actin cytoskeleton is only composed of thin and short fibers, regardless of cell density. While the observed behavior of normal MCF10A cells might be crucial for providing mechanical stability and thus in turn integrity of the epithelial monolayer, the dysregulation of this behavior in cancerous MCF7 and MDA-MB-231 cells is possibly a central aspect of cancer progression in the epithelium. We measured the viscoelastic properties of normal and cancerous human breast epithelial cells in different states of confluency using atomic force microscopy. We found that confluent normal cells are stiffer and have lower fluidity than sparse normal cells, which appears to be governed by the formation of cell-cell contacts. Contrarily, confluent cancer cells do not stiffen and not have a decreased fluidity compared to sparse cancer cells and their viscoelastic properties are independent of cell-cell contact formation. While the observed behavior of normal cells appears to be crucial for providing the mechanical stability and therefore the integrity of the epithelial monolayer, the dysregulation of this behavior in cancer cells might be a central aspect of early stage cancer progression and metastasis in the epithelium. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26627790','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26627790"><span>Viscous-to-viscoelastic transition in phononic crystal and metamaterial band structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frazier, Michael J; Hussein, Mahmoud I</p> <p>2015-11-01</p> <p>The dispersive behavior of phononic crystals and locally resonant metamaterials is influenced by the type and degree of damping in the unit cell. Dissipation arising from viscoelastic damping is influenced by the past history of motion because the elastic component of the damping mechanism adds a storage capacity. Following a state-space framework, a Bloch eigenvalue problem incorporating general viscoelastic damping based on the Zener model is constructed. In this approach, the conventional Kelvin-Voigt viscous-damping model is recovered as a special case. In a continuous fashion, the influence of the elastic component of the damping mechanism on the band structure of both a phononic crystal and a metamaterial is examined. While viscous damping generally narrows a band gap, the hereditary nature of the viscoelastic conditions reverses this behavior. In the limit of vanishing heredity, the transition between the two regimes is analyzed. The presented theory also allows increases in modal dissipation enhancement (metadamping) to be quantified as the type of damping transitions from viscoelastic to viscous. In conclusion, it is shown that engineering the dissipation allows one to control the dispersion (large versus small band gaps) and, conversely, engineering the dispersion affects the degree of dissipation (high or low metadamping).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/175338-analytical-expression-relaxation-moduli-linear-viscoelastic-composites-periodic-microstructure','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/175338-analytical-expression-relaxation-moduli-linear-viscoelastic-composites-periodic-microstructure"><span>Analytical expression for the relaxation moduli of linear viscoelastic composites with periodic microstructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Luciano, R.; Barbero, E.J.</p> <p></p> <p>Many micromechanical models have been used to estimate the overall stiffness of heterogeneous- materials and a large number of results and experimental data have been obtained. However, few theoretical and experimental results are available in the field of viscoelastic behavior of heterogeneous media. In this paper the viscoelastostatic problem of composite materials with periodic microstructure is studied. The matrix is assumed linear viscoelastic and the fibers elastic. The correspondence principle in viscoelasticity is applied and the problem in the Laplace domain is solved by using the Fourier series technique and assuming the Laplace transform of the homogenization eigenstrain piecewise constantmore » in the space. Formulas for the Laplace transform of the relaxation functions of the composite are obtained in terms of the properties of the matrix and the fibers and in function of nine triple series which take in account the geometry of the inclusions. The inversion to the time domain of the relaxation and the creep functions of composites reinforced by long fibers is carried out analytically when the four parameters model is used to represent the viscoelastic behavior of the matrix. Finally, comparisons with experimental results are presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DFDE31004U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DFDE31004U"><span>Viscoelasticity measurement of gel formed at the liquid-liquid reactive interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ujiie, Tomohiro</p> <p>2012-11-01</p> <p>We have experimentally studied a reacting liquid flow with gel formation by using viscous fingering (VF) as a flow field. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. We showed that influence of gel formation on VF were qualitatively different in these two systems. We consider that the difference in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. In the present study, viscoelasticity measurement was performed by two methods. One is the method which uses Double Wall Ring sensor (TA instrument) and another is the method using parallel plate. In both viscoelasticity measurements, the behavior of the formed gel was qualitatively consistent. We have found that the gel in the SPA system shows viscoelastic fluid like behavior. Moreover, we have found that the gel in the XG system shows solid like behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MPLB...3240032Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MPLB...3240032Q"><span>A comparative study on the breakup of Newtonian and viscoelastic liquid films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qian, Lijuan; Song, Shaobo; Jiang, Lisha; Li, Xiaolu; Lin, Jianzhong</p> <p>2018-05-01</p> <p>The breakup of viscoelastic liquid films are investigated experimentally and analytically. The breakup phenomena of viscoelastic liquid film are recorded by the time resolved high speed camera. Video images reveal the difference behavior of liquid bubble breakup for Newtonian and viscoelastic liquid. For the Newtonian liquid, cylindrical ligaments are stretched into droplets with large distributions of drop size. For the viscoelastic liquid, the pinch-off point is located on the liquid connections to the nozzle and finally the main part of the ligament no longer elongates. Furthermore, a dispersion relation based on the stability analysis is involved to predict the ligament length and drop mean size after breakup for liquid film. The calculated ligament length is validated by the measured drop mean size at higher air-to-liquid mass flow ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29427934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29427934"><span>Assessment of nanoscopic dynamic mechanical properties and B-C-N triad effect on MWCNT/h-BNNP nanofillers reinforced HDPE hybrid composite using oscillatory nanoindentation: An insight into medical applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Badgayan, Nitesh Dhar; Sahu, Santosh Kumar; Samanta, Sutanu; Rama Sreekanth, P S</p> <p>2018-04-01</p> <p>A thrust on improvement of different properties of polymer has taken a contemporary route with advent of nanofillers. Although several nanofillers are existent; MultiWalled Carbon Nanotubes- (MWCNTs) and h-Boron Nitride nanoplatelets-(h-BNNPs) unique combination of 1D and 2D dimensional geometry aids an advantage of B-C-N triad elemental effects on properties of tested samples. The current study aims to investigate the effects of MWCNT and h-BNNP reinforcement in High Density Polyethylene (HDPE) for high load bearing areas of medical applications requiring both elastic and viscous behavior. The results were analyzed keeping a view of its application in areas like HDPE based fracture fixation plates, acetabular cups and others. The composite and hybrid samples with different loadings were prepared after surface modification of nanofillers by mechanical mixing and molding technique. The dynamic nano-mechanical properties like storage modulus, loss modulus and tan delta were assessed for each sample during frequency swept from 10 to 220 Hz. The viscoelastic properties like h c /h m , H/E, elastic-plastic deformation were investigated and evaluated. At a frequency of 10 Hz, the storage and loss modulus of 0.1 CNT increased by 37.56% and decreased by 23.52% respectively on comparison with pure HDPE. This infers a good elastic as well as viscous behavior. Overall elastic behavior of 0.1 CNT was confirmed from tan delta evaluation. The interaction between B-C-N elemental triad had significant effect on creep strength, visco-damping property (h c /h m and H/E), elastic plastic displacement and pile-up and sink-in behavior. Highest creep strength and visco-damping property was exhibited by 0.25 CNT/0.15 BNNP hybrid. The elastic-plastic displacement of hybrid composite was noted as least, which decreased by 30% on comparison with pure HDPE. It can be inferred that presence of 1D-MWCNT and 2D-h-BNNP had significant effect on important dynamic viscoelastic and creep properties of HDPE based hybrid composites. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JKPS...72..858S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JKPS...72..858S"><span>Rheological Analysis of Live and Dead Microalgae Suspensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Young Seok; Kang, Chul; Jeong, Jiwon; Kim, Kyu-Oh; Lim, Eunju</p> <p>2018-04-01</p> <p>We investigate the rheological properties of microalgae suspensions that are currently being used in various applications. Two kinds of microalgae, chlorella and Synechococcus, were used for preparation of the suspensions, and their rheological characteristics were analyzed experimentally. In order to evaluate the viability of algae, we performed live and dead tests using trypan blue staining assays. Morphological analyses for the algae were conducted using a scanning electron microscope (SEM) and an optical microscope (OP). We examined the viscoelastic behavior of the live and the dead algae suspensions by performing dynamic oscillatory shear tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRCM...25..268S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRCM...25..268S"><span>Love-type wave propagation in a pre-stressed viscoelastic medium influenced by smooth moving punch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, A. K.; Parween, Z.; Chatterjee, M.; Chattopadhyay, A.</p> <p>2015-04-01</p> <p>In the present paper, a mathematical model studying the effect of smooth moving semi-infinite punch on the propagation of Love-type wave in an initially stressed viscoelastic strip is developed. The dynamic stress concentration due to the punch for the force of a constant intensity has been obtained in the closed form. Method based on Weiner-hopf technique which is indicated by Matczynski has been employed. The study manifests the significant effect of various affecting parameters viz. speed of moving punch associated with Love-type wave speed, horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, frequency parameter, and viscoelastic parameter on dynamic stress concentration due to semi-infinite punch. Moreover, some important peculiarities have been traced out and depicted by means of graphs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900062012&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900062012&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dviscoelastic"><span>Dynamic stability of unidirectional fiber-reinforced viscoelastic composite plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chandiramani, N. K.; Librescu, L.</p> <p>1989-01-01</p> <p>This paper deals with a dynamic stability analysis of unidirectional fiber-reinforced composite viscoelastic plates subjected to compressive edge loads. The integrodifferential equations governing the stability problem are obtained by using, in conjunction with a Boltzmann hereditary constitutive law for a three-dimensional viscoelastic medium, a higher-order shear deformation theory of orthotropic plates. Such a theory incorporates transverse shear deformation, transverse normal stress, and rotatory inertia effects. The solution of the stability problem as considered within this paper concerns the determination of the critical in-plane edge loads yielding the asymptotic instability. Numerical applications, based on material properties derived within the framework of Aboudi's micromechanical model, are presented and pertinent conclusions concerning the nature of the loss of stability and the influence of various parameters are outlined.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4792732','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4792732"><span>Microscale Characterization of the Viscoelastic Properties of Hydrogel Biomaterials using Dual-Mode Ultrasound Elastography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hong, Xiaowei; Stegemann, Jan P.; Deng, Cheri X.</p> <p>2016-01-01</p> <p>Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger’s viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. PMID:26928595</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26928595','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26928595"><span>Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hong, Xiaowei; Stegemann, Jan P; Deng, Cheri X</p> <p>2016-05-01</p> <p>Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger's viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25891371','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25891371"><span>Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hecht, Fabian M; Rheinlaender, Johannes; Schierbaum, Nicolas; Goldmann, Wolfgang H; Fabry, Ben; Schäffer, Tilman E</p> <p>2015-06-21</p> <p>We developed force clamp force mapping (FCFM), an atomic force microscopy (AFM) technique for measuring the viscoelastic creep behavior of live cells with sub-micrometer spatial resolution. FCFM combines force-distance curves with an added force clamp phase during tip-sample contact. From the creep behavior measured during the force clamp phase, quantitative viscoelastic sample properties are extracted. We validate FCFM on soft polyacrylamide gels. We find that the creep behavior of living cells conforms to a power-law material model. By recording short (50-60 ms) force clamp measurements in rapid succession, we generate, for the first time, two-dimensional maps of power-law exponent and modulus scaling parameter. Although these maps reveal large spatial variations of both parameters across the cell surface, we obtain robust mean values from the several hundreds of measurements performed on each cell. Measurements on mouse embryonic fibroblasts show that the mean power-law exponents and the mean modulus scaling parameters differ greatly among individual cells, but both parameters are highly correlated: stiffer cells consistently show a smaller power-law exponent. This correlation allows us to distinguish between wild-type cells and cells that lack vinculin, a dominant protein of the focal adhesion complex, even though the mean values of viscoelastic properties between wildtype and knockout cells did not differ significantly. Therefore, FCFM spatially resolves viscoelastic sample properties and can uncover subtle mechanical signatures of proteins in living cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MTDM...20..579S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MTDM...20..579S"><span>Mechanics based model for predicting structure-induced rolling resistance (SRR) of the tire-pavement system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shakiba, Maryam; Ozer, Hasan; Ziyadi, Mojtaba; Al-Qadi, Imad L.</p> <p>2016-11-01</p> <p>The structure-induced rolling resistance of pavements, and its impact on vehicle fuel consumption, is investigated in this study. The structural response of pavement causes additional rolling resistance and fuel consumption of vehicles through deformation of pavement and various dissipation mechanisms associated with inelastic material properties and damping. Accurate and computationally efficient models are required to capture these mechanisms and obtain realistic estimates of changes in vehicle fuel consumption. Two mechanistic-based approaches are currently used to calculate vehicle fuel consumption as related to structural rolling resistance: dissipation-induced and deflection-induced methods. The deflection-induced approach is adopted in this study, and realistic representation of pavement-vehicle interactions (PVIs) is incorporated. In addition to considering viscoelastic behavior of asphalt concrete layers, the realistic representation of PVIs in this study includes non-uniform three-dimensional tire contact stresses and dynamic analysis in pavement simulations. The effects of analysis type, tire contact stresses, pavement viscoelastic properties, pavement damping coefficients, vehicle speed, and pavement temperature are then investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MSSP...58..115D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MSSP...58..115D"><span>An investigation of the self-heating phenomenon in viscoelastic materials subjected to cyclic loadings accounting for prestress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Lima, A. M. G.; Rade, D. A.; Lacerda, H. B.; Araújo, C. A.</p> <p>2015-06-01</p> <p>It has been demonstrated by many authors that the internal damping mechanism of the viscoelastic materials offers many possibilities for practical engineering applications. However, in traditional procedures of analysis and design of viscoelastic dampers subjected to cyclic loadings, uniform, constant temperature is generally assumed and do not take into account the self-heating phenomenon. Moreover, for viscoelastic materials subjected to dynamic loadings superimposed on static preloads, such as engine mounts, these procedures can lead to poor designs or even severe failures since the energy dissipated within the volume of the material leads to temperature rises. In this paper, a hybrid numerical-experimental investigation of effects of the static preloads on the self-heating phenomenon in viscoelastic dampers subjected to harmonic loadings is reported. After presenting the theoretical foundations, the numerical and experimental results obtained in terms of the temperature evolutions at different points within the volume of the viscoelastic material for various static preloads are compared, and the main features of the methodology are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27853571','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27853571"><span>A viscoelastic-stochastic model of the effects of cytoskeleton remodelling on cell adhesion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Long; Zhang, Wenyan; Wang, Jizeng</p> <p>2016-10-01</p> <p>Cells can adapt their mechanical properties through cytoskeleton remodelling in response to external stimuli when the cells adhere to the extracellular matrix (ECM). Many studies have investigated the effects of cell and ECM elasticity on cell adhesion. However, experiments determined that cells are viscoelastic and exhibiting stress relaxation, and the mechanism behind the effect of cellular viscoelasticity on the cell adhesion behaviour remains unclear. Therefore, we propose a theoretical model of a cluster of ligand-receptor bonds between two dissimilar viscoelastic media subjected to an applied tensile load. In this model, the distribution of interfacial traction is assumed to follow classical continuum viscoelastic equations, whereas the rupture and rebinding of individual molecular bonds are governed by stochastic equations. On the basis of this model, we determined that viscosity can significantly increase the lifetime, stability and dynamic strength of the adhesion cluster of molecular bonds, because deformation relaxation attributed to the viscoelastic property can increase the rebinding probability of each open bond and reduce the stress concentration in the adhesion area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA606260','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA606260"><span>Final Shape of Precision Molded Optics: Part 2 - Validation and Sensitivity to Material Properties and Process Parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-06-27</p> <p>of the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior...the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior of the...data. In that article glass was modeled as purely viscous and thermal expansion was accounted for with a constant coefficient of thermal expansion (CTE</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhFl...27f3103W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhFl...27f3103W"><span>Numerical modeling of bubble dynamics in viscoelastic media with relaxation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warnez, M. T.; Johnsen, E.</p> <p>2015-06-01</p> <p>Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARR38001L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARR38001L"><span>Self-Healing Nanocomposite Hydrogel with Well-Controlled Dynamic Mechanics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Qiaochu; Mishra, Sumeet; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels</p> <p></p> <p>Network dynamics is a crucial factor that determines the macroscopic self-healing rate and efficiency in polymeric hydrogel materials, yet its controllability is seldom studied in most reported self-healing hydrogel systems. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we next designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two hierarchical relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its fast self-healing property without the need for external stimuli.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARX11002L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARX11002L"><span>Rapid Self-healing Nanocomposite Hydrogel with Tunable Dynamic Mechanics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Qiaochu; Mishra, Sumeet; Chapman, Brian; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels</p> <p></p> <p>The macroscopic healing rate and efficiency in self-repairing hydrogel materials are largely determined by the dissociation dynamics of their polymer network, which is hardly achieved in a controllable manner. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its rapid self-healing property without the need for external stimuli.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MApFl...5a4005N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MApFl...5a4005N"><span>Rich stochastic dynamics of co-doped Er:Yb fluorescence upconversion nanoparticles in the presence of thermal, non-conservative, harmonic and optical forces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nome, Rene A.; Sorbello, Cecilia; Jobbágy, Matías; Barja, Beatriz C.; Sanches, Vitor; Cruz, Joyce S.; Aguiar, Vinicius F.</p> <p>2017-03-01</p> <p>The stochastic dynamics of individual co-doped Er:Yb upconversion nanoparticles (UCNP) were investigated from experiments and simulations. The UCNP were characterized by high-resolution scanning electron microscopy, dynamic light scattering, and zeta potential measurements. Single UCNP measurements were performed by fluorescence upconversion micro-spectroscopy and optical trapping. The mean-square displacement (MSD) from single UCNP exhibited a time-dependent diffusion coefficient which was compared with Brownian dynamics simulations of a viscoelastic model of harmonically bound spheres. Experimental time-dependent two-dimensional trajectories of individual UCNP revealed correlated two-dimensional nanoparticle motion. The measurements were compared with stochastic trajectories calculated in the presence of a non-conservative rotational force field. Overall, the complex interplay of UCNP adhesion, thermal fluctuations and optical forces led to a rich stochastic behavior of these nanoparticles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=271946','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=271946"><span>Viscoelastic properties of oat ß-glucan-rich aqueous dispersions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>C-trim is a healthy food product containing the dietary of soluble fiber ß-glucan. The suspension of C-trim in water is a hydrocolloid biopolymer. The linear and non-linear rheological properties for suspensions of C-trim biopolymers were investigated. The linear viscoelastic behaviors for C-trim...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5830759','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5830759"><span>Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lu, Yuhua; Liu, Qian</p> <p>2018-01-01</p> <p>We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications. PMID:29515870</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29515870','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29515870"><span>Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Lang; Lu, Yuhua; Liu, Qian</p> <p>2018-02-01</p> <p>We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvE..95b3001M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvE..95b3001M"><span>Atomic-scale origin of dynamic viscoelastic response and creep in disordered solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milkus, Rico; Zaccone, Alessio</p> <p>2017-02-01</p> <p>Viscoelasticity has been described since the time of Maxwell as an interpolation of purely viscous and purely elastic response, but its microscopic atomic-level mechanism in solids has remained elusive. We studied three model disordered solids: a random lattice, the bond-depleted fcc lattice, and the fcc lattice with vacancies. Within the harmonic approximation for central-force lattices, we applied sum rules for viscoelastic response derived on the basis of nonaffine atomic motions. The latter motions are a direct result of local structural disorder, and in particular, of the lack of inversion symmetry in disordered lattices. By defining a suitable quantitative and general atomic-level measure of nonaffinity and inversion symmetry, we show that the viscoelastic responses of all three systems collapse onto a master curve upon normalizing by the overall strength of inversion-symmetry breaking in each system. Close to the isostatic point for central-force lattices, power-law creep G (t ) ˜t-1 /2 emerges as a consequence of the interplay between soft vibrational modes and nonaffine dynamics, and various analytical scalings, supported by numerical calculations, are predicted by the theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020009018','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020009018"><span>HITEMP Material and Structural Optimization Technology Transfer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collier, Craig S.; Arnold, Steve (Technical Monitor)</p> <p>2001-01-01</p> <p>The feasibility of adding viscoelasticity and the Generalized Method of Cells (GMC) for micromechanical viscoelastic behavior into the commercial HyperSizer structural analysis and optimization code was investigated. The viscoelasticity methodology was developed in four steps. First, a simplified algorithm was devised to test the iterative time stepping method for simple one-dimensional multiple ply structures. Second, GMC code was made into a callable subroutine and incorporated into the one-dimensional code to test the accuracy and usability of the code. Third, the viscoelastic time-stepping and iterative scheme was incorporated into HyperSizer for homogeneous, isotropic viscoelastic materials. Finally, the GMC was included in a version of HyperSizer. MS Windows executable files implementing each of these steps is delivered with this report, as well as source code. The findings of this research are that both viscoelasticity and GMC are feasible and valuable additions to HyperSizer and that the door is open for more advanced nonlinear capability, such as viscoplasticity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JChPh.144r4501Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JChPh.144r4501Y"><span>Dynamic and temperature dependent response of physical vapor deposited Se in freely standing nanometric thin films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoon, Heedong; McKenna, Gregory B.</p> <p>2016-05-01</p> <p>Here, we report results from an investigation of nano-scale size or confinement effects on the glass transition and viscoelastic properties of physical vapor deposited selenium films. The viscoelastic response of freely standing Se films was determined using a biaxial membrane inflation or bubble inflation method [P. A. O'Connell and G. B. McKenna, Science 307, 1760-1763 (2005)] on films having thicknesses from 60 to 267 nm and over temperatures ranging from Tg, macroscopic - 15 °C to Tg, macroscopic + 21 °C. Time-temperature superposition and time-thickness superposition were found to hold for the films in the segmental dispersion. The responses are compared with macroscopic creep and recoverable creep compliance data for selenium [K. M. Bernatz et al., J. Non-Cryst. Solids 307, 790-801 (2002)]. The time-temperature shift factors for the thin films show weaker temperature dependence than seen in the macroscopic behavior, being near to Arrhenius-like in their temperature dependence. Furthermore, the Se films exhibit a "rubbery-like" stiffening that increases as film thickness decreases similar to prior observations [P. A. O'Connell et al., Macromolecules 45(5), 2453-2459 (2012)] for organic polymers. In spite of the differences from the macroscopic behavior in the temperature dependence of the viscoelastic response, virtually no change in Tg as determined from the thickness dependence of the retardation time defining Tg was observed in the bubble inflation creep experiments to thicknesses as small as 60 nm. We also find that the observed rubbery stiffening is consistent with the postulate of K. L. Ngai et al. [J. Polym. Sci., Part B: Polym. Phys. 51(3), 214-224 (2013)] that it should correlate with the change of the macroscopic segmental relaxation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930028225&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930028225&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dviscoelastic"><span>Dynamic analysis to evaluate viscoelastic passive damping augmentation for the Space Shuttle Remote Manipulator System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alberts, Thomas E.; Xia, Houchun; Chen, Yung</p> <p>1992-01-01</p> <p>The effectiveness of constrained viscoelastic layer damping treatment designs is evaluated separately as passive control measures for low frequency joint dominated modes and higher frequency boom flexure dominated modes using a NASTRAN finite element analysis. Passive damping augmentation is proposed which is based on a constrained viscoelastic layer damping treatment applied to the surface of the manipulators's flexible booms. It is pointed out that even the joint compliance dominated modes can be damped to some degree through appropriate design of the treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880026889&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880026889&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dviscoelastic"><span>Dynamic characterization of viscoelastic polymer solutions in a lubricated cylinder - Plate apparatus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Doremus, P.; Piau, J. M.; Altman, R. L.</p> <p>1987-01-01</p> <p>The characterization of several viscoelastic lubricants which are oil or water based has been studied in an apparatus consisting of a lubricated cylinder-plate contact. The friction loads were measured as a function of speed. The experimental results show the influence of the molecular weight and of the concentration of the polymeric additive as well as the influence of the viscosity of the oil-base on the load and friction coefficient. Also a test for mechanical degradation was performed on the polymer solutions. Several additives can favor a viscoelastic lubrication.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NatSR...3E3258L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NatSR...3E3258L"><span>Multiplex Particle Focusing via Hydrodynamic Force in Viscoelastic Fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Doo Jin; Brenner, Howard; Youn, Jae Ryoun; Song, Young Seok</p> <p>2013-11-01</p> <p>We introduce a multiplex particle focusing phenomenon that arises from the hydrodynamic interaction between the viscoelastic force and the Dean drag force in a microfluidic device. In a confined microchannel, the first normal stress difference of viscoelastic fluids results in a lateral migration of suspended particles. Such a viscoelastic force was harnessed to focus different sized particles in the middle of a microchannel, and spiral channel geometry was also considered in order to take advantage of the counteracting force, Dean drag force that induces particle migration in the outward direction. For theoretical understanding, we performed a numerical analysis of viscoelastic fluids in the spiral microfluidic channel. From these results, a concept of the `Dean-coupled Elasto-inertial Focusing band (DEF)' was proposed. This study provides in-depth physical insight into the multiplex focusing of particles that can open a new venue for microfluidic particle dynamics for a concrete high throughput platform at microscale.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1171547','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1171547"><span>Dynamics and Stability of Rolling Viscoelastic Tires</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Potter, Trevor</p> <p>2013-04-30</p> <p>Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wavemore » solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20687686','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20687686"><span>Linear viscoelasticity of a single semiflexible polymer with internal friction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hiraiwa, Tetsuya; Ohta, Takao</p> <p>2010-07-28</p> <p>The linear viscoelastic behaviors of single semiflexible chains with internal friction are studied based on the wormlike-chain model. It is shown that the frequency dependence of the complex compliance in the high frequency limit is the same as that of the Voigt model. This asymptotic behavior appears also for the Rouse model with internal friction. We derive the characteristic times for both the high frequency limit and the low frequency limit and compare the results with those obtained by Khatri et al.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16532612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16532612"><span>Cortical bone viscoelasticity and fixation strength of press-fit femoral stems: an in-vitro model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Norman, T L; Ackerman, E S; Smith, T S; Gruen, T A; Yates, A J; Blaha, J D; Kish, V L</p> <p>2006-02-01</p> <p>Cementless total hip femoral components rely on press-fit for initial stability and bone healing and remodeling for secondary fixation. However, the determinants of satisfactory press-fit are not well understood. In previous studies, human cortical bone loaded circumferentially to simulate press-fit exhibited viscoelastic, or time dependent, behavior. The effect of bone viscoelastic behavior on the initial stability of press-fit stems is not known. Therefore, in the current study, push-out loads of cylindrical stems press-fit into reamed cadaver diaphyseal femoral specimens were measured immediately after assembly and 24 h with stem-bone diametral interference and stem surface treatment as independent variables. It was hypothesized that stem-bone interference would result in a viscoelastic response of bone that would decrease push-out load thereby impairing initial press-fit stability. Results showed that push-out load significantly decreased over a 24 h period due to bone viscoelasticity. It was also found that high and low push-out loads occurred at relatively small amounts of stem-bone interference, but a relationship between stem-bone interference and push-out load could not be determined due to variability among specimens. On the basis of this model, it was concluded that press-fit fixation can occur at relatively low levels of diametral interference and that stem-bone interference elicits viscoelastic response that reduces stem stability over time. From a clinical perspective, these results suggest that there could be large variations in initial press-fit fixation among patients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9001942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9001942"><span>Numerical conversion of transient to harmonic response functions for linear viscoelastic materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Buschmann, M D</p> <p>1997-02-01</p> <p>Viscoelastic material behavior is often characterized using one of the three measurements: creep, stress-relaxation or dynamic sinusoidal tests. A two-stage numerical method was developed to allow representation of data from creep and stress-relaxation tests on the Fourier axis in the Laplace domain. The method assumes linear behavior and is theoretically applicable to any transient test which attains an equilibrium state. The first stage numerically resolves the Laplace integral to convert temporal stress and strain data, from creep or stress-relaxation, to the stiffness function, G(s), evaluated on the positive real axis in the Laplace domain. This numerical integration alone allows the direct comparison of data from transient experiments which attain a final equilibrium state, such as creep and stress relaxation, and allows such data to be fitted to models expressed in the Laplace domain. The second stage of this numerical procedure maps the stiffness function, G(s), from the positive real axis to the positive imaginary axis to reveal the harmonic response function, or dynamic stiffness, G(j omega). The mapping for each angular frequency, s, is accomplished by fitting a polynomial to a subset of G(s) centered around a particular value of s, substituting js for s and thereby evaluating G(j omega). This two-stage transformation circumvents previous numerical difficulties associated with obtaining Fourier transforms of the stress and strain time domain signals. The accuracy of these transforms is verified using model functions from poroelasticity, corresponding to uniaxial confined compression of an isotropic material and uniaxial unconfined compression of a transversely isotropic material. The addition of noise to the model data does not significantly deteriorate the transformed results and data points need not be equally spaced in time. To exemplify its potential utility, this two-stage transform is applied to experimental stress relaxation data to obtain the dynamic stiffness which is then compared to direct measurements of dynamic stiffness using steady-state sinusoidal tests of the same cartilage disk in confined compression. In addition to allowing calculation of the dynamic stiffness from transient tests and the direct comparison of experimental data from different tests, these numerical methods should aid in the experimental analysis of linear and nonlinear material behavior, and increase the speed of curve-fitting routines by fitting creep or stress relaxation data to models expressed in the Laplace domain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......137H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......137H"><span>Parameter estimation of a nonlinear Burger's model using nanoindentation and finite element-based inverse analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamim, Salah Uddin Ahmed</p> <p></p> <p>Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities associated with nanoindentation the process of interpreting load-displacement data into material properties is difficult. Although, simple elastic behavior can be characterized easily, a method to characterize complicated material behavior such as nonlinear viscoelasticity is still lacking. In this study, a nanoindentation-based material characterization technique is developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoindentation experiment was modeled in finite element analysis software (ABAQUS), where a nonlinear viscoelastic behavior was incorporated using user-defined subroutine (UMAT). The model parameters were calibrated using a process called inverse analysis. In this study, a surrogate model-based approach was used for the inverse analysis. The different factors affecting the surrogate model performance are analyzed in order to optimize the performance with respect to the computational cost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28767075','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28767075"><span>Micro-Mechanical Viscoelastic Properties of Crosslinked Hydrogels Using the Nano-Epsilon Dot Method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mattei, Giorgio; Cacopardo, Ludovica; Ahluwalia, Arti</p> <p>2017-08-02</p> <p>Engineering materials that recapitulate pathophysiological mechanical properties of native tissues in vitro is of interest for the development of biomimetic organ models. To date, the majority of studies have focused on designing hydrogels for cell cultures which mimic native tissue stiffness or quasi-static elastic moduli through a variety of crosslinking strategies, while their viscoelastic (time-dependent) behavior has been largely ignored. To provide a more complete description of the biomechanical environment felt by cells, we focused on characterizing the micro-mechanical viscoelastic properties of crosslinked hydrogels at typical cell length scales. In particular, gelatin hydrogels crosslinked with different glutaraldehyde (GTA) concentrations were analyzed via nano-indentation tests using the nano-epsilon dot method. The experimental data were fitted to a Maxwell Standard Linear Solid model, showing that increasing GTA concentration results in increased instantaneous and equilibrium elastic moduli and in a higher characteristic relaxation time. Therefore, not only do gelatin hydrogels become stiffer with increasing crosslinker concentration (as reported in the literature), but there is also a concomitant change in their viscoelastic behavior towards a more elastic one. As the degree of crosslinking alters both the elastic and viscous behavior of hydrogels, caution should be taken when attributing cell response merely to substrate stiffness, as the two effects cannot be decoupled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23747487','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23747487"><span>FEM simulation of the die compaction of pharmaceutical products: influence of visco-elastic phenomena and comparison with experiments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Diarra, Harona; Mazel, Vincent; Busignies, Virginie; Tchoreloff, Pierre</p> <p>2013-09-10</p> <p>This work studies the influence of visco-elastic behavior in the finite element method (FEM) modeling of die compaction of pharmaceutical products and how such a visco-elastic behavior may improve the agreement between experimental and simulated compression curves. The modeling of the process was conducted on a pharmaceutical excipient, microcrystalline cellulose (MCC), by using Drucker-Prager cap model coupled with creep behavior in Abaqus(®) software. The experimental data were obtained on a compaction simulator (STYLCAM 200R). The elastic deformation of the press was determined by performing experimental tests on a calibration disk and was introduced in the simulation. Numerical optimization was performed to characterize creep parameters. The use of creep behavior in the simulations clearly improved the agreement between the numerical and experimental compression curves (stresses, thickness), mainly during the unloading part of the compaction cycle. For the first time, it was possible to reproduce numerically the fact that the minimum tablet thickness is not obtained at the maximum compression stress. This study proves that creep behavior must be taken into account when modeling the compaction of pharmaceutical products using FEM methods. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvL.117o4502K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvL.117o4502K"><span>Ligament Mediated Fragmentation of Viscoelastic Liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keshavarz, Bavand; Houze, Eric C.; Moore, John R.; Koerner, Michael R.; McKinley, Gareth H.</p> <p>2016-10-01</p> <p>The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with nmin=4 . The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27768340','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27768340"><span>Ligament Mediated Fragmentation of Viscoelastic Liquids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keshavarz, Bavand; Houze, Eric C; Moore, John R; Koerner, Michael R; McKinley, Gareth H</p> <p>2016-10-07</p> <p>The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with n_{min}=4. The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..MARW40001W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..MARW40001W"><span>Entanglement Dynamics in Miscible Polyisoprene / Poly(p-tert-butyl styrene) Blends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watanabe, Hiroshi</p> <p>2011-03-01</p> <p>Viscoelastic and dielectric behavior was examined for well entangled, miscible blends of high- M cis-polyisoprene (PI) and poly(p-tert-butyl styrene) (PtBS). The dielectric data of the blends, reflecting the global motion of the PI chains having the type-A dipoles, indicated that PI and PtBS were the fast and slow components therein. At high temperatures T , the blends exhibited two-step entanglement plateau. The high frequency (ω) plateau height was well described by a simple mixing rule of the entanglement length based on the number fraction of the Kuhn segments. At low T , the blend exhibited the Rouse-like power-law behavior of storage and loss moduli, G ' = G ~ω0.5 , in the range of ω where the high- ω plateau was supposed to emerge. This lack of the high- ω plateau was attributed to retardation of the Rouse equilibration of the PI chain over the entanglement length due to the hindrance from the slow PtBS chains: The PI and PtBS chains were equilibrated cooperatively, and the retardation due to PtBS shortened the plateau for PI to a width not resolved experimentally. A simple model for this cooperative equilibration formulated on the basis of the dielectric data described the viscoelastic data surprisingly well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29807238','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29807238"><span>Numerical simulations of microcrack-related damage and ignition behavior of mild-impacted polymer bonded explosives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Kun; Wu, Yanqing; Huang, Fenglei</p> <p>2018-08-15</p> <p>A physical model is developed to describe the viscoelastic-plastic deformation, cracking damage, and ignition behavior of polymer-bonded explosives (PBXs) under mild impact. This model improves on the viscoelastic-statistical crack mechanical model (Visco-SCRAM) in several respects. (i) The proposed model introduces rate-dependent plasticity into the framework which is more suitable for explosives with relatively high binder content. (ii) Damage evolution is calculated by the generalized Griffith instability criterion with the dominant (most unstable) crack size rather than the averaged crack size over all crack orientations. (iii) The fast burning of cracks following ignition and the effects of gaseous products on crack opening are considered. The predicted uniaxial and triaxial stress-strain responses of PBX9501 sample under dynamic compression loading are presented to illustrate the main features of the materials. For an uncovered cylindrical PBX charge impacted by a flat-nosed rod, the simulated results show that a triangular-shaped dead zone is formed beneath the front of the rod. The cracks in the dead zone are stable due to friction-locked stress state, whereas the cracks near the front edges of dead zone become unstable and turn into hotspots due to high-shear effects. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22966691','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22966691"><span>Rheological and mechanical properties of polypropylene prepared with multi-walled carbon nanotube masterbatch.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shim, Young-Sun; Park, Soo-Jin</p> <p>2012-07-01</p> <p>In this study, the effects of polypropylene-grafted maleic-anhydride-treated multi-walled carbon nanotubes (PP-MWNTs) on the viscoelastic behaviors and mechanical properties of a polypropylene-(PP)-based composite system were examined. The PP-MWNT/PP composites were prepared via melt mixing with a 3:1 ratio of PP-g-MA and acid-treated MWNTs at 220 degrees C. The surface characteristics of the PP-MWNTs were confirmed via Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). The viscoelastic behavior and mechanical properties of the PP-MWNT/PP composites were confirmed using a rheometer and an ultimate testing machine (UTM). The storage and loss moduli increased with increasing PP-MWNT content. The critical intensity stress factor (K(IC)) of the PP-MWNT/PP composites at high filler loading was also higher than that of the MWNT/PP composites. In conclusion, the viscoelastic behavior and mechanical properties of MWNT/PP can be improved by grafting MWNTs to PP-g-MA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960014851','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960014851"><span>Physical aging effects on the compressive linear viscoelastic creep of IM7/K3B composite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Veazie, David R.; Gates, Thomas S.</p> <p>1995-01-01</p> <p>An experimental study was undertaken to establish the viscoelastic behavior of 1M7/K3B composite in compression at elevated temperature. Creep compliance, strain recovery and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(g)). The IM7/K3B composite is a graphite reinforced thermoplastic polyimide with a T(g) of approximately 240 C. In a composite, the two matrix dominated compliance terms associated with time dependent behavior occur in the transverse and shear directions. