Science.gov

Sample records for dynamical anisotropic lattices

  1. Vortex dynamics in anisotropic traps

    SciTech Connect

    McEndoo, S.; Busch, Th.

    2010-07-15

    We investigate the dynamics of linear vortex lattices in anisotropic traps in two dimensions and show that the interplay between the rotation and the anisotropy leads to a rich but highly regular dynamics.

  2. Dynamics of Anisotropic Universes

    NASA Astrophysics Data System (ADS)

    Perez, Jérôme

    2006-11-01

    We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in some precise sence.

  3. Coarsening dynamics in elastically anisotropic alloys

    SciTech Connect

    Pfau, B.; Stadler, L.-M.; Sepiol, B.; Vogl, G.; Weinkamer, R.; Kantelhardt, J. W.; Zontone, F.

    2006-05-01

    We study in situ the coarsening dynamics in elastically anisotropic phase-separating alloys, taking advantage of coherent x rays. Temporally fluctuating speckle intensities are analyzed for two different Ni-Al-Mo samples with different lattice misfits between precipitates and matrix. The detected long-term correlations depend not only on the norm but strongly on the direction of the scattering vector--an unambiguous proof of direction-dependent coarsening dynamics. For strong lattice misfits, our results indicate coalescence of precipitates in the {l_brace}100{r_brace} planes.

  4. Dynamical analysis of anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Karčiauskas, Mindaugas

    2016-06-01

    The inflaton coupling to a vector field via the f(φ)2F μνFμν term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation, and to circumvent the η-problem. In this work, I perform dynamical analysis of this system allowing for the most general Bianchi I initial conditions. I also confirm the stability of attractor fixed points along phase-space directions that had not been investigated before.

  5. Strongly interacting particles on an anisotropic kagome lattice

    NASA Astrophysics Data System (ADS)

    Hotta, Chisa; Pollmann, Frank

    2009-01-01

    We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.

  6. SU(3) lattice gauge autocorrelations with anisotropic action

    NASA Astrophysics Data System (ADS)

    Draper, Terrence; Nenkov, Constantine; Peardon, Mike

    1997-02-01

    We report results of autocorrelation measurements in pure SU(3) lattice gauge theory. The computations are performed on the CONVEX SPP1200 parallel platform within the CANOPY programming environment. The focus of our analysis is on typical autocorrelation times and optimization of the mixing ratio between overrelaxation and pseudo-heatbath sweeps for generating gauge field configurations. We study second order tadpole-improved approximation of the Wilson action in the gluon sector, which offers the advantage on smaller lattices (8 3 × 16 and 6 3 × 12 - 30). We also make use of anisotropic lattices, with temporal lattice spacing smaller than the spatial spacing, which prove useful for calculating noisy correlation functions with large spatial lattice discretization (of the order of 0.4 fm).

  7. Glueball Spectrum and Matrix Elements on Anisotropic Lattices

    SciTech Connect

    Y. Chen; A. Alexandru; S.J. Dong; T. Draper; I. Horvath; F.X. Lee; K.F. Liu; N. Mathur; C. Morningstar; M. Peardon; S. Tamhankar; B.L. Young; J.B. Zhang

    2006-01-01

    The glueball-to-vacuum matrix elements of local gluonic operators in scalar, tensor, and pseudoscalar channels are investigated numerically on several anisotropic lattices with the spatial lattice spacing ranging from 0.1fm - 0.2fm. These matrix elements are needed to predict the glueball branching ratios in J/{psi} radiative decays which will help identify the glueball states in experiments. Two types of improved local gluonic operators are constructed for a self-consistent check and the finite volume effects are studied. We find that lattice spacing dependence of our results is very weak and the continuum limits are reliably extrapolated, as a result of improvement of the lattice gauge action and local operators. We also give updated glueball masses with various quantum numbers.

  8. Anisotropic opinion dynamics.

    PubMed

    Neirotti, Juan

    2016-07-01

    We consider the process of opinion formation in a society of interacting agents, where there is a set B of socially accepted rules. In this scenario, we observed that agents, represented by simple feed-forward, adaptive neural networks, may have a conservative attitude (mostly in agreement with B) or liberal attitude (mostly in agreement with neighboring agents) depending on how much their opinions are influenced by their peers. The topology of the network representing the interaction of the society's members is determined by a graph, where the agents' properties are defined over the vertexes and the interagent interactions are defined over the bonds. The adaptability of the agents allows us to model the formation of opinions as an online learning process, where agents learn continuously as new information becomes available to the whole society (online learning). Through the application of statistical mechanics techniques we deduced a set of differential equations describing the dynamics of the system. We observed that by slowly varying the average peer influence in such a way that the agents attitude changes from conservative to liberal and back, the average social opinion develops a hysteresis cycle. Such hysteretic behavior disappears when the variance of the social influence distribution is large enough. In all the cases studied, the change from conservative to liberal behavior is characterized by the emergence of conservative clusters, i.e., a closed knitted set of society members that follow a leader who agrees with the social status quo when the rule B is challenged. PMID:27575150

  9. Anisotropic opinion dynamics

    NASA Astrophysics Data System (ADS)

    Neirotti, Juan

    2016-07-01

    We consider the process of opinion formation in a society of interacting agents, where there is a set B of socially accepted rules. In this scenario, we observed that agents, represented by simple feed-forward, adaptive neural networks, may have a conservative attitude (mostly in agreement with B ) or liberal attitude (mostly in agreement with neighboring agents) depending on how much their opinions are influenced by their peers. The topology of the network representing the interaction of the society's members is determined by a graph, where the agents' properties are defined over the vertexes and the interagent interactions are defined over the bonds. The adaptability of the agents allows us to model the formation of opinions as an online learning process, where agents learn continuously as new information becomes available to the whole society (online learning). Through the application of statistical mechanics techniques we deduced a set of differential equations describing the dynamics of the system. We observed that by slowly varying the average peer influence in such a way that the agents attitude changes from conservative to liberal and back, the average social opinion develops a hysteresis cycle. Such hysteretic behavior disappears when the variance of the social influence distribution is large enough. In all the cases studied, the change from conservative to liberal behavior is characterized by the emergence of conservative clusters, i.e., a closed knitted set of society members that follow a leader who agrees with the social status quo when the rule B is challenged.

  10. Dipolar matter-wave solitons in two-dimensional anisotropic discrete lattices

    NASA Astrophysics Data System (ADS)

    Chen, Huaiyu; Liu, Yan; Zhang, Qiang; Shi, Yuhan; Pang, Wei; Li, Yongyao

    2016-05-01

    We numerically demonstrate two-dimensional (2D) matter-wave solitons in the disk-shaped dipolar Bose-Einstein condensates (BECs) trapped in strongly anisotropic optical lattices (OLs) in a disk's plane. The considered OLs are square lattices which can be formed by interfering two pairs of plane waves with different intensities. The hopping rates of the condensates between two adjacent lattices in the orthogonal directions are different, which gives rise to a linearly anisotropic system. We find that when the polarized orientation of the dipoles is parallel to disk's plane with the same direction, the combined effects of the linearly anisotropy and the nonlocal nonlinear anisotropy strongly influence the formations, as well as the dynamics of the lattice solitons. Particularly, the isotropy-pattern solitons (IPSs) are found when these combined effects reach a balance. Motion, collision, and rotation of the IPSs are also studied in detail by means of systematic simulations. We further find that these IPSs can move freely in the 2D anisotropic discrete system, hence giving rise to an anisotropic effective mass. Four types of collisions between the IPSs are identified. By rotating an external magnetic field up to a critical angular velocity, the IPSs can still remain localized and play as a breather. Finally, the influences from the combined effects between the linear and the nonlocal nonlinear anisotropy with consideration of the contact and/or local nonlinearity are discussed too.

  11. Differential dynamic microscopy for anisotropic colloidal dynamics.

    PubMed

    Reufer, Mathias; Martinez, Vincent A; Schurtenberger, Peter; Poon, Wilson C K

    2012-03-13

    Differential dynamic microscopy (DDM) is a low-cost, high-throughput technique recently developed for characterizing the isotropic diffusion of spherical colloids using white-light optical microscopy. (1) We develop the theory for applying DDM to probe the dynamics of anisotropic colloidal samples such as various ordered phases, or particles interacting with an external field. The q-dependent dynamics can be measured in any direction in the image plane. We demonstrate the method on a dilute aqueous dispersion of anisotropic magnetic particles (hematite) aligned in a magnetic field. The measured diffusion coefficients parallel and perpendicular to the field direction are in good agreement with theoretical values. We show how these measurements allow us to extract the orientational order parameter S(2) of the system.

  12. Lattice-Boltzmann hydrodynamics of anisotropic active matter

    NASA Astrophysics Data System (ADS)

    de Graaf, Joost; Menke, Henri; Mathijssen, Arnold J. T. M.; Fabritius, Marc; Holm, Christian; Shendruk, Tyler N.

    2016-04-01

    A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to simulate self-propelled colloids interacting hydrodynamically in a viscous medium using the lattice-Boltzmann technique. Our model is based on raspberry-type viscous coupling and a force/counter-force formalism, which ensures that the system is force free. We consider several anisotropic shapes and characterize their hydrodynamic multipolar flow field. We demonstrate that shape-anisotropy can lead to the presence of a strong quadrupole and octupole moments, in addition to the principle dipole moment. The ability to simulate and characterize these higher-order moments will prove crucial for understanding the behavior of model swimmers in confining geometries.

  13. Lattice-Boltzmann hydrodynamics of anisotropic active matter.

    PubMed

    de Graaf, Joost; Menke, Henri; Mathijssen, Arnold J T M; Fabritius, Marc; Holm, Christian; Shendruk, Tyler N

    2016-04-01

    A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to simulate self-propelled colloids interacting hydrodynamically in a viscous medium using the lattice-Boltzmann technique. Our model is based on raspberry-type viscous coupling and a force/counter-force formalism, which ensures that the system is force free. We consider several anisotropic shapes and characterize their hydrodynamic multipolar flow field. We demonstrate that shape-anisotropy can lead to the presence of a strong quadrupole and octupole moments, in addition to the principle dipole moment. The ability to simulate and characterize these higher-order moments will prove crucial for understanding the behavior of model swimmers in confining geometries. PMID:27059561

  14. Molecular dynamic simulation methods for anisotropic liquids.

    PubMed

    Aoki, Keiko M; Yoneya, Makoto; Yokoyama, Hiroshi

    2004-03-22

    Methods of molecular dynamics simulations for anisotropic molecules are presented. The new methods, with an anisotropic factor in the cell dynamics, dramatically reduce the artifacts related to cell shapes and overcome the difficulties of simulating anisotropic molecules under constant hydrostatic pressure or constant volume. The methods are especially effective for anisotropic liquids, such as smectic liquid crystals and membranes, of which the stacks of layers are compressible (elastic in direction perpendicular to the layers) while the layer itself is liquid and only elastic under uniform compressive force. The methods can also be used for crystals and isotropic liquids as well.

  15. Measuring the aspect ratio renormalization of anisotropic-lattice gluons

    SciTech Connect

    Alford, M.; Drummond, I. T.; Horgan, R. R.; Shanahan, H.; Peardon, M.

    2001-04-01

    Using tadpole-improved actions we investigate the consistency between different methods of measuring the aspect ratio renormalization of anisotropic-lattice gluons for bare aspect ratios {chi}{sub 0}=4,6,10 and inverse lattice spacing in the range a{sub s}{sup -1}=660--840 MeV. The tadpole corrections to the action, which are established self-consistently, are defined for two cases, mean link tadpoles in the Landau gauge and gauge invariant mean plaquette tadpoles. Parameters in the latter case exhibited no dependence on the spatial lattice size L, while in the former, parameters showed only a weak dependence on L easily extrapolated to L={infinity}. The renormalized anisotropy {chi}{sub R} was measured using both the torelon dispersion relation and the sideways potential method. There is general agreement between these approaches, but there are discrepancies which are evidence for the presence of lattice artifact contributions. For the torelon these are estimated to be O({alpha}{sub S}a{sub s}{sup 2}/R{sup 2}), where R is the flux-tube radius. We also present some new data that suggest that rotational invariance is established more accurately for the mean-link action than the plaquette action.

  16. Effects of anisotropic dynamics on cosmic strings

    SciTech Connect

    Kunze, Kerstin E.

    2011-08-01

    The dynamics of cosmic strings is considered in anisotropic backgrounds. In particular, the behaviour of infinitely long straight cosmic strings and of cosmic string loops is determined. Small perturbations of a straight cosmic string are calculated. The relevance of these results is discussed with respect to the possible observational imprints of an anisotropic phase on the behaviour of a cosmic string network.

  17. Surface Diffusion Directed Growth of Anisotropic Graphene Domains on Different Copper Lattices

    PubMed Central

    Jung, Da Hee; Kang, Cheong; Nam, Ji Eun; Jeong, Heekyung; Lee, Jin Seok

    2016-01-01

    Anisotropic graphene domains are of significant interest since the electronic properties of pristine graphene strongly depend on its size, shape, and edge structures. In this work, considering that the growth of graphene domains is governable by the dynamics of the graphene-substrate interface during growth, we investigated the shape and defects of graphene domains grown on copper lattices with different indices by chemical vapor deposition of methane at either low pressure or atmospheric pressure. Computational modeling identified that the crystallographic orientation of copper strongly influences the shape of the graphene at low pressure, yet does not play a critical role at atmospheric pressure. Moreover, the defects that have been previously observed in the center of four-lobed graphene domains grown under low pressure conditions were demonstrated for the first time to be caused by a lattice mismatch between graphene and the copper substrate. PMID:26883174

  18. Photorefractive writing and probing of anisotropic linear and nonlinear lattices

    NASA Astrophysics Data System (ADS)

    Allio, Raphaël; Guzmán-Silva, Diego; Cantillano, Camilo; Morales-Inostroza, Luis; Lopez-Gonzalez, Dany; Etcheverry, Sebastián; Vicencio, Rodrigo A.; Armijo, Julien

    2015-02-01

    We study experimentally the writing of one- and two-dimensional photorefractive lattices, focusing on the often overlooked transient regime. Our measurements agree well with theory, in particular concerning the ratio of the drift to diffusion terms. We then study the transverse dynamics of coherent waves propagating in the lattices, in a few novel and simple configurations. For defocusing linear waves with broad transverse spectrum, we remark that both the intensity distributions in real space (‘discrete diffraction’) and Fourier space (‘Brillouin zone spectroscopy’) reflect the Bragg planes and band structure. For nonlinear waves, we observe modulational instability and discrete solitons formation in time domain. We discuss also the non-ideal effects inherent to the photo-induction technique: anisotropy, residual nonlinearity, diffusive term, non-stationarity.

  19. Spin transport in the frustrated anisotropic two-dimensional ferromagnet in the square lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-08-01

    We use the SU(3) Schwinger boson formalism together with the Kubo theory of the linear response to study the spin transport in the two-dimensional S=1 frustrated anisotropic Heisenberg ferromagnet in a square lattice with easy-plane single-ion anisotropy and considering the second-neighbor interaction in the diagonal and the third-neighbor interaction (J1-J2-J3 model). The AC spin conductivity σreg(ω) is determined for several values of the critical single-ion parameter D, and the frustration parameters J2 and J3. We have calculated the dynamic structure factor too, S(q → , ω), for this model and obtained a behaviour exponentially decreasing for the damping Γq with the decreasing of q = | q → | towards q → 0.

  20. Highly excited and exotic meson spectrum from dynamical lattice QCD

    SciTech Connect

    Jozef Dudek, Robert Edwards, David Richards, Christopher Thomas

    2009-12-01

    Using a new quark-field construction algorithm and a large variational basis of operators, we extract a highly excited isovector meson spectrum on dynamical anisotropic lattices. We show how carefully constructed operators can be used to identify the continuum spin of extracted states. This method allows us to extract, with confidence, excited states, states of high spin and states with exotic quantum numbers, including, for the first time, spin-four states.

  1. Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures.

    PubMed

    Wang, Zhenni; Chen, Zhengzheng; Zhang, Hui; Zhang, Zhaorui; Wu, Haijun; Jin, Mingshang; Wu, Chao; Yang, Deren; Yin, Yadong

    2015-03-24

    Synthesis of anisotropic nanostructures from materials with isotropic crystal structures often requires the use of seeds containing twin planes to break the crystalline symmetry and promote the preferential anisotropic growth. Controlling twinning in seeds is therefore critically important for high-yield synthesis of many anisotropic nanostructures. Here, we demonstrate a unique strategy to induce twinning in metal nanostructures for anisotropic growth by taking advantage of the large lattice mismatch between two metals. By using Au-Cu as an example, we show, both theoretically and experimentally, that deposition of Cu to the surface of single-crystalline Au seeds can build up strain energy, which effectively induces the formation of twin planes. Subsequent seeded growth allows the production of Cu nanorods with high shape anisotropy that is unachievable without the use of Au seeds. This work provides an effective strategy for the preparation of anisotropic metal nanostructures. PMID:25744113

  2. Anisotropic peak effect due to structural phase transition in the vortex lattice

    NASA Astrophysics Data System (ADS)

    Rosenstein, Baruch; Knigavko, Anton

    2000-05-01

    The recently observed new peak effect in YBCO is explained by softening of the vortex lattice (VL) due to a structural phase transition in the VL. At this transition, square lattice transforms into a distorted hexagonal one. While conventional peak effect is associated with softening of shear modes at melting, in this case the relevant mode is the point. The squash mode is highly anisotropic and we point out some peculiar effects associated with this feature.

