DAWN: Dynamic Ad-hoc Wireless Network
2016-06-19
DAWN: Dynamic Ad-hoc Wireless Network The DAWN (Dynamic Ad-hoc Wireless Networks) project is developing a general theory of complex and dynamic... wireless communication networks. To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN... wireless communication networks. The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or
Research on dynamic routing mechanisms in wireless sensor networks.
Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y
2014-01-01
WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network.
Performance Evaluation of a Prototyped Wireless Ground Sensor Network
2005-03-01
the network was capable of dynamic adaptation to failure and degradation. 14. SUBJECT TERMS: Wireless Sensor Network , Unmanned Sensor, Unattended...2 H. WIRELESS SENSOR NETWORKS .................................................................... 3...zation, and network traffic. The evaluated scenarios included outdoor, urban and indoor environments. The characteristics of wireless sensor networks , types
Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks. PMID:22412343
Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.
Data aggregation in wireless sensor networks using the SOAP protocol
NASA Astrophysics Data System (ADS)
Al-Yasiri, A.; Sunley, A.
2007-07-01
Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks.
Prediction-based Dynamic Energy Management in Wireless Sensor Networks
Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei
2007-01-01
Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.
Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks
Chen, Chin-Ling; Lin, I-Hsien
2010-01-01
Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths. PMID:22163606
Location-aware dynamic session-key management for grid-based Wireless Sensor Networks.
Chen, Chin-Ling; Lin, I-Hsien
2010-01-01
Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths.
Wang, Xinheng
2008-01-01
Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.
NASA Astrophysics Data System (ADS)
Xiang, Min; Qu, Qinqin; Chen, Cheng; Tian, Li; Zeng, Lingkang
2017-11-01
To improve the reliability of communication service in smart distribution grid (SDG), an access selection algorithm based on dynamic network status and different service types for heterogeneous wireless networks was proposed. The network performance index values were obtained in real time by multimode terminal and the variation trend of index values was analyzed by the growth matrix. The index weights were calculated by entropy-weight and then modified by rough set to get the final weights. Combining the grey relational analysis to sort the candidate networks, and the optimum communication network is selected. Simulation results show that the proposed algorithm can implement dynamically access selection in heterogeneous wireless networks of SDG effectively and reduce the network blocking probability.
Ding, Xu; Han, Jianghong; Shi, Lei
2015-01-01
In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305
Ding, Xu; Han, Jianghong; Shi, Lei
2015-03-16
In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.
Zand, Pouria; Dilo, Arta; Havinga, Paul
2013-06-27
Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead.
Zand, Pouria; Dilo, Arta; Havinga, Paul
2013-01-01
Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead. PMID:23807687
Authentication and Key Establishment in Dynamic Wireless Sensor Networks
Qiu, Ying; Zhou, Jianying; Baek, Joonsang; Lopez, Javier
2010-01-01
When a sensor node roams within a very large and distributed wireless sensor network, which consists of numerous sensor nodes, its routing path and neighborhood keep changing. In order to provide a high level of security in this environment, the moving sensor node needs to be authenticated to new neighboring nodes and a key established for secure communication. The paper proposes an efficient and scalable protocol to establish and update the authentication key in a dynamic wireless sensor network environment. The protocol guarantees that two sensor nodes share at least one key with probability 1 (100%) with less memory and energy cost, while not causing considerable communication overhead. PMID:22319321
TinyOS-based quality of service management in wireless sensor networks
Peterson, N.; Anusuya-Rangappa, L.; Shirazi, B.A.; Huang, R.; Song, W.-Z.; Miceli, M.; McBride, D.; Hurson, A.; LaHusen, R.
2009-01-01
Previously the cost and extremely limited capabilities of sensors prohibited Quality of Service (QoS) implementations in wireless sensor networks. With advances in technology, sensors are becoming significantly less expensive and the increases in computational and storage capabilities are opening the door for new, sophisticated algorithms to be implemented. Newer sensor network applications require higher data rates with more stringent priority requirements. We introduce a dynamic scheduling algorithm to improve bandwidth for high priority data in sensor networks, called Tiny-DWFQ. Our Tiny-Dynamic Weighted Fair Queuing scheduling algorithm allows for dynamic QoS for prioritized communications by continually adjusting the treatment of communication packages according to their priorities and the current level of network congestion. For performance evaluation, we tested Tiny-DWFQ, Tiny-WFQ (traditional WFQ algorithm implemented in TinyOS), and FIFO queues on an Imote2-based wireless sensor network and report their throughput and packet loss. Our results show that Tiny-DWFQ performs better in all test cases. ?? 2009 IEEE.
Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate.
Zeng, Yuanyuan; Sreenan, Cormac J; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.
Zeng, Yuanyuan; Sreenan, Cormac J.; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work. PMID:22163774
NASA Astrophysics Data System (ADS)
Lin, Chow-Sing; Yen, Fang-Zhi
With the rapid advances in wireless network communication, multimedia presentation has become more applicable. However, due to the limited wireless network resource and the mobility of Mobile Host (MH), QoS for wireless streaming is much more difficult to maintain. How to decrease Call Dropping Probability (CDP) in multimedia traffic while still keeping acceptable Call Block Probability (CBP) without sacrificing QoS has become an significant issue in providing wireless streaming services. In this paper, we propose a novel Dynamic Resources Adjustment (DRA) algorithm, which can dynamically borrow idle reserved resources in the serving cell or the target cell for handoffing MHs to compensate the shortage of bandwidth in media streaming. The experimental simulation results show that compared with traditional No Reservation (NR), and Resource Reservation in the six neighboring cells (RR-nb), and Resource Reservation in the target cell (RR-t), our proposed DRA algorithm can fully utilize unused reserved resources to effectively decrease the CDP while still keeping acceptable CBP with high bandwidth utilization.
High fidelity wireless network evaluation for heterogeneous cognitive radio networks
NASA Astrophysics Data System (ADS)
Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso
2012-06-01
We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal-level interactions with real radios. This holistic wireless evaluation approach supports a large-scale, het- erogeneous, and dynamic CR network architecture and allows developing cross-layer network protocols under high fidelity, repeatable, and scalable wireless test scenarios suitable for heterogeneous space, air, and ground networks.
Information Assurance in Wireless Networks
NASA Astrophysics Data System (ADS)
Kabara, Joseph; Krishnamurthy, Prashant; Tipper, David
2001-09-01
Emerging wireless networks will contain a hybrid infrastructure based on fixed, mobile and ad hoc topologies and technologies. In such a dynamic architecture, we define information assurance as the provisions for both information security and information availability. The implications of this definition are that the wireless network architecture must (a) provide sufficient security measures, (b) be survivable under node or link attack or failure and (c) be designed such that sufficient capacity remains for all critical services (and preferably most other services) in the event of attack or component failure. We have begun a research project to investigate the provision of information assurance for wireless networks viz. survivability, security and availability and here discuss the issues and challenges therein.
Wireless Infrared Networking in the Duke Paperless Classroom.
ERIC Educational Resources Information Center
Stetten, George D.; Guthrie, Scott D.
1995-01-01
Discusses wireless (diffuse infrared) networking technology to link laptop computers in a computer programming and numerical methods course at Duke University (North Carolina). Describes products and technologies, and effects on classroom dynamics. Reports on effective instructional strategies for lecture, solving student problems, building shared…
NASA Astrophysics Data System (ADS)
Deng, Peng; Kavehrad, Mohsen; Lou, Yan
2017-01-01
Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.
Model and Dynamic Behavior of Malware Propagation over Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Song, Yurong; Jiang, Guo-Ping
Based on the inherent characteristics of wireless sensor networks (WSN), the dynamic behavior of malware propagation in flat WSN is analyzed and investigated. A new model is proposed using 2-D cellular automata (CA), which extends the traditional definition of CA and establishes whole transition rules for malware propagation in WSN. Meanwhile, the validations of the model are proved through theoretical analysis and simulations. The theoretical analysis yields closed-form expressions which show good agreement with the simulation results of the proposed model. It is shown that the malware propaga-tion in WSN unfolds neighborhood saturation, which dominates the effects of increasing infectivity and limits the spread of the malware. MAC mechanism of wireless sensor networks greatly slows down the speed of malware propagation and reduces the risk of large-scale malware prevalence in these networks. The proposed model can describe accurately the dynamic behavior of malware propagation over WSN, which can be applied in developing robust and efficient defense system on WSN.
An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.
Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun
2015-12-03
Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.
Collaboration in a Wireless Grid Innovation Testbed by Virtual Consortium
NASA Astrophysics Data System (ADS)
Treglia, Joseph; Ramnarine-Rieks, Angela; McKnight, Lee
This paper describes the formation of the Wireless Grid Innovation Testbed (WGiT) coordinated by a virtual consortium involving academic and non-academic entities. Syracuse University and Virginia Tech are primary university partners with several other academic, government, and corporate partners. Objectives include: 1) coordinating knowledge sharing, 2) defining key parameters for wireless grids network applications, 3) dynamically connecting wired and wireless devices, content and users, 4) linking to VT-CORNET, Virginia Tech Cognitive Radio Network Testbed, 5) forming ad hoc networks or grids of mobile and fixed devices without a dedicated server, 6) deepening understanding of wireless grid application, device, network, user and market behavior through academic, trade and popular publications including online media, 7) identifying policy that may enable evaluated innovations to enter US and international markets and 8) implementation and evaluation of the international virtual collaborative process.
NASA Astrophysics Data System (ADS)
Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin
Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.
Practice brief. Securing wireless technology for healthcare.
Retterer, John; Casto, Brian W
2004-05-01
Wireless networking can be a very complex science, requiring an understanding of physics and the electromagnetic spectrum. While the radio theory behind the technology can be challenging, a basic understanding of wireless networking can be sufficient for small-scale deployment. Numerous security mechanisms are available to wireless technologies, making it practical, scalable, and affordable for healthcare organizations. The decision on the selected security model should take into account the needs for additional server hardware and administrative costs. Where wide area network connections exist between cooperative organizations, deployment of a distributed security model can be considered to reduce administrative overhead. The wireless approach chosen should be dynamic and concentrate on the organization's specific environmental needs. Aspects of organizational mission, operations, service level, and budget allotment as well as an organization's risk tolerance are all part of the balance in the decision to deploy wireless technology.
Molecular inspired models for prediction and control of directional FSO/RF wireless networks
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Milner, Stuart D.; Davis, Christopher C.
2010-08-01
Directional wireless networks using FSO and RF transmissions provide wireless backbone support for mobile communications in dynamic environments. The heterogeneous and dynamic nature of such networks challenges their robustness and requires self-organization mechanisms to assure end-to-end broadband connectivity. We developed a framework based on the definition of a potential energy function to characterize robustness in communication networks and the study of first and second order variations of the potential energy to provide prediction and control strategies for network performance optimization. In this paper, we present non-convex molecular potentials such as the Morse Potential, used to describe the potential energy of bonds within molecules, for the characterization of communication links in the presence of physical constraints such as the power available at the network nodes. The inclusion of the Morse Potential translates into adaptive control strategies where forces on network nodes drive the release, retention or reconfiguration of communication links for network performance optimization. Simulation results show the effectiveness of our self-organized control mechanism, where the physical topology reorganizes to maximize the number of source to destination communicating pairs. Molecular Normal Mode Analysis (NMA) techniques for assessing network performance degradation in dynamic networks are also presented. Preliminary results show correlation between peaks in the eigenvalues of the Hessian of the network potential and network degradation.
Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility
Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus
2013-01-01
This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992
Joint Energy Supply and Routing Path Selection for Rechargeable Wireless Sensor Networks.
Tang, Liangrui; Cai, Jinqi; Yan, Jiangyu; Zhou, Zhenyu
2018-06-17
The topic of network lifetime has been attracting much research attention because of its importance in prolonging the standing operation of battery-restricted wireless sensor networks, and the rechargeable wireless sensor network has emerged as a promising solution. In this paper, we propose a joint energy supply and routing path selection algorithm to extend the network lifetime based on an initiative power supply. We develop a two-stage energy replenishment strategy to supplement the energy consumption of nodes as much as possible. Furthermore, the influence of charging factors on the selection of next-hop nodes in data routing is considered. The simulation results show that our algorithm effectively prolong the network lifetime, and different demands of network delay and energy consumption can be obtained by dynamically adjusting parameters.
Intelligent Sensing and Classification in DSR-Based Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Dempsey, Tae; Sahin, Gokhan; Morton, Yu T. (Jade
Wireless ad hoc networks have fundamentally altered today's battlefield, with applications ranging from unmanned air vehicles to randomly deployed sensor networks. Security and vulnerabilities in wireless ad hoc networks have been considered at different layers, and many attack strategies have been proposed, including denial of service (DoS) through the intelligent jamming of the most critical packet types of flows in a network. This paper investigates the effectiveness of intelligent jamming in wireless ad hoc networks using the Dynamic Source Routing (DSR) and TCP protocols and introduces an intelligent classifier to facilitate the jamming of such networks. Assuming encrypted packet headers and contents, our classifier is based solely on the observable characteristics of size, inter-arrival timing, and direction and classifies packets with up to 99.4% accuracy in our experiments.
Design and Analysis of a Dynamic Mobility Management Scheme for Wireless Mesh Network
Roy, Sudipta
2013-01-01
Seamless mobility management of the mesh clients (MCs) in wireless mesh network (WMN) has drawn a lot of attention from the research community. A number of mobility management schemes such as mesh network with mobility management (MEMO), mesh mobility management (M3), and wireless mesh mobility management (WMM) have been proposed. The common problem with these schemes is that they impose uniform criteria on all the MCs for sending route update message irrespective of their distinct characteristics. This paper proposes a session-to-mobility ratio (SMR) based dynamic mobility management scheme for handling both internet and intranet traffic. To reduce the total communication cost, this scheme considers each MC's session and mobility characteristics by dynamically determining optimal threshold SMR value for each MC. A numerical analysis of the proposed scheme has been carried out. Comparison with other schemes shows that the proposed scheme outperforms MEMO, M3, and WMM with respect to total cost. PMID:24311982
Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.
Prakash, R; Balaji Ganesh, A; Sivabalan, Somu
2017-05-01
The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.
A wireless sensor enabled by wireless power.
Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey
2012-11-22
Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.
A Wireless Sensor Enabled by Wireless Power
Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey
2012-01-01
Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370
Optimal Power Control in Wireless Powered Sensor Networks: A Dynamic Game-Based Approach
Xu, Haitao; Guo, Chao; Zhang, Long
2017-01-01
In wireless powered sensor networks (WPSN), it is essential to research uplink transmit power control in order to achieve throughput performance balancing and energy scheduling. Each sensor should have an optimal transmit power level for revenue maximization. In this paper, we discuss a dynamic game-based algorithm for optimal power control in WPSN. The main idea is to use the non-cooperative differential game to control the uplink transmit power of wireless sensors in WPSN, to extend their working hours and to meet QoS (Quality of Services) requirements. Subsequently, the Nash equilibrium solutions are obtained through Bellman dynamic programming. At the same time, an uplink power control algorithm is proposed in a distributed manner. Through numerical simulations, we demonstrate that our algorithm can obtain optimal power control and reach convergence for an infinite horizon. PMID:28282945
Body area network--a key infrastructure element for patient-centered telemedicine.
Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas
2004-01-01
The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.
Accurate Sybil Attack Detection Based on Fine-Grained Physical Channel Information.
Wang, Chundong; Zhu, Likun; Gong, Liangyi; Zhao, Zhentang; Yang, Lei; Liu, Zheli; Cheng, Xiaochun
2018-03-15
With the development of the Internet-of-Things (IoT), wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI). This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI). Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless networks.
Accurate Sybil Attack Detection Based on Fine-Grained Physical Channel Information
Wang, Chundong; Zhao, Zhentang; Yang, Lei; Liu, Zheli; Cheng, Xiaochun
2018-01-01
With the development of the Internet-of-Things (IoT), wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI). This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI). Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless networks. PMID:29543773
Provision of QoS for Multimedia Services in IEEE 802.11 Wireless Network
2006-10-01
Provision of QoS for Multimedia Services in IEEE 802.11 Wireless Network. In Dynamic Communications Management (pp. 10-1 – 10-16). Meeting Proceedings...mechanisms have been used for managing a limited bandwidth link within the IPv6 military narrowband network. The detailed description of these...confirms that implemented video rate adaptation mechanism enables improvement of qaulity of video transfer. Provision of QoS for Multimedia Services in
Efficient data communication protocols for wireless networks
NASA Astrophysics Data System (ADS)
Zeydan, Engin
In this dissertation, efficient decentralized algorithms are investigated for cost minimization problems in wireless networks. For wireless sensor networks, we investigate both the reduction in the energy consumption and throughput maximization problems separately using multi-hop data aggregation for correlated data in wireless sensor networks. The proposed algorithms exploit data redundancy using a game theoretic framework. For energy minimization, routes are chosen to minimize the total energy expended by the network using best response dynamics to local data. The cost function used in routing takes into account distance, interference and in-network data aggregation. The proposed energy-efficient correlation-aware routing algorithm significantly reduces the energy consumption in the network and converges in a finite number of steps iteratively. For throughput maximization, we consider both the interference distribution across the network and correlation between forwarded data when establishing routes. Nodes along each route are chosen to minimize the interference impact in their neighborhood and to maximize the in-network data aggregation. The resulting network topology maximizes the global network throughput and the algorithm is guaranteed to converge with a finite number of steps using best response dynamics. For multiple antenna wireless ad-hoc networks, we present distributed cooperative and regret-matching based learning schemes for joint transmit beanformer and power level selection problem for nodes operating in multi-user interference environment. Total network transmit power is minimized while ensuring a constant received signal-to-interference and noise ratio at each receiver. In cooperative and regret-matching based power minimization algorithms, transmit beanformers are selected from a predefined codebook to minimize the total power. By selecting transmit beamformers judiciously and performing power adaptation, the cooperative algorithm is shown to converge to pure strategy Nash equilibrium with high probability throughout the iterations in the interference impaired network. On the other hand, the regret-matching learning algorithm is noncooperative and requires minimum amount of overhead. The proposed cooperative and regret-matching based distributed algorithms are also compared with centralized solutions through simulation results.
High Fidelity Simulations of Large-Scale Wireless Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onunkwo, Uzoma; Benz, Zachary
The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulationsmore » (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.« less
Algorithms for Data Sharing, Coordination, and Communication in Dynamic Network Settings
2007-12-03
problems in dynamic networks, focusing on mobile networks with wireless communication. Problems studied include data management, time synchronization ...The discovery of a fundamental limitation in capabilities for time synchronization in large networks. (2) The identification and development of the...Problems studied include data management, time synchronization , communication problems (broadcast, geocast, and point-to-point routing), distributed
Some dynamic resource allocation problems in wireless networks
NASA Astrophysics Data System (ADS)
Berry, Randall
2001-07-01
We consider dynamic resource allocation problems that arise in wireless networking. Specifically transmission scheduling problems are studied in cases where a user can dynamically allocate communication resources such as transmission rate and power based on current channel knowledge as well as traffic variations. We assume that arriving data is stored in a transmission buffer, and investigate the trade-off between average transmission power and average buffer delay. A general characterization of this trade-off is given and the behavior of this trade-off in the regime of asymptotically large buffer delays is explored. An extension to a more general utility based quality of service definition is also discussed.
Structural health monitoring using wireless sensor networks
NASA Astrophysics Data System (ADS)
Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha
2017-11-01
Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.
NASA Astrophysics Data System (ADS)
Dragos, Kosmas; Smarsly, Kay
2016-04-01
System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.
Optical wireless communication in data centers
NASA Astrophysics Data System (ADS)
Arnon, Shlomi
2018-01-01
In the last decade data centers have become a crucial element in modern human society. However, to keep pace with internet data rate growth, new technologies supporting data center should develop. Integration of optical wireless communication (OWC) in data centers is one of the proposed technologies as augmented technology to the fiber network. One implementation of the OWC technology is deployment of optical wireless transceiver on top of the existing cable/fiber network as extension to the top of rack (TOR) switch; in this way, a dynamic and flexible network is created. Optical wireless communication could reduce energy consumption, increase the data rate, reduce the communication latency, increase flexibility and scalability, and reduce maintenance time and cost, in comparison to extra fiber network deployment. In this paper we review up to date literature in the field, propose an implementation scheme of OWC network, discuss ways to reduce energy consumption by parallel link communication and report preliminary measurement result of university data center environment.
Dynamical jumping real-time fault-tolerant routing protocol for wireless sensor networks.
Wu, Guowei; Lin, Chi; Xia, Feng; Yao, Lin; Zhang, He; Liu, Bing
2010-01-01
In time-critical wireless sensor network (WSN) applications, a high degree of reliability is commonly required. A dynamical jumping real-time fault-tolerant routing protocol (DMRF) is proposed in this paper. Each node utilizes the remaining transmission time of the data packets and the state of the forwarding candidate node set to dynamically choose the next hop. Once node failure, network congestion or void region occurs, the transmission mode will switch to jumping transmission mode, which can reduce the transmission time delay, guaranteeing the data packets to be sent to the destination node within the specified time limit. By using feedback mechanism, each node dynamically adjusts the jumping probabilities to increase the ratio of successful transmission. Simulation results show that DMRF can not only efficiently reduce the effects of failure nodes, congestion and void region, but also yield higher ratio of successful transmission, smaller transmission delay and reduced number of control packets.
Metadata behind the Interoperability of Wireless Sensor Networks
Ballari, Daniela; Wachowicz, Monica; Callejo, Miguel Angel Manso
2009-01-01
Wireless Sensor Networks (WSNs) produce changes of status that are frequent, dynamic and unpredictable, and cannot be represented using a linear cause-effect approach. Consequently, a new approach is needed to handle these changes in order to support dynamic interoperability. Our approach is to introduce the notion of context as an explicit representation of changes of a WSN status inferred from metadata elements, which in turn, leads towards a decision-making process about how to maintain dynamic interoperability. This paper describes the developed context model to represent and reason over different WSN status based on four types of contexts, which have been identified as sensing, node, network and organisational contexts. The reasoning has been addressed by developing contextualising and bridges rules. As a result, we were able to demonstrate how contextualising rules have been used to reason on changes of WSN status as a first step towards maintaining dynamic interoperability. PMID:22412330
Metadata behind the Interoperability of Wireless Sensor Networks.
Ballari, Daniela; Wachowicz, Monica; Callejo, Miguel Angel Manso
2009-01-01
Wireless Sensor Networks (WSNs) produce changes of status that are frequent, dynamic and unpredictable, and cannot be represented using a linear cause-effect approach. Consequently, a new approach is needed to handle these changes in order to support dynamic interoperability. Our approach is to introduce the notion of context as an explicit representation of changes of a WSN status inferred from metadata elements, which in turn, leads towards a decision-making process about how to maintain dynamic interoperability. This paper describes the developed context model to represent and reason over different WSN status based on four types of contexts, which have been identified as sensing, node, network and organisational contexts. The reasoning has been addressed by developing contextualising and bridges rules. As a result, we were able to demonstrate how contextualising rules have been used to reason on changes of WSN status as a first step towards maintaining dynamic interoperability.
Revealing networks from dynamics: an introduction
NASA Astrophysics Data System (ADS)
Timme, Marc; Casadiego, Jose
2014-08-01
What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.
Graphical user interface for wireless sensor networks simulator
NASA Astrophysics Data System (ADS)
Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy
2008-01-01
Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.
Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network
NASA Astrophysics Data System (ADS)
Xu, Xiao-Feng
2018-03-01
Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.
Experimental and Computational Fluid Dynamic Analysis of Axial-Flow Hydrodynamic Power Turbine
2013-03-01
Number RPM Revolutions per minute WSN Wireless Sensor Network xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii ACKNOWLEDGMENTS I would like...Instruments Wireless Sensor Network (WSN) device, strain data could be sent to Labview acquisition software during a run across the tank. Four channels...be more appropriate for automobiles where minimizing drag is an important design aspect. Conversely, drag coefficients for wind turbine rotors are
Wireless remote monitoring of toxic gases in shipbuilding.
Pérez-Garrido, Carlos; González-Castaño, Francisco J; Chaves-Díeguez, David; Rodríguez-Hernández, Pedro S
2014-02-14
Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness).
Wireless Remote Monitoring of Toxic Gases in Shipbuilding
Pérez-Garrido, Carlos; González-Castaño, Francisco J.; Chaves-Diéguez, David; Rodríguez-Hernández, Pedro S.
2014-01-01
Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness). PMID:24534919
Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi
2013-12-19
Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation.
A Multimetric Approach for Handoff Decision in Heterogeneous Wireless Networks
NASA Astrophysics Data System (ADS)
Kustiawan, I.; Purnama, W.
2018-02-01
Seamless mobility and service continuity anywhere at any time are an important issue in the wireless Internet. This research proposes a scheme to make handoff decisions effectively in heterogeneous wireless networks using a fuzzy system. Our design lies in an inference engine which takes RSS (received signal strength), data rate, network latency, and user preference as strategic determinants. The logic of our engine is realized on a UE (user equipment) side in faster reaction to network dynamics while roaming across different radio access technologies. The fuzzy system handles four metrics jointly to deduce a moderate decision about when to initiate handoff. The performance of our design is evaluated by simulating move-out mobility scenarios. Simulation results show that our scheme outperforms other approaches in terms of reducing unnecessary handoff.
Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae
2014-01-01
Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942
Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae
2014-02-11
Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.
A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities
Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro
2017-01-01
The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds. PMID:29099745
A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities.
Bellavista, Paolo; Giannelli, Carlo; Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro
2017-11-03
The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds.
Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.
Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks
Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883
Challenges of CAC in Heterogeneous Wireless Cognitive Networks
NASA Astrophysics Data System (ADS)
Wang, Jiazheng; Fu, Xiuhua
Call admission control (CAC) is known as an effective functionality in ensuring the QoS of wireless networks. The vision of next generation wireless networks has led to the development of new call admission control (CAC) algorithms specifically designed for heterogeneous wireless Cognitive networks. However, there will be a number of challenges created by dynamic spectrum access and scheduling techniques associated with the cognitive systems. In this paper for the first time, we recommend that the CAC policies should be distinguished between primary users and secondary users. The classification of different methods of cac policies in cognitive networks contexts is proposed. Although there have been some researches within the umbrella of Joint CAC and cross-layer optimization for wireless networks, the advent of the cognitive networks adds some additional problems. We present the conceptual models for joint CAC and cross-layer optimization respectively. Also, the benefit of Cognition can only be realized fully if application requirements and traffic flow contexts are determined or inferred in order to know what modes of operation and spectrum bands to use at each point in time. The process model of Cognition involved per-flow-based CAC is presented. Because there may be a number of parameters on different levels affecting a CAC decision and the conditions for accepting or rejecting a call must be computed quickly and frequently, simplicity and practicability are particularly important for designing a feasible CAC algorithm. In a word, a more thorough understanding of CAC in heterogeneous wireless cognitive networks may help one to design better CAC algorithms.
Analysis of power management and system latency in wireless sensor networks
NASA Astrophysics Data System (ADS)
Oswald, Matthew T.; Rohwer, Judd A.; Forman, Michael A.
2004-08-01
Successful power management in a wireless sensor network requires optimization of the protocols which affect energy-consumption on each node and the aggregate effects across the larger network. System optimization for a given deployment scenario requires an analysis and trade off of desired node and network features with their associated costs. The sleep protocol for an energy-efficient wireless sensor network for event detection, target classification, and target tracking developed at Sandia National Laboratories is presented. The dynamic source routing (DSR) algorithm is chosen to reduce network maintenance overhead, while providing a self-configuring and self-healing network architecture. A method for determining the optimal sleep time is developed and presented, providing reference data which spans several orders of magnitude. Message timing diagrams show, that a node in a five-node cluster, employing an optimal cyclic single-radio sleep protocol, consumes 3% more energy and incurs a 16-s increase latency than nodes employing the more complex dual-radio STEM protocol.
Analysis on Multicast Routing Protocols for Mobile Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Xiang, Ma
As the Mobile Ad Hoc Networks technologies face a series of challenges like dynamic changes of topological structure, existence of unidirectional channel, limited wireless transmission bandwidth, the capability limitations of mobile termination and etc, therefore, the research to mobile Ad Hoc network routings inevitablely undertake a more important task than those to other networks. Multicast is a mode of communication transmission oriented to group computing, which sends the data to a group of host computers by using single source address. In a typical mobile Ad Hoc Network environment, multicast has a significant meaning. On the one hand, the users of mobile Ad Hoc Network usually need to form collaborative working groups; on the other hand, this is also an important means of fully using the broadcast performances of wireless communication and effectively using the limited wireless channel resources. This paper summarizes and comparatively analyzes the routing mechanisms of various existing multicast routing protocols according to the characteristics of mobile Ad Hoc network.
Worm epidemics in wireless ad hoc networks
NASA Astrophysics Data System (ADS)
Nekovee, Maziar
2007-06-01
A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet.
Mobile access to the Internet: from personal bubble to satellites
NASA Astrophysics Data System (ADS)
Gerla, Mario
2001-10-01
Mobile, wireless access and networking has emerged in the last few years as one of the most important directions of Internet growth. The popularity of mobile, and, more generally, nomadic Internet access is due to many enabling factors including: (a) emergence of meaningful applications tailored to the individual on the move; (b) small form factor and long battery life; (c) efficient middleware designed to support mobility; and, (d) efficient wireless networking technologies. A key player in the mobile Internet access is the nomad, i.e. the individual equipped with various computing and I/O gadgets (cellular phone, earphones, GPS navigator, palm pilot, beeper, portable scanner, digital camera, etc.). These devices form his/her Personal Area Network or PAN or personal bubble. The connectivity within the bubble is wireless (using for example a low cost, low power wireless LAN such as Bluetooth). The bubble can expand and contract dynamically depending on needs. It may temporarily include sensors and actuators as the nomad walks into a new environment. In this paper, we identify the need for the interconnection of the PAN with other wireless networks in order to achieve costeffective mobile access to the Internet. We will overview some key networking technologies required to support the PAN (eg, Bluetooth). We will also discuss an emerging technology, Ad Hoc wireless networking which is the natural complement of the PAN in sparsely populated areas. Finally, we will identify the need for intelligent routers to assist the mobile user in the selection of the best Internet access strategy.
An Optimal Algorithm towards Successive Location Privacy in Sensor Networks with Dynamic Programming
NASA Astrophysics Data System (ADS)
Zhao, Baokang; Wang, Dan; Shao, Zili; Cao, Jiannong; Chan, Keith C. C.; Su, Jinshu
In wireless sensor networks, preserving location privacy under successive inference attacks is extremely critical. Although this problem is NP-complete in general cases, we propose a dynamic programming based algorithm and prove it is optimal in special cases where the correlation only exists between p immediate adjacent observations.