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. Creep strain was converted to compliance and measured as a function of test time and aging time. Results included creep compliance master curves, physical aging shift factors and shift rates. The description of the unique experimental techniques required for compressive testing is also given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ZaMP...61..721C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ZaMP...61..721C"><span>A dynamic unilateral contact problem with adhesion and friction in viscoelasticity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cocou, Marius; Schryve, Mathieu; Raous, Michel</p> <p>2010-08-01</p> <p>The aim of this paper is to study an interaction law coupling recoverable adhesion, friction and unilateral contact between two viscoelastic bodies of Kelvin-Voigt type. A dynamic contact problem with adhesion and nonlocal friction is considered and its variational formulation is written as the coupling between an implicit variational inequality and a parabolic variational inequality describing the evolution of the intensity of adhesion. The existence and approximation of variational solutions are analysed, based on a penalty method, some abstract results and compactness properties. Finally, some numerical examples are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15525211','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15525211"><span>Scaling of F-actin network rheology to probe single filament elasticity and dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gardel, M L; Shin, J H; MacKintosh, F C; Mahadevan, L; Matsudaira, P A; Weitz, D A</p> <p>2004-10-29</p> <p>The linear and nonlinear viscoelastic response of networks of cross-linked and bundled cytoskeletal filaments demonstrates remarkable scaling with both frequency and applied prestress, which helps elucidate the origins of the viscoelasticity. The frequency dependence of the shear modulus reflects the underlying single-filament relaxation dynamics for 0.1-10 rad/sec. Moreover, the nonlinear strain stiffening of such networks exhibits a universal form as a function of prestress; this is quantitatively explained by the full force-extension relation of single semiflexible filaments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......404M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......404M"><span>Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martinetti, Luca</p> <p></p> <p>At service temperatures, A--B--A thermoplastic elastomers (TPEs) behave similarly to filled (and often entangled) B-rich rubbers since B block ends are anchored on rigid A domains. Therefore, their viscoelastic behavior is largely dictated by chain mobility of the B block rather than by microstructural order. Relating the small- and large-strain response of undiluted A--B--A triblocks to molecular parameters is a prerequisite for designing associated TPE-based systems that can meet the desired linear and nonlinear rheological criteria. This dissertation was aimed at connecting the chemical and topological structure of A--B--A TPEs with their viscoelastic properties, both in the linear and in the nonlinear regime. Since extensional deformations are relevant for the processing and often the end-use applications of thermoplastic elastomers, the behavior was investigated predominantly in uniaxial extension. The unperturbed size of polymer coils is one of the most fundamental properties in polymer physics, affecting both the thermodynamics of macromolecules and their viscoelastic properties. Literature results on poly(D,L-lactide) (PLA) unperturbed chain dimensions, plateau modulus, and critical molar mass for entanglement effect in viscosity were reviewed and discussed in the framework of the coil packing model. Self-consistency between experimental estimates of melt chain dimensions and viscoelastic properties was discussed, and the scaling behaviors predicted by the coil packing model were identified. Contrary to the widespread belief that amorphous polylactide must be intrinsically stiff, the coil packing model and accurate experimental measurements undoubtedly support the flexible nature of PLA. The apparent brittleness of PLA in mechanical testing was attributed to a potentially severe physical aging occurring at room temperature and to the limited extensibility of the PLA tube statistical segment. The linear viscoelastic response of A--B--A TPEs was first examined at temperatures where the A domains are glassy. Characteristic length scales and tube model parameters were determined, and the role of the glassy A domains on the entangled rubbery B network was assessed. Thermo-rheological complexity, observed near and below Tg,A, was attributed to augmented motional freedom of the B block ends at the corresponding A/B interfaces, in harmony with the theoretical treatment of thermo-rheological complexity for two-phase materials developed by Fesko and Tschoegl. When the magnitude of the steepness index was taken into account, the shift behavior was analogous to the response measured for pure B melts. Building upon the procedure proposed by Ferry and co-workers for entangled and unfilled polymer melts, a new method was developed to extract the matrix monomeric friction coefficient zeta0 from the linear response behavior of a filled system in the rubber-glass transition region, and to estimate the size of Gaussian submolecules. Stress relaxation beyond the path equilibration time was found qualitatively and quantitatively compatible with dynamically undiluted arm retraction dynamics of entangled dangling structures (originating either from a fraction of triblock chains having one end residing outside A domains or from diblock impurities). By employing tube models and rubber elasticity theories, suitably modified to account for microphase-segregation, the linear elastic behavior across the rubbery plateau and up to the entanglement time was modeled, and a simple analytical expression relating the Langley trapping factor with the fraction of entangled and unentangled dangling structures of the material was obtained. The critical-gel-like behavior typical of A--B--A TPEs at service temperatures approaching Tg,A was analyzed in terms of a power-law distribution of relaxation times derived from the wedge distribution, shown to be equivalent to Chambon--Winter's critical gel model and to the mechanical behavior of a fractional element. A relation between the observed power-law exponent and molecular structure was established. The measured low-frequency response, originating from the incipient glass transition of the A domains, was exploited and extrapolated to lower frequencies via a sequential application of the fractional Maxwell model and the fractional Zener model. With only a few, physically meaningful material parameters a realistic description of the A--B--A self-similar relaxation was obtained over a frequency range much broader than the experimental window and not accessible via time-temperature superposition. The relationship between large-strain response and network structure of A--B--A triblocks was investigated, by examining (1) the effect of linear relaxation mechanisms on the tensile behavior, (2) the sources of elastic and viscoelastic nonlinearities, and (3) the strain rate dependence of the ultimate properties. For the first time in the literature, the complex high-dimensional rheological signature of chewing gum was analyzed, especially in response to nonlinear and unsteady deformations in both shear and extension. A unique rheological fingerprint was obtained that is sufficient to provide a new robust definition of chewing gum that is independent of specific molecular composition. (Abstract shortened by ProQuest.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SCPMA..57..908D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SCPMA..57..908D"><span>Finite element method for viscoelastic medium with damage and the application to structural analysis of solid rocket motor grain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deng, Bin; Shen, ZhiBin; Duan, JingBo; Tang, GuoJin</p> <p>2014-05-01</p> <p>This paper studies the damage-viscoelastic behavior of composite solid propellants of solid rocket motors (SRM). Based on viscoelastic theories and strain equivalent hypothesis in damage mechanics, a three-dimensional (3-D) nonlinear viscoelastic constitutive model incorporating with damage is developed. The resulting viscoelastic constitutive equations are numerically discretized by integration algorithm, and a stress-updating method is presented by solving nonlinear equations according to the Newton-Raphson method. A material subroutine of stress-updating is made up and embedded into commercial code of Abaqus. The material subroutine is validated through typical examples. Our results indicate that the finite element results are in good agreement with the analytical ones and have high accuracy, and the suggested method and designed subroutine are efficient and can be further applied to damage-coupling structural analysis of practical SRM grain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910038906&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910038906&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dviscoelastic"><span>Recent results concerning the stability of viscoelastic shear deformable plates under compressive edge loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Librescu, L.; Chandiramani, N. K.</p> <p>1989-01-01</p> <p>Some recent results obtained by the authors are summarized concerning the stability of transversely isotropic flat panels whose materials exhibit a viscoelastic behavior and whose edges are subjected to in-plane biaxial compressive loads. Two transversely isotropic type materials, largely used in advanced technology, are considered: (1) the pyrolytic-graphite type, used in the thermal protection of aerospace vehicles, and (2) the type corresponding to unidirectional fiber-reinforced composites. In the former case, the planes of isotropy are parallel at each point to the midplane of the plate. In the latter case, they are normal to the fiber directions. The micromechanical relations developed by Aboudi (1984, 1986, 1987) are considered in conjunction with the correspondence principle of linear viscoelastic theory in order to predict the macroscopic viscoelastic properties of a material composed of uniaxial elastic fibers embedded in a linear viscoelastic matrix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27335746','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27335746"><span>Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Solares, Santiago D</p> <p>2016-01-01</p> <p>Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single- and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. A multifrequency AFM simulation tool based on the above sample model is provided as supporting information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22489576-pressure-induced-emergence-unusually-high-frequency-transverse-excitations-liquid-alkali-metal-evidence-two-types-collective-excitations-contributing-transverse-dynamics-high-pressures','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22489576-pressure-induced-emergence-unusually-high-frequency-transverse-excitations-liquid-alkali-metal-evidence-two-types-collective-excitations-contributing-transverse-dynamics-high-pressures"><span>Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: Evidence of two types of collective excitations contributing to the transverse dynamics at high pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bryk, Taras; Lviv Polytechnic National University, 12 S. Bandera Street, UA-79013 Lviv; Ruocco, G.</p> <p></p> <p>Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations inmore » liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960009451&hterms=fashion+models&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfashion%2Bmodels','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960009451&hterms=fashion+models&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfashion%2Bmodels"><span>A kinematically driven anisotropic viscoelastic constitutive model applied to tires</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.</p> <p>1995-01-01</p> <p>Aircraft tires are composite structures manufactured with viscoelastic materials such as carbon black filled rubber and nylon cords. When loaded they experience large deflections and moderately large strains. Detailed structural models of tires require the use of either nonlinear shell or nonlinear three dimensional solid finite elements. Computational predictions of the dynamic response of tires must consider the composite viscoelastic material behavior in a realistic fashion. We describe a modification to a nonlinear anisotropic shell finite element so it can be used to model viscoelastic stresses during general deformations. The model is developed by introducing internal variables of the type used to model elastic strain energy. The internal variables are strains, curvatures, and transverse shear angles which are in a one-to-one correspondence with the generalized coordinates used to model the elastic strain energy for nonlinear response. A difference-relaxation equation is used to relate changes in the observable strain field to changes in the internal strain field. The internal stress state is introduced into the equilibrium equations by converting it to nodal loads associated with the element's displacement degrees of freedom. In this form the tangent matrix in the Newton-Raphson solution algorithm is not modified from its form for the nonlinear statics problem. Only the gradient vector is modified and the modification is not computationally costly. The existing finite element model for the Space Shuttle nose gear tire is used to provide examples of the algorithm. In the first example, the tire's rim is displaced at a constant rate up to a fixed value. In the second example, the tire's rim is enforced to follow a saw tooth load and unload curve to generate hysteresis loops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995STIN...9616617J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995STIN...9616617J"><span>A kinematically driven anisotropic viscoelastic constitutive model applied to tires</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.</p> <p>1995-08-01</p> <p>Aircraft tires are composite structures manufactured with viscoelastic materials such as carbon black filled rubber and nylon cords. When loaded they experience large deflections and moderately large strains. Detailed structural models of tires require the use of either nonlinear shell or nonlinear three dimensional solid finite elements. Computational predictions of the dynamic response of tires must consider the composite viscoelastic material behavior in a realistic fashion. We describe a modification to a nonlinear anisotropic shell finite element so it can be used to model viscoelastic stresses during general deformations. The model is developed by introducing internal variables of the type used to model elastic strain energy. The internal variables are strains, curvatures, and transverse shear angles which are in a one-to-one correspondence with the generalized coordinates used to model the elastic strain energy for nonlinear response. A difference-relaxation equation is used to relate changes in the observable strain field to changes in the internal strain field. The internal stress state is introduced into the equilibrium equations by converting it to nodal loads associated with the element's displacement degrees of freedom. In this form the tangent matrix in the Newton-Raphson solution algorithm is not modified from its form for the nonlinear statics problem. Only the gradient vector is modified and the modification is not computationally costly. The existing finite element model for the Space Shuttle nose gear tire is used to provide examples of the algorithm. In the first example, the tire's rim is displaced at a constant rate up to a fixed value. In the second example, the tire's rim is enforced to follow a saw tooth load and unload curve to generate hysteresis loops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CompM..59..187L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CompM..59..187L"><span>Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.</p> <p>2017-02-01</p> <p>Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material engineering principle for discovering and manufacturing new composites with transformative impact on aerospace, automobile, petrochemical industries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4474959','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4474959"><span>Numerical modeling of bubble dynamics in viscoelastic media with relaxation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Warnez, M. T.; Johnsen, E.</p> <p>2015-01-01</p> <p>Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007MTDM...11..265Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007MTDM...11..265Y"><span>The effect of loading time on flexible pavement dynamic response: a finite element analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley</p> <p>2007-12-01</p> <p>Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhyE...75..266A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhyE...75..266A"><span>Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ansari, R.; Faraji Oskouie, M.; Gholami, R.</p> <p>2016-01-01</p> <p>In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29289929','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29289929"><span>Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Narooei, K; Arman, M</p> <p>2018-03-01</p> <p>In this research, the exponential stretched based hyperelastic strain energy was generalized to the hyper-viscoelastic model using the heredity integral of deformation history to take into account the strain rate effects on the mechanical behavior of materials. The heredity integral was approximated by the approach of Goh et al. to determine the model parameters and the same estimation was used for constitutive modeling. To present the ability of the proposed hyper-viscoelastic model, the stress-strain response of the thermoplastic elastomer gel tissue at different strain rates from 0.001 to 100/s was studied. In addition to better agreement between the current model and experimental data in comparison to the extended Mooney-Rivlin hyper-viscoelastic model, a stable material behavior was predicted for pure shear and balance biaxial deformation modes. To present the engineering application of current model, the Kolsky bars impact test of gel tissue was simulated and the effects of specimen size and inertia on the uniform deformation were investigated. As the mechanical response of polyurea was provided over wide strain rates of 0.0016-6500/s, the current model was applied to fit the experimental data. The results were shown more accuracy could be expected from the current research than the extended Ogden hyper-viscoelastic model. In the final verification example, the pig skin experimental data was used to determine parameters of the hyper-viscoelastic model. Subsequently, a specimen of pig skin at different strain rates was loaded to a fixed strain and the change of stress with time (stress relaxation) was obtained. The stress relaxation results were revealed the peak stress increases by applied strain rate until the saturated loading rate and the equilibrium stress with magnitude of 0.281MPa could be reached. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11749204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11749204"><span>Sol-Gel transition behavior of pure iota-carrageenan in both salt-free and added salt states.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hossain, K S; Miyanaga, K; Maeda, H; Nemoto, N</p> <p>2001-01-01</p> <p>This paper describes how strongly the gelation process of iota-carrageenan is affected by addition of metallic ions from the creep and creep recovery, dynamic viscoelasticity (DVE) and DSC measurements. Creep results at T = 25 degrees C indicate that below a polymer concentration C of 3.0 wt % the salt-free system behaves as a viscous solution, and it starts to exhibit viscoelasticity as C exceeds 3.0 wt %. In the range C = 5.0-7.0 wt %, the salt-free system shows gellike behavior whereas the added salt system, measured in the low C range 1.0-2.5 wt %, showed gellike behavior at the same temperature. The sol-gel transition temperature T(c) was determined using Winter's criterion as the temperature at which both G'(omega) and G' '(omega) follow power law behavior with the same exponent n. DSC measurements reveal that salt-free and added salt systems take different types of thermal behavior within the same temperature range. The temperature T(c) is quite close to the gelation temperature T(m) determined from DSC measurement. The Eldrige-Ferry plot was performed to estimate activaton enthalpy, which shows that physical cross-links in the salt-free iota-carrageenan is not strong in comparison with those of samples which contains metal ions. We conclude from the data analysis of C dependence of the plateau modulus using the theory developed by Jones and Marques for rigid networks based on the fractal theories that addition of metallic ions gives rise to a rigid fiber like structure even at low C of iota-carrageenan in contrast to the salt-free system for which a flexible structure has been maintained at higher C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MAR.P1166L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MAR.P1166L"><span>Rheology of Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lombardi, Jack; Xu, Di; Bhatnagar, Divya; Gersappe, Dilip; Sokolov, Jonathan; Rafailovich, Miriam</p> <p>2015-03-01</p> <p>The stiffness of PNIPA Gels has been reported could be significant improved by gelation with clay fillers. Here we conducted systematic rheology study of synthesized PNIPA-Clay Composites at different clay concentration, in a range from fluid to strong gel, where G'' dominant changed to G' dominant. Molecular dynamics simulation was employed to analyze the structure of composites and corresponding mechanical changes with increased clays. Where we found viscoelastic behavior become significant only 1.5 times above percolation threshold. The yield stress extrapolated from our rheology results shows good fitting to modified Mooney's theory of suspension viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22390787-influence-time-dependent-flight-maneuver-velocities-elastic-viscoelastic-flexibilities-aerodynamic-stability-derivatives','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22390787-influence-time-dependent-flight-maneuver-velocities-elastic-viscoelastic-flexibilities-aerodynamic-stability-derivatives"><span>The influence of time dependent flight and maneuver velocities and elastic or viscoelastic flexibilities on aerodynamic and stability derivatives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cochrane, Alexander P.; Merrett, Craig G.; Hilton, Harry H.</p> <p>2014-12-10</p> <p>The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject tomore » loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. This paper reports on analytical analyses and simulations of the effects of flexibility and time dependent material properties (viscoelasticity) on aerodynamic derivatives and on lateral, longitudinal, directional and spin stability derivatives. Cases of both constant and variable flight and maneuver velocities are considered. Analytical results for maneuvers involving constant and time dependent rolling velocities are analyzed, discussed and evaluated. The relationships between rolling velocity p and aileron angular displacement β as well as control effectiveness are analyzed and discussed in detail for elastic and viscoelastic wings. Such analyses establish the roll effectiveness derivatives (∂[p(t)])/(V{sub ∞}∂β(t)) . Similar studies involving other stability and aerodynamic derivatives are also undertaken. The influence of the twin effects of viscoelastic and elastic materials and of variable flight, rolling, pitching and yawing velocities on longitudinal, lateral and directional are also investigated. Variable flight velocities, encountered during maneuvers, render the usually linear problem at constant velocities into a nonlinear one.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........31Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........31Y"><span>Examination of High Frequency MHz Rheology of Filled Polymer Composites and Photopolymers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yeh, Chyi-Huey Joshua</p> <p></p> <p>The quartz crystal microbalance (QCM) is a versatile characterization tool capable of tracking changes in areal mass and high frequency MHz rheology of micron thick films. The QCM primarily consists of a single quartz disc with electrodes deposited on both sides of the disc. Due to the piezoelectric nature of quartz, introduction of an oscillating voltage near the resonance condition of the quartz disc produces a traveling shear wave that can be measured with electrical admittance analysis. This technique behaves like an acoustic reflectometer, where an induced mechanical shear wave propagates and reflects at the interfaces between material layers with differing acoustic impedances. Based on how the shear wave interacts with the interfaces, information on the material properties can be quantitatively modeled. In this dissertation, a quantitative approach of determining the magnitude and sources of error is presented, so that interpretation of viscoelastic information and areal mass changes can be performed with confidence. Specifically, the role of anharmonic coupling with harmonic modes are explored and simulated with COMSOL Multiphysics. Several case studies motivating and highlighting the utility of the QCM is presented. The fracture and thermal aging behavior of several nanofilled silicone elastomers are examined using traditional mechanical tests, such as pure shear geometry and dynamic mechanical analysis (DMA). Results can be qualitatively explained by the concept of dynamic mechanical heterogeneity, where a high mechanical contrast is desired for high fracture toughness. However, DMA results can be difficult to interpret (especially at shifted high frequencies) due to thermal rheological complexity, a characteristic commonly found in many polymer composites. This motivates the application of the QCM, where MHz viscoelastic behavior can be directly probed, providing insight on the dissipative behavior at local length scales. Investigation of polysilicate nanofillers on the high frequency viscoelastic behavior of polydimethylsiloxane (PDMS) melt is discussed. The amount of filler varied from pure PDMS to pure filler, highlighting the advantage of using an acoustic rheometer to measure properties of films exhibiting viscous to highly brittle behavior. An empirical mixing law is proposed in describing the changes in visceolasticity as a function of filler content, so that the critical filler content at the liquid to solid transition can be estimated. The liquid to solid transition is qualitatively explained by percolation rigidity of the polysilicate nanofillers. The QCM is also extended as a photorheometer, capable of measuring in situ rheology of fast radical photopolymerizations. A model acrylate system is examined as a means to demonstrate the value of the QCM and to provide context for the examination of a more interesting thiol-ene photopolymer system. Due to insensitivity of thiol-ene chemical kinetics towards oxygen inhibition during curing, the impact of oxygen incorporation on the crosslinked viscoelastic network is investigated. In addition to studying thiol-ene reactions, photoinitiated copper catalyzed alkyne azide cycloaddition is also explored. The effects of plasticization on the curing kinetics and mechanical properties are presented. Altogether, this dissertation serves to contribute to the fundamental development of the QCM as a quantitative MHz rheometer. By thoroughly presenting a quantitative approach towards error analysis and providing successful QCM case studies, the barrier of entrance for using the QCM is substantially lowered. Future researchers will be able to efficiently conduct QCM experiments and analysis at a higher level of operation. Several ideas are also briefly proposed in which the QCM can provide valuable insights and contributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..369a2039F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..369a2039F"><span>Study on rheological properties of CMC/Eu-Tb solutions with different concentrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Z. C.; Ye, J.; Xiong, J.</p> <p>2018-05-01</p> <p>The rheological properties of polymer solution are sensitive to variations in the polymer structure. Carboxymethyl cellulose (CMC) aqueous solution has been used in many fields, such as food, medicine and paper industry. In this paper, the effects of different concentrations (2% - 6%) of CMC/Eu-Tb on their rheological properties were investigeted, including steady-state flow and viscoelastic response. The results show that, the viscosity of CMC/Eu-Tb is lower than that of CMC, at the same concentrations; the products solutions present a nearly Newtonian behavior at the low concentrations (2% - 3%); while at the higher concentrations (4% - 6%), the products solutions present a pseudoplastic behavior; shear-thinning behavior is due to the polymer chains unravel under the action of flow and the molecular chains are oriented in the flow direction. The results also show that the viscosity of the solutions decreases with increasing temperature. Dynamic rheological tests show that CMC/Eu-Tb has viscoelasticity in the concentrations of 2% - 6%. At lower concentrations, the elastic modulus G‧ is slightly higher than the viscous modulus G″, and as the concentrations increase, the elastic modulus G‧ is significantly higher than the viscous modulus G″. It means that at the lower solution concentrations, the solutions tend to be less elastic and easier to flow. Most of the energies are lost through the viscous flow. As the solution concentrations increase, the solutions tend to be more elastic, and the system tends to form a gel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApPhL.102c3701T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApPhL.102c3701T"><span>Probing viscosity of nanoliter droplets of butterfly saliva by magnetic rotational spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tokarev, Alexander; Kaufman, Bethany; Gu, Yu; Andrukh, Taras; Adler, Peter H.; Kornev, Konstantin G.</p> <p>2013-01-01</p> <p>Magnetic rotational spectroscopy was employed for rheological analysis of nanoliter droplets of butterfly saliva. Saliva viscosity of butterflies is 4-5 times greater than that of water and similar to that of 30%-40% sucrose solutions at 25 °C. Hence, viscosity stratification would not be expected when butterflies feed on nectar with 30%-40% sugar concentrations. We did not observe any viscoelastic effects or non-Newtonian behavior of saliva droplets. Thus, butterfly saliva is significantly different rheologically from that of humans, which demonstrates a viscoelastic behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA504365','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA504365"><span>Adhesive Viscoelastic Response to Surfaces with Tailored Surface Chemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-12-01</p> <p>represents the minimum energy where failure occurs. This term (measured at low rates and high temperatures to minimize viscoelastic effects ) is...temperature effects described by Williams-Landel-Ferry (WLF) behavior. In this work, we present initial attempts to correlate interfacial bonding and...either 3-methacryloxypropyltrimethoxysilane 97% (MPS, Avocado Research Chemicals Ltd) or n- propyltrimethoxysilane (PTMO, Degussa Corporation). Each</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3708304','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3708304"><span>Linear and Nonlinear Viscoelastic Modeling of Aorta and Carotid Pressure-Area Dynamics under in vivo and ex vivo Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Valdez-Jasso, Daniela; Bia, Daniel; Zócalo, Yanina; Armentano, Ricardo L.; Haider, Mansoor A.; Olufsen, Mette S.</p> <p>2013-01-01</p> <p>A better understanding of the biomechanical properties of the arterial wall provides important insight into arterial vascular biology under normal (healthy) and pathological conditions. This insight has potential to improve tracking of disease progression and to aid in vascular graft design and implementation. In this study, we use linear and nonlinear viscoelastic models to predict biomechanical properties of the thoracic descending aorta and the carotid artery under ex vivo and in vivo conditions in ovine and human arteries. Models analyzed include a four-parameter (linear) Kelvin viscoelastic model and two five-parameter nonlinear viscoelastic models (an arctangent and a sigmoid model) that relate changes in arterial blood pressure to the vessel cross-sectional area (via estimation of vessel strain). These models were developed using the framework of Quasilinear Viscoelasticity (QLV) theory and were validated using measurements from the thoracic descending aorta and the carotid artery obtained from human and ovine arteries. In vivo measurements were obtained from ten ovine aortas and ten human carotid arteries. Ex vivo measurements (from both locations) were made in eleven male Merino sheep. Biomechanical properties were obtained through constrained estimation of model parameters. To further investigate the parameter estimates we computed standard errors and confidence intervals and we used analysis of variance to compare results within and between groups. Overall, our results indicate that optimal model selection depends on the arterial type. Results showed that for the thoracic descending aorta (under both experimental conditions) the best predictions were obtained with the nonlinear sigmoid model, while under healthy physiological pressure loading the carotid arteries nonlinear stiffening with increasing pressure is negligible, and consequently, the linear (Kelvin) viscoelastic model better describes the pressure-area dynamics in this vessel. Results comparing biomechanical properties show that the Kelvin and sigmoid models were able to predict the zero-pressure vessel radius; that under ex vivo conditions vessels are more rigid, and comparatively, that the carotid artery is stiffer than the thoracic descending aorta; and that the viscoelastic gain and relaxation parameters do not differ significantly between vessels or experimental conditions. In conclusion, our study demonstrates that the proposed models can predict pressure-area dynamics and that model parameters can be extracted for further interpretation of biomechanical properties. PMID:21203846</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28919511','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28919511"><span>Viscoelastic properties of α-keratin fibers in hair.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Yang; Yang, Wen; André Meyers, Marc</p> <p>2017-12-01</p> <p>Considerable viscoelasticity and strain-rate sensitivity are a characteristic of α-keratin fibers, which can be considered a biopolymer. The understanding of viscoelasticity is an important part of the knowledge of the overall mechanical properties of these biological materials. Here, horse and human hairs are examined to analyze the sources of this response. The dynamic mechanical response of α-keratin fibers over a range of frequencies and temperatures is analyzed using a dynamic mechanical analyzer. The α-keratin fibers behave more elastically at higher frequencies while they become more viscous at higher temperatures. A glass transition temperature of ∼55°C is identified. The stress relaxation behavior of α-keratin fibers at two strains, 0.02 and 0.25, is established and fit to a constitutive equation based on the Maxwell-Wiechert model. The constitutive equation is further compared to the experimental results within the elastic region and a good agreement is obtained. The two relaxation constants, 14s and 359s for horse hair and 11s and 207s for human hair, are related to two hierarchical levels of relaxation: the amorphous matrix-intermediate filament interfaces, for the short term, and the cellular components for the long term. Results of the creep test also provide important knowledge on the uncoiling and phase transformation of the α-helical structure as hair is uniaxially stretched. SEM results show that horse hair has a rougher surface morphology and damaged cuticles. It also exhibits a lower strain-rate sensitivity of 0.05 compared to that of 0.11 for human hair. After the horse and human hairs are chemically treated and the disulfide bonds are cleaved, they exhibit a similar strain-rate sensitivity of ∼0.05. FTIR results confirms that the human hair is more sensitive to the -S-S- cleavage, resulting in an increase of cysteic acid content. Therefore, the disulfide bonds in the matrix are experimentally identified as one source of the strain-rate sensitivity and viscoelasticity in α-keratin fibers. Hair has outstanding mechanical strength which is equivalent to metals on a density-normalized basis. It possesses, in addition to the strength, a large ductility that is enabled by either the unfolding of the alpha helices and/or the transformation of these helices to beta sheets. We identify the deformation and failure mechanisms and connect them to the hierarchical structure, with emphasis on the significant viscoelasticity of these unique biological materials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3346220','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3346220"><span>Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hayot, Céline M.; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A.</p> <p>2012-01-01</p> <p>Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall. PMID:22291130</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22324715','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22324715"><span>Dynamics on the laminar-turbulent boundary and the origin of the maximum drag reduction asymptote.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xi, Li; Graham, Michael D</p> <p>2012-01-13</p> <p>Dynamical trajectories on the boundary in state space between laminar and turbulent plane channel flow-edge states-are computed for Newtonian and viscoelastic fluids. Viscoelasticity has a negligible effect on the properties of these solutions, and, at least at a low Reynolds number, their mean velocity profiles correspond closely to experimental observations for polymer solutions in the maximum drag reduction regime. These results confirm the existence of weak turbulence states that cannot be suppressed by polymer additives, explaining the fact that there is an upper limit for polymer-induced drag reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1395439','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1395439"><span>Resolving Properties of Polymers and Nanoparticle Assembly through Coarse-Grained Computational Studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Grest, Gary S.</p> <p>2017-09-01</p> <p>Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects themore » measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..295a2018S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..295a2018S"><span>Ex-Vivo Cow Skin Viscoelastic Effect for Tribological Aspects in Endoprosthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Subhi, K. A.; Tudor, A.; Hussein, E. K.; Wahad, H.; Chisiu, G.</p> <p>2018-01-01</p> <p>The viscoelastic behavior of ex-vivo cow skin was experimentally studied by applied load from different indenter types (circle, square and triangle, all types have the same area) for different times (10 sec, 30 sec, and 60 sec). The viscoelastic tests were carried out using a UMT series (UMT-II, CETR Corporation). The experimental results collected at different operating conditions showed that the cow skin has a higher reaction against the triangle indenter compared to the other shapes. Whereas the hysteresis of cow skin was lower at low applied load time and it's increased when the time increased.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MTDM..tmp....2H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MTDM..tmp....2H"><span>Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai</p> <p>2018-01-01</p> <p>In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........27M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........27M"><span>Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mongkolsuttirat, Kittisun</p> <p></p> <p>Radio frequency (RF) switches based on capacitive MicroElectroMechanical System (MEMS) devices have been proposed as replacements for traditional solid-state field effect transistor (FET) devices. However, one of the limitations of the existing capacitive switch designs is long-term reliability. Failure is generally attributed to electrical charging in the capacitor's dielectric layer that creates an attractive electrostatic force between a moving upper capacitor plate (a metal membrane) and the dielectric. This acts as an attractive stiction force between them that may cause the switch to stay permanently in the closed state. The force that is responsible for opening the switch is the elastic restoring force due to stress in the film membrane. If the restoring force decreases over time due to stress relaxation, the tendency for stiction failure behavior will increase. Au films have been shown to exhibit stress relaxation even at room temperature. The stress relaxation observed is a type of viscoelastic behavior that is more significant in thin metal films than in bulk materials. Metal films with a high relaxation resistance would have a lower probability of device failure due to stress relaxation. It has been shown that solid solution and oxide dispersion can strengthen a material without unacceptable decreases in electrical conductivity. In this study, the viscoelastic behavior of Au, AuV solid solution and AuV2O5 dispersion created by DC magnetron sputtering are investigated using the gas pressure bulge testing technique in the temperature range from 20 to 80°C. The effectiveness of the two strengthening approaches is compared with the pure Au in terms of relaxation modulus and 3 hour modulus decay. The time dependent relaxation curves can be fitted very well with a four-term Prony series model. From the temperature dependence of the terms of the series, activation energies have been deduced to identify the possible dominant relaxation mechanism. The measured modulus relaxation of Au films also proves that the films exhibit linear viscoelastic behavior. From this, a linear viscoelastic model is shown to fit very well to experimental steady state stress relaxation data and can predict time dependent stress for complex loading histories including the ability to predict stress-time behavior at other strain rates during loading. Two specific factors that are expected to influence the viscoelastic behavior-degree of alloying and grain size are investigated to explore the influence of V concentration in solid solution and grain size of pure Au. It is found that the normalized modulus of Au films is dependent on both concentration (C) and grain size (D) with proportionalities of C1/3 and D 2, respectively. A quantitative model of the rate-equation for dislocation glide plasticity based on Frost and Ashby is proposed and fitted well with steady state anelastic stress relaxation experimental data. The activation volume and the density of mobile dislocations is determined using repeated stress relaxation tests in order to further understand the viscoelastic relaxation mechanism. A rapid decrease of mobile dislocation density is found at the beginning of relaxation, which correlates well with a large reduction of viscoelastic modulus at the early stage of relaxation. The extracted activation volume and dislocation mobility can be ascribed to mobile dislocation loops with double kinks generated at grain boundaries, consistent with the dislocation mechanism proposed for the low activation energy measured in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28967216','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28967216"><span>Temperature dependency of the interaction between xanthan gum and sage seed gum: An interpretation of dynamic rheology and thixotropy based on creep test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Razavi, Seyed M A; Behrouzian, Fataneh; Alghooneh, Ali</p> <p>2017-10-01</p> <p>The viscoelastic (transient and dynamic) and time-dependent rheological behaviors of XG (xanthan gum), SSG (sage seed gum) and their blends at various ratios (1-3, 1-1, and 3-1 SSG-XG) and temperatures (10, 30, and 50C) were investigated using creep and recovery analyses. The creep compliance was converted to stress relaxation data; then, the structural kinetic model satisfactorily fitted the time-dependent relaxation modulus. Furthermore, dynamic rheology of mixtures was investigated using creep analyses. The most important contribution of the Maxwell spring to deformation (53.51%), was that corresponding to the SSG at 50C and the most important contribution of the Maxwell dashpot to the maximum deformation, were those corresponding to the XG (61.44%) and 1-3 SSG-XG (58.91%) samples both at 50C. The breakdown rate constant ( α) of the crosslinked gum structure in SSG and 3-1 SSG-XG under the application of external shear stress increases with temperature from 10 to 50C in the range of 0.14-0.32 (1/s) and 0.14-0.24 (1/s), respectively, whereas other dispersions showed the reverse trend. Among all dispersions, only XG and 1-3 SSG-XG demonstrated crossover frequency at 9.95 and 31.47 rad/s, respectively, at 50C, indicative of the lowest entanglement density for 1-3 SSG-XG. The greatest interaction between SSG and XG occurred for 3-1 ratio at 50C, which was confirmed by the Han curves. Hydrocolloid blends, particularly those consisting of xanthan gum and a galactomannan from new source can provide a range of attractive textural properties. Rheological studies contribute to the description of the molecular structure and prediction of the structural changes during their manufacturing processes. Sage seed gum (SSG), as a polyelectrolyte galactomannan, has a great potential to exert stabilizing, thickening, gelling and binding properties in food, cosmetics, and pharmaceutical systems. Therefore, we elaborate the interactions between SSG and xanthan gum and also the effect of temperature using transient measurements. In this way, we show that the viscoelastic (transient and dynamic) and time-dependent rheological behaviors may be investigated using single creep/recovery tests. This new insight into transient measurements is useful to characterize the interaction behavior of similar biopolymers blends. © 2017 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4209012','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4209012"><span>Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mukherjee, Swarnajay; Sarkar, Kausik</p> <p>2014-01-01</p> <p>Wall induced lateral migration of a viscoelastic (FENE-MCR) drop in a Newtonian fluid is investigated. Just like a Newtonian drop, a viscoelastic drop reaches a quasi-steady state where the lateral velocity only depends on the instantaneous distance from the wall. The drop migration velocity and the deformation scale inversely with the square and the cube of the distance from the wall, respectively. The migration velocity varies non-monotonically with increasing viscoelasticity (increasing Deborah number); initially increasing and then decreasing. An analytical explanation has been given of the effects by computing the migration velocity as arising from an image stresslet field due to the drop. The semi-analytical expression matches well with the simulated migration velocity away from the wall. It contains a viscoelastic stresslet component apart from those arising from interfacial tension and viscosity ratio. The migration dynamics is a result of the competition between the viscous (interfacial tension and viscosity ratio) and the viscoelastic effects. The viscoelastic stresslet contribution towards the migration velocity steadily increases. But the interfacial stresslet—arising purely from the drop shape—first increases and then decreases with rising Deborah number causing the migration velocity to be non-monotonic. The geometric effect of the interfacial stresslet is caused by a corresponding nonmonotonic variation of the drop inclination. High viscosity ratio is briefly considered to show that the drop viscoelasticity could stabilize a drop against breakup, and the increase in migration velocity due to viscoelasticity is larger compared to the viscosity-matched case. PMID:25378894</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT.......194W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT.......194W"><span>The viscoelastic evaluation of transdermal adhesive systems and the influence of excipients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wick, Steven Marshall</p> <p>1998-12-01</p> <p>The transdermal dosage form requires simultaneous consideration of both drug delivery and adhesion to skin in order to achieve the desired therapeutic effect. A transdermal system with inadequate adhesion performance will produce a variable and unpredictable systemic blood level profile. It is therefore of paramount importance that the adhesive performance be fully contemplated within the development of a total transdermal system. An experimental strategy was developed within this thesis which utilizes a sequential combination of a dynamic stress followed by a static shear stress evaluation Within the dynamic stress evaluation, a sinusoidal stress of constant frequency, over a frequency of 0.065 to 64 Hz was applied normal to the surface of an adhesive system. The static shear stress apparatus (CIRUSS) applies a constant shear stress for a defined time interval (three minutes) followed by an instantaneous removal of the applied shear stress. The mechanical behavior of two distinct adhesive polymers (silicone and acrylate) was modeled as a one-dimensional four-parameter solid and five-parameter solid respectively for the two adhesive systems. The effects of several additives were examined including ethyl oleate, glyceryl monolaurate, an amine oxide, Teflon and a macromer. In addition, the effect of branching and cross-linking was examined using the acrylate adhesive system. A physical interpretation of the mechanical behavior was proposed associating the deformation within an adhesive system with the disruption of the hydrogen bonding network as well as the covalent bonds within the polymer backbone. The collected data was consistent with the author's postulate. The presented results verify the utility of the aforementioned sequential evaluation strategy in characterizing adhesive viscoelastic performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28773500','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28773500"><span>Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lang, Liu; Song, Ki-Il; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo</p> <p>2016-05-17</p> <p>Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5503082','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5503082"><span>Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lang, Liu; Song, KI-IL; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo</p> <p>2016-01-01</p> <p>Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials. PMID:28773500</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8964773','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8964773"><span>An experimentally based nonlinear viscoelastic model of joint passive moment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Esteki, A; Mansour, J M</p> <p>1996-04-01</p> <p>Previous investigations have not converged on a generally accepted model of the dissipative part of joint passive moment. To provide a basis for developing a model, a series of measurements were performed to characterize the passive moment at the metacarpophalangeal joint of the index finger. Two measurement procedures were used, one in moment relaxation over a range of fixed joint angles and the other at a series of constant joint velocities. Fung's quasi-linear viscoelastic theory motivated the development of the passive moment model. Using this approach, it was not necessary to make restrictive assumptions regarding the viscoelastic behavior of the passive moment. The generality of the formulation allowed specific functions to be chosen based on experimental data rather than finding coefficients which attempted to fit a preselected model of the data. It was shown that a nonlinear viscoelastic model described the passive stiffness. No significant frictional effects were found. Of particular importance was the nonlinear behavior of the dissipative part of the passive moment which was modeled by joint speed raised to a power less than one. This result could explain the differing findings among previous investigations, and may have important implications for control of limb movement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APExp..10g6602H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APExp..10g6602H"><span>Accurate and fast creep test for viscoelastic fluids using disk-probe-type and quadrupole-arrangement-type electromagnetically spinning systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirano, Taichi; Sakai, Keiji</p> <p>2017-07-01</p> <p>Viscoelasticity is a unique characteristic of soft materials and describes its dynamic response to mechanical stimulations. A creep test is an experimental method for measuring the strain ratio/rate against an applied stress, thereby assessing the viscoelasticity of the materials. We propose two advanced experimental systems suitable for the creep test, adopting our original electromagnetically spinning (EMS) technique. This technique can apply a constant torque by a noncontact mechanism, thereby allowing more sensitive and rapid measurements. The viscosity and elasticity of a semidilute wormlike micellar solution were determined using two setups, and the consistency between the results was assessed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28764545','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28764545"><span>Dynamic viscoelasticity measurement under alternative torque using electromagnetically spinning method with quadruple electromagnets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matsuura, Yusuke; Hirano, Taichi; Sakai, Keiji</p> <p>2017-07-01</p> <p>In this study, we developed a novel type of rheological measurement system. Here, a spherical probe is driven to rotate periodically by applying torques using quadruple electromagnets in a noncontact manner. Moreover, this system is an enhancement of our electromagnetically spinning (EMS) viscometer, which is widely used for measuring rheological flow curves in various industrial fields. The quadruple EMS method provides the frequency spectrum of viscoelasticity, in addition to shear viscosity, in a steady flow by switching the operation modes of the driving torque. We show the results obtained for Newtonian fluids and viscoelastic materials and demonstrate the validity of the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSV...335..304Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSV...335..304Z"><span>A nonlinear and fractional derivative viscoelastic model for rail pads in the dynamic analysis of coupled vehicle-slab track systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Shengyang; Cai, Chengbiao; Spanos, Pol D.