  3. High Statistics Analysis using Anisotropic Clover Lattices: (I) Single Hadron Correlation Functions

    SciTech Connect

    Detmold, Will; Detmold, William; Orginos, Konstantinos; R. Beane, Silas; C. Luu, Thomas; Parreno, Assumpta; J. Savage, Martin; Torok, Aaron; Walker-Loud, Andre

    2009-01-01

    We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of $\\Nprops$ sets of measurements are made using $\\Ncfgs$ gauge configurations of size $20^3\\times 128$ with an anisotropy parameter $\\xi= b_s/b_t = 3.5$, a spatial lattice spacing of $b_s=0.1227\\pm 0.0008~{\\rm fm}$, and pion mass of $\\mpi\\sim 390~{\\rm MeV}$. Ground state baryons masses are extracted with fully quantified uncertainties that are at or below the $\\sim 0.2\\%$-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the $N\\pi$ threshold and, therefore, the isos

  4. Melting of the Abrikosov flux lattice in anisotropic superconductors

    NASA Technical Reports Server (NTRS)

    Beck, R. G.; Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.; Kogan, V. G.

    1992-01-01

    It has been proposed that the Abrikosov flux lattice in high-Tc superconductors is melted over a significant fraction of the phase diagram. A thermodynamic argument is provided which establishes that the angular dependence of the melting temperature is controlled by the superconducting mass anisotropy. Using a low-frequency torsional-oscillator technique, this relationship has been tested in untwinned single-crystal YBa2Cu3O(7-delta). The results offer decisive support for the melting proposal.

  5. Lattice gas dynamics: application to driven vortices in two dimensional superconductors.

    PubMed

    Gotcheva, Violeta; Wang, Albert T J; Teitel, S

    2004-06-18

    A continuous time Monte Carlo lattice gas dynamics is developed to model driven steady states of vortices in two dimensional superconducting networks. Dramatic differences are found when compared to a simpler Metropolis dynamics. Subtle finite size effects are found at low temperature, with a moving smectic that becomes unstable to an anisotropic liquid on sufficiently large length scales.

  6. High Statistics Analysis using Anisotropic Clover Lattices: (I) Single Hadron Correlation Functions

    SciTech Connect

    Will Detmold,Konstantinos Orginos,Silas R. Beane,Will Detmold,William Detmold,Thomas C. Luu,Konstantinos Orginos,Assumpta Parreno,Martin J. Savage,Aaron Torok,Andre Walker-Loud

    2009-06-01

    We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of 292,500 sets of measurements are made using 1194 gauge configurations of size 20^3 x 128 with an anisotropy parameter \\xi= b_s/b_t = 3.5, a spatial lattice spacing of b_s=0.1227\\pm 0.0008 fm, and pion mass of m_\\pi ~ 390 MeV. Ground state baryon masses are extracted with fully quantified uncertainties that are at or below the ~0.2%-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the N\\pi threshold and, therefore, the isospin-1/2 \\pi N s-wave scattering phase-shift can be extracted using Luescher's method. The disconnected contributions to this process are included indirectly in the gauge-field configurations and do not require additional calculations. The signal-to-noise ratio in the various correlation functions is explored and is found to degrade exponentially faster than naive expectations on many time-slices. This is due to backward propagating states arising from the anti-periodic boundary conditions imposed on the quark-propagators in the time-direction. We explore how best to distribute computational resources between configuration generation and propagator measurements in order to optimize the extraction of single baryon observables.

  7. High Statistics Analysis using Anisotropic Clover Lattices: (I) Single Hadron Correlation Functions

    SciTech Connect

    Beane, S; Detmold, W; Luu, T; Orginos, K; Parreno, A; Savage, M; Torok, A; Walker-Loud, A

    2009-03-23

    We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of 292, 500 sets of measurements are made using 1194 gauge configurations of size 20{sup 3} x 128 with an anisotropy parameter {zeta} = b{sub s}/b{sub t} = 3.5, a spatial lattice spacing of b{sub s} = 0.1227 {+-} 0.0008 fm, and pion mass of M{sub {pi}} {approx} 390 MeV. Ground state baryons masses are extracted with fully quantified uncertainties that are at or below the {approx} 0.2%-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the N{pi} threshold and, therefore, the isospin-1/2 {pi}N s-wave scattering phase-shift can be extracted using Luescher's method. The disconnected contributions to this process are included indirectly in the gauge-field configurations and do not require additional calculations. The signal-to-noise ratio in the various correlation functions is explored and is found to degrade exponentially faster than naive expectations on many time-slices. This is due to backward propagating states arising from the anti-periodic boundary conditions imposed on the quark-propagators in the time-direction. We explore how best to distribute computational resources between configuration generation and propagator measurements in order to optimize the extraction of single baryon observables.

  8. High statistics analysis using anisotropic clover lattices: Single hadron correlation functions

    SciTech Connect

    Beane, Silas R.; Torok, Aaron; Detmold, William; Orginos, Kostas; Luu, Thomas C.; Parreno, Assumpta; Savage, Martin J.; Walker-Loud, Andre

    2009-06-01

    We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of 292, 500 sets of measurements are made using 1194 gauge configurations of size 20{sup 3}x128 with an anisotropy parameter {xi}=b{sub s}/b{sub t}=3.5, a spatial lattice spacing of b{sub s}=0.1227{+-}0.0008 fm, and pion mass of M{sub {pi}}{approx}390 MeV. Ground state baryon masses are extracted with fully quantified uncertainties that are at or below the {approx}0.2%-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the N{pi} threshold and, therefore, the isospin-(1/2) {pi}N s-wave scattering phase-shift can be extracted using Luescher's method. The disconnected contributions to this process are included indirectly in the gauge-field configurations and do not require additional calculations. The signal-to-noise ratio in the various correlation functions is explored and is found to degrade exponentially faster than naive expectations on many time slices. This is due to backward propagating states arising from the antiperiodic boundary conditions imposed on the quark propagators in the time direction. We explore how best to distribute computational resources between configuration generation and propagator measurements in order to optimize the extraction of single baryon observables.

  9. Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.

    2016-02-01

    In the present work, we consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. We quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilities to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. For weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.

  10. Anisotropic lattice thermal conductivity in chiral tellurium from first principles

    SciTech Connect

    Peng, Hua; Kioussis, Nicholas; Stewart, Derek A.

    2015-12-21

    Using ab initio based calculations, we have calculated the intrinsic lattice thermal conductivity of chiral tellurium. We show that the interplay between the strong covalent intrachain and weak van der Waals interchain interactions gives rise to the phonon band gap between the lower and higher optical phonon branches. The underlying mechanism of the large anisotropy of the thermal conductivity is the anisotropy of the phonon group velocities and of the anharmonic interatomic force constants (IFCs), where large interchain anharmonic IFCs are associated with the lone electron pairs. We predict that tellurium has a large three-phonon scattering phase space that results in low thermal conductivity. The thermal conductivity anisotropy decreases under applied hydrostatic pressure.

  11. Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices

    DOE PAGESBeta

    Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.

    2016-01-14

    We consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. Furthermore, we quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilitiesmore » to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. In weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.« less

  12. Dynamic wetting on anisotropic patterned surfaces

    NASA Astrophysics Data System (ADS)

    Do-Quang, Minh; Wang, Jiayu; Nita, Satoshi; Shiomi, Junichiro; Amberg, Gustav; Physiochemical fluid mechanics Team; Maruyama-Chiashi Laboratory Team

    2014-11-01

    Dynamic wetting, as occurs when a droplet of a wetting liquid is brought in contact with a dry solid, is important in various engineering processes, such as printing, coating, and lubrication. Our overall aim is to investigate if and how the detailed properties of the solid surface influence the dynamics of wetting. We have recently quantified the hindering effect of fairly isotropic micron-sized patterns on the substrate. Here we will study highly anisotropic surfaces, such as parallel grooves, either perpendicular or parallel to an advancing contact line. This is done by detailed phase field simulations and experiments on structured silicon surfaces. The dynamic wetting behavior of drops on the grooved surfaces is governed by the combined interplay of the wetting line friction and the internal viscous dissipation. Influence of roughness is quantified in terms of the energy dissipation rate at the contact line using the experiment-simulation combined analysis. The energy dissipation of the contact line at the different part of the groove will be discussed. The performance of the model is assessed by comparing its predictions with the experimental data. This work was financially supported in part by, the Japan Society for the Promotion of Science (J.W., S.N., and J.S) and Swedish Governmental Agency for Innovation Systems (M.D.-Q. and G.A).

  13. Vortex-lattice pinning and critical current density in anisotropic high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Li, Yingxu; Li, Xiangyu; Kang, Guozheng; Gao, Yuanwen

    2016-10-01

    The anisotropy of critical current density is an impressive manifestation in the physics of high-temperature superconductors. We develop an analytical characterization of anisotropic flux-lattice pinning and critical current density in a system of random point defects. The effect of superconducting anisotropy on the pinning force and critical current density is formulated. The in-plane/out-of-plane anisotropy and microscopic characteristic lengths are incorporated in the field and angular dependence of the critical current density. This is helpful in understanding the physical essence of the scaling behavior in the experiments for critical current anisotropy. We discuss the role of strong and weak point defects in the anisotropic flux-lattice pinning. Relevance of the theory to the critical-state model is dictated as well.

  14. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles.

    PubMed

    Qin, Guangzhao; Yan, Qing-Bo; Qin, Zhenzhen; Yue, Sheng-Ying; Hu, Ming; Su, Gang

    2015-02-21

    Phosphorene, the single layer counterpart of black phosphorus, is a novel two-dimensional semiconductor with high carrier mobility and a large fundamental direct band gap, which has attracted tremendous interest recently. Its potential applications in nano-electronics and thermoelectrics call for fundamental study of the phonon transport. Here, we calculate the intrinsic lattice thermal conductivity of phosphorene by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. The thermal conductivity of phosphorene at 300 K is 30.15 W m(-1) K(-1) (zigzag) and 13.65 W m(-1) K(-1) (armchair), showing an obvious anisotropy along different directions. The calculated thermal conductivity fits perfectly to the inverse relationship with temperature when the temperature is higher than Debye temperature (ΘD = 278.66 K). In comparison to graphene, the minor contribution around 5% of the ZA mode is responsible for the low thermal conductivity of phosphorene. In addition, the representative mean free path (MFP), a critical size for phonon transport, is also obtained.

  15. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE PAGESBeta

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    2016-05-11

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  16. Simulation study of anisotropic random sequential adsorption of extended objects on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Budinski-Petković, Lj.; Lončarević, I.; Jakšić, Z. M.; Vrhovac, S. B.; Švrakić, N. M.

    2011-11-01

    The properties of the anisotropic random sequential adsorption (RSA) of objects of various shapes on a two-dimensional triangular lattice are studied numerically by means of Monte Carlo simulations. The depositing objects are formed by self-avoiding lattice steps, whereby the first step determines the orientation of the object. Anisotropy is introduced by positing unequal probabilities for orientation of depositing objects along different directions of the lattice. This probability is equal p or (1-p)/2, depending on whether the randomly chosen orientation is horizontal or not, respectively. Approach of the coverage θ(t) to the jamming limit θjam is found to be exponential θjam-θ(t)∝exp(-t/σ), for all probabilities p. It was shown that the relaxation time σ increases with the degree of anisotropy in the case of elongated and asymmetrical shapes. However, for rounded and symmetrical shapes, values of σ and θjam are not affected by the presence of anisotropy. We finally analyze the properties of the anisotropic RSA of polydisperse mixtures of k-mers. Strong dependencies of the parameter σ and the jamming coverage θjam on the degree of anisotropy are obtained. It is found that anisotropic constraints lead to the increased contribution of the longer k-mers in the total coverage fraction of the mixture.

  17. Observing dynamical SUSY breaking with lattice simulation

    SciTech Connect

    Kanamori, Issaku

    2008-11-23

    On the basis of the recently developed lattice formulation of supersymmetric theories which keeps a part of the supersymmetry, we propose a method of observing dynamical SUSY breaking with lattice simulation. We use Hamiltonian as an order parameter and measure the ground state energy as a zero temperature limit of the finite temperature simulation. Our method provides a way of obtaining a physical result from the lattice simulation for supersymmetric theories.

  18. LHC Phenomenology and Lattice Strong Dynamics

    NASA Astrophysics Data System (ADS)

    Fleming, G. T.

    2013-03-01

    While the LHC experimentalists work to find evidence of physics beyond the standard model, lattice gauge theorists are working as well to characterize the range of possible phenomena in strongly-coupled models of electroweak symmetry breaking. I will summarize the current progress of the Lattice Strong Dynamics (LSD) collaboration on the flavor dependence of SU(3) gauge theories.

  19. Polarization dynamics in nonlinear anisotropic fibers

    SciTech Connect

    Komarov, Andrey; Komarov, Konstantin; Meshcheriakov, Dmitry; Amrani, Foued; Sanchez, Francois

    2010-07-15

    We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincare sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of the polarization in the Poincare sphere and the motion of a particle in a potential well. Two distinct potentials are found, leading to the existence of two families of solutions, according to the sign of the total energy of the equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to determine analytically the associated beat lengths. General analytical solutions are given for the two families in terms of Jacobi's functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two polarization controllers is also considered.

  20. Anisotropic lattice response induced by a linearly-polarized femtosecond optical pulse excitation in interfacial phase change memory material.

    PubMed

    Makino, Kotaro; Saito, Yuta; Fons, Paul; Kolobov, Alexander V; Nakano, Takashi; Tominaga, Junji; Hase, Muneaki

    2016-01-01

    Optical excitation of matter with linearly-polarized femtosecond pulses creates a transient non-equilibrium lattice displacement along a certain direction. Here, the pump and probe pulse polarization dependence of the photo-induced ultrafast lattice dynamics in (GeTe)2/(Sb2Te3)4 interfacial phase change memory material is investigated under obliquely incident conditions. Drastic pump polarization dependence of the coherent phonon amplitude is observed when the probe polarization angle is parallel to the c-axis of the sample, while the pump polarization dependence is negligible when the probe polarization angle is perpendicular to the c-axis. The enhancement of phonon oscillation amplitude due to pump polarization rotation for a specific probe polarization angle is only found in the early time stage (≤2 ps). These results indicate that the origin of the pump and probe polarization dependence is dominantly attributable to the anisotropically-formed photo-excited carriers which cause the directional lattice dynamics. PMID:26805401

  1. Dynamical Regge calculus as lattice gravity

    NASA Astrophysics Data System (ADS)

    Hagura, Hiroyuki

    2001-03-01

    We propose a hybrid approach to lattice quantum gravity by combining simultaneously the dynamical triangulation with the Regge calculus, called the dynamical Regge calculus (DRC). In this approach lattice diffeomorphism is realized as an exact symmetry by some hybrid ( k, l) moves on the simplicial lattice. Numerical study of 3D pure gravity shows that an entropy of the DRC is not exponetially bounded if we adopt the uniform measure Π idli. On the other hand, using the scale-invariant measure Π idli/ li, we can calculate observables and observe a large hysteresis between two phases that indicates the first-order nature of the phase transition.

  2. Lattice dynamics in Bosonic 7 Li

    NASA Astrophysics Data System (ADS)

    Chen, Huiyao Y.; Jung, Minwoo; Rabinowitz, Jacob; Madjarov, Ivaylo S.; Cheung, Hil F. H.; Patil, Yogesh Sharad; Vengalattore, Mukund

    2016-05-01

    The light mass and strong spin-dependent interactions in 7 Li make it an attractive candidate to study Bosonic quantum magnetism and lattice dynamics in regimes where rapid dynamics is favored, e.g. percolative transport and entropy segregation. Such studies require large ensembles of quantum degenerate 7 Li atoms which has proved to be a technical challenge. We describe our ongoing efforts to overcome this challenge using Raman sideband cooling (RSC). In addition to enabling the rapid production of large degenerate gases, RSC is also a very powerful means of local control of lattice gas dynamics. Extending this to a spinful 7 Li Bose gas will also enable studies of transport and defect dynamics in F=1 lattice gases. This work is supported by the ARO MURI on non-equilibrium dynamics.

  3. Dynamic Behavior of Engineered Lattice Materials

    PubMed Central

    Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.

    2016-01-01

    Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697

  4. Dynamic Behavior of Engineered Lattice Materials

    NASA Astrophysics Data System (ADS)

    Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.

    2016-06-01

    Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations.

  5. Dynamic Behavior of Engineered Lattice Materials.

    PubMed

    Hawreliak, J A; Lind, J; Maddox, B; Barham, M; Messner, M; Barton, N; Jensen, B J; Kumar, M

    2016-01-01

    Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697

  6. Lattice Dynamics of a Protein Crystal

    SciTech Connect

    Meinhold, Lars; Merzel, Franci; Smith, Jeremy C.

    2007-09-28

    All-atom lattice-dynamical calculations are reported for a crystalline protein, ribonuclease A. The sound velocities, density of states, heat capacity (C{sub V}) and thermal diffuse scattering are all consistent with available experimental data. C{sub V}{proportional_to}T{sup 1.68} for T<35 K, significantly deviating from a Debye solid. In Bragg peak vicinity, inelastic scattering of x rays by phonons is found to originate from acoustic mode scattering. The results suggest an approach to protein crystal physics combining all-atom lattice-dynamical calculations with experiments on next-generation neutron sources.