HERA: A New Platform for Embedding Agents in Heterogeneous Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Alonso, Ricardo S.; de Paz, Juan F.; García, Óscar; Gil, Óscar; González, Angélica
Ambient Intelligence (AmI) based systems require the development of innovative solutions that integrate distributed intelligent systems with context-aware technologies. In this sense, Multi-Agent Systems (MAS) and Wireless Sensor Networks (WSN) are two key technologies for developing distributed systems based on AmI scenarios. This paper presents the new HERA (Hardware-Embedded Reactive Agents) platform, that allows using dynamic and self-adaptable heterogeneous WSNs on which agents are directly embedded on the wireless nodes This approach facilitates the inclusion of context-aware capabilities in AmI systems to gather data from their surrounding environments, achieving a higher level of ubiquitous and pervasive computing.
Dynamic spectrum management: an impact on EW systems
NASA Astrophysics Data System (ADS)
Gajewski, P.; Łopatka, J.; Suchanski, M.
2017-04-01
Rapid evolution of wireless systems caused an enormous growth of data streams transmitted through the networks and, as a consequence, an accompanying demand concerning spectrum resources (SR). An avoidance of advisable disturbances is one of the main demands in military communications. To solve the interference problems, dynamic spectrum management (DSM) techniques can be used. Two main techniques are possible: centralized Coordinated Dynamic Spectrum Access (CDSA) and distributed Opportunistic Spectrum Access (OSA). CDSA enables the wireless networks planning automation, and systems dynamic reaction to random changes of Radio Environment (RE). For OSA, cognitive radio (CR) is the most promising technology that enables avoidance of interference with the other spectrum users due to CR's transmission parameters adaptation to the current radio situation, according to predefined Radio Policies rules. If DSM techniques are used, the inherent changes in EW systems are also needed. On one hand, new techniques of jamming should be elaborated, on the other hand, the rules and protocols of cooperation between communication network and EW systems should be developed.
Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-02-16
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.
Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-01-01
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929
Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel
2016-01-01
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894
Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel
2016-08-16
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.
Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi
2014-01-01
Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation. PMID:24451455
Game-theoretic approach for improving cooperation in wireless multihop networks.
Ng, See-Kee; Seah, Winston K G
2010-06-01
Traditional networks are built on the assumption that network entities cooperate based on a mandatory network communication semantic to achieve desirable qualities such as efficiency and scalability. Over the years, this assumption has been eroded by the emergence of users that alter network behavior in a way to benefit themselves at the expense of others. At one extreme, a malicious user/node may eavesdrop on sensitive data or deliberately inject packets into the network to disrupt network operations. The solution to this generally lies in encryption and authentication. In contrast, a rational node acts only to achieve an outcome that he desires most. In such a case, cooperation is still achievable if the outcome is to the best interest of the node. The node misbehavior problem would be more pronounced in multihop wireless networks like mobile ad hoc and sensor networks, which are typically made up of wireless battery-powered devices that must cooperate to forward packets for one another. However, cooperation may be hard to maintain as it consumes scarce resources such as bandwidth, computational power, and battery power. This paper applies game theory to achieve collusive networking behavior in such network environments. In this paper, pricing, promiscuous listening, and mass punishments are avoided altogether. Our model builds on recent work in the field of Economics on the theory of imperfect private monitoring for the dynamic Bertrand oligopoly, and adapts it to the wireless multihop network. The model derives conditions for collusive packet forwarding, truthful routing broadcasts, and packet acknowledgments under a lossy wireless multihop environment, thus capturing many important characteristics of the network layer and link layer in one integrated analysis that has not been achieved previously. We also provide a proof of the viability of the model under a theoretical wireless environment. Finally, we show how the model can be applied to design a generic protocol which we call the Selfishness Resilient Resource Reservation protocol, and validate the effectiveness of this protocol in ensuring cooperation using simulations.
Gholami, Mohammad; Brennan, Robert W
2016-01-06
In this paper, we investigate alternative distributed clustering techniques for wireless sensor node tracking in an industrial environment. The research builds on extant work on wireless sensor node clustering by reporting on: (1) the development of a novel distributed management approach for tracking mobile nodes in an industrial wireless sensor network; and (2) an objective comparison of alternative cluster management approaches for wireless sensor networks. To perform this comparison, we focus on two main clustering approaches proposed in the literature: pre-defined clusters and ad hoc clusters. These approaches are compared in the context of their reconfigurability: more specifically, we investigate the trade-off between the cost and the effectiveness of competing strategies aimed at adapting to changes in the sensing environment. To support this work, we introduce three new metrics: a cost/efficiency measure, a performance measure, and a resource consumption measure. The results of our experiments show that ad hoc clusters adapt more readily to changes in the sensing environment, but this higher level of adaptability is at the cost of overall efficiency.
Gholami, Mohammad; Brennan, Robert W.
2016-01-01
In this paper, we investigate alternative distributed clustering techniques for wireless sensor node tracking in an industrial environment. The research builds on extant work on wireless sensor node clustering by reporting on: (1) the development of a novel distributed management approach for tracking mobile nodes in an industrial wireless sensor network; and (2) an objective comparison of alternative cluster management approaches for wireless sensor networks. To perform this comparison, we focus on two main clustering approaches proposed in the literature: pre-defined clusters and ad hoc clusters. These approaches are compared in the context of their reconfigurability: more specifically, we investigate the trade-off between the cost and the effectiveness of competing strategies aimed at adapting to changes in the sensing environment. To support this work, we introduce three new metrics: a cost/efficiency measure, a performance measure, and a resource consumption measure. The results of our experiments show that ad hoc clusters adapt more readily to changes in the sensing environment, but this higher level of adaptability is at the cost of overall efficiency. PMID:26751447
NASA Astrophysics Data System (ADS)
Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.
2017-01-01
Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.
MAC layer security issues in wireless mesh networks
NASA Astrophysics Data System (ADS)
Reddy, K. Ganesh; Thilagam, P. Santhi
2016-03-01
Wireless Mesh Networks (WMNs) have emerged as a promising technology for a broad range of applications due to their self-organizing, self-configuring and self-healing capability, in addition to their low cost and easy maintenance. Securing WMNs is more challenging and complex issue due to their inherent characteristics such as shared wireless medium, multi-hop and inter-network communication, highly dynamic network topology and decentralized architecture. These vulnerable features expose the WMNs to several types of attacks in MAC layer. The existing MAC layer standards and implementations are inadequate to secure these features and fail to provide comprehensive security solutions to protect both backbone and client mesh. Hence, there is a need for developing efficient, scalable and integrated security solutions for WMNs. In this paper, we classify the MAC layer attacks and analyze the existing countermeasures. Based on attacks classification and countermeasures analysis, we derive the research directions to enhance the MAC layer security for WMNs.
Towards an Analytic Foundation for Network Architecture
2010-12-31
SUPPLEMENTARY NOTES N/A 14. ABSTRACT In this project, we develop the analytic tools of stochastic optimization for wireless network design and apply them...and Mung Chiang, “ DaVinci : Dynamically Adaptive Virtual Networks for a Customized Internet,” in Proc. ACM SIGCOMM CoNext Conference, December 2008
NASA Astrophysics Data System (ADS)
Arnold, F.; DeMallie, I.; Florence, L.; Kashinski, D. O.
2015-03-01
This manuscript addresses the design, hardware details, construction, and programming of an apparatus allowing an experimenter to monitor and record high-temperature thermocouple measurements of dynamic systems in real time. The apparatus uses wireless network technology to bridge the gap between a dynamic (moving) sample frame and the static laboratory frame. Our design is a custom solution applied to samples that rotate through large angular displacements where hard-wired and typical slip-ring solutions are not practical because of noise considerations. The apparatus consists of a Raspberry PI mini-Linux computer, an Arduino micro-controller, an Ocean Controls thermocouple multiplexer shield, and k-type thermocouples.
Arnold, F; DeMallie, I; Florence, L; Kashinski, D O
2015-03-01
This manuscript addresses the design, hardware details, construction, and programming of an apparatus allowing an experimenter to monitor and record high-temperature thermocouple measurements of dynamic systems in real time. The apparatus uses wireless network technology to bridge the gap between a dynamic (moving) sample frame and the static laboratory frame. Our design is a custom solution applied to samples that rotate through large angular displacements where hard-wired and typical slip-ring solutions are not practical because of noise considerations. The apparatus consists of a Raspberry PI mini-Linux computer, an Arduino micro-controller, an Ocean Controls thermocouple multiplexer shield, and k-type thermocouples.
A convex optimization method for self-organization in dynamic (FSO/RF) wireless networks
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Davis, Christopher C.; Milner, Stuart D.
2008-08-01
Next generation communication networks are becoming increasingly complex systems. Previously, we presented a novel physics-based approach to model dynamic wireless networks as physical systems which react to local forces exerted on network nodes. We showed that under clear atmospheric conditions the network communication energy can be modeled as the potential energy of an analogous spring system and presented a distributed mobility control algorithm where nodes react to local forces driving the network to energy minimizing configurations. This paper extends our previous work by including the effects of atmospheric attenuation and transmitted power constraints in the optimization problem. We show how our new formulation still results in a convex energy minimization problem. Accordingly, an updated force-driven mobility control algorithm is presented. Forces on mobile backbone nodes are computed as the negative gradient of the new energy function. Results show how in the presence of atmospheric obscuration stronger forces are exerted on network nodes that make them move closer to each other, avoiding loss of connectivity. We show results in terms of network coverage and backbone connectivity and compare the developed algorithms for different scenarios.
Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component
NASA Astrophysics Data System (ADS)
Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter
2004-09-01
A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.
The effects of malicious nodes on performance of mobile ad hoc networks
NASA Astrophysics Data System (ADS)
Li, Fanzhi; Shi, Xiyu; Jassim, Sabah; Adams, Christopher
2006-05-01
Wireless ad hoc networking offers convenient infrastructureless communication over the shared wireless channel. However, the nature of ad hoc networks makes them vulnerable to security attacks. Unlike their wired counterpart, infrastructureless ad hoc networks do not have a clear line of defense, their topology is dynamically changing, and every mobile node can receive messages from its neighbors and can be contacted by all other nodes in its neighborhood. This poses a great danger to network security if some nodes behave in a malicious manner. The immediate concern about the security in this type of networks is how to protect the network and the individual mobile nodes against malicious act of rogue nodes from within the network. This paper is concerned with security aspects of wireless ad hoc networks. We shall present results of simulation experiments on ad hoc network's performance in the presence of malicious nodes. We shall investigate two types of attacks and the consequences will be simulated and quantified in terms of loss of packets and other factors. The results show that network performance, in terms of successful packet delivery ratios, significantly deteriorates when malicious nodes act according to the defined misbehaving characteristics.
47 CFR 90.1407 - Spectrum use in the network.
Code of Federal Regulations, 2012 CFR
2012-10-01
... exclusion and/or immediate preemption of any commercial use on a dynamic, real-time priority basis, and to... network. (a) Spectrum use. The Shared Wireless Broadband Network will operate using spectrum associated... Block licensee and the Operating Company for the entire remaining term of the Public Safety Broadband...
NASA Astrophysics Data System (ADS)
Youn, Joo-Sang; Seok, Seung-Joon; Kang, Chul-Hee
This paper presents a new QoS model for end-to-end service provisioning in multi-hop wireless networks. In legacy IEEE 802.11e based multi-hop wireless networks, the fixed assignment of service classes according to flow's priority at every node causes priority inversion problem when performing end-to-end service differentiation. Thus, this paper proposes a new QoS provisioning model called Dynamic Hop Service Differentiation (DHSD) to alleviate the problem and support effective service differentiation between end-to-end nodes. Many previous works for QoS model through the 802.11e based service differentiation focus on packet scheduling on several service queues with different service rate and service priority. Our model, however, concentrates on a dynamic class selection scheme, called Per Hop Class Assignment (PHCA), in the node's MAC layer, which selects a proper service class for each packet, in accordance with queue states and service requirement, in every node along the end-to-end route of the packet. The proposed QoS solution is evaluated using the OPNET simulator. The simulation results show that the proposed model outperforms both best-effort and 802.11e based strict priority service models in mobile ad hoc environments.
Resource Allocation and Cross Layer Control in Wireless Networks
2006-08-25
arrival rates lies within the capacity region of the network. The notion of controlling the system to maximize its stability region and the following...optimization problem (4.5) that must be solved at the beginning of 48 Dynamic Control for Network Stability each time slot requires in general knowledge...Dynamic Control for Network Stability ~ (c) ab (t) those of any other feasible algorithm, then for any time t 0; X ic U (c) i (t) "X b ~ (c) ab (t) X
Vashpanov, Yuriy; Choo, Hyunseung; Kim, Dongsoo Stephen
2011-01-01
This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF)-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time. PMID:22346680
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu.; Moscow Institute of Physics and Technology
The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.
Cooperation stimulation strategies for peer-to-peer wireless live video-sharing social networks.
Lin, W Sabrina; Zhao, H Vicky; Liu, K J Ray
2010-07-01
Human behavior analysis in video sharing social networks is an emerging research area, which analyzes the behavior of users who share multimedia content and investigates the impact of human dynamics on video sharing systems. Users watching live streaming in the same wireless network share the same limited bandwidth of backbone connection to the Internet, thus, they might want to cooperate with each other to obtain better video quality. These users form a wireless live-streaming social network. Every user wishes to watch video with high quality while paying as little as possible cost to help others. This paper focuses on providing incentives for user cooperation. We propose a game-theoretic framework to model user behavior and to analyze the optimal strategies for user cooperation simulation in wireless live streaming. We first analyze the Pareto optimality and the time-sensitive bargaining equilibrium of the two-person game. We then extend the solution to the multiuser scenario. We also consider potential selfish users' cheating behavior and malicious users' attacking behavior and analyze the performance of the proposed strategies with the existence of cheating users and malicious attackers. Both our analytical and simulation results show that the proposed strategies can effectively stimulate user cooperation, achieve cheat free and attack resistance, and help provide reliable services for wireless live streaming applications.
Bridge condition assessment and load rating using dynamic response.
DOT National Transportation Integrated Search
2014-07-01
This report describes a method for the overall condition assessment and load rating of prestressed box beam : (PSBB) bridges based on their dynamic response collected through wireless sensor networks (WSNs). Due to a : large inventory of deficient an...
NASA Astrophysics Data System (ADS)
Ho, Tzung-Hsien; Trisno, Sugianto; Smolyaninov, Igor I.; Milner, Stuart D.; Davis, Christopher C.
2004-02-01
Free space, dynamic, optical wireless communications will require topology control for optimization of network performance. Such networks may need to be configured for bi- or multiple-connectedness, reliability and quality-of-service. Topology control involves the introduction of new links and/or nodes into the network to achieve such performance objectives through autonomous reconfiguration as well as precise pointing, acquisition, tracking, and steering of laser beams. Reconfiguration may be required because of link degradation resulting from obscuration or node loss. As a result, the optical transceivers may need to be re-directed to new or existing nodes within the network and tracked on moving nodes. The redirection of transceivers may require operation over a whole sphere, so that small-angle beam steering techniques cannot be applied. In this context, we are studying the performance of optical wireless links using lightweight, bi-static transceivers mounted on high-performance stepping motor driven stages. These motors provide an angular resolution of 0.00072 degree at up to 80,000 steps per second. This paper focuses on the performance characteristics of these agile transceivers for pointing, acquisition, and tracking (PAT), including the influence of acceleration/deceleration time, motor angular speed, and angular re-adjustment, on latency and packet loss in small free space optical (FSO) wireless test networks.
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza
2017-05-01
Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.
Wireless security in mobile health.
Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan
2012-12-01
Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.
Dynamic Network Selection for Multicast Services in Wireless Cooperative Networks
NASA Astrophysics Data System (ADS)
Chen, Liang; Jin, Le; He, Feng; Cheng, Hanwen; Wu, Lenan
In next generation mobile multimedia communications, different wireless access networks are expected to cooperate. However, it is a challenging task to choose an optimal transmission path in this scenario. This paper focuses on the problem of selecting the optimal access network for multicast services in the cooperative mobile and broadcasting networks. An algorithm is proposed, which considers multiple decision factors and multiple optimization objectives. An analytic hierarchy process (AHP) method is applied to schedule the service queue and an artificial neural network (ANN) is used to improve the flexibility of the algorithm. Simulation results show that by applying the AHP method, a group of weight ratios can be obtained to improve the performance of multiple objectives. And ANN method is effective to adaptively adjust weight ratios when users' new waiting threshold is generated.
Passive and Active Analysis in DSR-Based Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Dempsey, Tae; Sahin, Gokhan; Morton, Y. T. (Jade)
Security and vulnerabilities in wireless ad hoc networks have been considered at different layers, and many attack strategies have been proposed, including denial of service (DoS) through the intelligent jamming of the most critical packet types of flows in a network. This paper investigates the effectiveness of intelligent jamming in wireless ad hoc networks using the Dynamic Source Routing (DSR) and TCP protocols and introduces an intelligent classifier to facilitate the jamming of such networks. Assuming encrypted packet headers and contents, our classifier is based solely on the observable characteristics of size, inter-arrival timing, and direction and classifies packets with up to 99.4% accuracy in our experiments. Furthermore, we investigate active analysis, which is the combination of a classifier and intelligent jammer to invoke specific responses from a victim network.
Deylami, Mohammad N; Jovanov, Emil
2014-01-01
The overlap of transmission ranges between wireless networks as a result of mobility is referred to as dynamic coexistence. The interference caused by coexistence may significantly affect the performance of wireless body area networks (WBANs) where reliability is particularly critical for health monitoring applications. In this paper, we analytically study the effects of dynamic coexistence on the operation of IEEE 802.15.4-based health monitoring WBANs. The current IEEE 802.15.4 standard lacks mechanisms for effectively managing the coexistence of mobile WBANs. Considering the specific characteristics and requirements of health monitoring WBANs, we propose the dynamic coexistence management (DCM) mechanism to make IEEE 802.15.4-based WBANs able to detect and mitigate the harmful effects of coexistence. We assess the effectiveness of this scheme using extensive OPNET simulations. Our results indicate that DCM improves the successful transmission rates of dynamically coexisting WBANs by 20%-25% for typical medical monitoring applications.
Capacity Limit, Link Scheduling and Power Control in Wireless Networks
ERIC Educational Resources Information Center
Zhou, Shan
2013-01-01
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different…
Rajan, J Pandia; Rajan, S Edward
2018-01-01
Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.
Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.
Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei
2016-01-29
In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-19
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-01
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616
Wu, Chunxue; Wu, Wenliang; Wan, Caihua
2017-01-01
Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results. As the number of sensors in networks increases, low energy requirements and changing network connections complicate event detection and measurement. We present a data fusion scheme for use in mobile wireless sensor networks with high energy efficiency and low network delays, that still produces reliable results. In the first phase, we used a network simulation where mobile agents dynamically select the next hop migration node based on the stability parameter of the link, and perform the data fusion at the migration node. Agents use the fusion results to decide if it should return the fusion results to the processing center or continue to collect more data. In the second phase. The feasibility of data fusion at the node level is confirmed by an experimental design where fused data from color sensors show near-identical results to actual physical temperatures. These results are potentially important for new large-scale sensor network applications. PMID:29099793
NASA Astrophysics Data System (ADS)
Sana, Ajaz; Hussain, Shahab; Ali, Mohammed A.; Ahmed, Samir
2007-09-01
In this paper we proposes a novel Passive Optical Network (PON) based broadband wireless access network architecture to provide multimedia services (video telephony, video streaming, mobile TV, mobile emails etc) to mobile users. In the conventional wireless access networks, the base stations (Node B) and Radio Network Controllers (RNC) are connected by point to point T1/E1 lines (Iub interface). The T1/E1 lines are expensive and add up to operating costs. Also the resources (transceivers and T1/E1) are designed for peak hours traffic, so most of the time the dedicated resources are idle and wasted. Further more the T1/E1 lines are not capable of supporting bandwidth (BW) required by next generation wireless multimedia services proposed by High Speed Packet Access (HSPA, Rel.5) for Universal Mobile Telecommunications System (UMTS) and Evolution Data only (EV-DO) for Code Division Multiple Access 2000 (CDMA2000). The proposed PON based back haul can provide Giga bit data rates and Iub interface can be dynamically shared by Node Bs. The BW is dynamically allocated and the unused BW from lightly loaded Node Bs is assigned to heavily loaded Node Bs. We also propose a novel algorithm to provide end to end Quality of Service (QoS) (between RNC and user equipment).The algorithm provides QoS bounds in the wired domain as well as in wireless domain with compensation for wireless link errors. Because of the air interface there can be certain times when the user equipment (UE) is unable to communicate with Node B (usually referred to as link error). Since the link errors are bursty and location dependent. For a proposed approach, the scheduler at the Node B maps priorities and weights for QoS into wireless MAC. The compensations for errored links is provided by the swapping of services between the active users and the user data is divided into flows, with flows allowed to lag or lead. The algorithm guarantees (1)delay and throughput for error-free flows,(2)short term fairness among error-free flows,(3)long term fairness among errored and error-free flows,(4)graceful degradation for leading flows and graceful compensation for lagging flows.
NASA Astrophysics Data System (ADS)
Ali, Azhar Tareq; Warip, Mohd Nazri Mohd; Yaakob, Naimah; Abduljabbar, Waleed Khalid; Atta, Abdu Mohammed Ali
2017-11-01
Vehicular Ad-hoc Networks (VANETs) is an area of wireless technologies that is attracting a great deal of interest. There are still several areas of VANETS, such as security and routing protocols, medium access control, that lack large amounts of research. There is also a lack of freely available simulators that can quickly and accurately simulate VANETs. The main goal of this paper is to develop a freely available VANETS simulator and to evaluate popular mobile ad-hoc network routing protocols in several VANETS scenarios. The VANETS simulator consisted of a network simulator, traffic (mobility simulator) and used a client-server application to keep the two simulators in sync. The VANETS simulator also models buildings to create a more realistic wireless network environment. Ad-Hoc Distance Vector routing (AODV), Dynamic Source Routing (DSR) and Dynamic MANET On-demand (DYMO) were initially simulated in a city, country, and highway environment to provide an overall evaluation.
TCP throughput adaptation in WiMax networks using replicator dynamics.
Anastasopoulos, Markos P; Petraki, Dionysia K; Kannan, Rajgopal; Vasilakos, Athanasios V
2010-06-01
The high-frequency segment (10-66 GHz) of the IEEE 802.16 standard seems promising for the implementation of wireless backhaul networks carrying large volumes of Internet traffic. In contrast to wireline backbone networks, where channel errors seldom occur, the TCP protocol in IEEE 802.16 Worldwide Interoperability for Microwave Access networks is conditioned exclusively by wireless channel impairments rather than by congestion. This renders a cross-layer design approach between the transport and physical layers more appropriate during fading periods. In this paper, an adaptive coding and modulation (ACM) scheme for TCP throughput maximization is presented. In the current approach, Internet traffic is modulated and coded employing an adaptive scheme that is mathematically equivalent to the replicator dynamics model. The stability of the proposed ACM scheme is proven, and the dependence of the speed of convergence on various physical-layer parameters is investigated. It is also shown that convergence to the strategy that maximizes TCP throughput may be further accelerated by increasing the amount of information from the physical layer.
Detecting malicious chaotic signals in wireless sensor network
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Kumari, Sangeeta
2018-02-01
In this paper, an e-epidemic Susceptible-Infected-Vaccinated (SIV) model has been proposed to analyze the effect of node immunization and worms attacking dynamics in wireless sensor network. A modified nonlinear incidence rate with cyrtoid type functional response has been considered using sleep and active mode approach. Detailed stability analysis and the sufficient criteria for the persistence of the model system have been established. We also established different types of bifurcation analysis for different equilibria at different critical points of the control parameters. We performed a detailed Hopf bifurcation analysis and determine the direction and stability of the bifurcating periodic solutions using center manifold theorem. Numerical simulations are carried out to confirm the theoretical results. The impact of the control parameters on the dynamics of the model system has been investigated and malicious chaotic signals are detected. Finally, we have analyzed the effect of time delay on the dynamics of the model system.
Modeling Misbehavior in Cooperative Diversity: A Dynamic Game Approach
NASA Astrophysics Data System (ADS)
Dehnie, Sintayehu; Memon, Nasir
2009-12-01
Cooperative diversity protocols are designed with the assumption that terminals always help each other in a socially efficient manner. This assumption may not be valid in commercial wireless networks where terminals may misbehave for selfish or malicious intentions. The presence of misbehaving terminals creates a social-dilemma where terminals exhibit uncertainty about the cooperative behavior of other terminals in the network. Cooperation in social-dilemma is characterized by a suboptimal Nash equilibrium where wireless terminals opt out of cooperation. Hence, without establishing a mechanism to detect and mitigate effects of misbehavior, it is difficult to maintain a socially optimal cooperation. In this paper, we first examine effects of misbehavior assuming static game model and show that cooperation under existing cooperative protocols is characterized by a noncooperative Nash equilibrium. Using evolutionary game dynamics we show that a small number of mutants can successfully invade a population of cooperators, which indicates that misbehavior is an evolutionary stable strategy (ESS). Our main goal is to design a mechanism that would enable wireless terminals to select reliable partners in the presence of uncertainty. To this end, we formulate cooperative diversity as a dynamic game with incomplete information. We show that the proposed dynamic game formulation satisfied the conditions for the existence of perfect Bayesian equilibrium.
Fernández de Gorostiza, Erlantz; Mabe, Jon
2018-01-01
Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method. PMID:29473910
Fernández de Gorostiza, Erlantz; Berzosa, Jorge; Mabe, Jon; Cortiñas, Roberto
2018-02-23
Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method.
Park, YoHan; Park, YoungHo
2016-12-14
Secure communication is a significant issue in wireless sensor networks. User authentication and key agreement are essential for providing a secure system, especially in user-oriented mobile services. It is also necessary to protect the identity of each individual in wireless environments to avoid personal privacy concerns. Many authentication and key agreement schemes utilize a smart card in addition to a password to support security functionalities. However, these schemes often fail to provide security along with privacy. In 2015, Chang et al. analyzed the security vulnerabilities of previous schemes and presented the two-factor authentication scheme that provided user privacy by using dynamic identities. However, when we cryptanalyzed Chang et al.'s scheme, we found that it does not provide sufficient security for wireless sensor networks and fails to provide accurate password updates. This paper proposes a security-enhanced authentication and key agreement scheme to overcome these security weaknesses using biometric information and an elliptic curve cryptosystem. We analyze the security of the proposed scheme against various attacks and check its viability in the mobile environment.
A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks
Wang, Qiuhua
2017-01-01
Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate. PMID:28165423
Park, YoHan; Park, YoungHo
2016-01-01
Secure communication is a significant issue in wireless sensor networks. User authentication and key agreement are essential for providing a secure system, especially in user-oriented mobile services. It is also necessary to protect the identity of each individual in wireless environments to avoid personal privacy concerns. Many authentication and key agreement schemes utilize a smart card in addition to a password to support security functionalities. However, these schemes often fail to provide security along with privacy. In 2015, Chang et al. analyzed the security vulnerabilities of previous schemes and presented the two-factor authentication scheme that provided user privacy by using dynamic identities. However, when we cryptanalyzed Chang et al.’s scheme, we found that it does not provide sufficient security for wireless sensor networks and fails to provide accurate password updates. This paper proposes a security-enhanced authentication and key agreement scheme to overcome these security weaknesses using biometric information and an elliptic curve cryptosystem. We analyze the security of the proposed scheme against various attacks and check its viability in the mobile environment. PMID:27983616
Energy-efficient hierarchical processing in the network of wireless intelligent sensors (WISE)
NASA Astrophysics Data System (ADS)
Raskovic, Dejan
Sensor network nodes have benefited from technological advances in the field of wireless communication, processing, and power sources. However, the processing power of microcontrollers is often not sufficient to perform sophisticated processing, while the power requirements of digital signal processing boards or handheld computers are usually too demanding for prolonged system use. We are matching the intrinsic hierarchical nature of many digital signal-processing applications with the natural hierarchy in distributed wireless networks, and building the hierarchical system of wireless intelligent sensors. Our goal is to build a system that will exploit the hierarchical organization to optimize the power consumption and extend battery life for the given time and memory constraints, while providing real-time processing of sensor signals. In addition, we are designing our system to be able to adapt to the current state of the environment, by dynamically changing the algorithm through procedure replacement. This dissertation presents the analysis of hierarchical environment and methods for energy profiling used to evaluate different system design strategies, and to optimize time-effective and energy-efficient processing.
A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks.
Wang, Qiuhua
2017-02-04
Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate.
Wang, Xue; Wang, Sheng; Ma, Jun-Jie
2007-01-01
The effectiveness of wireless sensor networks (WSNs) depends on the coverage and target detection probability provided by dynamic deployment, which is usually supported by the virtual force (VF) algorithm. However, in the VF algorithm, the virtual force exerted by stationary sensor nodes will hinder the movement of mobile sensor nodes. Particle swarm optimization (PSO) is introduced as another dynamic deployment algorithm, but in this case the computation time required is the big bottleneck. This paper proposes a dynamic deployment algorithm which is named “virtual force directed co-evolutionary particle swarm optimization” (VFCPSO), since this algorithm combines the co-evolutionary particle swarm optimization (CPSO) with the VF algorithm, whereby the CPSO uses multiple swarms to optimize different components of the solution vectors for dynamic deployment cooperatively and the velocity of each particle is updated according to not only the historical local and global optimal solutions, but also the virtual forces of sensor nodes. Simulation results demonstrate that the proposed VFCPSO is competent for dynamic deployment in WSNs and has better performance with respect to computation time and effectiveness than the VF, PSO and VFPSO algorithms.
Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman Behal; Sunil Kumar; Goodarz Ahmadi
2007-08-05
Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant modelmore » and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.« less
Challenges for Wireless Mesh Networks to provide reliable carrier-grade services
NASA Astrophysics Data System (ADS)
von Hugo, D.; Bayer, N.