</p> <p>2015-01-01</p> <p>A nonlinear and fractional derivative viscoelastic (FDV) model is used to capture the complex behavior of rail pads. It is implemented into the dynamic analysis of coupled vehicle-slab track (CVST) systems. The vehicle is treated as a multi-body system with 10 degrees of freedom, and the slab track is represented by a three layer Bernoulli-Euler beam model. The model for the rail pads is one dimensional, and the force-displacement relation is based on a superposition of elastic, friction, and FDV forces. This model takes into account the influences of the excitation frequency and of the displacement amplitude through a fractional derivative element, and a nonlinear friction element, respectively. The Grünwald representation of the fractional derivatives is employed to numerically solve the fractional and nonlinear equations of motion of the CVST system by means of an explicit integration algorithm. A dynamic analysis of the CVST system exposed to excitations of rail harmonic irregularities is carried out, pointing out the stiffness and damping dependence on the excitation frequency and the displacement amplitude. The analysis indicates that the dynamic stiffness and damping of the rail pads increase with the excitation frequency while they decrease with the displacement amplitude. Furthermore, comparisons between the proposed model and ordinary Kelvin model adopted for the CVST system, under excitations of welded rail joint irregularities and of random track irregularities, are conducted in the time domain as well as in the frequency domain. The proposed model is shown to possess several modeling advantages over the ordinary Kelvin element which overestimates both the stiffness and damping features at high frequencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJT....38...56N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJT....38...56N"><span>Effect of Solar Radiation on Viscoelastic Properties of Bovine Leather: Temperature and Frequency Scans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nalyanya, Kallen Mulilo; Rop, Ronald K.; Onyuka, Arthur S.</p> <p>2017-04-01</p> <p>This work presents both analytical and experimental results of the effect of unfiltered natural solar radiation on the thermal and dynamic mechanical properties of Boran bovine leather at both pickling and tanning stages of preparation. Samples cut from both pickled and tanned pieces of leather of appropriate dimensions were exposed to unfiltered natural solar radiation for time intervals ranging from 0 h (non-irradiated) to 24 h. The temperature of the dynamic mechanical analyzer was equilibrated at 30°C and increased to 240°C at a heating rate of 5°C \\cdot Min^{-1}, while its oscillation frequency varied from 0.1 Hz to 100 Hz. With the help of thermal analysis (TA) control software which analyzes and generates parameter means/averages at temperature/frequency range, the graphs were created by Microsoft Excel 2013 from the means. The viscoelastic properties showed linear frequency dependence within 0.1 Hz to 30 Hz followed by negligible frequency dependence above 30 Hz. Storage modulus (E') and shear stress (σ ) increased with frequency, while loss modulus (E''), complex viscosity (η ^{*}) and dynamic shear viscosity (η) decreased linearly with frequency. The effect of solar radiation was evident as the properties increased initially from 0 h to 6 h of irradiation followed by a steady decline to a minimum at 18 h before a drastic increase to a maximum at 24 h. Hence, tanning industry can consider the time duration of 24 h for sun-drying of leather to enhance the mechanical properties and hence the quality of the leather. At frequencies higher than 30 Hz, the dynamic mechanical properties are independent of the frequency. The frequency of 30 Hz was observed to be a critical value in the behavior in the mechanical properties of bovine hide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27078422','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27078422"><span>Viscoelastic and elastomeric active matter: Linear instability and nonlinear dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hemingway, E J; Cates, M E; Fielding, S M</p> <p>2016-03-01</p> <p>We consider a continuum model of active viscoelastic matter, whereby an active nematic liquid crystal is coupled to a minimal model of polymer dynamics with a viscoelastic relaxation time τ(C). To explore the resulting interplay between active and polymeric dynamics, we first generalize a linear stability analysis (from earlier studies without polymer) to derive criteria for the onset of spontaneous heterogeneous flows (strain rate) and/or deformations (strain). We find two modes of instability. The first is a viscous mode, associated with strain rate perturbations. It dominates for relatively small values of τ(C) and is a simple generalization of the instability known previously without polymer. The second is an elastomeric mode, associated with strain perturbations, which dominates at large τ(C) and persists even as τ(C)→∞. We explore the dynamical states to which these instabilities lead by means of direct numerical simulations. These reveal oscillatory shear-banded states in one dimension and activity-driven turbulence in two dimensions even in the elastomeric limit τ(C)→∞. Adding polymer can also have calming effects, increasing the net throughput of spontaneous flow along a channel in a type of drag reduction. The effect of including strong antagonistic coupling between the nematic and polymer is examined numerically, revealing a rich array of spontaneously flowing states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvE..93c2702H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvE..93c2702H"><span>Viscoelastic and elastomeric active matter: Linear instability and nonlinear dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hemingway, E. J.; Cates, M. E.; Fielding, S. M.</p> <p>2016-03-01</p> <p>We consider a continuum model of active viscoelastic matter, whereby an active nematic liquid crystal is coupled to a minimal model of polymer dynamics with a viscoelastic relaxation time τC. To explore the resulting interplay between active and polymeric dynamics, we first generalize a linear stability analysis (from earlier studies without polymer) to derive criteria for the onset of spontaneous heterogeneous flows (strain rate) and/or deformations (strain). We find two modes of instability. The first is a viscous mode, associated with strain rate perturbations. It dominates for relatively small values of τC and is a simple generalization of the instability known previously without polymer. The second is an elastomeric mode, associated with strain perturbations, which dominates at large τC and persists even as τC→∞ . We explore the dynamical states to which these instabilities lead by means of direct numerical simulations. These reveal oscillatory shear-banded states in one dimension and activity-driven turbulence in two dimensions even in the elastomeric limit τC→∞ . Adding polymer can also have calming effects, increasing the net throughput of spontaneous flow along a channel in a type of drag reduction. The effect of including strong antagonistic coupling between the nematic and polymer is examined numerically, revealing a rich array of spontaneously flowing states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006APS..MAR.R1002J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006APS..MAR.R1002J"><span>Active Polar Gels: a Paradigm for Cytoskeletal Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Julicher, Frank</p> <p>2006-03-01</p> <p>The cytoskeleton of eucaryotic cells is an intrinsically dynamic network of rod-like filaments. Active processes on the molecular scale such as the action of motor proteins and the polymerization and depolymerization of filaments drive active dynamic behaviors while consuming chemical energy in the form of a fuel. Such emergent dynamics is regulated by the cell and is important for many cellular processes such as cell locomotion and cell division. From a general point of view the cytoskeleton represents an active gel-like material with interesting material properties. We present a general theory of active viscoelastic materials made of polar filaments which is motivated by the the cytoskeleton. The continuous consumption of a fuel generates a non- equilibrium state characterized by the generation of flows and stresses. Our theory can be applied to experiments in which cytoskeletal patterns are set in motion by active processes such as those which are at work in cells. It can also capture generic aspects of the flows and stress profiles which occur during cell locomotion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhRvL.100q8301A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhRvL.100q8301A"><span>Viscoelastic Thin Polymer Films under Transient Residual Stresses: Two-Stage Dewetting on Soft Substrates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Al Akhrass, S.; Reiter, G.; Hou, S. Y.; Yang, M. H.; Chang, Y. L.; Chang, F. C.; Wang, C. F.; Yang, A. C.-M.</p> <p>2008-05-01</p> <p>A nonmonotonic, two-stage dewetting behavior was observed for spin coated thin viscoelastic polymer films on soft elastic substrates. At times shorter than the relaxation time of the polymer (t<τrep), dewetting generated deep trenches in the soft rubbery substrate which, in turn, almost stopped dewetting. At later stages (t≫τrep), dewetting accelerated, accompanied by an unstable rim. However, holes nucleated at t<τrep showed only this second-stage behavior. Our observations are attributed to large elastic deformations in the substrate caused by transient residual stresses within the film.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890059916&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890059916&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dviscoelastic"><span>Sub transitional and supersonic travelling field response in nonlinear viscoelastic media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Padovan, Joe</p> <p>1989-01-01</p> <p>This paper considers the problem of traveling fields in nonlinearly elastic and viscoelastic media. By introducing the appropriate hierarchical partitioning, the governing equations of motion are shown to be a continuum analogy of Duffing's equation. Through the use of a constrained perturbation procedure, the response behavior is obtained in sub, transitional as well as supersonic ranges of disturbance speed. Due to the generality of the approach taken, the effects of damping can be handled. To quantify the effects of material nonlinearity, strain softening and hardening are considered. Such behavior is quantified in general example problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ArRMA.226.1209S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ArRMA.226.1209S"><span>Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stepanov, Alexey B.; Antman, Stuart S.</p> <p>2017-12-01</p> <p>This paper treats radially symmetric motions of nonlinearly viscoelastic circular-cylindrical and spherical shells subjected to the live loads of centrifugal force and (time-dependent) hydrostatic pressures. The governing equations are exact versions of those for 3-dimensional continuum mechanics (so shell does not connote an approximate via some shell theory). These motions are governed by quasilinear third-order parabolic-hyperbolic equations having but one independent spatial variable. The principal part of such a partial differential equation is determined by a general family of nonlinear constitutive equations. The presence of strains in two orthogonal directions requires a careful treatment of constitutive restrictions that are physically natural and support the analysis. The interaction of geometrically exact formulations, the compatible use of general constitutive equations for material response, and the presence of live loads show how these factors play crucial roles in the behavior of solutions. In particular, for different kinds of live loads there are thresholds separating materials that produce qualitatively different dynamical behavior. The analysis (using classical methods) covers infinite-time blowup for cylindrical shells subject to centrifugal forces, infinite-time blowup for cylindrical shells subject to steady and time-dependent hydrostatic pressures, finite-time blowup for spherical shells subject to steady and time-dependent hydrostatic pressures, and the preclusion of total compression. This paper concludes with a sketch (using some modern methods) of the existence of regular solutions until the time of blowup.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14527457','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14527457"><span>Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin</p> <p>2003-10-15</p> <p>Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1262033','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1262033"><span>Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: Coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Solares, Santiago D.</p> <p></p> <p>Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surfacemore » as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1664g0012S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1664g0012S"><span>Mineralized polymer composites as biogenic bone substitute material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shah, Rushita; Saha, Nabanita; Kitano, Takeshi; Saha, Petr</p> <p>2015-05-01</p> <p>Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bone-bonding potential of the inorganic phase with the porosity and interconnectivity of the three-dimensional construction. Aiming the advantages of ceramic-polymer composite scaffolds, the calcium carbonate (CaCO3) based biomineralized scaffold was prepared, where the PVP-CMC hydrogel was used as an extracellular matrix. This paper is reported about the morphology, swelling trend (in physiological solution) and viscoelastic behavior of (90 min mineralized) MPC. The dry MPC are off-white, coarse in texture, comparatively less flexible than the original PVP-CMC based hydrogel film, and the deposition of granular structures on the surface of the hydrogel film confirms about the development of biomineralized scaffold/polymer composites. Irrespective of thickness, the dry MPC shows higher values of swelling ratio within 30 min, which varies between 200-250 approximately. The dynamic viscoelastic nature of freshly prepared MPC was investigated applying 1% and 10% strain. At higher strain the viscoelastic moduli (G' and G") show significant change, and the nature of MPC turns from elastic to viscous. Based on the observed basic properties, the MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1262033-nanoscale-effects-characterization-viscoelastic-materials-atomic-force-microscopy-coupling-quasi-three-dimensional-standard-linear-solid-model-plane-surface-interactions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1262033-nanoscale-effects-characterization-viscoelastic-materials-atomic-force-microscopy-coupling-quasi-three-dimensional-standard-linear-solid-model-plane-surface-interactions"><span>Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: Coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Solares, Santiago D.</p> <p>2016-04-15</p> <p>Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surfacemore » as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/7178929','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/7178929"><span>Compression wave studies in Blair dolomite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Grady, D.E.; Hollenbach, R.E.; Schuler, K.W.</p> <p></p> <p>Dynamic compression wave studies have been conducted on Blair dolomite in the stress range of 0-7.0 GPa. Impact techniques were used to generate stress impulse input functions, and diffuse surface laser interferometry provided the dynamic instrumentation. Experimental particle velocity profiles obtained by this method were coupled with the conservation laws of mass and momentum to determine the stress-strain and stress-modulus constitutive properties of the material. Comparison between dynamic and quasistatic uniaxial stress-strain curves uncovered significant differences. Energy dissipated in a complete load and unload cycle differed by almost an order of magnitude and the longitudinal moduli differed by as muchmore » as a factor of two. Blair dolomite was observed to yield under dynamic loading at 2.5 GPa. Below 2.5 GPa the loading waves had a finite risetime and exhibited steady propagation. A finite linear viscoelastic constitutive model satisfactorily predicted the observed wave propagation. We speculate that dynamic properties of preexisting cracks provides a physical mechanism for both the rate dependent steady wave behavior and the difference between dynamic and quasistatic response.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ResPh...8..223H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ResPh...8..223H"><span>Significant consequences of heat generation/absorption and homogeneous-heterogeneous reactions in second grade fluid due to rotating disk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayat, Tasawar; Qayyum, Sumaira; Alsaedi, Ahmed; Ahmad, Bashir</p> <p>2018-03-01</p> <p>Flow of second grade fluid by a rotating disk with heat and mass transfer is discussed. Additional effects of heat generation/absorption are also analyzed. Flow is also subjected to homogeneous-heterogeneous reactions. The convergence of computed solution is assured through appropriate choices of initial guesses and auxiliary parameters. Investigation is made for the effects of involved parameters on velocities (radial, axial, tangential), temperature and concentration. Skin friction and Nusselt number are also analyzed. Graphical results depict that an increase in viscoelastic parameter enhances the axial, radial and tangential velocities. Opposite behavior of temperature is observed for larger values of viscoelastic and heat generation/absorption parameters. Concentration profile is increasing function of Schmidt number, viscoelastic parameter and heterogeneous reaction parameter. Magnitude of skin friction and Nusselt number are enhanced for larger viscoelastic parameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA585428','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA585428"><span>Shock Tube Test for Energy Absorbing Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-13</p> <p>rigid and lightweight foam material with a closed-cell structure, and a very high strength-to-weight ratio (7). It is commonly used as a sandwich...including application in helmet liners (8). Zorbium™ is the viscoelastic polyurethane foam used in military helmet suspension system pads (9). 8...viscoelastic polyurethane foam which shows strain rate dependent behavior when compressed. This is displayed by the significant difference in response</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9831556','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9831556"><span>Viscoelastic flow in the lower crust after the 1992 landers, california, earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deng; Gurnis; Kanamori; Hauksson</p> <p>1998-11-27</p> <p>Space geodesy showed that broad-scale postseismic deformation occurred after the 1992 Landers earthquake. Three-dimensional modeling shows that afterslip can only explain one horizontal component of the postseismic deformation, whereas viscoelastic flow can explain the horizontal and near-vertical displacements. The viscosity of a weak, about 10-km-thick layer, in the lower crust beneath the rupture zone that controls the rebound is about 10(18) pascal seconds. The viscoelastic behavior of the lower crust may help to explain the extensional structures observed in the Basin and Range province and it may be used for the analysis of earthquake hazard.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10830366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10830366"><span>A model for longitudinal and shear wave propagation in viscoelastic media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Szabo; Wu</p> <p>2000-05-01</p> <p>Relaxation models fail to predict and explain loss characteristics of many viscoelastic materials which follow a frequency power law. A model based on a time-domain statement of causality is presented that describes observed power-law behavior of many viscoelastic materials. A Hooke's law is derived from power-law loss characteristics; it reduces to the Hooke's law for the Voigt model for the specific case of quadratic frequency loss. Broadband loss and velocity data for both longitudinal and shear elastic types of waves agree well with predictions. These acoustic loss models are compared to theories for loss mechanisms in dielectrics based on isolated polar molecules and cooperative interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050212110&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050212110&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dviscoelastic"><span>A Nonlinear Viscoelastic Model for Ceramics at High Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Powers, Lynn M.; Panoskaltsis, Vassilis P.; Gasparini, Dario A.; Choi, Sung R.</p> <p>2002-01-01</p> <p>High-temperature creep behavior of ceramics is characterized by nonlinear time-dependent responses, asymmetric behavior in tension and compression, and nucleation and coalescence of voids leading to creep rupture. Moreover, creep rupture experiments show considerable scatter or randomness in fatigue lives of nominally equal specimens. To capture the nonlinear, asymmetric time-dependent behavior, the standard linear viscoelastic solid model is modified. Nonlinearity and asymmetry are introduced in the volumetric components by using a nonlinear function similar to a hyperbolic sine function but modified to model asymmetry. The nonlinear viscoelastic model is implemented in an ABAQUS user material subroutine. To model the random formation and coalescence of voids, each element is assigned a failure strain sampled from a lognormal distribution. An element is deleted when its volumetric strain exceeds its failure strain. Element deletion has been implemented within ABAQUS. Temporal increases in strains produce a sequential loss of elements (a model for void nucleation and growth), which in turn leads to failure. Nonlinear viscoelastic model parameters are determined from uniaxial tensile and compressive creep experiments on silicon nitride. The model is then used to predict the deformation of four-point bending and ball-on-ring specimens. Simulation is used to predict statistical moments of creep rupture lives. Numerical simulation results compare well with results of experiments of four-point bending specimens. The analytical model is intended to be used to predict the creep rupture lives of ceramic parts in arbitrary stress conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA556870','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA556870"><span>A Brief Review of Elasticity and Viscoelasticity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-05-27</p> <p>through electromagnetic or acoustic means. Creating a model that accurately describes these Rayleigh waves is key to modeling and understanding the...technology to be feasible, a mathematical model that describes the propagation of the acoustic wave from the stenosis to the chest wall will be necessary...viscoelastic model is simpler to use than poroelastic models but yields similar results for a wide range of soils and dynamic 30 loadings. In addition</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EL....12135001K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EL....12135001K"><span>A non-ideal MHD model for structure formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karmakar, Pralay Kumar; Sarma, Pankaj</p> <p>2018-02-01</p> <p>The evolutionary initiation dynamics of triggered planetary structure formation is indeed a complex process yet to be well understood. We herein develop a theoretical classical model to see the gravitational fragmentation kinetics of the viscoelastic non-ideal magneto-hydro-dynamic (MHD) fabric. The inhomogeneous planetary disk is primarily composed of heavier dust grains (strongly correlated) together with relatively lighter electrons, ions and neutrals (weakly correlated) in a mean-fluidic approximation. A normal harmonic mode analysis results in a quadratic dispersion relation of a unique shape. It is demonstrated that the growth rate of the MHD fluctuations (magnetosonic) contributing to the planet formation rate, apart from the wave vector and its projection orientation, has a pure explicit dependency on the viscoelastic parameters. The analysis specifically shows that the effective generalized viscosity (χ) , viscoelastic relaxation time (τm) , and K-orientation (θ) play as destabilizing agencies against the non-local gravitational disk collapse. The relevancy is briefly indicated in the real astronomical context of bounded planetary structure formation and evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19094042','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19094042"><span>Morphology and viscoelastic properties of sealing materials based on EPDM rubber.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Milić, J; Aroguz, A; Budinski-Simendić, J; Radicević, R; Prendzov, S</p> <p>2008-12-01</p> <p>In this applicative study, the ratio of active and inactive filler loadings was the prime factor for determining the dynamic-mechanical behaviour of ethylene-propylene-diene monomer rubbers. Scanning electron microscopy was used to study the structure of reinforced dense and microcellular elastomeric materials. The effects of filler and blowing agent content on the morphology of composites were investigated. Microcellular samples cured in salt bath show smaller cells and uniform cell size compared with samples cured in hot air. Dynamic-mechanical thermal analysis showed appreciable changes in the viscoelastic properties by increasing active filler content, which could enable tailoring the material properties to suit sealing applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920050008&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920050008&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dviscoelastic"><span>Viscoelastic properties of addition-cured polyimides used in high temperature polymer matrix composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roberts, Gary D.; Malarik, Diane C.; Robaidek, Jerrold O.</p> <p>1991-01-01</p> <p>The viscoelastic properties of an addition-cured polyimide, PMR-15, were evaluated through dynamic mechanical and stress relaxation testing. Below the glass transition temperature, the dynamic mechanical properties of the composites are strongly affected by the absorbed moisture in the resin. At temperature 20 C and more above the glass transition temperature, the storage modulus increases continuously with time, indicating that additional crosslinking is occurring in the resin. For resin moisture contents less than 2 percent, stress relaxation curves measured at different temperatures can be superimposed using horizontal shifts along the log(time) axis with only small shifts along the vertical axis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28946501','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28946501"><span>Bubble dynamics in viscoelastic soft tissue in high-intensity focal ultrasound thermal therapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zilonova, E; Solovchuk, M; Sheu, T W H</p> <p>2018-01-01</p> <p>The present study is aimed to investigate bubble dynamics in a soft tissue, to which HIFU's continuous harmonic pulse is applied by introducing a viscoelastic cavitation model. After a comparison of some existing cavitation models, we decided to employ Gilmore-Akulichev model. This chosen cavitation model should be coupled with the Zener viscoelastic model in order to be able to simulate soft tissue features such as elasticity and relaxation time. The proposed Gilmore-Akulichev-Zener model was investigated for exploring cavitation dynamics. The parametric study led us to the conclusion that the elasticity and viscosity both damp bubble oscillations, whereas the relaxation effect depends mainly on the period of the ultrasound wave. The similar influence of elasticity, viscosity and relaxation time on the temperature inside the bubble can be observed. Cavitation heat source terms (corresponding to viscous damping and pressure wave radiated by bubble collapse) were obtained based on the proposed model to examine the cavitation significance during the treatment process. Their maximum values both overdominate the acoustic ultrasound term in HIFU applications. Elasticity was revealed to damp a certain amount of deposited heat for both cavitation terms. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008APS..MARW25006L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008APS..MARW25006L"><span>Transient Binding and Viscous Dissipation in Semi-flexible Polymer Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lieleg, Oliver; Claessens, Mireille; Bausch, Andreas</p> <p>2008-03-01</p> <p>Nature specifically chooses from a myriad of actin binding proteins (ABPs) to tailor the cytoskeletal microstructure. Herein, cells rely on the dynamics of the cytoskeleton as its structural and mechanical adaptability is crucial to allow for dynamic processes. A molecular understanding of such biological complexity calls for an in vitro system with well-defined structural rearrangements and cross-linker dynamics to elucidate the physical origin of the unique viscoelastic properties of cells. As we present here, the frequency-dependent viscoelastic response of cross-linked in vitro actin networks is determined by the binding kinetics of cross-linking molecules. Independent from the particular network structure, the viscous dissipation (loss modulus) exhibits a pronounced minimum in an intermediate frequency which is dominated by elasticity. We show that in this frequency regime the molecular origin of the viscoelastic response is given by the non-static nature of actin/ABP bonds as they are subjugated to chemical on/off kinetics. The time scale of the resulting stress release is set by the lifetime distribution of the cross-linking molecule and therefore can be tuned independently from other relaxation mechanisms. We speculate that unbinding of distinct cross-links might be the molecular mechanism employed by cells for mechanosensing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010MSSP...24..164T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010MSSP...24..164T"><span>A robust component mode synthesis method for stochastic damped vibroacoustics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tran, Quang Hung; Ouisse, Morvan; Bouhaddi, Noureddine</p> <p>2010-01-01</p> <p>In order to reduce vibrations or sound levels in industrial vibroacoustic problems, the low-cost and efficient way consists in introducing visco- and poro-elastic materials either on the structure or on cavity walls. Depending on the frequency range of interest, several numerical approaches can be used to estimate the behavior of the coupled problem. In the context of low frequency applications related to acoustic cavities with surrounding vibrating structures, the finite elements method (FEM) is one of the most efficient techniques. Nevertheless, industrial problems lead to large FE models which are time-consuming in updating or optimization processes. A classical way to reduce calculation time is the component mode synthesis (CMS) method, whose classical formulation is not always efficient to predict dynamical behavior of structures including visco-elastic and/or poro-elastic patches. Then, to ensure an efficient prediction, the fluid and structural bases used for the model reduction need to be updated as a result of changes in a parametric optimization procedure. For complex models, this leads to prohibitive numerical costs in the optimization phase or for management and propagation of uncertainties in the stochastic vibroacoustic problem. In this paper, the formulation of an alternative CMS method is proposed and compared to classical ( u, p) CMS method: the Ritz basis is completed with static residuals associated to visco-elastic and poro-elastic behaviors. This basis is also enriched by the static response of residual forces due to structural modifications, resulting in a so-called robust basis, also adapted to Monte Carlo simulations for uncertainties propagation using reduced models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18620747','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18620747"><span>Rheological properties of experimental Bis-GMA/TEGDMA flowable resin composites with various macrofiller/microfiller ratio.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beun, Sébastien; Bailly, Christian; Dabin, Anne; Vreven, José; Devaux, Jacques; Leloup, Gaëtane</p> <p>2009-02-01</p> <p>The purpose of this study was to investigate the rheological behavior of resin composites and to evaluate the influence of each component, organic as well as inorganic, on their viscoelastic properties by testing model experimental formulations. Several unfilled mixtures of 2,2-bis-[4-(methacryloxy-2-hydroxy-propoxy)-phenyl]-propane (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) were prepared as well as experimental flowable resin composites using a Bis-GMA/TEGDMA 50/50 wt% mixture as organic fraction filled at 60% in weight with varying ratios of silanated barium glass (1 microm) and partially hydrophobic fumed silica (0.1 microm). Their rheological properties were investigated using dynamic oscillatory rheometers. Transmission electron microscopy (TEM) was also performed to investigate the spatial organization of the filler particles. Unfilled Bis-GMA/TEGDMA mixtures all showed a Newtonian behavior. The experimental flowable resin composites were non-Newtonian, shear-thinning fluids. As the quantity of microfiller increased, the viscosity increased and the shear-thinning behavior increased as well. In addition, the experimental composites showed thixotropy, i.e. their viscosity is a function of time after deformation. All these properties were not specifically linked to the creation and destruction of a visible network between inorganic particles, as no difference could be seen between particles' spatial organization at the equilibrium rest state or immediately after deformation. The complex viscoelastic properties of resin composites are due to interactions between microfiller and monomer molecules. Modifying the chemical and physical properties of the particles' surface could possibly improve their flow properties and thus their clinical handling performances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26045142','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26045142"><span>A constitutive model for developing blood clots with various compositions and their nonlinear viscoelastic behavior.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Kempen, Thomas H S; Donders, Wouter P; van de Vosse, Frans N; Peters, Gerrit W M</p> <p>2016-04-01</p> <p>The mechanical properties determine to a large extent the functioning of a blood clot. These properties depend on the composition of the clot and have been related to many diseases. However, the various involved components and their complex interactions make it difficult at this stage to fully understand and predict properties as a function of the components. Therefore, in this study, a constitutive model is developed that describes the viscoelastic behavior of blood clots with various compositions. Hereto, clots are formed from whole blood, platelet-rich plasma and platelet-poor plasma to study the influence of red blood cells, platelets and fibrin, respectively. Rheological experiments are performed to probe the mechanical behavior of the clots during their formation. The nonlinear viscoelastic behavior of the mature clots is characterized using a large amplitude oscillatory shear deformation. The model is based on a generalized Maxwell model that accurately describes the results for the different rheological experiments by making the moduli and viscosities a function of time and the past and current deformation. Using the same model with different parameter values enables a description of clots with different compositions. A sensitivity analysis is applied to study the influence of parameter variations on the model output. The relative simplicity and flexibility make the model suitable for numerical simulations of blood clots and other materials showing similar behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5098996','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5098996"><span>A viscoelastic–stochastic model of the effects of cytoskeleton remodelling on cell adhesion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Long; Zhang, Wenyan</p> <p>2016-01-01</p> <p>Cells can adapt their mechanical properties through cytoskeleton remodelling in response to external stimuli when the cells adhere to the extracellular matrix (ECM). Many studies have investigated the effects of cell and ECM elasticity on cell adhesion. However, experiments determined that cells are viscoelastic and exhibiting stress relaxation, and the mechanism behind the effect of cellular viscoelasticity on the cell adhesion behaviour remains unclear. Therefore, we propose a theoretical model of a cluster of ligand–receptor bonds between two dissimilar viscoelastic media subjected to an applied tensile load. In this model, the distribution of interfacial traction is assumed to follow classical continuum viscoelastic equations, whereas the rupture and rebinding of individual molecular bonds are governed by stochastic equations. On the basis of this model, we determined that viscosity can significantly increase the lifetime, stability and dynamic strength of the adhesion cluster of molecular bonds, because deformation relaxation attributed to the viscoelastic property can increase the rebinding probability of each open bond and reduce the stress concentration in the adhesion area. PMID:27853571</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27554263','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27554263"><span>A combined experimental atomic force microscopy-based nanoindentation and computational modeling approach to unravel the key contributors to the time-dependent mechanical behavior of single cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Florea, Cristina; Tanska, Petri; Mononen, Mika E; Qu, Chengjuan; Lammi, Mikko J; Laasanen, Mikko S; Korhonen, Rami K</p> <p>2017-02-01</p> <p>Cellular responses to mechanical stimuli are influenced by the mechanical properties of cells and the surrounding tissue matrix. Cells exhibit viscoelastic behavior in response to an applied stress. This has been attributed to fluid flow-dependent and flow-independent mechanisms. However, the particular mechanism that controls the local time-dependent behavior of cells is unknown. Here, a combined approach of experimental AFM nanoindentation with computational modeling is proposed, taking into account complex material behavior. Three constitutive models (porohyperelastic, viscohyperelastic, poroviscohyperelastic) in tandem with optimization algorithms were employed to capture the experimental stress relaxation data of chondrocytes at 5 % strain. The poroviscohyperelastic models with and without fluid flow allowed through the cell membrane provided excellent description of the experimental time-dependent cell responses (normalized mean squared error (NMSE) of 0.003 between the model and experiments). The viscohyperelastic model without fluid could not follow the entire experimental data that well (NMSE = 0.005), while the porohyperelastic model could not capture it at all (NMSE = 0.383). We also show by parametric analysis that the fluid flow has a small, but essential effect on the loading phase and short-term cell relaxation response, while the solid viscoelasticity controls the longer-term responses. We suggest that the local time-dependent cell mechanical response is determined by the combined effects of intrinsic viscoelasticity of the cytoskeleton and fluid flow redistribution in the cells, although the contribution of fluid flow is smaller when using a nanosized probe and moderate indentation rate. The present approach provides new insights into viscoelastic responses of chondrocytes, important for further understanding cell mechanobiological mechanisms in health and disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27296446','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27296446"><span>Effect of enzymatic hydrolysis of starch on pasting, rheological and viscoelastic properties of milk-barnyard millet (Echinochloa frumentacea) blends meant for spray drying.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, P Arun; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Simha, H V Vikram; Nath, B Surendra</p> <p>2016-10-01</p> <p>The influence of enzymatic hydrolysis of starch on the pasting properties of barnyard millet was studied using a rheometer. The effects of blending hydrolyzed barnyard millet wort with milk at different ratios (0:1, 1:1, 1:1.5 and 1:2) on flow and viscoelastic behavior were investigated. From the pasting curves, it was evident that enzymatically-hydrolyzed starch did not exhibit typical pasting characteristics expected of normal starch. The Herschel-Bulkley model fitted well to the flow behaviour data, with coefficient of determination (R(2)) ranging from 0.942 to 0.988. All milk-wort blends demonstrated varying degree of shear thinning with flow behavior index (n) ranging from 0.252 to 0.647. Stress-strain data revealed that 1:1 blend of milk to wort had the highest storage modulus (7.09-20.06Pa) and an elastically-dominant behavior (phase angle <45°) over the tested frequency range. The crossover point of G' and G" shifted to higher frequencies with increasing wort content. From the flow and viscoelastic behavior, it was concluded that the 1:1 blend of milk to wort would have least phase separation and better flowability during spray drying. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........59D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........59D"><span>Quantitative Modeling of Entangled Polymer Rheology: Experiments, Tube Models and Slip-Link Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desai, Priyanka Subhash</p> <p></p> <p>Rheology properties are sensitive indicators of molecular structure and dynamics. The relationship between rheology and polymer dynamics is captured in the constitutive model, which, if accurate and robust, would greatly aid molecular design and polymer processing. This dissertation is thus focused on building accurate and quantitative constitutive models that can help predict linear and non-linear viscoelasticity. In this work, we have used a multi-pronged approach based on the tube theory, coarse-grained slip-link simulations, and advanced polymeric synthetic and characterization techniques, to confront some of the outstanding problems in entangled polymer rheology. First, we modified simple tube based constitutive equations in extensional rheology and developed functional forms to test the effect of Kuhn segment alignment on a) tube diameter enlargement and b) monomeric friction reduction between subchains. We, then, used these functional forms to model extensional viscosity data for polystyrene (PS) melts and solutions. We demonstrated that the idea of reduction in segmental friction due to Kuhn alignment is successful in explaining the qualitative difference between melts and solutions in extension as revealed by recent experiments on PS. Second, we compiled literature data and used it to develop a universal tube model parameter set and prescribed their values and uncertainties for 1,4-PBd by comparing linear viscoelastic G' and G" mastercurves for 1,4-PBds of various branching architectures. The high frequency transition region of the mastercurves superposed very well for all the 1,4-PBds irrespective of their molecular weight and architecture, indicating universality in high frequency behavior. Therefore, all three parameters of the tube model were extracted from this high frequency transition region alone. Third, we compared predictions of two versions of the tube model, Hierarchical model and BoB model against linear viscoelastic data of blends of 1,4-PBd star and linear melts. The star was carefully synthesized and characterized. We found massive failures of tube models to predict the terminal relaxation behavior of the star/linear blends. In addition, these blends were also tested against a coarse-grained slip-link model, the "Cluster Fixed Slip-link Model (CFSM)" of Schieber and coworkers. The CFSM with only two parameters gave excellent agreement with all experimental data for the blends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EPJAP..48a1201L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EPJAP..48a1201L"><span>Comparison of three different scales techniques for the dynamic mechanical characterization of two polymers (PDMS and SU8)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Rouzic, J.; Delobelle, P.; Vairac, P.; Cretin, B.</p> <p>2009-10-01</p> <p>In this article the dynamic mechanical characterization of PDMS and SU8 resin using dynamic mechanical analysis, nanoindentation and the scanning microdeformation microscope have been presented. The methods are hereby explained, extended for viscoelastic behaviours, and their compatibility underlined. The storage and loss moduli of these polymers over a wide range of frequencies (from 0.01 Hz to somekHz) have been measured. These techniques are shown fairly matching and the two different viscoelastic behaviours of these two polymers have been exhibited. Indeed, PDMS shows moduli which still increase at 5kHz whereas SU8 ones decrease much sooner. From a material point of view, the Havriliak and Negami model to estimate instantaneous, relaxed moduli and time constant of these materials has been identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26640599','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26640599"><span>Critical behavior of subcellular density organization during neutrophil activation and migration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baker-Groberg, Sandra M; Phillips, Kevin G; Healy, Laura D; Itakura, Asako; Porter, Juliana E; Newton, Paul K; Nan, Xiaolin; McCarty, Owen J T</p> <p>2015-12-01</p> <p>Physical theories of active matter continue to provide a quantitative understanding of dynamic cellular phenomena, including cell locomotion. Although various investigations of the rheology of cells have identified important viscoelastic and traction force parameters for use in these theoretical approaches, a key variable has remained elusive both in theoretical and experimental approaches: the spatiotemporal behavior of the subcellular density. The evolution of the subcellular density has been qualitatively observed for decades as it provides the source of image contrast in label-free imaging modalities (e.g., differential interference contrast, phase contrast) used to investigate cellular specimens. While these modalities directly visualize cell structure, they do not provide quantitative access to the structures being visualized. We present an established quantitative imaging approach, non-interferometric quantitative phase microscopy, to elucidate the subcellular density dynamics in neutrophils undergoing chemokinesis following uniform bacterial peptide stimulation. Through this approach, we identify a power law dependence of the neutrophil mean density on time with a critical point, suggesting a critical density is required for motility on 2D substrates. Next we elucidate a continuum law relating mean cell density, area, and total mass that is conserved during neutrophil polarization and migration. Together, our approach and quantitative findings will enable investigators to define the physics coupling cytoskeletal dynamics with subcellular density dynamics during cell migration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4667984','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4667984"><span>Critical behavior of subcellular density organization during neutrophil activation and migration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Baker-Groberg, Sandra M.; Phillips, Kevin G.; Healy, Laura D.; Itakura, Asako; Porter, Juliana E.; Newton, Paul K.; Nan, Xiaolin; McCarty, Owen J.T.</p> <p>2015-01-01</p> <p>Physical theories of active matter continue to provide a quantitative understanding of dynamic cellular phenomena, including cell locomotion. Although various investigations of the rheology of cells have identified important viscoelastic and traction force parameters for use in these theoretical approaches, a key variable has remained elusive both in theoretical and experimental approaches: the spatiotemporal behavior of the subcellular density. The evolution of the subcellular density has been qualitatively observed for decades as it provides the source of image contrast in label-free imaging modalities (e.g., differential interference contrast, phase contrast) used to investigate cellular specimens. While these modalities directly visualize cell structure, they do not provide quantitative access to the structures being visualized. We present an established quantitative imaging approach, non-interferometric quantitative phase microscopy, to elucidate the subcellular density dynamics in neutrophils undergoing chemokinesis following uniform bacterial peptide stimulation. Through this approach, we identify a power law dependence of the neutrophil mean density on time with a critical point, suggesting a critical density is required for motility on 2D substrates. Next we elucidate a continuum law relating mean cell density, area, and total mass that is conserved during neutrophil polarization and migration. Together, our approach and quantitative findings will enable investigators to define the physics coupling cytoskeletal dynamics with subcellular density dynamics during cell migration. PMID:26640599</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18275999','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18275999"><span>Effect of concentration and temperature on the rheological behavior of collagen solution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lai, Guoli; Li, Yang; Li, Guoying</p> <p>2008-04-01</p> <p>Dynamic viscoelastic properties of collagen solutions with concentrations of 0.5-1.5% (w/w) were characterized by means of oscillatory rheometry at temperatures ranging from 20 to 32.5 degrees C. All collagen solutions showed a shear-thinning flow behavior. The complex viscosity exhibited an exponential increase and the loss tangent decreased with the increase of collagen concentration (C(COL)) when the C(COL)> or =0.75%. Both storage modulus (G') and loss modulus (G'') increased with the increase of frequency and concentration, but decreased with the increase of temperature and behaved without regularity at 32.5 degrees C. The relaxation times decreased with the increase of temperature for 1.0% collagen solution. According to a three-zone model, dynamic modulus of collagen solutions showed terminal-zone and plateau-zone behavior when C(COL) was no more than 1.25% or the stated temperature was no more than 30 degrees C. The concentrated solution (1.5%) behaved being entirely in plateau zone. An application of the time-temperature superposition (TTS) allowed the construction of master curve and an Arrhenius-type TTS principle was used to yield the activation energy of 161.4 kJ mol(-1).