  7. Cluster Mott insulators and two Curie-Weiss regimes on an anisotropic kagome lattice

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Kee, Hae-Young; Kim, Yong Baek

    2016-06-01

    Motivated by recent experiments on the quantum-spin-liquid candidate material LiZn2Mo3O8 , we study a single-band extended Hubbard model on an anisotropic kagome lattice with the 1/6 electron filling. Due to the partial filling of the lattice, the intersite repulsive interaction is necessary to generate Mott insulators, where electrons are localized in clusters rather than at lattice sites. It is shown that these cluster Mott insulators are generally U(1) quantum spin liquids with spinon Fermi surfaces. The nature of charge excitations in cluster Mott insulators can be quite different from conventional Mott insulator and we show that there exists a cluster Mott insulator where charge fluctuations around the hexagonal cluster induce a plaquette charge order (PCO). The spinon excitation spectrum in this spin-liquid cluster Mott insulator is reconstructed due to the PCO so that only 1/3 of the total spinon excitations are magnetically active. Based on these results, we propose that the two Curie-Weiss regimes of the spin susceptibility in LiZn2Mo3O8 may be explained by finite-temperature properties of the cluster Mott insulator with the PCO as well as fractionalized spinon excitations. Existing and possible future experiments on LiZn2Mo3O8 , and other Mo-based cluster magnets are discussed in light of these theoretical predictions.

  8. Nonlinear wave dynamics in honeycomb lattices

    SciTech Connect

    Bahat-Treidel, Omri; Segev, Mordechai

    2011-08-15

    We study the nonlinear dynamics of wave packets in honeycomb lattices and show that, in quasi-one-dimensional configurations, the waves propagating in the lattice can be separated into left-moving and right-moving waves, and any wave packet composed of only left (or only right) movers does not change its intensity structure in spite of the nonlinear evolution of its phase. We show that the propagation of a general wave packet can be described, within a good approximation, as a superposition of left- and right-moving self-similar (nonlinear) wave packets. Finally, we find that Klein tunneling is not suppressed by nonlinearity.

  9. High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions

    SciTech Connect

    Silas Beane; Detmold, William; Lin, Huey-Wen; Luu, Thomas C.; Orginos, Kostas; Savage, Martin; Torok, Aaron M.; Walker-Loud, Andre

    2010-03-01

    Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting

  10. High statistics analysis using anisotropic clover lattices: III. Baryon-baryon interactions

    SciTech Connect

    Beane, Silas R.; Detmold, William; Orginos, Kostas; Lin, Huey-Wen; Savage, Martin J.; Luu, Thomas C.; Torok, Aaron; Walker-Loud, Andre

    2010-03-01

    Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic-clover gauge-field configurations at a pion mass of m{sub {pi}{approx}3}90 MeV, a spatial volume of L{sup 3{approx}}(2.5 fm){sup 3}, and a spatial lattice spacing of b{approx}0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon, and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin independent, within the uncertainties of the calculation, consistent with the absence of one-pion exchange. The only channel for which a negative energy shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H dibaryon. The nucleon-nucleon (NN) scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN sector at this pion mass. This is consistent with our previous lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multibaryon systems.

  11. High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions

    SciTech Connect

    Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A

    2010-01-19

    Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.

  12. High Statistics Analysis using Anisotropic Clover Lattices: (IV) The Volume Dependence of the Light Hadron Masses

    SciTech Connect

    Beane, S R; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Torok, A; Walker-Loud, A

    2011-07-01

    The volume dependence of the octet baryon masses and relations among them are explored with Lattice QCD. Calculations are performed with nf = 2 + 1 clover fermion discretization in four lattice volumes, with spatial extent L ? 2.0, 2.5, 3.0 and 4.0 fm, with an anisotropic lattice spacing of b_s ? 0.123 fm in the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion mass of m_\\pi ? 390 MeV. The typical precision of the ground-state baryon mass determination is lattice gauge-field configurations. Finally, the volume dependence of the pion and kaon masses are analyzed with two-flavor and three-flavor chiral perturbation theory.

  13. Spin superfluidity in the anisotropic XY model in the triangular lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-07-01

    We use the SU(3) Schwinger's boson theory to study the spin transport properties in the two-dimensional anisotropic frustrated Heisenberg model in the triangular lattice at T=0. We have investigated the behavior of the spin conductivity for this model which presents an single-ion anisotropy. We study the spin transport in the Bose-Einstein condensation regime where we have that the tz bosons are condensed and the following condition is valid: = < tz† > = t . Our results show a metallic spin transport for ω > 0 and a superfluid spin transport in the limit of DC conductivity, ω → 0 , where σ(ω) tends to infinity in this limit of ω.

  14. Spin conductivity of the two-dimensional anisotropic frustrated Heisenberg model in the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-07-01

    We use the SU(3) Schwinger's boson theory to study the spin transport properties of the two-dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T=0. We have investigated the behavior of the spin conductivity for this model which presents a single-ion anisotropy and J1 and J2 exchange interactions. We study the spin transport in the Bose-Einstein condensation regime where we have that the tz bosons are condensed and the following condition is valid: = < tz† > = t. Our results show a metallic spin transport for ω > 0 and a superconductor spin transport in the limit of DC conductivity, ω → 0, where σ(ω) tends to infinity in this limit of ω.

  15. A quantum fidelity study of the anisotropic next-nearest-neighbour triangular lattice Heisenberg model

    NASA Astrophysics Data System (ADS)

    Thesberg, Mischa; Sørensen, Erik S.

    2014-10-01

    Ground- and excited-state quantum fidelities in combination with generalized quantum fidelity susceptibilites, obtained from exact diagonalizations, are used to explore the phase diagram of the anisotropic next-nearest-neighbour triangular Heisenberg model. Specifically, the J‧ - J2 plane of this model, which connects the J1 - J2 chain and the anisotropic triangular lattice Heisenberg model, is explored using these quantities. Through the use of a quantum fidelity associated with the first excited-state, in addition to the conventional ground-state fidelity, the BKT-type transition and Majumdar-Ghosh point of the J1 - J2 chain (J‧ = 0) are found to extend into the J‧ - J2 plane and connect with points on the J2 = 0 axis thereby forming bounded regions in the phase diagram. These bounded regions are then explored through the generalized quantum fidelity susceptibilities χρ, χ120\\circ , χD and χCAF which are associated with the spin stiffness, 120° spiral order parameter, dimer order parameter and collinear antiferromagnetic order parameter respectively. These quantities are believed to be extremely sensitive to the underlying phase and are thus well suited for finite-size studies. Analysis of the fidelity susceptibilities suggests that the J‧, J2 ≪ J phase of the anisotropic triangular model is either a collinear antiferromagnet or possibly a gapless disordered phase that is directly connected to the Luttinger phase of the J1 - J2 chain. Furthermore, the outer region is dominated by incommensurate spiral physics as well as dimer order.

  16. Edge states in a honeycomb lattice: effects of anisotropic hopping and mixed edges

    SciTech Connect

    Dahal, Hari P; Balatsky, Alexander V; Sinistsyn, N A; Hu, Zi - Xiang; Yang, Kun

    2008-01-01

    We study the edge states in graphene in the presence of a magnetic field perpendicular to the plane of the lattice. Most of the work done so far discusses the edge states in either zigzag or armchair edge graphene considering an isotropic electron hopping. In practice, graphene can have a mixture of armchair and zigzag edges and the electron hopping can be anisotropic, which is the subject of this article. We predict that the mixed edges smear the enhanced local density of states (LDOS) at E=0 of the zigzag edge and, on the other hand, the anisotropic hopping gives rise to the enhanced LDOS at E=0 in the armchair edge. The behavior of the LDOS can be studied using scanning tunneling microscopy (STM) experiments. We suggest that care must be taken while interpreting the STM data, because the clear distinction between the zigzag edge (enhanced LDOS at E=0) and armchair edge (suppressed LDOS at E=0) can be lost if the hopping is not isotropic and if the edges are mixed.

  17. Dynamic quantum crystallography: lattice-dynamical models refined against diffraction data. I. Theory.

    PubMed

    Hoser, Anna A; Madsen, Anders Ø

    2016-03-01

    This study demonstrates and tests the refinement of a lattice-dynamical model derived from periodic ab initio calculations at the Γ point against elastic diffraction data (X-ray or neutron). Refinement of only a handful of parameters is sufficient to obtain a similar agreement with the data as the conventional crystallographic model using anisotropic displacement parameters. By refinement against X-ray data, H displacement parameters are obtained which compare favourably with those from neutron diffraction experiments. The approach opens the door for evaluating thermodynamic properties, and for refinement against multi-temperature data, against inelastic diffraction data, spectroscopic information and thermal diffuse scattering data. PMID:26919372

  18. Nucleon Structure from Dynamical Lattice QCD

    SciTech Connect

    Huey-Wen Lin

    2007-06-01

    We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.

  19. Nucleon Structure from Dynamical Lattice QCD

    SciTech Connect

    Lin, H.-W.

    2007-06-13

    We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.

  20. Lattice gas dynamics under continuous measurement

    NASA Astrophysics Data System (ADS)

    Patil, Yogesh Sharad; Cheung, Hil F. H.; Madjarov, Ivaylo S.; Chen, Huiyao Y.; Vengalattore, Mukund

    2016-05-01

    The act of measurement has a profound consequences quantum systems. While this backaction has so far been discussed as being a limitation on the precision of measurements, it is increasingly being appreciated that measurement backaction is a powerful and versatile means of quantum control. We have previously demonstrated that backaction from position measurement can modify the coherent tunneling rate of a lattice gas through the Quantum Zeno effect. Here, we show how spatially designed measurement landscapes can be used to realize entropy segregation in lattice gases. This presents an alternate path to the longstanding challenge of realizing lattice gases with sufficiently low entropy to access regimes of correlated quantum behavior such as Néel ordered states. This work is supported by the ARO MURI on non-equilibrium dynamics.

  1. Nonlinear dynamic analysis of quasi-symmetric anisotropic structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.

  2. Group theoretic reduction of Laplacian dynamical problems on fractal lattices

    SciTech Connect

    Schwalm, W.A.; Schwalm, M.K.; Giona, M.

    1997-06-01

    Discrete forms of the Schr{umlt o}dinger equation, the diffusion equation, the linearized Landau-Ginzburg equation, and discrete models for vibrations and spin dynamics belong to a class of Laplacian-based finite difference models. Real-space renormalization of such models on finitely ramified regular fractals is known to give exact recursion relations. It is shown that these recursions commute with Lie groups representing continuous symmetries of the discrete models. Each such symmetry reduces the order of the renormalization recursions by one, resulting in a system of recursions with one fewer variable. Group trajectories are obtained from inverse images of fixed and invariant sets of the recursions. A subset of the Laplacian finite difference models can be mapped by change of boundary conditions and time dependence to a diffusion problem with closed boundaries. In such cases conservation of mass simplifies the group flow and obtaining the groups becomes easier. To illustrate this, the renormalization recursions for Green functions on four standard examples are decoupled. The examples are (1) the linear chain, (2) an anisotropic version of Dhar{close_quote}s 3-simplex, similar to a model dealt with by Hood and Southern, (3) the fourfold coordinated Sierpi{acute n}ski lattice of Rammal and of Domany {ital et al.}, and (4) a form of the Vicsek lattice. Prospects for applying the group theoretic method to more general dynamical systems are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  3. Noncollinear and noncoplanar magnetic order in the extended Hubbard model on anisotropic triangular lattice

    NASA Astrophysics Data System (ADS)

    Pasrija, Kanika; Kumar, Sanjeev

    2016-05-01

    Motivated by the importance of noncollinear and noncoplanar magnetic phases in determining various electrical properties in magnets, we investigate the magnetic phase diagram of the extended Hubbard model on an anisotropic triangular lattice. We map out the ground-state phase diagram within a mean-field scheme that treats collinear, noncollinear, and noncoplanar phases on equal footing. In addition to the standard ferromagnet and 120∘ antiferromagnet states, we find the four-sublattice flux, the 3Q noncoplanar, and the noncollinear charge-ordered states to be stable at specific values of filling fraction n . Inclusion of a nearest-neighbor Coulomb repulsion leads to intriguing spin-charge-ordered phases. The most notable of these are the collinear and noncollinear magnetic states at n =2 /3 , which occur together with a pinball-liquid-like charge order. Our results demonstrate that the elementary single-orbital extended Hubbard model on a triangular lattice hosts unconventional spin-charge ordered phases, which are similar to those reported in more complex and material-specific electronic Hamiltonians.

  4. Colloidal aggregation and dynamics in anisotropic fluids

    PubMed Central

    Mondiot, Frédéric; Botet, Robert; Snabre, Patrick; Mondain-Monval, Olivier; Loudet, Jean-Christophe

    2014-01-01

    We present experiments and numerical simulations to investigate the collective behavior of submicrometer-sized particles immersed in a nematic micellar solution. We use latex spheres with diameters ranging from 190 to 780 nm and study their aggregation properties due to the interplay of the various colloidal forces at work in the system. We found that the morphology of aggregates strongly depends on the particle size, with evidence for two distinct regimes: the biggest inclusions clump together within minutes into either compact clusters or V-like structures that are completely consistent with attractive elastic interactions. On the contrary, the smallest particles form chains elongated along the nematic axis, within comparable timescales. In this regime, Monte Carlo simulations, based on a modified diffusion-limited cluster aggregation model, strongly suggest that the anisotropic rotational Brownian motion of the clusters combined with short-range depletion interactions dominate the system coarsening; elastic interactions no longer prevail. The simulations reproduce the sharp transition between the two regimes on increasing the particle size. We provide reasonable estimates to interpret our data and propose a likely scenario for colloidal aggregation. These results emphasize the growing importance of the diffusion of species at suboptical-wavelength scales and raise a number of fundamental issues. PMID:24715727

  5. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Molnár, Etele; Niemi, Harri; Rischke, Dirk H.

    2016-06-01

    Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, f^0 k, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from f^0 k. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.

  6. Transport on a lattice with dynamical defects

    NASA Astrophysics Data System (ADS)

    Turci, Francesco; Parmeggiani, Andrea; Pitard, Estelle; Romano, M. Carmen; Ciandrini, Luca

    2013-01-01

    Many transport processes in nature take place on substrates, often considered as unidimensional lanes. These unidimensional substrates are typically nonstatic: Affected by a fluctuating environment, they can undergo conformational changes. This is particularly true in biological cells, where the state of the substrate is often coupled to the active motion of macromolecular complexes, such as motor proteins on microtubules or ribosomes on mRNAs, causing new interesting phenomena. Inspired by biological processes such as protein synthesis by ribosomes and motor protein transport, we introduce the concept of localized dynamical sites coupled to a driven lattice gas dynamics. We investigate the phenomenology of transport in the presence of dynamical defects and find a regime characterized by an intermittent current and subject to severe finite-size effects. Our results demonstrate the impact of the regulatory role of the dynamical defects in transport not only in biology but also in more general contexts.

  7. Dynamics for QCD on an Infinite Lattice

    NASA Astrophysics Data System (ADS)

    Grundling, Hendrik; Rudolph, Gerd

    2016-08-01

    We prove the existence of the dynamics automorphism group for Hamiltonian QCD on an infinite lattice in R^3, and this is done in a C*-algebraic context. The existence of ground states is also obtained. Starting with the finite lattice model for Hamiltonian QCD developed by Kijowski, Rudolph (cf. J Math Phys 43:1796-1808 [15], J Math Phys 46:032303 [16]), we state its field algebra and a natural representation. We then generalize this representation to the infinite lattice, and construct a Hilbert space which has represented on it all the local algebras (i.e., kinematics algebras associated with finite connected sublattices) equipped with the correct graded commutation relations. On a suitably large C*-algebra acting on this Hilbert space, and containing all the local algebras, we prove that there is a one parameter automorphism group, which is the pointwise norm limit of the local time evolutions along a sequence of finite sublattices, increasing to the full lattice. This is our global time evolution. We then take as our field algebra the C*-algebra generated by all the orbits of the local algebras w.r.t. the global time evolution. Thus the time evolution creates the field algebra. The time evolution is strongly continuous on this choice of field algebra, though not on the original larger C*-algebra. We define the gauge transformations, explain how to enforce the Gauss law constraint, show that the dynamics automorphism group descends to the algebra of physical observables and prove that gauge invariant ground states exist.

  8. Anisotropic lattice expansion of three-dimensional colloidal crystals and its impact on hypersonic phonon band gaps.

    PubMed

    Wu, Songtao; Zhu, Gaohua; Zhang, Jin S; Banerjee, Debasish; Bass, Jay D; Ling, Chen; Yano, Kazuhisa

    2014-05-21

    We report anisotropic expansion of self-assembled colloidal polystyrene-poly(dimethylsiloxane) crystals and its impact on the phonon band structure at hypersonic frequencies. The structural expansion was achieved by a multistep infiltration-polymerization process. Such a process expands the interplanar lattice distance 17% after 8 cycles whereas the in-plane distance remains unaffected. The variation of hypersonic phonon band structure induced by the anisotropic lattice expansion was recorded by Brillouin measurements. In the sample before expansion, a phononic band gap between 3.7 and 4.4 GHz is observed; after 17% structural expansion, the gap is shifted to a lower frequency between 3.5 and 4.0 GHz. This study offers a facile approach to control the macroscopic structure of colloidal crystals with great potential in designing tunable phononic devices.

  9. Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms.

    PubMed

    Williams, R A; Pillet, J D; Al-Assam, S; Fletcher, B; Shotter, M; Foot, C J

    2008-10-13

    We demonstrate a novel experimental arrangement which can rotate a 2D optical lattice at frequencies up to several kilohertz. Ultracold atoms in such a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, allowing investigation of phenomena such as the fractional quantum Hall effect. Our arrangement also allows the periodicity of a 2D optical lattice to be varied dynamically, producing a 2D accordion lattice.