2011-08-01
Provision of mobile and wireless services today within a competitive environment and driven by a huge amount of steadily emerging new services and applications is both challenge and chance for radio network operators. Deployment and operation of an infrastructure for mobile and wireless broadband connectivity generally requires planning effort and large investments. A promising approach to reduce expenses for radio access networking is offered by Wireless Mesh Networks (WMNs). Here traditional dedicated backhaul connections to each access point are replaced by wireless multi-hop links between neighbouring access nodes and few gateways to the backbone employing standard radio technology. Such a solution provides at the same time high flexibility in both deployment and the amount of offered capacity and shall reduce overall expenses. On the other hand currently available mesh solutions do not provide carrier grade service quality and reliability and often fail to cope with high traffic load. EU project CARMEN (CARrier grade MEsh Networks) was initiated to incorporate different heterogeneous technologies and new protocols to allow for reliable transmission over "best effort" radio channels, to support a reliable mobility and network management, self-configuration and dynamic resource usage, and thus to offer a permanent or temporary broadband access at high cost efficiency. The contribution provides an overview on preliminary project results with focus on main technical challenges from a research and implementation point of view. Especially impact of mesh topology on the overall system performance in terms of throughput and connection reliability and aspects of a dedicated hybrid mobility management solution will be discussed.
Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks.
Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei
2017-01-13
WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator's mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost.
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-07-09
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-01-01
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616
NASA Astrophysics Data System (ADS)
Lapotre, Vianney; Gogniat, Guy; Baghdadi, Amer; Diguet, Jean-Philippe
2017-12-01
The multiplication of connected devices goes along with a large variety of applications and traffic types needing diverse requirements. Accompanying this connectivity evolution, the last years have seen considerable evolutions of wireless communication standards in the domain of mobile telephone networks, local/wide wireless area networks, and Digital Video Broadcasting (DVB). In this context, intensive research has been conducted to provide flexible turbo decoder targeting high throughput, multi-mode, multi-standard, and power consumption efficiency. However, flexible turbo decoder implementations have not often considered dynamic reconfiguration issues in this context that requires high speed configuration switching. Starting from this assessment, this paper proposes the first solution that allows frame-by-frame run-time configuration management of a multi-processor turbo decoder without compromising the decoding performances.
Cognitive radio wireless sensor networks: applications, challenges and research trends.
Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won
2013-08-22
A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.
A Notional Battlespace for Simulating and Testing Dynamic Wireless Networks
2006-06-01
communications. The system is built with single and multiple-beam antenn provide more flexible coverage than its predecessor. The single steerable dish ante...The network recognizes inbound commercial satellite transmissions to the platoon are successful and through the relay back to the A-10s, the loop is
Knapsack - TOPSIS Technique for Vertical Handover in Heterogeneous Wireless Network
2015-01-01
In a heterogeneous wireless network, handover techniques are designed to facilitate anywhere/anytime service continuity for mobile users. Consistent best-possible access to a network with widely varying network characteristics requires seamless mobility management techniques. Hence, the vertical handover process imposes important technical challenges. Handover decisions are triggered for continuous connectivity of mobile terminals. However, bad network selection and overload conditions in the chosen network can cause fallout in the form of handover failure. In order to maintain the required Quality of Service during the handover process, decision algorithms should incorporate intelligent techniques. In this paper, a new and efficient vertical handover mechanism is implemented using a dynamic programming method from the operation research discipline. This dynamic programming approach, which is integrated with the Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) method, provides the mobile user with the best handover decisions. Moreover, in this proposed handover algorithm a deterministic approach which divides the network into zones is incorporated into the network server in order to derive an optimal solution. The study revealed that this method is found to achieve better performance and QoS support to users and greatly reduce the handover failures when compared to the traditional TOPSIS method. The decision arrived at the zone gateway using this operational research analytical method (known as the dynamic programming knapsack approach together with Technique to Order Preference by Similarity to Ideal Solution) yields remarkably better results in terms of the network performance measures such as throughput and delay. PMID:26237221
Knapsack--TOPSIS Technique for Vertical Handover in Heterogeneous Wireless Network.
Malathy, E M; Muthuswamy, Vijayalakshmi
2015-01-01
In a heterogeneous wireless network, handover techniques are designed to facilitate anywhere/anytime service continuity for mobile users. Consistent best-possible access to a network with widely varying network characteristics requires seamless mobility management techniques. Hence, the vertical handover process imposes important technical challenges. Handover decisions are triggered for continuous connectivity of mobile terminals. However, bad network selection and overload conditions in the chosen network can cause fallout in the form of handover failure. In order to maintain the required Quality of Service during the handover process, decision algorithms should incorporate intelligent techniques. In this paper, a new and efficient vertical handover mechanism is implemented using a dynamic programming method from the operation research discipline. This dynamic programming approach, which is integrated with the Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) method, provides the mobile user with the best handover decisions. Moreover, in this proposed handover algorithm a deterministic approach which divides the network into zones is incorporated into the network server in order to derive an optimal solution. The study revealed that this method is found to achieve better performance and QoS support to users and greatly reduce the handover failures when compared to the traditional TOPSIS method. The decision arrived at the zone gateway using this operational research analytical method (known as the dynamic programming knapsack approach together with Technique to Order Preference by Similarity to Ideal Solution) yields remarkably better results in terms of the network performance measures such as throughput and delay.
Wireless Networks: New Meaning to Ubiquitous Computing.
ERIC Educational Resources Information Center
Drew, Wilfred, Jr.
2003-01-01
Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…
Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki
2016-01-01
Many researchers are devoting attention to the so-called “Internet of Things” (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user’s demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology. PMID:27548177
Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki
2016-08-19
Many researchers are devoting attention to the so-called "Internet of Things" (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user's demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology.
Wang, Long; Liu, Yong; Yin, Zengshan
2018-01-01
To achieve launch-on-demand for Operationally Responsive Space (ORS) missions, in this article, an intra-satellite wireless network (ISWN) is presented. It provides a wireless and modularized scheme for intra-spacecraft sensing and data buses. By removing the wired data bus, the commercial off-the-shelf (COTS) based wireless modular architecture will reduce both the volume and weight of the satellite platform, thus achieving rapid design and cost savings in development and launching. Based on the on-orbit data demand analysis, a hybrid time division multiple access/carrier sense multiple access (TDMA/CSMA) protocol is proposed. It includes an improved clear channel assessment (CCA) mechanism and a traffic adaptive slot allocation method. To analyze the access process, a Markov model is constructed. Then a detailed calculation is given in which the unsaturated cases are considered. Through simulations, the proposed protocol is proved to commendably satisfy the demands and performs better than existing schemes. It helps to build a full-wireless satellite instead of the current wired ones, and will contribute to provide dynamic space capabilities for ORS missions. PMID:29757243
Wang, Long; Liu, Yong; Yin, Zengshan
2018-05-12
To achieve launch-on-demand for Operationally Responsive Space (ORS) missions, in this article, an intra-satellite wireless network (ISWN) is presented. It provides a wireless and modularized scheme for intra-spacecraft sensing and data buses. By removing the wired data bus, the commercial off-the-shelf (COTS) based wireless modular architecture will reduce both the volume and weight of the satellite platform, thus achieving rapid design and cost savings in development and launching. Based on the on-orbit data demand analysis, a hybrid time division multiple access/carrier sense multiple access (TDMA/CSMA) protocol is proposed. It includes an improved clear channel assessment (CCA) mechanism and a traffic adaptive slot allocation method. To analyze the access process, a Markov model is constructed. Then a detailed calculation is given in which the unsaturated cases are considered. Through simulations, the proposed protocol is proved to commendably satisfy the demands and performs better than existing schemes. It helps to build a full-wireless satellite instead of the current wired ones, and will contribute to provide dynamic space capabilities for ORS missions.
González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina
2017-01-01
Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage. PMID:28075364
González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina
2017-01-09
Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage.
Multi-mode clustering model for hierarchical wireless sensor networks
NASA Astrophysics Data System (ADS)
Hu, Xiangdong; Li, Yongfu; Xu, Huifen
2017-03-01
The topology management, i.e., clusters maintenance, of wireless sensor networks (WSNs) is still a challenge due to its numerous nodes, diverse application scenarios and limited resources as well as complex dynamics. To address this issue, a multi-mode clustering model (M2 CM) is proposed to maintain the clusters for hierarchical WSNs in this study. In particular, unlike the traditional time-trigger model based on the whole-network and periodic style, the M2 CM is proposed based on the local and event-trigger operations. In addition, an adaptive local maintenance algorithm is designed for the broken clusters in the WSNs using the spatial-temporal demand changes accordingly. Numerical experiments are performed using the NS2 network simulation platform. Results validate the effectiveness of the proposed model with respect to the network maintenance costs, node energy consumption and transmitted data as well as the network lifetime.
Technical note: real-time web-based wireless visual guidance system for radiotherapy.
Lee, Danny; Kim, Siyong; Palta, Jatinder R; Kim, Taeho
2017-06-01
Describe a Web-based wireless visual guidance system that mitigates issues associated with hard-wired audio-visual aided patient interactive motion management systems that are cumbersome to use in routine clinical practice. Web-based wireless visual display duplicates an existing visual display of a respiratory-motion management system for visual guidance. The visual display of the existing system is sent to legacy Web clients over a private wireless network, thereby allowing a wireless setting for real-time visual guidance. In this study, active breathing coordinator (ABC) trace was used as an input for visual display, which captured and transmitted to Web clients. Virtual reality goggles require two (left and right eye view) images for visual display. We investigated the performance of Web-based wireless visual guidance by quantifying (1) the network latency of visual displays between an ABC computer display and Web clients of a laptop, an iPad mini 2 and an iPhone 6, and (2) the frame rate of visual display on the Web clients in frames per second (fps). The network latency of visual display between the ABC computer and Web clients was about 100 ms and the frame rate was 14.0 fps (laptop), 9.2 fps (iPad mini 2) and 11.2 fps (iPhone 6). In addition, visual display for virtual reality goggles was successfully shown on the iPhone 6 with 100 ms and 11.2 fps. A high network security was maintained by utilizing the private network configuration. This study demonstrated that a Web-based wireless visual guidance can be a promising technique for clinical motion management systems, which require real-time visual display of their outputs. Based on the results of this study, our approach has the potential to reduce clutter associated with wired-systems, reduce space requirements, and extend the use of medical devices from static usage to interactive and dynamic usage in a radiotherapy treatment vault.
Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends
Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won
2013-01-01
A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152
On investigating social dynamics in tactical opportunistic mobile networks
NASA Astrophysics Data System (ADS)
Gao, Wei; Li, Yong
2014-06-01
The efficiency of military mobile network operations at the tactical edge is challenging due to the practical Disconnected, Intermittent, and Limited (DIL) environments at the tactical edge which make it hard to maintain persistent end-to-end wireless network connectivity. Opportunistic mobile networks are hence devised to depict such tactical networking scenarios. Social relations among warfighters in tactical opportunistic mobile networks are implicitly represented by their opportunistic contacts via short-range radios, but were inappropriately considered as stationary over time by the conventional wisdom. In this paper, we develop analytical models to probabilistically investigate the temporal dynamics of this social relationship, which is critical to efficient mobile communication in the battlespace. We propose to formulate such dynamics by developing various sociological metrics, including centrality and community, with respect to the opportunistic mobile network contexts. These metrics investigate social dynamics based on the experimentally validated skewness of users' transient contact distributions over time.
Impact of wireless communication on multimedia application performance
NASA Astrophysics Data System (ADS)
Brown, Kevin A.
1999-01-01
Multimedia applications and specifically voice and video conferencing tools are widely used in business communications, and are quickly being discovered by the consumer market as well. At the same time, wireless communication services such as PCS voice and cellular data are becoming very popular, leading to the desire to deploy multimedia applications in the wireless environment. Wireless links, however, exhibit several characteristics which are different from traditional wired networks. These include: dynamically changing bandwidth due to mobile host movement in and out of cell where bandwidth is shared, high rates of packet corruption and subsequent loss, and frequent are lengthy disconnections due to obstacles, fading, and movement between cells. In addition, these effects are short-lived and difficult to reproduce, leading to a lack of adequate testing and analysis for applications used in wireless environments.
Coordinating Resource Usage through Adaptive Service Provisioning in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Fok, Chien-Liang; Roman, Gruia-Catalin; Lu, Chenyang
Wireless sensor networks (WSNs) exhibit high levels of network dynamics and consist of devices with limited energy. This results in the need to coordinate applications not only at the functional level, as is traditionally done, but also in terms of resource utilization. In this paper, we present a middleware that does this using adaptive service provisioning. Novel service binding strategies automatically adapt application behavior when opportunities for energy savings surface, and switch providers when the network topology changes. The former is accomplished by providing limited information about the energy consumption associated with using various services, systematically exploiting opportunities for sharing service invocations, and exploiting the broadcast nature of wireless communication in WSNs. The middleware has been implemented and evaluated on two disparate WSN platforms, the TelosB and Imote2. Empirical results show that adaptive service provisioning can enable energy-aware service binding decisions that result in increased energy efficiency and significantly increase service availability, while imposing minimal additional burden on the application, service, and device developers. Two applications, medical patient monitoring and structural health monitoring, demonstrate the middleware's efficacy.
Spatiotemporal models for data-anomaly detection in dynamic environmental monitoring campaigns
E.W. Dereszynski; T.G. Dietterich
2011-01-01
The ecological sciences have benefited greatly from recent advances in wireless sensor technologies. These technologies allow researchers to deploy networks of automated sensors, which can monitor a landscape at very fine temporal and spatial scales. However, these networks are subject to harsh conditions, which lead to malfunctions in individual sensors and failures...
Yang, Jing; Xu, Mai; Zhao, Wei; Xu, Baoguo
2010-01-01
For monitoring burst events in a kind of reactive wireless sensor networks (WSNs), a multipath routing protocol (MRP) based on dynamic clustering and ant colony optimization (ACO) is proposed. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length) were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH) is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively.
NASA Astrophysics Data System (ADS)
Adabi, Sepideh; Adabi, Sahar; Rezaee, Ali
According to the traditional definition of Wireless Sensor Networks (WSNs), static sensors have limited the feasibility of WSNs in some kind of approaches, so the mobility was introduced in WSN. Mobile nodes in a WSN come equipped with battery and from the point of deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence, maximizing the network lifetime by minimizing the energy is an important challenge in Mobile WSN. Energy conservation can be accomplished by different approaches. In this paper, we presented an energy conservation solution based on Cellular Automata. The main objective of this solution is based on dynamically adjusting the transmission range and switching between operational states of the sensor nodes.
Analysis of Pervasive Mobile Ad Hoc Routing Protocols
NASA Astrophysics Data System (ADS)
Qadri, Nadia N.; Liotta, Antonio
Mobile ad hoc networks (MANETs) are a fundamental element of pervasive networks and therefore, of pervasive systems that truly support pervasive computing, where user can communicate anywhere, anytime and on-the-fly. In fact, future advances in pervasive computing rely on advancements in mobile communication, which includes both infrastructure-based wireless networks and non-infrastructure-based MANETs. MANETs introduce a new communication paradigm, which does not require a fixed infrastructure - they rely on wireless terminals for routing and transport services. Due to highly dynamic topology, absence of established infrastructure for centralized administration, bandwidth constrained wireless links, and limited resources in MANETs, it is challenging to design an efficient and reliable routing protocol. This chapter reviews the key studies carried out so far on the performance of mobile ad hoc routing protocols. We discuss performance issues and metrics required for the evaluation of ad hoc routing protocols. This leads to a survey of existing work, which captures the performance of ad hoc routing algorithms and their behaviour from different perspectives and highlights avenues for future research.
Dynamically allocated virtual clustering management system
NASA Astrophysics Data System (ADS)
Marcus, Kelvin; Cannata, Jess
2013-05-01
The U.S Army Research Laboratory (ARL) has built a "Wireless Emulation Lab" to support research in wireless mobile networks. In our current experimentation environment, our researchers need the capability to run clusters of heterogeneous nodes to model emulated wireless tactical networks where each node could contain a different operating system, application set, and physical hardware. To complicate matters, most experiments require the researcher to have root privileges. Our previous solution of using a single shared cluster of statically deployed virtual machines did not sufficiently separate each user's experiment due to undesirable network crosstalk, thus only one experiment could be run at a time. In addition, the cluster did not make efficient use of our servers and physical networks. To address these concerns, we created the Dynamically Allocated Virtual Clustering management system (DAVC). This system leverages existing open-source software to create private clusters of nodes that are either virtual or physical machines. These clusters can be utilized for software development, experimentation, and integration with existing hardware and software. The system uses the Grid Engine job scheduler to efficiently allocate virtual machines to idle systems and networks. The system deploys stateless nodes via network booting. The system uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex, private networks eliminating the need to map each virtual machine to a specific switch port. The system monitors the health of the clusters and the underlying physical servers and it maintains cluster usage statistics for historical trends. Users can start private clusters of heterogeneous nodes with root privileges for the duration of the experiment. Users also control when to shutdown their clusters.
NASA Astrophysics Data System (ADS)
Asadollahi, Parisa; Li, Jian
2016-04-01
Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.
Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong
2017-06-02
Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.
Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks
Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei
2017-01-01
WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator’s mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost. PMID:28098748
Renormalization group theory for percolation in time-varying networks.
Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M
2018-05-22
Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.
Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs
NASA Astrophysics Data System (ADS)
Choi, Woo-Yong; Chatterjee, Mainak
2015-03-01
With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.
Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral
2016-01-01
In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors’ batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information. PMID:27657075
Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral
2016-09-20
In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors' batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.
Cognitive Radio Networks for Tactical Wireless Communications
2014-12-01
exists. Instead, security is an evolving process, as we have seen in the context of WLANs and 2G / 3G networks. New system vulnerabilities continue to...in the network configuration and radio parameters take place due to mobility of platforms, and variation in other users of the RF environment. CRNs...dynamic spectrum access experimentally, and it represents the largest military Mobile Ad hoc Network (MANET) as of today. The WNaN demonstrator has been
System identification of a tied arch bridge using reference-based wireless sensor networks
NASA Astrophysics Data System (ADS)
Hietbrink, Colby; Whelan, Matthew J.
2012-04-01
Vibration-based methods of structural health monitoring are generally founded on the principle that localized damage to a structure would exhibit changes within the global dynamic response. Upon this basis, accelerometers provide a unique health monitoring strategy in that a distributed network of sensors provides the technical feasibility to isolate the onset of damage without requiring that any sensor be located exactly on or in close proximity to the damage. While in theory this may be sufficient, practical experience has shown significant improvement in the application of damage diagnostic routines when mode shapes characterized by strongly localized behavior of specific elements are captured by the instrumentation array. In traditional applications, this presents a challenge since the cost and complexity of cable-based systems often effectively limits the number of instrumented locations thereby constraining the modal parameter extraction to only global modal responses. The advent of the low-cost RF chip transceiver with wireless networking capabilities has afforded a means by which a substantial number of output locations can be measured through referencebased testing using large-scale wireless sensor networks. In the current study, this approach was applied to the Prairie du Chien Bridge over the Mississippi River to extract operational mode shapes with high spatial reconstruction, including strongly localized modes. The tied arch bridge was instrumented at over 230 locations with single-axis accelerometers conditioned and acquired over a high-rate lossless wireless sensor network with simultaneous sampling capabilities. Acquisition of the dynamic response of the web plates of the arch rib was specifically targeted within the instrumentation array for diagnostic purposes. Reference-based operational modal analysis of the full structure through data-driven stochastic subspace identification is presented alongside finite element analysis results for confirmation of modal parameter plausibility. Particular emphasis is placed on the identification and reconstruction of modal response with large contribution from the arch rib web plates.
Potential uses of a wireless network in physical security systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witzke, Edward L.
2010-07-01
Many possible applications requiring or benefiting from a wireless network are available for bolstering physical security and awareness at high security installations or facilities. These enhancements are not always straightforward and may require careful analysis, selection, tuning, and implementation of wireless technologies. In this paper, an introduction to wireless networks and the task of enhancing physical security is first given. Next, numerous applications of a wireless network are brought forth. The technical issues that arise when using a wireless network to support these applications are then discussed. Finally, a summary is presented.
Time Synchronization in Wireless Sensor Networks
2003-01-01
University of California Los Angeles Time Synchronization in Wireless Sensor Networks A dissertation submitted in partial satisfaction of the...4. TITLE AND SUBTITLE Time Synchronization in Wireless Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...1 1.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Time Synchronization in Sensor Networks
Open-WiSe: a solar powered wireless sensor network platform.
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.
UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring
Ammad Uddin, Mohammad; Mansour, Ali; Le Jeune, Denis; Ayaz, Mohammad; Aggoune, el-Hadi M.
2018-01-01
In this study, a crop health monitoring system is developed by using state of the art technologies including wireless sensors and Unmanned Aerial Vehicles (UAVs). Conventionally data is collected from sensor nodes either by fixed base stations or mobile sinks. Mobile sinks are considered a better choice nowadays due to their improved network coverage and energy utilization. Usually, the mobile sink is used in two ways: either it goes for random walk to find the scattered nodes and collect data, or follows a pre-defined path established by the ground network/clusters. Neither of these options is suitable in our scenario due to the factors like dynamic data collection, the strict targeted area required to be scanned, unavailability of a large number of nodes, dynamic path of the UAV, and most importantly, none of these are known in advance. The contribution of this paper is the formation of dynamic runtime clusters of field sensors by considering the above mentioned factors. Furthermore a mechanism (Bayesian classifier) is defined to select best node as cluster head. The proposed system is validated through simulation results, lab and infield experiments using concept devices. The obtained results are encouraging, especially in terms of deployment time, energy, efficiency, throughput and ease of use. PMID:29439496
UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring.
Uddin, Mohammad Ammad; Mansour, Ali; Jeune, Denis Le; Ayaz, Mohammad; Aggoune, El-Hadi M
2018-02-11
In this study, a crop health monitoring system is developed by using state of the art technologies including wireless sensors and Unmanned Aerial Vehicles (UAVs). Conventionally data is collected from sensor nodes either by fixed base stations or mobile sinks. Mobile sinks are considered a better choice nowadays due to their improved network coverage and energy utilization. Usually, the mobile sink is used in two ways: either it goes for random walk to find the scattered nodes and collect data, or follows a pre-defined path established by the ground network/clusters. Neither of these options is suitable in our scenario due to the factors like dynamic data collection, the strict targeted area required to be scanned, unavailability of a large number of nodes, dynamic path of the UAV, and most importantly, none of these are known in advance. The contribution of this paper is the formation of dynamic runtime clusters of field sensors by considering the above mentioned factors. Furthermore a mechanism (Bayesian classifier) is defined to select best node as cluster head. The proposed system is validated through simulation results, lab and infield experiments using concept devices. The obtained results are encouraging, especially in terms of deployment time, energy, efficiency, throughput and ease of use.
New Applications for the Testing and Visualization of Wireless Networks
NASA Technical Reports Server (NTRS)
Griffin, Robert I.; Cauley, Michael A.; Pleva, Michael A.; Seibert, Marc A.; Lopez, Isaac
2005-01-01
Traditional techniques for examining wireless networks use physical link characteristics such as Signal-to-Noise (SNR) ratios to assess the performance of wireless networks. Such measurements may not be reliable indicators of available bandwidth. This work describes two new software applications developed at NASA Glenn Research Center for the investigation of wireless networks. GPSIPerf combines measurements of Transmission Control Protocol (TCP) throughput with Global Positioning System (GPS) coordinates to give users a map of wireless bandwidth for outdoor environments where a wireless infrastructure has been deployed. GPSIPerfView combines the data provided by GPSIPerf with high-resolution digital elevation maps (DEM) to help users visualize and assess the impact of elevation features on wireless networks in a given sample area. These applications were used to examine TCP throughput in several wireless network configurations at desert field sites near Hanksville, Utah during May of 2004. Use of GPSIPerf and GPSIPerfView provides a geographically referenced picture of the extent and deterioration of TCP throughput in tested wireless network configurations. GPSIPerf results from field-testing in Utah suggest that it can be useful in assessing other wireless network architectures, and may be useful to future human-robotic exploration missions.
Promoting Wired Links in Wireless Mesh Networks: An Efficient Engineering Solution
Barekatain, Behrang; Raahemifar, Kaamran; Ariza Quintana, Alfonso; Triviño Cabrera, Alicia
2015-01-01
Wireless Mesh Networks (WMNs) cannot completely guarantee good performance of traffic sources such as video streaming. To improve the network performance, this study proposes an efficient engineering solution named Wireless-to-Ethernet-Mesh-Portal-Passageway (WEMPP) that allows effective use of wired communication in WMNs. WEMPP permits transmitting data through wired and stable paths even when the destination is in the same network as the source (Intra-traffic). Tested with four popular routing protocols (Optimized Link State Routing or OLSR as a proactive protocol, Dynamic MANET On-demand or DYMO as a reactive protocol, DYMO with spanning tree ability and HWMP), WEMPP considerably decreases the end-to-end delay, jitter, contentions and interferences on nodes, even when the network size or density varies. WEMPP is also cost-effective and increases the network throughput. Moreover, in contrast to solutions proposed by previous studies, WEMPP is easily implemented by modifying the firmware of the actual Ethernet hardware without altering the routing protocols and/or the functionality of the IP/MAC/Upper layers. In fact, there is no need for modifying the functionalities of other mesh components in order to work with WEMPPs. The results of this study show that WEMPP significantly increases the performance of all routing protocols, thus leading to better video quality on nodes. PMID:25793516
The study and implementation of the wireless network data security model
NASA Astrophysics Data System (ADS)
Lin, Haifeng
2013-03-01
In recent years, the rapid development of Internet technology and the advent of information age, people are increasing the strong demand for the information products and the market for information technology. Particularly, the network security requirements have become more sophisticated. This paper analyzes the wireless network in the data security vulnerabilities. And a list of wireless networks in the framework is the serious defects with the related problems. It has proposed the virtual private network technology and wireless network security defense structure; and it also given the wireless networks and related network intrusion detection model for the detection strategies.
Exploitation of Multi-beam Directional Antennas for a Wireless TDMA/FDD MAC
NASA Astrophysics Data System (ADS)
Atmaca, Sedat; Ceken, Celal; Erturk, Ismail
2008-05-01
The effects of the multi-beam directional antennas on the performance of a new wireless TDMA/FDD MAC system are presented. Directional antennas intrinsically enable development of the SDMA systems and allow transmitting and receiving signals simultaneously at the same time slot. Employing a dynamic slot allocation table at a base station with 4 or 8 sector directional antennas and holding the wireless terminals' location information, a new SDMA/TDMA/FDD frame structure has been developed for wireless communications. The simulation studies realized using OPNET Modeler show that the proposed SDMA/TDMA/FDD system has substantially increased the traditional TDMA/FDD system capacity and provides 1.37 to 4 times better mean delay results when the number of users is increased from 4 to 32 under the same load in the wireless network models.
A Context-Aware Paradigm for Information Discovery and Dissemination in Mobile Environments
ERIC Educational Resources Information Center
Lundquist, Doug
2011-01-01
The increasing power and ubiquity of mobile wireless devices is enabling real-time information delivery for many diverse applications. A crucial question is how to allocate finite network resources efficiently and fairly despite the uncertainty common in highly dynamic mobile ad hoc networks. We propose a set of routing protocols, Self-Balancing…
NASA Astrophysics Data System (ADS)
Marcus, Kelvin
2014-06-01
The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.
Linking Simulation with Formal Verification and Modeling of Wireless Sensor Network in TLA+
NASA Astrophysics Data System (ADS)
Martyna, Jerzy
In this paper, we present the results of the simulation of a wireless sensor network based on the flooding technique and SPIN protocols. The wireless sensor network was specified and verified by means of the TLA+ specification language [1]. For a model of wireless sensor network built this way simulation was carried with the help of specially constructed software tools. The obtained results allow us to predict the behaviour of the wireless sensor network in various topologies and spatial densities. Visualization of the output data enable precise examination of some phenomenas in wireless sensor networks, such as a hidden terminal, etc.
International Space Station Future Correlation Analysis Improvements
NASA Technical Reports Server (NTRS)
Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael
2018-01-01
Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.
An Integrated Multi-layer Approach for Seamless Soft Handoff in Mobile Ad Hoc Networks
2011-01-01
network to showcase how to leverage the IEEE 802.21 Media Independent Handover ( MIH ) framework [3] in our handoff solution. Moreover, to further...to the seamless handoff problem. The architecture leverages the IEEE 802.21 MIH standard to facilitate handover related decisions on multiple...provided by the MIH function (MIHF), the topology control manager dynamically activates/deactivates the wireless interfaces to ensure the network is
Energy efficient wireless sensor networks by using a fuzzy-based solution
NASA Astrophysics Data System (ADS)
Tirrito, Salvatore; Nicolosi, Giuseppina
2016-12-01
Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.
Wireless Cooperative Networks: Self-Configuration and Optimization
2011-09-09
TERMS wireless sensor networks , wireless cooperative networks, resource optimization, ultra-wideband, localization, ranging 16. SECURITY...Communications We consider two prevalent relay protocols for wireless sensor networks : decode-and-forward (DF) and amplify-and-forward (AF). To... sensor networks where each node may have its own sensing data to transmit, since they can maximally conserve energy while helping others as relays
Capacity Building for Research and Education in GIS/GPS Technology and Systems
2015-05-20
In multi- sensor area Wireless Sensor Networking (WSN) fields will be explored. As a step forward the research to be conducted in WSN field is to...Agriculture Using Technology for Crops Scouting in Agriculture Application of Technology in Precision Agriculture Wireless Sensor Network (WSN) in...Cooperative Engagement Capability Range based algorithms for Wireless Sensor Network Self-configurable Wireless Sensor Network Energy Efficient Wireless
Wireless Sensor Network With Geolocation
2006-11-01
WIRELESS SENSOR NETWORK WITH GEOLOCATION James Silverstrim and Roderick Passmore Innovative Wireless Technologies Forest, VA 24551 Dr...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Wireless Sensor Network With Geolocation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Locationing in distributed ad-hoc wireless sensor networks ”, IEEE ICASSP, May 2001. D. W. Hanson, Fundamentals of Two-Way Time Transfer by Satellite
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,646] CalAmp Wireless Networks...; CalAmp Wireless Networks Corporation, Waseca, Minnesota; expires on December 2, 2013). Conclusion Due to the eligibility of workers and former workers of CalAmp Wireless Networks Corporation, Waseca...
Open-WiSe: A Solar Powered Wireless Sensor Network Platform
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396
Adaptive MANET multipath routing algorithm based on the simulated annealing approach.