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008APS..DFD.BK002M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008APS..DFD.BK002M"><span>Nonlinear Dynamics in Viscoelastic Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth</p> <p>2008-11-01</p> <p>Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..MARA15007M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..MARA15007M"><span>Nonlinear Dynamics in Viscoelastic Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth</p> <p>2009-03-01</p> <p>Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4447536','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4447536"><span>Regional Variation of Bone Tissue Properties at the Human Mandibular Condyle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kim, Do-Gyoon; Jeong, Yong-Hoon; Kosel, Erin; Agnew, Amanda M.; McComb, David W.; Bodnyk, Kyle; Hart, Richard T.; Kim, Min Kyung; Han, Sang Yeun; Johnston, William M.</p> <p>2015-01-01</p> <p>The temporomandibular joint (TMJ) bears different types of static and dynamic loading during occlusion and mastication. As such, characteristics of mandibular condylar bone tissue play an important role in determining the mechanical stability of the TMJ under the macro-level loading. Thus, the objective of this study was to examine regional variation of the elastic, plastic, and viscoelastic mechanical properties of human mandibular condylar bone tissue using nanoindentation. Cortical and trabecular bone were dissected from mandibular condyles of human cadavers (9 males, 54 to 96 years). These specimens were scanned using microcomputed tomography to obtain bone tissue mineral distribution. Then, nanoindentation was conducted on the surface of the same specimens in hydration. Plastic hardness (H) at a peak load, viscoelastic creep (Creep/Pmax), viscosity (η), and tangent delta (tan δ) during a 30 second hold period, and elastic modulus (E) during unloading were obtained by a cycle of indentation at the same site of bone tissue. The tissue mineral and nanoindentation parameters were analyzed for the periosteal and endosteal cortex, and trabecular bone regions of the mandibular condyle. The more mineralized periosteal cortex had higher mean values of elastic modulus, plastic hardness, and viscosity but lower viscoelastic creep and tan δ than the less mineralized trabecular bone of the mandibular condyle. These characteristics of bone tissue suggest that the periosteal cortex tissue may have more effective properties to resist elastic, plastic, and viscoelastic deformation under static loading, and the trabecular bone tissue to absorb and dissipate time-dependent viscoelastic loading energy at the TMJ during static occlusion and dynamic mastication. PMID:25913634</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18813984','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18813984"><span>In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lim, Yi-Je; Deo, Dhanannjay; Singh, Tejinder P; Jones, Daniel B; De, Suvranu</p> <p>2009-06-01</p> <p>Development of a laparoscopic surgery simulator that delivers high-fidelity visual and haptic (force) feedback, based on the physical models of soft tissues, requires the use of empirical data on the mechanical behavior of intra-abdominal organs under the action of external forces. As experiments on live human patients present significant risks, the use of cadavers presents an alternative. We present techniques of measuring and modeling the mechanical response of human cadaveric tissue for the purpose of developing a realistic model. The major contribution of this paper is the development of physics-based models of soft tissues that range from linear elastic models to nonlinear viscoelastic models which are efficient for application within the framework of a real-time surgery simulator. To investigate the in situ mechanical, static, and dynamic properties of intra-abdominal organs, we have developed a high-precision instrument by retrofitting a robotic device from Sensable Technologies (position resolution of 0.03 mm) with a six-axis Nano 17 force-torque sensor from ATI Industrial Automation (force resolution of 1/1,280 N along each axis), and used it to apply precise displacement stimuli and record the force response of liver and stomach of ten fresh human cadavers. The mean elastic modulus of liver and stomach is estimated as 5.9359 kPa and 1.9119 kPa, respectively over the range of indentation depths tested. We have also obtained the parameters of a quasilinear viscoelastic (QLV) model to represent the nonlinear viscoelastic behavior of the cadaver stomach and liver over a range of indentation depths and speeds. The models are found to have an excellent goodness of fit (with R (2) > 0.99). The data and models presented in this paper together with additional ones based on the principles presented in this paper would result in realistic physics-based surgical simulators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3814867','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3814867"><span>Design of a Capacitive Flexible Weighing Sensor for Vehicle WIM System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cheng, Lu; Zhang, Hongjian; Li, Qing</p> <p>2007-01-01</p> <p>With the development of the Highway Transportation and Business Trade, vehicle weigh-in-motion (WIM) technology has become a key technology and trend of measuring traffic loads. In this paper, a novel capacitive flexible weighing sensor which is light weight, smaller volume and easy to carry was applied in the vehicle WIM system. The dynamic behavior of the sensor is modeled using the Maxwell-Kelvin model because the materials of the sensor are rubbers which belong to viscoelasticity. A signal processing method based on the model is presented to overcome effects of rubber mechanical properties on the dynamic weight signal. The results showed that the measurement error is less than ±10%. All the theoretic analysis and numerical results demonstrated that appliance of this system to weigh in motion is feasible and convenient for traffic inspection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S11E..08Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S11E..08Y"><span>Laboratory experiment of seismic cycles using compliant viscoelastic materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamaguchi, T.</p> <p>2016-12-01</p> <p>It is well known that surface asperities at fault interfaces play an essential role in stick-slip friction. There have been many laboratory experiments conducted using rocks and some analogue materials to understand the effects of asperities and the underlying mechanisms. Among such materials, soft polymer gels have great advantages of slowing down propagating rupture front speed as well as shear wave speed: it facilitates observation of the dynamic rupture behavior. However, most experiments were done with bimaterial interfaces (combination of soft and hard materials) and there are few experiments with an identical (gel on gel) setup. Furthermore, there have been also few studies mentioning the link between local asperity contact and macroscopic dynamic rupture behavior. In this talk, we report our experimental studies on stick-slip friction between gels having controlled artificial asperities. We show that, depending on number density and configuration randomness of the asperities, the rupture behavior greatly changes: when the asperities are located periodically with optimum number densities, fast rupture propagation occurs, while slow and heterogeneous slip behavior is observed for samples having randomly located asperities. We discuss the importance of low frequency (large wavelength) excitation of the normal displacement contributing to weakening the fault interface. We also discuss the observed regular to slow slip transition with a simple model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110024079','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110024079"><span>Viscoelastic Vibration Dampers for Turbomachine Blades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nguyen, Nhan</p> <p>2003-01-01</p> <p>Simple viscoelastic dampers have been invented for use on the root attachments of turbomachine blades. These dampers suppress bending- and torsion-mode blade vibrations, which are excited by unsteady aerodynamic forces during operation. In suppressing vibrations, these dampers reduce fatigue (thereby prolonging blade lifetimes) while reducing noise. These dampers can be installed in new turbomachines or in previously constructed turbomachines, without need for structural modifications. Moreover, because these dampers are not exposed to flows, they do not affect the aerodynamic performances of turbomachines. Figure 1 depicts a basic turbomachine rotor, which includes multiple blades affixed to a hub by means of dovetail root attachments. Prior to mounting of the blades, thin layers of a viscoelastic material are applied to selected areas of the blade roots. Once the blades have been installed in the hub and the rotor is set into rotation, centrifugal force compresses these layers between the mating load-bearing surfaces of the hub and the blade root. The layers of viscoelastic material provide load paths through which the vibration energy of the blade can be dissipated. The viscoelasticity of the material converts mechanical vibration energy into shear strain energy and then from shear strain energy to heat. Of the viscoelastic materials that have been considered thus far for this application, the one of choice is a commercial polyurethane that is available in tape form, coated on one side with an adhesive that facilitates bonding to blade roots. The thickness of the tape can be chosen to suit the specific application. The typical thickness of 0.012 in. (.0.3 mm) is small enough that the tape can fit in the clearance between the mating blade-root and hub surfaces in a typical turbomachine. In an experiment, a blade was mounted in a test fixture designed to simulate the blade-end conditions that prevail in a turbocompressor. Vibrations were excited in the blade by use of an impact hammer, and damping of the vibrations was measured by use of a dynamic signal analyzer. Tests were performed without and with viscoelastic dampers installed in the dovetail root attachment. The results of the measurements, some of which are presented in Figure 2, show that the viscoelastic dampers greatly increased the rate of damping of vibrations. Accordingly, dynamic stresses on rotor blades were significantly reduced, as shown in Figure 2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27276992','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27276992"><span>Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Jing; Tian, Jiabin; Ta, Na; Huang, Xinsheng; Rao, Zhushi</p> <p>2016-08-01</p> <p>Finite element method was employed in this study to analyze the change in performance of implantable hearing devices due to the consideration of soft tissues' viscoelasticity. An integrated finite element model of human ear including the external ear, middle ear and inner ear was first developed via reverse engineering and analyzed by acoustic-structure-fluid coupling. Viscoelastic properties of soft tissues in the middle ear were taken into consideration in this model. The model-derived dynamic responses including middle ear and cochlea functions showed a better agreement with experimental data at high frequencies above 3000 Hz than the Rayleigh-type damping. On this basis, a coupled finite element model consisting of the human ear and a piezoelectric actuator attached to the long process of incus was further constructed. Based on the electromechanical coupling analysis, equivalent sound pressure and power consumption of the actuator corresponding to viscoelasticity and Rayleigh damping were calculated using this model. The analytical results showed that the implant performance of the actuator evaluated using a finite element model considering viscoelastic properties gives a lower output above about 3 kHz than does Rayleigh damping model. Finite element model considering viscoelastic properties was more accurate to numerically evaluate implantable hearing devices. © IMechE 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27071851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27071851"><span>Surface waves on a soft viscoelastic layer produced by an oscillating microbubble.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tinguely, Marc; Hennessy, Matthew G; Pommella, Angelo; Matar, Omar K; Garbin, Valeria</p> <p>2016-05-14</p> <p>Ultrasound-driven bubbles can cause significant deformation of soft viscoelastic layers, for instance in surface cleaning and biomedical applications. The effect of the viscoelastic properties of a boundary on the bubble-boundary interaction has been explored only qualitatively, and remains poorly understood. We investigate the dynamic deformation of a viscoelastic layer induced by the volumetric oscillations of an ultrasound-driven microbubble. High-speed video microscopy is used to observe the deformation produced by a bubble oscillating at 17-20 kHz in contact with the surface of a hydrogel. The localised oscillating pressure applied by the bubble generates surface elastic (Rayleigh) waves on the gel, characterised by elliptical particle trajectories. The tilt angle of the elliptical trajectories varies with increasing distance from the bubble. Unexpectedly, the direction of rotation of the surface elements on the elliptical trajectories shifts from prograde to retrograde at a distance from the bubble that depends on the viscoelastic properties of the gel. To explain these behaviours, we develop a simple three-dimensional model for the deformation of a viscoelastic solid by a localised oscillating force. By using as input for the model the values of the shear modulus obtained from the propagation velocity of the Rayleigh waves, we find good qualitative agreement with the experimental observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29l1609V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29l1609V"><span>SPH modeling and simulation of spherical particles interacting in a viscoelastic matrix</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vázquez-Quesada, A.; Ellero, M.</p> <p>2017-12-01</p> <p>In this work, we extend the three-dimensional Smoothed Particle Hydrodynamics (SPH) non-colloidal particulate model previously developed for Newtonian suspending media in Vázquez-Quesada and Ellero ["Rheology and microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics," J. Non-Newtonian Fluid Mech. 233, 37-47 (2016)] to viscoelastic matrices. For the solvent medium, the coarse-grained SPH viscoelastic formulation proposed in Vázquez-Quesada, Ellero, and Español ["Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations," Phys. Rev. E 79, 056707 (2009)] is adopted. The property of this particular set of equations is that they are entirely derived within the general equation for non-equilibrium reversible-irreversible coupling formalism and therefore enjoy automatically thermodynamic consistency. The viscoelastic model is derived through a physical specification of a conformation-tensor-dependent entropy function for the fluid particles. In the simple case of suspended Hookean dumbbells, this delivers a specific SPH discretization of the Oldroyd-B constitutive equation. We validate the suspended particle model by studying the dynamics of single and mutually interacting "noncolloidal" rigid spheres under shear flow and in the presence of confinement. Numerical results agree well with available numerical and experimental data. It is straightforward to extend the particulate model to Brownian conditions and to more complex viscoelastic solvents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhSS...60..120B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhSS...60..120B"><span>Viscoelasticity and plasticity mechanisms of human dentin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borodin, E. N.; Seyedkavoosi, S.; Zaitsev, D.; Drach, B.; Mikaelyan, K. N.; Panfilov, P. E.; Gutkin, M. Yu.; Sevostianov, I.</p> <p>2018-01-01</p> <p>Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young's moduli and other characteristics of dentin viscoelasticity under uniaxial compression are found. As dentin plastic deformation mechanisms, mutual collagen fiber sliding in the region of contact of their side surfaces, separation of these fibers from each other, and irreversible tension of some collagen fibers, are proposed. It is shown that the second mechanism activation requires a smaller stress than that for activating others. The models of plastic zones at the mode I crack tip, which correspond to these mechanisms, are studied. It is shown that the plastic zone size can increase from a few hundreds of nanometers to hundreds of micrometers with increasing applied stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28667516','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28667516"><span>Atomic force microscopy studies on cellular elastic and viscoelastic properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao</p> <p>2018-01-01</p> <p>In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27777117','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27777117"><span>A viscoelastic analysis of the P56 mouse brain under large-deformation dynamic indentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>MacManus, David B; Pierrat, Baptiste; Murphy, Jeremiah G; Gilchrist, Michael D</p> <p>2017-01-15</p> <p>The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties which may be attributed to the diversity of cells within individual brain regions. The regional viscoelastic properties of P56 mouse brain tissue, up to 70μm displacement, are presented and discussed in the context of traumatic brain injury, particularly how the different regions of the brain respond to mechanical loads. Force-relaxation data obtained from micro-indentation measurements were fit to both linear and quasi-linear viscoelastic models to determine the time and frequency domain viscoelastic response of the pons, cortex, medulla oblongata, cerebellum, and thalamus. The damping ratio of each region was also determined. Each region was found to have a unique mechanical response to the applied displacement, with the pons and thalamus exhibiting the largest and smallest force-response, respectively. All brain regions appear to have an optimal frequency for the dissipation of energies which lies between 1 and 10Hz. We present the first mechanical characterization of the viscoelastic response for different regions of mouse brain. Force-relaxation tests are performed under large strain dynamic micro-indentation, and viscoelastic models are used subsequently, providing time-dependent mechanical properties of brain tissue under loading conditions comparable to what is experienced in TBI. The unique mechanical properties of different brain regions are highlighted, with substantial variations in the viscoelastic properties and damping ratio of each region. Cortex and pons were the stiffest regions, while the thalamus and medulla were most compliant. The cerebellum and thalamus had highest damping ratio values and those of the medulla were lowest. The reported material parameters can be implemented into finite element computer models of the mouse to investigate the effects of trauma on individual brain regions. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880049531&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880049531&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dviscoelastic"><span>Thermo-viscoelastic response of graphite/epoxy composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, Kuen; Hwang, I. H.</p> <p>1988-01-01</p> <p>The thermo-viscoelastic behavior of composite material is studied analytically using a special finite-element formulation. Numerical results on stress and deformation histories are obtained for both unnotched and notched graphite/epoxy composites subjected to mechanical and thermal spectrum loads. The results indicate that time-dependent effects are important in composites with matrix-dominated layup orientations. Such effects also strongly depend on the specific environment condition and load spectrum applied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29103522','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29103522"><span>A systematical rheological study of polysaccharide from Sophora alopecuroides L. seeds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Yan; Guo, Rui; Cao, Nannan; Sun, Xiangjun; Sui, Zhongquan; Guo, Qingbin</p> <p>2018-01-15</p> <p>The rheological properties of polysaccharide (SAP) from Sophora alopecuroides L. seeds were systematically investigated by fitting different models. The steady flow testing indicated that SAP exhibited shear-thinning behaviors, which were enhanced with increasing concentration and decreasing temperature. This was demonstrated quantitatively by Williamson and Arrhenius models. According to the generalized Morris equation, SAP exhibited random coil conformation with the potential to form weak gel-like network. On the other hand, multiple results of dynamic tests confirmed the viscoelastic properties of SAP, showing oscillatory behaviors between a dilute solution and an elastic gel. Furthermore, SAP solutions were thermorheologically stable without remarkable energetic interactions or structural heterogeneity, since their rheological patterns were successfully applied to Time-temperature superposition (TTS) principle, modified Cole-Cole analysis and Cox-Merz rule. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917357C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917357C"><span>Effective viscoelastic properties of shales.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel</p> <p>2017-04-01</p> <p>Shales are often characterized as being elasto-plastic: they deform elastically for stresses below a certain yield and plastically at the limit. This approach dismisses any time dependent behavior that occurs in nature. Our goal is to better understand this time dependency by considering the visco-elastic behavior of shales before plasticity is reached. Shales are also typically heterogeneous and the question arises as to how to derive their effective properties in order to model them as a homogeneous medium. We model shales using inclusion based models due to their versatility and their ability to represent the microstructure. The inclusions represent competent quartz or calcite grains which are set in a viscous matrix made of clay minerals. Our approach relies on both numerical and analytical results in two dimension and we use them to cross check each other. The numerical results are obtained using MILAMIN, a fast-finite element solver for large problems, while the analytical solutions are based on the correspondence principle of linear viscoelasticity. This principle allows us to use the results on effective properties already derived for elastic bodies and to adapt them to viscoelastic bodies. We start by revisiting the problem of a single inclusion in an infinite medium and then move on to consider many inclusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4273292','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4273292"><span>Modeling viscoelasticity through spring–dashpot models in intermittent-contact atomic force microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>López-Guerra, Enrique A</p> <p>2014-01-01</p> <p>Summary We examine different approaches to model viscoelasticity within atomic force microscopy (AFM) simulation. Our study ranges from very simple linear spring–dashpot models to more sophisticated nonlinear systems that are able to reproduce fundamental properties of viscoelastic surfaces, including creep, stress relaxation and the presence of multiple relaxation times. Some of the models examined have been previously used in AFM simulation, but their applicability to different situations has not yet been examined in detail. The behavior of each model is analyzed here in terms of force–distance curves, dissipated energy and any inherent unphysical artifacts. We focus in this paper on single-eigenmode tip–sample impacts, but the models and results can also be useful in the context of multifrequency AFM, in which the tip trajectories are very complex and there is a wider range of sample deformation frequencies (descriptions of tip–sample model behaviors in the context of multifrequency AFM require detailed studies and are beyond the scope of this work). PMID:25551043</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23394805','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23394805"><span>Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Afonso, A M; Alves, M A; Pinho, F T</p> <p>2013-04-01</p> <p>This paper presents an analytical model that describes a two-fluid electro-osmotic flow of stratified fluids with Newtonian or viscoelastic rheological behavior. This is the principle of operation of an electro-osmotic two-fluid pump as proposed by Brask et al. [Tech. Proc. Nanotech., 1, 190-193, 2003], in which an electrically non-conducting fluid is transported by the interfacial dragging viscous force of a conducting fluid that is driven by electro-osmosis. The electric potential in the conducting fluid and the analytical steady flow solution of the two-fluid electro-osmotic stratified flow in a planar microchannel are presented by assuming a planar interface between the two immiscible fluids with Newtonian or viscoelastic rheological behavior. The effects of fluid rheology, shear viscosity ratio, holdup and interfacial zeta potential are analyzed to show the viability of this technique, where an enhancement of the flow rate is observed as the shear-thinning effects are increased. Copyright © 2012 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JSMTE..07..019M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JSMTE..07..019M"><span>Relaxation of creep strain in paper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mustalahti, Mika; Rosti, Jari; Koivisto, Juha; Alava, Mikko J.</p> <p>2010-07-01</p> <p>In disordered, viscoelastic or viscoplastic materials a sample response exhibits a recovery phenomenon after the removal of a constant load or after creep. We study experimentally the recovery in paper, a quasi-two-dimensional system with intrinsic structural disorder. The deformation is measured by using the digital image correlation (DIC) method. By the DIC we obtain accurate displacement data and the spatial fields of deformation and recovered strains. The averaged results are first compared to several heuristic models for viscoelastic polymer materials in particular. The most important experimental quantity is the permanent creep strain, and we analyze whether it is non-zero by fitting the empirical models of viscoelasticity. We then present in more detail the spatial recovery behavior results from DIC, and show that they indicate a power-law-type relaxation. We outline results on variation from sample to sample and collective, spatial fluctuations in the recovery behavior. An interpretation is provided for the relaxation in the general context of glassy, interacting systems with barriers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17939713','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17939713"><span>Complex rheological properties of a water-soluble extract from the fronds of the black tree fern, Cyathea medullaris.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goh, Kelvin K T; Matia-Merino, Lara; Hall, Christopher E; Moughan, Paul J; Singh, Harjinder</p> <p>2007-11-01</p> <p>A water-soluble extract was obtained from the fronds of a New Zealand native black tree fern (Cyathea medullaris or Mamaku in Māori). The extract exhibited complex rheological behavior. Newtonian, shear-thinning, shear-thickening, thixotropic, antithixotropic, and viscoelastic behaviors were observed depending on polymer concentration, shear rate, and shear history. The extract also displayed rod-climbing and self-siphoning properties typical of viscoelastic fluids. Such complex rheological properties have been reported in synthetic or chemically modified polymers but are less frequent in unmodified biopolymers. Although Mamaku extract obtained from the pith of the fern has been traditionally used by the Māori in New Zealand for treating wounds and diarrhea among other ailments, this material has never been characterized before. This study reports on the chemical composition of the extract and on its viscoelastic properties through rotational and oscillatory rheological measurements. Explanations of the mechanism behind the rheological properties were based on transient network models for associating polymers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3947227','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3947227"><span>Nanoscale Viscoelasticity of Extracellular Matrix Proteins in Soft Tissues: a Multiscale Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Miri, Amir K.; Heris, Hossein K.; Mongeau, Luc; Javid, Farhad</p> <p>2013-01-01</p> <p>We propose that the bulk viscoelasticity of soft tissues results from two length-scale-dependent mechanisms: the time-dependent response of extracellular matrix proteins (ECM) at the nanometer scale and the biophysical interactions between the ECM solid structure and interstitial fluid at the micrometer scale. The latter was modeled using the poroelasticity theory with an assumption of free motion of the interstitial fluid within the porous ECM structure. Following a recent study (Heris, H.K., Miri, A.K., Tripathy, U., Barthelat, F., Mongeau, L., 2013. Journal of the Mechanical Behavior of Biomedical Materials), atomic force microscopy was used to perform creep loading and 50-nm sinusoidal oscillations on porcine vocal folds. The proposed model was calibrated by a finite element model to accurately predict the nanoscale viscoelastic moduli of ECM. A linear correlation was observed between the in-depth distribution of the viscoelastic moduli and that of hyaluronic acids in the vocal fold tissue. We conclude that hyaluronic acids may regulate the vocal fold viscoelasticity at nanoscale. The proposed methodology offers a characterization tool for biomaterials used in vocal fold augmentations. PMID:24317493</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvF...1b3302I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvF...1b3302I"><span>Effects of viscoelasticity on drop impact and spreading on a solid surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Izbassarov, Daulet; Muradoglu, Metin</p> <p>2016-06-01</p> <p>The effects of viscoelasticity on drop impact and spreading on a flat solid surface are studied computationally using a finite-difference-front-tracking method. The finitely extensible nonlinear elastic-Chilcott-Rallison model is used to account for the fluid viscoelasticity. It is found that viscoelasticity favors advancement of contact line during the spreading phase, leading to a slight increase in the maximum spreading, in agreement with experimental observations [Huh, Jung, Seo, and Lee, Microfluid. Nanofluid. 18, 1221 (2015), 10.1007/s10404-014-1518-4]. However, in contrast with the well-known antirebound effects of polymeric additives, the viscoelasticity is found to enhance the tendency of the drop rebound in the receding phase. These results suggest that the antirebound effects are mainly due to the polymer-induced modification of wetting properties of the substrate rather than the change in the material properties of the drop fluid. A model is proposed to test this hypothesis. It is found that the model results in good qualitative agreement with the experimental observations and the antirebound behavior can be captured by the modification of surface wetting properties in the receding phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750045688&hterms=Rein&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DRein','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750045688&hterms=Rein&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DRein"><span>Measurement of viscosity and elasticity of lubricants at high pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rein, R. G., Jr.; Charng, T. T.; Sliepcevich, C. M.; Ewbank, W. J.</p> <p>1975-01-01</p> <p>The oscillating quartz crystal viscometer has been used to investigate possible viscoelastic behavior in synthetic lubricating fluids and to obtain viscosity-pressure-temperature data for these fluids at temperatures to 300 F and pressures to 40,000 psig. The effect of pressure and temperature on the density of the test fluids was measured concurrently with the viscosity measurements. Viscoelastic behavior of one fluid, di-(2-ethylhexyl) sebacate, was observed over a range of pressures. These data were used to compute the reduced shear elastic (storage) modulus and reduced loss modulus for this fluid at atmospheric pressure and 100 F as functions of reduced frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10163E..16O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10163E..16O"><span>Rate dependent constitutive behavior of dielectric elastomers and applications in legged robotics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oates, William; Miles, Paul; Gao, Wei; Clark, Jonathan; Mashayekhi, Somayeh; Hussaini, M. Yousuff</p> <p>2017-04-01</p> <p>Dielectric elastomers exhibit novel electromechanical coupling that has been exploited in many adaptive structure applications. Whereas the quasi-static, one-dimensional constitutive behavior can often be accurately quantified by hyperelastic functions and linear dielectric relations, accurate predictions of electromechanical, rate-dependent deformation during multiaxial loading is non-trivial. In this paper, an overview of multiaxial electromechanical membrane finite element modeling is formulated. Viscoelastic constitutive relations are extended to include fractional order. It is shown that fractional order viscoelastic constitutive relations are superior to conventional integer order models. This knowledge is critical for transition to control of legged robotic structures that exhibit advanced mobility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22271931','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22271931"><span>A thermodynamical model for stress-fiber organization in contractile cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Foucard, Louis; Vernerey, Franck J</p> <p>2012-01-02</p> <p>Cell mechanical adaptivity to external stimuli is vital to many of its biological functions. A critical question is therefore to understand the formation and organization of the stress fibers from which emerge the cell's mechanical properties. By accounting for the mechanical aspects and the viscoelastic behavior of stress fibers, we here propose a thermodynamic model to predict the formation and orientation of stress fibers in contractile cells subjected to constant or cyclic stretch and different substrate stiffness. Our results demonstrate that the stress fibers viscoelastic behavior plays a crucial role in their formation and organization and shows good consistency with various experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1027.1241G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1027.1241G"><span>Rheology of Coating Materials and Their Coating Characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grabsch, C.; Grüner, S.; Otto, F.; Sommer, K.</p> <p>2008-07-01</p> <p>Lots of particles used in the pharmaceutical and the food industry are coated to protect the core material. But almost no investigations about the coating material behavior do exist. In this study the focus was on the rheological material properties of fat based coating materials. Rotational shear experiments to determine the viscosity of a material were compared to oscillatory shear tests to get information about the vicoelastic behavior of the coating materials. At the liquid state the viscosity and the viscoelastic properties showed a good analogy. The viscoelastic properties of the solid coating materials yielded differences between materials that have the same properties at the liquid state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19878908','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19878908"><span>Viscoelastic behavior of discrete human collagen fibrils.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Svensson, René B; Hassenkam, Tue; Hansen, Philip; Peter Magnusson, S</p> <p>2010-01-01</p> <p>Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon fibrils. Fibrils were obtained from intact human fascicles, without any pre-treatment besides frozen storage. In the dry state a single isolated fibril was anchored to a substrate using epoxy glue, and the end of the fibril was glued on to an AFM cantilever for tensile testing. In phosphate buffered saline, cyclic testing was performed in the pre-yield region at different strain rates, and the elastic response was determined by a stepwise stress relaxation test. The elastic stress-strain response corresponded to a second-order polynomial fit, while the viscous response showed a linear dependence on the strain. The slope of the viscous response showed a strain rate dependence corresponding to a power function of powers 0.242 and 0.168 for the two patellar tendon fibrils, respectively. In conclusion, the present work provides direct evidence of viscoelastic behavior at the single fibril level, which has not been previously measured.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17430588','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17430588"><span>Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Iborra, Francisco J</p> <p>2007-04-12</p> <p>The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18992309','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18992309"><span>Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Renvoise, Julien; Burlot, Delphine; Marin, Gérard; Derail, Christophe</p> <p>2009-02-23</p> <p>This work deals with the rheological behavior and adherence properties of pressure sensitive adhesive formulations dedicated to medical applications. We have developed a specific viscoelastic substrate which mimics adhesion on human skin to measure the adherence properties of PSAs when they are stuck on the human skin. By comparing peeling results of PSAs, dedicated to medical applications, stuck on human skin and on this viscoelastic substrate we show that this substrate, based on a blend of natural proteins, presents a better representation of the interactions occurring at the skin/adhesive interface than conventional substrates used for peel test (i.e. glass and steel).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840018682','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840018682"><span>The nonlinear viscoelastic response of resin matrix composite laminates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hiel, C.; Cardon, A. H.; Brinson, H. F.</p> <p>1984-01-01</p> <p>Possible treatments of the nonlinear viscoelastic behavior of materials are reviewed. A thermodynamic based approach, developed by Schapery, is discussed and used to interpret the nonlinear viscoelastic response of a graphite epoxy laminate, T300/934. Test data to verify the analysis for Fiberite 934 neat resin as well as transverse and shear properties of the unidirectional T300/934 composited are presented. Long time creep characteristics as a function of stress level and temperature are generated. Favorable comparisons between the traditional, graphical, and the current analytical approaches are shown. A free energy based rupture criterion is proposed as a way to estimate the life that remains in a structure at any time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..MARY28014L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..MARY28014L"><span>Use of magnetic micro-cantilevers to study the dynamics of 3D engineered smooth muscle constructs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Alan; Zhao, Ruogang; Copeland, Craig; Chen, Christopher; Reich, Daniel</p> <p>2013-03-01</p> <p>The normal and pathological response of arterial tissue to mechanical stimulus sheds important light on such conditions as atherosclerosis and hypertension. While most previous methods of determining the biomechanical properties of arteries have relied on excised tissue, we have devised a system that enables the growth and in situ application of forces to arrays of stable suspended microtissues consisting of arterial smooth muscle cells (SMCs). Briefly, this magnetic microtissue tester system consists of arrays of pairs of elastomeric magnetically actuated micro-cantilevers between which SMC-infused 3D collagen gels self-assemble and remodel into aligned microtissue constructs. These devices allow us to simultaneously apply force and track stress-strain relationships of multiple microtissues per substrate. We have studied the dilatory capacity and subsequent response of the tissues and find that the resulting stress-strain curves show viscoelastic behavior as well as a linear dynamic recovery. These results provide a foundation for elucidating the mechanical behavior of this novel model system as well as further experiments that simulate pathological conditions. Supported in part by NIH grant HL090747.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRB..121.4955B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRB..121.4955B"><span>Grain size-sensitive viscoelastic relaxation and seismic properties of polycrystalline MgO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnhoorn, A.; Jackson, I.; Fitz Gerald, J. D.; Kishimoto, A.; Itatani, K.</p> <p>2016-07-01</p> <p>Torsional forced-oscillation experiments on a suite of synthetic MgO polycrystals, of high-purity and average grain sizes of 1-100 µm, reveal strongly viscoelastic behavior at temperatures of 800-1300°C and periods between 1 and 1000 s. The measured shear modulus and associated strain energy dissipation both display monotonic variations with oscillation period, temperature, and grain size. The data for the specimens of intermediate grain size have been fitted to a generalized Burgers creep function model that is also broadly consistent with the results for the most coarse-grained specimen. The mild grain size sensitivity for the relaxation time τL, defining the lower end of the anelastic absorption band, is consistent with the onset of elastically accommodated grain boundary sliding. The upper end of the anelastic absorption band, evident in the highest-temperature data for one specimen only, is associated with the Maxwell relaxation time τM marking the transition toward viscous behavior, conventionally ascribed a stronger grain size sensitivity. Similarly pronounced viscoelastic behavior was observed in complementary torsional microcreep tests, which confirm that the nonelastic strains are mainly recoverable, i.e., anelastic. With an estimated activation volume for the viscoelastic relaxation, the experimentally constrained Burgers model has been extrapolated to the conditions of pressure and temperature prevailing in the Earth's uppermost lower mantle. For a plausible grain size of 10 mm, the predicted dissipation Q-1 ranges from 10-3 to 10-2 for periods of 3-3000 s. Broad consistency with seismological observations suggests that the lower mantle ferropericlase phase might account for much of its observed attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1343043-constitutive-models-viscoelastic-behavior-polyimide-membranes-room-deep-cryogenic-temperatures','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1343043-constitutive-models-viscoelastic-behavior-polyimide-membranes-room-deep-cryogenic-temperatures"><span>Constitutive Models for the Viscoelastic Behavior of Polyimide Membranes at Room and Deep Cryogenic Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bhandarkar, Suhas; Betcher, Jacob; Smith, Ryan; ...</p> <p>2016-06-30</p> <p>Targets for ICF shots on NIF typically use ~500nm thin polyimide films with a coating of 25nm of aluminum as windows that seal the laser entrance hole or LEH. Their role is to contain the hohlraum gas and minimize the extraneous infra-red radiation getting in. This is necessary to precisely control the hohlraum thermal environment for layering inside the capsule with solid deuterium-tritium at 18K. Here, we use our empirical data on the bulging behavior of these foils under various different conditions to develop models to capture the complex viscoelastic behavior of these films at both ambient and cryogenic temperatures.more » The constitutive equations derived from these models give us the ability to quantitatively specify the film’s behavior during the fielding of these targets and set the best parameters for new target designs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880012120','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880012120"><span>Pressure induced ageing of polymers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Emri, I.; Knauss, W. G.</p> <p>1988-01-01</p> <p>The nonlinearly viscoelastic response of an amorphous homopolymer is considered under aspects of time dependent free volume behavior. In contrast to linearly viscoelastic solids, this model couples shear and volume deformation through a shift function which influences the rate of molecular relaxation or creep. Sample computations produce all those qualitative features one observes normally in uniaxial tension including the rate dependent formation of a yield point as a consequence of the history of an imposed pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840007200','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840007200"><span>Nonlinear viscoelastic characterization of structural adhesives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rochefort, M. A.; Brinson, H. F.</p> <p>1983-01-01</p> <p>Measurements of the nonliner viscoelastic behavior of two adhesives, FM-73 and FM-300, are presented and discussed. Analytical methods to quantify the measurements are given and fitted into a framework of an accelerated testing and analysis procedure. The single integral model used is shown to function well and is analogous to a time-temperature stress-superposition procedure (TTSSP). Advantages and disadvantages of the creep power law method used in this study are given.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA465195','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA465195"><span>Viscoelastic Mapping of the Arterial Ovine System using a Kelvin Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-03-19</p> <p>University Campus Box 8205 Raleigh, NC 27695. 2) Department of Physiology School of Medicine Universidad de la Republica General Flores 2125, PC: 11800...not differ significantly across locations. We also showed that for all locations, the inclusion of viscoelastic behavior, e.g., using the Kelvin model...All protocols were approved by the Research and Development Council of the Universidad de la Republica, and were conducted in accordance with the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/18367','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/18367"><span>Implementation of mechanistic pavement design : field and laboratory implementation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2006-12-01</p> <p>One of the most important parameters needed for 2002 Mechanistic Pavement Design Guide is the dynamic modulus (E*). : The dynamic modulus (E*) describes the relationship between stress and strain for a linear viscoelastic material. The E* is the : pr...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006Apei...13..129C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006Apei...13..129C"><span>Hidden in Plain View: The Material Invariance of Maxwell-Hertz-Lorentz Electrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christov, C. I.</p> <p>2006-04-01</p> <p>Maxwell accounted for the apparent elastic behavior of the electromagnetic field through augmenting Ampere's law by the so-called displacement current much in the same way that he treated the viscoelasticity of gases. Original Maxwell constitutive relations for both electrodynamics and fluid dynamics were not material invariant, while combin- ing Faraday's law and the Lorentz force makes the first of Maxwell's equation material invariant. Later on, Oldroyd showed how to make a viscoelastic constitutive law mate- rial invariant. The main assumption was that the proper description of a constitutive law must be material invariant. Assuming that the electromagnetic field is a material field, we show here that if the upper convected Oldroyd derivative (related to Lie derivative) is used, the displacement current becomes material invariant. The new formulation ensures that the equation for conser- vation of charge is also material invariant which vindicates the choice of Oldroyd derivative over the standard convec- tive derivative. A material invariant field model is by ne- cessity Galilean invariant. We call the material field (the manifestation of which are the equations of electrodynam- ics the metacontinuum), in order to distinguish it form the standard material continua.