  10. High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems

    SciTech Connect

    Beane, S; Detmold, W; Luu, T; Orginos, K; Parreno, A; Savage, M; Torok, A; Walker-Loud, A

    2009-05-05

    We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m{sub {pi}} {approx} 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the {Xi}{sup 0}{Xi}{sup 0}n system, one of the least demanding three baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E{sub {Xi}{sup 0}{Xi}{sup 0}n} = 3877.9 {+-} 6.9 {+-} 9.2 {+-} 3.3 MeV corresponding to an energy-shift due to interactions of {delta}E{sub {Xi}{sup 0}{Xi}{sup 0}n} = E{sub {Xi}{sup 0}{Xi}{sup 0}n} - 2M{sub {Xi}{sup 0}} - M{sub n} = 4.6 {+-} 5.0 {+-} 7.9 {+-} 4.2 MeV. There are a significant number of time-slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating-operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multi-baryon systems, and shows that Lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.

  11. High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems

    SciTech Connect

    Andre Walker-Loud, Will Detmold, William Detmold, Aaron Torok, Konstantinos Orginos, Silas Beane, Tom Luu, Martin Savage, Assumpta Parreno

    2009-10-01

    We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m_\\pi ~ 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the $\\Xi^0\\Xi^0 n$ system, one of the least demanding three baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E_{\\Xi^0\\Xi^0n}= 3877.9\\pm 6.9\\pm 9.2\\pm3.3 MeV corresponding to an energy-shift due to interactions of \\delta E_{\\Xi^0\\Xi^0n}=E_{\\Xi^0\\Xi^0n}-2M_{\\Xi^0} -M_n=4.6\\pm 5.0\\pm 7.9\\pm 4.2 MeV. There are a significant number of time-slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating-operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multi-baryon systems, and shows that Lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.

  12. High statistics analysis using anisotropic clover lattices. II. Three-baryon systems

    SciTech Connect

    Beane, Silas R.; Torok, Aaron; Detmold, William; Orginos, Kostas; Luu, Thomas C.; Parreno, Assumpta; Savage, Martin J.; Walker-Loud, Andre

    2009-10-01

    We present the results of an exploratory lattice QCD calculation of three-baryon systems through a high statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m{sub {pi}}{approx}390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating operators with the quantum numbers of the {xi}{sup 0}{xi}{sup 0}n system, one of the least demanding three-baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E{sub {xi}{sup 0}}{sub {xi}{sup 0}}{sub n}=3877.9{+-}6.9{+-}9.2{+-}3.3 MeV corresponding to an energy shift due to interactions of {delta}E{sub {xi}{sup 0}}{sub {xi}{sup 0}}{sub n}=E{sub {xi}{sup 0}}{sub {xi}{sup 0}}{sub n}-2M{sub {xi}{sup 0}}-M{sub n}=4.6{+-}5.0{+-}7.9{+-}4.2 MeV. There are a significant number of time slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multibaryon systems, and shows that lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.

  13. Anisotropic mechanical properties of graphene: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yu, Ming; Zeng, Anna; Zeng, Kevin

    2014-03-01

    The anisotropic mechanical properties of monolayer graphene with different shapes have been studied using an efficient quantum mechanics molecular dynamics scheme based on a semi-empirical Hamiltonian (refereed as SCED-LCAO) [PRB 74, 15540; PHYSE 42, 1]. We have found the anisotropic nature of the membrane stress. The stresses along the armchair direction are slightly stronger than that along the zigzag direction, showing strong direction selectivity. The graphene with the rectangular shape could sustain strong load (i . e ., 20%) in both armchair and zigzag directions. The graphene with the rhombus shape show large difference in the strain direction: it will quickly crack after 18 % of strain in armchair the direction, but slowly destroyed after 20% in the zigzag direction. The obtained 2D Young's modulus at infinitesimal strain and the third-order (effective nonlinear) elastic modulus are in good consistent with the experimental observation.

  14. Anisotropic pair superfluidity of trapped two-component Bose gases in an optical lattice

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang; He, Liang; Hofstetter, Walter

    2013-09-01

    We theoretically investigate the pair-superfluid phase of two-component ultracold gases with attractive inter-species interactions in an optical lattice. We establish the phase diagram for filling n = 1 at zero and finite temperatures, by applying bosonic dynamical mean-field theory, and observe stable pair-superfluid and charge-density wave quantum phases for asymmetric hopping of the two species. While the pair superfluid is found to be robust in the presence of a harmonic trap, we observe that it is destroyed already by a small population imbalance of the two species.

  15. Dynamical Arrest of Ultracold Lattice Fermions

    NASA Astrophysics Data System (ADS)

    Schmidt, Bernd; Bakhtiari, M. Reza; Titvinidze, Irakli; Schneider, Ulrich; Snoek, Michiel; Hofstetter, Walter

    2013-02-01

    We theoretically investigate the thermodynamics of an interacting inhomogeneous two-component Fermi gas in an optical lattice. Motivated by a recent experiment by L. Hackermüller , Science 327, 1621 (2010)SCIEAS0036-8075, we study the effect of the interplay between thermodynamics and strong correlations on the size of the fermionic cloud. We use dynamical mean-field theory to compute the cloud size, which in the experiment shows an anomalous expansion behavior upon increasing attractive interaction. We confirm this qualitative effect but, assuming adiabaticity, we find quantitative agreement only for weak interactions. For strong interactions we observe significant nonequilibrium effects which we attribute to a dynamical arrest of the particles due to increasing correlations.

  16. Flow and dispersion in anisotropic porous media: A lattice-Boltzmann study

    NASA Astrophysics Data System (ADS)

    Maggiolo, D.; Picano, F.; Guarnieri, M.

    2016-10-01

    Given their capability of spreading active chemical species and collecting electricity, porous media made of carbon fibers are extensively used as diffusion layers in energy storage systems, such as redox flow batteries. In spite of this, the dispersion dynamics of species inside porous media is still not well understood and often lends itself to different interpretations. Actually, the microscopic design of efficient porous media, which can potentially and effectively improve the performances of flow batteries, is still an open challenge. The present study aims to investigate the effect of fibrous media micro-structure on dispersion, in particular the effect of fiber orientation on drag and dispersion dynamics. Several lattice-Boltzmann simulations of flows through differently oriented fibrous media coupled with Lagrangian simulations of particle tracers have been performed. Results show that orienting fibers preferentially along the streamwise direction minimizes the drag and maximizes the dispersion, which is the most desirable condition for diffusion layers in flow batteries' applications.

  17. Interacting Dark Fluid in Anisotropic Universe with Dynamical Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Adhav, K. S.; Bokey, V. D.; Bansod, A. S.; Munde, S. L.

    2016-10-01

    In this paper we have studied the anisotropic and homogeneous Bianchi Type-I and V universe filled with Interacting Dark Matter and Holographic Dark Energy. The solutions of field equations are obtained for both models under the assumption of linearly varying deceleration parameter which yields dynamical deceleration parameter. It has been observed that the anisotropy of expansion dies out very quickly (soon after inflation) in both models (B-I, B-V). The physical and geometrical parameters for the both models have been obtained and discussed in details.

  18. Interacting Dark Fluid in Anisotropic Universe with Dynamical Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Adhav, K. S.; Bokey, V. D.; Bansod, A. S.; Munde, S. L.

    2016-06-01

    In this paper we have studied the anisotropic and homogeneous Bianchi Type-I and V universe filled with Interacting Dark Matter and Holographic Dark Energy. The solutions of field equations are obtained for both models under the assumption of linearly varying deceleration parameter which yields dynamical deceleration parameter. It has been observed that the anisotropy of expansion dies out very quickly (soon after inflation) in both models (B-I, B-V). The physical and geometrical parameters for the both models have been obtained and discussed in details.

  19. Lattice dynamics and lattice thermal conductivity of thorium dicarbide

    NASA Astrophysics Data System (ADS)

    Liao, Zongmeng; Huai, Ping; Qiu, Wujie; Ke, Xuezhi; Zhang, Wenqing; Zhu, Zhiyuan

    2014-11-01

    The elastic and thermodynamic properties of ThC2 with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C2 dimer in ThC2 is similar to that of a free standing C2 dimer. This indicates that the C2 dimer in ThC2 is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC2 was calculated by means of the Debye-Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC2 contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.

  20. Lattice dynamics and thermal expansion of quartz

    NASA Astrophysics Data System (ADS)

    Smirnov, M. B.

    1999-02-01

    The mechanism of the thermal expansion and the α-β phase transition of quartz are jointly studied within the framework of a lattice-dynamical treatment using the pair-wise potential by Tsuneyuki et al. [Phys. Rev. Lett. 61, 869 (1988)]. This shows that the essentially anomalous thermal expansion of quartz originates from the low-frequency phonon modes most of which have negative Grüeneisen coefficients. The main factor driving the α-phase structure variation at heating is the rotation of the SiO4 tetrahedra towards their β-phase positions. The volume variation follows this process thus keeping the static pressure small. The model reveals that at T>430 K a number of the phonons have imaginary quasiharmonic frequencies being governed by a double-well potential. This result does not suggest any large-scale lattice instability, and just indicates that the relevant vibrations are essentially anharmonic and that the actual crystal structure is of a dynamically averaged character. The contribution of such modes to the free energy has been included by the extension of the quasiharmonic theory proposed by Boyer and Hardy [Phys. Rev. B 24, 2577 (1981)]. Then the accurate free-energy optimization with respect to all the structural parameters provides the α-quartz structure at TTc~850 K, but it exists in the β phase at 850 K

  1. Chaotic and ballistic dynamics in time-driven quasiperiodic lattices

    NASA Astrophysics Data System (ADS)

    Wulf, Thomas; Schmelcher, Peter

    2016-04-01

    We investigate the nonequilibrium dynamics of classical particles in a driven quasiperiodic lattice based on the Fibonacci sequence. An intricate transient dynamics of extraordinarily long ballistic flights at distinct velocities is found. We argue how these transients are caused and can be understood by a hierarchy of block decompositions of the quasiperiodic lattice. A comparison to the cases of periodic and fully randomized lattices is performed.

  2. Chaotic and ballistic dynamics in time-driven quasiperiodic lattices.

    PubMed

    Wulf, Thomas; Schmelcher, Peter

    2016-04-01

    We investigate the nonequilibrium dynamics of classical particles in a driven quasiperiodic lattice based on the Fibonacci sequence. An intricate transient dynamics of extraordinarily long ballistic flights at distinct velocities is found. We argue how these transients are caused and can be understood by a hierarchy of block decompositions of the quasiperiodic lattice. A comparison to the cases of periodic and fully randomized lattices is performed. PMID:27176301

  3. Imaging Anisotropic Nanoplasma Dynamics in Superfluid Helium Droplets

    NASA Astrophysics Data System (ADS)

    Bacellar, Camila; Chatterley, Adam; Lackner, Florian; Pemmaraju, Sri; Tanyag, Rico; Bernando, Charles; Verma, Deepak; O'Connell, Sean; Osipiv, Timur; Ray, Dipanwita; Ferguson, Kenneth; Gorkhover, Tais; Swiggers, Michele; Bucher, Maximilian; Vilesov, Andrey; Bostedt, Christoph; Gessner, Oliver

    2016-05-01

    The dynamics of strong-field induced nanoplasmas inside superfluid helium droplets are studied using single-shot, single-particle femtosecond time-resolved X-ray coherent diffractive imaging (CDI) at the Linac Coherent Light Source (LCLS). Intense (~ 1015 W/ cm2, ~ 50 fs) 800 nm laser pulses are employed to initiate nanoplasma formation in sub-micron (200 nm - 600 nm) sized helium droplets. The dynamics of the nanoplasma formation and subsequent droplet evolution are probed by x-rays pulses (~ 100 fs, 600 eV) that are delayed with respect to the near-infrared (NIR) pulses by 10's of femtoseconds to hundreds of picoseconds. Pump-probe time-delay dependent effects in the CDI patterns reveal distinct dynamics evolving on multiple timescales. Very fast (<100 fs) appearing features are possibly indicative of electronic dynamics, while slower (>= 1 ps) dynamics are likely associated with structural changes correlated to nuclear motion including droplet disintegration. In particular, the CDI images exhibit strong indications for anisotropic dynamics governed by the NIR polarization axis, providing previously inaccessible insight into the mechanisms of nanoplasma formation and evolution.

  4. Anisotropic Peak Effect due to Structural Phase Transition in the Vortex Lattice

    NASA Astrophysics Data System (ADS)

    Rosenstein, Baruch; Knigavko, Anton

    1999-07-01

    It is shown that the recently observed new peak effect in YBCO could be explained by the softening of the vortex lattice due to a structural phase transition in the vortex lattice. At this transition square lattice transforms into a distorted hexagonal one. While conventional peak effect is associated with the softening of shear modes (elastic modulus c66 vanishes) at melting, in this case the relevant mode is ``squash'' mode ( c11+c22-2c12 vanishes).

  5. Formation and Dynamics of Antiferromagnetic Correlations in Tunable Optical Lattices

    NASA Astrophysics Data System (ADS)

    Greif, Daniel; Jotzu, Gregor; Messer, Michael; Desbuquois, Rémi; Esslinger, Tilman

    2015-12-01

    We report on the observation of antiferromagnetic correlations of ultracold fermions in a variety of optical lattice geometries that are well described by the Hubbard model, including dimers, 1D chains, ladders, isolated and coupled honeycomb planes, as well as square and cubic lattices. The dependence of the strength of spin correlations on the specific geometry is experimentally studied by measuring the correlations along different lattice tunneling links, where a redistribution of correlations between the different lattice links is observed. By measuring the correlations in a crossover between distinct geometries, we demonstrate an effective reduction of the dimensionality for our atom numbers and temperatures. We also investigate the formation and redistribution time of spin correlations by dynamically changing the lattice geometry and studying the time evolution of the system. Time scales ranging from a sudden quench of the lattice geometry to an adiabatic evolution are probed.

  6. Topological spin liquids in the ruby lattice with anisotropic Kitaev interactions

    NASA Astrophysics Data System (ADS)

    Jahromi, Saeed S.; Kargarian, Mehdi; Masoudi, S. Farhad; Langari, Abdollah

    2016-09-01

    The ruby lattice is a four-valent lattice interpolating between honeycomb and triangular lattices. In this work we investigate the topological spin-liquid phases of a spin Hamiltonian with Kitaev interactions on the ruby lattice using exact diagonalization and perturbative methods. The latter interactions combined with the structure of the lattice yield a model with Z2×Z2 gauge symmetry. We mapped out the phase diagram of the model and found gapped and gapless spin-liquid phases. While the low-energy sector of the gapped phase corresponds to the well-known topological color code model on a honeycomb lattice, the low-energy sector of the gapless phases is described by an effective spin model with three-body interactions on a triangular lattice. A gap is opened in the spectrum in small magnetic fields, where we showed that the ground state has a finite topological entanglement entropy. We argue that the gapped phases could be possibly described by exotic excitations, and their corresponding spectrum is richer than the Ising phase of the Kitaev model.

  7. Simulations of energetic particles interacting with nonlinear anisotropic dynamical turbulence

    NASA Astrophysics Data System (ADS)

    Heusen, M.; Shalchi, A.

    2016-09-01

    We investigate test-particle diffusion in dynamical turbulence based on a numerical approach presented before. For the turbulence we employ the nonlinear anisotropic dynamical turbulence model which takes into account wave propagation effects as well as damping effects. We compute numerically diffusion coefficients of energetic particles along and across the mean magnetic field. We focus on turbulence and particle parameters which should be relevant for the solar system and compare our findings with different interplanetary observations. We vary different parameters such as the dissipation range spectral index, the ratio of the turbulence bendover scales, and the magnetic field strength in order to explore the relevance of the different parameters. We show that the bendover scales as well as the magnetic field ratio have a strong influence on diffusion coefficients whereas the influence of the dissipation range spectral index is weak. The best agreement with solar wind observations can be found for equal bendover scales and a magnetic field ratio of δ B / B0 = 0.75.

  8. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    SciTech Connect

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals in the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.

  9. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    DOE PAGESBeta

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less

  10. Phase structure of the anisotropic antiferromagnetic Heisenberg model on a layered triangular lattice: Spiral state and deconfined spin liquid

    SciTech Connect

    Nakane, Kazuya; Kamijo, Takeshi; Ichinose, Ikuo

    2011-02-01

    In the present paper, we study a spin-1/2 antiferromagnetic (AF) Heisenberg model on layered anisotropic triangular lattice and obtain its phase structure. We use the Schwinger bosons for representing spin operators and also a coherent-state path integral for calculating physical quantities. Finite-temperature properties of the system are investigated by means of the numerical Monte-Carlo simulations. A detailed phase diagram of the system is obtained by calculating internal energy, specific heat, spin correlation functions, etc. There are AF Neel, paramagnetic, and spiral states. Turning on the plaquette term (i.e., the Maxwell term on a lattice) of an emergent U(1) gauge field that flips a pair of parallel spin-singlet bonds, we found that there appears a phase that is regarded as a deconfined spin-liquid state, though 'transition' to this phase from the paramagnetic phase is not of second order but a crossover. In that phase, the emergent gauge boson is a physical gapless excitation coupled with spinons. These results support our previous study on an AF Heisenberg model on a triangular lattice at vanishing temperature.