Kim, Sungwook
2014-01-01
Mobile ad hoc network represents a system of wireless mobile nodes that can freely and dynamically self-organize network topologies without any preexisting communication infrastructure. Due to characteristics like temporary topology and absence of centralized authority, routing is one of the major issues in ad hoc networks. In this paper, a new multipath routing scheme is proposed by employing simulated annealing approach. The proposed metaheuristic approach can achieve greater and reciprocal advantages in a hostile dynamic real world network situation. Therefore, the proposed routing scheme is a powerful method for finding an effective solution into the conflict mobile ad hoc network routing problem. Simulation results indicate that the proposed paradigm adapts best to the variation of dynamic network situations. The average remaining energy, network throughput, packet loss probability, and traffic load distribution are improved by about 10%, 10%, 5%, and 10%, respectively, more than the existing schemes.
Survey on Monitoring and Quality Controlling of the Mobile Biosignal Delivery.
Pawar, Pravin A; Edla, Damodar R; Edoh, Thierry; Shinde, Vijay; van Beijnum, Bert-Jan
2017-10-31
A Mobile Patient Monitoring System (MPMS) acquires patient's biosignals and transmits them using wireless network connection to the decision-making module or healthcare professional for the assessment of patient's condition. A variety of wireless network technologies such as wireless personal area networks (e.g., Bluetooth), mobile ad-hoc networks (MANET), and infrastructure-based networks (e.g., WLAN and cellular networks) are in practice for biosignals delivery. The wireless network quality-of-service (QoS) requirements of biosignals delivery are mainly specified in terms of required bandwidth, acceptable delay, and tolerable error rate. An important research challenge in the MPMS is how to satisfy QoS requirements of biosignals delivery in the environment characterized by patient mobility, deployment of multiple wireless network technologies, and variable QoS characteristics of the wireless networks. QoS requirements are mainly application specific, while available QoS is largely dependent on QoS provided by wireless network in use. QoS provisioning refers to providing support for improving QoS experience of networked applications. In resource poor conditions, application adaptation may also be required to make maximum use of available wireless network QoS. This survey paper presents a survey of recent developments in the area of QoS provisioning for MPMS. In particular, our contributions are as follows: (1) overview of wireless networks and network QoS requirements of biosignals delivery; (2) survey of wireless networks' QoS performance evaluation for the transmission of biosignals; and (3) survey of QoS provisioning mechanisms for biosignals delivery in MPMS. We also propose integrating end-to-end QoS monitoring and QoS provisioning strategies in a mobile patient monitoring system infrastructure to support optimal delivery of biosignals to the healthcare professionals.
Wireless Network Communications Overview for Space Mission Operations
NASA Technical Reports Server (NTRS)
Fink, Patrick W.
2009-01-01
The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.
An adaptive neural swarm approach for intrusion defense in ad hoc networks
NASA Astrophysics Data System (ADS)
Cannady, James
2011-06-01
Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.
Evaluating reliability of WSN with sleep/wake-up interfering nodes
NASA Astrophysics Data System (ADS)
Distefano, Salvatore
2013-10-01
A wireless sensor network (WSN) (singular and plural of acronyms are spelled the same) is a distributed system composed of autonomous sensor nodes wireless connected and randomly scattered into a geographical area to cooperatively monitor physical or environmental conditions. Adequate techniques and strategies are required to manage a WSN so that it works properly, observing specific quantities and metrics to evaluate the WSN operational conditions. Among them, one of the most important is the reliability. Considering a WSN as a system composed of sensor nodes the system reliability approach can be applied, thus expressing the WSN reliability in terms of its nodes' reliability. More specifically, since often standby power management policies are applied at node level and interferences among nodes may arise, a WSN can be considered as a dynamic system. In this article we therefore consider the WSN reliability evaluation problem from the dynamic system reliability perspective. Static-structural interactions are specified by the WSN topology. Sleep/wake-up standby policies and interferences due to wireless communications can be instead considered as dynamic aspects. Thus, in order to represent and to evaluate the WSN reliability, we use dynamic reliability block diagrams and Petri nets. The proposed technique allows to overcome the limits of Markov models when considering non-linear discharge processes, since they cannot adequately represent the aging processes. In order to demonstrate the effectiveness of the technique, we investigate some specific WSN network topologies, providing guidelines for their representation and evaluation.
2010-09-01
secure ad-hoc networks of mobile sensors deployed in a hostile environment . These sensors are normally small 86 and resource...Communications Magazine, 51, 2008. 45. Kumar, S.A. “Classification and Review of Security Schemes in Mobile Comput- ing”. Wireless Sensor Network , 2010... Networks ”. Wireless /Mobile Network Security , 2008. 85. Xiao, Y. “Accountability for Wireless LANs, Ad Hoc Networks , and Wireless
Mupparapu, Muralidhar
2006-02-15
Wireless networking is not new to contemporary dental offices around the country. Wireless routers and network cards have made access to patient records within the office handy and, thereby, saving valuable chair side time and increasing productivity. As is the case with any rapidly developing technology, wireless technology also changes with the same rate. Unless, the users of the wireless networking understand the implications of these changes and keep themselves updated periodically, the office network will become obsolete very quickly. This update of the emerging security protocols and pertaining to ratified wireless 802.11 standards will be timely for the contemporary dentist whose office is wirelessly networked. This article brings the practicing dentist up-to-date on the newer versions and standards in wireless networking that are changing at a fast pace. The introduction of newer 802.11 standards like super G, Super AG, Multiple Input Multiple Output (MIMO), and pre-n are changing the pace of adaptation of this technology. Like any other rapidly transforming technology, information pertaining to wireless networking should be a priority for the contemporary dentist, an eventual end-user in order to be a well-informed and techno-savvy consumer.
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network
Brennan, Robert W.
2017-01-01
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.
Taboun, Mohammed S; Brennan, Robert W
2017-09-14
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos
2011-03-01
Users of the next generation wireless paradigm known as multihomed mobile networks expect satisfactory quality of service (QoS) when accessing streamed multimedia content. The recent H.264 Scalable Video Coding (SVC) extension to the Advanced Video Coding standard (AVC), offers the facility to adapt real-time video streams in response to the dynamic conditions of multiple network paths encountered in multihomed wireless mobile networks. Nevertheless, preexisting streaming algorithms were mainly proposed for AVC delivery over multipath wired networks and were evaluated by software simulation. This paper introduces a practical, hardware-based testbed upon which we implement and evaluate real-time H.264 SVC streaming algorithms in a realistic multihomed wireless mobile networks environment. We propose an optimised streaming algorithm with multi-fold technical contributions. Firstly, we extended the AVC packet prioritisation schemes to reflect the three-dimensional granularity of SVC. Secondly, we designed a mechanism for evaluating the effects of different streamer 'read ahead window' sizes on real-time performance. Thirdly, we took account of the previously unconsidered path switching and mobile networks tunnelling overheads encountered in real-world deployments. Finally, we implemented a path condition monitoring and reporting scheme to facilitate the intelligent path switching. The proposed system has been experimentally shown to offer a significant improvement in PSNR of the received stream compared with representative existing algorithms.
The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey
Costa, Daniel G.; Guedes, Luiz Affonso
2010-01-01
Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651
Wireless Sensor Network Applications for the Combat Air Forces
2006-06-13
WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT...Government. AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT Presented to the...Major, USAF June 2006 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS
Fuzzy Logic Control Based QoS Management in Wireless Sensor/Actuator Networks
Xia, Feng; Zhao, Wenhong; Sun, Youxian; Tian, Yu-Chu
2007-01-01
Wireless sensor/actuator networks (WSANs) are emerging rapidly as a new generation of sensor networks. Despite intensive research in wireless sensor networks (WSNs), limited work has been found in the open literature in the field of WSANs. In particular, quality-of-service (QoS) management in WSANs remains an important issue yet to be investigated. As an attempt in this direction, this paper develops a fuzzy logic control based QoS management (FLC-QM) scheme for WSANs with constrained resources and in dynamic and unpredictable environments. Taking advantage of the feedback control technology, this scheme deals with the impact of unpredictable changes in traffic load on the QoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adapt sampling period to the deadline miss ratio associated with data transmission from the sensor to the actuator. The deadline miss ratio is maintained at a pre-determined desired level so that the required QoS can be achieved. The FLC-QM has the advantages of generality, scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANs with QoS support. PMID:28903288
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Track classification within wireless sensor network
NASA Astrophysics Data System (ADS)
Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic
2017-05-01
In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Supervisory control of mobile sensor networks: math formulation, simulation, and implementation.
Giordano, Vincenzo; Ballal, Prasanna; Lewis, Frank; Turchiano, Biagio; Zhang, Jing Bing
2006-08-01
This paper uses a novel discrete-event controller (DEC) for the coordination of cooperating heterogeneous wireless sensor networks (WSNs) containing both unattended ground sensors (UGSs) and mobile sensor robots. The DEC sequences the most suitable tasks for each agent and assigns sensor resources according to the current perception of the environment. A matrix formulation makes this DEC particularly useful for WSN, where missions change and sensor agents may be added or may fail. WSN have peculiarities that complicate their supervisory control. Therefore, this paper introduces several new tools for DEC design and operation, including methods for generating the required supervisory matrices based on mission planning, methods for modifying the matrices in the event of failed nodes, or nodes entering the network, and a novel dynamic priority assignment weighting approach for selecting the most appropriate and useful sensors for a given mission task. The resulting DEC represents a complete dynamical description of the WSN system, which allows a fast programming of deployable WSN, a computer simulation analysis, and an efficient implementation. The DEC is actually implemented on an experimental wireless-sensor-network prototyping system. Both simulation and experimental results are presented to show the effectiveness and versatility of the developed control architecture.
Motion-related resource allocation in dynamic wireless visual sensor network environments.
Katsenou, Angeliki V; Kondi, Lisimachos P; Parsopoulos, Konstantinos E
2014-01-01
This paper investigates quality-driven cross-layer optimization for resource allocation in direct sequence code division multiple access wireless visual sensor networks. We consider a single-hop network topology, where each sensor transmits directly to a centralized control unit (CCU) that manages the available network resources. Our aim is to enable the CCU to jointly allocate the transmission power and source-channel coding rates for each node, under four different quality-driven criteria that take into consideration the varying motion characteristics of each recorded video. For this purpose, we studied two approaches with a different tradeoff of quality and complexity. The first one allocates the resources individually for each sensor, whereas the second clusters them according to the recorded level of motion. In order to address the dynamic nature of the recorded scenery and re-allocate the resources whenever it is dictated by the changes in the amount of motion in the scenery, we propose a mechanism based on the particle swarm optimization algorithm, combined with two restarting schemes that either exploit the previously determined resource allocation or conduct a rough estimation of it. Experimental simulations demonstrate the efficiency of the proposed approaches.
A feedback-based secure path approach for wireless sensor network data collection.
Mao, Yuxin; Wei, Guiyi
2010-01-01
The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.
Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing
2017-07-19
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.
Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał
2016-01-01
Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper. PMID:27649186
Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał
2016-09-14
Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.
2009-09-01
with the flexibility provided by a wireless sensor network , could provide such enhancements. The objective of this research was to explore the...feasibility of remote management and control of a low-power/low-cost wireless sensor network by implementing a point-to-point wireless network utilizing IEEE
The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.
Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente
2015-08-10
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.
The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic
Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández
2015-01-01
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412
Adaptive Flow Control for Enabling Quality of Service in Tactical Ad Hoc Wireless Networks
2010-12-01
environment in wireless networks , we use sensors in the network routers to detect and respond to congestion. We use backpressure techniques... wireless mesh network . In the current approach, we used OLSR as the routing scheme. However, B.A.T.M.A.N. offers the significant advantage of being based...Control and QoS Routing in Multi-Channel Wireless Mesh Networks ,” 68-77. ACM International Symposium on Mobile Ad Hoc Networking &
Modeling, Evaluation and Detection of Jamming Attacks in Time-Critical Wireless Applications
2014-08-01
computing, modeling and analysis of wireless networks , network topol- ogy, and architecture design. Dr. Wang has been a Member of the Association for...important, yet open research question is how to model and detect jamming attacks in such wireless networks , where communication traffic is more time...against time-critical wireless networks with applications to the smart grid. In contrast to communication networks where packets-oriented metrics
ERIC Educational Resources Information Center
Feld, Harold
2005-01-01
With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…
Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Vinutha, C. B.; Nalini, N.; Nagaraja, M.
2017-06-01
This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.
Jung, Eui-Hyun; Park, Yong-Jin
2008-01-01
In recent years, a few protocol bridge research projects have been announced to enable a seamless integration of Wireless Sensor Networks (WSNs) with the TCP/IP network. These studies have ensured the transparent end-to-end communication between two network sides in the node-centric manner. Researchers expect this integration will trigger the development of various application domains. However, prior research projects have not fully explored some essential features for WSNs, especially the reusability of sensing data and the data-centric communication. To resolve these issues, we suggested a new protocol bridge system named TinyONet. In TinyONet, virtual sensors play roles as virtual counterparts of physical sensors and they dynamically group to make a functional entity, Slice. Instead of direct interaction with individual physical sensors, each sensor application uses its own WSN service provided by Slices. If a new kind of service is required in TinyONet, the corresponding function can be dynamically added at runtime. Beside the data-centric communication, it also supports the node-centric communication and the synchronous access. In order to show the effectiveness of the system, we implemented TinyONet on an embedded Linux machine and evaluated it with several experimental scenarios. PMID:27873968
How should social mixing be measured: comparing web-based survey and sensor-based methods.
Smieszek, Timo; Barclay, Victoria C; Seeni, Indulaxmi; Rainey, Jeanette J; Gao, Hongjiang; Uzicanin, Amra; Salathé, Marcel
2014-03-10
Contact surveys and diaries have conventionally been used to measure contact networks in different settings for elucidating infectious disease transmission dynamics of respiratory infections. More recently, technological advances have permitted the use of wireless sensor devices, which can be worn by individuals interacting in a particular social context to record high resolution mixing patterns. To date, a direct comparison of these two different methods for collecting contact data has not been performed. We studied the contact network at a United States high school in the spring of 2012. All school members (i.e., students, teachers, and other staff) were invited to wear wireless sensor devices for a single school day, and asked to remember and report the name and duration of all of their close proximity conversational contacts for that day in an online contact survey. We compared the two methods in terms of the resulting network densities, nodal degrees, and degree distributions. We also assessed the correspondence between the methods at the dyadic and individual levels. We found limited congruence in recorded contact data between the online contact survey and wireless sensors. In particular, there was only negligible correlation between the two methods for nodal degree, and the degree distribution differed substantially between both methods. We found that survey underreporting was a significant source of the difference between the two methods, and that this difference could be improved by excluding individuals who reported only a few contact partners. Additionally, survey reporting was more accurate for contacts of longer duration, and very inaccurate for contacts of shorter duration. Finally, female participants tended to report more accurately than male participants. Online contact surveys and wireless sensor devices collected incongruent network data from an identical setting. This finding suggests that these two methods cannot be used interchangeably for informing models of infectious disease dynamics.
Techno-Economic Analysis of FiWi Access Networks Based on 802.11ac WLAN and NG-PON2 Networks
NASA Astrophysics Data System (ADS)
Breskovic, Damir; Begusic, Dinko
2017-05-01
In this article, techno-economic analysis of a fiber-wireless access network is presented. With high bandwidth capacity of the gigabit passive optical network and with cost-effectiveness of very high throughput 802.11ac wireless local area networks that enable user mobility in the wireless segment, fiber-wireless access networks can be considered as an alternative to the fiber-to-the-home architecture for next generation access networks. Analysis based on the proposed scenario here, shows that a fiber-wireless access network is a more cost-effective solution in densely populated areas, but with some introduced improvements, even other geotypes can be considered as a commercially-viable solution.
Context-based user grouping for multi-casting in heterogeneous radio networks
NASA Astrophysics Data System (ADS)
Mannweiler, C.; Klein, A.; Schneider, J.; Schotten, H. D.
2011-08-01
Along with the rise of sophisticated smartphones and smart spaces, the availability of both static and dynamic context information has steadily been increasing in recent years. Due to the popularity of social networks, these data are complemented by profile information about individual users. Making use of this information by classifying users in wireless networks enables targeted content and advertisement delivery as well as optimizing network resources, in particular bandwidth utilization, by facilitating group-based multi-casting. In this paper, we present the design and implementation of a web service for advanced user classification based on user, network, and environmental context information. The service employs simple and advanced clustering algorithms for forming classes of users. Available service functionalities include group formation, context-aware adaptation, and deletion as well as the exposure of group characteristics. Moreover, the results of a performance evaluation, where the service has been integrated in a simulator modeling user behavior in heterogeneous wireless systems, are presented.
Wireless Sensor Network Radio Power Management and Simulation Models
2010-01-01
The Open Electrical & Electronic Engineering Journal, 2010, 4, 21-31 21 1874-1290/10 2010 Bentham Open Open Access Wireless Sensor Network Radio...Air Force Institute of Technology, Wright-Patterson AFB, OH, USA Abstract: Wireless sensor networks (WSNs) create a new frontier in collecting and...consumption. Keywords: Wireless sensor network , power management, energy-efficiency, medium access control (MAC), simulation pa- rameters. 1
Wireless Sensor Networks: Monitoring and Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio
2013-05-31
The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.
47 CFR 27.1305 - Shared wireless broadband network.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...
47 CFR 90.1405 - Shared wireless broadband network.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...
47 CFR 27.1305 - Shared wireless broadband network.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...
47 CFR 90.1405 - Shared wireless broadband network.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...
47 CFR 27.1305 - Shared wireless broadband network.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...
47 CFR 90.1405 - Shared wireless broadband network.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...
A Game-Theoretic Response Strategy for Coordinator Attack in Wireless Sensor Networks
Liu, Jianhua; Yue, Guangxue; Shang, Huiliang; Li, Hongjie
2014-01-01
The coordinator is a specific node that controls the whole network and has a significant impact on the performance in cooperative multihop ZigBee wireless sensor networks (ZWSNs). However, the malicious node attacks coordinator nodes in an effort to waste the resources and disrupt the operation of the network. Attacking leads to a failure of one round of communication between the source nodes and destination nodes. Coordinator selection is a technique that can considerably defend against attack and reduce the data delivery delay, and increase network performance of cooperative communications. In this paper, we propose an adaptive coordinator selection algorithm using game and fuzzy logic aiming at both minimizing the average number of hops and maximizing network lifetime. The proposed game model consists of two interrelated formulations: a stochastic game for dynamic defense and a best response policy using evolutionary game formulation for coordinator selection. The stable equilibrium best policy to response defense is obtained from this game model. It is shown that the proposed scheme can improve reliability and save energy during the network lifetime with respect to security. PMID:25105171
A game-theoretic response strategy for coordinator attack in wireless sensor networks.
Liu, Jianhua; Yue, Guangxue; Shen, Shigen; Shang, Huiliang; Li, Hongjie
2014-01-01
The coordinator is a specific node that controls the whole network and has a significant impact on the performance in cooperative multihop ZigBee wireless sensor networks (ZWSNs). However, the malicious node attacks coordinator nodes in an effort to waste the resources and disrupt the operation of the network. Attacking leads to a failure of one round of communication between the source nodes and destination nodes. Coordinator selection is a technique that can considerably defend against attack and reduce the data delivery delay, and increase network performance of cooperative communications. In this paper, we propose an adaptive coordinator selection algorithm using game and fuzzy logic aiming at both minimizing the average number of hops and maximizing network lifetime. The proposed game model consists of two interrelated formulations: a stochastic game for dynamic defense and a best response policy using evolutionary game formulation for coordinator selection. The stable equilibrium best policy to response defense is obtained from this game model. It is shown that the proposed scheme can improve reliability and save energy during the network lifetime with respect to security.
Wireless Local Area Networks: The Next Evolutionary Step.
ERIC Educational Resources Information Center
Wodarz, Nan
2001-01-01
The Institute of Electrical and Electronics Engineers recently approved a high-speed wireless standard that enables devices from different manufacturers to communicate through a common backbone, making wireless local area networks more feasible in schools. Schools can now use wireless access points and network cards to provide flexible…
Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks
ERIC Educational Resources Information Center
Yu, Chao
2013-01-01
In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…
Middleware Architecture for Ambient Intelligence in the Networked Home
NASA Astrophysics Data System (ADS)
Georgantas, Nikolaos; Issarny, Valerie; Mokhtar, Sonia Ben; Bromberg, Yerom-David; Bianco, Sebastien; Thomson, Graham; Raverdy, Pierre-Guillaume; Urbieta, Aitor; Cardoso, Roberto Speicys
With computing and communication capabilities now embedded in most physical objects of the surrounding environment and most users carrying wireless computing devices, the Ambient Intelligence (AmI) / pervasive computing vision [28] pioneered by Mark Weiser [32] is becoming a reality. Devices carried by nomadic users can seamlessly network with a variety of devices, both stationary and mobile, both nearby and remote, providing a wide range of functional capabilities, from base sensing and actuating to rich applications (e.g., smart spaces). This then allows the dynamic deployment of pervasive applications, which dynamically compose functional capabilities accessible in the pervasive network at the given time and place of an application request.
Coexistencia e integracion de comunicaciones inalambricas en sistemas de transmision opticos
NASA Astrophysics Data System (ADS)
Perez Soler, Joaquin
Current network and telecommunication systems are required to provide higher data rates in access networks to an increasing number of users. This fact is mainly due to the increase in the Internet traffic data, which is related with the higher demand of online videogames and software, the increased complexity in the content of web pages, the joint distribution of audio-visual and added-value online content, and the introduction of high-definition services and contents such as video on demand, as a result of a society increasingly more interconnected. In order to satisfy these higher data rates requirements, new techniques for the joint distribution of several wireless communication systems are proposed in this Thesis. The aim of these techniques is to facilitate the deployment of an integrated access network at the customer premises, enabling the integration of optical transmission over an optical access network and radio-frequency transmission in the same infrastructure. Two main wireless communication systems are considered in this Thesis, WiMAX (Worldwide Interoperability for Microwave Access) and UWB (Ultra-Wide Band) according to WiMedia Alliance recommendation. Comparing the bit rate and expected range, WiMAX and UWB are complementary radio technologies expected to coexist in a near future in integrated access networks. The optical access network considered in this Thesis can be regarded as a FTTH network (Fibre-to-the-Home). The wireless signals are natively transmitted over optical network, that is, without frequency upconversion and remodulation stages, over one or several optical carriers. This technology, which is known as Radio-over-Fibre (RoF), is well suited for integrated access networks. First, the requirements for the wireless convergence of services based on Multi-Band Orthogonal-Frequency Division-Multiplexing UWB (MB-OFDM UWB) and WiMAX 802.16e in Wireless Personal Area Networks (WPAN) are stated. The aim of this study is to provide relevant protection margins in order to ensure the coexistence between both technologies. The obtained protection margins are of great interest for the development of advanced interference mitigation techniques such as DAA (Detect-and-Avoid), in the framework of future cognitive radio technologies. In a second step, the wireless coexistence of MB-OFDM UWB and WiMAX technologies is analyzed from the point of view of access networks based on RoF systems. Two experimental field trials are here carried out. In the first one, the wireless convergence is evaluated in a multi-mode fibre RoF system, whereas in the second one, the RoF system is based on a standard single-mode fibre. These experimental results provide relevant fibre link transmission distances to enable the deployment of RoF networks. Moreover, a new optical transmission technique based on polarization division multiplexing is proposed and experimentally evaluated in order to ensure the wireless coexistence in RoF systems. Finally, the impact of the electro-optical Mach-Zehnder modulator is analyzed, since the dynamic range of this device limits the performance of the RoF system. Moreover, a new optical linearization technique for Mach-Zehnder modulators is proposed and evaluated in order to overcome this limitation.
A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection
Mao, Yuxin; Wei, Guiyi
2010-01-01
The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose. PMID:22163424
Multistage Security Mechanism For Hybrid, Large-Scale Wireless Sensor Networks
2007-06-01
sensor network . Building on research in the areas of the wireless sensor networks (WSN) and the mobile ad hoc networks (MANET), this thesis proposes an...A wide area network consisting of ballistic missile defense satellites and terrestrial nodes can be viewed as a hybrid, large-scale mobile wireless
Probabilistic QoS Analysis In Wireless Sensor Networks
2012-04-01
and A.O. Fapojuwo. TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks . IEEE Trans. on Mobile...Research Computer Science and Engineering, Department of 5-1-2012 Probabilistic QoS Analysis in Wireless Sensor Networks Yunbo Wang University of...Wang, Yunbo, "Probabilistic QoS Analysis in Wireless Sensor Networks " (2012). Computer Science and Engineering: Theses, Dissertations, and Student
Implementation Of Secure 6LoWPAN Communications For Tactical Wireless Sensor Networks
2016-09-01
wireless sensor networks (WSN) consist of power -constrained devices spread throughout a region-of-interest to provide data extraction in real time...1 A. LOW POWER WIRELESS SENSOR NETWORKS ............................1 B. INTRODUCTION TO...communication protocol for low power wireless personal area networks Since the IEEE 802.15.4 standard only defines the first two layers of the Open
RF Characteristics of Mica-Z Wireless Sensor Network Motes
2006-03-01
MICA-Z WIRELESS SENSOR NETWORK MOTES by Swee Jin Koh March 2006 Thesis Advisor: Gurminder Singh Thesis Co-Advisor: John C...Mica-Z Wireless Sensor Network Motes 6. AUTHOR(S) : Swee Jin Koh 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...ad-hoc deployment. 15. NUMBER OF PAGES 83 14. SUBJECT TERMS: Wireless Sensor Network 16. PRICE CODE 17. SECURITY CLASSIFICATION OF
Path Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks
2006-09-01
AND PACKET TRANSLATION FOR UAV SURVEILLANCE IN SUPPORT OF WIRELESS SENSOR NETWORKS by Stephen Schall September 2006 Thesis Advisor...Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks 6. AUTHOR(S) Stephen Schall 5. FUNDING NUMBERS 7...200 words) Wireless Sensor Networks (WSNs) are a relatively new technology with many potential applications, including military and
Performance Evaluation of a Routing Protocol in Wireless Sensor Network
2005-12-01
OF A ROUTING PROTOCOL IN WIRELESS SENSOR NETWORKS by Cheng Kiat Amos, Teo December 2005 Thesis Advisors: Gurminder Singh John C...Evaluation of a Routing Protocol in Wireless Sensor Network 6. AUTHOR(S) Cheng Kiat Amos, Teo 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S...need to be strategically positioned and have topologies engineered. As such, recent research into wireless sensor networks has attracted great
2009-03-01
IN WIRELESS SENSOR NETWORKS WITH RANDOMLY DISTRIBUTED ELEMENTS UNDER MULTIPATH PROPAGATION CONDITIONS by Georgios Tsivgoulis March 2009...COVERED Engineer’s Thesis 4. TITLE Source Localization in Wireless Sensor Networks with Randomly Distributed Elements under Multipath Propagation...the non-line-of-sight information. 15. NUMBER OF PAGES 111 14. SUBJECT TERMS Wireless Sensor Network , Direction of Arrival, DOA, Random
Implementation of WirelessHART in the NS-2 Simulator and Validation of Its Correctness
Zand, Pouria; Mathews, Emi; Havinga, Paul; Stojanovski, Spase; Sisinni, Emiliano; Ferrari, Paolo
2014-01-01
One of the first standards in the wireless sensor networks domain, WirelessHART (HART (Highway Addressable Remote Transducer)), was introduced to address industrial process automation and control requirements. This standard can be used as a reference point to evaluate other wireless protocols in the domain of industrial monitoring and control. This makes it worthwhile to set up a reliable WirelessHART simulator in order to achieve that reference point in a relatively easy manner. Moreover, it offers an alternative to expensive testbeds for testing and evaluating the performance of WirelessHART. This paper explains our implementation of WirelessHART in the NS-2 network simulator. According to our knowledge, this is the first implementation that supports the WirelessHART network manager, as well as the whole stack (all OSI (Open Systems Interconnection model) layers) of the WirelessHART standard. It also explains our effort to validate the correctness of our implementation, namely through the validation of the implementation of the WirelessHART stack protocol and of the network manager. We use sniffed traffic from a real WirelessHART testbed installed in the Idrolab plant for these validations. This confirms the validity of our simulator. Empirical analysis shows that the simulated results are nearly comparable to the results obtained from real networks. We also demonstrate the versatility and usability of our implementation by providing some further evaluation results in diverse scenarios. For example, we evaluate the performance of the WirelessHART network by applying incremental interference in a multi-hop network. PMID:24841245
A Sensible Approach to Wireless Networking.
ERIC Educational Resources Information Center
Ahmed, S. Faruq
2002-01-01
Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)
Physical parameters collection based on wireless senor network
NASA Astrophysics Data System (ADS)
Chen, Xin; Wu, Hong; Ji, Lei
2013-12-01
With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.
Source Localization Using Wireless Sensor Networks
2006-06-01
performance of the hybrid SI/ML estimation method. A wireless sensor network is simulated in NS-2 to study the network throughput, delay and jitter...indicate that the wireless sensor network has low delay and can support fast information exchange needed in counter-sniper applications.
Realistic Modeling of Wireless Network Environments
2015-03-01
wireless environment, namely vehicular networks. We also made a number of improvements to an emulation-based wireless testbed to improve channel model...and the two wireless devices used in the experiment (bottom). This testbed was used for point-point vehicular wireless experiments that used the...DSRC-based vehicular networks (~5.9 GHz). We were able to meet that goal, as described below. Figure 3: DSP Card 3.3 System design and
Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges
Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey
2012-01-01
A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490
Multipath routing in wireless sensor networks: survey and research challenges.
Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey
2012-01-01
A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.
Performance Analysis of IIUM Wireless Campus Network
NASA Astrophysics Data System (ADS)
Abd Latif, Suhaimi; Masud, Mosharrof H.; Anwar, Farhat
2013-12-01
International Islamic University Malaysia (IIUM) is one of the leading universities in the world in terms of quality of education that has been achieved due to providing numerous facilities including wireless services to every enrolled student. The quality of this wireless service is controlled and monitored by Information Technology Division (ITD), an ISO standardized organization under the university. This paper aims to investigate the constraints of wireless campus network of IIUM. It evaluates the performance of the IIUM wireless campus network in terms of delay, throughput and jitter. QualNet 5.2 simulator tool has employed to measure these performances of IIUM wireless campus network. The observation from the simulation result could be one of the influencing factors in improving wireless services for ITD and further improvement.