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20568271','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20568271"><span>Injection of human mesenchymal stem cells improves healing of scarred vocal folds: analysis using a xenograft model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Svensson, Bengt; Nagubothu, R Srinivasa; Cedervall, Jessica; Le Blanc, Katarina; Ahrlund-Richter, Lars; Tolf, Anna; Hertegård, Stellan</p> <p>2010-07-01</p> <p>The aims were to analyze if improved histological and viscoelastic properties seen after injection of human mesenchymal stem cells (hMSCs) in scarred vocal folds (VFs) of rabbits are sustainable and if the injected hMSCs survive 3 months in the VFs. Experimental xenograft model. Eighteen VFs of 11 New Zealand white rabbits were scarred by a bilateral localized resection. After 3 months the animals were sacrificed. Twelve VFs were dissected and stained for histology, lamina propria thickness, and relative collagen type I analyses. The hMSCs survival was analyzed using a human DNA-specific reference probe, that is, fluorescence in situ hybridization staining. Viscoelasticity, measured as the dynamic viscosity and elastic modulus, was analyzed in a parallel-plate rheometer for 10 VFs. The dynamic viscosity and elastic modulus of hMSC-treated VFs were similar to that of normal controls and significantly improved compared to untreated controls (P < .05). A reduction in lamina propria thickness and relative collagen type 1 content were also shown for the hMSC-treated VFs compared to the untreated VFs (P < .05). The histological pictures corresponded well to the viscoelastic results. No hMSCs survived. Human mesenchymal stem cells injected into a scarred vocal fold of rabbit enhance healing of the vocal fold with reduced lamina propria thickness and collagen type I content and restore the viscoelastic function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24771233','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24771233"><span>Spatio-temporal dynamics of an active, polar, viscoelastic ring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marcq, Philippe</p> <p>2014-04-01</p> <p>Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030014331','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030014331"><span>Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Arthur R.; Chen, Tzi-Kang</p> <p>2002-01-01</p> <p>Thick rubber components are employed by the Army to carry large loads. In tanks, rubber covers road wheels and track systems to protect roadways. It is difficult for design engineers to simulate the details of the hysteretic heating for large strain viscoelastic deformations. In this study, an approximation to the viscoelastic energy dissipated per unit time is investigated for use in estimating mechanically induced viscoelastic heating. Coupled thermo-mechanical simulations of large cyclic deformations of rubber cylinders are presented. The cylinders are first compressed axially and then cyclically loaded about the compressed state. Details of the algorithm and some computational issues are discussed. The coupled analyses are conducted for tall and short rubber cylinders both with and without imbedded metal disks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MAR.G1376M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MAR.G1376M"><span>Rouse-Bueche Theory and The Calculation of The Monomeric Friction Coefficient in a Filled System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martinetti, Luca; Macosko, Christopher; Bates, Frank</p> <p></p> <p>According to flexible chain theories of viscoelasticity, all relaxation and retardation times of a polymer melt (hence, any dynamic property such as the diffusion coefficient) depend on the monomeric friction coefficient, ζ0, i.e. the average drag force per monomer per unit velocity encountered by a Gaussian submolecule moving through its free-draining surroundings. Direct experimental access to ζ0 relies on the availability of a suitable polymer dynamics model. Thus far, no method has been suggested that is applicable to filled systems, such as filled rubbers or microphase-segregated A-B-A thermoplastic elastomers at temperatures where one of the blocks is glassy. Building upon the procedure proposed by Ferry for entangled and unfilled polymer melts, the Rouse-Bueche theory is applied to an undiluted triblock copolymer to extract ζ0 from the linear viscoelastic behavior in the rubber-glass transition region, and to estimate the size of Gaussian submolecules. At iso-free volume conditions, the so-obtained matrix monomeric friction factor is consistent with the corresponding value for the homopolymer melt. In addition, the characteristic Rouse dimensions are in good agreement with independent estimates based on the Kratky-Porod worm-like chain model. These results seem to validate the proposed approach for estimating ζ0 in a filled system. Although preliminary tested on a thermoplastic elastomer of the A-B-A type, the method may be extended and applied to filled homopolymers as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22439870','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22439870"><span>Long time response of soft magnetorheological gels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>An, Hai-Ning; Sun, Bin; Picken, Stephen J; Mendes, Eduardo</p> <p>2012-04-19</p> <p>Swollen physical magnetorheological (MR) gels were obtained by self-assembling of triblock copolymers containing dispersed soft magnetic particles. The transient rheological responses of these systems were investigated experimentally. Upon sudden application of a homogeneous magnetic field step change, the storage modulus of MR gels continued to increase with time. Such increase trend of the storage modulus could be expressed by a double-exponential function with two distinct modes, a fast and a slow one. The result was compared with the transient rheological response of equivalent MR fluids (paraffin oil without copolymer) and a MR elastomer (PDMS) and interpreted as the consequence of strong rearrangement of the original particle network under magnetic field. Similar to the structure evolution of MR fluids, the ensemble of results suggests that "chaining" and "clustering" processes are also happening inside the gel and are responsible for the rheological behavior, provided they are happening on a smaller length scale (long chains and clusters are hindered). We show that response times of several minutes are typical for the slow response of MR gels. The characteristic time t(2) for the slow process is significantly dependent on the magnetic flux density, the matrix viscoelastic property, particle volume fraction, and sample's initial particle distribution. In order to validate our results, the role of dynamic strain history was clarified. We show that, in the linear viscoelastic region, the particle rearrangement of MR gels was not hindered or accelerated by the dynamic strain history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyB..530..222J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyB..530..222J"><span>Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jalaei, M. H.; Arani, A. Ghorbanpour</p> <p>2018-02-01</p> <p>By considering the small scale effect based on the nonlocal Eringen's theory, the static and dynamic analysis of viscoelastic orthotropic double-layered graphene sheets subjected to longitudinal magnetic field and mechanical load is investigated analytically. For this objective, first order shear deformation theory (FSDT) is proposed. The surrounding medium is simulated by visco-Pasternak foundation model in which damping, normal and transverse shear loads are taken into account. The governing equations of motion are obtained via energy method and Hamilton's principle which are then solved analytically by means of Navier's approach and Laplace inversion technique in the space and time domains, respectively. Through various parametric studies, the influences of the nonlocal parameter, structural damping, van der Waals (vdW) interaction, stiffness and damping coefficient of the foundation, magnetic parameter, aspect ratio and length to thickness ratio on the static and dynamic response of the nanoplates are examined. The results depict that when the vdW interaction is considered to be zero, the upper layer deflection reaches a maximum point whereas the lower layer deflection becomes zero. In addition, it is observed that with growing the vdW interaction, the effect of magnetic field on the deflection of the lower layer increases while this effect reduces for the upper layer deflection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EPJST.222.2855N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EPJST.222.2855N"><span>Electrokinetic and hydrodynamic properties of charged-particles systems. From small electrolyte ions to large colloids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.</p> <p>2013-11-01</p> <p>Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27716169','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27716169"><span>Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Temple, Duncan K; Cederlund, Anna A; Lawless, Bernard M; Aspden, Richard M; Espino, Daniel M</p> <p>2016-10-06</p> <p>The purpose of this study was to compare the frequency-dependent viscoelastic properties of human and bovine cartilage. Full-depth cartilage specimens were extracted from bovine and human femoral heads. Using dynamic mechanical analysis, the viscoelastic properties of eight bovine and six human specimens were measured over the frequency range 1 Hz to 88 Hz. Significant differences between bovine and human cartilage viscoelastic properties were assessed using a Mann-Whitney test (p < 0.05). Throughout the range of frequencies tested and for both species, the storage modulus was greater than the loss modulus and both were frequency-dependent. The storage and loss moduli of all human and bovine cartilage specimens presented a logarithmic relationship with respect to frequency. The mean human storage modulus ranged from 31.9 MPa to 43.3 MPa, while the mean bovine storage modulus ranged from 54.0 MPa to 80.5 MPa; bovine storage moduli were 1.7 to 1.9 times greater than the human modulus. Similarly, the loss modulus of bovine cartilage was 2.0 to 2.1 times greater than human. The mean human loss modulus ranged from 5.3 MPa to 8.5 MPa while bovine moduli ranged from 10.6 MPa to 18.1 MPa. Frequency-dependent viscoelastic trends of bovine articular cartilage were consistent with those of human articular cartilage; this includes a similar frequency dependency and high-frequency plateau. Bovine cartilage was, however, 'stiffer' than human by a factor of approximately 2. With these provisos, bovine articular cartilage may be a suitable dynamic model for human articular cartilage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27627026','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27627026"><span>A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wei, Fanan; Yang, Haitao; Liu, Lianqing; Li, Guangyong</p> <p>2017-03-01</p> <p>Dynamic mechanical behaviour of living cells has been described by viscoelasticity. However, quantitation of the viscoelastic parameters for living cells is far from sophisticated. In this paper, combining inverse finite element (FE) simulation with Atomic Force Microscope characterization, we attempt to develop a new method to evaluate and acquire trustworthy viscoelastic index of living cells. First, influence of the experiment parameters on stress relaxation process is assessed using FE simulation. As suggested by the simulations, cell height has negligible impact on shape of the force-time curve, i.e. the characteristic relaxation time; and the effect originates from substrate can be totally eliminated when stiff substrate (Young's modulus larger than 3 GPa) is used. Then, so as to develop an effective optimization strategy for the inverse FE simulation, the parameters sensitivity evaluation is performed for Young's modulus, Poisson's ratio, and characteristic relaxation time. With the experiment data obtained through typical stress relaxation measurement, viscoelastic parameters are extracted through the inverse FE simulation by comparing the simulation results and experimental measurements. Finally, reliability of the acquired mechanical parameters is verified with different load experiments performed on the same cell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10641665','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10641665"><span>Viscoelastic shear properties of human vocal fold mucosa: theoretical characterization based on constitutive modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, R W; Titze, I R</p> <p>2000-01-01</p> <p>The viscoelastic shear properties of human vocal fold mucosa (cover) were previously measured as a function of frequency [Chan and Titze, J. Acoust. Soc. Am. 106, 2008-2021 (1999)], but data were obtained only in a frequency range of 0.01-15 Hz, an order of magnitude below typical frequencies of vocal fold oscillation (on the order of 100 Hz). This study represents an attempt to extrapolate the data to higher frequencies based on two viscoelastic theories, (1) a quasilinear viscoelastic theory widely used for the constitutive modeling of the viscoelastic properties of biological tissues [Fung, Biomechanics (Springer-Verlag, New York, 1993), pp. 277-292], and (2) a molecular (statistical network) theory commonly used for the rheological modeling of polymeric materials [Zhu et al., J. Biomech. 24, 1007-1018 (1991)]. Analytical expressions of elastic and viscous shear moduli, dynamic viscosity, and damping ratio based on the two theories with specific model parameters were applied to curve-fit the empirical data. Results showed that the theoretical predictions matched the empirical data reasonably well, allowing for parametric descriptions of the data and their extrapolations to frequencies of phonation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5669240','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5669240"><span>Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>López-Guerra, Enrique A</p> <p>2017-01-01</p> <p>We explore the contact problem of a flat-end indenter penetrating intermittently a generalized viscoelastic surface, containing multiple characteristic times. This problem is especially relevant for nanoprobing of viscoelastic surfaces with the highly popular tapping-mode AFM imaging technique. By focusing on the material perspective and employing a rigorous rheological approach, we deliver analytical closed-form solutions that provide physical insight into the viscoelastic sources of repulsive forces, tip–sample dissipation and virial of the interaction. We also offer a systematic comparison to the well-established standard harmonic excitation, which is the case relevant for dynamic mechanical analysis (DMA) and for AFM techniques where tip–sample sinusoidal interaction is permanent. This comparison highlights the substantial complexity added by the intermittent-contact nature of the interaction, which precludes the derivation of straightforward equations as is the case for the well-known harmonic excitations. The derivations offered have been thoroughly validated through numerical simulations. Despite the complexities inherent to the intermittent-contact nature of the technique, the analytical findings highlight the potential feasibility of extracting meaningful viscoelastic properties with this imaging method. PMID:29114450</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27860189','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27860189"><span>Wire-Active Microrheology to Differentiate Viscoelastic Liquids from Soft Solids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Loosli, Frédéric; Najm, Matthieu; Chan, Raymond; Oikonomou, Evdokia; Grados, Arnaud; Receveur, Mathieu; Berret, Jean-François</p> <p>2016-12-15</p> <p>Viscoelastic liquids are characterized by a finite static viscosity and a yield stress of zero, whereas soft solids have an infinite viscosity and a non-zero yield stress. The rheological nature of viscoelastic materials has long been a challenge and is still a matter of debate. Here, we provide for the first time the constitutive equations of linear viscoelasticity for magnetic wires in yield-stress materials, together with experimental measurements by using magnetic rotational spectroscopy (MRS). In MRS, the wires were subjected to a rotational magnetic field as a function of frequency and the motion of the wire was monitored by using time-lapse microscopy. The studied soft solids were aqueous dispersions of gel-forming polysaccharide (gellan gum) at concentrations above the gelification point. It was found that soft solids exhibited a clear and distinctive signature compared with viscous and viscoelastic liquids. In particular, the average wire rotation velocity equaled zero over a broad frequency range. We also showed that the MRS technique is quantitative. The equilibrium elastic modulus was retrieved from the wire oscillation amplitudes, and agrees with polymer-dynamics theory. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...415..184R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...415..184R"><span>Coupled dynamics of a viscoelastically supported infinite string and a number of discrete mechanical systems moving with uniform speed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roy, Soumyajit; Chakraborty, G.; DasGupta, Anirvan</p> <p>2018-02-01</p> <p>The mutual interaction between a number of multi degrees of freedom mechanical systems moving with uniform speed along an infinite taut string supported by a viscoelastic layer has been studied using the substructure synthesis method when base excitations of a common frequency are given to the mechanical systems. The mobility or impedance matrices of the string have been calculated analytically by Fourier transform method as well as wave propagation technique. The above matrices are used to calculate the response of the discrete mechanical systems. Special attention is paid to the contact forces between the discrete and the continuous systems which are estimated by numerical simulation. The effects of phase difference, the distance between the systems and different base excitation amplitudes on the collective behaviour of the mechanical systems are also studied. The present study has relevance to the coupled dynamic problem of more than one railway pantographs and an overhead catenary system where the pantographs are modelled as discrete systems and the catenary is modelled as a taut string supported by continuous viscoelastic layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NPGeo..25..251L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NPGeo..25..251L"><span>Complex interplay between stress perturbations and viscoelastic relaxation in a two-asperity fault model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lorenzano, Emanuele; Dragoni, Michele</p> <p>2018-03-01</p> <p>We consider a plane fault with two asperities embedded in a shear zone, subject to a uniform strain rate owing to tectonic loading. After an earthquake, the static stress field is relaxed by viscoelastic deformation in the asthenosphere. We treat the fault as a discrete dynamical system with 3 degrees of freedom: the slip deficits of the asperities and the variation of their difference due to viscoelastic deformation. The evolution of the fault is described in terms of inter-seismic intervals and slip episodes, which may involve the slip of a single asperity or both. We consider the effect of stress transfers connected to earthquakes produced by neighbouring faults. The perturbation alters the slip deficits of both asperities and the stress redistribution on the fault associated with viscoelastic relaxation. The interplay between the stress perturbation and the viscoelastic relaxation significantly complicates the evolution of the fault and its seismic activity. We show that the presence of viscoelastic relaxation prevents any simple correlation between the change of Coulomb stresses on the asperities and the anticipation or delay of their failures. As an application, we study the effects of the 1999 Hector Mine, California, earthquake on the post-seismic evolution of the fault that generated the 1992 Landers, California, earthquake, which we model as a two-mode event associated with the consecutive failure of two asperities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JIEIC..99..133D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JIEIC..99..133D"><span>A Study on the Influence of Process Parameters on the Viscoelastic Properties of ABS Components Manufactured by FDM Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dakshinamurthy, Devika; Gupta, Srinivasa</p> <p>2018-04-01</p> <p>Fused Deposition Modelling (FDM) is a fast growing Rapid Prototyping (RP) technology due to its ability to build parts having complex geometrical shape in reasonable time period. The quality of built parts depends on many process variables. In this study, the influence of three FDM process parameters namely, slice height, raster angle and raster width on viscoelastic properties of Acrylonitrile Butadiene Styrene (ABS) RP-specimen is studied. Statistically designed experiments have been conducted for finding the optimum process parameter setting for enhancing the storage modulus. Dynamic Mechanical Analysis has been used to understand the viscoelastic properties at various parameter settings. At the optimal parameter setting the storage modulus and loss modulus of the ABS-RP specimen was 1008 and 259.9 MPa respectively. The relative percentage contribution of slice height and raster width on the viscoelastic properties of the FDM-RP components was found to be 55 and 31 % respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29370713','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29370713"><span>Dynamic viscoelasticity of protease-treated rice batters for gluten-free rice bread making.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Honda, Yuji; Inoue, Nanami; Sugimoto, Reina; Matsumoto, Kenji; Koda, Tomonori; Nishioka, Akihiro</p> <p>2018-03-01</p> <p>Papain (cysteine protease), subtilisin (Protin SD-AY10, serine protease), and bacillolysin (Protin SD-NY10, metallo protease) increased the specific volume of gluten-free rice breads by 19-63% compared to untreated bread. In contrast, Newlase F (aspartyl protease) did not expand the volume of the rice bread. In a rheological analysis, the viscoelastic properties of the gluten-free rice batters also depended on the protease categories. Principal component analysis (PCA) analysis suggested that the storage and loss moduli (G' and G″, respectively) at 35 °C, and the maximum values of G' and G″, were important factors in the volume expansion. Judging from the PCA of the viscoelastic parameters of the rice batters, papain and Protin SD-AY10 improved the viscoelasticity for gluten-free rice bread making, and Protin SD-NY effectively expanded the gluten-free rice bread. The rheological properties differed between Protin SD-NY and the other protease treatments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730007518','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730007518"><span>A general relaxation theory of simple liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Merilo, M.; Morgan, E. J.</p> <p>1973-01-01</p> <p>A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850058983&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850058983&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dviscoelastic"><span>Transient and steady state viscoelastic rolling contact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Padovan, J.; Paramadilok, O.</p> <p>1985-01-01</p> <p>Based on moving total Lagrangian coordinates, a so-called traveling Hughes type contact strategy is developed. Employing the modified contact scheme in conjunction with a traveling finite element strategy, an overall solution methodology is developed to handle transient and steady viscoelastic rolling contact. To verify the scheme, the results of both experimental and analytical benchmarking is presented. The experimental benchmarking includes the handling of rolling tires up to their upper bound behavior, namely the standing wave response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3072451','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3072451"><span>The Quasi-Linear Viscoelastic Properties of Diabetic and Non-Diabetic Plantar Soft Tissue</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pai, Shruti; Ledoux, William R.</p> <p>2011-01-01</p> <p>The purpose of this study was to characterize the viscoelastic behavior of diabetic and non-diabetic plantar soft tissue at six ulcer-prone/load-bearing locations beneath the foot to determine any changes that may play a role in diabetic ulcer formation and subsequent amputation in this predisposed population. Four older diabetic and four control fresh frozen cadaveric feet were each dissected to isolate plantar tissue specimens from the hallux, first, third, and fifth metatarsals, lateral midfoot, and calcaneus. Stress relaxation experiments were used to quantify the viscoelastic tissue properties by fitting the data to the quasi-linear viscoelastic (QLV) theory using two methods, a traditional frequency-insensitive approach and an indirect frequency-sensitive approach, and by measuring several additional parameters from the raw data including the rate and amount of overall relaxation. The stress relaxation response of both diabetic and non-diabetic specimens was unexpectedly similar and accordingly few of the QLV parameters for either fit approach and none of raw data parameters differed. Likewise, no differences were found between plantar locations. The accuracy of both fit methods was comparable, however, neither approach predicted the ramp behavior. Further, fit coefficients varied considerably from one method to the other, making it hard to discern meaningful trends. Future testing using alternate loading modes and intact feet may provide more insight into the role that time-dependent properties play in diabetic foot ulceration. PMID:21327701</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010059295','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010059295"><span>Crosslink Density and Molecular Weight Effects on the Viscoelastic Response of a Glassy High-Performance Polyimide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.</p> <p>2001-01-01</p> <p>Durability and long-term performance are among the primary concerns for the use of advanced polymer matrix composites (PMCs) in modern aerospace structural applications. For a PMC subJected to long-term exposure at elevated temperatures. the viscoelastic nature of the polymer matrix will contribute to macroscopic changes in composite stiffness, strength and fatigue life. Over time. changes in the polymer due to physical aging will have profound effects on tile viscoelastic compliance of the material, hence affecting its long-term durability. Thus, the ability to predict material performance using intrinsic properties, such as crosslink density and molecular weight, would greatly enhance the efficiency of design and development of PMCs. The objective of this paper is to discuss and present the results of an experimental study that considers the effects of crosslink density, molecular weight and temperature on the viscoelastic behavior including physical aging of an advanced polymer. Five distinct variations in crosslink density were used to evaluate the differences in mechanical performance of an advanced polyimide. The physical aging behavior was isolated by conducting sequenced, short-term isothermal creep compliance tests in tension. These tests were performed over a range of sub-glass transition temperatures. The material constants, material master curves and physical aging-related parameters were evaluated as a function of temperature crosslink density and molecular weight using time-temperature and time-aging time superposition techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MTDM...22..207N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MTDM...22..207N"><span>Cyclic tensile response of a pre-tensioned polyurethane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nie, Yizhou; Liao, Hangjie; Chen, Weinong W.</p> <p>2018-05-01</p> <p>In the research reported in this paper, we subject a polyurethane to uniaxial tensile loading at a quasi-static strain rate, a high strain rate and a jumping strain rate where the specimen is under quasi-static pre-tension and is further subjected to a dynamic cyclic loading using a modified Kolsky tension bar. The results obtained at the quasi-static and high strain rate clearly show that the mechanical response of this material is significantly rate sensitive. The rate-jumping experimental results show that the response of the material behavior is consistent before jumping. After jumping the stress-strain response of the material does not jump to the corresponding high-rate curve. Rather it approaches the high-rate curve asymptotically. A non-linear hyper-viscoelastic (NLHV) model, after having been calibrated by monotonic quasi-static and high-rate experimental results, was found to be capable of describing the material tensile behavior under such rate jumping conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016amse.conf..444Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016amse.conf..444Y"><span>Rheological Properties and Foaming Behavior of Poly(Ethylene Terephthalates) Modified with Pyromellitic Dianhydride</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Zhao-Ping; Xin, Chun-Ling; Guo, Ya-Feng; Luo, Yi-Wei; He, Ya-Dong</p> <p>2016-05-01</p> <p>Improving the melt viscoelasticity of poly(ethylene terephthalate) (PET) is a well-known method to obtain foamable PET. The aim of this study is to prepare high melt strength PET and evaluate the influence of rheological properties of PET on the foaming behavior. For this purpose, pyromelliticdianhydride was used as the chain extender to modify a linear PET through melt reactive processing. The rheological properties of the unmodified and modified PETs were measured by a dynamic rheometer. Results showed that the modified PET had higher complex viscosity than the unmodified one. Furthermore, the batch foaming by using supercritical CO2 as a blowing agent was carried to evaluate the foamability of modified PETs. It was found that an enlarged foaming temperature window was obtained for modified PETs compared to unmodified PET. Moreover, the modified PETs foams exhibited higher expansion ratio, smaller cell size and higher cell density at high temperatures than the neat PET.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6060931-elastic-viscoelastic-calculations-stresses-sedimentary-basins','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6060931-elastic-viscoelastic-calculations-stresses-sedimentary-basins"><span>Elastic and viscoelastic calculations of stresses in sedimentary basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Warpinski, N.R.</p> <p></p> <p>This study presents a method for estimating the stress state within reservoirs at depth using a time-history approach for both elastic and viscoelastic rock behavior. Two features of this model are particularly significant for stress calculations. The first is the time-history approach, where we assume that the present in situ stress is a result of the entire history of the rock mass, rather than due only to the present conditions. The model can incorporate: (1) changes in pore pressure due to gas generation; (2) temperature gradients and local thermal episodes; (3) consolidation and diagenesis through time-varying material properties; and (4)more » varying tectonic episodes. The second feature is the use of a new viscoelastic model. Rather than assume a form of the relaxation function, a complete viscoelastic solution is obtained from the elastic solution through the viscoelastic correspondence principal. Simple rate models are then applied to obtain the final rock behavior. Example calculations for some simple cases are presented that show the contribution of individual stress or strain components. Finally, a complete example of the stress history of rocks in the Piceance basin is attempted. This calculation compares favorably with present-day stress data in this location. This model serves as a predictor for natural fracture genesis and expected rock fracturing from the model is compared with actual fractures observed in this region. These results show that most current estimates of in situ stress at depth do not incorporate all of the important mechanisms and a more complete formulation, such as this study, is required for acceptable stress calculations. The method presented here is general and is applicable to any basin having a relatively simple geologic history. 25 refs., 18 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JChPh.12112050B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JChPh.12112050B"><span>Viscoelastic properties of dendrimers in the melt from nonequlibrium molecular dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bosko, Jaroslaw T.; Todd, B. D.; Sadus, Richard J.</p> <p>2004-12-01</p> <p>The viscoelastic properties of dendrimers of generation 1-4 are studied using nonequilibrium molecular dynamics. Flow properties of dendrimer melts under shear are compared to systems composed of linear chain polymers of the same molecular weight, and the influence of molecular architecture is discussed. Rheological material properties, such as the shear viscosity and normal stress coefficients, are calculated and compared for both systems. We also calculate and compare the microscopic properties of both linear chain and dendrimer molecules, such as their molecular alignment, order parameters and rotational velocities. We find that the highly symmetric shape of dendrimers and their highly constrained geometry allows for substantial differences in their material properties compared to traditional linear polymers of equivalent molecular weight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..143a2024D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..143a2024D"><span>Vibration of functionally graded plate resting on viscoelastic elastic foundation subjected to moving loads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duy Hien, Ta; Lam, Nguyen Ngoc</p> <p>2018-04-01</p> <p>The dynamics of plates subjected to a moving load must be considered by engineering mechanics and design structures. This paper deals with the dynamic responses of functionally graded (FG) rectangular plates resting on a viscoelastic foundation under moving loads. It is assumed that material properties of the plate vary continuously in the thickness direction according to the power-law. The governing equations are derived by using Hamilton’s principle, which considers the effect of the higher-order shear deformation in the plate. Transient responses of simply supported FG rectangular plates are employed by using state-space methods. Several examples are given for displacement and stresses in the plates with various structural parameters, and the effects of these parameters are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920010493','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920010493"><span>Crustal deformation along the San Andreas, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, Victor C.</p> <p>1992-01-01</p> <p>The goal is to achieve a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effects of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate, viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformation. Special focus is placed on the three dimensional time dependent surface deformation due to localized slippage in a elastic layer coupled to a visco-elastic substrate. The numerical analysis is based on a 3-D boundary element technique. Extension to visco-elastic coupling demands the derivation of 3-D time dependent Green's function. This method was applied to analyze the viscoelastic surface displacements due to a dislocated embedded patch. Surface uplift as a function of time and position are obtained. Comparisons between surface uplift for long and short dislocated patches are made.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..MARW18006M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..MARW18006M"><span>Mechanical Signal Filtering by Viscoelastic Properties of Cuticle in a Wandering Spider</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McConney, Michael E.; Schaber, Clemens; Julian, Michael; Humphrey, Joseph A. C.; Barth, Friedrich; Tsukruk, Vladimir V.</p> <p>2009-03-01</p> <p>As recently found, in mechano-sensors of wandering spiders (Cupiennius salei) viscoelastic materials are important in signal filtering. We used atomic force microscopy to probe the time dependent mechanical behavior of these materials in live animals. We measured Young's modulus of a rubbery material located between a vibration receptor and the stimulus source. Earlier electrophysiological studies had demonstrated that the strain needed to elicit a sensory response (action potential) increased drastically as stimulus frequencies went below 10 Hz. Our surface force spectroscopy data similarly indicated a significant decrease in stiffness of the cuticular material and therefore less efficient energy transmission due to viscoelastic effects, as the frequency dropped to around 10 Hz. The stimulus transmitting cuticular material is acting as a high-pass filter for the mechanical stimulus on its way to the strain receptors. Again our results indicate that viscoelastic mechanical signal filtering is an important tool for arthropods to specifically respond to biologically relevant stimulus patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18579964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18579964"><span>A new physical model with multilayer architecture for facial expression animation using dynamic adaptive mesh.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yu; Prakash, Edmond C; Sung, Eric</p> <p>2004-01-01</p> <p>This paper presents a new physically-based 3D facial model based on anatomical knowledge which provides high fidelity for facial expression animation while optimizing the computation. Our facial model has a multilayer biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators, and underlying skull structure. In contrast to existing mass-spring-damper (MSD) facial models, our dynamic skin model uses the nonlinear springs to directly simulate the nonlinear visco-elastic behavior of soft tissue and a new kind of edge repulsion spring is developed to prevent collapse of the skin model. Different types of muscle models have been developed to simulate distribution of the muscle force applied on the skin due to muscle contraction. The presence of the skull advantageously constrain the skin movements, resulting in more accurate facial deformation and also guides the interactive placement of facial muscles. The governing dynamics are computed using a local semi-implicit ODE solver. In the dynamic simulation, an adaptive refinement automatically adapts the local resolution at which potential inaccuracies are detected depending on local deformation. The method, in effect, ensures the required speedup by concentrating computational time only where needed while ensuring realistic behavior within a predefined error threshold. This mechanism allows more pleasing animation results to be produced at a reduced computational cost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAP...119p5301E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAP...119p5301E"><span>Evolution of nano-rheological properties of Nafion¯ thin films during pH modification by strong base treatment: A static and dynamic force spectroscopy study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eslami, Babak; López-Guerra, Enrique A.; Raftari, Maryam; Solares, Santiago D.</p> <p>2016-04-01</p> <p>Addition of a strong base to Nafion® proton exchange membranes is a common practice in industry to increase their overall performance in fuel cells. Here, we investigate the evolution of the nano-rheological properties of Nafion thin films as a function of the casting pH, via characterization with static and dynamic, contact and intermittent-contact atomic force microscopy (AFM) techniques. The addition of KOH causes non-monotonic changes in the viscoelastic properties of the films, which behave as highly dissipative, softer materials near neutral pH values, and as harder, more elastic materials at extreme pH values. We quantify this behavior through calculation of the temporal evolution of the compliance and the glassy compliance under static AFM measurements. We complement these observations with dynamic AFM metrics, including dissipated power and virial (for intermittent-contact-mode measurements), and contact resonance frequency and quality factor (for dynamic contact-mode measurements). We explain the non-monotonic material property behavior in terms of the degree of ionic crosslinking and moisture content of the films, which vary with the addition of KOH. This work focuses on the special case study of the addition of strong bases, but the observed mechanical property changes are broadly related to water plasticizing effects and ionic crosslinking, which are also important in other types of films.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10633261','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10633261"><span>Interrelation of creep and relaxation: a modeling approach for ligaments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lakes, R S; Vanderby, R</p> <p>1999-12-01</p> <p>Experimental data (Thornton et al., 1997) show that relaxation proceeds more rapidly (a greater slope on a log-log scale) than creep in ligament, a fact not explained by linear viscoelasticity. An interrelation between creep and relaxation is therefore developed for ligaments based on a single-integral nonlinear superposition model. This interrelation differs from the convolution relation obtained by Laplace transforms for linear materials. We demonstrate via continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e., the stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using the published data of Thornton et al. (1997), the nonlinear interrelation developed herein predicts creep behavior from relaxation data well (R > or = 0.998). Although data are limited and the causal mechanisms associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here appear capable of interrelating creep and relaxation with fidelity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22594657-evolution-nano-rheological-properties-nafion-sup-thin-films-during-ph-modification-strong-base-treatment-static-dynamic-force-spectroscopy-study','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22594657-evolution-nano-rheological-properties-nafion-sup-thin-films-during-ph-modification-strong-base-treatment-static-dynamic-force-spectroscopy-study"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Eslami, Babak; López-Guerra, Enrique A.; Raftari, Maryam</p> <p></p> <p>Addition of a strong base to Nafion{sup ®} proton exchange membranes is a common practice in industry to increase their overall performance in fuel cells. Here, we investigate the evolution of the nano-rheological properties of Nafion thin films as a function of the casting pH, via characterization with static and dynamic, contact and intermittent-contact atomic force microscopy (AFM) techniques. The addition of KOH causes non-monotonic changes in the viscoelastic properties of the films, which behave as highly dissipative, softer materials near neutral pH values, and as harder, more elastic materials at extreme pH values. We quantify this behavior through calculationmore » of the temporal evolution of the compliance and the glassy compliance under static AFM measurements. We complement these observations with dynamic AFM metrics, including dissipated power and virial (for intermittent-contact-mode measurements), and contact resonance frequency and quality factor (for dynamic contact-mode measurements). We explain the non-monotonic material property behavior in terms of the degree of ionic crosslinking and moisture content of the films, which vary with the addition of KOH. This work focuses on the special case study of the addition of strong bases, but the observed mechanical property changes are broadly related to water plasticizing effects and ionic crosslinking, which are also important in other types of films.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21230730','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21230730"><span>Strong polymer-turbulence interactions in viscoelastic turbulent channel flow.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dallas, V; Vassilicos, J C; Hewitt, G F</p> <p>2010-12-01</p> <p>This paper is focused on the fundamental mechanism(s) of viscoelastic turbulence that leads to polymer-induced turbulent drag reduction phenomenon. A great challenge in this problem is the computation of viscoelastic turbulent flows, since the understanding of polymer physics is restricted to mechanical models. An effective state-of-the-art numerical method to solve the governing equation for polymers modeled as nonlinear springs, without using any artificial assumptions as usual, was implemented here on a three-dimensional channel flow geometry. The capability of this algorithm to capture the strong polymer-turbulence dynamical interactions is depicted on the results, which are much closer qualitatively to experimental observations. This allowed a more detailed study of the polymer-turbulence interactions, which yields an enhanced picture on a mechanism resulting from the polymer-turbulence energy transfers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhDT.......273M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhDT.......273M"><span>Linear viscoelastic limits of asphalt concrete at low and intermediate temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mehta, Yusuf A.</p> <p></p> <p>The purpose of this dissertation is to demonstrate the hypothesis that a region at which the behavior of asphalt concrete can be represented as a linear viscoelastic material can be determined at low and intermediate temperatures considering the stresses and strains typically developed in the pavements under traffic loading. Six mixtures containing different aggregate gradations and nominal maximum aggregate sizes varying from 12.5 to 37.5 mm were used in this study. The asphalt binder grade was the same for all mixtures. The mixtures were compacted to 7 +/- 1% air voids, using the Superpave Gyratory Compactor. Tests were conducted at low temperatures (-20°C and -10°C), using the indirect tensile test machine, and at intermediate temperatures (4°C and 20°C), using the Superpave shear machine. To determine the linear viscoelastic range of asphalt concrete, a relaxation test for 150 s, followed by a creep test for another 150 s, was conducted at 150 and 200 microstrains (1 microstrain = 1 x 10-6), at -20°C, and at 150 and 300 microstrains, at -10°C. A creep test for 200 s, followed by a recovery test for another 200 s, was conducted at stress levels up to 800 kPa at 4°C and up to 500 kPa at 20°C. At -20°C and -10°C, the behavior of the mixtures was linear viscoelastic at 200 and 300 microstrains, respectively. At intermediate temperatures (4°C and 20°C), an envelope defining the linear and nonlinear region in terms of stress as a function of shear creep compliance was constructed for all the mixtures. For creep tests conducted at 20°C, it was discovered that the commonly used protocol to verify the proportionality condition of linear viscoelastic behavior was unable to detect the appearance of nonlinear behavior at certain imposed shear stress levels. Said nonlinear behavior was easily detected, however, when checking the satisfaction of the superposition condition. The envelope constructed for determining when the material becomes nonlinear should be valid for mixtures similar to the ones tested in this study. Different envelopes should be used in the case of mixtures containing a very soft or a very stiff polymer modified binder. At 4°C, the typical values of stresses and material properties of mixtures fell within the linear viscoelastic region, considering the typical shear creep compliance values at loading times and stresses experienced in the field. However, typical values at 20°C fell within a region in which some, but not all of the mixtures tested in this study behaved linearly. It is known that the behavior of asphalt concrete mixture changes from linear to nonlinear, depending on the temperature and loading conditions. However, this study is the first of its kind in which both the proportionality and the superposition condition were evaluated. The experimental design and the analysis procedures presented in this study can be applied to similar experiments that may be conducted in the future to evaluate linearity of different types of asphalt concrete mixtures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850002089&hterms=tire&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtire','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850002089&hterms=tire&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtire"><span>Numerical analysis of some problems related to the mechanics of pneumatic tires: Finite deformation/rolling contact of a viscoelastic cylinder and finite deformation of cord-reinforced rubber composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oden, J. T.; Becker, E. B.; Lin, T. L.; Hsieh, K. T.</p> <p>1984-01-01</p> <p>The formulation and numerical analysis of several problems related to the behavior of pneumatic tires are considered. These problems include the general rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite deformations and the finite deformation of cord-reinforced rubber composites. New finite element models are developed for these problems. Numerical results obtained for several representative cases are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790008746','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790008746"><span>The viscoelastic behavior of the principal compliance matrix of a unidirectional graphite/epoxy composite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morris, D. H.; Yeow, Y. T.</p> <p>1979-01-01</p> <p>The time-temperature response of the principal compliances of a unidirectional graphite/epoxy composite was determined. It is shown that two components of the compliance matrix are time and temperature independent and that the compliance matrix is symmetric for the viscoelastic composite. The time-temperature superposition principle is used to determine shift factors which are independent of fiber orientation, for fiber angles that vary from 10 D to 90 D with respect to the load direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.530a2002G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.530a2002G"><span>Advances in the analysis and prediction of turbulent viscoelastic flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gatski, T. B.; Thais, L.; Mompean, G.</p> <p>2014-08-01</p> <p>It has been well-known for over six decades that the addition of minute amounts of long polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. This discovery has had many practical applications such as in pipeline fluid transport, oil well operations, vehicle design and submersible vehicle projectiles, and more recently arteriosclerosis treatment. However, it has only been the last twenty-five years that the full utilization of direct numerical simulation of such turbulent viscoelastic flows has been achieved. The unique characteristics of viscoelastic fluid flow are dictated by the nonlinear differential relationship between the flow strain rate field and the extra-stress induced by the additive polymer. A primary motivation for the analysis of these turbulent fluid flows is the understanding of the effect on the dynamic transfer of energy in the turbulent flow due to the presence of the extra-stress field induced by the presence of the viscoelastic polymer chain. Such analyses now utilize direct numerical simulation data of fully developed channel flow for the FENE-P (Finite Extendable Nonlinear Elastic - Peterlin) fluid model. Such multi-scale dynamics suggests an analysis of the transfer of energy between the various component motions that include the turbulent kinetic energy, and the mean polymeric and elastic potential energies. It is shown that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27793346','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27793346"><span>Both Reversible Self-Association and Structural Changes Underpin Molecular Viscoelasticity of mAb Solutions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sarangapani, Prasad S; Weaver, Justin; Parupudi, Arun; Besong, Tabot M D; Adams, Gary G; Harding, Stephen E; Manikwar, Prakash; Castellanos, Maria M; Bishop, Steven M; Pathak, Jai A</p> <p>2016-12-01</p> <p>The role of antibody structure (conformation) in solution rheology is probed. It is demonstrated here that pH-dependent changes in the tertiary structure of 2 mAb solutions lead to viscoelasticity and not merely a shear viscosity (η) increase. Steady shear flow curves on mAb solutions are reported over broad pH (3.0 ≤ pH ≤ 8.7) and concentration (2 mg/mL ≤ c ≤ 120 mg/mL) ranges to comprehensively characterize their rheology. Results are interpreted using size exclusion chromatography, differential scanning calorimetry, analytical ultracentrifugation, near-UV circular dichroism, and dynamic light scattering. Changes in tertiary structure with concentration lead to elastic yield stress and increased solution viscosity in solution of "mAb1." These findings are supported by dynamic light scattering and differential scanning calorimetry, which show increased hydrodynamic radius of mAb1 at low pH and a reduced melting temperature T m , respectively. Conversely, another molecule at 120 mg/mL solution concentration is a strong viscoelastic gel due to perturbed tertiary structure (seen in circular dichroism) at pH 3.0, but the same molecule responds as a viscous liquid due to reversible self-association at pH 7.4 (verified by analytical ultracentrifugation). Both protein-protein interactions and structural perturbations govern pH-dependent viscoelasticity of mAb solutions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22271137-viscoelastic-effects-frequency-tuning-dielectric-elastomer-membrane-resonator','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22271137-viscoelastic-effects-frequency-tuning-dielectric-elastomer-membrane-resonator"><span>Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Jianyou; Jiang, Liying, E-mail: lyjiang@eng.uwo.ca; Khayat, Roger E.</p> <p>2014-03-28</p> <p>As a recent application of dielectric elastomers (DEs), DE resonators have become an alternative to conventional silicon-based resonators used in MEMS and have attracted much interest from the research community. However, most existing modeling works for the DE resonators ignore the intrinsic viscoelastic effect of the material that may strongly influence their dynamic performance. Based on the finite-deformation viscoelasticity theory for dielectrics, this paper theoretically examines the in-plane oscillation of a DE membrane resonator to demonstrate how the material viscoelasticity affects the actuation and frequency tuning processes of the resonator. From the simulation results, it is concluded that not onlymore » the applied voltage can change the natural frequency of the resonator, but also the inelastic deformation contributes to frequency tuning. Due to the viscoelasticity of the material, the electrical loading rate influences the actuation process of the DE resonator, while it has little effect on the final steady frequency tuned by the prescribed voltage within the safety range. With the consideration of the typical failure modes of the resonator and the evolution process of the material, the tunable frequency range and the safe range of the applied voltage of the DE membrane resonator with different dimension parameters are determined in this work, which are found to be dependent on the electrical loading rate. This work is expected to provide a better understanding on the frequency tuning of viscoelastic DE membrane resonators and a guideline for the design of DE devices.