  11. Emergence of anisotropic heavy fermions in antiferromagnetic Kondo lattice CeIn3 revealed by photoemission

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Lu, Haiyan; Zhu, Xiegang; Tan, Shiyong; Chen, Qiuyun; Feng, Wei; Xie, Donghua; Luo, Lizhu; Zhang, Wen; Lai, Xinchun; Donglai Feng Team; Huiqiu Yuan Team

    One basic concept in heavy fermions systems is the entanglement of localized spin state and itinerant electron state. It can be tuned by two competitive intrinsic mechanisms, Kondo effect and Ruderman-Kittel-Kasuya-Yosida interaction, with external disturbances. The key issue regarding heavy fermions properties is how the two mechanisms work in the same phase region. To investigate the relation of the two mechanisms, the cubic antiferromagnetic heavy fermions compound CeIn3 was investigated by soft x-ray angle resolved photoemission spectroscopy. The hybridization between f electrons and conduction bands in the paramagnetic state was observed directly, providing compelling evidence for Kondo screening scenario and coexistence of two mechanisms. The hybridization strength shows slight and regular anisotropy in K space, implying that the two mechanisms are competitive and anisotropic. This work illuminates the concomitant and competitive relation between the two mechanisms and supplies some evidences for the anisotropic superconductivity of CeIn3

  12. Magnetic phase diagram of a spatially anisotropic, frustrated spin-¹/₂ Heisenberg antiferromagnet on a stacked square lattice.

    PubMed

    Majumdar, Kingshuk

    2011-02-01

    The magnetic phase diagram of a spatially anisotropic, frustrated spin-[Formula: see text] Heisenberg antiferromagnet on a stacked square lattice is investigated using a second-order spin-wave expansion. The effects of interlayer coupling and the spatial anisotropy on the magnetic ordering of two ordered ground states are explicitly studied. It is shown that with increase in next nearest neighbor frustration the second-order corrections play a significant role in stabilizing the magnetization. We obtain two ordered magnetic phases (Néel and stripe) separated by a paramagnetic disordered phase. Within the second-order spin-wave expansion we find that the width of the disordered phase diminishes with increase in the interlayer coupling or with decrease in spatial anisotropy but it does not disappear. Our obtained phase diagram differs significantly from the phase diagram obtained using linear spin-wave theory.

  13. Molecular dynamics study of anisotropic growth of silicon

    NASA Astrophysics Data System (ADS)

    Naigen, Zhou; Bo, Liu; Chi, Zhang; Ke, Li; Lang, Zhou

    2016-07-01

    Based on the Tersoff potential, molecular dynamics simulations have been performed to investigate the kinetic coefficients and growth velocities of Si (100), (110), (111), and (112) planes. The sequences of the kinetic coefficients and growth velocities are μ (100) > μ (110) > μ (112) > μ (111) and v (100) > v (110) > v (112) > v (111), respectively, which are not consistent with the sequences of the interface energies, interplanar spacings, and melting points of the four planes. However, they agree well with the sequences of the distributions and diffusion coefficients of the melting atoms near the solid–liquid interfaces. It indicates that the atomic distributions and diffusion coefficients affected by the crystal orientations determine the anisotropic growth of silicon. The formation of stacking fault structure will further decrease the growth velocity of the Si (111) plane. Project supported by the National Natural Science Foundation of China (Grant Nos. 51361022, 51561022, and 61464007) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB206001).

  14. Molecular dynamics study of anisotropic growth of silicon

    NASA Astrophysics Data System (ADS)

    Naigen, Zhou; Bo, Liu; Chi, Zhang; Ke, Li; Lang, Zhou

    2016-07-01

    Based on the Tersoff potential, molecular dynamics simulations have been performed to investigate the kinetic coefficients and growth velocities of Si (100), (110), (111), and (112) planes. The sequences of the kinetic coefficients and growth velocities are μ (100) > μ (110) > μ (112) > μ (111) and v (100) > v (110) > v (112) > v (111), respectively, which are not consistent with the sequences of the interface energies, interplanar spacings, and melting points of the four planes. However, they agree well with the sequences of the distributions and diffusion coefficients of the melting atoms near the solid-liquid interfaces. It indicates that the atomic distributions and diffusion coefficients affected by the crystal orientations determine the anisotropic growth of silicon. The formation of stacking fault structure will further decrease the growth velocity of the Si (111) plane. Project supported by the National Natural Science Foundation of China (Grant Nos. 51361022, 51561022, and 61464007) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB206001).

  15. Statistical mechanics of the Toda lattice based on soliton dynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, Fumio; Sakurma, Tetsuro

    1982-05-01

    A classical theory of statistical mechanics of the Toda lattice is presented on the basis of soliton dynamics. Following the inverse spectral theory, the partition function of the Toda lattice is reconstructed from one-particle partition functions of soliton and ripple modes. Discussions are made on the contribution of these modes to the thermodynamic properties of the Toda lattice. At low temperatures, it is shown that the average number of excited solitons has the temperature dependence T13. With the comparison of our results with those from the exact theory, several problems to be worked out are pointed out in our soliton-ripple gas-mixture model.

  16. Frustrated electrons on a spatially anisotropic triangular lattice: Emergent competition of charge orders and exotic disorders due to thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Yoshida, Tempei; Hotta, Chisa

    2014-12-01

    We study the interplay of correlation and thermal fluctuation in a system consisting of two species of classical particles with up and down spin on a geometrically frustrated anisotropic triangular lattice, described by an extended four-state Potts model. The model corresponds to the strong coupling limit of the extended Hubbard model at quarter-filling, which is known to host several competing charge ordered phases as well as an exotic quantum state called pinball liquid. The frustrated intersite Coulomb interactions together with the on-site Coulomb interaction generate macroscopically degenerate manifolds of low-energy states. They compete entropically at finite temperature and two characteristic states emerge; a threefold periodic charge ordered state and a quasi-one-dimensionally disordered state called "good defect state" characterized by the systematic generation of ferroelectric bonds. The two states show good correspondence with the threefold charge order and the pinball liquid in the extended Hubbard model, and are separated by the partial Mott transition taking place on one of the three sublattices of the triangular lattice.

  17. Collective dynamics in dispersions of anisotropic and deformable particles

    NASA Astrophysics Data System (ADS)

    Saintillan, David

    The modeling of complex fluids, such as particulate suspensions, emulsions and polymer solutions, is a great challenge owing to the slow decay of hydrodynamic disturbances at low Reynolds numbers, which lead to long-ranged interactions between suspended particles. In this work, we use theory and numerical simulations to address a few problems in which hydrodynamic interactions result in collective dynamics, with emphasis on the effects of particle shape and deformability. We first address the behavior of suspensions of anisotropic particles such as rigid fibers, and deformable particles such as viscous droplets, under sedimentation. Hydrodynamic interactions in these systems result in a concentration instability by which the particles aggregate into dense clusters surrounded by clarified fluid. Using newly developed efficient algorithms, we perform large-scale simulations of such suspensions with the aim of elucidating the instability mechanism. The salient features of the instability are adequately captured, and simulations in finite containers exhibit a wavenumber selection. Using a linear, stability analysis we demonstrate that the size of the concentration fluctuations is controlled by the stratification that is observed to form during the sedimentation process. We then investigate the dynamics in suspensions of uncharged polarizable rigid rods placed in an electric field. The polarization of a rod results in the formation of a dipolar charge cloud around its surface, leading to a non-linear electrokinetic phenomenon termed induced-charge electrophoresis, which causes particle alignment and creates a disturbance flow. We derive a simple slender-body formulation for this effect valid for high-aspect-ratio particles, and use it to study hydrodynamic interactions in these systems. Using both theory and numerical simulations we show that experimentally observed particle pairings can be explained based on these interactions. Finally, we apply Brownian dynamics to

  18. Dynamic localization of light in squeezed-like photonic lattices

    NASA Astrophysics Data System (ADS)

    Nezhad, M. Khazaei; Golshani, M.; Mahdavi, S. M.; Bahrampour, A. R.; Langari, A.

    2016-05-01

    We investigate the dynamic localization of light in the sinusoidal bent squeezed-like photonic lattices, a class of inhomogeneous semi-infinite waveguide arrays. Our findings show that, dynamic localization takes place for the normalized amplitude of sinusoidal profile (α) above a critical value αc. In this regime, for any normalized amplitude α >αc, there is a specific spatial period (ℓ) of waveguides, in which the dynamical oscillation, with the same spatial period occurs. Moreover, the specific spatial period is a decreasing function of the normalized amplitude α. Accordingly, the dynamical oscillation and self-imaging is realized, in spite of the existence of inhomogeneous coupling coefficients and semi-infinite nature of the squeezed-like photonic lattices. In addition, a comparison between the dynamic localization and Bloch oscillation in squeezed-like photonic lattices reveals that for the same values of α (>αc), the variation in the width and the mean center of the Bloch oscillation profile are less than the corresponding values of the dynamic localization. Also, we propose the experimental conditions to observation of dynamic localization in squeezed photonic lattices.

  19. Effective Dirac dynamics of ultracold atoms in bichromatic optical lattices

    SciTech Connect

    Witthaut, D.; Salger, T.; Kling, S.; Grossert, C.; Weitz, M.

    2011-09-15

    We study the dynamics of ultracold atoms in tailored bichromatic optical lattices. By tuning the lattice parameters, one can readily engineer the band structure and realize a Dirac point, i.e., a true crossing of two Bloch bands. The dynamics in the vicinity of such a crossing is described by the one-dimensional Dirac equation, which is rigorously shown beyond the tight-binding approximation. Within this framework we analyze the effects of an external potential and demonstrate numerically that it is possible to demonstrate Klein tunneling with current experimental setups.

  20. Hyperon-Nulceon Scattering from Fully-Dynamical Lattice QCD

    SciTech Connect

    Silas Beane; Paulo Bedaque; Thomas Luu; Konstantinos Orginos; Elizabetta Pallante; Assumpta Parreno; Martin Savage

    2007-10-01

    We present results of the first fully-dynamical lattice QCD determination of hyperon-nucleon scattering. One s-wave phase shift was determined for n{Lambda} scattering in both spin-channels at pion masses of 350, 490, and 590 MeV, and for n{Sigma}^- scattering in both spin channels at pion masses of 490, and 590 MeV. The calculations were performed with domain-wall valence quarks on dynamical, staggered gauge configurations with a lattice spacing of b ~0.125 fm.

  1. Doublon dynamics and polar molecule production in an optical lattice

    NASA Astrophysics Data System (ADS)

    Covey, Jacob P.; Moses, Steven A.; Gärttner, Martin; Safavi-Naini, Arghavan; Miecnikowski, Matthew T.; Fu, Zhengkun; Schachenmayer, Johannes; Julienne, Paul S.; Rey, Ana Maria; Jin, Deborah S.; Ye, Jun

    2016-04-01

    Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effects on pairing that arise from inter-species interactions, a higher partial-wave Feshbach resonance and excited Bloch-band population. These observations facilitate a detailed understanding of molecule formation in the lattice. Moreover, the interplay of tunnelling and interaction of fermions and bosons provides a controllable platform to study Bose-Fermi Hubbard dynamics. Additionally, we can probe the distribution of the atomic gases in the lattice by measuring the inelastic loss of doublons. These techniques realize tools that are generically applicable to studying the complex dynamics of atomic mixtures in optical lattices.

  2. Doublon dynamics and polar molecule production in an optical lattice

    PubMed Central

    Covey, Jacob P.; Moses, Steven A.; Gärttner, Martin; Safavi-Naini, Arghavan; Miecnikowski, Matthew T.; Fu, Zhengkun; Schachenmayer, Johannes; Julienne, Paul S.; Rey, Ana Maria; Jin, Deborah S.; Ye, Jun

    2016-01-01

    Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effects on pairing that arise from inter-species interactions, a higher partial-wave Feshbach resonance and excited Bloch-band population. These observations facilitate a detailed understanding of molecule formation in the lattice. Moreover, the interplay of tunnelling and interaction of fermions and bosons provides a controllable platform to study Bose-Fermi Hubbard dynamics. Additionally, we can probe the distribution of the atomic gases in the lattice by measuring the inelastic loss of doublons. These techniques realize tools that are generically applicable to studying the complex dynamics of atomic mixtures in optical lattices. PMID:27075831

  3. Dynamics and Control of Articulated Anisotropic Timoshenko Beams

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1996-01-01

    The paper illustrates the use of continuum models in control design for stabilizing flexible structures. A 6-DOF anisotropic Timoshenko beam with discrete nodes where lumped masses or actuators are located provides a sufficiently rich model to be of interest for mathematical theory as well as practical application. We develop concepts and tools to help answer engineering questions without having to resort to ad hoc heuristic ("physical") arguments or faith. In this sense the paper is more mathematically oriented than engineering papers and vice versa at the same time. For instance we make precise time-domain solutions using the theory of semigroups of operators rather than formal "inverse Laplace transforms." We show that the modes arise as eigenvalues of the generator of the semigroup, which are then related to the eigenvalues of the stiffness operator. With the feedback control, the modes are no longer orthogonal and the question naturally arises as to whether there is still a modal expansion. Here we prove that the eigenfunctions yield a biorthogonal Riesz basis and indicate the corresponding expansion. We prove mathematically that the number of eigenvalues is nonfinite, based on the theory of zeros of entire functions. We make precise the notion of asymptotic modes and indicate how to calculate them. Although limited by space, we do consider the root locus problem and show for instance that the damping at first increases as the control gain increases but starts to decrease at a critical value, and goes to zero as the gain increases without bound. The undamped oscillatory modes remain oscillatory and the rigid-body modes go over into deadbeat modes. The Timoshenko model dynamics are translated into a canonical wave equation in a Hilbert space. The solution is shown to require the use of an "energy" norm which is no more than the total energy: potential plus kinetic. We show that, under an appropriate extension of the notion of controllability, rate feedback with

  4. Pn anisotropic tomography and mantle dynamics beneath China

    NASA Astrophysics Data System (ADS)

    Zhou, Zhigang; Lei, Jianshe

    2016-08-01

    We present a new high-resolution Pn anisotropic tomographic model of the uppermost mantle beneath China inferred from 52,061 Pn arrival-time data manually picked from seismograms recorded at provincial seismic stations in China and temporary stations in Tibet and the Tienshan orogenic belt. Significant features well correlated with surface geology are revealed and provide new insights into the deep dynamics beneath China. Prominent high Pn velocities are visible under the stable cratonic blocks (e.g., the Tarim, Junngar, and Sichuan basins, and the Ordos block), whereas remarkable low Pn velocities are observed in the tectonically active areas (e.g., Pamir, the Tienshan orogenic belt, central Tibet and the Qilian fold belt). A distinct N-S trending low Pn velocity zone around 86°E is revealed under the rift running from the Himalayan block through the Lhasa block to the Qiangtang block, which indicates the hot material upwelling due to the breaking-off of the subducting Indian slab. Two N-S trending low Pn velocity belts with an approximate N-S Pn fast direction along the faults around the Chuan-Dian diamond block suggest that these faults may serve as channels of mantle flow from Tibet. The fast Pn direction changes from N-S in the north across 27°N to E-W in the south, which may reflect different types of mantle deformation. The anisotropy in the south could be caused by the asthenospheric flow resulted from the eastward subduction of the Indian plate down to the mantle transition zone beneath the Burma arc. Across the Talas-Fergana fault in the Tienshan orogenic belt, an obvious difference in velocity and anisotropy is revealed. To the west, high Pn velocities and an arc-shaped fast Pn direction are observed, implying the Indo-Asian collision, whereas to the east low Pn velocities and a range-parallel Pn fast direction are imaged, reflecting the northward underthrusting of the Tarim lithosphere and the southward underthrusting of the Kazakh lithosphere. In

  5. Phase transition of anisotropic frustrated Heisenberg model on the square lattice.

    PubMed

    Hu, Ai-Yuan; Wang, Huai-Yu

    2016-01-01

    We have investigated the J_{1}-J_{2} Heisenberg model with exchange anisotropy on a square lattice and focused on possible AF1-AF2 phase transition below the Néel point and its dependence on the exchange anisotropy, where AF1 and AF2 represent Néel state and collinear state, respectively. We use the double-time Green's-function method and adopt the random-phase approximation. The less the exchange anisotropy, the stronger the quantum fluctuation of the system will be. Both the Néel state and collinear state can exist and have the same Néel temperature for arbitrary anisotropy and spin quantum number S when J_{2}/J_{1}=0.5. Under such parameters, the calculated free energies show that there may occur a first-order phase transition between the Néel state and collinear state for an arbitrary S when anisotropy is not strong. PMID:26871025

  6. Dynamic response of trapped ultracold bosons on optical lattices

    SciTech Connect

    Batrouni, G.G.; Assaad, F.F.; Scalettar, R.T.; Denteneer, P.J.H.

    2005-09-15

    We study the dynamic response of ultracold bosons trapped in one-dimensional optical lattices using Quantum Monte Carlo simulations of the boson Hubbard model with a confining potential. The dynamic structure factor reveals the inhomogeneous nature of the low temperature state, which contains coexisting Mott insulator and superfluid regions. We present new evidence for local quantum criticality and discuss implications for the experimental excitation spectrum of {sup 87}Rb atoms confined in one dimension.

  7. Consistent finite-element approach to Brownian polymer dynamics with anisotropic friction.

    PubMed

    Cyron, Christian J; Wall, Wolfgang A

    2010-12-01

    In the last decades simulation tools for Brownian dynamics of polymers have attracted more and more interest. Here we present a mathematically consistent finite element approach to the simulation of Brownian polymer dynamics. The viscous damping forces are accounted for by an anisotropic friction model. By comparison with theoretical predictions and experimental data we demonstrate the reliability and efficiency of this method. PMID:21230752

  8. Lattice dynamics of femtosecond laser-excited antimony

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mahmoud Hanafy; Bugayev, Aleksey; Elsayed-Ali, Hani E.