A Wireless Platform for Energy Efficient Building Control Retrofits
2012-08-01
University of Illinois at Urbana Champaign UTRC United Technologies Research Center VFD variable frequency drive WSN wireless sensor network ...demonstration area. .............................................................. 16 Table 4. Cost model for wireless sensor network ...buildings with MPC-based whole-building optimal control and (2) reduction in first costs achievable with a wireless sensor network (WSN)-based
Distributed Dynamic Host Configuration Protocol (D2HCP)
Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez
2011-01-01
Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment. PMID:22163856
Distributed Dynamic Host Configuration Protocol (D2HCP).
Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez
2011-01-01
Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment.
Development and Implementation of Low-Cost Mobile Sensor Platforms Within a Wireless Sensor Network
2010-09-01
WIRELESS SENSOR NETWORK by Michael Jay Tozzi September 2010 Thesis Advisor: Rachel Goshorn Second Reader: Duane Davis Approved for...Platforms Within a Wireless Sensor Network 6. AUTHOR(S) Tozzi, Michael Jay 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...IMPLEMENTATION OF LOW-COST MOBILE SENSOR PLATFORMS WITHIN A WIRELESS SENSOR NETWORK Michael Jay Tozzi Lieutenant, United States Navy B.S., United
Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network
2013-05-26
public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University
A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.
Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao
2017-07-04
Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.
Scalable Video Streaming in Wireless Mesh Networks for Education
ERIC Educational Resources Information Center
Liu, Yan; Wang, Xinheng; Zhao, Liqiang
2011-01-01
In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…
Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Wilson, William C.; Juarez, Peter D.
2014-01-01
NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.
Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua
2011-01-01
Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.
Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua
2011-01-01
Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay. PMID:22319385
Experience of wireless local area network in a radiation oncology department.
Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan
2010-01-01
The aim of this work is to develop a wireless local area network (LAN) between different types of users (Radiation Oncologists, Radiological Physicists, Radiation Technologists, etc) for efficient patient data management and to made easy the availability of information (chair side) to improve the quality of patient care in Radiation Oncology department. We have used mobile workstations (Laptops) and stationary workstations, all equipped with wireless-fidelity (Wi-Fi) access. Wireless standard 802.11g (as recommended by Institute of Electrical and Electronic Engineers (IEEE, Piscataway, NJ) has been used. The wireless networking was configured with the Service Set Identifier (SSID), Media Access Control (MAC) address filtering, and Wired Equivalent Privacy (WEP) network securities. We are successfully using this wireless network in sharing the indigenously developed patient information management software. The proper selection of the hardware and the software combined with a secure wireless LAN setup will lead to a more efficient and productive radiation oncology department.
Sensor Network Architectures for Monitoring Underwater Pipelines
Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren
2011-01-01
This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669
Sensor network architectures for monitoring underwater pipelines.
Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren
2011-01-01
This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.
NASA Astrophysics Data System (ADS)
Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli
2013-03-01
Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.
Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.
Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup
2011-10-01
The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.
Real time network traffic monitoring for wireless local area networks based on compressed sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza
2017-05-01
A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.
Analysis and Testing of Mobile Wireless Networks
NASA Technical Reports Server (NTRS)
Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)
2002-01-01
Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.
A novel topology control approach to maintain the node degree in dynamic wireless sensor networks.
Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana
2014-03-07
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.
Multimedia information processing in the SWAN mobile networked computing system
NASA Astrophysics Data System (ADS)
Agrawal, Prathima; Hyden, Eoin; Krzyzanowsji, Paul; Srivastava, Mani B.; Trotter, John
1996-03-01
Anytime anywhere wireless access to databases, such as medical and inventory records, can simplify workflow management in a business, and reduce or even eliminate the cost of moving paper documents. Moreover, continual progress in wireless access technology promises to provide per-user bandwidths of the order of a few Mbps, at least in indoor environments. When combined with the emerging high-speed integrated service wired networks, it enables ubiquitous and tetherless access to and processing of multimedia information by mobile users. To leverage on this synergy an indoor wireless network based on room-sized cells and multimedia mobile end-points is being developed at AT&T Bell Laboratories. This research network, called SWAN (Seamless Wireless ATM Networking), allows users carrying multimedia end-points such as PDAs, laptops, and portable multimedia terminals, to seamlessly roam while accessing multimedia data streams from the wired backbone network. A distinguishing feature of the SWAN network is its use of end-to-end ATM connectivity as opposed to the connectionless mobile-IP connectivity used by present day wireless data LANs. This choice allows the wireless resource in a cell to be intelligently allocated amongst various ATM virtual circuits according to their quality of service requirements. But an efficient implementation of ATM in a wireless environment requires a proper mobile network architecture. In particular, the wireless link and medium-access layers need to be cognizant of the ATM traffic, while the ATM layers need to be cognizant of the mobility enabled by the wireless layers. This paper presents an overview of SWAN's network architecture, briefly discusses the issues in making ATM mobile and wireless, and describes initial multimedia applications for SWAN.
A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network
2016-04-10
to interference from a given transmission . We then use our algorithm to perform a network capacity analysis comparing different wireless technologies...A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network Greg Kuperman, Jun Sun, and Aradhana Narula-Tam MIT...the maximum achievable capacity of a multi-hop wireless mesh network subject to interference constraints. Being able to quickly determine the maximum
Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Li, Baoqing; Yuan, Xiaobing
2017-01-01
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum–minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms. PMID:28753962
Software-defined Radio Based Measurement Platform for Wireless Networks
Chao, I-Chun; Lee, Kang B.; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan
2015-01-01
End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc.) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks. PMID:27891210
Software-defined Radio Based Measurement Platform for Wireless Networks.
Chao, I-Chun; Lee, Kang B; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan
2015-10-01
End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc. ) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks.
Distributed wireless sensing for methane leak detection technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Levente; van Kesse, Theodor
Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less
Distributed wireless sensing for fugitive methane leak detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Levente J.; van Kessel, Theodore; Nair, Dhruv
Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less
Distributed wireless sensing for fugitive methane leak detection
Klein, Levente J.; van Kessel, Theodore; Nair, Dhruv; ...
2017-12-11
Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less
A Novel IEEE 802.15.4e DSME MAC for Wireless Sensor Networks
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-01
IEEE 802.15.4e standard proposes Deterministic and Synchronous Multichannel Extension (DSME) mode for wireless sensor networks (WSNs) to support industrial, commercial and health care applications. In this paper, a new channel access scheme and beacon scheduling schemes are designed for the IEEE 802.15.4e enabled WSNs in star topology to reduce the network discovery time and energy consumption. In addition, a new dynamic guaranteed retransmission slot allocation scheme is designed for devices with the failure Guaranteed Time Slot (GTS) transmission to reduce the retransmission delay. To evaluate our schemes, analytical models are designed to analyze the performance of WSNs in terms of reliability, delay, throughput and energy consumption. Our schemes are validated with simulation and analytical results and are observed that simulation results well match with the analytical one. The evaluated results of our designed schemes can improve the reliability, throughput, delay, and energy consumptions significantly. PMID:28275216
A Novel IEEE 802.15.4e DSME MAC for Wireless Sensor Networks.
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-16
IEEE 802.15.4e standard proposes Deterministic and Synchronous Multichannel Extension (DSME) mode for wireless sensor networks (WSNs) to support industrial, commercial and health care applications. In this paper, a new channel access scheme and beacon scheduling schemes are designed for the IEEE 802.15.4e enabled WSNs in star topology to reduce the network discovery time and energy consumption. In addition, a new dynamic guaranteed retransmission slot allocation scheme is designed for devices with the failure Guaranteed Time Slot (GTS) transmission to reduce the retransmission delay. To evaluate our schemes, analytical models are designed to analyze the performance of WSNs in terms of reliability, delay, throughput and energy consumption. Our schemes are validated with simulation and analytical results and are observed that simulation results well match with the analytical one. The evaluated results of our designed schemes can improve the reliability, throughput, delay, and energy consumptions significantly.
NASA Astrophysics Data System (ADS)
Fragkoulis, Alexandros; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2015-03-01
We propose a method for the fair and efficient allocation of wireless resources over a cognitive radio system network to transmit multiple scalable video streams to multiple users. The method exploits the dynamic architecture of the Scalable Video Coding extension of the H.264 standard, along with the diversity that OFDMA networks provide. We use a game-theoretic Nash Bargaining Solution (NBS) framework to ensure that each user receives the minimum video quality requirements, while maintaining fairness over the cognitive radio system. An optimization problem is formulated, where the objective is the maximization of the Nash product while minimizing the waste of resources. The problem is solved by using a Swarm Intelligence optimizer, namely Particle Swarm Optimization. Due to the high dimensionality of the problem, we also introduce a dimension-reduction technique. Our experimental results demonstrate the fairness imposed by the employed NBS framework.
Programming Wireless Handheld Devices for Applications in Teaching Astronomy
NASA Astrophysics Data System (ADS)
Budiardja, R.; Saranathan, V.; Guidry, M.
2002-12-01
Wireless technology implemented with handheld devices has attractive features because of the potential to access large amounts of data and the prospect of on-the-fly computational analysis from a device that can be carried in a shirt pocket. We shall describe applications of such technology to the general paradigm of making digital wireless connections from the field to upload information and queries to network servers, executing (potentially complex) data analysis and/or database operations on fast network computers, and returning real-time information from this analysis to the handheld device in the field. As illustration, we shall describe several client/server programs that we have written for applications in teaching introductory astronomy. For example, one program allows static and dynamic properties of astronomical objects to be accessed in a remote observation laboratory setting using a digital cell phone or PDA. Another implements interactive quizzing over a cell phone or PDA using a 700-question introductory astronomy quiz database, thus permitting students to study for astronomy quizzes in any environment in which they have a few free minutes and a digital cell phone or wireless PDA. The presentation will include hands-on demonstrations with real devices.
A PDA study management tool (SMT) utilizing wireless broadband and full DICOM viewing capability
NASA Astrophysics Data System (ADS)
Documet, Jorge; Liu, Brent; Zhou, Zheng; Huang, H. K.; Documet, Luis
2007-03-01
During the last 4 years IPI (Image Processing and Informatics) Laboratory has been developing a web-based Study Management Tool (SMT) application that allows Radiologists, Film librarians and PACS-related (Picture Archiving and Communication System) users to dynamically and remotely perform Query/Retrieve operations in a PACS network. The users utilizing a regular PDA (Personal Digital Assistant) can remotely query a PACS archive to distribute any study to an existing DICOM (Digital Imaging and Communications in Medicine) node. This application which has proven to be convenient to manage the Study Workflow [1, 2] has been extended to include a DICOM viewing capability in the PDA. With this new feature, users can take a quick view of DICOM images providing them mobility and convenience at the same time. In addition, we are extending this application to Metropolitan-Area Wireless Broadband Networks. This feature requires Smart Phones that are capable of working as a PDA and have access to Broadband Wireless Services. With the extended application to wireless broadband technology and the preview of DICOM images, the Study Management Tool becomes an even more powerful tool for clinical workflow management.
Integrated monitoring of wind plant systems
NASA Astrophysics Data System (ADS)
Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong
2008-03-01
Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.
A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.
Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang
2015-11-13
Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.
Using Zigbee to integrate medical devices.
Frehill, Paul; Chambers, Desmond; Rotariu, Cosmin
2007-01-01
Wirelessly enabling Medical Devices such as Vital Signs Monitors, Ventilators and Infusion Pumps allows central data collection. This paper discusses how data from these types of devices can be integrated into hospital systems using wireless sensor networking technology. By integrating devices you are protecting investment and opening up the possibility of networking with similar devices. In this context we present how Zigbee meets our requirements for bandwidth, power, security and mobility. We have examined the data throughputs for various medical devices, the requirement of data frequency, security of patient data and the logistics of moving patients while connected to devices. The paper describes a new tested architecture that allows this data to be seamlessly integrated into a User Interface or Healthcare Information System (HIS). The design supports the dynamic addition of new medical devices to the system that were previously unsupported by the system. To achieve this, the hardware design is kept generic and the software interface for different types of medical devices is well defined. These devices can also share the wireless resources with other types of sensors being developed in conjunction on this project such as wireless ECG (Electrocardiogram) and Pulse-Oximetry sensors.
A Wireless Communications Laboratory on Cellular Network Planning
ERIC Educational Resources Information Center
Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.
2010-01-01
The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…
Engineering of Sensor Network Structure for Dependable Fusion
2014-08-15
Lossy Wireless Sensor Networks , IEEE/ACM Transactions on Networking , (04 2013): 0. doi: 10.1109/TNET.2013.2256795 Soumik Sarkar, Kushal Mukherjee...Phoha, Bharat B. Madan, Asok Ray. Distributed Network Control for Mobile Multi-Modal Wireless Sensor Networks , Journal of Parallel and Distributed...Deadline Constraints, IEEE Transactions on Automatic Control special issue on Wireless Sensor and Actuator Networks , (01 2011): 1. doi: Eric Keller
Wang, Yongqiang; Núñez, Felipe; Doyle, Francis J.
2013-01-01
Synchronization is crucial to wireless sensor networks due to their decentralized structure. We propose an energy-efficient pulse-coupled synchronization strategy to achieve this goal. The basic idea is to reduce idle listening by intentionally introducing a large refractory period in the sensors’ cooperation. The large refractory period greatly reduces idle listening in each oscillation period, and is analytically proven to have no influence on the time to synchronization. Hence, it significantly reduces the total energy consumption in a synchronization process. A topology control approach tailored for pulse-coupled synchronization is given to guarantee a k-edge strongly connected interaction topology, which is tolerant to communication-link failures. The topology control approach is totally decentralized and needs no information exchange among sensors, and it is applicable to dynamic network topologies as well. This facilitates a completely decentralized implementation of the synchronization strategy. The strategy is applicable to mobile sensor networks, too. QualNet case studies confirm the effectiveness of the synchronization strategy. PMID:24307831
Load-adaptive practical multi-channel communications in wireless sensor networks.
Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon
2010-01-01
In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.
Design and evaluation of a wireless sensor network based aircraft strength testing system.
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.
Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521
Strategies for P2P connectivity in reconfigurable converged wired/wireless access networks.
Puerto, Gustavo; Mora, José; Ortega, Beatriz; Capmany, José
2010-12-06
This paper presents different strategies to define the architecture of a Radio-Over-Fiber (RoF) Access networks enabling Peer-to-Peer (P2P) functionalities. The architectures fully exploit the flexibility of a wavelength router based on the feedback configuration of an Arrayed Waveguide Grating (AWG) and an optical switch to broadcast P2P services among diverse infrastructures featuring dynamic channel allocation and enabling an optical platform for 3G and beyond wireless backhaul requirements. The first architecture incorporates a tunable laser to generate a dedicated wavelength for P2P purposes and the second architecture takes advantage of reused wavelengths to enable the P2P connectivity among Optical Network Units (ONUs) or Base Stations (BS). While these two approaches allow the P2P connectivity in a one at a time basis (1:1), the third architecture enables the broadcasting of P2P sessions among different ONUs or BSs at the same time (1:M). Experimental assessment of the proposed architecture shows approximately 0.6% Error Vector Magnitude (EVM) degradation for wireless services and 1 dB penalty in average for 1 x 10(-12) Bit Error Rate (BER) for wired baseband services.
A Spectrum Access Based on Quality of Service (QoS) in Cognitive Radio Networks.
Zhai, Linbo; Wang, Hua; Gao, Chuangen
2016-01-01
The quality of service (QoS) is important issue for cognitive radio networks. In the cognitive radio system, the licensed users, also called primary users (PUs), are authorized to utilize the wireless spectrum, while unlicensed users, also called secondary users (SUs), are not authorized to use the wireless spectrum. SUs access the wireless spectrum opportunistically when the spectrum is idle. While SUs use an idle channel, the instance that PUs come back makes SUs terminate their communications and leave the current channel. Therefore, quality of service (QoS) is difficult to be ensured for SUs. In this paper, we first propose an analysis model to obtain QoS for cognitive radio networks such as blocking probability, completed traffic and termination probability of SUs. When the primary users use the channels frequently, QoS of SUs is difficult to be ensured, especially the termination probability. Then, we propose a channel reservation scheme to improve QoS of SUs. The scheme makes the terminated SUs move to the reserved channels and keep on communications. Simulation results show that our scheme can improve QoS of SUs especially the termination probability with a little cost of blocking probability in dynamic environment.
Monowar, Muhammad Mostafa; Bajaber, Fuad
2015-06-15
In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches.
Monowar, Muhammad Mostafa; Bajaber, Fuad
2015-01-01
In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches. PMID:26083228
Availability and End-to-end Reliability in Low Duty Cycle Multihop Wireless Sensor Networks.
Suhonen, Jukka; Hämäläinen, Timo D; Hännikäinen, Marko
2009-01-01
A wireless sensor network (WSN) is an ad-hoc technology that may even consist of thousands of nodes, which necessitates autonomic, self-organizing and multihop operations. A typical WSN node is battery powered, which makes the network lifetime the primary concern. The highest energy efficiency is achieved with low duty cycle operation, however, this alone is not enough. WSNs are deployed for different uses, each requiring acceptable Quality of Service (QoS). Due to the unique characteristics of WSNs, such as dynamic wireless multihop routing and resource constraints, the legacy QoS metrics are not feasible as such. We give a new definition to measure and implement QoS in low duty cycle WSNs, namely availability and reliability. Then, we analyze the effect of duty cycling for reaching the availability and reliability. The results are obtained by simulations with ZigBee and proprietary TUTWSN protocols. Based on the results, we also propose a data forwarding algorithm suitable for resource constrained WSNs that guarantees end-to-end reliability while adding a small overhead that is relative to the packet error rate (PER). The forwarding algorithm guarantees reliability up to 30% PER.
Smart Grid Communications System Blueprint
NASA Astrophysics Data System (ADS)
Clark, Adrian; Pavlovski, Chris
2010-10-01
Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.
NASA Technical Reports Server (NTRS)
Wang, Ray (Inventor)
2009-01-01
A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.
Distributed Localization of Active Transmitters in a Wireless Sensor Network
2012-03-01
Distributed Localization of Active Transmitters in a Wireless Sensor Network THESIS Oba L. Vincent, 2nd Lieutenant, USAF AFIT/GE/ENG/12-41 DEPARTMENT...protection in the United States. AFIT/GE/ENG/12-41 Distributed Localization of Active Transmitters in a Wireless Sensor Network THESIS Presented to the...Transmitters in a Wireless Sensor Network Oba L. Vincent, B.S.E.E. 2nd Lieutenant, USAF Approved: /signed/ 29 Feb 2012 Maj. Mark D. Silvius, Ph.D. (Chairman
Impact of reduced scale free network on wireless sensor network
NASA Astrophysics Data System (ADS)
Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar
2016-12-01
In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.
A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks
Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao
2017-01-01
Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network. PMID:28677639
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934
Flexible network wireless transceiver and flexible network telemetry transceiver
Brown, Kenneth D.
2008-08-05
A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.
Cross Layered Multi-Meshed Tree Scheme for Cognitive Networks
2011-06-01
Meshed Tree Routing protocol wireless ad hoc networks ,” Second IEEE International Workshop on Enabling Technologies and Standards for Wireless Mesh ...and Sensor Networks , 2004 43. Chen G.; Stojmenovic I., “Clustering and routing in mobile wireless networks ,” Technical Report TR-99-05, SITE, June...Cross-layer optimization, intra-cluster routing , packet forwarding, inter-cluster routing , mesh network communications,
Review: Security in Wireless Technologies in Business
NASA Astrophysics Data System (ADS)
Sattarova, F. Y.; Kim, Tai-Hoon
Wireless technology seems to be everywhere now - but it is still relatively in its infancy. New standards and protocols continue to emerge and problems and bugs are discovered. Nevertheless, wireless networks make many things much more convenient and it appears that wireless networks are here to stay. The differences and similarities of wireless and wired security, the new threats brought by mobility, the security of networks and devices and effects of security, or lack of it are shortly discussed in this review paper.
Mian, Adnan Noor; Fatima, Mehwish; Khan, Raees; Prakash, Ravi
2014-01-01
Energy efficiency is an important design paradigm in Wireless Sensor Networks (WSNs) and its consumption in dynamic environment is even more critical. Duty cycling of sensor nodes is used to address the energy consumption problem. However, along with advantages, duty cycle aware networks introduce some complexities like synchronization and latency. Due to their inherent characteristics, many traditional routing protocols show low performance in densely deployed WSNs with duty cycle awareness, when sensor nodes are supposed to have high mobility. In this paper we first present a three messages exchange Lightweight Random Walk Routing (LRWR) protocol and then evaluate its performance in WSNs for routing low data rate packets. Through NS-2 based simulations, we examine the LRWR protocol by comparing it with DYMO, a widely used WSN protocol, in both static and dynamic environments with varying duty cycles, assuming the standard IEEE 802.15.4 in lower layers. Results for the three metrics, that is, reliability, end-to-end delay, and energy consumption, show that LRWR protocol outperforms DYMO in scalability, mobility, and robustness, showing this protocol as a suitable choice in low duty cycle and dense WSNs.
An efficient management system for wireless sensor networks.
Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu
2010-01-01
Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.
NASA Astrophysics Data System (ADS)
Mascarenas, David D. L.; Flynn, Eric; Lin, Kaisen; Farinholt, Kevin; Park, Gyuhae; Gupta, Rajesh; Todd, Michael; Farrar, Charles
2008-03-01
A major challenge impeding the deployment of wireless sensor networks for structural health monitoring (SHM) is developing means to supply power to the sensor nodes in a cost-effective manner. In this work an initial test of a roving-host wireless sensor network was performed on a bridge near Truth or Consequences, NM in August of 2007. The roving-host wireless sensor network features a radio controlled helicopter responsible for wirelessly delivering energy to sensor nodes on an "as-needed" basis. In addition, the helicopter also serves as a central data repository and processing center for the information collected by the sensor network. The sensor nodes used on the bridge were developed for measuring the peak displacement of the bridge, as well as measuring the preload of some of the bolted joints in the bridge. These sensors and sensor nodes were specifically designed to be able to operate from energy supplied wirelessly from the helicopter. The ultimate goal of this research is to ease the requirement for battery power supplies in wireless sensor networks.
Analysis of physical layer performance of hybrid optical-wireless access network
NASA Astrophysics Data System (ADS)
Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.
2011-09-01
The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.
Traffic Profiling in Wireless Sensor Networks
2006-12-01
components, that can be used for traffic profiling and monitoring of a wireless sensor network . The work demostrates how the IDS should capture and...observed and analyzed. Finally, initial indications from basic analysis of wireless sensor network traffic demonstrated a high degree of self-similarity.
Sinkhole Avoidance Routing in Wireless Sensor Networks
2011-05-09
sensor network consists of individual sensor nodes that work cooperatively to collect and communicate environmental data. In a surveillance role, a WSN...Wireless sensor networks, or WSNs, are an emerging commercial technology that may have practical applications on the modern battlefield. A wireless
Topological Analysis of Wireless Networks (TAWN)
2016-05-31
transmissions from any other node. Definition 1. A wireless network vulnerability is its susceptibility to becoming disconnected when a single source of...19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless
Wireless Communications in Reverberant Environments
2015-01-01
Secure Wireless Agent Testbed (SWAT), the Protocol Engineering Advanced Networking (PROTEAN) Research Group, the Data Fusion Laboratory (DFL), and the...constraints of their application. 81 Bibliography [1] V. Gungor and G. Hancke, “Industrial wireless sensor networks : Challenges, design principles, and...Bhattacharya, “Path loss estimation for a wireless sensor network for application in ship,” Int. J. of Comput. Sci. and Mobile Computing, vol. 2, no. 6, pp
Wireless body sensor networks for health-monitoring applications.
Hao, Yang; Foster, Robert
2008-11-01
Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.
Power-rate-distortion analysis for wireless video communication under energy constraint
NASA Astrophysics Data System (ADS)
He, Zhihai; Liang, Yongfang; Ahmad, Ishfaq
2004-01-01
In video coding and streaming over wireless communication network, the power-demanding video encoding operates on the mobile devices with limited energy supply. To analyze, control, and optimize the rate-distortion (R-D) behavior of the wireless video communication system under the energy constraint, we need to develop a power-rate-distortion (P-R-D) analysis framework, which extends the traditional R-D analysis by including another dimension, the power consumption. Specifically, in this paper, we analyze the encoding mechanism of typical video encoding systems and develop a parametric video encoding architecture which is fully scalable in computational complexity. Using dynamic voltage scaling (DVS), a hardware technology recently developed in CMOS circuits design, the complexity scalability can be translated into the power consumption scalability of the video encoder. We investigate the rate-distortion behaviors of the complexity control parameters and establish an analytic framework to explore the P-R-D behavior of the video encoding system. Both theoretically and experimentally, we show that, using this P-R-D model, the encoding system is able to automatically adjust its complexity control parameters to match the available energy supply of the mobile device while maximizing the picture quality. The P-R-D model provides a theoretical guideline for system design and performance optimization in wireless video communication under energy constraint, especially over the wireless video sensor network.
World Without Wires: Is Your District Ready to Go Wireless?
ERIC Educational Resources Information Center
Villano, Matt
2005-01-01
In this article, the author presents the latest wireless equipments available in market. For starters, wireless networks offer mobility and flexibility: users of laptops, PDAs, tablet PCs, and wireless Voice over IP telephones can move freely about campus while staying connected to the Internet. There are two kinds of wireless networks: ad-hoc, or…
NASA Astrophysics Data System (ADS)
Hortos, William S.
2003-07-01
Mobile ad hoc networking (MANET) supports self-organizing, mobile infrastructures and enables an autonomous network of mobile nodes that can operate without a wired backbone. Ad hoc networks are characterized by multihop, wireless connectivity via packet radios and by the need for efficient dynamic protocols. All routers are mobile and can establish connectivity with other nodes only when they are within transmission range. Importantly, ad hoc wireless nodes are resource-constrained, having limited processing, memory, and battery capacity. Delivery of high quality-ofservice (QoS), real-time multimedia services from Internet-based applications over a MANET is a challenge not yet achieved by proposed Internet Engineering Task Force (IETF) ad hoc network protocols in terms of standard performance metrics such as end-to-end throughput, packet error rate, and delay. In the distributed operations of route discovery and maintenance, strong interaction occurs across MANET protocol layers, in particular, the physical, media access control (MAC), network, and application layers. The QoS requirements are specified for the service classes by the application layer. The cross-layer design must also satisfy the battery-limited energy constraints, by minimizing the distributed power consumption at the nodes and of selected routes. Interactions across the layers are modeled in terms of the set of concatenated design parameters including associated energy costs. Functional dependencies of the QoS metrics are described in terms of the concatenated control parameters. New cross-layer designs are sought that optimize layer interdependencies to achieve the "best" QoS available in an energy-constrained, time-varying network. The protocol design, based on a reactive MANET protocol, adapts the provisioned QoS to dynamic network conditions and residual energy capacities. The cross-layer optimization is based on stochastic dynamic programming conditions derived from time-dependent models of MANET packet flows. Regulation of network behavior is modeled by the optimal control of the conditional rates of multivariate point processes (MVPPs); these rates depend on the concatenated control parameters through a change of probability measure. The MVPP models capture behavior of many service applications, e.g., voice, video and the self-similar behavior of Internet data sessions. Performance verification of the cross-layer protocols, derived from the dynamic programming conditions, can be achieved by embedding the conditions in a reactive routing protocol for MANETs, in a simulation environment, such as the wireless extension of ns-2. A canonical MANET scenario consists of a distributed collection of battery-powered laptops or hand-held terminals, capable of hosting multimedia applications. Simulation details and performance tradeoffs, not presented, remain for a sequel to the paper.
Network Coding Opportunities for Wireless Grids Formed by Mobile Devices
NASA Astrophysics Data System (ADS)
Nielsen, Karsten Fyhn; Madsen, Tatiana K.; Fitzek, Frank H. P.
Wireless grids have potential in sharing communication, computa-tional and storage resources making these networks more powerful, more robust, and less cost intensive. However, to enjoy the benefits of cooperative resource sharing, a number of issues should be addressed and the cost of the wireless link should be taken into account. We focus on the question how nodes can efficiently communicate and distribute data in a wireless grid. We show the potential of a network coding approach when nodes have the possibility to combine packets thus increasing the amount of information per transmission. Our implementation demonstrates the feasibility of network coding for wireless grids formed by mobile devices.
Intrusion Detection for Defense at the MAC and Routing Layers of Wireless Networks
2007-01-01
Space DoS Denial of Service DSR Dynamic Source Routing IDS Intrusion Detection System LAR Location-Aided Routing MAC Media Access Control MACA Multiple...different mobility parameters. 10 They simulate interaction between three MAC protocols ( MACA , 802.11 and CSMA) and three routing protocols (AODV, DSR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, John P.; Hamill, Michael J.; Mitchell, M. G.
A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wirelessmore » networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.« less
FuGeF: A Resource Bound Secure Forwarding Protocol for Wireless Sensor Networks
Umar, Idris Abubakar; Mohd Hanapi, Zurina; Sali, A.; Zulkarnain, Zuriati A.
2016-01-01
Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol’s semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery. PMID:27338411
FuGeF: A Resource Bound Secure Forwarding Protocol for Wireless Sensor Networks.
Umar, Idris Abubakar; Mohd Hanapi, Zurina; Sali, A; Zulkarnain, Zuriati A
2016-06-22
Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol's semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery.
Secure and Fair Cluster Head Selection Protocol for Enhancing Security in Mobile Ad Hoc Networks
Paramasivan, B.; Kaliappan, M.
2014-01-01
Mobile ad hoc networks (MANETs) are wireless networks consisting of number of autonomous mobile devices temporarily interconnected into a network by wireless media. MANETs become one of the most prevalent areas of research in the recent years. Resource limitations, energy efficiency, scalability, and security are the great challenging issues in MANETs. Due to its deployment nature, MANETs are more vulnerable to malicious attack. The secure routing protocols perform very basic security related functions which are not sufficient to protect the network. In this paper, a secure and fair cluster head selection protocol (SFCP) is proposed which integrates security factors into the clustering approach for achieving attacker identification and classification. Byzantine agreement based cooperative technique is used for attacker identification and classification to make the network more attack resistant. SFCP used to solve this issue by making the nodes that are totally surrounded by malicious neighbors adjust dynamically their belief and disbelief thresholds. The proposed protocol selects the secure and energy efficient cluster head which acts as a local detector without imposing overhead to the clustering performance. SFCP is simulated in network simulator 2 and compared with two protocols including AODV and CBRP. PMID:25143986
Secure and fair cluster head selection protocol for enhancing security in mobile ad hoc networks.