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MTDM...21..499S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MTDM...21..499S"><span>Viscoelastic damped response of cross-ply laminated shallow spherical shells subjected to various impulsive loads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Şahan, Mehmet Fatih</p> <p>2017-11-01</p> <p>In this paper, the viscoelastic damped response of cross-ply laminated shallow spherical shells is investigated numerically in a transformed Laplace space. In the proposed approach, the governing differential equations of cross-ply laminated shallow spherical shell are derived using the dynamic version of the principle of virtual displacements. Following this, the Laplace transform is employed in the transient analysis of viscoelastic laminated shell problem. Also, damping can be incorporated with ease in the transformed domain. The transformed time-independent equations in spatial coordinate are solved numerically by Gauss elimination. Numerical inverse transformation of the results into the real domain are operated by the modified Durbin transform method. Verification of the presented method is carried out by comparing the results with those obtained by the Newmark method and ANSYS finite element software. Furthermore, the developed solution approach is applied to problems with several impulsive loads. The novelty of the present study lies in the fact that a combination of the Navier method and Laplace transform is employed in the analysis of cross-ply laminated shallow spherical viscoelastic shells. The numerical sample results have proved that the presented method constitutes a highly accurate and efficient solution, which can be easily applied to the laminated viscoelastic shell problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...5E9184W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...5E9184W"><span>Atomic picture of elastic deformation in a metallic glass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, X. D.; Aryal, S.; Zhong, C.; Ching, W. Y.; Sheng, H. W.; Zhang, H.; Zhang, D. X.; Cao, Q. P.; Jiang, J. Z.</p> <p>2015-03-01</p> <p>The tensile behavior of a Ni60Nb40 metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples, mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25777767','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25777767"><span>Atomic picture of elastic deformation in a metallic glass.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, X D; Aryal, S; Zhong, C; Ching, W Y; Sheng, H W; Zhang, H; Zhang, D X; Cao, Q P; Jiang, J Z</p> <p>2015-03-17</p> <p>The tensile behavior of a Ni60Nb40 metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples, mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1191998-atomic-picture-elastic-deformation-metallic-glass','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1191998-atomic-picture-elastic-deformation-metallic-glass"><span>Atomic picture of elastic deformation in a metallic glass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wang, X. D.; Aryal, S.; Zhong, C.; ...</p> <p>2015-03-17</p> <p>The tensile behavior of a Ni₆₀Nb₄₀ metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples,more » mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=279203','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=279203"><span>Flow behavior of mixed-protein incipient gels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Strong protein gel networks may result from synergistic interactions with other proteins or food materials above that achievable with a single protein alone. We determined varying flow and viscoelastic behavior of calcium caseinate (CC) or whey protein isolate (WPI) mixed with egg albumin (EA), fish...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AdSpR..33.1700S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AdSpR..33.1700S"><span>Special considerations for qualifying thin films for super pressure pumpkin ultra long duration balloon missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Said, Magdi A.</p> <p>2004-01-01</p> <p>The assessment of creep and dynamic response behaviors on materials intended for ultra long duration balloon (ULDB) applications is essential. The first provides needed information for design and fabrication. The second ensures that the film is sufficiently tough to survive the dynamic events during launch and ascent. Characterization and assessment of these two important parameters are discussed in this paper. Visco-elastic behavior of materials in a loaded structure, such as the ULDB film change their geometry significantly over time under load causing possible changes in the load path and the stress distribution. These changes must be held in check to satisfy the functional requirements of the structure over its service life. Typically, the balloon experiences during its service life various environmental conditions each with a different creep response. These are characterized by a simplified load temperature history for the purpose of lifetime response assessment. At mid-latitudes a significant portion of the service life is spent at night, i.e., at low temperature and low load; for the ULDB film this night-time contribution to creep is negligible. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This paper presents the creep behavior of the ULDB film as a function of load, temperature, and time along with an overview of its implementation in the design. In addition, it presents a quantitative assessment on the toughness of the material under dynamic "Snatch" loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003SPIE.4961..209K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003SPIE.4961..209K"><span>Acousto-optical assessment of skin viscoelasticity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirkpatrick, Sean J.; Duncan, Donald D.</p> <p>2003-07-01</p> <p>A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto-optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MTDM..tmp...64L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MTDM..tmp...64L"><span>Ratcheting in a nonlinear viscoelastic adhesive</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemme, David; Smith, Lloyd</p> <p>2017-11-01</p> <p>Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........49C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........49C"><span>The Dynamics of Entangled DNA Networks using Single-Molecule Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chapman, Cole David</p> <p></p> <p>Single molecule experiments were performed on DNA, a model polymer, and entangled DNA networks to explore diffusion within complex polymeric fluids and their linear and non-linear viscoelasticity. DNA molecules of varying length and topology were prepared using biological methods. An ensemble of individual molecules were then fluorescently labeled and tracked in blends of entangled linear and circular DNA to examine the dependence of diffusion on polymer length, topology, and blend ratio. Diffusion was revealed to possess a non-monotonic dependence on the blend ratio, which we believe to be due to a second-order effect where the threading of circular polymers by their linear counterparts greatly slows the mobility of the system. Similar methods were used to examine the diffusive and conformational behavior of DNA within highly crowded environments, comparable to that experienced within the cell. A previously unseen gamma distributed elongation of the DNA in the presence of crowders, proposed to be due to entropic effects and crowder mobility, was observed. Additionally, linear viscoelastic properties of entangled DNA networks were explored using active microrheology. Plateau moduli values verified for the first time the predicted independence from polymer length. However, a clear bead-size dependence was observed for bead radii less than ~3x the tube radius, a newly discovered limit, above which microrheology results are within the continuum limit and may access the bulk properties of the fluid. Furthermore, the viscoelastic properties of entangled DNA in the non-linear regime, where the driven beads actively deform the network, were also examined. By rapidly driving a bead through the network utilizing optical tweezers, then removing the trap and tracking the bead's subsequent motion we are able to model the system as an over-damped harmonic oscillator and find the elasticity to be dominated by stress-dependent entanglements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25816111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25816111"><span>Growth and setting of gas bubbles in a viscoelastic matrix imaged by X-ray microtomography: the evolution of cellular structures in fermenting wheat flour dough.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Turbin-Orger, A; Babin, P; Boller, E; Chaunier, L; Chiron, H; Della Valle, G; Dendievel, R; Réguerre, A L; Salvo, L</p> <p>2015-05-07</p> <p>X-ray tomography is a relevant technique for the dynamic follow-up of gas bubbles in an opaque viscoelastic matrix, especially using image analysis. It has been applied here to pieces of fermenting wheat flour dough of various compositions, at two different voxel sizes (15 and 5 μm). The resulting evolution of the main cellular features shows that the creation of cellular structures follows two regimes that are defined by a characteristic time of connectivity, tc [30 and 80 min]: first (t ≤ tc), bubbles grow freely and then (t ≥ tc) they become connected since the percolation of the gas phase is limited by liquid films. During the first regime, bubbles can be tracked and the local strain rate can be measured. Its values (10(-4)-5 × 10(-4) s(-1)) are in agreement with those computed from dough viscosity and internal gas pressure, both of which depend on the composition. For higher porosity, P = 0.64 in our case, and thus occurring in the second regime, different cellular structures are obtained and XRT images show deformed gas cells that display complex shapes. The comparison of these images with confocal laser scanning microscopy images suggests the presence of liquid films that separate these cells. The dough can therefore be seen as a three-phase medium: viscoelastic matrix/gas cell/liquid phase. The contributions of the different levels of matter organization can be integrated by defining a capillary number (C = 0.1-1) that makes it possible to predict the macroscopic dough behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120h8101P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120h8101P"><span>Fractal Folding and Medium Viscoelasticity Contribute Jointly to Chromosome Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polovnikov, K. E.; Gherardi, M.; Cosentino-Lagomarsino, M.; Tamm, M. V.</p> <p>2018-02-01</p> <p>Chromosomes are key players of cell physiology, their dynamics provides valuable information about its physical organization. In both prokaryotes and eukaryotes, the short-time motion of chromosomal loci has been described with a Rouse model in a simple or viscoelastic medium. However, little emphasis has been put on the influence of the folded organization of chromosomes on the local dynamics. Clearly, stress propagation, and thus dynamics, must be affected by such organization, but a theory allowing us to extract such information from data, e.g., on two-point correlations, is lacking. Here, we describe a theoretical framework able to answer this general polymer dynamics question. We provide a scaling analysis of the stress-propagation time between two loci at a given arclength distance along the chromosomal coordinate. The results suggest a precise way to assess folding information from the dynamical coupling of chromosome segments. Additionally, we realize this framework in a specific model of a polymer whose long-range interactions are designed to make it fold in a fractal way and immersed in a medium characterized by subdiffusive fractional Langevin motion with a tunable scaling exponent. This allows us to derive explicit analytical expressions for the correlation functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DFDR24001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DFDR24001S"><span>Study of dynamic fluid-structure coupling with application to human phonation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saurabh, Shakti; Faber, Justin; Bodony, Daniel</p> <p>2013-11-01</p> <p>Two-dimensional direct numerical simulations of a compressible, viscous fluid interacting with a non-linear, viscoelastic solid are used to study the generation of the human voice. The vocal fold (VF) tissues are modeled using a finite-strain fractional derivative constitutive model implemented in a quadratic finite element code and coupled to a high-order compressible Navier-Stokes solver through a boundary-fitted fluid-solid interface. The viscoelastic solver is validated through in-house experiments using Agarose Gel, a human tissue simulant, undergoing static and harmonic deformation measured with load cell and optical diagnostics. The phonation simulations highlight the role tissue nonlinearity and viscosity play in the glottal jet dynamics and in the radiated sound. Supported by the National Science Foundation (CAREER award number 1150439).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..MARV39011C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..MARV39011C"><span>Biomechanics and dynamics of red blood cells probed by optical tweezers and digital holographic microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cardenas, Nelson; Thomas, Pattrick; Yu, Lingfeng; Mohanty, Samarendra</p> <p>2011-03-01</p> <p>Red blood cells (RBC), with their unique viscoelastic properties, can undergo large deformations during interaction with fluid flow and migration through narrow capillaries. Both local and overall viscoelastic property is important for cellular function and change in these properties indicate diseased condition. Though biomechanics of the cells have been studied using variety of physical techniques (AFM, optically-trapped anchoring beads and microcapilary aspiration) in force regime 10pN, little is studied at low force regime <1pN. Such perturbations are not only hard to exercise on the cell membrane, but quantification of such deformations becomes extremely difficult. By application of low power optical tweezers directly on cell membrane, we could locally perturb discotic RBC along the axial direction, which was monitored dynamically by digital holographic microscopy-a real time, wide-field imaging method having nm axial resolution. The viscoelastic property of the RBC at low force regime was found to be significantly different from that of high-force regime. The results were found to be in good agreement with the simulation results obtained using finite element model of the axially-stretched RBC. The simulations and results of viscoelestic measurements will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDH25003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDH25003M"><span>Droplet breakup dynamics of weakly viscoelastic fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marshall, Kristin; Walker, Travis</p> <p>2016-11-01</p> <p>The addition of macromolecules to solvent, even in dilute quantities, can alter a fluid's response in an extensional flow. For low-viscosity fluids, the presence of elasticity may not be apparent when measured using a standard rotational rheometer, yet it may still alter the response of a fluid when undergoing an extensional deformation, especially at small length scales where elastic effects are enhanced. Applications such as microfluidics necessitate investigating the dynamics of fluids with elastic properties that are not pronounced at large length scales. In the present work, a microfluidic cross-slot configuration is used to study the effects of elasticity on droplet breakup. Droplet breakup and the subsequent iterated-stretching - where beads form along a filament connecting two primary droplets - were observed for a variety of material and flow conditions. We present a relationship on the modes of bead formation and how and when these modes will form based on key parameters such as the properties of the outer continuous-phase fluid. The results are vital not only for simulating the droplet breakup of weakly viscoelastic fluids but also for understanding how the droplet breakup event can be used for characterizing the extensional properties of weakly-viscoelastic fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApPhL.108i3701C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApPhL.108i3701C"><span>Dynamic mechanical measurement of the viscoelasticity of single adherent cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corbin, Elise A.; Adeniba, Olaoluwa O.; Ewoldt, Randy H.; Bashir, Rashid</p> <p>2016-02-01</p> <p>Many recent studies on the viscoelasticity of individual cells link mechanics with cellular function and health. Here, we introduce a measurement of the viscoelastic properties of individual human colon cancer cells (HT-29) using silicon pedestal microelectromechanical systems (MEMS) resonant sensors. We demonstrate that the viscoelastic properties of single adherent cells can be extracted by measuring a difference in vibrational amplitude of our resonant sensor platform. The magnitude of vibration of the pedestal sensor is measured using a laser Doppler vibrometer (LDV). A change in amplitude of the sensor, compared with the driving amplitude (amplitude ratio), is influenced by the mechanical properties of the adhered cells. The amplitude ratio of the fixed cells was greater than the live cells, with a p-value <0.0001. By combining the amplitude shift with the resonant frequency shift measure, we determined the elastic modulus and viscosity values of 100 Pa and 0.0031 Pa s, respectively. Our method using the change in amplitude of resonant MEMS devices can enable the determination of a refined solution space and could improve measuring the stiffness of cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22392331-sensing-fluid-viscoelasticity-from-piezoelectric-actuation-cantilever-flexural-vibration','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22392331-sensing-fluid-viscoelasticity-from-piezoelectric-actuation-cantilever-flexural-vibration"><span>Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon</p> <p>2015-01-15</p> <p>An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid’s dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of variousmore » non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10–400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer’s reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam’s mechanical properties.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24437612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24437612"><span>Order, viscoelastic, and dielectric properties of symmetric and asymmetric alkyl[1]benzothieno[3,2-b][1]benzothiophenes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grigoriadis, Christos; Niebel, Claude; Ruzié, Christian; Geerts, Yves H; Floudas, George</p> <p>2014-02-06</p> <p>The morphology, the viscoelastic, the dielectric properties and the dynamics of phase transformation are studied in symmetrically and asymmetrically substituted alkyl[1]benzothieno[3,2-b][1]benzothiophenes (C8-BTBT) by X-ray scattering, rheology, and dielectric spectroscopy. The interlayer spacing reflects the molecular and supramolecular ordering, respectively, in the symmetrically and asymmetrically substituted BTBTs. In the asymmetric BTBT, the core layer is double in size with a broader network of intermolecular interactions though the increased S-S contacts that is prerequisite for the development of high performance OFET devices. Two crystal states with elastic and viscoelastic responses were identified in the symmetric compound. In contrast, the SmA phase in the asymmetric compound is a viscoelastic solid. A path-dependent dielectric environment with a switchable dielectric permittivity was found in both compounds by cooling below 0 °C with possible implications to charge transport. The kinetics of phase transformation to the crystalline and SmA phases revealed a nucleation and growth mechanism with rates dominated by the low activation barriers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030020698','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030020698"><span>A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Freed, Alan D.; Leonov, Arkady I.</p> <p>2002-01-01</p> <p>The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28411987','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28411987"><span>Structural and viscoelastic characterization of ternary mixtures of sunflower oil, saturated monoglycerides and aqueous phases containing different bases.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Valoppi, Fabio; Calligaris, Sonia; Barba, Luisa; Nicoli, Maria Cristina</p> <p>2015-08-01</p> <p>The structure at different length scales and the viscoelastic properties of ternary mixtures composed of saturated monoglycerides, sunflower oil and aqueous solutions of weak bases (KHCO 3 , NaHCO 3 , and NH 4 HCO 3 ) or strong bases (NaOH and KOH) were investigated. The characteristics of ternary mixtures were studied systematically by using polarized light microscopy, differential scanning calorimetry (DSC), synchrotron X-ray diffraction (XRD) and rheological analysis. Results showed that the base type and concentration greatly affected the structure of the mixtures. The use of strong bases allowed gelled systems to be obtained only at low concentrations (<10mM). On the contrary, the presence of weak bases induced gelling at all concentrations considered (from 1 to 1000mM). The increase of base concentration led to a reduction of the mean droplet diameter and melting temperature. At the same time, the viscoelastic characteristics as a function of base concentration followed a more complex behavior: G' and G″ progressively decreased as the salt concentration increased in a concentration range from 1 to 100mM, while the rheological parameters increased when salt concentration increased from 100 to 1000mM. The structural and viscoelastic behavior of systems prepared with different salts were commonly independent of the cation present in the medium. Results highlight that it is possible to tailor the structure of these gels by using specific bases. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.991a2034I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.991a2034I"><span>Boundary-element modelling of dynamics in external poroviscoelastic problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Igumnov, L. A.; Litvinchuk, S. Yu; Ipatov, A. A.; Petrov, A. N.</p> <p>2018-04-01</p> <p>A problem of a spherical cavity in porous media is considered. Porous media are assumed to be isotropic poroelastic or isotropic poroviscoelastic. The poroviscoelastic formulation is treated as a combination of Biot’s theory of poroelasticity and elastic-viscoelastic correspondence principle. Such viscoelastic models as Kelvin–Voigt, Standard linear solid, and a model with weakly singular kernel are considered. Boundary field study is employed with the help of the boundary element method. The direct approach is applied. The numerical scheme is based on the collocation method, regularized boundary integral equation, and Radau stepped scheme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000AIPC..505..527C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000AIPC..505..527C"><span>Damage evolution in viscoelastic polymers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clements, B. E.</p> <p>2000-04-01</p> <p>Constitutive relations are derived for viscoelastic polymers. These relations are applicable to polymers for temperatures above their glass transition temperature and strain rates ranging from quasistatic up to shock regimes. Linear viscoelasticity is assumed for small tensile deformations but nonlinear effects, arising from void growth, become important at larger strains. Our void growth model is based on a generalization of Eshelby's Green's function solution to the problem of an ellipsoidal void in an elastic material. We apply our analysis to study the mechanical properties of polyvinyl acetate under dynamic loading conditions. Void concentration and aspect ratio considerations are found to be important in general deformation events. Uniaxial tension tends to favor aspect ratio change, while non-spherical voids are observed to evolve into spherical ones as tensile strain approaches triaxiality. [Research supported by the USDOE under contract W-7405-ENG-36</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JFST....3..533K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JFST....3..533K"><span>Measurements of Dynamic Viscoelasticity of Poly (vinyl alcohol) Hydrogel for the Development of Blood Vessel Biomodeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kosukegawa, Hiroyuki; Mamada, Keisuke; Kuroki, Kanju; Liu, Lei; Inoue, Kosuke; Hayase, Toshiyuki; Ohta, Makoto</p> <p></p> <p>In vitro blood vessel biomodeling with realistic mechanical properties and geometrical structures is helpful for training in surgical procedures, especial those used in endovascular treatment. Poly (vinyl alcohol) hydrogel (PVA-H), which is made of Poly (vinyl alcohol) (PVA) and water, may be useful as a material for blood vessel biomodeling due to its low surface friction resistance and good transparency. In order to simulate the mechanical properties of blood vessels, measurements of mechanical properties of PVA-H were carried out with a dynamic mechanical analyzer, and the storage modulus (G’) and loss modulus (G”) of PVA-H were obtained. PVA-Hs were prepared by the low-temperature crystallization method. They were made of PVA with various concentrations (C) and degrees of polymerization (DP), and made by blending two kinds of PVA having different DP or saponification values (SV). The G’ and G” of PVA-H increased, as the C or DP of PVA increased, or as the proportion of PVA with higher DP or SV increased. These results indicate that it is possible to obtain PVA-H with desirable dynamic viscoelasticity. Furthermore, it is suggested that PVA-H is stable in the temperature range of 0°C to 40°C, indicating that biomodeling made of PVA-H should be available at 37°C, the physiological temperature. The dynamic viscoelasticity of PVA-H obtained was similar to that of the dog blood vessel measured in previous reports. In conclusion, PVA-H is suggested to be useful as a material of blood vessel biomodeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.V72D..05I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.V72D..05I"><span>Behavior of fragmentation front in a porous viscoelastic material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ichihara, M.; Takayama, K.</p> <p>2002-12-01</p> <p>We are developing laboratory experiments to investigate dynamics of magma fragmentation during explosive volcanic eruptions. Fragmentation of such a mixture as magma consisting of viscoelastic melt, bubbles and solid particles, is not known yet, and experiments are necessary to establish a mathematical model. It has been shown that viscoelastic silicone compound (Dow Corning 3179) is a useful analogous material to simulate magma fragmentation. In the previous work, a porous specimen made of the compound was rapidly decompressed and development of brittle fragmentation was observed. However, there were arguments that the experiment was different from actual processes which produce fragments as small as volcanic ash, because in the experiment the specimen was broken into only several pieces. This time, results of the improved experiments are presented. The experimental apparatus is a kind of a vertical shock tube, which mainly consists of a high pressure test section and low pressure chambers. The test section is made of acrylic tube of which inner diameter is 25 mm. The internal phenomenon is recorded by a high-speed video camera. Pressure is measured in the gas above and beneath the specimen by piezoelectric transducers. The specimen is prepared in the following way. First, an acrylic tube filled with the compound is put in a nitrogen tank and kept at 45 bar for more than 8 hours. The compound absorbs the gas and equilibrates with the nitrogen. Next, the tank is decompressed back to the atmospheric pressure slowly. Nitrogen exsolves and bubbles are formed in the compound quite uniformly. Finally, the expanded compound sticking out of both ends of the tube is cut down, and the tube containing the specimen is attached to the shock tube. The specimen is rapidly decompressed by 24, 16, and 8 bars. The high-speed video images demonstrate a sequence of the fragmentation process. We observe propagation of a clear fracture front at 50 m/s for 24 bar of decompression and at smaller speed for smaller decompression. The pressure change associated with development of the fragmentation is analyzed and effects of over pressure in the pores and permeable gas flow on fragmentation behavior are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT........28N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT........28N"><span>Viscoelastic characterization of soft biological materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nayar, Vinod Timothy</p> <p></p> <p>Progressive and irreversible retinal diseases are among the primary causes of blindness in the United States, attacking the cells in the eye that transform environmental light into neural signals for the optic pathway. Medical implants designed to restore visual function to afflicted patients can cause mechanical stress and ultimately damage to the host tissues. Research shows that an accurate understanding of the mechanical properties of the biological tissues can reduce damage and lead to designs with improved safety and efficacy. Prior studies on the mechanical properties of biological tissues show characterization of these materials can be affected by environmental, length-scale, time, mounting, stiffness, size, viscoelastic, and methodological conditions. Using porcine sclera tissue, the effects of environmental, time, and mounting conditions are evaluated when using nanoindentation. Quasi-static tests are used to measure reduced modulus during extended exposure to phosphate-buffered saline (PBS), as well as the chemical and mechanical analysis of mounting the sample to a solid substrate using cyanoacrylate. The less destructive nature of nanoindentation tests allows for variance of tests within a single sample to be compared to the variance between samples. The results indicate that the environmental, time, and mounting conditions can be controlled for using modified nanoindentation procedures for biological samples and are in line with averages modulus values from previous studies but with increased precision. By using the quasi-static and dynamic characterization capabilities of the nanoindentation setup, the additional stiffness and viscoelastic variables are measured. Different quasi-static control methods were evaluated along with maximum load parameters and produced no significant difference in reported reduced modulus values. Dynamic characterization tests varied frequency and quasi-static load, showing that the agar could be modeled as a linearly elastic material. The effects of sample stiffness were evaluated by testing both the quasi-static and dynamic mechanical properties of different concentration agar samples, ranging from 0.5% to 5.0%. The dynamic nanoindentation protocol showed some sensitivity to sample stiffness, but characterization remained consistently applicable to soft biological materials. Comparative experiments were performed on both 0.5% and 5.0% agar as well as porcine eye tissue samples using published dynamic macrocompression standards. By comparing these new tests to those obtained with nanoindentation, the effects due to length-scale, stiffness, size, viscoelastic, and methodological conditions are evaluated. Both testing methodologies can be adapted for the environmental and mounting conditions, but the limitations of standardized macro-scale tests are explored. The factors affecting mechanical characterization of soft and thin viscoelastic biological materials are researched and a comprehensive protocol is presented. This work produces material mechanical properties for use in improving future medical implant designs on a wide variety of biological tissue and materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28756284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28756284"><span>Strain rate dependent hyperelastic stress-stretch behavior of a silica nanoparticle reinforced poly (ethylene glycol) diacrylate nanocomposite hydrogel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhan, Yuexing; Pan, Yihui; Chen, Bing; Lu, Jian; Zhong, Zheng; Niu, Xinrui</p> <p>2017-11-01</p> <p>Poly (ethylene glycol) diacrylate (PEGDA) derivatives are important biomedical materials. PEGDA based hydrogels have emerged as one of the popular regenerative orthopedic materials. This work aims to study the mechanical behavior of a PEGDA based silica nanoparticle (NP) reinforced nanocomposite (NC) hydrogel at physiological strain rates. The work combines materials fabrication, mechanical experiments, mathematical modeling and structural analysis. The strain rate dependent stress-stretch behaviors were observed, analyzed and quantified. Visco-hyperelasticity was identified as the deformation mechanism of the nano-silica/PEGDA NC hydrogel. NPs showed significant effect on both initial shear modulus and viscoelastic materials properties. A structure-based quasi-linear viscoelastic (QLV) model was constructed and capable to describe the visco-hyperelastic stress-stretch behavior of the NC hydrogel. A group of unified material parameters was extracted by the model from the stress-stretch curves obtained at different strain rates. Visco-hyperelastic behavior of NP/polymer interphase was not only identified but also quantified. The work could provide guidance to the structural design of next-generation NC hydrogel. Copyright © 2017. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29199300','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29199300"><span>Characterizing protein-protein-interaction in high-concentration monoclonal antibody systems with the quartz crystal microbalance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hartl, Josef; Peschel, Astrid; Johannsmann, Diethelm; Garidel, Patrick</p> <p>2017-12-13</p> <p>Making use of a quartz crystal microbalance (QCM), concentrated solutions of therapeutic antibodies were studied with respect to their behavior under shear excitation with frequencies in the MHz range. At high protein concentration and neutral pH, viscoelastic behavior was found in the sense that the storage modulus, G', was nonzero. Fits of the frequency dependence of G'(ω) and G''(ω) (G'' being the loss modulus) using the Maxwell-model produced good agreement with the experimental data. The fit parameters were the relaxation time, τ, and the shear modulus at the inverse relaxation time, G* (at the "cross-over frequency" ω C = 1/τ). The influence of two different pharmaceutical excipients (histidine and citrate) was studied at variable concentrations of the antibody and variable pH. In cases, where viscoelasticity was observed, G* was in the range of a few kPa, consistent with entropy-driven interactions. τ was small at low pH, where the antibody carries a positive charge. τ increased with increasing pH. The relaxation time τ was found to be correlated with other parameters quantifying protein-protein interactions, namely the steady shear viscosity (η), the second osmotic virial coefficient as determined with both self-interaction chromatography (B 22,SIC ) and static light scattering (B 22,SLS ), and the diffusion interaction parameter as determined with dynamic light scattering (k D ). While B 22 and k D describe protein-protein interactions in diluted samples, the QCM can be applied to concentrated solutions, thereby being sensitive to higher-order protein-protein interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29037894','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29037894"><span>Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wahlquist, Joseph A; DelRio, Frank W; Randolph, Mark A; Aziz, Aaron H; Heveran, Chelsea M; Bryant, Stephanie J; Neu, Corey P; Ferguson, Virginia L</p> <p>2017-12-01</p> <p>Osteoarthrosis is a debilitating disease affecting millions, yet engineering materials for cartilage regeneration has proven difficult because of the complex microstructure of this tissue. Articular cartilage, like many biological tissues, produces a time-dependent response to mechanical load that is critical to cell's physiological function in part due to solid and fluid phase interactions and property variations across multiple length scales. Recreating the time-dependent strain and fluid flow may be critical for successfully engineering replacement tissues but thus far has largely been neglected. Here, microindentation is used to accomplish three objectives: (1) quantify a material's time-dependent mechanical response, (2) map material properties at a cellular relevant length scale throughout zonal articular cartilage and (3) elucidate the underlying viscoelastic, poroelastic, and nonlinear poroelastic causes of deformation in articular cartilage. Untreated and trypsin-treated cartilage was sectioned perpendicular to the articular surface and indentation was used to evaluate properties throughout zonal cartilage on the cut surface. The experimental results demonstrated that within all cartilage zones, the mechanical response was well represented by a model assuming nonlinear biphasic behavior and did not follow conventional viscoelastic or linear poroelastic models. Additionally, 10% (w/w) agarose was tested and, as anticipated, behaved as a linear poroelastic material. The approach outlined here provides a method, applicable to many tissues and biomaterials, which reveals and quantifies the underlying causes of time-dependent deformation, elucidates key aspects of material structure and function, and that can be used to provide important inputs for computational models and targets for tissue engineering. Elucidating the time-dependent mechanical behavior of cartilage, and other biological materials, is critical to adequately recapitulate native mechanosensory cues for cells. We used microindentation to map the time-dependent properties of untreated and trypsin treated cartilage throughout each cartilage zone. Unlike conventional approaches that combine viscoelastic and poroelastic behaviors into a single framework, we deconvoluted the mechanical response into separate contributions to time-dependent behavior. Poroelastic effects in all cartilage zones dominated the time-dependent behavior of articular cartilage, and a model that incorporates tension-compression nonlinearity best represented cartilage mechanical behavior. These results can be used to assess the success of regeneration and repair approaches, as design targets for tissue engineering, and for development of accurate computational models. Copyright © 2017 Acta Materialia Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvE..89f2314M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvE..89f2314M"><span>Nonlinear viscoelasticity of entangled wormlike micellar fluid under large-amplitude oscillatory shear: Role of elastic Taylor-Couette instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majumdar, Sayantan; Sood, A. K.</p> <p>2014-06-01</p> <p>The role of elastic Taylor-Couette flow instabilities in the dynamic nonlinear viscoelastic response of an entangled wormlike micellar fluid is studied by large-amplitude oscillatory shear (LAOS) rheology and in situ polarized light scattering over a wide range of strain and angular frequency values, both above and below the linear crossover point. Well inside the nonlinear regime, higher harmonic decomposition of the resulting stress signal reveals that the normalized third harmonic I3/I1 shows a power-law behavior with strain amplitude. In addition, I3/I1 and the elastic component of stress amplitude σ0E show a very prominent maximum at the strain value where the number density (nv) of the Taylor vortices is maximum. A subsequent increase in applied strain (γ) results in the distortions of the vortices and a concomitant decrease in nv, accompanied by a sharp drop in I3 and σ0E. The peak position of the spatial correlation function of the scattered intensity along the vorticity direction also captures the crossover. Lissajous plots indicate an intracycle strain hardening for the values of γ corresponding to the peak of I3, similar to that observed for hard-sphere glasses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27475947','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27475947"><span>Creep analysis of silicone for podiatry applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Janeiro-Arocas, Julia; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Naya, Salvador; López-Canosa, Adrián; Heredia-García, Nicolás; Artiaga, Ramón</p> <p>2016-10-01</p> <p>This work shows an effective methodology to characterize the creep-recovery behavior of silicones before their application in podiatry. The aim is to characterize, model and compare the creep-recovery properties of different types of silicone used in podiatry orthotics. Creep-recovery phenomena of silicones used in podiatry orthotics is characterized by dynamic mechanical analysis (DMA). Silicones provided by Herbitas are compared by observing their viscoelastic properties by Functional Data Analysis (FDA) and nonlinear regression. The relationship between strain and time is modeled by fixed and mixed effects nonlinear regression to compare easily and intuitively podiatry silicones. Functional ANOVA and Kohlrausch-Willians-Watts (KWW) model with fixed and mixed effects allows us to compare different silicones observing the values of fitting parameters and their physical meaning. The differences between silicones are related to the variations of breadth of creep-recovery time distribution and instantaneous deformation-permanent strain. Nevertheless, the mean creep-relaxation time is the same for all the studied silicones. Silicones used in palliative orthoses have higher instantaneous deformation-permanent strain and narrower creep-recovery distribution. The proposed methodology based on DMA, FDA and nonlinear regression is an useful tool to characterize and choose the proper silicone for each podiatry application according to their viscoelastic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5453237','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5453237"><span>Fabrication of a Low Density Carbon Fiber Foam and Its Characterization as a Strain Gauge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Luhrs, Claudia C.; Daskam, Chris D.; Gonzalez, Edwin; Phillips, Jonathan</p> <p>2014-01-01</p> <p>Samples of carbon nano-fiber foam (CFF), essentially a 3D solid mat of intertwined nanofibers of pure carbon, were grown using the Constrained Formation of Fibrous Nanostructures (CoFFiN) process in a steel mold at 550 °C from a palladium particle catalysts exposed to fuel rich mixtures of ethylene and oxygen. The resulting material was studied using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Surface area analysis (BET), and Thermogravimetric Analysis (TGA). Transient and dynamic mechanical tests clearly demonstrated that the material is viscoelastic. Concomitant mechanical and electrical testing of samples revealed the material to have electrical properties appropriate for application as the sensing element of a strain gauge. The sample resistance versus strain values stabilize after a few compression cycles to show a perfectly linear relationship. Study of microstructure, mechanical and electrical properties of the low density samples confirm the uniqueness of the material: It is formed entirely of independent fibers of diverse diameters that interlock forming a tridimensional body that can be grown into different shapes and sizes at moderate temperatures. It regains its shape after loads are removed, is light weight, presents viscoelastic behavior, thermal stability up to 550 °C, hydrophobicity, and is electrically conductive. PMID:28788644</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3388210','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3388210"><span>Weak Interactions Govern the Viscosity of Concentrated Antibody Solutions: High-Throughput Analysis Using the Diffusion Interaction Parameter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Connolly, Brian D.; Petry, Chris; Yadav, Sandeep; Demeule, Barthélemy; Ciaccio, Natalie; Moore, Jamie M.R.; Shire, Steven J.; Gokarn, Yatin R.</p> <p>2012-01-01</p> <p>Weak protein-protein interactions are thought to modulate the viscoelastic properties of concentrated antibody solutions. Predicting the viscoelastic behavior of concentrated antibodies from their dilute solution behavior is of significant interest and remains a challenge. Here, we show that the diffusion interaction parameter (kD), a component of the osmotic second virial coefficient (B2) that is amenable to high-throughput measurement in dilute solutions, correlates well with the viscosity of concentrated monoclonal antibody (mAb) solutions. We measured the kD of 29 different mAbs (IgG1 and IgG4) in four different solvent conditions (low and high ion normality) and found a linear dependence between kD and the exponential coefficient that describes the viscosity concentration profiles (|R| ≥ 0.9). Through experimentally measured effective charge measurements, under low ion normality where the electroviscous effect can dominate, we show that the mAb solution viscosity is poorly correlated with the mAb net charge (|R| ≤ 0.6). With this large data set, our results provide compelling evidence in support of weak intermolecular interactions, in contrast to the notion that the electroviscous effect is important in governing the viscoelastic behavior of concentrated mAb solutions. Our approach is particularly applicable as a screening tool for selecting mAbs with desirable viscosity properties early during lead candidate selection. PMID:22828333</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhFl...28e3103L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhFl...28e3103L"><span>One-dimensional nonlinear instability study of a slightly viscoelastic, perfectly conducting liquid jet under a radial electric field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Fang; Yin, Xie-Yuan; Yin, Xie-Zhen</p> <p>2016-05-01</p> <p>A one-dimensional electrified viscoelastic model is built to study the nonlinear behavior of a slightly viscoelastic, perfectly conducting liquid jet under a radial electric field. The equations are solved numerically using an implicit finite difference scheme together with a boundary element method. The electrified viscoelastic jet is found to evolve into a beads-on-string structure in the presence of the radial electric field. Although the radial electric field greatly enhances the linear instability of the jet, its influence on the decay of the filament thickness is limited during the nonlinear evolution of the jet. On the other hand, the radial electric field induces axial non-uniformity of the first normal stress difference within the filament. The first normal stress difference in the center region of the filament may be greatly decreased by the radial electric field. The regions with/without satellite droplets are illuminated on the χ (the electrical Bond number)-k (the dimensionless wave number) plane. Satellite droplets may be formed for larger wave numbers at larger radial electric fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391851-numerical-simulation-viscoelastic-layer-rearrangement-polymer-melts-using-openfoam','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391851-numerical-simulation-viscoelastic-layer-rearrangement-polymer-melts-using-openfoam"><span>Numerical simulation of viscoelastic layer rearrangement in polymer melts using OpenFOAM®</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Köpplmayr, Thomas, E-mail: tkoepplmayr@gmail.com; Mayrhofer, Elias</p> <p></p> <p>In addition to their shear-thinning behavior, polymer melts are characterized by first and second normal stress differences, which cause secondary motions. Polymer coextrusion processes involve viscoelastic two-phase flows that influence layer formation. Using polymer melts with different pigmentation makes visible the layers deformed by second normal stress differences. We used a new solver for the OpenFOAM CFD toolbox which handles viscoelastic two-phase flows. A derivative of the volume-of-fluid (VoF) methodology was employed to describe the interface. Different types of polymer melt, such as polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were investigated. In a coextrusion process, the less viscousmore » phase usually tends to encapsulate the more viscous one. However, the different viscoelastic properties of the melts also influence interface deformation. The materials were characterized by small-amplitude oscillatory-shear rheometry, and a multimode Giesekus model was used to fit shear viscosity, storage and loss modulus. Our simulations also took interfacial tension into account. Experimental observations and corresponding numerical simulations were found to be in good accordance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29761956','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29761956"><span>[Research on adaptive quasi-linear viscoelastic model for nonlinear viscoelastic properties of in vivo soft tissues].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Heng; Sang, Yuanjun</p> <p>2017-10-01</p> <p>The mechanical behavior modeling of human soft biological tissues is a key issue for a large number of medical applications, such as surgery simulation, surgery planning, diagnosis, etc. To develop a biomechanical model of human soft tissues under large deformation for surgery simulation, the adaptive quasi-linear viscoelastic (AQLV) model was proposed and applied in human forearm soft tissues by indentation tests. An incremental ramp-and-hold test was carried out to calibrate the model parameters. To verify the predictive ability of the AQLV model, the incremental ramp-and-hold test, a single large amplitude ramp-and-hold test and a sinusoidal cyclic test at large strain amplitude were adopted in this study. Results showed that the AQLV model could predict the test results under the three kinds of load conditions. It is concluded that the AQLV model is feasible to describe the nonlinear viscoelastic properties of in vivo soft tissues under large deformation. It is promising that this model can be selected as one of the soft tissues models in the software design for surgery simulation or diagnosis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19738311','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19738311"><span>Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paolino, P; Bellon, L</p> <p>2009-10-07</p> <p>We measure the mechanical thermal noise of soft silicon atomic force microscope cantilevers. Using an interferometric setup, we obtain a resolution down to 10(-14) m Hz(-1/2) on a wide spectral range (3-10(5) Hz). The low frequency behavior depends dramatically on the presence of a reflective coating: almost flat spectra for uncoated cantilevers versus a 1/f like trend for coated ones. The addition of a viscoelastic term in models of the mechanical system can account for this observation. Use of Kramers-Kronig relations validate this approach with a complete determination of the response of the cantilever: a power law with a small coefficient is found for the frequency dependence of viscoelasticity due to the coating, whereas the viscous damping due to the surrounding atmosphere is accurately described by the Sader model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900038055&hterms=ito&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dito','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900038055&hterms=ito&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dito"><span>Semigroup theory and numerical approximation for equations in linear viscoelasticity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fabiano, R. H.; Ito, K.</p> <p>1990-01-01</p> <p>A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860012131&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860012131&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dviscoelastic"><span>Viscoelastic behavior and life-time predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dillard, D. A.; Brinson, H. F.