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron-phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  9. Dynamical thermal conductivity of the spin Lieb lattice

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen

    2016-05-01

    In the ferromagnetic insulator with the Dzyaloshinskii-Moriya interaction (DMI), we have theoretically investigated the dynamical thermal conductivity (DTC). In other words, we have investigated the frequency dependence of thermal conductivity, κ, of the Lieb lattice, a face-centered square lattice, subjected to a time dependence temperature gradient. Using linear response theory and Green's function approach, DTC has been obtained in the context of Heisenberg Hamiltonian. At low frequencies, DTC is found to be monotonically increasing with DMI strength (DMIS), temperature and next-nearest-neighbor (NNN) coupling. Also we have found that DTC includes a peak for different values of temperature, DMIS and NNN coupling. Furthermore we study the temperature dependence of thermal conductivity of Lieb lattice for different values of DMIS, NNN coupling and external magnetic filed. We witness a decrease in DTC with temperature due to the quantum effects in the system.

  10. Dynamical phase interferometry of cold atoms in optical lattices

    SciTech Connect

    London, Uri; Gat, Omri

    2011-12-15

    We study the propagation of cold-atom wave packets in an interferometer with a Mach-Zehnder topology based on the dynamical phase of Bloch oscillation in a weakly forced optical lattice with a narrow potential barrier that functions as a cold-atom wave-packet splitter. We calculate analytically the atomic wave function, and show that the expected number of atoms in the two outputs of the interferometer oscillates rapidly as a function of the angle between the potential barrier and the forcing direction with period proportional to the external potential difference across a lattice spacing divided by the lattice band energy scale. The interferometer can be used as a high-precision force probe whose principle of operation is different from current interferometers based on the overall position of Bloch oscillating wave packets.

  11. Lattice dynamics and disorder-induced contraction in functionalized graphene

    NASA Astrophysics Data System (ADS)

    Feng Huang, Liang; Zeng, Zhi

    2013-02-01

    The lattice dynamics and disorder-induced contraction in hydrogenated, fluorinated, and chlorinated graphene are studied by first-principles simulation. The effects of the functionalization on the phonon dispersions, Grüneissen constants, vibrational thermodynamic functions (free energy, internal energy, entropy, and heat capacity), thermal-expansion coefficients, and bulk moduli are systematically investigated. Functionalization changes the chemical-bond length, mass, thickness, vibrational-mode symmetry, and mode number, and subsequently has significant effects on the phonon dispersions and Grüneissen constants. Functionalization generally increases the vibrational thermodynamic functions, and their temperature dependences all present conventional isotope effects. Functionalization suppresses (enhances) the thermal contraction (expansion) of the lattice, due to the increases in the system mass, membrane thickness, and the compressibility of the phonons. Both the lattice-constant variation and the phonon thermalization contribute to the temperature dependence of the bulk modulus. Both pristine and hydrogenated graphene can be viewed as two kinds of materials having the Invar and Elinvar properties. The contribution to the lattice contraction in functionalized graphene from the conformation disorder (about 2.0%) is much larger than that by thermalization (<0.1% at 300 K), which explains the mismatch between the experimental and theoretical lattice constants.

  12. Dynamical phase diagram of Gaussian wave packets in optical lattices

    NASA Astrophysics Data System (ADS)

    Hennig, H.; Neff, T.; Fleischmann, R.

    2016-03-01

    We study the dynamics of self-trapping in Bose-Einstein condensates (BECs) loaded in deep optical lattices with Gaussian initial conditions, when the dynamics is well described by the discrete nonlinear Schrödinger equation (DNLSE). In the literature an approximate dynamical phase diagram based on a variational approach was introduced to distinguish different dynamical regimes: diffusion, self-trapping, and moving breathers. However, we find that the actual DNLSE dynamics shows a completely different diagram than the variational prediction. We calculate numerically a detailed dynamical phase diagram accurately describing the different dynamical regimes. It exhibits a complex structure that can readily be tested in current experiments in BECs in optical lattices and in optical waveguide arrays. Moreover, we derive an explicit theoretical estimate for the transition to self-trapping in excellent agreement with our numerical findings, which may be a valuable guide as well for future studies on a quantum dynamical phase diagram based on the Bose-Hubbard Hamiltonian.

  13. Effects of Electromagnetic Field on the Dynamics of Bianchi Type VI0 Universe with Anisotropic Dark Energy

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Zubair, M.

    Spatially homogeneous and anisotropic Bianchi type VI0 cosmological models with cosmological constant are investigated in the presence of anisotropic dark energy. We examine the effects of electromagnetic field on the dynamics of the universe and anisotropic behavior of dark energy. The law of variation of the mean Hubble parameter is used to find exact solutions of the Einstein field equations. We find that electromagnetic field promotes anisotropic behavior of dark energy which becomes isotropic for future evolution. It is concluded that the isotropic behavior of the universe model is seen even in the presence of electromagnetic field and anisotropic fluid.

  14. Laser trapping in anisotropic fluids and polarization-controlled particle dynamics.

    PubMed

    Smalyukh, Ivan I; Kachynski, Aliaksandr V; Kuzmin, Andrey N; Prasad, Paras N

    2006-11-28

    Anisotropic fluids are widespread, ranging from liquid crystals used in displays to ordered states of a biological cell interior. Optical trapping is potentially a powerful technique in the fundamental studies and applications of anisotropic fluids. We demonstrate that laser beams in these fluids can generate anisotropic optical trapping forces, even for particles larger than the trapping beam wavelength. Immersed colloidal particles modify the fluid's ordered molecular structures and locally distort its optic axis. This distortion produces a refractive index "corona" around the particles that depends on their surface characteristics. The laser beam can trap such particles not only at their center but also at the high-index corona. Trapping forces in the beam's lateral plane mimic the corona and are polarization-controlled. This control allows the optical forces to be reversed and cause the particle to follow a prescribed trajectory. Anisotropic particle dynamics in the trap varies with laser power because of the anisotropy of both viscous drag and trapping forces. Using thermotropic liquid crystals and biological materials, we show that these phenomena are quite general for all anisotropic fluids and impinge broadly on their quantitative studies using laser tweezers. Potential applications include modeling thermodynamic systems with anisotropic polarization-controlled potential wells, producing optically tunable photonic crystals, and fabricating light-controlled nano- and micropumps.

  15. Dynamics of earthquake faulting: Two-dimensional lattice model

    NASA Astrophysics Data System (ADS)

    Shi, Baoping

    I present a computer simulation investigation of the dynamics of earthquake faulting and associated ground motion by using numerical methods. The major goal is to increase our understanding of the earthquake dynamic rupture process with associated stick-slip motion accompanied by fault opening. I particularly focus on the rupture mechanism that affects the rupture propagation and the change of shear stress at which it radiates seismic energy. To help interpret numerical results, I discuss several earthquake faulting models of dynamic rupture and compare their results with what is actually observed experimentally from the foam rubber experiment. I start with a review of previous research work, concentrating on physical experimental results and numerical results. I then review the numerical method of a lattice model in investigating the fracture mechanics which addresses the dynamic behavior regarding the lattice properties of an elastic solid. Next, I present my numerical characteristics of a dynamic rupture in the earthquake faulting process. The dynamic rupture process is interpreted within the combined framework of dynamic systems, non-linear elasticity, and numerical simulation. I conclude by investigating the importance of the fault's geometrical effect and by studying the rupture pulse propagation during stick-slip motion. The dissertation ends with recommendations for future research.

  16. The structure and dynamics of polymer nanocomposites containing anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Chun; Ohno, Kohji; Clarke, Nigel; Winey, Karen; Composto, Russell; Hore, Michael

    2014-03-01

    The tracer diffusion of deuterated polystyrene (dPS; 49-532 kg/mol) is measured in polystyrene (PS: 270 kg/mol) nanocomposites containing PS-grafted (132 kg/mol) anisotropic nanoparticles (NP). The NP's are small aggregates containing iron oxide spheres (5nm). These NP's uniformly disperse in PS up to 100% loading. The structure of the polymer nanocomposites is probed using (ultra)small angle x-ray scattering (USAXS,SAXS). Peaks shift to high Q region with increasing NP loadings, indicating a decrease in spacing between particles. The interparticle distance for the pure NP case is 30nm, consistent with TEM, and a brush thickness of 15nm. The brush profile is also measured using SANS. The reduced tracer diffusion coefficient initially decreases as NP loadings increase and then reaches a minimum (35% reduction) near 0.25 vol% (core) for all dPS. With a further increase in NP loading, diffusion recovers to 90% of the unfilled case. Penetration of the tracer (i.e., wetting) into the brush will affect the effective interparticle distance. Diffusion of dPS (1866 kg/mol) will be examined to determine if the dry brush case influences the recovery at high loading. These experiments demonstrate that polymer brushes grafted to anisotropic nano particles can affect the tracer diffusion pathway and indicate that diffusion models should incorporate the interfacial structure between brush and matrix.

  17. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Chen, Qian

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  18. Lattice dynamics of LuPO{sub 4}

    SciTech Connect

    Nipko, J.C. |; Loong, C.-K.; Loewenhaupt, M.; Reichardt, W.; Braden, M.; Boatner, L.A.

    1996-06-01

    Lutetium orthophosphate is an important nonmagnetic host material for rare-earth-activated luminescence applications. We have measured the LuPO{sub 4} phonon density of states and dispersion curves along the [{xi}00],[{xi}{xi}0], and [00{xi}] symmetry directions by neutron spectroscopy using polycrystalline and single-crystal samples. A quantitative analysis of the neutron results was carried out using a lattice-dynamical shell model.

  19. Gravitational field calculations on a dynamic lattice by distributed computing.

    NASA Astrophysics Data System (ADS)

    Mähönen, P.; Punkka, V.

    A new method of calculating numerically time evolution of a gravitational field in general relativity is introduced. Vierbein (tetrad) formalism, dynamic lattice and massively parallelized computation are suggested as they are expected to speed up the calculations considerably and facilitate the solution of problems previously considered too hard to be solved, such as the time evolution of a system consisting of two or more black holes or the structure of worm holes.

  20. Gravitation Field Calculations on a Dynamic Lattice by Distributed Computing

    NASA Astrophysics Data System (ADS)

    Mähönen, Petri; Punkka, Veikko

    A new method of calculating numerically time evolution of a gravitational field in General Relatity is introduced. Vierbein (tetrad) formalism, dynamic lattice and massively parallelized computation are suggested as they are expected to speed up the calculations considerably and facilitate the solution of problems previously considered too hard to be solved, such as the time evolution of a system consisting of two or more black holes or the structure of worm holes.

  1. Dynamics of Bloch oscillations in disordered lattice potentials

    SciTech Connect

    Schulte, T. |; Drenkelforth, S.; Buening, G. Kleine; Ertmer, W.; Arlt, J.; Lewenstein, M. |; Santos, L.

    2008-02-15

    We present a detailed analysis of the dynamics of Bloch oscillations of Bose-Einstein condensates in disordered lattice potentials. Due to the disorder and the interparticle interactions these oscillations undergo a dephasing, reflected in a damping of the center of mass oscillations, which should be observable under realistic experimental conditions. The interplay between interactions and disorder is far from trivial, ranging from an interaction-enhanced damping due to modulational instability for strong interactions, to an interaction-reduced damping due to a dynamical screening of the disorder potential.

  2. Non-linear dynamic analysis of anisotropic cylindrical shells

    SciTech Connect

    Lakis, A.A.; Selmane, A.; Toledano, A.

    1996-12-01

    A theory to predict the influence of geometric non-linearities on the natural frequencies of an empty anisotropic cylindrical shell is presented in this paper. It is a hybrid of finite element and classical thin shell theories. Sanders-Koiter non-linear and strain-displacement relations are used. Displacement functions are evaluated using linearized equations of motion. Modal coefficients are then obtained for these displacement functions. Expressions for the mass, linear and non-linear stiffness matrices are derived through the finite element method. The uncoupled equations are solved with the help of elliptic functions. The period and frequency variations are first determined as a function of shell amplitudes and then compared with the results in the literature.

  3. Lattice gas simulations of dynamical geometry in two dimensions

    NASA Astrophysics Data System (ADS)

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A.; Love, Peter J.

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett.PRLTAO0031-9007 56, 1505 (1986)]10.1103/PhysRevLett.56.1505 and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]10.1098/rsta.2001.0933. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t1/3 , in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  4. Lattice gas simulations of dynamical geometry in two dimensions.

    PubMed

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  5. Nonequilibrium dynamics of spin-orbit-coupled lattice bosons

    NASA Astrophysics Data System (ADS)

    Ng, H. T.

    2015-10-01

    We study the nonequilibrium dynamics of two-component bosonic atoms in a one-dimensional optical lattice in the presence of spin-orbit coupling. In the Mott-insulating regime, the two-component bosonic system at unity filling can be described by the quantum spin X X Z model. The atoms are initially prepared in their lower spin states. The system becomes out of equilibrium by suddenly introducing spin-orbit coupling to the atoms. The system shows the relaxation and nonstationary dynamics, respectively, in the different interaction regimes. We find that the time average of magnetization is useful to characterize the many-body dynamics. The effects of even and odd numbers of sites are discussed. Our result sheds light on nonequilibrium dynamics due to the interplay between spin-orbit coupling and atomic interactions.

  6. Dynamical Evolution of Anisotropic Response in Black Phosphorus under Ultrafast Photoexcitation.

    PubMed

    Ge, Shaofeng; Li, Chaokai; Zhang, Zhiming; Zhang, Chenglong; Zhang, Yudao; Qiu, Jun; Wang, Qinsheng; Liu, Junku; Jia, Shuang; Feng, Ji; Sun, Dong

    2015-07-01

    Black phosphorus has recently emerged as a promising material for high-performance electronic and optoelectronic device for its high mobility, tunable mid-infrared bandgap, and anisotropic electronic properties. Dynamical evolution of photoexcited carriers and the induced transient change of electronic properties are critical for materials' high-field performance but remain to be explored for black phosphorus. In this work, we perform angle-resolved transient reflection spectroscopy to study the dynamical evolution of anisotropic properties of black phosphorus under photoexcitation. We find that the anisotropy of reflectivity is enhanced in the pump-induced quasi-equilibrium state, suggesting an extraordinary enhancement of the anisotropy in dynamical conductivity in hot carrier dominated regime. These results raise attractive possibilities of creating high-field, angle-sensitive electronic, optoelectronic, and remote sensing devices exploiting the dynamical electronic anisotropy with black phosphorus.

  7. Dynamic transformation of self-assembled structures using anisotropic magnetized hydrogel microparticles

    NASA Astrophysics Data System (ADS)

    Yoshida, Satoru; Takinoue, Masahiro; Iwase, Eiji; Onoe, Hiroaki

    2016-08-01

    This paper describes a system through which the self-assembly of anisotropic hydrogel microparticles is achieved, which also enables dynamic transformation of the assembled structures. Using a centrifuge-based microfluidic device, anisotropic hydrogel microparticles encapsulating superparamagnetic materials on one side are fabricated, which respond to a magnetic field. We successfully achieve dynamic assembly using these hydrogel microparticles and realize three different self-assembled structures (single and double pearl chain structures, and close-packed structures), which can be transformed to other structures dynamically via tuning of the precessional magnetic field. We believe that the developed system has potential application as an effective platform for a dynamic cell manipulation and cultivation system, in biomimetic autonomous microrobot organization, and that it can facilitate further understanding of the self-organization and complex systems observed in nature.

  8. Dynamical properties of ultracold bosons in an optical lattice

    SciTech Connect

    Huber, S. D.; Blatter, G.; Altman, E.; Buechler, H. P.

    2007-02-15

    We study the excitation spectrum of strongly correlated lattice bosons for the Mott-insulating phase and for the superfluid phase close to localization. Within a Schwinger-boson mean-field approach we find two gapped modes in the Mott insulator and the combination of a sound mode (Goldstone) and a gapped (Higgs) mode in the superfluid. To make our findings comparable with experimental results, we calculate the dynamic structure factor as well as the linear response to the optical lattice modulation introduced by Stoeferle et al. [Phys. Rev. Lett. 92, 130403 (2004)]. We find that the puzzling finite frequency absorption observed in the superfluid phase could be explained via the excitation of the gapped (Higgs) mode. We check the consistency of our results with an adapted f-sum rule and propose an extension of the experimental technique by Stoeferle et al. to further verify our findings.

  9. Lattice/beam dynamics working group. Summary report

    SciTech Connect

    Syphers, M.

    1994-12-31

    The Lattice/Beam Dynamics Working Group was charged with reviewing and identifying technical issues and their potential solutions for (a) a 2 x 2 TeV high luminosity p-pbar collider, and (b) a 30 x 30 TeV high luminosity pp collider. Rather than attempting to solve very specific problems for these devices in the relatively short time scale of a workshop, the group attempted to look at more general questions to try to indicate in which directions future work in these areas should proceed. The emphasis of the group tended toward lattice issues and general accelerator design issues for the above two cases, with more specific questions being addressed as directed by the needs seen by the Workshop Synthesizers.

  10. Dynamics of fermions in an amplitude-modulated lattice

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Tomotake; Watanabe, Shinichi; Ohgoda, Shun; Itin, Alexander P.