Paramasivan, B; Kaliappan, M
2014-01-01
Mobile ad hoc networks (MANETs) are wireless networks consisting of number of autonomous mobile devices temporarily interconnected into a network by wireless media. MANETs become one of the most prevalent areas of research in the recent years. Resource limitations, energy efficiency, scalability, and security are the great challenging issues in MANETs. Due to its deployment nature, MANETs are more vulnerable to malicious attack. The secure routing protocols perform very basic security related functions which are not sufficient to protect the network. In this paper, a secure and fair cluster head selection protocol (SFCP) is proposed which integrates security factors into the clustering approach for achieving attacker identification and classification. Byzantine agreement based cooperative technique is used for attacker identification and classification to make the network more attack resistant. SFCP used to solve this issue by making the nodes that are totally surrounded by malicious neighbors adjust dynamically their belief and disbelief thresholds. The proposed protocol selects the secure and energy efficient cluster head which acts as a local detector without imposing overhead to the clustering performance. SFCP is simulated in network simulator 2 and compared with two protocols including AODV and CBRP.
Chen, Yu-Gene T.
2013-04-16
A method includes receiving a message at a first wireless node. The first wireless node is associated with a first wired network, and the first wired network is associated with a first security layer. The method also includes transmitting the message over the first wired network when at least one destination of the message is located in the first security layer. The method further includes wirelessly transmitting the message for delivery to a second wireless node when at least one destination of the message is located in a second security layer. The second wireless node is associated with a second wired network, and the second wired network is associated with the second security layer. The first and second security layers may be associated with different security paradigms and/or different security domains. Also, the message could be associated with destinations in the first and second security layers.
Tips for Implementing a Wireless Network
ERIC Educational Resources Information Center
Walery, Darrell
2005-01-01
This article provides a quick start guide to provide educators with the basic points to consider before installing a wireless network in the school. Since many school districts have already implemented wireless networks, there is a lot of information available online to assist in the process.
An End-to-End Loss Discrimination Scheme for Multimedia Transmission over Wireless IP Networks
NASA Astrophysics Data System (ADS)
Zhao, Hai-Tao; Dong, Yu-Ning; Li, Yang
As the rapid growth of wireless IP networks, wireless IP access networks have a lot of potential applications in a variety of fields in civilian and military environments. Many of these applications, such as realtime audio/video streaming, will require some form of end-to-end QoS assurance. In this paper, an algorithm WMPLD (Wireless Multimedia Packet Loss Discrimination) is proposed for multimedia transmission control over wired-wireless hybrid IP networks. The relationship between packet length and packet loss rate in the Gilbert wireless error model is investigated. Furthermore, the algorithm can detect the nature of packet losses by sending large and small packets alternately, and control the sending rate of nodes. In addition, by means of updating factor K, this algorithm can adapt to the changes of network states quickly. Simulation results show that, compared to previous algorithms, WMPLD algorithm can improve the networks throughput as well as reduce the congestion loss rate in various situations.
Wireless local area network for the dental office.
Mupparapu, Muralidhar
2004-01-01
Dental offices are no exception to the implementation of new and advanced technology, especially if it enhances productivity. In a rapidly transforming digital world, wireless technology has a special place, as it has truly "retired the wire" and contributed to the ease and efficient access to patient data and other software-based applications for diagnosis and treatment. If the office or the clinic is networked, access to patient management software, imaging software and treatment planning tools is enhanced. Access will be further enhanced and unrestricted if the entire network is wireless. As with any new, emerging technology, there will be issues that should be kept in mind before adapting to the wireless environment. Foremost is the network security involved in the installation and use of these wireless networks. This short, technical manuscript deals with standards and choices in wireless technology currently available for implementation within a dental office. The benefits of each network security protocol available to protect patient data and boost the efficiency of a modern dental office are discussed.
FireFly: reconfigurable optical wireless networking data centers
NASA Astrophysics Data System (ADS)
Kavehrad, Mohsen; Deng, Peng; Gupta, H.; Longtin, J.; Das, S. R.; Sekar, V.
2017-01-01
We explore a novel, free-space optics based approach for building data center interconnects. Data centers (DCs) are a critical piece of today's networked applications in both private and public sectors. The key factors that have driven this trend are economies of scale, reduced management costs, better utilization of hardware via statistical multiplexing, and the ability to elastically scale applications in response to changing workload patterns. A robust DC network fabric is fundamental to the success of DCs and to ensure that the network does not become a bottleneck for high-performance applications. In this context, DC network design must satisfy several goals: high performance (e.g., high throughput and low latency), low equipment and management cost, robustness to dynamic traffic patterns, incremental expandability to add new servers or racks, and other practical concerns such as cabling complexity, and power and cooling costs. Current DC network architectures do not seem to provide a satisfactory solution, with respect to the above requirements. In particular, traditional static (wired) networks are either overprovisioned or oversubscribed. Recent works have tried to overcome the above limitations by augmenting a static (wired) "core" with some flexible links (RF-wireless or optical). These augmented architectures show promise, but offer only incremental improvement in performance. Specifically, RFwireless based augmented solutions also offer only limited performance improvement, due to inherent interference and range constraints of RF links. This paper explores an alternative design point—a fully flexible and all-wireless DC interrack network based on free-space optical (FSO) links. We call this FireFly as in; Free-space optical Inter-Rack nEtwork with high FLexibilitY. We will present our designs and tests using various configurations that can help the performance and reliability of the FSO links.
A comparative study of wireless sensor networks and their routing protocols.
Bhattacharyya, Debnath; Kim, Tai-hoon; Pal, Subhajit
2010-01-01
Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.
The Brave New World of Wireless Technologies: A Primer for Educators.
ERIC Educational Resources Information Center
Boerner, Gerald L.
2002-01-01
Discusses the use of wireless local area networks (WLANs) on college campuses. Highlights include traditional wired networks; cost, speed, and reliability; wireless networking standards; mobility; installation speed, simplicity, and flexibility; reduced cost of ownership; scalability; security issues; and a glossary of WLAN terms. (LRW)
Shipboard Wireless Sensor Networks Utilizing Zigbee Technology
2006-09-01
This thesis studies the feasibility of utilizing Zigbee standard devices to create a shipboard wireless sensor network . Two primary methods were used...the research effort would be a completely wireless sensor network which would result in a net savings in man hours required to maintain and monitor
Wireless sensor network for irrigation application in cotton
USDA-ARS?s Scientific Manuscript database
A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...
MQCC: Maximum Queue Congestion Control for Multipath Networks with Blockage
2015-10-19
higher error rates in wireless networks result in a great deal of “false” congestion indications, resulting in underutilization of the network [4...approaches that are relevant to lossy wireless networks . Multipath TCP (MPTCP) schemes [9], [10] explore the design and implementation of multipath...attempts to “fix” TCP to work with lossy wireless networks using existing techniques. The authors have taken the view that because packet losses are
Boarding Team Networking on the Move: Applying Unattended Relay Nodes
2014-09-01
below the main deck via a wireless ad-hoc network will enhance the situational awareness. Regarding the boarding of a non-compliant vessel, tracking...reaction time. 14. SUBJECT TERMS Maritime Interdiction Operations, Boarding Team Networking , Unattended Relay Nodes, Wireless Mesh Networks Onboard...the steel structures of naval vessels obstruct signals to propagate below the main deck. Extending the network below the main deck via a wireless ad
Real-Time Optimization in Complex Stochastic Environment
2015-06-24
simpler ones, thus addressing scalability and the limited resources of networked wireless devices. This, however, comes at the expense of increased...Maximization of Wireless Sensor Networks with Non-ideal Batteries”, IEEE Trans. on Control of Network Systems, Vol. 1, 1, pp. 86-98, 2014. [27...C.G., “Optimal Energy-Efficient Downlink Transmission Scheduling for Real-Time Wireless Networks ”, subm. to IEEE Trans. on Control of Network Systems
Research on trust calculation of wireless sensor networks based on time segmentation
NASA Astrophysics Data System (ADS)
Su, Yaoxin; Gao, Xiufeng; Qiao, Wenxin
2017-05-01
Because the wireless sensor network is different from the traditional network characteristics, it is easy to accept the intrusion from the compromise node. The trust mechanism is the most effective way to defend against internal attacks. Aiming at the shortcomings of the existing trust mechanism, a method of calculating the trust of wireless sensor networks based on time segmentation is proposed. It improves the security of the network and extends the life of the network
Designing Robust and Resilient Tactical MANETs
2014-09-25
Bounds on the Throughput Efficiency of Greedy Maximal Scheduling in Wireless Networks , IEEE/ACM Transactions on Networking , (06 2011): 0. doi: N... Wireless Sensor Networks and Effects of Long Range Dependant Data, Special IWSM Issue of Sequential Analysis, (11 2012): 0. doi: A. D. Dominguez...Bushnell, R. Poovendran. A Convex Optimization Approach for Clone Detection in Wireless Sensor Networks , Pervasive and Mobile Computing, (01 2012
Mobility and Cloud: Operating in Intermittent, Austere Network Conditions
2014-09-01
consume information, and are connected to cloud-based servers over wired or wireless network connections. For mobile clients, this connection, by...near future. In addition to intermittent connectivity issues, many wireless networks introduce additional delay due to excessive buffering. This can...requirements, commercial cloud applications have grown at a fast rate. Similar to other mobile systems, navy ships connected over wireless networks
The Systems Librarian: Implementing Wireless Networks without Compromising Security
ERIC Educational Resources Information Center
Breeding, Marshall
2005-01-01
Many libraries are or soon will be offering Wi-Fi, also known as wireless networks. The largest perceived barriers to providing this service are concerns about security. The prime rule when deploying Wi-Fi is segregation, having a clear separation between a public wireless network and the rest of the library?s network. A number of devices can be…
Communication protocol in chassis detecting wireless transmission system based on WiFi
USDA-ARS?s Scientific Manuscript database
In chassis detecting wireless transmission system, the wireless network communication protocol plays a key role in the information exchange and synchronization between the host and chassis PDA. This paper presents a wireless network transmission protocol based on TCP/IP which makes the rules of info...
Wireless sensor network for monitoring soil moisture and weather conditions
USDA-ARS?s Scientific Manuscript database
A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...
NASA Astrophysics Data System (ADS)
Cheng, Xiao; Feng, Lei; Zhou, Fanqin; Wei, Lei; Yu, Peng; Li, Wenjing
2018-02-01
With the rapid development of the smart grid, the data aggregation point (AP) in the neighborhood area network (NAN) is becoming increasingly important for forwarding the information between the home area network and wide area network. Due to limited budget, it is unable to use one-single access technology to meet the ongoing requirements on AP coverage. This paper first introduces the wired and wireless hybrid access network with the integration of long-term evolution (LTE) and passive optical network (PON) system for NAN, which allows a good trade-off among cost, flexibility, and reliability. Then, based on the already existing wireless LTE network, an AP association optimization model is proposed to make the PON serve as many APs as possible, considering both the economic efficiency and network reliability. Moreover, since the features of the constraints and variables of this NP-hard problem, a hybrid intelligent optimization algorithm is proposed, which is achieved by the mixture of the genetic, ant colony and dynamic greedy algorithm. By comparing with other published methods, simulation results verify the performance of the proposed method in improving the AP coverage and the performance of the proposed algorithm in terms of convergence.
Integrating legacy medical data sensors in a wireless network infrastucture.
Dembeyiotis, S; Konnis, G; Koutsouris, D
2005-01-01
In the process of developing a wireless networking solution to provide effective field-deployable communications and telemetry support for rescuers during major natural disasters, we are faced with the task of interfacing the multitude of medical and other legacy data collection sensors to the network grid. In this paper, we detail a number of solutions, with particular attention given to the issue of data security. The chosen implementation allows for sensor control and management from remote network locations, while the sensors can wirelessly transmit their data to nearby network nodes securely, utilizing the latest commercially available cryptography solutions. Initial testing validates the design choices, while the network-enabled sensors are being integrated in the overall wireless network security framework.
Intrusion detection and monitoring for wireless networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.
Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wirelessmore » networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.« less
Wireless local area network security.
Bergeron, Bryan P
2004-01-01
Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.
A Novel Topology Control Approach to Maintain the Node Degree in Dynamic Wireless Sensor Networks
Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana
2014-01-01
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power. PMID:24608008
Suppressing epidemic spreading by risk-averse migration in dynamical networks
NASA Astrophysics Data System (ADS)
Yang, Han-Xin; Tang, Ming; Wang, Zhen
2018-01-01
In this paper, we study the interplay between individual behaviors and epidemic spreading in a dynamical network. We distribute agents on a square-shaped region with periodic boundary conditions. Every agent is regarded as a node of the network and a wireless link is established between two agents if their geographical distance is less than a certain radius. At each time, every agent assesses the epidemic situation and make decisions on whether it should stay in or leave its current place. An agent will leave its current place with a speed if the number of infected neighbors reaches or exceeds a critical value E. Owing to the movement of agents, the network's structure is dynamical. Interestingly, we find that there exists an optimal value of E leading to the maximum epidemic threshold. This means that epidemic spreading can be effectively controlled by risk-averse migration. Besides, we find that the epidemic threshold increases as the recovering rate increases, decreases as the contact radius increases, and is maximized by an optimal moving speed. Our findings offer a deeper understanding of epidemic spreading in dynamical networks.
Real-Time Alpine Measurement System Using Wireless Sensor Networks
2017-01-01
Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra’s wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape. PMID:29120376
Real-Time Alpine Measurement System Using Wireless Sensor Networks.
Malek, Sami A; Avanzi, Francesco; Brun-Laguna, Keoma; Maurer, Tessa; Oroza, Carlos A; Hartsough, Peter C; Watteyne, Thomas; Glaser, Steven D
2017-11-09
Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra's wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km 2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape.
Enhanced Security and Pairing-free Handover Authentication Scheme for Mobile Wireless Networks
NASA Astrophysics Data System (ADS)
Chen, Rui; Shu, Guangqiang; Chen, Peng; Zhang, Lijun
2017-10-01
With the widely deployment of mobile wireless networks, we aim to propose a secure and seamless handover authentication scheme that allows users to roam freely in wireless networks without worrying about security and privacy issues. Given the open characteristic of wireless networks, safety and efficiency should be considered seriously. Several previous protocols are designed based on a bilinear pairing mapping, which is time-consuming and inefficient work, as well as unsuitable for practical situations. To address these issues, we designed a new pairing-free handover authentication scheme for mobile wireless networks. This scheme is an effective improvement of the protocol by Xu et al., which is suffer from the mobile node impersonation attack. Security analysis and simulation experiment indicate that the proposed protocol has many excellent security properties when compared with other recent similar handover schemes, such as mutual authentication and resistance to known network threats, as well as requiring lower computation and communication cost.
SHER: a colored petri net based random mobility model for wireless communications.
Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal
2015-01-01
In wireless network research, simulation is the most imperative technique to investigate the network's behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the errors of our proposed model.
Providing Self-Healing Ability for Wireless Sensor Node by Using Reconfigurable Hardware
Yuan, Shenfang; Qiu, Lei; Gao, Shang; Tong, Yao; Yang, Weiwei
2012-01-01
Wireless sensor networks (WSNs) have received tremendous attention over the past ten years. In engineering applications of WSNs, a number of sensor nodes are usually spread across some specific geographical area. Some of these nodes have to work in harsh environments. Dependability of the Wireless Sensor Network (WSN) is very important for its successful applications in the engineering area. In ordinary research, when a node has a failure, it is usually discarded and the network is reorganized to ensure the normal operation of the WSN. Using appropriate WSN re-organization methods, though the sensor networks can be reorganized, this causes additional maintenance costs and sometimes still decreases the function of the networks. In those situations where the sensor networks cannot be reorganized, the performance of the whole WSN will surely be degraded. In order to ensure the reliable and low cost operation of WSNs, a method to develop a wireless sensor node with self-healing ability based on reconfigurable hardware is proposed in this paper. Two self-healing WSN node realization paradigms based on reconfigurable hardware are presented, including a redundancy-based self-healing paradigm and a whole FPAA/FPGA based self-healing paradigm. The nodes designed with the self-healing ability can dynamically change their node configurations to repair the nodes' hardware failures. To demonstrate these two paradigms, a strain sensor node is adopted as an illustration to show the concepts. Two strain WSN sensor nodes with self-healing ability are developed respectively according to the proposed self-healing paradigms. Evaluation experiments on self-healing ability and power consumption are performed. Experimental results show that the developed nodes can self-diagnose the failures and recover to a normal state automatically. The research presented can improve the robustness of WSNs and reduce the maintenance cost of WSNs in engineering applications. PMID:23202176
Progression In The Concepts Of Cognitive Sense Wireless Networks - An Analysis Report
NASA Astrophysics Data System (ADS)
Ajay, V. P.; Nesasudha, M.
2017-10-01
This paper illustrates the conception of networks, their primary goals (from day one to the present), the changes it had to endure to get to its present form and the developments which are in progress and in store for further standardization. The analysis gives more importance to the specifics of the Cognitive Radio Networks, which makes use of the dynamic spectrum access procedures, framed for better utilization of our available spectrum resources. The main conceptual difficulties and current research trends are also discussed in terms of real time implementation.
Constantinescu, Liviu; Kim, Jinman; Feng, David Dagan
2012-01-01
With the advent of 4G and other long-term evolution (LTE) wireless networks, the traditional boundaries of patient record propagation are diminishing as networking technologies extend the reach of hospital infrastructure and provide on-demand mobile access to medical multimedia data. However, due to legacy and proprietary software, storage and decommissioning costs, and the price of centralization and redevelopment, it remains complex, expensive, and often unfeasible for hospitals to deploy their infrastructure for online and mobile use. This paper proposes the SparkMed data integration framework for mobile healthcare (m-Health), which significantly benefits from the enhanced network capabilities of LTE wireless technologies, by enabling a wide range of heterogeneous medical software and database systems (such as the picture archiving and communication systems, hospital information system, and reporting systems) to be dynamically integrated into a cloud-like peer-to-peer multimedia data store. Our framework allows medical data applications to share data with mobile hosts over a wireless network (such as WiFi and 3G), by binding to existing software systems and deploying them as m-Health applications. SparkMed integrates techniques from multimedia streaming, rich Internet applications (RIA), and remote procedure call (RPC) frameworks to construct a Self-managing, Pervasive Automated netwoRK for Medical Enterprise Data (SparkMed). Further, it is resilient to failure, and able to use mobile and handheld devices to maintain its network, even in the absence of dedicated server devices. We have developed a prototype of the SparkMed framework for evaluation on a radiological workflow simulation, which uses SparkMed to deploy a radiological image viewer as an m-Health application for telemedical use by radiologists and stakeholders. We have evaluated our prototype using ten devices over WiFi and 3G, verifying that our framework meets its two main objectives: 1) interactive delivery of medical multimedia data to mobile devices; and 2) attaching to non-networked medical software processes without significantly impacting their performance. Consistent response times of under 500 ms and graphical frame rates of over 5 frames per second were observed under intended usage conditions. Further, overhead measurements displayed linear scalability and low resource requirements.
NASA Astrophysics Data System (ADS)
Yamamoto, Toshiaki; Ueda, Tetsuro; Obana, Sadao
As one of the dynamic spectrum access technologies, “cognitive radio technology,” which aims to improve the spectrum efficiency, has been studied. In cognitive radio networks, each node recognizes radio conditions, and according to them, optimizes its wireless communication routes. Cognitive radio systems integrate the heterogeneous wireless systems not only by switching over them but also aggregating and utilizing them simultaneously. The adaptive control of switchover use and concurrent use of various wireless systems will offer a stable and flexible wireless communication. In this paper, we propose the adaptive traffic route control scheme that provides high quality of service (QoS) for cognitive radio technology, and examine the performance of the proposed scheme through the field trials and computer simulations. The results of field trials show that the adaptive route control according to the radio conditions improves the user IP throughput by more than 20% and reduce the one-way delay to less than 1/6 with the concurrent use of IEEE802.16 and IEEE802.11 wireless media. Moreover, the simulation results assuming hundreds of mobile terminals reveal that the number of users receiving the required QoS of voice over IP (VoIP) service and the total network throughput of FTP users increase by more than twice at the same time with the proposed algorithm. The proposed adaptive traffic route control scheme can enhance the performances of the cognitive radio technologies by providing the appropriate communication routes for various applications to satisfy their required QoS.
SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors.
Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin
2014-11-25
Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.
SVANET: A Smart Vehicular Ad Hoc Network for Efficient Data Transmission with Wireless Sensors
Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin
2014-01-01
Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency. PMID:25429409
A probabilistic dynamic energy model for ad-hoc wireless sensors network with varying topology
NASA Astrophysics Data System (ADS)
Al-Husseini, Amal
In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the degree distribution and evolution perspective. In specific, we focus on implementation of a scale-free degree distribution topology for energy efficient WSNs. WSNs is an emerging technology that finds its applications in different areas such as environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous chemical monitoring in war zones. This technology allows us to collect data without human presence or intervention. Energy conservation/efficiency is one of the major issues in prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology control algorithms have been presented, but there is dearth of research focused on energy conservation/efficiency of WSNs. Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution and evolution perspective. Self-organization observed in natural and biological systems has been directly linked to their degree distribution. It is widely known that scale-free distribution bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these properties, we propose two complex network theoretic self-organizing models for adaptive WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into the constraints and limitations of WSNs. We developed simulation models to conduct numerical experiments and network analysis. The main objective of studying these models is to find ways to reducing energy usage of each node and balancing the overall network energy disrupted by faulty communication among nodes. The first model constructs the wireless sensor network relative to the degree (connectivity) and remaining energy of every individual node. We observed that it results in a scale-free network structure which has good fault tolerance properties in face of random node failures. The second model considers additional constraints on the maximum degree of each node as well as the energy consumption relative to degree changes. This gives more realistic results from a dynamical network perspective. It results in balanced network-wide energy consumption. The results show that networks constructed using the proposed approach have good properties for different centrality measures. The outcomes of the presented research are beneficial to building WSN control models with greater self-organization properties which leads to optimal energy consumption.
Impact of in-band interference on a wake-up radio system in wireless sensor networks
NASA Astrophysics Data System (ADS)
Lebreton, J. M.; Murad, N. M.; Lorion, R.
2017-05-01
The energy efficiency of Wireless Sensor Networks (WSNs) is considerably improved with Wake-up Radio (WuR) systems. However, their resilience to interference is often neglected in the literature. This might be an issue due to the proliferation of wireless devices and the growing field of internet of things. In this paper, we evaluate the impact of in-band interference from wireless devices on a WuR system. The approach proves that WuR systems are still performing well when coexisting with external wireless networks, even if the energy-efficiency is slightly reduced.
Bluetooth-based wireless sensor networks
NASA Astrophysics Data System (ADS)
You, Ke; Liu, Rui Qiang
2007-11-01
In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... Select Staffing, Oxnard, CA; CalAmp Wireless Networks Corporation (CWNC), Including On- Site Leased... Division, including on-site leased workers from Select Staffing, Oxnard, California (TA-W-80,399). The...-site leased workers from Select Staffing, Oxnard, California (TA-W-80,399) and CalAmp Wireless Networks...
Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Leeuwen, Brian P.; Eldridge, John M.
Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approachmore » that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.« less
Wireless Augmented Reality Communication System
NASA Technical Reports Server (NTRS)
Agan, Martin (Inventor); Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor)
2015-01-01
A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.
Wireless Augmented Reality Communication System
NASA Technical Reports Server (NTRS)
Jedrey, Thomas (Inventor); Agan, Martin (Inventor); Devereaux, Ann (Inventor)
2017-01-01
A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.
2011-05-01
rate convolutional codes or the prioritized Rate - Compatible Punctured ...Quality of service RCPC Rate - compatible and punctured convolutional codes SNR Signal to noise ratio SSIM... Convolutional (RCPC) codes . The RCPC codes achieve UEP by puncturing off different amounts of coded bits of the parent code . The
QOS-aware error recovery in wireless body sensor networks using adaptive network coding.
Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah
2014-12-29
Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.
NASA Technical Reports Server (NTRS)
Kanai, T.; Kramer, M.; McAuley, A. J.; Nowack, S.; Pinck, D. S.; Ramirez, G.; Stewart, I.; Tohme, H.; Tong, L.
1995-01-01
This paper describes results from several wireless field trials in New Jersey, California, and Colorado, conducted jointly by researchers at Bellcore, JPL, and US West over the course of 1993 and 1994. During these trials, applications communicated over multiple wireless networks including satellite, low power PCS, high power cellular, packet data, and the wireline Public Switched Telecommunications Network (PSTN). Key goals included 1) designing data applications and an API suited to mobile users, 2) investigating internetworking issues, 3) characterizing wireless networks under various field conditions, and 4) comparing the performance of different protocol mechanisms over the diverse networks and applications. We describe experimental results for different protocol mechanisms and parameters, such as acknowledgment schemes and packet sizes. We show the need for powerful error control mechanisms such as selective acknowledgements and combining data from multiple transmissions. We highlight the possibility of a common protocol for all wireless networks, from micro-cellular PCS to satellite networks.
The Role of Wireless Computing Technology in the Design of Schools.
ERIC Educational Resources Information Center
Nair, Prakash
This document discusses integrating computers logically and affordably into a school building's infrastructure through the use of wireless technology. It begins by discussing why wireless networks using mobile computers are preferable to desktop machines in each classoom. It then explains the features of a wireless local area network (WLAN) and…
Link-state-estimation-based transmission power control in wireless body area networks.
Kim, Seungku; Eom, Doo-Seop
2014-07-01
This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.
Cognitive LF-Ant: a novel protocol for healthcare wireless sensor networks.
Sousa, Marcelo; Lopes, Waslon; Madeiro, Francisco; Alencar, Marcelo
2012-01-01
In this paper, the authors present the Cognitive LF-Ant protocol for emergency reporting in healthcare wireless sensor networks. The protocol is inspired by the natural behaviour of ants and a cognitive component provides the capabilities to dynamically allocate resources, in accordance with the emergency degree of each patient. The intra-cluster emergency reporting is inspired by the different capabilities of leg-manipulated ants. The inter-cluster reporting is aided by the cooperative modulation diversity with spectrum sensing, which can detect new emergency reporting requests and forward them. Simulations results show the decrease of average delay time as the probability of opportunistic access increases, which privileges the emergency reporting related to the patients with higher priority of resources' usage. Furthermore, the packet loss rate is decreased by the use of cooperative modulation diversity with spectrum sensing.
Cognitive LF-Ant: A Novel Protocol for Healthcare Wireless Sensor Networks
Sousa, Marcelo; Lopes, Waslon; Madeiro, Francisco; Alencar, Marcelo
2012-01-01
In this paper, the authors present the Cognitive LF-Ant protocol for emergency reporting in healthcare wireless sensor networks. The protocol is inspired by the natural behaviour of ants and a cognitive component provides the capabilities to dynamically allocate resources, in accordance with the emergency degree of each patient. The intra-cluster emergency reporting is inspired by the different capabilities of leg-manipulated ants. The inter-cluster reporting is aided by the cooperative modulation diversity with spectrum sensing, which can detect new emergency reporting requests and forward them. Simulations results show the decrease of average delay time as the probability of opportunistic access increases, which privileges the emergency reporting related to the patients with higher priority of resources' usage. Furthermore, the packet loss rate is decreased by the use of cooperative modulation diversity with spectrum sensing. PMID:23112610
Wireless Power Control for Tactical MANET: Power Rate Bounds
2016-09-01
signals and by their inherent interference.” Figure 1. Transmission and interference in a two-link wireless network. Wireless power control seeks to...e.g., shutting off transmissions to measure the interference is impractical.) In a wireless power control system, the receiver sets its transmitter’s...Travassos Ro- mano [2013] Transmission Power Control for Opportunistic QoS Provision in Wireless Networks, IEEE Transactions on Control Systems Technology
2012-03-01
detection and physical layer authentication in mobile Ad Hoc networks and wireless sensor networks (WSNs) have been investigated. Résume Le rapport...IEEE 802.16 d and e (WiMAX); (b) IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s (c) Sensor networks based on IEEE 802.15.4: Wireless USB, Bluetooth... sensor network are investigated for standard compatible wireless signals. The proposed signal existence detection and identification process consists
Availability Issues in Wireless Visual Sensor Networks
Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo
2014-01-01
Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301
Transport Protocols for Wireless Mesh Networks
NASA Astrophysics Data System (ADS)
Eddie Law, K. L.
Transmission control protocol (TCP) provides reliable connection-oriented services between any two end systems on the Internet. With TCP congestion control algorithm, multiple TCP connections can share network and link resources simultaneously. These TCP congestion control mechanisms have been operating effectively in wired networks. However, performance of TCP connections degrades rapidly in wireless and lossy networks. To sustain the throughput performance of TCP connections in wireless networks, design modifications may be required accordingly in the TCP flow control algorithm, and potentially, in association with other protocols in other layers for proper adaptations. In this chapter, we explain the limitations of the latest TCP congestion control algorithm, and then review some popular designs for TCP connections to operate effectively in wireless mesh network infrastructure.
Routing Protocols in Wireless Sensor Networks
Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco
2009-01-01
The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks. PMID:22291515
Routing protocols in wireless sensor networks.
Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco
2009-01-01
The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks.
NASA Technical Reports Server (NTRS)
Nichols, Kelvin F.; Best, Susan; Schneider, Larry
2004-01-01
With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their offices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (IAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing acceptance. The user computer running the VPN client and the. target site that is running the . VPN firewall exchange this encryption key and therefore are the only ones that are able to decipher the data. The level of encryption offered by the VPN is making it possible for wireless networks to pass the strict security policies that have kept them from being used in the past. Now people will be able to benefit from the many advantages that wireless networking has to offer in the area of mission critical applications.
NASA Technical Reports Server (NTRS)
Nichols, Kelvin F.; Best, Susan; Schneider, Larry
2004-01-01
With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their off ices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (LAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing acceptance. The user computer running the VPN client and the target site that is running the VPN firewall exchange this encryption key and therefore are the only ones that are able to decipher the data. The level of encryption offered by the VPN is making it possible for wireless networks to pass the strict security policies that have kept them from being used in the past. Now people will be able to benefit from the many advantages that wireless networking has to offer in the area of mission critical applications.
Traffic prediction using wireless cellular networks : final report.
DOT National Transportation Integrated Search
2016-03-01
The major objective of this project is to obtain traffic information from existing wireless : infrastructure. : In this project freeway traffic is identified and modeled using data obtained from existing : wireless cellular networks. Most of the prev...
Using digital watermarking to enhance security in wireless medical image transmission.