</p> <p>1985-01-01</p> <p>Fiber reinforced plastics were considered for many structural applications in automotive, aerospace and other industries. A major concern was and remains the failure modes associated with the polymer matrix which serves to bind the fibers together and transfer the load through connections, from fiber to fiber and ply to ply. An accelerated characterization procedure for prediction of delayed failures was developed. This method utilizes time-temperature-stress-moisture superposition principles in conjunction with laminated plate theory. Because failures are inherently nonlinear, the testing and analytic modeling for both moduli and strength is based upon nonlinear viscoelastic concepts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARB53012D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARB53012D"><span>Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dinic, Jelena; Sharma, Vivek</p> <p></p> <p>Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3674959','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3674959"><span>Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L.; Spencer, Paulette</p> <p>2013-01-01</p> <p>The objective of the current study is to characterize the viscoelastic and fatigue properties of model methacrylate-based dentin adhesives under dry and wet conditions. Static, creep, and fatigue tests were performed on cylindrical samples in a 3-point bending clamp. Static results showed that the apparent elastic modulus of the model adhesive varied from 2.56 to 3.53 GPa in the dry condition, and from 1.04 to 1.62 GPa in the wet condition, depending upon the rate of loading. Significant differences were also found for the creep behavior of the model adhesive under dry and wet conditions. A linear viscoelastic model was developed by fitting the adhesive creep behavior. The developed model with 5 Kelvin Voigt elements predicted the apparent elastic moduli measured in the static tests. The model was then utilized to interpret the fatigue test results. It was found that the failure under cyclic loading can be due to creep or fatigue, which has implications for the failure criterion that are applied for these types of tests. Finally, it was found that the adhesive samples tested under dry conditions were more durable than those tested under wet conditions. PMID:20848661</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27232306','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27232306"><span>Rheological behavior of aqueous dispersions containing blends of rhamsan and welan polysaccharides with an eco-friendly surfactant.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trujillo-Cayado, L A; Alfaro, M C; Raymundo, A; Sousa, I; Muñoz, J</p> <p>2016-09-01</p> <p>Small amplitude oscillatory shear and steady shear flow properties of rhamsan gum and welan gum dispersions containing an eco-friendly surfactant (a polyoxyethylene glycerol ester) formulated to mimic the continuous phase of O/W emulsions were studied using the surface response methodology. A second order polynomial equation fitted the influence of surfactant concentration, rhamsan/welan mass ratio and total concentration of polysaccharides. Systems containing blends of rhamsan and welan did not show synergism but thermodynamic incompatibility and made it possible to adjust the linear viscoelastic and low shear rate flow properties to achieve values in between those of systems containing either rhamsan or welan as the only polysaccharide. All the systems studied exhibited weak gel rheological properties as the mechanical spectra displayed the plateau or rubber-like relaxation zone, the linear viscoelastic range was rather narrow and flow curves presented shear thinning behavior, which fitted the power-law equation. While mechanical spectra of the systems studied demonstrated that they did not control the linear viscoelastic properties of the corresponding emulsions, the blend of rhamsan and welan gums was able to control the steady shear flow properties. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MAR.K9004X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MAR.K9004X"><span>Theory of Cooperative Activated Structural Relaxation in Polymer Nanocomposites Composed of Small and Sticky Particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, Shijie; Schweizer, Kenneth</p> <p></p> <p>Recently, Cheng, Sokolov and coworkers have discovered qualitatively new dynamic behavior (exceptionally large Tg and fragility increases, unusual thermal and viscoelastic responses) in polymer nanocomposites composed of nanoparticles comparable in size to a polymer segment which form physical bonds with both themselves and segments. We generalize the Elastically Collective Nonlinear Langevin Equation theory of deeply supercooled molecular and polymer liquids to study the cooperative activated hopping dynamics of this system based on the dynamic free energy surface concept. The theoretical calculations are consistent with segmental relaxation time measurements as a function of temperature and nanoparticle volume fraction, and also the nearly linear growth of Tg with NP loading; predictions are made for the influence of nonuniversal chemical effects. The theory suggests the alpha process involves strongly coupled activated motion of segments and nanoparticles, consistent with the observed negligible change of the heat capacity jump with filler loading. Based on cohesive energy calculations and transient network ideas, full structural relaxation is suggested to involve a second, slower bond dissociation process with distinctive features and implications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MRE.....5e5704S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MRE.....5e5704S"><span>Effect of molecular weight of polyethylene glycol on the rheological properties of fumed silica-polyethylene glycol shear thickening fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Mansi; Verma, Sanjeev K.; Biswas, Ipsita; Mehta, Rajeev</p> <p>2018-05-01</p> <p>The steady-shear viscosity and dynamic visco-elastic behavior of suspensions of 20 wt% fumed silica-polyethylene glycol (PEG200) shear thickening fluid (STF) with different concentrations of various molecular weight PEG (4600, 6000 and 10000) has been studied. The results demonstrate that with an increase in the molecular weight of dispersing medium, the shear thickening parameters are significantly enhanced. In steady-state rheology, addition of PEG6000 as an additive results in high shear thickening at both low and high temperatures whereas in dynamic state, PEG4600 gives high values of all dynamic parameters. Additionally, long polymer can interconnect several particles, acting as cross-links which explain the mechanism of the enhancement in viscosity. Interestingly, compositions having PEG10000 as additive exhibits shear thinning rheology. Long polymer chains increases hydrodynamic forces thus aggregation of particles increases. Also, the results demonstrate the effect of high molecular weight PEGs on the elasticity and stability of the STF, which is important with regard to high impact resisting applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23218267','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23218267"><span>Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cao, Xiaodong; Xu, Chuanhui; Liu, Yuhong; Chen, Yukun</p> <p>2013-01-30</p> <p>A series of carboxylated styrene-butadiene rubber (XSBR)/cellulose nanocrystals (CNs) latex composites were successfully prepared. The vulcanization process, morphology, dynamic viscoelastic behavior, dynamic mechanical property, thermal and mechanical performance of the XSBR/CNs composites were investigated in detail. The results revealed that CNs were dispersed uniformly in the XSBR matrix and formed a strong filler-filler network. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (T(g)) of XSBR matrix was shifted from 48.45 to 50.64 °C with 3 phr CNs, but decreased from 50.64 to 46.28 °C when further increasing CNs content up to 15 phr. The composites exhibited a significant enhancement in tensile strength (from 16.9 to 24.1 MPa) and tear strength (from 43.5 to 65.2 MPa) with loading CNs from 0 to 15 phr. In addition, the thermo-gravimetric analysis (TGA) showed that the temperature at 5% weight loss of the XSBR/CNs composites decreased slightly with an increase of the CNs content. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MAR.C4002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MAR.C4002S"><span>Characterizing active cytoskeletal dynamics with magnetic microposts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Yu; Henry, Steven; Crocker, John; Reich, Daniel</p> <p></p> <p>Characterization of an active matter system such as the cellular cytoskeleton requires knowledge of three frequency dependent quantities: the dynamic shear modulus, G*(ω) describing its viscoelasticity, the Fourier power spectrum of forces in the material due to internal force generators f (ω) , and the spectrum of the material's active strain fluctuations x(ω) . Via use of PDMS micropost arrays with magnetic nanowires embedded in selected posts, we measure the local complex modulus of cells through mechanical actuation of the magnetic microposts. The micrometer scale microposts are also used as passive probes to measure simultaneously the frequency dependent strain fluctuations. We present data on 3T3 fibroblasts, where we find power law behavior for both the frequency dependence of cells' modulus | G (ω) | ω 0 . 27 and the power spectrum of strain fluctuations |x(ω) | ω-2 . Results for the power spectrum of active cytoskeletal stresses determined from these two measurements, and implications of this mesoscale characterization of cytoskeletal dynamics for cellular biophysics will also be discussed. Supported in part by NIH Grant 1R01HL127087.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16826069','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16826069"><span>Viscoelastic and histologic properties in scarred rabbit vocal folds after mesenchymal stem cell injection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hertegård, S; Cedervall, J; Svensson, B; Forsberg, K; Maurer, F H J; Vidovska, D; Olivius, P; Ahrlund-Richter, L; Le Blanc, K</p> <p>2006-07-01</p> <p>The aim of this study was to analyze the short-term viscoelastic and histologic properties of scarred rabbit vocal folds after injection of human mesenchymal stem cells (MSC) as well as the degree of MSC survival. Because MSCs are antiinflammatory and regenerate mesenchymal tissues, can MSC injection reduce vocal fold scarring after injury? Twelve vocal folds from 10 New Zealand rabbits were scarred by a localized resection and injected with human MSC or saline. Eight vocal folds were left as controls. After 4 weeks, 10 larynges were stained for histology and evaluation of the lamina propria thickness. Collagen type I content was analyzed from six rabbits. MSC survival was analyzed by fluorescent in situ hybridization staining from three rabbits. Viscoelasticity for 10 vocal folds was analyzed in a parallel-plate rheometer. The rheometry on fresh-frozen samples showed decreased dynamic viscosity and lower elastic modulus (P<.01) in the scarred samples injected with MSC as compared with the untreated scarred group. Normal controls had lower dynamic viscosity and elastic modulus as compared with the scarred untreated and treated vocal folds (P<.01). Histologic analysis showed a higher content of collagen type 1 in the scarred samples as compared with the normal vocal folds and with the scarred folds treated with MSC. MSCs remained in all samples analyzed. The treated scarred vocal folds showed persistent MSC. Injection of scarred rabbit vocal folds with MSC rendered improved viscoelastic parameters and less signs of scarring expressed as collagen content in comparison to the untreated scarred vocal folds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15475789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15475789"><span>Viscoelastic properties of three vocal-fold injectable biomaterials at low audio frequencies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Klemuk, Sarah A; Titze, Ingo R</p> <p>2004-09-01</p> <p>Previous measurements of viscoelastic properties of Zyderm were to be extended to low audio frequencies, and properties of two other biomaterials not previously measured, thiolated hyaluronic acid (HA-DTPH) and Cymetra, were obtained. Rheologic investigation. Oscillatory shear stress was applied to each sample using a controlled stress rheometer at frequencies between 0.01 and 100 Hz with a parallel plate apparatus. Versuscoelastic moduli were recorded at each frequency. The calculated resonance frequency of the machine and sample were then used to determine the maximum frequency at which reliable data existed. Extrapolation functions were fit to viscoelastic parameters, which predicted the properties up to 1,000 Hz. Frequency trends of Zyderm were similar to those previously reported, whereas magnitudes were different. The elastic moduli logarithmically increased with frequency, whereas dynamic viscosity demonstrated shear thinning, a condition of primary importance for humans to vocalize over a broad frequency range. Previous measurements were extended from 15 Hz up to 74 Hz. Differences in magnitude between a previous study and the present study were attributed to particulate orientation during testing. Cymetra was found to have nearly identical viscoelastic properties to those of bovine collagen, both in magnitude and frequency trend, with reliable measures extending up to 81 Hz. Rheologic properties of the hyaluronic acid gel were the closest match to cadaveric vocal fold mucosa in magnitude and frequency trend. Viscoelastic properties of Cymetra and Zyderm are nearly the same and are significantly greater than those of vocal fold mucosa. HA-DTPH possesses a good viscoelastic match to vocal fold mucosa and may be useful in future lamina propria repair.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28164206','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28164206"><span>Influence of fluid viscosity and wetting on multiscale viscoelastic lubrication in soft tribological contacts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Selway, Nichola; Chan, Vincent; Stokes, Jason R</p> <p>2017-02-22</p> <p>Friction (and lubrication) between soft contacts is prevalent in many natural and engineered systems and plays a crucial role in determining their functionality. The contribution of viscoelastic hysteresis losses to friction in these systems has been well-established and defined for dry contacts; however, the influence of fluid viscosity and wetting on these components of friction has largely been overlooked. We provide systematic experimental evidence of the influence of lubricant viscosity and wetting on lubrication across multiple regimes within a viscoelastic contact. These effects are investigated for comparatively smooth and rough elastomeric contacts (PTFE-PDMS and PDMS-PDMS) lubricated by a series of Newtonian fluids with systematically controlled viscosity and static wetting properties, using a ball-on-disc tribometer. The distinct tribological behaviour, characterised generally by a decrease in the friction coefficient with increasing fluid viscosity and wettability, is explained in terms of lubricant dewetting and squeeze-out dynamics and their impact on multi-scale viscoelastic dissipation mechanisms at the bulk-, asperity-, sub-asperity- and molecular-scale. It is proposed that lubrication within the (non-molecularly) smooth contact is governed by localised fluid entrapment and molecular-scale (interfacial) viscoelastic effects, while additional rubber hysteresis stimulated by fluid-asperity interactions, combined with rapid fluid drainage at low speeds within the rough contact, alter the general shape of the Stribeck curve. This fluid viscosity effect is in some agreement with theoretical predictions. Conventional methods for analysing and interpreting tribological data, which typically involve scaling sliding velocity with lubricant viscosity, need to be revised for viscoelastic contacts with consideration of these indirect viscosity effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29249336','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29249336"><span>Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nejad, A Abbas; Talebi, Z; Cheraghali, D; Shahbani-Zahiri, A; Norouzi, M</p> <p>2018-02-01</p> <p>In this study, the interaction of pulsatile blood flow with the viscoelastic walls of the axisymmetric artery is numerically investigated for different severities of stenosis. The geometry of artery is modeled by an axisymmetric cylindrical tube with a symmetric stenosis in a two-dimensional case. The effects of stenosis severity on the axial velocity profile, pressure distribution, streamlines, wall shear stress, and wall radial displacement for the viscoelastic artery are also compared to the elastics artery. Furthermore, the effects of atherosclerosis and polycythemia diseases on the hemodynamics and the mechanical behavior of arterial walls are investigated. The pulsatile flow of non-Newtonian blood is simulated inside the viscoelastic artery using the COMSOL Multiphysics software (version 5) and by employing the fluid-structure interaction (FSI) method and the arbitrary Lagrangian-Eulerian (ALE) method. Moreover, finite element method (FEM) is used to solve the governing equations on the unstructured grids. For modeling the non-Newtonian blood fluid and the viscoelastic arterial wall, the modified Casson model, and generalized Maxwell model are used, respectively. According to the results, with stenosis severity increasing from 25% to 75% at the time of maximum volumetric flow rate, the maximum value of axial velocity and its gradient increase 7.9 and 19.6 times, and the maximum wall shear stress of viscoelastic wall increases 24.2 times in the constriction zone. With the progression of the atherosclerosis disease (fivefold growth of arterial elastic modulus), the wall radial displacement of viscoelastic arterial walls decreases nearly 40%. In this study, axial velocity profile, pressure distribution, streamlines, wall radial displacement, and wall shear stress were examined for different percentages of stenosis (25%, 50%, and 75%). The atherosclerosis disease was investigated by the fivefold growth of viscoelastic arterial elastic modulus and polycythemia disease was examined by the 21-fold increase in the yield stress of the blood fluid. Furthermore, the comparison of results between the elastic and viscoelastic arterial walls shows that the wall radial displacement for viscoelastic artery is lower than that for the elastic artery as much as 21.7% for the severe stenosis of 75%. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CMT...tmp...22B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CMT...tmp...22B"><span>Dynamic stability and bifurcation analysis in fractional thermodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Béda, Péter B.</p> <p>2018-02-01</p> <p>In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010VSD....48..923Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010VSD....48..923Y"><span>Investigation on dynamical interaction between a heavy vehicle and road pavement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Shaopu; Li, Shaohua; Lu, Yongjie</p> <p>2010-08-01</p> <p>This paper presents a model for three-dimensional, heavy vehicle-pavement-foundation coupled system, which is modelled as a seven-DOF vehicle moving along a simply supported double-layer rectangular thin plate on a linear viscoelastic foundation. The vertical tyre force is described by a single point-contact model, while the pavement-foundation is modelled as a double-layer plate on a linear viscoelastic foundation. Using the Galerkin method and quick direct integral method, the dynamical behaviour of the vehicle-pavement-foundation coupled system is investigated numerically and compared with that of traditional vehicle system and pavement system. The effects of coupling action on vehicle body vertical acceleration, suspension deformations, tyre forces and pavement displacements are also obtained. The investigation shows that the coupling action could not be neglected even on a smooth road surface, such as highway. Thus, it is necessary to investigate the dynamics of vehicle and pavement simultaneously based on the vehicle-pavement-foundation coupled system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1351385-structure-viscoelasticity-interfacial-dynamics-model-polymeric-bicontinuous-microemulsion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1351385-structure-viscoelasticity-interfacial-dynamics-model-polymeric-bicontinuous-microemulsion"><span>Structure, viscoelasticity, and interfacial dynamics of a model polymeric bicontinuous microemulsion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hickey, Robert J.; Gillard, Timothy M.; Irwin, Matthew T.</p> <p>2016-01-01</p> <p>We have systematically studied the equilibrium structure and dynamics of a polymeric bicontinuous microemulsion (BμE) composed of poly(cyclohexylethylene) (PCHE), poly(ethylene) (PE), and a volumetrically symmetric PCHE–PE diblock copolymer, using dynamic mechanical spectroscopy, small angle X-ray and neutron scattering, and transmission electron microscopy. The BμE was investigated over an 80 °C temperature range, revealing a structural evolution and a rheological response not previously recognized in such systems. As the temperature is reduced below the point associated with the lamellar-disorder transition at compositions adjacent to the microemulsion channel, the interfacial area per chain of the BμE approaches that of the neat (undiluted)more » lamellar diblock copolymer. With increasing temperature, the diblock-rich interface swells through homopolymer infiltration. Time–temperature-superposed linear dynamic data obtained as a function of frequency show that the viscoelastic response of the BμE is strikingly similar to that of the fluctuating pure diblock copolymer in the disordered state, which we associate with membrane undulations and the breaking and reforming of interfaces. This work provides new insights into the structure and dynamics that characterize thermodynamically stable BμEs in the limits of relatively weak and strong segregation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..DFD.BG006M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..DFD.BG006M"><span>Nonlinear dynamics of coiling, and mounding in viscoelastic jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majmudar, Trushant; Ober, Thomas; McKinley, Gareth</p> <p>2009-11-01</p> <p>Free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes like bottle filling, remain poorly understood in terms of fundamental fluid dynamics. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities, and model yield-stress fluids. We systematically vary the height of the drop and the flow rate in order to study the effects of varying geometric and kinematic parameters. We observe that for fluids with higher elastic relaxation times, folding is the preferred mode. In contrast, for low elasticity fluids we observe complex nonlinear dynamics consisting of coiling, folding, and irregular meandering as the height of the fall increases. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo" or the Kaye effect. Upon increasing the flow rate to very high values, the ``leaping shampoo" state disappears and is replaced by a pronounced mounding or ``heaping". A subsequent increase in the flow rate results in finger-like protrusions to emerge out of the mound and climb up towards the nozzle. This novel transition is currently under investigation and remains a theoretical challenge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034916','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034916"><span>The 1911 M ~6.6 Calaveras earthquake: Source parameters and the role of static, viscoelastic, and dynamic coulomb stress changes imparted by the 1906 San Francisco earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Doser, D.I.; Olsen, K.B.; Pollitz, F.F.; Stein, R.S.; Toda, S.</p> <p>2009-01-01</p> <p>The occurrence of a right-lateral strike-slip earthquake in 1911 is inconsistent with the calculated 0.2-2.5 bar static stress decrease imparted by the 1906 rupture at that location on the Calaveras fault, and 5 yr of calculated post-1906 viscoelastic rebound does little to reload the fault. We have used all available first-motion, body-wave, and surface-wave data to explore possible focal mechanisms for the 1911 earthquake. We find that the event was most likely a right-lateral strikeslip event on the Calaveras fault, larger than, but otherwise resembling, the 1984 Mw 6.1 Morgan Hill earthquake in roughly the same location. Unfortunately, we could recover no unambiguous surface fault offset or geodetic strain data to corroborate the seismic analysis despite an exhaustive archival search. We calculated the static and dynamic Coulomb stress changes for three 1906 source models to understand stress transfer to the 1911 site. In contrast to the static stress shadow, the peak dynamic Coulomb stress imparted by the 1906 rupture promoted failure at the site of the 1911 earthquake by 1.4-5.8 bar. Perhaps because the sample is small and the aftershocks are poorly located, we find no correlation of 1906 aftershock frequency or magnitude with the peak dynamic stress, although all aftershocks sustained a calculated dynamic stress of ???3 bar. Just 20 km to the south of the 1911 epicenter, we find that surface creep of the Calaveras fault at Hollister paused for ~17 yr after 1906, about the expected delay for the calculated static stress drop imparted by the 1906 earthquake when San Andreas fault postseismic creep and viscoelastic relaxation are included. Thus, the 1911 earthquake may have been promoted by the transient dynamic stresses, while Calaveras fault creep 20 km to the south appears to have been inhibited by the static stress changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26428140','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26428140"><span>β-Cyclodextrin associated polymeric systems: Rheology, flow behavior in porous media and enhanced heavy oil recovery performance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wei, Bing</p> <p>2015-12-10</p> <p>This proof of concept research evaluates an approach to improve the enhanced heavy oil recovery performance of conventional polymers. Three associated polymeric systems, based on hydrolyzed polyacrylamide, xanthan gum, and a novel hydrophobic copolymer, were proposed in this work. The results of the theoretically rheology study indicate that these systems offer superior viscoelasticity and pronounced shear-thinning behavior due to the "interlocking effect". As a result of the surfactant collaboration, the dynamic interfacial tension between oil and polymer solution can be reduced by two orders of magnitude. Sandpack flooding tests demonstrated the capacity of the developed systems in mobility control during propagating in porous media, and the adsorption behavior was represented by the thickness of the adsorbed layer. The relationship between microscopic efficiency and capillary number indicated that the associated systems can significantly reduce the residual oil saturation due to the synergistic effect of the mobility reduction and surface activity, and the overall recovery efficiency was raised by 2-20% OOIP compared to the baseline polymers. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850043537&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850043537&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dviscoelastic"><span>Secular rotational motions and the mechanical structure of a dynamical viscoelastic earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yuen, D. A.; Sabadini, R.</p> <p>1984-01-01</p> <p>A survey is presented of analytical methods for computing the linear responses of the rotational axis of a layered viscoelastic earth to surface loading. Theoretical research in this area is first summarized, and the differences between the mechanical boundary conditions to be applied at the interface separating the upper and lower mantles for an adiabatically and chemically stratified mantle are discussed. Some examples of polar wander and secular variation of the spin rate from glacial excitation are presented for various types of chemical and viscosity stratifications. The effects of an artificial density jump at the base of the lithosphere in models are examined, and certain issues concerning the fluid tidal Love number for different types of density stratification are addressed. The meaning of effective plate thickness over geological time scales for rotational dynamics is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880004250','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880004250"><span>Exact finite element method analysis of viscoelastic tapered structures to transient loads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spyrakos, Constantine Chris</p> <p>1987-01-01</p> <p>A general method is presented for determining the dynamic torsional/axial response of linear structures composed of either tapered bars or shafts to transient excitations. The method consists of formulating and solving the dynamic problem in the Laplace transform domain by the finite element method and obtaining the response by a numerical inversion of the transformed solution. The derivation of the torsional and axial stiffness matrices is based on the exact solution of the transformed governing equation of motion, and it consequently leads to the exact solution of the problem. The solution permits treatment of the most practical cases of linear tapered bars and shafts, and employs modeling of structures with only one element per member which reduces the number of degrees of freedom involved. The effects of external viscous or internal viscoelastic damping are also taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..MARB19013K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..MARB19013K"><span>Molecular simulation investigation of the nanorheology of an entangled polymer melt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karim, Mir; Khare, Rajesh; Indei, Tsutomu; Schieber, Jay</p> <p>2014-03-01</p> <p>Knowledge of the ``local rheology'' is important for viscoelastic systems that contain significant structural and dynamic heterogeneities, such as cellular and extra-cellular crowded environments. For homogeneous viscoelastic media, a study of probe particle motion provides information on the microstructural evolution of the medium in response to the probe particle motion. Over the last two decades, probe particle rheology has emerged as a leading experimental technique for capturing local rheology of complex fluids. In recent work [M. Karim, S. C. Kohale, T. Indei, J. D. Schieber, and R. Khare, Phys. Rev. E<emph type="bold-italic">86</emph>, 051501 (2012)], we showed that this approach can be used in molecular dynamics (MD) simulations to study the nanoscale viscoelastic properties of an unentangled polymer melt; an important conclusion of that work was that medium and particle inertia play a crucial role in analysis of the particle rheology simulation data. MD simulations have a natural advantage that they enable study of deformation and dynamics over a small length scale around the moving probe particle. In this work, the approach is extended to compare the motion of a nanoscale probe in melts of entangled and unentangled chains. The simulations will be used to elucidate the differences between the local responses of these media to the probe particle motion. In particular, results will be presented for the differences in the resultant velocity and stress fields as well as any possible structural asymmetry developed around the moving probe particle in the entangled and unentangled cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JFM...842..395H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JFM...842..395H"><span>Geometric decomposition of the conformation tensor in viscoelastic turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.</p> <p>2018-05-01</p> <p>This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29308491','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29308491"><span>Viscoelastic wormlike micelles formed by ionic liquid-type surfactant [C16imC8]Br towards template-assisted synthesis of CdS quantum dots.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Yimin; Han, Jie; Ge, Lingling; Guo, Rong</p> <p>2018-01-31</p> <p>In this paper, viscoelastic wormlike micelles consisting of cationic liquid-type surfactant, 1-hexadecyl-3-octyl imidazolium bromide ([C 16 imC 8 ]Br), water and different additives were utilized for the synthesis of CdS quantum dots. First, the influence of different additives, such as [Cd(NH 3 ) 6 ]Cl 2 and ethanethioamid (precursors for the synthesis of CdS quantum dots), and temperature on the viscoelasticity of the [C 16 imC 8 ]Br aqueous solution was studied by dynamic and steady rheology. Furthermore, the synthesized CdS quantum dots and their photoluminescence properties were characterized by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). In the end, the mechanism for the synthesis of CdS quantum dots in [C 16 imC 8 ]Br wormlike micelles is proposed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29373598','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29373598"><span>Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N</p> <p>2018-01-01</p> <p>Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27646405','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27646405"><span>Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yan; Deng, Jianxin; Zhou, Jun; Li, Xueen</p> <p>2016-11-01</p> <p>Corresponding to pre-puncture and post-puncture insertion, elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation are investigated, respectively. Elastic mechanical properties in pre-puncture are investigated through pre-puncture needle insertion experiments using whole porcine brains. A linear polynomial and a second order polynomial are fitted to the average insertion force in pre-puncture. The Young's modulus in pre-puncture is calculated from the slope of the two fittings. Viscoelastic mechanical properties of brain tissues in post-puncture insertion are investigated through indentation stress relaxation tests for six interested regions along a planned trajectory. A linear viscoelastic model with a Prony series approximation is fitted to the average load trace of each region using Boltzmann hereditary integral. Shear relaxation moduli of each region are calculated using the parameters of the Prony series approximation. The results show that, in pre-puncture insertion, needle force almost increases linearly with needle displacement. Both fitting lines can perfectly fit the average insertion force. The Young's moduli calculated from the slope of the two fittings are worthy of trust to model linearly or nonlinearly instantaneous elastic responses of brain tissues, respectively. In post-puncture insertion, both region and time significantly affect the viscoelastic behaviors. Six tested regions can be classified into three categories in stiffness. Shear relaxation moduli decay dramatically in short time scales but equilibrium is never truly achieved. The regional and temporal viscoelastic mechanical properties in post-puncture insertion are valuable for guiding probe insertion into each region on the implanting trajectory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5786325','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5786325"><span>Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shin, Andrew; Namiri, Nikan K.; Bajwa, Neha; St. John, Maie; Taylor, Zachary D.; Grundfest, Warren; Saddik, George N.</p> <p>2018-01-01</p> <p>Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research. PMID:29373598</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26352343','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26352343"><span>Physicochemical and Gelatinization Properties of Starches Separated from Various Rice Cultivars.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Woo, Hee-Dong; We, Gyoung Jin; Kang, Tae-Young; Shon, Kee Hyuk; Chung, Hyung-Wook; Yoon, Mi-Ra; Lee, Jeom-Sig; Ko, Sanghoon</p> <p>2015-10-01</p> <p>Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G' values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G' and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γ(c)), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γ(c). The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications. Rice flour has potential applications in various food products. The physicochemical properties of rice flour are dependent on its variety, which affects the quality of the final products. In this study, the combined analysis including hydration, pasting, viscoelastic, and thermal properties of rice flour could afford information for preparing a particular product such as bread and noodle. © 2015 Institute of Food Technologists®</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Nonli..21..713G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Nonli..21..713G"><span>On the extensible viscoelastic beam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giorgi, Claudio; Pata, Vittorino; Vuk, Elena</p> <p>2008-04-01</p> <p>This work is focused on the equation \\[ \\begin{eqnarray*}\\fl {\\partial_{tt}} u+\\partial_{xxxx}u +\\int_0^\\infty \\mu(s) \\partial_{xxxx}[u(t)-u(t-s)]\\,\\rmd s\\\\ - \\big(\\beta+\\|\\partial_x u\\|_{L^2(0,1)}^2\\big)\\partial_{xx}u= f\\end{eqnarray*} \\] describing the motion of an extensible viscoelastic beam. Under suitable boundary conditions, the related dynamical system in the history space framework is shown to possess a global attractor of optimal regularity. The result is obtained by exploiting an appropriate decomposition of the solution semigroup, together with the existence of a Lyapunov functional.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.G34A..04D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.G34A..04D"><span>Earthquake Clustering in Noisy Viscoelastic Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dicaprio, C. J.; Simons, M.; Williams, C. A.; Kenner, S. J.</p> <p>2006-12-01</p> <p>Geologic studies show evidence for temporal clustering of earthquakes on certain fault systems. Since post- seismic deformation may result in a variable loading rate on a fault throughout the inter-seismic period, it is reasonable to expect that the rheology of the non-seismogenic lower crust and mantle lithosphere may play a role in controlling earthquake recurrence times. Previously, the role of rheology of the lithosphere on the seismic cycle had been studied with a one-dimensional spring-dashpot-slider model (Kenner and Simons [2005]). In this study we use the finite element code PyLith to construct a two-dimensional continuum model a strike-slip fault in an elastic medium overlying one or more linear Maxwell viscoelastic layers loaded in the far field by a constant velocity boundary condition. Taking advantage of the linear properties of the model, we use the finite element solution to one earthquake as a spatio-temporal Green's function. Multiple Green's function solutions, scaled by the size of each earthquake, are then summed to form an earthquake sequence. When the shear stress on the fault reaches a predefined yield stress it is allowed to slip, relieving all accumulated shear stress. Random variation in the fault yield stress from one earthquake to the next results in a temporally clustered earthquake sequence. The amount of clustering depends on a non-dimensional number, W, called the Wallace number. For models with one viscoelastic layer, W is equal to the standard deviation of the earthquake stress drop divided by the viscosity times the tectonic loading rate. This definition of W is modified from the original one used in Kenner and Simons [2005] by using the standard deviation of the stress drop instead of the mean stress drop. We also use a new, more appropriate, metric to measure the amount of temporal clustering of the system. W is the ratio of the viscoelastic relaxation rate of the system to the tectonic loading rate of the system. For values of W greater than the critical value of about 10, the clustered earthquake behavior is due to the rapid reloading of the fault due to viscoelastic recycling of stress. A model with multiple viscoelastic layers has more complex clustering behavior than a system with only one viscosity. In this case, multiple clustering modes exist; the size and mean period of which are influenced by the viscosities and relative thicknesses of the viscoelastic layers. Kenner, S.J. and Simons, M., (2005), Temporal cluster of major earthquakes along individual faults due to post-seismic reloading, Geophysical Journal International, 160, 179-194.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARF17007W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARF17007W"><span>Liquid droplets of cross-linked actin filaments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret</p> <p></p> <p>Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DFDR30002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DFDR30002A"><span>Dynamics of flexible molecules in thinning fluid filaments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arratia, Paulo E.; Juarez, Gabriel</p> <p>2011-11-01</p> <p>Newtonian liquids that contain small amounts (~ppm) of flexible polymers can exhibit viscoelastic behavior in extensional flows. In this talk, we report the results of experiments on the thinning and breakup of polymeric fluids in a simple microfluidic device. We aim to understand the stretching dynamics of flexible polymers by direct visualization of fluorescent DNA molecules, a model polymer. A Boger fluid, composed of 100 ppm polyacrylamide and 85% w/w glycerol, is seeded with stained lambdaâDNA molecules (<10% v/v) imaged by high speed epifluorescence microscopy. We observe that the strong flow in the thinning fluid threads provide sufficient forces to stretch the DNA molecules away from their equilibrium coiled state. The distribution of stretch lengths, however, is very heterogeneous due to molecular individualism and initial conditions. Once the molecules are stretched to their full length and aligned with the flow, they translate along the fluid thread as rigid rods until the point of pinch off. After pinch off, both the fluid and molecules return to a relaxed state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DFDE14001F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DFDE14001F"><span>Blood flow and blood cell interactions and migration in microvessels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fedosov, Dmitry; Fornleitner, Julia; Gompper, Gerhard</p> <p>2011-11-01</p> <p>Blood flow in microcirculation plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network which is characteristic for the microcirculation. We employ the Dissipative Particle Dynamics method to model blood as a suspension of deformable cells represented by a viscoelastic spring-network which incorporates appropriate mechanical and rheological cell-membrane properties. Blood flow is investigated in idealized geometries. In particular, migration of blood cells and their distribution in blood flow are studied with respect to various conditions such as hematocrit, flow rate, red blood cell aggregation. Physical mechanisms which govern cell migration in microcirculation and, in particular, margination of white blood cells towards the vessel wall, will be discussed. In addition, we characterize blood flow dynamics and quantify hemodynamic resistance. D.F. acknowledges the Humboldt Foundation for financial support.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18980191','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18980191"><span>Nanoindentation creep behavior of human enamel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Li-Hong; Swain, Michael V</p> <p>2009-11-01</p> <p>In this study, the indentation creep behavior of human enamel was investigated with a nanoindentation system and a Berkovich indenter at a force of 250 mN with one-step loading and unloading method. A constant hold period of 900 s was incorporated into each test at the maximum load as well at 5 mN minimum load during unloading. The indentation creep at the maximum load and creep recovery at the minimum load was described with a double exponential function and compared with other classic viscoelastic models (Debye/Maxwell and Kohlrausch-Williams-Watts). Indentation creep rate sensitivity, m, of human enamel was measured for the first time with a value of approximately 0.012. Enamel displayed both viscoelastic and viscoplastic behavior similar to that of bone. These results indicate that, associated with entrapment of particulates between teeth under functional loading and sliding wear conditions, the enamel may inelastically deform but recover upon its release. This behavior may be important in explaining the excellent wear resistance, antifatigue, and crack resistant abilities of natural tooth structure. (c) 2008 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22402526-analysis-tristable-energy-harvesting-system-having-fractional-order-viscoelastic-material','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22402526-analysis-tristable-energy-harvesting-system-having-fractional-order-viscoelastic-material"><span>Analysis of tristable energy harvesting system having fractional order viscoelastic material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Oumbé Tékam, G. T.; Woafo, P.; Kitio Kwuimy, C. A.</p> <p>2015-01-15</p> <p>A particular attention is devoted to analyze the dynamics of a strongly nonlinear energy harvester having fractional order viscoelastic flexible material. The strong nonlinearity is obtained from the magnetic interaction between the end free of the flexible material and three equally spaced magnets. Periodic responses are computed using the KrylovBogoliubov averaging method, and the effects of fractional order damping on the output electric energy are analyzed. It is obtained that the harvested energy is enhanced for small order of the fractional derivative. Considering the order and strength of the fractional viscoelastic property as control parameter, the complexity of the systemmore » response is investigated through the Melnikov criteria for horseshoes chaos, which allows us to derive the mathematical expression of the boundary between intra-well motion and bifurcations appearance domain. We observe that the order and strength of the fractional viscoelastic property can be effectively used to control chaos in the system. The results are confirmed by the smooth and fractal shape of the basin of attraction as the order of derivative decreases. The bifurcation diagrams and the corresponding Lyapunov exponents are plotted to get insight into the nonlinear response of the system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhPl...23k2121K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhPl...23k2121K"><span>Electrostatic streaming instability modes in complex viscoelastic quantum plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karmakar, P. K.; Goutam, H. P.</p> <p>2016-11-01</p> <p>A generalized quantum hydrodynamic model is procedurally developed to investigate the electrostatic streaming instability modes in viscoelastic quantum electron-ion-dust plasma. Compositionally, inertialess electrons are anticipated to be degenerate quantum particles owing to their large de Broglie wavelengths. In contrast, inertial ions and dust particulates are treated in the same classical framework of linear viscoelastic fluids (non-Newtonian). It considers a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D - 2)/3D], in electron quantum dynamics, with D symbolizing the problem dimensionality. Applying a regular Fourier-formulaic plane-wave analysis around the quasi-neutral hydrodynamic equilibrium, two distinct instabilities are explored to exist. They stem in ion-streaming (relative to electrons and dust) and dust-streaming (relative to electrons and ions). Their stability is numerically illustrated in judicious parametric windows in both the hydrodynamic and kinetic regimes. The non-trivial influential roles by the relative streams, viscoelasticities, and correction prefactor are analyzed. It is seen that γ acts as a stabilizer for the ion-stream case only. The findings alongside new entailments, as special cases of realistic interest, corroborate well with the earlier predictions in plasma situations. Applicability of the analysis relevant in cosmic and astronomical environments of compact dwarf stars is concisely indicated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24663947','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24663947"><span>Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick</p> <p>2014-03-10</p> <p>Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1171987','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1171987"><span>Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zimmerman, Jonathan A.; Nguyen, Thao D.; Xiao, Rui</p> <p>2015-02-01</p> <p>Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate themore » effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25912662','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25912662"><span>Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chang, Cheng-Tao; Chen, Yu-Hsing; Lin, Chou-Ching K; Ju, Ming-Shaung</p> <p>2015-07-16</p> <p>The mechanical characteristics of ultrastructures of rat sciatic nerves were investigated through animal experiments and finite element analyses. A custom-designed dynamic testing apparatus was used to conduct in vitro transverse compression experiments on the nerves. The optical coherence tomography (OCT) was utilized to record the cross-sectional images of nerve during the dynamic testing. Two-dimensional finite element models of the nerves were built based on their OCT images. A hyper-viscoelastic model was employed to describe the elastic and stress relaxation response of each ultrastructure of the nerve, namely the endoneurium, the perineurium and the epineurium. The first-order Ogden model was employed to describe the elasticity of each ultrastructure and a generalized Maxwell model for the relaxation. The inverse finite element analysis was used to estimate the material parameters of the ultrastructures. The results show the instantaneous shear modulus of the ultrastructures in decreasing order is perineurium, endoneurium, and epineurium. The FE model combined with the first-order Ogden model and the second-order Prony series is good enough for describing the compress-and-hold response of the nerve ultrastructures. The integration of OCT and the nonlinear finite element modeling may be applicable to study the viscoelasticity of peripheral nerve down to the ultrastructural level. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012MTDM...16..427O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012MTDM...16..427O"><span>Viscoelastic analysis of a dental metal-ceramic system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Özüpek, Şebnem; Ünlü, Utku Cemal</p> <p>2012-11-01</p> <p>Porcelain-fused-to-metal (PFM) restorations used in prosthetic dentistry contain thermal stresses which develop during the cooling phase after firing. These thermal stresses coupled with the stresses produced by mechanical loads may be the dominant reasons for failures in clinical situations. For an accurate calculation of these stresses, viscoelastic behavior of ceramics at high temperatures should not be ignored. In this study, the finite element technique is used to evaluate the effect of viscoelasticity on stress distributions of a three-point flexure test specimen, which is the current international standard, ISO 9693, to characterize the interfacial bond strength of metal-ceramic restorative systems. Results indicate that the probability of interfacial debonding due to normal tensile stress is higher than that due to shear stress. This conclusion suggests modification of ISO 9693 bond strength definition from one in terms of the shear stress only to that accounting for both normal and shear stresses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4484866','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4484866"><span>Indentation experiments and simulation of ovine bone using a viscoelastic-plastic damage model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhao, Yang; Wu, Ziheng; Turner, Simon; MacLeay, Jennifer; Niebur, Glen L.; Ovaert, Timothy C.