    2016-06-01

    We study the dynamics of fermions loaded in an optical lattice with a superimposed parabolic trap potential. In the recent Hamburg experiments [J. Heinze et al., Phys. Rev. Lett. 110, 085302 (2013), 10.1103/PhysRevLett.110.085302] on quantum simulation of photoconductivity, a modulation pulse on the optical lattice transferred part of the population of the lowest band to an excited band, leaving a hole in the particle distribution of the lowest band. The subsequent intricate dynamics of both excited particles and holes can be explained by a semiclassical approach based on the evolution of the Wigner function. Here we provide a more detailed analysis of the dynamics, taking into account the dimensionality of the system and finite-temperature effects, aiming at reproducing experimental results on longer time scales. A semiclassical wave packet is constructed more accurately than in the previous theory. As a result, semiclassical dynamics indeed reproduces experimental data and full quantum numerical calculations with a much better accuracy. In particular, the fascinating phenomenon of collapse and revival of holes is investigated in more detail. We presume that the experimental setup can be used for deeper exploration of nonlinear waves in fermionic gases.

  11. (Discrete kinetic theory, lattice gas dynamics and foundations of hydrodynamics)

    SciTech Connect

    Protopopescu, V.

    1988-10-07

    The traveler participated successively in the Workshop of Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, Villa Gualino-Torino, Italy, and in the Third International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, Salice Terme-Pavia, Italy, as a guest of the Italian CNR (National Council for Research, Mathematical Physics Group). At the first Workshop, there were approximately 65 participants among whom 35 were speakers. The topics discussed were discrete kinetic theory, cellular automata, and the relationship between microscopic/mesoscopic and macroscopic evolution equations. Cellular automata and lattice gas dynamics emerged as main areas of promising research and future applications. At the second Workshop, there were approximately 80 attendants, 20 contributed papers, and 15 invited papers. The main subjects of the papers were general methods to study nonlinear equations, advances in plasma theory, numerical methods, efficient computational schemes, and nonlinear transport problems. The Italian scientists expressed interest in strengthening the collaboration with ORNL in the areas of nonlinear partial differential equations, and discrete dynamics with applications to competitive systems.

  12. Ab initio study of the lattice dynamics of CsNiF3

    NASA Astrophysics Data System (ADS)

    Legut, Dominik; Wdowik, Urszula D.

    2010-11-01

    Lattice dynamics of the quasi-one-dimensional ferromagnetic chain-like structure of CsNiF3 has been studied using density functional theory and the direct method. Investigations were limited to the harmonic approximation. Antiferromagnetic and ferromagnetic spin orderings on Ni atoms were considered. It is found that phonons remain practically insensitive to the type of magnetic arrangement. The difference in the calculated Helmholtz free energies between antiferro- and ferromagnetic ordering is too small to provide sufficient information on the preference of the type of magnetic ordering in CsNiF3. Calculated acoustic phonons agree very well with the inelastic neutron scattering experiments, while the optical phonons remain in an acceptable agreement with Raman and infrared measurements. Comparison of the experimental heat capacity and the calculated lattice contribution to the heat capacity shows that the magnetic contribution is negligible above 20-30 K. Thermal motions of particular atoms in CsNiF3 crystals are highly anisotropic with surprisingly high mean-squared vibrations of Cs ions which exceed thermal vibrations of very light F ions. Such a behavior could be explained by the difference of the force constants between the Cs and F sites which overcomes the effect associated with the difference between masses of Cs and F ions. Nickel cations reveal very high on-site force constants, i.e. very low amplitudes of thermal vibrations, as they form some kind of rigid rods in the CsNiF3 lattice. Calculated elastic constants indicate CsNiF3 to be rather a soft material.

  13. Magnetic Field Control of the Quantum Chaotic Dynamics of Hydrogen Analogs in an Anisotropic Crystal Field

    SciTech Connect

    Zhou Weihang; Chen Zhanghai; Zhang Bo; Yu, C. H.; Lu Wei; Shen, S. C.

    2010-07-09

    We report magnetic field control of the quantum chaotic dynamics of hydrogen analogues in an anisotropic solid state environment. The chaoticity of the system dynamics was quantified by means of energy level statistics. We analyzed the magnetic field dependence of the statistical distribution of the impurity energy levels and found a smooth transition between the Poisson limit and the Wigner limit, i.e., transition between regular Poisson and fully chaotic Wigner dynamics. The effect of the crystal field anisotropy on the quantum chaotic dynamics, which manifests itself in characteristic transitions between regularity and chaos for different field orientations, was demonstrated.

  14. An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles

    SciTech Connect

    Ilie, Ioana M.; Briels, Wim J.; Otter, Wouter K. den

    2015-03-21

    Brownian Dynamics is the designated technique to simulate the collective dynamics of colloidal particles suspended in a solution, e.g., the self-assembly of patchy particles. Simulating the rotational dynamics of anisotropic particles by a first-order Langevin equation, however, gives rise to a number of complications, ranging from singularities when using a set of three rotational coordinates to subtle metric and drift corrections. Here, we derive and numerically validate a quaternion-based Rotational Brownian Dynamics algorithm that handles these complications in a simple and elegant way. The extension to hydrodynamic interactions is also discussed.

  15. An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles.

    PubMed

    Ilie, Ioana M; Briels, Wim J; den Otter, Wouter K

    2015-03-21

    Brownian Dynamics is the designated technique to simulate the collective dynamics of colloidal particles suspended in a solution, e.g., the self-assembly of patchy particles. Simulating the rotational dynamics of anisotropic particles by a first-order Langevin equation, however, gives rise to a number of complications, ranging from singularities when using a set of three rotational coordinates to subtle metric and drift corrections. Here, we derive and numerically validate a quaternion-based Rotational Brownian Dynamics algorithm that handles these complications in a simple and elegant way. The extension to hydrodynamic interactions is also discussed. PMID:25796227

  16. Relaxation Dynamics Of Bose-Fermi Doublons In Optical Lattices

    NASA Astrophysics Data System (ADS)

    Safavi-Naini, Arghavan; Gärttner, Martin; Schachenmayer, Johannes; Wall, Michael L.; Covey, Jacob P.; Moses, Steven A.; Miecnikowski, Matthew T.; Fu, Zhengkun; Rey, Ana Maria; Jin, Deborah S.; Ye, Jun

    2016-05-01

    Motivated by a recent experiment at JILA we investigate the out-of-equilibrium dynamics of a dilute Fermi-Bose mixture, starting from a well-defined initial state, where each lattice site is either empty or occupied by a Bose-Fermi doublon. Utilizing analytical techniques and numerical simulations using the t-DRMG method, we identify the leading relaxation mechanisms of the doublons. At short times strong interactions tend to hold the doublons together, as previously reported in similar type of experiments made with identical bosons or two component fermions. Since the fermions feel a much shallower lattice than the bosons, the bosons can be visualized as random localization centers for the fermions. However, at longer times the boson tunneling cannot be ignored and additional decay channels unique to Bose-Fermi mixtures become relevant. While cluster expansion allows us to characterize the short time dynamics for dilute arrays, the long time relaxation dynamics at higher densities is strongly correlated. In this regime exact numerical techniques are employed. JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI.

  17. Dynamics of Hubbard-Band Quasiparticles in Disordered Optical Lattices

    NASA Astrophysics Data System (ADS)

    Scarola, Vito; Demarco, Brian

    Recent experiments use transport of degenerate Fermi gases in optical lattices (Kondov et al. Phys. Rev. Lett. 114, 083002 (2015) to probe the interplay of disorder and strong interactions. These experiments find evidence for an intriguing insulating phase where quantum diffusion is completely suppressed by strong disorder. Quantitative interpretation of these experiments remains an open problem that requires inclusion of non-zero entropy, strong interaction, and trapping in an Anderson-Hubbard model. We construct a theory of dynamics of Hubbard-band quasiparticles tailored to trapped optical lattice experiments. We compare the theory directly with center-of-mass transport experiments of Kondov et al. with no fitting parameters. The close agreement between theory and experiments shows that the suppression of transport is only partly due to finite entropy effects. We argue that the complete suppression of transport is consistent with short-time, finite size precursors of Anderson localization of Hubbard-band quasiparticles. The combination of our theoretical framework and optical lattice experiments offers an important platform for studying localization in isolated many-body quantum systems. V.W.S. acknowledges support from AFOSR under Grant FA9550-11-1-0313.

  18. Charmed tetraquarks Tcc and Tcs from dynamical lattice QCD simulations

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi; Charron, Bruno; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2014-02-01

    Charmed tetraquarks Tcc=(ccubardbar) and Tcs=(csubardbar) are studied through the S-wave meson-meson interactions, D-D, Kbar-D, D-D* and Kbar-D*, on the basis of the (2+1)-flavor lattice QCD simulations with the pion mass mπ≃410, 570 and 700 MeV. For the charm quark, the relativistic heavy quark action is employed to treat its dynamics on the lattice. Using the HAL QCD method, we extract the S-wave potentials in lattice QCD simulations, from which the meson-meson scattering phase shifts are calculated. The phase shifts in the isospin triplet (I=1) channels indicate repulsive interactions, while those in the I=0 channels suggest attraction, growing as mπ decreases. This is particularly prominent in the Tcc (JP=1+,I=0) channel, though neither bound state nor resonance are found in the range mπ=410-700 MeV. We make a qualitative comparison of our results with the phenomenological diquark picture.

  19. Diverse lattice dynamics in ternary Cu-Sb-Se compounds

    PubMed Central

    Qiu, Wujie; Wu, Lihua; Ke, Xuezhi; Yang, Jihui; Zhang, Wenqing

    2015-01-01

    Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings. PMID:26328765

  20. Nonequilibrium dynamics in lattice ecosystems: Chaotic stability and dissipative structures

    NASA Astrophysics Data System (ADS)

    Solé, Ricard V.; Bascompte, Jordi; Valls, Joaquim

    1992-07-01

    A generalized coupled map lattice (CML) model of ecosystem dynamics is presented. We consider the spatiotemporal behavior of a prey-predator map, a model of host-parasitoid interactions, and two-species competition. The latter model can show phase separation of domains (Turing-like structures) even when chaos is present. We also use this CML model to explore the time evolution and structural properties of ecological networks built with a set of N competing species. The May-Wigner criterion is applied as a measure of stability, and some regularities in the stable networks observed are discussed.

  1. Dynamical polarizability of the 2D pseudospin-1 dice lattice

    NASA Astrophysics Data System (ADS)

    Malcolm, John; Nicol, Elisabeth

    The two-dimensional dice lattice is composed of three triangular sublattices whose low-energy excitation spectrum consists of Dirac-Weyl fermions with pseudospin-1. The energy dispersion has two Dirac cones, like the pseudospin-1/2 two-triangular-sublattice graphene, with an additional third band exactly at zero energy. We present theoretical results for the electronic dynamical polarization function in the material. This is a fundamental entity in many-body physics, renormalizing the Coulomb interaction through the dielectric function. From the polarization function we also obtain the Lindhard function, the plasmon branch, and can discuss other screening effects. These are constrasted with those of graphene.

  2. Dynamics of Weyl quasiparticles in an optical lattice

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Wang, Huai-Qiang; Zhang, Dan-Wei; Zhu, Shi-Liang; Xing, Ding-Yu

    2016-10-01

    We investigate the dynamics of the Weyl quasiparticles emerged in an optical lattice where the topological Weyl semimetal and trivial band insulator phases can be adjusted with the on-site energy. The evolution of the density distribution is demonstrated to have an anomalous velocity in the Weyl semimetal but a steady Zitterbewegung effect in the band insulator. Our analysis demonstrates that the chirality of the system can be directly determined from the positions of the atomic center of mass. Furthermore, the amplitude and the period of the relativistic Zitterbewegung oscillations are shown to be observable with the time-of-flight experiments.

  3. Lattice dynamics of neodymium: Influence of 4 f electron correlations

    NASA Astrophysics Data System (ADS)

    Waller, O.; Piekarz, P.; Bosak, A.; Jochym, P. T.; Ibrahimkutty, S.; Seiler, A.; Krisch, M.; Baumbach, T.; Parlinski, K.; Stankov, S.

    2016-07-01

    Incorporation of strong electron correlations into the density functional theory (DFT) for the electronic structure calculations of light lanthanides leads to a modification of interatomic forces and consequently the lattice dynamics. Using first-principles theory we demonstrate the substantial influence of the 4 f electron correlations on the phonon dispersion relations of Nd. The calculations are verified by an inelastic x-ray scattering experiment performed on a single-crystalline Nd(0001) film. We show that very good agreement between the calculated and measured data is achieved when electron-electron interactions are treated by the DFT +U approach.

  4. X-ray Birefringence Imaging of Materials with Anisotropic Molecular Dynamics.

    PubMed

    Palmer, Benjamin A; Edwards-Gau, Gregory R; Kariuki, Benson M; Harris, Kenneth D M; Dolbnya, Igor P; Collins, Stephen P; Sutter, John P

    2015-02-01

    The X-ray birefringence imaging (XBI) technique, reported very recently, is a sensitive tool for spatially resolved mapping of the local orientational properties of anisotropic materials. In this paper, we report the first XBI measurements on materials that undergo anisotropic molecular dynamics. Using incident linearly polarized X-rays with energy close to the Br K-edge, the X-ray birefringence is dictated by the orientational properties of the C-Br bonds in the material. We focus on two materials (urea inclusion compounds containing 1,8-dibromooctane and 1,10-dibromodecane guest molecules) for which the reorientational dynamics of the brominated guest molecules (and hence the reorientational dynamics of the C-Br bonds) are already well characterized by other experimental techniques. The XBI results demonstrate clearly that, for the anisotropic molecular dynamics in these materials, the effective X-ray optic axis for the X-ray birefringence phenomenon is the time-averaged resultant of the orientational distribution of the C-Br bonds. PMID:26261979

  5. Intentional anisotropic strain relaxation in ( 11 2 ¯ 2) oriented Al1-xInxN one-dimensionally lattice matched to GaN

    NASA Astrophysics Data System (ADS)

    Buß, E. R.; Rossow, U.; Bremers, H.; Meisch, T.; Caliebe, M.; Scholz, F.; Hangleiter, A.

    2014-09-01

    We report on ( 11 2 ¯ 2) oriented Al1-xInxN grown by low pressure metal organic vapor phase epitaxy on ( 11 2 ¯ 2) GaN templates on patterned r-plane sapphire. The indium incorporation efficiency as well as the growth rate of ( 11 2 ¯ 2) oriented layers are similar to c-plane oriented Al1-xInxN layers. Deposition of thick Al1-xInxN layers does not lead to additional roughening like in case of c-plane oriented Al1-xInxN. Independent of the thickness, the degree of relaxation of layers lattice matched in m-direction is in the range of 33%-45% in [ 11 2 ¯ 3 ¯]-direction. Associated with the relaxation in [ 11 2 ¯ 3 ¯]-direction, there is a tilt of the Al1-xInxN layers around the [ 1 1 ¯ 00] axis due to slip of threading dislocations on the basal (0001)-plane. Relaxation in m-direction is not observable for layers lattice matched in [ 11 2 ¯ 3 ¯] direction. The possibility to adjust the lattice parameter of AlInN in [ 11 2 ¯ 3 ¯] direction without changing the lattice parameter in m-direction by anisotropic strain relaxation opens up opportunities for subsequent growth of optically active structures. One possibility is to form relaxed buffer layers for GaInN quantum well structures.

  6. Lattice dynamics of crystals having R2MX6 structure

    NASA Astrophysics Data System (ADS)

    Torres, D. I.; Freire, J. D.; Katiyar, R. S.

    1997-10-01

    The theory of lattice dynamics in the harmonic approximation using a rigid-ion model due to Born and Huang [Dynamical Theory of Crystal Lattices (Oxford University Press, New York, 1954)], is applied to ionic crystals of the R2MX6 type with antifluorite structure namely, K2SnCl6, K2PtBr6, Cs2SnBr6, and Rb2SnBr6 in the cubic phase. The model expresses the potential energy as the sum of long-range Coulomb interactions and repulsive short-range interactions between ions in the primitive cell. A function of axially symmetric type is used to approximate the short-range part, and the number of force constant parameters were reduced utilizing stability conditions in the manner described by Katiyar [J. Phys. C 3, 1087 (1970)]. The remaining constants were determined by a nonlinear least-squares analysis of some experimental frequencies at the critical point Γ. The long-range contributions were calculated using the Ewald transformation as described by Cowley [Acta Crystallogr. 15, 687 (1962)]. Phonon frequencies and the normal modes of vibrations at the zone center were obtained; of particular interest is the resulting lowest librational frequency for each crystal. We obtained excellent agreement between the calculated and the observed frequencies. The resulting effective charge parameters indicated that these crystals are partially ionic. In general, the results offered a better vision of the structural phase transition mechanism involving the rotational mode T1g.

  7. Quenched dynamics of superconducting Dirac fermions on honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lu, Ming; Xie, X. C.; X. C. Xie's group Team

    We study the BCS paring dynamics for the superconducting Dirac fermions on honeycomb lattice after a sudden quench of pairing strength. We observe two distinct phases, one is the synchronized phase with undamped oscillations of paring amplitude; the other phase has the paring amplitude oscillates from positive to negative. The exact phase transition point is given by investigating the integrability of the system. Different from the previous work on normal superconducting fermions, which has three distinct phases, our results shows the absence of the Landau damped phase and over damped phase. Moreover, we present a linear analysis in the weakly quenched regime, showing that in a rather long time scale, the dynamics can be approximated as the periodic oscillation with 2Δ∞ angular frequency along with the logarithmic decay of the pairing amplitude, in contrast of the t - 1 / 2 decay for the normal fermions, namely the Landau damped phase. The presenter's advisor.