Giakoumaki, Aggeliki; Perakis, Konstantinos; Banitsas, Konstantinos; Giokas, Konstantinos; Tachakra, Sapal; Koutsouris, Dimitris
2010-04-01
During the last few years, wireless networks have been increasingly used both inside hospitals and in patients' homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.
Stochastic Control of Multi-Scale Networks: Modeling, Analysis and Algorithms
2014-10-20
Theory, (02 2012): 0. doi: B. T. Swapna, Atilla Eryilmaz, Ness B. Shroff. Throughput-Delay Analysis of Random Linear Network Coding for Wireless ... Wireless Sensor Networks and Effects of Long-Range Dependent Data, Sequential Analysis , (10 2012): 0. doi: 10.1080/07474946.2012.719435 Stefano...Sequential Analysis , (10 2012): 0. doi: John S. Baras, Shanshan Zheng. Sequential Anomaly Detection in Wireless Sensor Networks andEffects of Long
Multimedia-Based Integration of Cross-Layer Techniques
2014-06-01
wireless networks play a critical role in net-centric warfare, including the sharing of the time-sensitive battlefield information among military nodes for...layer protocols are key enablers in effectively deploying the military wireless network. This report discusses the design of cross-layer protocols...2 1.0 INTRODUCTION 1.1 Motivation The Air Force (AF) Wireless Networks (also denoted as military networks in this report) must be capable of
Alinejad, Ali; Istepanian, R S H; Philip, N
2012-01-01
The concept of 4G health will be one of the key focus areas of future m-health research and enterprise activities in the coming years. WiMAX technology is one of the constituent 4G wireless technologies that provides broadband wireless access (BWA). Despite the fact that WiMAX is able to provide a high data rate in a relatively large coverage; this technology has specific limitations such as: coverage, signal attenuation problems due to shadowing or path loss, and limited available spectrum. The IEEE 802.16j mobile multihop relay (MMR) technology is a pragmatic solution designed to overcome these limitations. The aim of IEEE 802.16j MMR is to expand the IEEE 802.16e's capabilities with multihop features. In particular, the uplink (UL) and downlink (DL) subframe allocation in WiMAX network is usually fixed. However, dynamic frame allocation is a useful mechanism to optimize uplink and downlink subframe size dynamically based on the traffic conditions through real-time traffic monitoring. This particular mechanism is important for future WiMAX based m-health applications as it allows the tradeoff in both UL and DL channels. In this paper, we address the dynamic frame allocation issue in IEEE 802.16j MMR network for m-health applications. A comparative performance analysis of the proposed approach is validated using the OPNET Modeler(®). The simulation results have shown an improved performance of resource allocation and end-to-end delay performance for typical medical video streaming application.
NASA Astrophysics Data System (ADS)
Raju, Kota Solomon; Merugu, Naresh Babu; Neetu, Babu, E. Ram
2016-03-01
ZigBee is well-accepted industrial standard for wireless sensor networks based on IEEE 802.15.4 standard. Wireless Sensor Networks is the major concern of communication these days. These Wireless Sensor Networks investigate the properties of networks of small battery-powered sensors with wireless communication. The communication between any two wireless nodes of wireless sensor networks is carried out through a protocol stack. This protocol stack has been designed by different vendors in various ways. Every custom vendor possesses his own protocol stack and algorithms especially at the MAC layer. But, many applications require modifications in their algorithms at various layers as per their requirements, especially energy efficient protocols at MAC layer that are simulated in Wireless sensor Network Simulators which are not being tested in real time systems because vendors do not allow the programmability of each layer in their protocol stack. This problem can be quoted as Vendor-Interoperability. The solution is to develop the programmable protocol stack where we can design our own application as required. As a part of the task first we tried implementing physical layer and transmission of data using physical layer. This paper describes about the transmission of the total number of bytes of Frame according to the IEEE 802.15.4 standard using Physical Layer.
Design and Analysis of Secure Routing Protocol for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Wang, Jiong; Zhang, Hua
2017-09-01
In recent years, with the development of science and technology and the progress of the times, China's wireless network technology has become increasingly prosperous and it plays an important role in social production and life. In this context, in order to further to enhance the stability of wireless network data transmission and security enhancements, the staff need to focus on routing security and carry out related work. Based on this, this paper analyzes the design of wireless sensor based on secure routing protocol.
Mobility management techniques for the next-generation wireless networks
NASA Astrophysics Data System (ADS)
Sun, Junzhao; Howie, Douglas P.; Sauvola, Jaakko J.
2001-10-01
The tremendous demands from social market are pushing the booming development of mobile communications faster than ever before, leading to plenty of new advanced techniques emerging. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Mobility management is an important issue in the area of mobile communications, which can be best solved at the network layer. One of the key features of the next generation wireless networks is all-IP infrastructure. This paper discusses the mobility management schemes for the next generation mobile networks through extending IP's functions with mobility support. A global hierarchical framework model for the mobility management of wireless networks is presented, in which the mobility management is divided into two complementary tasks: macro mobility and micro mobility. As the macro mobility solution, a basic principle of Mobile IP is introduced, together with the optimal schemes and the advances in IPv6. The disadvantages of the Mobile IP on solving the micro mobility problem are analyzed, on the basis of which three main proposals are discussed as the micro mobility solutions for mobile communications, including Hierarchical Mobile IP (HMIP), Cellular IP, and Handoff-Aware Wireless Access Internet Infrastructure (HAWAII). A unified model is also described in which the different micro mobility solutions can coexist simultaneously in mobile networks.
Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani
2015-01-01
Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting.
Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani
2015-01-01
Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting. PMID:26236773
Advanced wireless mobile collaborative sensing network for tactical and strategic missions
NASA Astrophysics Data System (ADS)
Xu, Hao
2017-05-01
In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.
Dynamic Reconfiguration of Security Policies in Wireless Sensor Networks
Pinto, Mónica; Gámez, Nadia; Fuentes, Lidia; Amor, Mercedes; Horcas, José Miguel; Ayala, Inmaculada
2015-01-01
Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs). We evaluate our approach using a case study from the intelligent transportation system domain. PMID:25746093
Utilising eduroam[TM] Architecture in Building Wireless Community Networks
ERIC Educational Resources Information Center
Huhtanen, Karri; Vatiainen, Heikki; Keski-Kasari, Sami; Harju, Jarmo
2008-01-01
Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…
The Study of Collective Actions in a University Anchored Community Wireless Network
ERIC Educational Resources Information Center
Kuchibhotla, Hari N.
2012-01-01
The emergence of wireless devices and the ease in setting up wireless devices has created opportunities for various entities, and in particular to universities, by partnering with their local communities in the form of a university anchored community wireless network. This provides opportunities for students to be part of the community-based…
Design and Analysis of Self-Adapted Task Scheduling Strategies in Wireless Sensor Networks
Guo, Wenzhong; Xiong, Naixue; Chao, Han-Chieh; Hussain, Sajid; Chen, Guolong
2011-01-01
In a wireless sensor network (WSN), the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm’s ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms. PMID:22163971
On mobile wireless ad hoc IP video transports
NASA Astrophysics Data System (ADS)
Kazantzidis, Matheos
2006-05-01
Multimedia transports in wireless, ad-hoc, multi-hop or mobile networks must be capable of obtaining information about the network and adaptively tune sending and encoding parameters to the network response. Obtaining meaningful metrics to guide a stable congestion control mechanism in the transport (i.e. passive, simple, end-to-end and network technology independent) is a complex problem. Equally difficult is obtaining a reliable QoS metrics that agrees with user perception in a client/server or distributed environment. Existing metrics, objective or subjective, are commonly used after or before to test or report on a transmission and require access to both original and transmitted frames. In this paper, we propose that an efficient and successful video delivery and the optimization of overall network QoS requires innovation in a) a direct measurement of available and bottleneck capacity for its congestion control and b) a meaningful subjective QoS metric that is dynamically reported to video sender. Once these are in place, a binomial -stable, fair and TCP friendly- algorithm can be used to determine the sending rate and other packet video parameters. An adaptive mpeg codec can then continually test and fit its parameters and temporal-spatial data-error control balance using the perceived QoS dynamic feedback. We suggest a new measurement based on a packet dispersion technique that is independent of underlying network mechanisms. We then present a binomial control based on direct measurements. We implement a QoS metric that is known to agree with user perception (MPQM) in a client/server, distributed environment by using predetermined table lookups and characterization of video content.
NASA Astrophysics Data System (ADS)
Ozdagli, A. I.; Liu, B.; Moreu, F.
2018-07-01
According to railroad managers, displacement of railroad bridges under service loads is an important parameter in the condition assessment and performance evaluation. However, measuring bridge responses in the field is often costly and labor-intensive. This paper proposes a low-cost, efficient wireless intelligent sensor (LEWIS) platform that can compute in real-time the dynamic transverse displacements of railroad bridges under service loads. This sensing platform drives on an open-source Arduino ecosystem and combines low-cost microcontrollers with affordable accelerometers and wireless transmission modules. The proposed LEWIS system is designed to reconstruct dynamic displacements from acceleration measurements onboard, eliminating the need for offline post-processing, and to transmit the data in real-time to a base station where the inspector at the bridge can see the displacements while the train is crossing, or to a remote office if so desired by internet. Researchers validated the effectiveness of the new LEWIS by conducting a series of laboratory experiments. A shake table setup simulated transverse bridge displacements measured on the field and excited the proposed platform, a commercially available wired expensive accelerometer, and reference LVDT displacement sensor. The responses obtained from the wireless system were compared to the displacements reconstructed from commercial accelerometer readings and the reference LVDT. The results of the laboratory experiments demonstrate that the proposed system is capable of reconstructing transverse displacements of railroad bridges under revenue service traffic accurately and transmitting the data in real-time wirelessly. In conclusion, the platform presented in this paper can be used in the performance assessment of railroad bridge network cost-effectively and accurately. Future work includes collecting real-time reference-free displacements of one railroad bridge in Colorado under train crossings to further prove LEWIS' suitability for engineering applications.
Exploiting Spatial Channel Occupancy Information in WLANs
2014-05-15
transmit signal UDP user datagram protocol WLAN wireless local area network ix Acknowledgements I owe a great debt of gratitude to my advisor, Professor...information. Unlike in wired networks , each node in a wireless network observes a different medium depending on its location. As a result, standard local... wireless LANs [15, 23, 29]. In [23], Li et. al. model the throughput of an 802.11 network using full spatial information. Their approach is from a
The Audacity of Fiber-Wireless (FiWi) Networks
NASA Astrophysics Data System (ADS)
Maier, Martin; Ghazisaidi, Navid; Reisslein, Martin
A plethora of enabling optical and wireless technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi) broadband access networks. After overviewing key enabling radio-over-fiber (RoF) and radio-and-fiber (R&F) technologies and briefly surveying the state of the art of FiWi networks, we introduce an Ethernet-based access-metro FiWi network, called SuperMAN, that integrates next-generation WiFi and WiMAX networks with WDM-enhanced EPON and RPR networks. Throughout the paper we pay close attention to the technical challenges and opportunities of FiWi networks, but also elaborate on their societal benefits and potential to shift the current research focus from optical-wireless networking to the exploitation of personal and in-home computing facilities to create new unforeseen services and applications as we are about to enter the Petabyte age.
Random and Directed Walk-Based Top-k Queries in Wireless Sensor Networks
Fu, Jun-Song; Liu, Yun
2015-01-01
In wireless sensor networks, filter-based top-k query approaches are the state-of-the-art solutions and have been extensively researched in the literature, however, they are very sensitive to the network parameters, including the size of the network, dynamics of the sensors’ readings and declines in the overall range of all the readings. In this work, a random walk-based top-k query approach called RWTQ and a directed walk-based top-k query approach called DWTQ are proposed. At the beginning of a top-k query, one or several tokens are sent to the specific node(s) in the network by the base station. Then, each token walks in the network independently to record and process the readings in a random or directed way. A strategy of choosing the “right” way in DWTQ is carefully designed for the token(s) to arrive at the high-value regions as soon as possible. When designing the walking strategy for DWTQ, the spatial correlations of the readings are also considered. Theoretical analysis and simulation results indicate that RWTQ and DWTQ both are very robust against these parameters discussed previously. In addition, DWTQ outperforms TAG, FILA and EXTOK in transmission cost, energy consumption and network lifetime. PMID:26016914
On computer vision in wireless sensor networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Nina M.; Ko, Teresa H.
Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an imagemore » capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.« less
Research Trends in Wireless Visual Sensor Networks When Exploiting Prioritization
Costa, Daniel G.; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo
2015-01-01
The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, where many critical topics, such as communication efficiency and energy consumption, have been investigated in the past few years. However, when sensors are endowed with low-power cameras for visual monitoring, a new scope of challenges is raised, demanding new research efforts. In this context, the resource-constrained nature of sensor nodes has demanded the use of prioritization approaches as a practical mechanism to lower the transmission burden of visual data over wireless sensor networks. Many works in recent years have considered local-level prioritization parameters to enhance the overall performance of those networks, but global-level policies can potentially achieve better results in terms of visual monitoring efficiency. In this paper, we make a broad review of some recent works on priority-based optimizations in wireless visual sensor networks. Moreover, we envisage some research trends when exploiting prioritization, potentially fostering the development of promising optimizations for wireless sensor networks composed of visual sensors. PMID:25599425
Reconfigurable wireless monitoring systems for bridges: validation on the Yeondae Bridge
NASA Astrophysics Data System (ADS)
Kim, Junhee; Lynch, Jerome P.; Zonta, Daniele; Lee, Jong-Jae; Yun, Chung-Bang
2009-03-01
The installation of a structural monitoring system on a medium- to large-span bridge can be a challenging undertaking due to high system costs and time consuming installations. However, these historical challenges can be eliminated by using wireless sensors as the primary building block of a structural monitoring system. Wireless sensors are low-cost data acquisition nodes that utilize wireless communication to transfer data from the sensor to the data repository. Another advantageous characteristic of wireless sensors is their ability to be easily removed and reinstalled in another sensor location on the same structure; this installation modularity is highlighted in this study. Wireless sensor nodes designed for structural monitoring applications are installed on the 180 m long Yeondae Bridge (Korea) to measure the dynamic response of the bridge to controlled truck loading. To attain a high nodal density with a small number (20) of wireless sensors, the wireless sensor network is installed three times with each installation concentrating sensors in one portion of the bridge. Using forced and free vibration response data from the three installations, the modal properties of the bridge are accurately identified. Intentional nodal overlapping of the three different sensor installations allows mode shapes from each installation to be stitched together into global mode shapes. Specifically, modal properties of the Yeondae Bridge are derived off-line using frequency domain decomposition (FDD) modal analysis methods.
An Implementation of Wireless Body Area Networks for Improving Priority Data Transmission Delay.
Gündoğdu, Köksal; Çalhan, Ali
2016-03-01
The rapid growth of wireless sensor networks has enabled the human health monitoring of patients using body sensor nodes that gather and evaluate human body parameters and movements. This study describes both simulation model and implementation of a new traffic sensitive wireless body area network by using non-preemptive priority queue discipline. A wireless body area network implementation employing TDMA is designed with three different priorities of data traffics. Besides, a coordinator node having the non-preemptive priority queue is performed in this study. We have also developed, modeled and simulated example network scenarios by using the Riverbed Modeler simulation software with the purpose of verifying the implementation results. The simulation results obtained under various network load conditions are consistent with the implementation results.
Optimal dynamic voltage scaling for wireless sensor nodes with real-time constraints
NASA Astrophysics Data System (ADS)
Cassandras, Christos G.; Zhuang, Shixin
2005-11-01
Sensors are increasingly embedded in manufacturing systems and wirelessly networked to monitor and manage operations ranging from process and inventory control to tracking equipment and even post-manufacturing product monitoring. In building such sensor networks, a critical issue is the limited and hard to replenish energy in the devices involved. Dynamic voltage scaling is a technique that controls the operating voltage of a processor to provide desired performance while conserving energy and prolonging the overall network's lifetime. We consider such power-limited devices processing time-critical tasks which are non-preemptive, aperiodic and have uncertain arrival times. We treat voltage scaling as a dynamic optimization problem whose objective is to minimize energy consumption subject to hard or soft real-time execution constraints. In the case of hard constraints, we build on prior work (which engages a voltage scaling controller at task completion times) by developing an intra-task controller that acts at all arrival times of incoming tasks. We show that this optimization problem can be decomposed into two simpler ones whose solution leads to an algorithm that does not actually require solving any nonlinear programming problems. In the case of soft constraints, this decomposition must be partly relaxed, but it still leads to a scalable (linear in the number of tasks) algorithm. Simulation results are provided to illustrate performance improvements in systems with intra-task controllers compared to uncontrolled systems or those using inter-task control.
Privacy Preserved and Secured Reliable Routing Protocol for Wireless Mesh Networks.
Meganathan, Navamani Thandava; Palanichamy, Yogesh
2015-01-01
Privacy preservation and security provision against internal attacks in wireless mesh networks (WMNs) are more demanding than in wired networks due to the open nature and mobility of certain nodes in the network. Several schemes have been proposed to preserve privacy and provide security in WMNs. To provide complete privacy protection in WMNs, the properties of unobservability, unlinkability, and anonymity are to be ensured during route discovery. These properties can be achieved by implementing group signature and ID-based encryption schemes during route discovery. Due to the characteristics of WMNs, it is more vulnerable to many network layer attacks. Hence, a strong protection is needed to avoid these attacks and this can be achieved by introducing a new Cross-Layer and Subject Logic based Dynamic Reputation (CLSL-DR) mechanism during route discovery. In this paper, we propose a new Privacy preserved and Secured Reliable Routing (PSRR) protocol for WMNs. This protocol incorporates group signature, ID-based encryption schemes, and CLSL-DR mechanism to ensure strong privacy, security, and reliability in WMNs. Simulation results prove this by showing better performance in terms of most of the chosen parameters than the existing protocols.
System and method for time synchronization in a wireless network
Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.
2010-03-30
A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.
2007-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WIRELESSLY NETWORKED...DIGITAL PHASED ARRAY: ANALYSIS AND DEVELOPMENT OF A PHASE SYNCHRONIZATION CONCEPT by Micael Grahn September 2007 Thesis Advisor...September 2007 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Wirelessly Networked Digital Phased Array: Analysis and
WiFiSiM: An Educational Tool for the Study and Design of Wireless Networks
ERIC Educational Resources Information Center
Mateo Sanguino, T. J.; Serrano Lopez, C.; Marquez Hernandez, F. A.
2013-01-01
A new educational simulation tool designed for the generic study of wireless networks, the Wireless Fidelity Simulator (WiFiSim), is presented in this paper. The goal of this work was to create and implement a didactic tool to improve the teaching and learning of computer networks by means of two complementary strategies: simulating the behavior…
Top 6 Wireless Challenges: How Schools Are Improving Their Mobile Infrastructure
ERIC Educational Resources Information Center
Schaffhauser, Dian
2012-01-01
Colleges and universities have got a big problem: how to bake a wireless network as good as Mom's. The problem is that enterprise wireless networks "tend to be a little more finicky" than the home ones. While the home devices are plug-and-play, enterprise networks force IT departments to manage client issues such as drivers and settings. It's a…
Data security issues arising from integration of wireless access into healthcare networks.
Frenzel, John C
2003-04-01
The versatility of having Ethernet speed connectivity without wires is rapidly driving adoption of wireless data networking by end users across all types of industry. Designed to be easy to configure and work among diverse platforms, wireless brings online data to mobile users. This functionality is particularly useful in modern clinical medicine. Wireless presents operators of networks containing or transmitting sensitive and confidential data with several new types of security vulnerabilities, and potentially opens previously protected core network resources to outside attack. Herein, we review the types of vulnerabilities, the tools necessary to exploit them, and strategies to thwart a successful attack.
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-07-20
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.
An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks.
Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero
2016-04-12
Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes' resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.
Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun
2016-01-01
In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550
A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.
Effatparvar, Mehdi; Dehghan, Mehdi; Rahmani, Amir Masoud
2016-09-01
Wireless body area sensor network is a special purpose wireless sensor network that, employing wireless sensor nodes in, on, or around the human body, makes it possible to measure biological parameters of a person for specific applications. One of the most fundamental concerns in wireless body sensor networks is accurate routing in order to send data promptly and properly, and therefore overcome some of the challenges. Routing protocols for such networks are affected by a large number of factors including energy, topology, temperature, posture, the radio range of sensors, and appropriate quality of service in sensor nodes. Since energy is highly important in wireless body area sensor networks, and increasing the network lifetime results in benefiting greatly from sensor capabilities, improving routing performance with reduced energy consumption presents a major challenge. This paper aims to study wireless body area sensor networks and the related routing methods. It also presents a thorough, comprehensive review of routing methods in wireless body area sensor networks from the perspective of energy. Furthermore, different routing methods affecting the parameter of energy will be classified and compared according to their advantages and disadvantages. In this paper, fundamental concepts of wireless body area sensor networks are provided, and then the advantages and disadvantages of these networks are investigated. Since one of the most fundamental issues in wireless body sensor networks is to perform routing so as to transmit data precisely and promptly, we discuss the same issue. As a result, we propose a classification of the available relevant literature with respect to the key challenge of energy in the routing process. With this end in view, all important papers published between 2000 and 2015 are classified under eight categories including 'Mobility-Aware', 'Thermal-Aware', 'Restriction of Location and Number of Relays', 'Link-aware', 'Cluster- and Tree-Based', 'Cross-Layer', 'Opportunistic', and 'Medium Access Control'. We, then, provide a full description of the statistical analysis of each category in relation to all papers, current hybrid protocols, and the type of simulators used in each paper. Next, we analyze the distribution of papers in each category during various years. Moreover, for each category, the advantages and disadvantages as well as the number of issued papers in different years are given. We also analyze the type of layer and deployment of mathematical models or algorithmic techniques in each category. Finally, after introducing certain important protocols for each category, the goals, advantages, and disadvantages of the protocols are discussed and compared with each other.
ERIC Educational Resources Information Center
Hegedus, Stephen J.; Dalton, Sara; Tapper, John R.
2015-01-01
We report on two large studies conducted in advanced algebra classrooms in the US, which evaluated the effect of replacing traditional algebra 2 curriculum with an integrated suite of dynamic interactive software, wireless networks and technology-enhanced curriculum on student learning. The first study was a cluster randomized trial and the second…
Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring
NASA Astrophysics Data System (ADS)
Stocklöw, Carsten; Kamieth, Felix
In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.
Cheng, Wenchi; Zhang, Hailin
2017-01-01
Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks. PMID:28832509
Gao, Ya; Cheng, Wenchi; Zhang, Hailin
2017-08-23
Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.
Wireless sensor placement for structural monitoring using information-fusing firefly algorithm
NASA Astrophysics Data System (ADS)
Zhou, Guang-Dong; Yi, Ting-Hua; Xie, Mei-Xi; Li, Hong-Nan
2017-10-01
Wireless sensor networks (WSNs) are promising technology in structural health monitoring (SHM) applications for their low cost and high efficiency. The limited wireless sensors and restricted power resources in WSNs highlight the significance of optimal wireless sensor placement (OWSP) during designing SHM systems to enable the most useful information to be captured and to achieve the longest network lifetime. This paper presents a holistic approach, including an optimization criterion and a solution algorithm, for optimally deploying self-organizing multi-hop WSNs on large-scale structures. The combination of information effectiveness represented by the modal independence and the network performance specified by the network connectivity and network lifetime is first formulated to evaluate the performance of wireless sensor configurations. Then, an information-fusing firefly algorithm (IFFA) is developed to solve the OWSP problem. The step sizes drawn from a Lévy distribution are adopted to drive fireflies toward brighter individuals. Following the movement with Lévy flights, information about the contributions of wireless sensors to the objective function as carried by the fireflies is fused and applied to move inferior wireless sensors to better locations. The reliability of the proposed approach is verified via a numerical example on a long-span suspension bridge. The results demonstrate that the evaluation criterion provides a good performance metric of wireless sensor configurations, and the IFFA outperforms the simple discrete firefly algorithm.
Using Reputation Systems and Non-Deterministic Routing to Secure Wireless Sensor Networks
Moya, José M.; Vallejo, Juan Carlos; Fraga, David; Araujo, Álvaro; Villanueva, Daniel; de Goyeneche, Juan-Mariano
2009-01-01
Security in wireless sensor networks is difficult to achieve because of the resource limitations of the sensor nodes. We propose a trust-based decision framework for wireless sensor networks coupled with a non-deterministic routing protocol. Both provide a mechanism to effectively detect and confine common attacks, and, unlike previous approaches, allow bad reputation feedback to the network. This approach has been extensively simulated, obtaining good results, even for unrealistically complex attack scenarios. PMID:22412345
Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial.
Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid
2016-06-01
Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves.
Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial
Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid
2016-01-01
Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286
Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei; Song, Houbing
2017-07-12
Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs.
Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei
2017-01-01
Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs. PMID:28704959
Competition in the domain of wireless networks security
NASA Astrophysics Data System (ADS)
Bednarczyk, Mariusz
2017-04-01
Wireless networks are very popular and have found wide spread usage amongst various segments, also in military environment. The deployment of wireless infrastructures allow to reduce the time it takes to install and dismantle communications networks. With wireless, users are more mobile and can easily get access to the network resources all the time. However, wireless technologies like WiFi or Bluetooth have security issues that hackers have extensively exploited over the years. In the paper several serious security flaws in wireless technologies are presented. Most of them enable to get access to the internal networks and easily carry out man-in-the-middle attacks. Very often, they are used to launch massive denial of service attacks that target the physical infrastructure as well as the RF spectrum. For instance, there are well known instances of Bluetooth connection spoofing in order to steal WiFi password stored in the mobile device. To raise the security awareness and protect wireless networks against an adversary attack, an analysis of attack methods and tools over time is presented in the article. The particular attention is paid to the severity, possible targets as well as the ability to persist in the context of protective measures. Results show that an adversary can take complete control of the victims' mobile device features if the users forget to use simple safety principles.
NASA Astrophysics Data System (ADS)
Dayananda, Karanam Ravichandran; Straub, Jeremy
2017-05-01
This paper proposes a new hybrid algorithm for security, which incorporates both distributed and hierarchal approaches. It uses a mobile data collector (MDC) to collect information in order to save energy of sensor nodes in a wireless sensor network (WSN) as, in most networks, these sensor nodes have limited energy. Wireless sensor networks are prone to security problems because, among other things, it is possible to use a rogue sensor node to eavesdrop on or alter the information being transmitted. To prevent this, this paper introduces a security algorithm for MDC-based WSNs. A key use of this algorithm is to protect the confidentiality of the information sent by the sensor nodes. The sensor nodes are deployed in a random fashion and form group structures called clusters. Each cluster has a cluster head. The cluster head collects data from the other nodes using the time-division multiple access protocol. The sensor nodes send their data to the cluster head for transmission to the base station node for further processing. The MDC acts as an intermediate node between the cluster head and base station. The MDC, using its dynamic acyclic graph path, collects the data from the cluster head and sends it to base station. This approach is useful for applications including warfighting, intelligent building and medicine. To assess the proposed system, the paper presents a comparison of its performance with other approaches and algorithms that can be used for similar purposes.
NASA Astrophysics Data System (ADS)
Jin, Rui; kang, Jian
2017-04-01
Wireless Sensor Networks are recognized as one of most important near-surface components of GEOSS (Global Earth Observation System of Systems), with flourish development of low-cost, robust and integrated data loggers and sensors. A nested eco-hydrological wireless sensor network (EHWSN) was installed in the up- and middle-reaches of the Heihe River Basin, operated to obtain multi-scale observation of soil moisture, soil temperature and land surface temperature from 2012 till now. The spatial distribution of EHWSN was optimally designed based on the geo-statistical theory, with the aim to capture the spatial variations and temporal dynamics of soil moisture and soil temperature, and to produce ground truth at grid scale for validating the related remote sensing products and model simulation in the heterogeneous land surface. In terms of upscaling research, we have developed a set of method to aggregate multi-point WSN observations to grid scale ( 1km), including regression kriging estimation to utilize multi-resource remote sensing auxiliary information, block kriging with homogeneous measurement errors, and bayesian-based upscaling algorithm that utilizes MODIS-derived apparent thermal inertia. All the EHWSN observation are organized as datasets to be freely published at http://westdc.westgis.ac.cn/hiwater. EHWSN integrates distributed observation nodes to achieve an automated, intelligent and remote-controllable network that provides superior integrated, standardized and automated observation capabilities for hydrological and ecological processes research at the basin scale.
Smart border: ad-hoc wireless sensor networks for border surveillance
NASA Astrophysics Data System (ADS)
He, Jun; Fallahi, Mahmoud; Norwood, Robert A.; Peyghambarian, Nasser
2011-06-01
Wireless sensor networks have been proposed as promising candidates to provide automated monitoring, target tracking, and intrusion detection for border surveillance. In this paper, we demonstrate an ad-hoc wireless sensor network system for border surveillance. The network consists of heterogeneously autonomous sensor nodes that distributively cooperate with each other to enable a smart border in remote areas. This paper also presents energy-aware and sleeping algorithms designed to maximize the operating lifetime of the deployed sensor network. Lessons learned in building the network and important findings from field experiments are shared in the paper.
Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks
Kim, Deokho; Park, Karam; Ro, Won W.
2011-01-01
While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053
Feasibility of Using Distributed Wireless Mesh Networks for Medical Emergency Response
Braunstein, Brian; Trimble, Troy; Mishra, Rajesh; Manoj, B. S.; Rao, Ramesh; Lenert, Leslie
2006-01-01
Achieving reliable, efficient data communications networks at a disaster site is a difficult task. Network paradigms, such as Wireless Mesh Network (WMN) architectures, form one exemplar for providing high-bandwidth, scalable data communication for medical emergency response activity. WMNs are created by self-organized wireless nodes that use multi-hop wireless relaying for data transfer. In this paper, we describe our experience using a mesh network architecture we developed for homeland security and medical emergency applications. We briefly discuss the architecture and present the traffic behavioral observations made by a client-server medical emergency application tested during a large-scale homeland security drill. We present our traffic measurements, describe lessons learned, and offer functional requirements (based on field testing) for practical 802.11 mesh medical emergency response networks. With certain caveats, the results suggest that 802.11 mesh networks are feasible and scalable systems for field communications in disaster settings. PMID:17238308
A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks
NASA Astrophysics Data System (ADS)
Datta, A.; Nandakumar, S.
2017-11-01
Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.
Energy Aware Clustering Algorithms for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian
2011-09-01
The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.