</p> <p>2015-01-01</p> <p>Indentation methods have been widely used to study bone at the micro- and nanoscales. It has been shown that bone exhibits viscoelastic behavior with permanent deformation during indentation. At the same time, damage due to microcracks is induced due to the stresses beneath the indenter tip. In this work, a simplified viscoelastic-plastic damage model was developed to more closely simulate indentation creep data, and the effect of the model parameters on the indentation curve was investigated. Experimentally, baseline and 2-year postovariectomized (OVX-2) ovine (sheep) bone samples were prepared and indented. The damage model was then applied via finite element analysis to simulate the bone indentation data. The mechanical properties of yielding, viscosity, and damage parameter were obtained from the simulations. The results suggest that damage develops more quickly for OVX-2 samples under the same indentation load conditions as the baseline data. PMID:26136623</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28735885','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28735885"><span>Surface hydrodynamics of viscoelastic fluids and soft solids: Surfing bulk rheology on capillary and Rayleigh waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Monroy, Francisco</p> <p>2017-09-01</p> <p>From the recent advent of the new soft-micro technologies, the hydrodynamic theory of surface modes propagating on viscoelastic bodies has reinvigorated this field of technology with interesting predictions and new possible applications, so recovering its scientific interest very limited at birth to the academic scope. Today, a myriad of soft small objects, deformable meso- and micro-structures, and macroscopically viscoelastic bodies fabricated from colloids and polymers are already available in the materials catalogue. Thus, one can envisage a constellation of new soft objects fabricated by-design with a functional dynamics based on the mechanical interplay of the viscoelastic material with the medium through their interfaces. In this review, we recapitulate the field from its birth and theoretical foundation in the latest 1980s up today, through its flourishing in the 90s from the prediction of extraordinary Rayleigh modes in coexistence with ordinary capillary waves on the surface of viscoelastic fluids, a fact first confirmed in experiments by Dominique Langevin and me with soft gels [Monroy and Langevin, Phys. Rev. Lett. 81, 3167 (1998)]. With this observational discovery at sight, we not only settled the theory previously formulated a few years before, but mainly opened a new field of applications with soft materials where the mechanical interplay between surface and bulk motions matters. Also, new unpublished results from surface wave experiments performed with soft colloids are reported in this contribution, in which the analytic methods of wave surfing synthetized together with the concept of coexisting capillary-shear modes are claimed as an integrated tool to insightfully scrutinize the bulk rheology of soft solids and viscoelastic fluids. This dedicatory to the figure of Dominique Langevin includes an appraisal of the relevant theoretical aspects of the surface hydrodynamics of viscoelastic fluids, and the coverage of the most important experimental results obtained during the three decades of research on this field. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvE..94c2606P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvE..94c2606P"><span>Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pandey, Vikash; Holm, Sverre</p> <p>2016-09-01</p> <p>Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27739858','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27739858"><span>Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pandey, Vikash; Holm, Sverre</p> <p>2016-09-01</p> <p>Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDG10003P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDG10003P"><span>Physical gelation of a microfiber suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perazzo, Antonio; Nunes, Janine K.; Guido, Stefano; Stone, Howard A.</p> <p>2015-11-01</p> <p>Hydrogels are among the most exploited materials in tissue engineering and there is growing interest in injectable hydrogels, especially as applied to surgical adhesives and bioprinting materials. Here we report a method to produce a hydrogel in a desired location by simply extruding a suspension of high aspect ratio and flexible microfibers from a syringe. The mechanism of gel formation is purely physical and based on irreversible entanglements formed by the microfibers under the action of flow. The single microfibers have been produced and finely tailored by microfluidic methods. Shear rheology has been performed in order to get insights on the entanglements, and results show that the formation of entanglements is related to a shear thickening behavior of the suspension, which in turn depends on shear rate and concentration of fibers. When shearing the suspension, highly non-linear viscoelastic behavior is observed and probed by a highly positive first normal stress difference. We also report the hydrogel swelling behavior and its linear viscoelastic properties as obtained by imposing small oscillatory stress to the material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3746739','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3746739"><span>CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan</p> <p>2013-01-01</p> <p>The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function and cancer. PMID:23444198</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFD.G1006E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFD.G1006E"><span>Rubber and gel origami: visco- and poro-elastic behavior of folded structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evans, Arthur; Bende, Nakul; Na, Junhee; Hayward, Ryan; Santangelo, Christian</p> <p>2014-11-01</p> <p>The Japanese art of origami is rapidly becoming a platform for material design, as researchers develop systematic methods to exploit the purely geometric rules that allow paper to folded without stretching. Since any thin sheet couples mechanics strongly to geometry, origami provides a natural template for generating length-scale independent structures from a variety of different materials. In this talk I discuss some of the implications of using polymeric sheets and shells over many length scales to create folded materials with tunable shapes and properties. These implications include visco-elastic snap-through transitions and poro-elastically driven micro origami. In each case, mechanical response, dynamics, and reversible folding is tuned through a combination of geometry and constitutive properties, demonstrating the efficacy of using origami principles for designing functional materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CEAS..tmp...67R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CEAS..tmp...67R"><span>Experimental validation of solid rocket motor damping models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio</p> <p>2017-12-01</p> <p>In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CEAS...10..213R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CEAS...10..213R"><span>Experimental validation of solid rocket motor damping models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio</p> <p>2018-06-01</p> <p>In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30b3102K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30b3102K"><span>Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kamkar, Milad; Aliabadian, Ehsan; Shayesteh Zeraati, Ali; Sundararaj, Uttandaraman</p> <p>2018-02-01</p> <p>Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs' network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs' network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28964009','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28964009"><span>Magnetic response of a viscoelastic ferrodispersion: From a nearly Newtonian ferrofluid to a Jeffreys ferrogel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rusakov, V V; Raikher, Yu L</p> <p>2017-09-28</p> <p>The theory of orientational motion of a Brownian magnetic nanoparticle embedded in a viscoelastic medium and subjected to a time-dependent uniform magnetic field is developed. The rheology of the viscoelastic environment of the particle is modeled by the Jeffreys scheme, which under variation of a minimal number of parameters is able to resemble a wide range of soft materials: from a weakly structured (nearly Newtonian) polymer solution to a gel. It is shown that in the Jeffreys model, the diffusional orientational motion of a particle is a combination of two modes, which could be associated with a fast motion within the polymer mesh cell and a slow displacement that involves deformation of the mesh, respectively. The dependencies of the reference times of both relaxation modes on the Jeffreys viscous and elastic parameters and temperature are found. It turns out that in substantially viscoelastic media, the rate of the slow mode (it dominates in relaxation) quadratically depends on the matrix temperature. This effect does not have analogs in linearly viscous systems. For an ensemble of magnetic nanoparticles in viscoelastic and gel Jeffreys matrices: (1) the dynamic magnetic susceptibility is derived and evaluated both within an exact approach and in a simple approximation; (2) the problem of magnetic relaxometry, i.e., evolution of magnetization after step-wise turning off the field, is solved; (3) the specific power loss caused by viscous dissipation generated by the particles under an ac field is analyzed as a function of the rheological parameters. Results (1) and (2) provide simple models for magnetic nanorheology; consideration (3) advances the physics of magnetic hyperthermia in viscoelastic and gel-like media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvE..90a2303C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvE..90a2303C"><span>Diffusing-wave spectroscopy in an inhomogeneous object: Local viscoelastic spectra from ultrasound-assisted measurement of correlation decay arising from the ultrasound focal volume</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandran, R. Sriram; Sarkar, Saikat; Kanhirodan, Rajan; Roy, Debasish; Vasu, Ram Mohan</p> <p>2014-07-01</p> <p>We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation [g2(τ)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth [M(τ)], introduced by the ultrasound forcing in the focal volume selected, on g2(τ). The modulation depth M (τi) at any delay time τi can be measured by short-time Fourier transform of g2(τ) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M (τ) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(ω), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(ω) corresponding to these regions from the measured region specific M (τi)vsτi. The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of τ, the match was good only in the initial transients in regard to experimental measurements with ultrasound.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22551342','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22551342"><span>Fibronectin and bovine serum albumin adsorption and conformational dynamics on inherently conducting polymers: a QCM-D study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Molino, Paul J; Higgins, Michael J; Innis, Peter C; Kapsa, Robert M I; Wallace, Gordon G</p> <p>2012-06-05</p> <p>Quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to characterize the adsorption of the model proteins, bovine serum albumin (BSA) and fibronectin (FN), to polypyrrole doped with dextran sulfate (PPy-DS) as a function of DS loading and surface roughness. BSA adsorption was greater on surfaces of increased roughness and was above what could be explained by the increase in surface area alone. Furthermore, the additional mass adsorbed on the rough films was concomitant with an increase in the rigidity of the protein layer. Analysis of the dynamic viscoelastic properties of the protein adlayer reveal BSA adsorption on the rough films occurs in two phases: (1) arrival and initial adsorption of protein to the polymer surface and (2) postadsorption molecular rearrangement to a more dehydrated and compact conformation that facilitates further recruitment of protein to the polymer interface, likely forming a multilayer. In contrast, FN adsorption was independent of surface roughness. However, films prepared from solutions containing the highest concentration of DS (20 mg/mL) demonstrated both an increase in adsorbed mass and adlayer viscoelasticity. This is attributed to the higher DS loading in the conducting polymer film resulting in presentation of a more hydrated molecular structure indicative of a more unfolded and bioactive conformation. Modulating the redox state of the PPy-DS polymers was shown to modify both the adsorbed mass and viscoelastic nature of FN adlayers. An oxidizing potential increased both the total adsorbed mass and the adlayer viscoelasticity. Our findings demonstrate that modification of polymer physicochemical and redox condition alters the nature of protein-polymer interaction, a process that may be exploited to tailor the bioactivity of protein through which interactions with cells and tissues may be controlled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29j3102S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29j3102S"><span>Towards the minimization of thermodynamic irreversibility in an electrically actuated microflow of a viscoelastic fluid under electrical double layer phenomenon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarma, Rajkumar; Jain, Manish; Mondal, Pranab Kumar</p> <p>2017-10-01</p> <p>We discuss the entropy generation minimization for electro-osmotic flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of interfacial slip and conjugate transport of heat. We use in this study the simplified Phan-Thien-Tanner model to describe the rheological behavior of the viscoelastic fluid. Using Navier's slip law and thermal boundary conditions of the third kind, we solve the transport equations analytically and evaluate the global entropy generation rate of the system. We examine the influential role of the following parameters on the entropy generation rate of the system, viz., the viscoelastic parameter (ɛDe2), Debye-Hückel parameter ( κ ¯ ) , channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi), Peclet number (Pe), and axial temperature gradient (B). This investigation finally establishes the optimum values of the abovementioned parameters, leading to the minimum entropy generation of the system. We believe that results of this analysis could be helpful in optimizing the second-law performance of microscale thermal management devices, including the micro-heat exchangers, micro-reactors, and micro-heat pipes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24404022','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24404022"><span>Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campo-Deaño, Laura; Dullens, Roel P A; Aarts, Dirk G A L; Pinho, Fernando T; Oliveira, Mónica S N</p> <p>2013-01-01</p> <p>The non-Newtonian properties of blood are of great importance since they are closely related with incident cardiovascular diseases. A good understanding of the hemodynamics through the main vessels of the human circulatory system is thus fundamental in the detection and especially in the treatment of these diseases. Very often such studies take place in vitro for convenience and better flow control and these generally require blood analogue solutions that not only adequately mimic the viscoelastic properties of blood but also minimize undesirable optical distortions arising from vessel curvature that could interfere in flow visualizations or particle image velocimetry measurements. In this work, we present the viscoelastic moduli of whole human blood obtained by means of passive microrheology experiments. These results and existing shear and extensional rheological data for whole human blood in the literature enabled us to develop solutions with rheological behavior analogous to real whole blood and with a refractive index suited for PDMS (polydymethylsiloxane) micro- and milli-channels. In addition, these blood analogues can be modified in order to obtain a larger range of refractive indices from 1.38 to 1.43 to match the refractive index of several materials other than PDMS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11772482','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11772482"><span>Measurement of the viscoelastic compliance of the eustachian tube using a modified forced-response test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghadiali, Samir N; Federspiel, William J; Swarts, J Douglas; Doyle, William J</p> <p>2002-01-01</p> <p>Eustachian tube compliance (ETC) was suggested to be an important determinate of function. Previous attempts to quantify ETC used summary measures that are not clearly related to the physical properties of the system. Here, we present a new method for measuring ETC that conforms more closely to the engineering definition of compliance. The forced response test was modified to include oscillations in applied flow after the forced tubal opening. Pressure and flow were recorded during the standard and modified test in 12 anesthetized cynomolgus monkeys. The resulting pressure-flow, hysteresis loops were compared with those predicted by a simple fluid-structure model of the Eustachian tube with linear-elastic or viscoelastic properties. The tubal compliance index (TCI) and a viscoelastic compliance (C(v)) were calculated from these data for each monkey. The behavior of a viscoelastic, but not a linear elastic model accurately reproduced the experimental data for the monkey. The TCI and C(v) were linearly related, but the shared variance in these measures was only 63%. This new method for measuring ETC captures all information contained in the traditional TCI, but also provides information regarding the contribution of wall viscosity to Eustachian tube mechanics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24404129','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24404129"><span>A new method to improve the clinical evaluation of cystic fibrosis patients by mucus viscoelastic properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tomaiuolo, Giovanna; Rusciano, Giulia; Caserta, Sergio; Carciati, Antonio; Carnovale, Vincenzo; Abete, Pasquale; Sasso, Antonio; Guido, Stefano</p> <p>2014-01-01</p> <p>In cystic fibrosis (CF) patients airways mucus shows an increased viscoelasticity due to the concentration of high molecular weight components. Such mucus thickening eventually leads to bacterial overgrowth and prevents mucus clearance. The altered rheological behavior of mucus results in chronic lung infection and inflammation, which causes most of the cases of morbidity and mortality, although the cystic fibrosis complications affect other organs as well. Here, we present a quantitative study on the correlation between cystic fibrosis mucus viscoelasticity and patients clinical status. In particular, a new diagnostic parameter based on the correlation between CF sputum viscoelastic properties and the severity of the disease, expressed in terms of FEV1 and bacterial colonization, was developed. By using principal component analysis, we show that the types of colonization and FEV1 classes are significantly correlated to the elastic modulus, and that the latter can be used for CF severity classification with a high predictive efficiency (88%). The data presented here show that the elastic modulus of airways mucus, given the high predictive efficiency, could be used as a new clinical parameter in the prognostic evaluation of cystic fibrosis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S51A1924A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S51A1924A"><span>Effect Of Long-Period Earthquake Ground Motions On Nonlinear Vibration Of Shells With Variable Thickness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdikarimov, R.; Bykovtsev, A.; Khodzhaev, D.; Research Team Of Geotechnical; Structural Engineers</p> <p>2010-12-01</p> <p>Long-period earthquake ground motions (LPEGM) with multiple oscillations have become a crucial consideration in seismic hazard assessment because of the rapid increase of tall buildings and special structures (SP).Usually, SP refers to innovative long-span structural systems. More specifically, they include many types of structures, such as: geodesic showground; folded plates; and thin shells. As continuation of previous research (Bykovtsev, Abdikarimov, Khodzhaev 2003, 2010) analysis of nonlinear vibrations (NV) and dynamic stability of SP simulated as shells with variable rigidity in geometrically nonlinear statement will be presented for two cases. The first case will represent NV example of a viscoelastic orthotropic cylindrical shell with radius R, length L and variable thickness h=h(x,y). The second case will be NV example of a viscoelastic shell with double curvature, variable thickness, and bearing the concentrated masses. In both cases we count, that the SP will be operates under seismic load generated by LPEGM with multiple oscillations. For different seismic loads simulations, Bykovtsev’s Model and methodology was used for generating LPEGM time history. The methodology for synthesizing LPEGM from fault with multiple segmentations was developed by Bykovtev (1978-2010) and based on 3D-analytical solutions by Bykovtsev-Kramarovskii (1987&1989) constructed for faults with multiple segmentations. This model is based on a kinematics description of displacement function on the fault and included in consideration of all possible combinations of 3 components of vector displacement (two slip vectors and one tension component). The opportunities to take into consideration fault segmentations with both shear and tension vector components of displacement on the fault plane provide more accurate LPEGM evaluations. Radiation patterns and directivity effects were included in the model and more physically realistic results for simulated LPEGM were considered. The system of nonlinear integro-differential equations (NIDE) with variable coefficients concerning a deflection w=w(x,y) and displacements u=u(x,y), v=v(x,y) was used for construction mathematical model of the problem. The Kichhoff-Love hypothesis was used as basis for description physical and geometrical relations and construction of a discrete model of nonlinear problems dynamic theory of viscoelasticity. The most effective variational Bubnov-Galerkin method was used for obtaining Volterra type system of NIDE. The integration of the obtained equations system was carried out with the help of the numerical method based on quadrature formula. The computer codes on algorithmic language Delphi were created for investigation amplitude-time, deflected mode and torque-time characteristic of vibrations of the viscoelastic shells. For real composite materials at wide ranges of change of physical-mechanical and geometrical parameters the behavior of shells were investigated. Calculations were carried out at different laws of change of thickness. Results will be presented as graphs and tables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21149135-transient-droplet-behavior-droplet-breakup-during-bulk-confined-shear-flow-blends-one-viscoelastic-component-experiments-modelling-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21149135-transient-droplet-behavior-droplet-breakup-during-bulk-confined-shear-flow-blends-one-viscoelastic-component-experiments-modelling-simulations"><span>Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cardinaels, Ruth; Verhulst, Kristof; Moldenaers, Paula</p> <p>2008-07-07</p> <p>The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects ofmore » droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally, experimental data are compared with 3D simulations, performed with a volume-of-fluid algorithm.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/10710','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/10710"><span>Crash Padding Research : Vol. I. Material Mechanical Properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1986-08-01</p> <p>The dynamic mechanical properties of Uniroyal Ensolite AAC, a viscoelastic closed-cell foam rubber, are investigated by means of materials tests. Sufficient test data is presented to form a basis for one-dimensional (uniform compression) empirical co...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/17573','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/17573"><span>Three-dimensional modeling of flexible pavements : executive summary, August 2001.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2001-08-01</p> <p>A linear viscoelastic model has been incorporated into a three-dimensional finite element program for analysis of flexible pavements. Linear and quadratic versions of hexahedral elements and quadrilateral axisymmetrix elements are provided. Dynamic p...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/17572','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/17572"><span>Three dimensional modeling of flexible pavements : final report, March 2002.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2001-08-01</p> <p>A linear viscoelastic model has been incorporated into a three-dimensional finite element program for analysis of flexible pavements. Linear and quadratic versions of hexahedral elements and quadrilateral axisymmetrix elements are provided. Dynamic p...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........80G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........80G"><span>Locomotion at Low Reynolds Number: Dynamics in Newtonian and Non-Newtonian Systems with Biomedical Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagnon, David A.</p> <p></p> <p>Swimming microorganisms such as bacteria, spermatozoa, algae, and nematodes are critical to ubiquitous biological phenomena such as disease and infection, ecosystem dynamics, and mammalian fertilization. While there has been much scientific and practical interest in studying these swimmers in Newtonian (water-like) fluids, there are fewer systematic experimental studies on swimming through non-Newtonian (non-water-like) fluids with biologically-relevant mechanical properties. These organisms commonly swim through viscoelastic, structured, or shear-rate-dependent fluids, such as blood, mucus, and living tissues. Furthermore, the small length scales of these organisms dictate that their motion is dominated by viscous forces and inertia is negligible. Using rheology, microscopy, particle tracking, and image processing techniques, we examine the interaction of low Reynolds number swimmers and non-Newtonian fluids including viscoelastic, locally-anisotropic, and shear-thinning fluids. We then apply our understanding of locomotion to the study of the genetic disease Spinal Muscular Atrophy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4213666','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4213666"><span>Direct Measurements of Drag Forces in C. elegans Crawling Locomotion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S.</p> <p>2014-01-01</p> <p>With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm’s body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode’s body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode. PMID:25418179</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25347182','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25347182"><span>Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aregawi, Wondwosen A; Abera, Metadel K; Fanta, Solomon W; Verboven, Pieter; Nicolai, Bart</p> <p>2014-11-19</p> <p>A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus × domestica Borkh. cv. 'Jonagold') during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick's second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell's rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range ( > 97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10496E..0PZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10496E..0PZ"><span>Viscoelastic characterization of dispersive media by inversion of a general wave propagation model in optical coherence elastography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zvietcovich, Fernando; Rolland, Jannick P.; Grygotis, Emma; Wayson, Sarah; Helguera, Maria; Dalecki, Diane; Parker, Kevin J.</p> <p>2018-02-01</p> <p>Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface wave propagation to estimate frequency-dependent wave speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters which is important for tissue engineering applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4707135','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4707135"><span>Hemodynamics in a Pediatric Ascending Aorta Using a Viscoelastic Pediatric Blood Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Good, Bryan C.; Deutsch, Steven; Manning, Keefe B.</p> <p>2015-01-01</p> <p>Congenital heart disease is the leading cause of infant death in the United States with over 36,000 newborns affected each year. Despite this growing problem there are few mechanical circulatory support devices designed specifically for pediatric and neonate patients. Previous research has been done investigating pediatric ventricular assist devices (PVADs) assuming blood to be a Newtonian fluid in computational fluid dynamics (CFD) simulations, ignoring its viscoelastic and shear-thinning properties. In contrast to adult VADs, PVADs may be more susceptible to hemolysis and thrombosis due to altered flow into the aorta, and therefore, a more accurate blood model should be used. A CFD solver that incorporates a modified Oldroyd-B model designed specifically for pediatric blood is used to investigate important hemodynamic parameters in a pediatric aortic model under pulsatile flow conditions. These results are compared to Newtonian blood simulations at three physiological pediatric hematocrits. Minor differences are seen in both velocity and WSS during early stages of the cardiac systole between the Newtonian and viscoelastic models. During diastole, significant differences are seen in the velocities in the descending aorta (up to 12%) and in the aortic branches (up to 30%) between the two models. Additionally, peak wall shear stress (WSS) differences are seen between the models throughout the cardiac cycle. At the onset of diastole, peak WSS differences of 43% are seen between the Newtonian and viscoelastic model and between the 20 and 60% hematocrit viscoelastic models at peak systole of 41%. PMID:26159560</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARC10008G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARC10008G"><span>Understanding the interfacial chain dynamics of fiber-reinforced polymer composite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goswami, Monojoy; Carrillo, Jan-Michael; Naskar, Amit; Sumpter, Bobby</p> <p></p> <p>The polymer-fiber interface plays a major role in determining the structural and dynamical properties of fiber reinforced composite materials. We utilized LAMMPS MD package to understand the interfacial properties at the nanoscale. Coarse-grained flexible polymer chains are introduced to compare the various structures and dynamics of the polymer chains. Our preliminary simulation study shows that the rigidity of the polymer chain affects the interfacial morphology and dynamics of the chain on a flat surface. In this work, we identified the `immobile inter-phase' morphology and relate it to rheological properties. We calculated the viscoelastic properties, e.g., shear modulus and storage modulus, which are compared with experiments. MD simulations are used to show the variation of viscoelastic properties with polymer volume fraction. The nanoscale segmental and chain relaxation are calculated from the MD simulations and compared to the experimental data. These observations will be able to identify the fundamental physics behind the effect of the polymer-fiber interactions and orientation of the fiber to the overall rheological properties of the fiber reinforced polymer matrix. Funding for the project was provided by ORNLs Laboratory Directed Research and Development (LDRD) program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARF17006G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARF17006G"><span>Microscale Mechanics of Actin Networks During Dynamic Assembly and Dissociation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gurmessa, Bekele; Robertson-Anderson, Rae; Ross, Jennifer; Nguyen, Dan; Saleh, Omar</p> <p></p> <p>Actin is one of the key components of the cytoskeleton, enabling cells to move and divide while maintaining shape by dynamic polymerization, dissociation and crosslinking. Actin polymerization and network formation is driven by ATP hydrolysis and varies depending on the concentrations of actin monomers and crosslinking proteins. The viscoelastic properties of steady-state actin networks have been well-characterized, yet the mechanical properties of these non-equilibrium systems during dynamic assembly and disassembly remain to be understood. We use semipermeable microfluidic devices to induce in situ dissolution and re-polymerization of entangled and crosslinked actin networks, by varying ATP concentrations in real-time, while measuring the mechanical properties during disassembly and re-assembly. We use optical tweezers to sinusoidally oscillate embedded microspheres and measure the resulting force at set time-intervals and in different regions of the network during cyclic assembly/disassembly. We determine the time-dependent viscoelastic properties of non-equilibrium network intermediates and the reproducibility and homogeneity of network formation and dissolution. Results inform the role that cytoskeleton reorganization plays in the dynamic multifunctional mechanics of cells. NSF CAREER Award (DMR-1255446) and a Scialog Collaborative Innovation Award funded by Research Corporation for Scientific Advancement (Grant No. 24192).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28949005','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28949005"><span>The effect of storage temperature on blue cheese mechanical properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Joyner Melito, Helen S; Francis, Dorothy; Luzzi, Brooke; Johnson, John R</p> <p>2018-06-01</p> <p>Blue cheese is commonly aged for 60 days at 10°C after curing. However, some manufacturers store blue cheese at 4°C and the effect of lower storage temperature on blue cheese final properties is unknown. Thus, the objective of this study was to determine the effect of storage temperature and time on blue cheese mechanical behaviors. Blue cheeses were stored at 4 or 10°C for 77 days after production. Composition and small- and large-strain rheological behaviors were evaluated every 2 weeks of storage. Storage time had significant impact on blue cheese rheological behaviors; storage temperature did not. Large-strain compressive force and viscoelastic moduli decreased with storage time, and the extent of nonlinear viscoelastic behavior increased. These results indicated that sample microstructure likely weakened and was more easily deformed as storage time increased. Overall, blue cheese can be stored at 4-10°C without significant changes to its composition or mechanical behavior. The results of this work can be used by blue cheese manufacturers to better understand the impact of storage time and temperature on blue cheese end quality. Manufacturers can take advantage of the effects of storage time on blue cheese mechanical behaviors to determine how long to age blue cheese to achieve the desired texture. © 2017 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860020541&hterms=kerosene&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dkerosene','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860020541&hterms=kerosene&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dkerosene"><span>Heat transfer, friction, and rheological characteristics of antimisting kerosene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matthys, E.; Sarohia, V.</p> <p>1985-01-01</p> <p>Experiments were performed to determine the skin friction and heat transfer behavior of antimisting kerosene (AMK) in pipe flows. The additive used was FM-9. Based on the results of the experiments, which identify high viscosity and viscoelasticity for AMK, it is recommended that AMK be degraded. Sufficient degradation produces behavior similar to that of jet A.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28605721','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28605721"><span>Dynamic analysis of bulk-fill composites: Effect of food-simulating liquids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eweis, Ahmed Hesham; Yap, Adrian U-Jin; Yahya, Noor Azlin</p> <p>2017-10-01</p> <p>This study investigated the effect of food simulating liquids on visco-elastic properties of bulk-fill restoratives using dynamic mechanical analysis. One conventional composite (Filtek Z350 [FZ]), two bulk-fill composites (Filtek Bulk-fill [FB] and Tetric N Ceram [TN]) and a bulk-fill giomer (Beautifil-Bulk Restorative [BB]) were evaluated. Specimens (12 × 2 × 2mm) were fabricated using customized stainless steel molds. The specimens were light-cured, removed from their molds, finished, measured and randomly divided into six groups. The groups (n = 10) were conditioned in the following mediums for 7 days at 37°C: air (control), artificial saliva (SAGF), distilled water, 0.02N citric acid, heptane, 50% ethanol-water solution. Specimens were assessed using dynamic mechanical testing in flexural three-point bending mode and their respective mediums at 37°C and a frequency range of 0.1-10Hz. The distance between the supports were fixed at 10mm and an axial load of 5N was employed. Data for elastic modulus, viscous modulus and loss tangent were subjected to ANOVA/Tukey's tests at significance level p < 0.05. Significant differences in visco-elastic properties were observed between materials and mediums. Apart from bulk-fill giomer, elastic modulus was the highest after conditioning in heptane. No apparent trends were noted for viscous modulus. Generally, loss tangent was the highest after conditioning in ethanol. The effect of food-simulating liquids on the visco-elastic properties of bulk-fill composites was material and medium dependent. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyA..488....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyA..488....1M"><span>Hurst exponent: A Brownian approach to characterize the nonlinear behavior of red blood cells deformability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mancilla Canales, M. A.; Leguto, A. J.; Riquelme, B. D.; León, P. Ponce de; Bortolato, S. A.; Korol, A. M.</p> <p>2017-12-01</p> <p>Ektacytometry techniques quantifies red blood cells (RBCs) deformability by measuring the elongation of suspended RBCs subjected to shear stress. Raw shear stress elongation plots are difficult to understand, thus most research papers apply data reduction methods characterizing the relationship between curve fitting. Our approach works with the naturally generated photometrically recorded time series of the diffraction pattern of several million of RBCs subjected to shear stress, and applies nonlinear quantifiers to study the fluctuations of these elongations. The development of new quantitative methods is crucial for restricting the subjectivity in the study of the cells behavior, mainly if they are capable of analyze at the same time biological and mechanical aspects of the cells in flowing conditions and compare their dynamics. A patented optical system called Erythrocyte Rheometer was used to evaluate viscoelastic properties of erythrocytes by Ektacytometry. To analyze cell dynamics we used the technique of Time Delay Coordinates, False Nearest Neighbors, the forecasting procedure proposed by Sugihara and May, and Hurst exponent. The results have expressive meaning on comparing healthy samples with parasite treated samples, suggesting that apparent noise associated with deterministic chaos can be used not only to distinguish but also to characterize biological and mechanical aspects of cells at the same time in flowing conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29251503','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29251503"><span>Preparation of a Strong Gelatin-Short Linear Glucan Nanocomposite Hydrogel by an in Situ Self-Assembly Process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ge, Shengju; Li, Man; Ji, Na; Liu, Jing; Mul, Hongyan; Xiong, Liu; Sun, Qingjie</p> <p>2018-01-10</p> <p>Gelatin hydrogels exhibit excellent biocompatibility, nonimmunogenicity, and biodegradability, but they have limited applications in the food and medical industries because of their poor mechanical properties. Herein, we first developed an in situ self-assembly process for the preparation of gelatin-short linear glucan (SLG) nanocomposite hydrogels with enhanced mechanical strength. The microstructure, dynamic viscoelasticity, compression behavior, and thermal characteristics of the gelatin-SLG nanocomposite hydrogels were determined using scanning electron microscopy (SEM), dynamic rheological experiments, compression tests, and texture profile analysis tests. The SEM images revealed that nanoparticles were formed by the in situ self-assembly of SLG in the gelatin matrix and that the size of these nanoparticles ranged between 200 and 600 nm. The pores of the nanocomposite hydrogels were smaller than those of the pure gelatin hydrogels. Transmission electron microscopy images and X-ray diffraction further confirmed the presence of SLG nanoparticles with spherical shapes and B-type structures. Compared with pure gelatin hydrogels, the nanocomposite hydrogels exhibited improved mechanical behavior. Notably, the hardness and maximum values of the compressive stress of gelatin-SLG nanocomposites containing 5% SLG increased by about 2-fold and 3-fold, respectively, compared to the corresponding values of pure gelatin hydrogels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2902538','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2902538"><span>Contrast detection in fluid-saturated media with magnetic resonance poroelastography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Perriñez, Phillip R.; Pattison, Adam J.; Kennedy, Francis E.; Weaver, John B.; Paulsen, Keith D.</p> <p>2010-01-01</p> <p>Purpose: Recent interest in the poroelastic behavior of tissues has led to the development of magnetic resonance poroelastography (MRPE) as an alternative to single-phase MR elastographic image reconstruction. In addition to the elastic parameters (i.e., Lamé’s constants) commonly associated with magnetic resonance elastography (MRE), MRPE enables estimation of the time-harmonic pore-pressure field induced by external mechanical vibration. Methods: This study presents numerical simulations that demonstrate the sensitivity of the computed displacement and pore-pressure fields to a priori estimates of the experimentally derived model parameters. In addition, experimental data collected in three poroelastic phantoms are used to assess the quantitative accuracy of MR poroelastographic imaging through comparisons with both quasistatic and dynamic mechanical tests. Results: The results indicate hydraulic conductivity to be the dominant parameter influencing the deformation behavior of poroelastic media under conditions applied during MRE. MRPE estimation of the matrix shear modulus was bracketed by the values determined from independent quasistatic and dynamic mechanical measurements as expected, whereas the contrast ratios for embedded inclusions were quantitatively similar (10%–15% difference between the reconstructed images and the mechanical tests). Conclusions: The findings suggest that the addition of hydraulic conductivity and a viscoelastic solid component as parameters in the reconstruction may be warranted. PMID:20831058</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890015280','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890015280"><span>Adaptive methods, rolling contact, and nonclassical friction laws</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oden, J. T.</p> <p>1989-01-01</p> <p>Results and methods on three different areas of contemporary research are outlined. These include adaptive methods, the rolling contact problem for finite deformation of a hyperelastic or viscoelastic cylinder, and non-classical friction laws for modeling dynamic friction phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030066191&hterms=viscoelastic&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030066191&hterms=viscoelastic&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dviscoelastic"><span>Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Odegard, G. M.; Bandorawalla, T.; Herring, H. M.; Gates, T. S.</p> <p>2003-01-01</p> <p>Nanoindentation is used to determine the dynamic viscoelastic properties of six polymer materials. It is shown that varying the harmonic frequency of the nanoindentation does not have any significant effect on the measured storage and loss moduli of the polymers. Agreement is found between these results and data from DMA testing of the same materials. Varying the harmonic amplitude of the nanoindentation does not have a significant effect on the measured properties of the high performance resins, however, the storage modulus of the polyethylene decreases as the harmonic amplitude increases. Measured storage and loss moduli are also shown to depend on the density of the polyethylene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S21B2736S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S21B2736S"><span>Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shcherbakov, R.; Zhang, X.</p> <p>2016-12-01</p> <p>Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1338912','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1338912"><span>Dynamics in entangled polyethylene melts [Multi time scale dynamics in entangled polyethylene melts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Salerno, K. Michael; Agrawal, Anupriya; Peters, Brandon L.</p> <p></p> <p>Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factormore » α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Furthermore, using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1338912-dynamics-entangled-polyethylene-melts-multi-time-scale-dynamics-entangled-polyethylene-melts','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1338912-dynamics-entangled-polyethylene-melts-multi-time-scale-dynamics-entangled-polyethylene-melts"><span>Dynamics in entangled polyethylene melts [Multi time scale dynamics in entangled polyethylene melts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Salerno, K. Michael; Agrawal, Anupriya; Peters, Brandon L.; ...</p> <p>2016-10-10</p> <p>Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factormore » α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Furthermore, using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21867214','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21867214"><span>Electrostatics of the protein-water interface and the dynamical transition in proteins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matyushov, Dmitry V; Morozov, Alexander Y</p> <p>2011-07-01</p> <p>Atomic displacements of hydrated proteins are dominated by phonon vibrations at low temperatures and by dissipative large-amplitude motions at high temperatures. A crossover between the two regimes is known as a dynamical transition. Recent experiments indicate a connection between the dynamical transition and the dielectric response of the hydrated protein. We analyze two mechanisms of the coupling between the protein atomic motions and the protein-water interface. The first mechanism considers viscoelastic changes in the global shape of the protein plasticized by its coupling to the hydration shell. The second mechanism involves modulations of the local motions of partial charges inside the protein by electrostatic fluctuations. The model is used to analyze mean-square displacements of iron of metmyoglobin reported by Mössbauer spectroscopy. We show that high displacement of heme iron at physiological temperatures is dominated by electrostatic fluctuations. Two onsets, one arising from the viscoelastic response and the second from electrostatic fluctuations, are seen in the temperature dependence of the mean-square displacements when the corresponding relaxation times enter the instrumental resolution window.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvE..84a1908M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvE..84a1908M"><span>Electrostatics of the protein-water interface and the dynamical transition in proteins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matyushov, Dmitry V.; Morozov, Alexander Y.</p> <p>2011-07-01</p> <p>Atomic displacements of hydrated proteins are dominated by phonon vibrations at low temperatures and by dissipative large-amplitude motions at high temperatures. A crossover between the two regimes is known as a dynamical transition. Recent experiments indicate a connection between the dynamical transition and the dielectric response of the hydrated protein. We analyze two mechanisms of the coupling between the protein atomic motions and the protein-water interface. The first mechanism considers viscoelastic changes in the global shape of the protein plasticized by its coupling to the hydration shell. The second mechanism involves modulations of the local motions of partial charges inside the protein by electrostatic fluctuations. The model is used to analyze mean-square displacements of iron of metmyoglobin reported by Mössbauer spectroscopy. We show that high displacement of heme iron at physiological temperatures is dominated by electrostatic fluctuations. Two onsets, one arising from the viscoelastic response and the second from electrostatic fluctuations, are seen in the temperature dependence of the mean-square displacements when the corresponding relaxation times enter the instrumental resolution window.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3808551','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3808551"><span>Glassy dynamics in three-dimensional embryonic tissues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schötz, Eva-Maria; Lanio, Marcos; Talbot, Jared A.; Manning, M. Lisa</p> <p>2013-01-01</p> <p>Many biological tissues are viscoelastic, behaving as elastic solids on short timescales and fluids on long timescales. This collective mechanical behaviour enables and helps to guide pattern formation and tissue layering. Here, we investigate the mechanical properties of three-dimensional tissue explants from zebrafish embryos by analysing individual cell tracks and macroscopic mechanical response. We find that the cell dynamics inside the tissue exhibit features of supercooled fluids, including subdiffusive trajectories and signatures of caging behaviour. We develop a minimal, three-parameter mechanical model for these dynamics, which we calibrate using only information about cell tracks. This model generates predictions about the macroscopic bulk response of the tissue (with no fit parameters) that are verified experimentally, providing a strong validation of the model. The best-fit model parameters indicate that although the tissue is fluid-like, it is close to a glass transition, suggesting that small changes to single-cell parameters could generate a significant change in the viscoelastic properties of the tissue. These results provide a robust framework for quantifying and modelling mechanically driven pattern formation in tissues. PMID:24068179</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1194211-influence-composition-fluctuations-linear-viscoelastic-properties-symmetric-diblock-copolymers-near-order-disorder-transition','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1194211-influence-composition-fluctuations-linear-viscoelastic-properties-symmetric-diblock-copolymers-near-order-disorder-transition"><span>Influence of composition fluctuations on the linear viscoelastic properties of symmetric diblock copolymers near the order-disorder transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hickey, Robert J.; Gillard, Timothy M.; Lodge, Timothy P.</p> <p>2015-08-28</p> <p>Rheological evidence of composition fluctuations in disordered diblock copolymers near the order disorder transition (ODT) has been documented in the literature over the past three decades, characterized by a failure of time–temperature superposition (tTS) to reduce linear dynamic mechanical spectroscopy (DMS) data in the terminal viscoelastic regime to a temperature-independent form. However, for some materials, most notably poly(styrene-b-isoprene) (PS–PI), no signature of these rheological features has been found. We present small-angle X-ray scattering (SAXS) results on symmetric poly(cyclohexylethylene-b-ethylene) (PCHE–PE) diblock copolymers that confirm the presence of fluctuations in the disordered state and DMS measurements that also show no sign ofmore » the features ascribed to composition fluctuations. Assessment of DMS results published on five different diblock copolymer systems leads us to conclude that the effects of composition fluctuations can be masked by highly asymmetric block dynamics, thereby resolving a long-standing disagreement in the literature and reinforcing the importance of mechanical contrast in understanding the dynamics of ordered and disordered block polymers.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>