Socially Aware Heterogeneous Wireless Networks
Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos
2015-01-01
The development of smart cities has been the epicentre of many researchers’ efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users’ locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402
NASA Astrophysics Data System (ADS)
Missif, Lial Raja; Kadhum, Mohammad M.
2017-09-01
Wireless Sensor Network (WSN) has been widely used for monitoring where sensors are deployed to operate independently to sense abnormal phenomena. Most of the proposed environmental monitoring systems are designed based on a predetermined sensing range which does not reflect the sensor reliability, event characteristics, and the environment conditions. Measuring of the capability of a sensor node to accurately detect an event within a sensing field is of great important for monitoring applications. This paper presents an efficient mechanism for even detection based on probabilistic sensing model. Different models have been presented theoretically in this paper to examine their adaptability and applicability to the real environment applications. The numerical results of the experimental evaluation have showed that the probabilistic sensing model provides accurate observation and delectability of an event, and it can be utilized for different environment scenarios.
Self organization of wireless sensor networks using ultra-wideband radios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, Farid U; Nekoogar, Franak; Spiridon, Alex
A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.
WiFi in Schools, Electromagnetic Fields and Cell Phones: Alberta Health Fact Sheet
ERIC Educational Resources Information Center
Alberta Education, 2012
2012-01-01
Wireless devices and the networks that support them are becoming more common in Alberta schools. WiFi is a wireless networking technology that allows computers and other devices to communicate over a wireless signal. Typically the signal is carried by radio waves over an area of up to 100 meters. Through the implementation of a WiFi network,…
Fluid Analysis of Network Content Dissemination and Cloud Systems
2017-03-06
orchestration of multiple transfers , within the constraints of the communication substrate. In unstructured or aggressive environments where wireless ad...previous AFOSR/SOARD project, concerns peer-to-peer dissemination in wireless ad-hoc networks. We focus on the necessary tradeoff between an efficient...use of the network substrate, and the necessary reciprocity between peers, aspects that may be in conflict in the wireless setting. Our results
Secure Sensor Semantic Web and Information Fusion
2014-06-25
data acquired and transmitted by wireless sensor networks (WSNs). In a WSN, due to a need for robustness of monitoring and low cost of the nodes...3 S. Ozdemir and Y. Xiao, “Secure data aggregation in wireless sensor networks : A comprehensive overview...Elisa Bertino, and Somesh Jha: Secure data aggregation technique for wireless sensor networks in the presence of collusion attacks. To appear in
Theoretical Foundations of Wireless Networks
2015-07-22
Optimal transmission over a fading channel with imperfect channel state information,” in Global Telecommun. Conf., pp. 1–5, Houston TX , December 5-9...SECURITY CLASSIFICATION OF: The goal of this project is to develop a formal theory of wireless networks providing a scientific basis to understand...randomness and optimality. Randomness, in the form of fading, is a defining characteristic of wireless networks. Optimality is a suitable design
On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels
2013-12-01
Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks
Radio/antenna mounting system for wireless networking under row-crop agriculture conditions
USDA-ARS?s Scientific Manuscript database
Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...
Real-time stress monitoring of highway bridges with a secured wireless sensor network.
DOT National Transportation Integrated Search
2011-12-01
"This collaborative research aims to develop a real-time stress monitoring system for highway bridges with a secured wireless sensor network. The near term goal is to collect wireless sensor data under different traffic patterns from local highway br...
A guide to wireless networking by light
NASA Astrophysics Data System (ADS)
Haas, Harald; Chen, Cheng; O'Brien, Dominic
2017-09-01
The lack of wireless spectrum in the radio frequency bands has led to a rapid growth in research in wireless networking using light, known as LiFi (light fidelity). In this paper an overview of the subsystems, challenges and techniques required to achieve this is presented.
A Visual Language for Situational Awareness
2016-12-01
listening. The arrival of the information age has delivered the ability to transfer larger volumes of data at far greater rates. Wireless digital... wireless infrastructure for use in large-scale events where domestic power and private wireless networks are overloaded or unavailable. States should...lacking by responders using ANSI INCITS 415 symbols sets.226 When combined with the power of a wireless network, a situational awareness metalanguage is
Wireless Sensors and Networks for Advanced Energy Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, J.E.
Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modelingmore » investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.« less
Wireless Security Within Hastily Formed Networks
2006-09-01
WLAN DEVICES (STEP ONE) ............34 1. Personal Firewalls..............................................................................34 2. Anti ...includes client devices , access points, network infrastructure, network management, and delivery of mobility services to maintain network security and...Technology Special Publication 800-48, Wireless Network Security, 802.11, Bluetooth , and Handheld Devices . Available at http://csrc.nist.gov
Application of Game Theory Approaches in Routing Protocols for Wireless Networks
NASA Astrophysics Data System (ADS)
Javidi, Mohammad M.; Aliahmadipour, Laya
2011-09-01
An important and essential issue for wireless networks is routing protocol design that is a major technical challenge due to the function of the network. Game theory is a powerful mathematical tool that analyzes the strategic interactions among multiple decision makers and the results of researches show that applied game theory in routing protocol lead to improvement the network performance through reduce overhead and motivates selfish nodes to collaborate in the network. This paper presents a review and comparison for typical representatives of routing protocols designed that applied game theory approaches for various wireless networks such as ad hoc networks, mobile ad hoc networks and sensor networks that all of them lead to improve the network performance.
Thermal and dynamic range characterization of a photonics-based RF amplifier
NASA Astrophysics Data System (ADS)
Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.
2018-05-01
This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.
Spatial aggregation query in dynamic geosensor networks
NASA Astrophysics Data System (ADS)
Yi, Baolin; Feng, Dayang; Xiao, Shisong; Zhao, Erdun
2007-11-01
Wireless sensor networks have been widely used for civilian and military applications, such as environmental monitoring and vehicle tracking. In many of these applications, the researches mainly aim at building sensor network based systems to leverage the sensed data to applications. However, the existing works seldom exploited spatial aggregation query considering the dynamic characteristics of sensor networks. In this paper, we investigate how to process spatial aggregation query over dynamic geosensor networks where both the sink node and sensor nodes are mobile and propose several novel improvements on enabling techniques. The mobility of sensors makes the existing routing protocol based on information of fixed framework or the neighborhood infeasible. We present an improved location-based stateless implicit geographic forwarding (IGF) protocol for routing a query toward the area specified by query window, a diameter-based window aggregation query (DWAQ) algorithm for query propagation and data aggregation in the query window, finally considering the location changing of the sink node, we present two schemes to forward the result to the sink node. Simulation results show that the proposed algorithms can improve query latency and query accuracy.
Breaking Free with Wireless Networks.
ERIC Educational Resources Information Center
Fleischman, John
2002-01-01
Discusses wireless local area networks (LANs) which typically consist of laptop computers that connect to fixed access points via infrared or radio signals. Topics include wide area networks; personal area networks; problems, including limitations of available bandwidth, interference, and security concerns; use in education; interoperability;…
Buttles, John W [Idaho Falls, ID
2011-12-20
Wireless communication devices include a software-defined radio coupled to processing circuitry. The processing circuitry is configured to execute computer programming code. Storage media is coupled to the processing circuitry and includes computer programming code configured to cause the processing circuitry to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
Buttles, John W
2013-04-23
Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
Secure and lightweight network admission and transmission protocol for body sensor networks.
He, Daojing; Chen, Chun; Chan, Sammy; Bu, Jiajun; Zhang, Pingxin
2013-05-01
A body sensor network (BSN) is a wireless network of biosensors and a local processing unit, which is commonly referred to as the personal wireless hub (PWH). Personal health information (PHI) is collected by biosensors and delivered to the PWH before it is forwarded to the remote healthcare center for further processing. In a BSN, it is critical to only admit eligible biosensors and PWH into the network. Also, securing the transmission from each biosensor to PWH is essential not only for ensuring safety of PHI delivery, but also for preserving the privacy of PHI. In this paper, we present the design, implementation, and evaluation of a secure network admission and transmission subsystem based on a polynomial-based authentication scheme. The procedures in this subsystem to establish keys for each biosensor are communication efficient and energy efficient. Moreover, based on the observation that an adversary eavesdropping in a BSN faces inevitable channel errors, we propose to exploit the adversary's uncertainty regarding the PHI transmission to update the individual key dynamically and improve key secrecy. In addition to the theoretical analysis that demonstrates the security properties of our system, this paper also reports the experimental results of the proposed protocol on resource-limited sensor platforms, which show the efficiency of our system in practice.
NASA Astrophysics Data System (ADS)
Li, Peng; Olmi, Claudio; Song, Gangbing
2010-04-01
Piezoceramic based transducers are widely researched and used for structural health monitoring (SHM) systems due to the piezoceramic material's inherent advantage of dual sensing and actuation. Wireless sensor network (WSN) technology benefits from advances made in piezoceramic based structural health monitoring systems, allowing easy and flexible installation, low system cost, and increased robustness over wired system. However, piezoceramic wireless SHM systems still faces some drawbacks, one of these is that the piezoceramic based SHM systems require relatively high computational capabilities to calculate damage information, however, battery powered WSN sensor nodes have strict power consumption limitation and hence limited computational power. On the other hand, commonly used centralized processing networks require wireless sensors to transmit all data back to the network coordinator for analysis. This signal processing procedure can be problematic for piezoceramic based SHM applications as it is neither energy efficient nor robust. In this paper, we aim to solve these problems with a distributed wireless sensor network for piezoceramic base structural health monitoring systems. Three important issues: power system, waking up from sleep impact detection, and local data processing, are addressed to reach optimized energy efficiency. Instead of sweep sine excitation that was used in the early research, several sine frequencies were used in sequence to excite the concrete structure. The wireless sensors record the sine excitations and compute the time domain energy for each sine frequency locally to detect the energy change. By comparing the data of the damaged concrete frame with the healthy data, we are able to find out the damage information of the concrete frame. A relative powerful wireless microcontroller was used to carry out the sampling and distributed data processing in real-time. The distributed wireless network dramatically reduced the data transmission between wireless sensor and the wireless coordinator, which in turn reduced the power consumption of the overall system.
NASA Technical Reports Server (NTRS)
Roberts, Christopher J.; Morgenstern, Robert M.; Israel, David J.; Borky, John M.; Bradley, Thomas H.
2017-01-01
NASA's next generation space communications network will involve dynamic and autonomous services analogous to services provided by current terrestrial wireless networks. This architecture concept, known as the Space Mobile Network (SMN), is enabled by several technologies now in development. A pillar of the SMN architecture is the establishment and utilization of a continuous bidirectional control plane space link channel and a new User Initiated Service (UIS) protocol to enable more dynamic and autonomous mission operations concepts, reduced user space communications planning burden, and more efficient and effective provider network resource utilization. This paper provides preliminary results from the application of model driven architecture methodology to develop UIS. Such an approach is necessary to ensure systematic investigation of several open questions concerning the efficiency, robustness, interoperability, scalability and security of the control plane space link and UIS protocol.
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks †
Sampangi, Raghav V.; Sampalli, Srinivas
2015-01-01
Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899
Emerging Trends in Healthcare Adoption of Wireless Body Area Networks.
Rangarajan, Anuradha
2016-01-01
Real-time personal health monitoring is gaining new ground with advances in wireless communications. Wireless body area networks (WBANs) provide a means for low-powered sensors, affixed either on the human body or in vivo, to communicate with each other and with external telecommunication networks. The healthcare benefits of WBANs include continuous monitoring of patient vitals, measuring postacute rehabilitation time, and improving quality of medical care provided in medical emergencies. This study sought to examine emerging trends in WBAN adoption in healthcare. To that end, a systematic literature survey was undertaken against the PubMed database. The search criteria focused on peer-reviewed articles that contained the keywords "wireless body area network" and "healthcare" or "wireless body area network" and "health care." A comprehensive review of these articles was performed to identify adoption dimensions, including underlying technology framework, healthcare subdomain, and applicable lessons-learned. This article benefits healthcare technology professionals by identifying gaps in implementation of current technology and highlighting opportunities for improving products and services.
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.
Sampangi, Raghav V; Sampalli, Srinivas
2015-09-15
Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.
Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests
Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna
2016-01-01
Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments. PMID:27355957
Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests.
Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna
2016-06-27
Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments.
Mansano, Raul K; Godoy, Eduardo P; Porto, Arthur J V
2014-12-18
Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors.
Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks
Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang
2018-01-01
In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches. PMID:29439439
Receiver-Assisted Congestion Control to Achieve High Throughput in Lossy Wireless Networks
NASA Astrophysics Data System (ADS)
Shi, Kai; Shu, Yantai; Yang, Oliver; Luo, Jiarong
2010-04-01
Many applications would require fast data transfer in high-speed wireless networks nowadays. However, due to its conservative congestion control algorithm, Transmission Control Protocol (TCP) cannot effectively utilize the network capacity in lossy wireless networks. In this paper, we propose a receiver-assisted congestion control mechanism (RACC) in which the sender performs loss-based control, while the receiver is performing delay-based control. The receiver measures the network bandwidth based on the packet interarrival interval and uses it to compute a congestion window size deemed appropriate for the sender. After receiving the advertised value feedback from the receiver, the sender then uses the additive increase and multiplicative decrease (AIMD) mechanism to compute the correct congestion window size to be used. By integrating the loss-based and the delay-based congestion controls, our mechanism can mitigate the effect of wireless losses, alleviate the timeout effect, and therefore make better use of network bandwidth. Simulation and experiment results in various scenarios show that our mechanism can outperform conventional TCP in high-speed and lossy wireless environments.
Networking via wireless bridge produces greater speed and flexibility, lowers cost.
1998-10-01
Wireless computer networking. Computer connectivity is essential in today's high-tech health care industry. But telephone lines aren't fast enough, and high-speed connections like T-1 lines are costly. Read about an Ohio community hospital that installed a wireless network "bridge" to connect buildings that are miles apart, creating a reliable high-speed link that costs one-tenth of a T-1 line.
2015-11-01
more detail. Table 1: Overview of DARPA Programs Selected for GAO Case Study Analyses Program name Program description Advanced Wireless Networks ...Selected DARPA Programs Program name According to DARPA portfolio-level database According to GAO analysis Advanced Wireless Networks for the Soldier...with potential transition partners Achievement of clearly defined technical goals Successful transition Advanced Wireless Networks for Soldier
Unattended Ground Sensors for Expeditionary Force 21 Intelligence Collections
2015-06-01
tamper. 55 Size: 3 ½ x 3 ½ x 1 ¾ inches. Wireless RF networked communications. Built in seismic, acoustic , magnetic, and PIR sensors ...Marine Corps VHF Very High Frequency WSN Wireless Sensor Network xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii ACKNOWLEDGMENTS I want...that allow digital wireless RF communications from each sensor interfaced into a variety of network architectures to relay critical data to a final
Wireless Sensor Network Optimization: Multi-Objective Paradigm
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-01-01
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271
Two-layer wireless distributed sensor/control network based on RF
NASA Astrophysics Data System (ADS)
Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo
2006-11-01
A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.
Underwater Sensor Network Redeployment Algorithm Based on Wolf Search
Jiang, Peng; Feng, Yang; Wu, Feng
2016-01-01
This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance. PMID:27775659
An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks
Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero
2016-01-01
Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866
Capella, Juan V.; Perles, Angel; Bonastre, Alberto; Serrano, Juan J.
2011-01-01
We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties. PMID:22346630
Capella, Juan V; Perles, Angel; Bonastre, Alberto; Serrano, Juan J
2011-01-01
We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.
Effective Utilization of Commercial Wireless Networking Technology in Planetary Environments
NASA Technical Reports Server (NTRS)
Caulev, Michael (Technical Monitor); Phillip, DeLeon; Horan, Stephen; Borah, Deva; Lyman, Ray
2005-01-01
The purpose of this research is to investigate the use of commercial, off-the-shelf wireless networking technology in planetary exploration applications involving rovers and sensor webs. The three objectives of this research project are to: 1) simulate the radio frequency environment of proposed landing sites on Mars using actual topographic data, 2) analyze the performance of current wireless networking standards in the simulated radio frequency environment, and 3) propose modifications to the standards for more efficient utilization. In this annual report, we present our results for the second year of research. During this year, the effort has focussed on the second objective of analyzing the performance of the IEEE 802.11a and IEEE 802.1lb wireless networking standards in the simulated radio frequency environment of Mars. The approach builds upon our previous results which deterministically modelled the RF environment at selected sites on Mars using high-resolution topographical data. These results provide critical information regarding antenna coverage patterns, maximum link distances, effects of surface clutter, and multipath effects. Using these previous results, the physical layer of these wireless networking standards has now been simulated and analyzed in the Martian environment. We are looking to extending these results to the and medium access layer next. Our results give us critical information regarding the performance (data rates, packet error rates, link distances, etc.) of IEEE 802.1 la/b wireless networks. This information enables a critical examination of how these wireless networks may be utilized in future Mars missions and how they may be possibly modified for more optimal usage.
ShakeNet: a portable wireless sensor network for instrumenting large civil structures
Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert
2015-08-03
We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software.
Are Wireless Networks the Wave of the Future?
ERIC Educational Resources Information Center
Young, Jeffrey R.
1999-01-01
Some college administrators feel the next major trend in educational technology will be wireless networks that let students and professors connect to the Internet with radio waves rather than cumbersome cables. Several universities are already using the less expensive technology. However, some find the slower speed of available wireless services…
ERIC Educational Resources Information Center
Zhao, Weiyi
2011-01-01
Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…
Home and School Technology: Wired versus Wireless.
ERIC Educational Resources Information Center
Van Horn, Royal
2001-01-01
Presents results of informal research on smart homes and appliances, structured home wiring, whole-house audio/video distribution, hybrid cable, and wireless networks. Computer network wiring is tricky to install unless all-in-one jacketed cable is used. Wireless phones help installers avoid pre-wiring problems in homes and schools. (MLH)
The Role of Wireless Computing Technology in the Design of Schools.
ERIC Educational Resources Information Center
Nair, Prakash
2003-01-01
After briefly describing the educational advantages of wireless networks using mobile computers, discusses the technical, operational, financial aspects of wireless local area networks (WLAN). Provides examples of school facilities designed for the use of WLAN. Includes a glossary of WLAN-related terms. (Contains 12 references.)
Wireless Communications in Smart Grid
NASA Astrophysics Data System (ADS)
Bojkovic, Zoran; Bakmaz, Bojan
Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.
Duncan, R G; Shabot, M M
2000-01-01
TCP/IP and World-Wide-Web (WWW) technology have become the universal standards for networking and delivery of information. Personal digital assistants (PDAs), cellular telephones, and alphanumeric pagers are rapidly converging on a single pocket device that will leverage wireless TCP/IP networks and WWW protocols and can be used to deliver clinical information and alerts anytime, anywhere. We describe a wireless interface to clinical information for physicians based on Palm Corp.'s Palm VII pocket computer, a wireless digital network, encrypted data transmission, secure web servers, and a clinical data repository (CDR).
Duncan, R. G.; Shabot, M. M.
2000-01-01
TCP/IP and World-Wide-Web (WWW) technology have become the universal standards for networking and delivery of information. Personal digital assistants (PDAs), cellular telephones, and alphanumeric pagers are rapidly converging on a single pocket device that will leverage wireless TCP/IP networks and WWW protocols and can be used to deliver clinical information and alerts anytime, anywhere. We describe a wireless interface to clinical information for physicians based on Palm Corp.'s Palm VII pocket computer, a wireless digital network, encrypted data transmission, secure web servers, and a clinical data repository (CDR). PMID:11079875
[Advances in sensor node and wireless communication technology of body sensor network].
Lin, Weibing; Lei, Sheng; Wei, Caihong; Li, Chunxiang; Wang, Cang
2012-06-01
With the development of the wireless communication technology, implantable biosensor technology, and embedded system technology, Body Sensor Network (BSN) as one branch of wireless sensor networks and important part of the Internet of things has caught more attention of researchers and enterprises. This paper offers the basic concept of the BSN and analyses the related research. We focus on sensor node and wireless communication technology from perspectives of technology challenges, research advance and development trend in the paper. Besides, we also present a relative overview of domestic and overseas projects for the BSN.
Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis.
Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan
2017-09-27
A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.
Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis
Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan
2017-01-01
A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation. PMID:28953231
Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin
2015-07-01
Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump.
Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman
2008-08-04
Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.
IR wireless cluster synapses of HYDRA very large neural networks
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Forrester, Thomas
2008-04-01
RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.
Optimization of wireless sensor networks based on chicken swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Wang, Qingxi; Zhu, Lihua
2017-05-01
In order to reduce the energy consumption of wireless sensor network and improve the survival time of network, the clustering routing protocol of wireless sensor networks based on chicken swarm optimization algorithm was proposed. On the basis of LEACH agreement, it was improved and perfected that the points on the cluster and the selection of cluster head using the chicken group optimization algorithm, and update the location of chicken which fall into the local optimum by Levy flight, enhance population diversity, ensure the global search capability of the algorithm. The new protocol avoided the die of partial node of intensive using by making balanced use of the network nodes, improved the survival time of wireless sensor network. The simulation experiments proved that the protocol is better than LEACH protocol on energy consumption, also is better than that of clustering routing protocol based on particle swarm optimization algorithm.
Dynamic Spectrum Management for Military Wireless Networks
2010-09-01
auctions, and protocols and etiquettes . Command and control assignments are provided by the regulatory agency by reviewing specific licensing...devices and amateur licensees do not have specific frequency assignments. The Protocols and Etiquettes methods allow these devices to operate within a...with Collision Avoidance (CSMA/CA) a protocol . Etiquettes are rules that are followed without explicit interaction between devices. Simple etiquettes
Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores
Kim, Youngmin; Lee, Chan-Gun
2017-01-01
In wireless sensor networks (WSNs), sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods. PMID:29240695
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.
Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun
2016-07-08
Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.
A wireless energy transfer platform, integrated at the bedside.
De Clercq, Hans; Puers, Robert
2013-01-01
This paper presents the design of a wireless energy transfer platform, integrated at the bedside. The system contains a matrix of identical inductive power transmitters, which are optimised to provide power to a wearable sensor network, with the purpose of wirelessly recording vital signals over an extended period of time. The magnetic link, operates at a transfer frequency of 6.78MHz and is able to transfer a power of 3.3mW to the remote side at an inter-coil distance of 100mm. The total efficiency of the power link is 26%. Moreover, the platform is able to dynamically determine the position of freely moving sensor nodes and selectively induce a magnetic field in the area where the sensor nodes are positioned. As a result, the patient will not be subjected to unnecessary radiation and the specific absorption rate standards are met more easily.
Potential of Wake-Up Radio-Based MAC Protocols for Implantable Body Sensor Networks (IBSN)—A Survey
Karuppiah Ramachandran, Vignesh Raja; Ayele, Eyuel D.; Meratnia, Nirvana; Havinga, Paul J. M.
2016-01-01
With the advent of nano-technology, medical sensors and devices are becoming highly miniaturized. Consequently, the number of sensors and medical devices being implanted to accurately monitor and diagnose a disease is increasing. By measuring the symptoms and controlling a medical device as close as possible to the source, these implantable devices are able to save lives. A wireless link between medical sensors and implantable medical devices is essential in the case of closed-loop medical devices, in which symptoms of the diseases are monitored by sensors that are not placed in close proximity of the therapeutic device. Medium Access Control (MAC) is crucial to make it possible for several medical devices to communicate using a shared wireless medium in such a way that minimum delay, maximum throughput, and increased network life-time are guaranteed. To guarantee this Quality of Service (QoS), the MAC protocols control the main sources of limited resource wastage, namely the idle-listening, packet collisions, over-hearing, and packet loss. Traditional MAC protocols designed for body sensor networks are not directly applicable to Implantable Body Sensor Networks (IBSN) because of the dynamic nature of the radio channel within the human body and the strict QoS requirements of IBSN applications. Although numerous MAC protocols are available in the literature, the majority of them are designed for Body Sensor Network (BSN) and Wireless Sensor Network (WSN). To the best of our knowledge, there is so far no research paper that explores the impact of these MAC protocols specifically for IBSN. MAC protocols designed for implantable devices are still in their infancy and one of their most challenging objectives is to be ultra-low-power. One of the technological solutions to achieve this objective so is to integrate the concept of Wake-up radio (WuR) into the MAC design. In this survey, we present a taxonomy of MAC protocols based on their use of WuR technology and identify their bottlenecks to be used in IBSN applications. Furthermore, we present a number of open research challenges and requirements for designing an energy-efficient and reliable wireless communication protocol for IBSN. PMID:27916822
Potential of Wake-Up Radio-Based MAC Protocols for Implantable Body Sensor Networks (IBSN)-A Survey.
Karuppiah Ramachandran, Vignesh Raja; Ayele, Eyuel D; Meratnia, Nirvana; Havinga, Paul J M
2016-11-29
With the advent of nano-technology, medical sensors and devices are becoming highly miniaturized. Consequently, the number of sensors and medical devices being implanted to accurately monitor and diagnose a disease is increasing. By measuring the symptoms and controlling a medical device as close as possible to the source, these implantable devices are able to save lives. A wireless link between medical sensors and implantable medical devices is essential in the case of closed-loop medical devices, in which symptoms of the diseases are monitored by sensors that are not placed in close proximity of the therapeutic device. Medium Access Control (MAC) is crucial to make it possible for several medical devices to communicate using a shared wireless medium in such a way that minimum delay, maximum throughput, and increased network life-time are guaranteed. To guarantee this Quality of Service (QoS), the MAC protocols control the main sources of limited resource wastage, namely the idle-listening, packet collisions, over-hearing, and packet loss. Traditional MAC protocols designed for body sensor networks are not directly applicable to Implantable Body Sensor Networks (IBSN) because of the dynamic nature of the radio channel within the human body and the strict QoS requirements of IBSN applications. Although numerous MAC protocols are available in the literature, the majority of them are designed for Body Sensor Network (BSN) and Wireless Sensor Network (WSN). To the best of our knowledge, there is so far no research paper that explores the impact of these MAC protocols specifically for IBSN. MAC protocols designed for implantable devices are still in their infancy and one of their most challenging objectives is to be ultra-low-power. One of the technological solutions to achieve this objective so is to integrate the concept of Wake-up radio (WuR) into the MAC design. In this survey, we present a taxonomy of MAC protocols based on their use of WuR technology and identify their bottlenecks to be used in IBSN applications. Furthermore, we present a number of open research challenges and requirements for designing an energy-efficient and reliable wireless communication protocol for IBSN.
Bio-mimic optimization strategies in wireless sensor networks: a survey.
Adnan, Md Akhtaruzzaman; Abdur Razzaque, Mohammd; Ahmed, Ishtiaque; Isnin, Ismail Fauzi
2013-12-24
For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.
Adaptive critics for dynamic optimization.
Kulkarni, Raghavendra V; Venayagamoorthy, Ganesh Kumar
2010-06-01
A novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly. Simulation results show that the sleep time of the node determined by the actor critic yields superior quality of sensory data acquisition and enhanced node longevity. Copyright 2010 Elsevier Ltd. All rights reserved.
SHER: A Colored Petri Net Based Random Mobility Model for Wireless Communications
Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal
2015-01-01
In wireless network research, simulation is the most imperative technique to investigate the network’s behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the errors of our proposed model. PMID:26267860
2015-03-01
Wireless Sensor Network Using Unreliable GPS Signals Daniel R. Fuhrmann*, Joshua Stomberg§, Saeid Nooshabadi*§ Dustin McIntire†, William Merill... wireless sensor network , when the timing jitter is subject to a empirically determined bimodal non-Gaussian distribution. Specifically, we 1) estimate the...over a nominal 19.2 MHz frequency with an adjustment made every four hours. Index Terms— clock synchronization, GPS, wireless sensor networks , Kalman
NASA Astrophysics Data System (ADS)
Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung
2010-12-01
This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.
On the relevance of using open wireless sensor networks in environment monitoring.
Bagula, Antoine B; Inggs, Gordon; Scott, Simon; Zennaro, Marco
2009-01-01
This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.
Wireless sensor node for surface seawater density measurements.
Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto
2012-01-01
An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.
Wireless Sensor Node for Surface Seawater Density Measurements
Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto
2012-01-01
An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings. PMID:22736986
Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi Jia
2011-02-28
This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remotemore » power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.« less
Wireless Sensor Networks for Ambient Assisted Living
Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe
2013-01-01
This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665
Modeling a Wireless Network for International Space Station
NASA Technical Reports Server (NTRS)
Alena, Richard; Yaprak, Ece; Lamouri, Saad
2000-01-01
This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.
Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Wang, Jianping; Han, Dun
2017-01-01
In recent years, wireless communication plays an important role in our lives. Cooperative communication, is used by a mobile station with single antenna to share with each other forming a virtual MIMO antenna system, will become a development with a diversity gain for wireless communication in tendency future. In this paper, a fitness model of evolution network based on complex networks with mixed attachment mechanisms is devised in order to study an actual network-CCFN (cooperative communication fitness network). Firstly, the evolution of CCFN is given by four cases with different probabilities, and the rate equations of nodes degree are presented to analyze the evolution of CCFN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation with the examples of four fitness distributions such as power law, uniform fitness distribution, exponential fitness distribution and Rayleigh fitness distribution. Finally, the robustness of CCFN is studied by numerical simulation with four fitness distributions under random attack and intentional attack to analyze the effects of degree distribution, average path length and average degree. The results of this paper offers insights for building CCFN systems in order to program communication resources.
Imran, Muhammad; Zafar, Nazir Ahmad
2012-01-01
Maintaining inter-actor connectivity is extremely crucial in mission-critical applications of Wireless Sensor and Actor Networks (WSANs), as actors have to quickly plan optimal coordinated responses to detected events. Failure of a critical actor partitions the inter-actor network into disjoint segments besides leaving a coverage hole, and thus hinders the network operation. This paper presents a Partitioning detection and Connectivity Restoration (PCR) algorithm to tolerate critical actor failure. As part of pre-failure planning, PCR determines critical/non-critical actors based on localized information and designates each critical node with an appropriate backup (preferably non-critical). The pre-designated backup detects the failure of its primary actor and initiates a post-failure recovery process that may involve coordinated multi-actor relocation. To prove the correctness, we construct a formal specification of PCR using Z notation. We model WSAN topology as a dynamic graph and transform PCR to corresponding formal specification using Z notation. Formal specification is analyzed and validated using the Z Eves tool. Moreover, we simulate the specification to quantitatively analyze the efficiency of PCR. Simulation results confirm the effectiveness of PCR and the results shown that it outperforms contemporary schemes found in the literature.