  8. Shock dynamics of two-lane driven lattice gases

    NASA Astrophysics Data System (ADS)

    Schiffmann, Christoph; Appert-Rolland, Cécile; Santen, Ludger

    2010-06-01

    Driven lattice gases such as those of the ASEP model are useful tools for the modelling of various stochastic transport processes carried out by self-driven particles, such as molecular motors or vehicles in road traffic. Often these processes take place in one-dimensional systems offering several tracks to the particles, and in many cases the particles are able to change track with a given rate. In this work we consider the case of strong coupling where the rate of hopping along the tracks and the exchange rates are of the same order, and show how a phenomenological approach based on a domain wall theory can be used to describe the dynamics of the system. In particular, the domain walls on the different tracks form pairs, whose dynamics dominate the behaviour of the system.

  9. Coupled Ultrafast Lattice and Polarization Dynamics in Ferroelectric Nanolayers

    SciTech Connect

    Korff Schmising, C. v.; Bargheer, M.; Kiel, M.; Zhavoronkov, N.; Woerner, M.; Elsaesser, T.; Vrejoiu, I.; Hesse, D.; Alexe, M.

    2007-06-22

    We report the first analysis of the polarization and lattice dynamics in a metal/ferroelectric/metal nanolayer system by femtosecond x-ray diffraction. Two Bragg reflections provide information on the coupled dynamics of the two relevant phonon modes for ferroelectricity in perovskites, the tetragonal distortion and the soft mode. Optical excitation of the SrRuO{sub 3} metal layers generates giant stress (>1 GPa) compressing the PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} layers by up to 2%. The resulting change of tetragonality reaches a maximum after 1.3 ps. As a result, the ferroelectric polarization P is reduced by up to 100% with a slight delay that is due to the anharmonic coupling of the two modes.

  10. Quasienergy band engineering and broadband dynamic localization in photonic lattices with long-range interaction

    SciTech Connect

    Longhi, Stefano; Dreisow, Felix; Heinrich, Matthias; Pertsch, Thomas; Tuennermann, Andreas; Nolte, Stefan; Szameit, Alexander

    2010-11-15

    Polychromatic dynamic localization in tight-binding lattices with long-range interaction is theoretically proposed and experimentally demonstrated in curved-waveguide photonic lattices. Efficient suppression of discrete diffraction over the whole white-light spectral region (450-750 nm) has been demonstrated in femtosecond-laser-written triangular-waveguide lattices with first- and second-order coupling.

  11. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror.

    PubMed

    Cui, Jianhua; Huang, Cheng; Pan, Wenbo; Pu, Mingbo; Guo, Yinghui; Luo, Xiangang

    2016-01-01

    Polarization control of electromagnetic wave is very important in many fields. Here, we propose an active meta-mirror to dynamically manipulate electromagnetic polarization state at a broad band. This meta-mirror is composed of a double-layered metallic pattern backed by a metallic flat plate, and the active elements of PIN diodes are integrated into the meta-atom to control the reflection phase difference between two orthogonal polarization modes. Through switching the operating state of the PIN diodes, the meta-mirror is expected to achieve three polarization states which are left-handed, right-handed circular polarizations and linear polarization, respectively. We fabricated this active meta-mirror and validated its polarization conversion performance by measurement. The linearly polarized incident wave can be dynamically converted to right-handed or left-handed circular polarization in the frequency range between 3.4 and 8.8 GHz with the average loss of 1 dB. Furthermore, it also can keep its initial linear polarization state. PMID:27469028

  12. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror

    NASA Astrophysics Data System (ADS)

    Cui, Jianhua; Huang, Cheng; Pan, Wenbo; Pu, Mingbo; Guo, Yinghui; Luo, Xiangang

    2016-07-01

    Polarization control of electromagnetic wave is very important in many fields. Here, we propose an active meta-mirror to dynamically manipulate electromagnetic polarization state at a broad band. This meta-mirror is composed of a double-layered metallic pattern backed by a metallic flat plate, and the active elements of PIN diodes are integrated into the meta-atom to control the reflection phase difference between two orthogonal polarization modes. Through switching the operating state of the PIN diodes, the meta-mirror is expected to achieve three polarization states which are left-handed, right-handed circular polarizations and linear polarization, respectively. We fabricated this active meta-mirror and validated its polarization conversion performance by measurement. The linearly polarized incident wave can be dynamically converted to right-handed or left-handed circular polarization in the frequency range between 3.4 and 8.8 GHz with the average loss of 1 dB. Furthermore, it also can keep its initial linear polarization state.

  13. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror

    PubMed Central

    Cui, Jianhua; Huang, Cheng; Pan, Wenbo; Pu, Mingbo; Guo, Yinghui; Luo, Xiangang

    2016-01-01

    Polarization control of electromagnetic wave is very important in many fields. Here, we propose an active meta-mirror to dynamically manipulate electromagnetic polarization state at a broad band. This meta-mirror is composed of a double-layered metallic pattern backed by a metallic flat plate, and the active elements of PIN diodes are integrated into the meta-atom to control the reflection phase difference between two orthogonal polarization modes. Through switching the operating state of the PIN diodes, the meta-mirror is expected to achieve three polarization states which are left-handed, right-handed circular polarizations and linear polarization, respectively. We fabricated this active meta-mirror and validated its polarization conversion performance by measurement. The linearly polarized incident wave can be dynamically converted to right-handed or left-handed circular polarization in the frequency range between 3.4 and 8.8 GHz with the average loss of 1 dB. Furthermore, it also can keep its initial linear polarization state. PMID:27469028

  14. Quench and Transport Dynamics in Disordered Atomic Hubbard Lattices

    NASA Astrophysics Data System (ADS)

    Demarco, Brian

    I will give an overview of our experiments using ultracold atom gases trapped in optical lattices to probe transport, dynamics, and relaxation in disordered Hubbard models. By introducing disorder to naturally clean optical lattices using focused optical speckle, we realize variants of the disordered Bose- and Fermi-Hubbard models. In these systems, the distribution of Hubbard parameters is fully known, and the ratio of characteristic energy scales is completely tunable. I will discuss two measurements. In the first, we observe localization via transport measurements in the metallic regime of the Fermi-Hubbard model. We observe three phenomena consistent with many-body localization: localization at non-zero temperature, localization across a range of temperatures, and interaction-induced delocalization. These measurements show agreement with a mean-field theory in a limited parameter regime. In a separate experiment using bosonic atoms, we measure excitations following a quantum quench of disorder. Via comparison to state-of-the-art quantum Monte Carlo calculations that capture all aspects of the experiments--including all the particles--we show that the onset of excitations corresponds to the superfluid-Bose-glass transition. I will discuss how this behavior is reminiscent of the quantum Kibble-Zurek effect. This work is funded by the NSF and ARO.

  15. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties

    SciTech Connect

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; Klobes, Benedikt; Koza, Michael Marek; Kudejova, Petra; Petermann, Nils; Wiggers, Hartmut; Schierning, Gabi; Hermann, Raphaël P.

    2014-12-21

    In this study, silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K-1 m-1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K-1 m-1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.

  16. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties

    DOE PAGESBeta

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; Klobes, Benedikt; Koza, Michael Marek; Kudejova, Petra; Petermann, Nils; Wiggers, Hartmut; Schierning, Gabi; Hermann, Raphaël P.

    2014-12-21

    In this study, silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K-1 m-1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured,more » which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K-1 m-1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.« less

  17. Nanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties.

    PubMed

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G; Klobes, Benedikt; Koza, Michael Marek; Kudejova, Petra; Petermann, Nils; Wiggers, Hartmut; Schierning, Gabi; Hermann, Raphaël P

    2014-12-21

    Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K(-1) m(-1) at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K(-1) m(-1), which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators. PMID:24848359

  18. Domain walls in two-component dynamical lattices.

    PubMed

    Kevrekidis, P G; Malomed, Boris A; Frantzeskakis, D J; Bishop, A R

    2003-03-01

    We introduce domain-wall (DW) states in the bimodal discrete nonlinear Schrödinger equation, in which the modes are coupled by cross-phase modulation (XPM). The results apply to an array of nonlinear optical waveguides carrying two different polarizations of light, or two different wavelengths, with anomalous intrinsic diffraction controlled by direction of the light beam, and to a string of drops of a binary Bose-Einstein condensate, trapped in an optical lattice. By means of continuation from various initial patterns taken in the anticontinuum (AC) limit, we find a number of different solutions of the DW type, for which different stability scenarios are identified. In the case of strong-XPM coupling, DW configurations contain a single mode at each end of the chain. The most fundamental solution of this type is found to be always stable. Another solution, which is generated by a different AC pattern, demonstrates behavior which is unusual for nonlinear dynamical lattices: it is unstable for small values of the coupling constant C (which measures the ratio of the nonlinearity and coupling lengths), and becomes stable at larger C. Stable bound states of DWs are also found. DW configurations generated by more sophisticated AC patterns are identified as well, but they are either completely unstable, or are stable only at small values of C. In the case of weak XPM, a natural DW solution is the one which contains a combination of both polarizations, with the phase difference between them 0 and pi at the opposite ends of the lattice. This solution is unstable at all values of C, but the instability is very weak for large C, indicating stabilization as the continuum limit is approached. The stability of DWs is also verified by direct simulations, and the evolution of unstable DWs is simulated too; in particular, it is found that, in the weak-XPM system, the instability may give rise to a moving DW. The DW states can be observed experimentally in the same parameter range

  19. Dynamical Generation of Topological Magnetic Lattices for Ultracold Atoms.

    PubMed

    Yu, Jinlong; Xu, Zhi-Fang; Lü, Rong; You, Li

    2016-04-01

    We propose a scheme to dynamically synthesize a space-periodic effective magnetic field for neutral atoms by time-periodic magnetic field pulses. When atomic spin adiabatically follows the direction of the effective magnetic field, an adiabatic scalar potential together with a geometric vector potential emerges for the atomic center-of-mass motion, due to the Berry phase effect. While atoms hop between honeycomb lattice sites formed by the minima of the adiabatic potential, complex Peierls phase factors in the hopping coefficients are induced by the vector potential, and these phase factors facilitate a topological Chern insulator. With further tuning of external parameters, both a topological phase transition and topological flat bands can be achieved, highlighting realistic prospects for studying strongly correlated phenomena in this system. Our Letter presents an alternative pathway towards creating and manipulating topological states of ultracold atoms by magnetic fields.

  20. Monte Carlo Study of Real Time Dynamics on the Lattice

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Başar, Gökçe; Bedaque, Paulo F.; Vartak, Sohan; Warrington, Neill C.

    2016-08-01

    Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from a highly oscillatory phase of the path integral. In this Letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and, in principle, applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.

  1. Dynamics of pattern-loaded fermions in bichromatic optical lattices

    NASA Astrophysics Data System (ADS)

    Reichl, Matthew D.; Mueller, Erich J.

    2016-03-01

    Motivated by experiments in Munich [M. Schreiber et al., Science 349, 842 (2015)., 10.1126/science.aaa7432], we study the dynamics of interacting fermions initially prepared in charge density wave states in one-dimensional bichromatic optical lattices. The experiment sees a marked lack of thermalization, which has been taken as evidence for an interacting generalization of Anderson localization, dubbed "many-body localization." We model the experiments using an interacting Aubry-Andre model and develop a computationally efficient low-density cluster expansion to calculate the even-odd density imbalance as a function of interaction strength and potential strength. Our calculations agree with the experimental results and shed light on the phenomena. We also explore a two-dimensional generalization. The cluster expansion method we develop should have broad applicability to similar problems in nonequilibrium quantum physics.

  2. Lattice Dynamics of the Rhenium and Technetium Dichalcogenides.

    PubMed

    Wolverson, Daniel; Hart, Lewis S

    2016-12-01

    The rhenium and technetium dichalcogenides are layered van der Waals semiconductors which show a large number of Raman-active zone-centre phonon modes as a result of their unusually large unit cells and deviation from hexagonal symmetry. They thus offer the possibility of introducing in-plane anisotropy into composite heterostructures based on van der Waals materials, and Raman spectroscopy is generally used to determine their in-plane orientation. We show that first-principles calculations give a good description of the lattice dynamics of this family of materials and thus predict the zone-centre phonon frequencies and Raman activities of TcS2. We consider the distribution of the phonon modes in frequency and their atomic displacements and give a unified understanding of the phonon frequencies and Raman spectra of ReS2, TcS2 and ReSe2 in terms of the scaling of Raman frequency with the chalcogen mass. PMID:27178055

  3. Lattice Dynamics of the Rhenium and Technetium Dichalcogenides.

    PubMed

    Wolverson, Daniel; Hart, Lewis S

    2016-12-01

    The rhenium and technetium dichalcogenides are layered van der Waals semiconductors which show a large number of Raman-active zone-centre phonon modes as a result of their unusually large unit cells and deviation from hexagonal symmetry. They thus offer the possibility of introducing in-plane anisotropy into composite heterostructures based on van der Waals materials, and Raman spectroscopy is generally used to determine their in-plane orientation. We show that first-principles calculations give a good description of the lattice dynamics of this family of materials and thus predict the zone-centre phonon frequencies and Raman activities of TcS2. We consider the distribution of the phonon modes in frequency and their atomic displacements and give a unified understanding of the phonon frequencies and Raman spectra of ReS2, TcS2 and ReSe2 in terms of the scaling of Raman frequency with the chalcogen mass.

  4. Lattice Dynamics of the Rhenium and Technetium Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wolverson, Daniel; Hart, Lewis S.

    2016-05-01

    The rhenium and technetium dichalcogenides are layered van der Waals semiconductors which show a large number of Raman-active zone-centre phonon modes as a result of their unusually large unit cells and deviation from hexagonal symmetry. They thus offer the possibility of introducing in-plane anisotropy into composite heterostructures based on van der Waals materials, and Raman spectroscopy is generally used to determine their in-plane orientation. We show that first-principles calculations give a good description of the lattice dynamics of this family of materials and thus predict the zone-centre phonon frequencies and Raman activities of TcS2. We consider the distribution of the phonon modes in frequency and their atomic displacements and give a unified understanding of the phonon frequencies and Raman spectra of ReS2, TcS2 and ReSe2 in terms of the scaling of Raman frequency with the chalcogen mass.

  5. Dynamic behavior of multirobot systems using lattice gas automata

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Cameron, Stewart M.; Robinett, Rush D., III; Trahan, Michael W.; Wagner, John S.

    1999-07-01

    Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems (or swarms). Our group has been studying the collective, autonomous behavior of these such systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi- agents architectures. Our goal is to coordinate a constellation of point sensors using unmanned robotic vehicles (e.g., RATLERs, Robotic All-Terrain Lunar Exploration Rover- class vehicles) that optimizes spatial coverage and multivariate signal analysis. An overall design methodology evolves complex collective behaviors realized through local interaction (kinetic) physics and artificial intelligence. Learning objectives incorporate real-time operational responses to environmental changes. This paper focuses on our recent work understanding the dynamics of many-body systems according to the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's rate of deformation, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent nonlinearity of the dynamical equations describing large ensembles, stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots maneuvering past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with

  6. Lattice dynamics in elemental modulated Sb 2 Te 3 films: Lattice dynamics in elemental modulated Sb 2 Te 3 films

    DOE PAGESBeta

    Bessas, D.; Winkler, M.; Sergueev, I.; König, J. D.; Böttner, H.; Hermann, R. P.

    2015-09-03

    We investigate the crystallinity and the lattice dynamics in elemental modulated Sbinline imageTeinline image films microscopically using high energy synchrotron radiation diffraction combined with inline imageSb nuclear inelastic scattering. The correlation length is found to be finite but less than 100 . Moreover, the element specific density of phonon states is extracted. A comparison with the element specific density of phonon states in bulk Sbinline imageTeinline image confirms that the main features in the density of phonon states arise from the layered structure. The average speed of sound at inline image inline image, is almost the same compared to bulkmore » Sbinline imageTeinline image at inline image, inline image. Similarly, the change in the acoustic cut-off energy is within the experimental detection limit. Therefore, we suggest that the lattice thermal conductivity in elemental modulated Sbinline imageTeinline image films should not be significantly changed from its bulk value.« less

  7. Common Misconceptions about the Dynamical Theory of Crystal Lattices: Cauchy Relations, Lattice Potentials and Infinite Crystals

    ERIC Educational Resources Information Center

    Elcoro, Luis; Etxebarria, Jesus

    2011-01-01

    The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used…

  8. Complex photonic lattices embedded with tailored intrinsic defects by a dynamically reconfigurable single step interferometric approach

    SciTech Connect

    Xavier, Jolly Joseph, Joby

    2014-02-24

    We report sculptured diverse photonic lattices simultaneously embedded with intrinsic defects of tunable type, number, shape as well as position by a single-step dynamically reconfigurable fabrication approach based on a programmable phase spatial light modulator-assisted interference lithography. The presented results on controlled formation of intrinsic defects in periodic as well as transversely quasicrystallographic lattices, irrespective and independent of their designed lattice geometry, portray the flexibility and versatility of the approach. The defect-formation in photonic lattices is also experimentally analyzed. Further, we also demonstrate the feasibility of fabrication of such defects-embedded photonic lattices in a photoresist, aiming concrete integrated photonic applications.

  9. 11B and 27Al NMR spin-lattice relaxation and Knight shift of Mg1-xAlxB2: Evidence for an anisotropic Fermi surface

    NASA Astrophysics Data System (ADS)

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-10-01

    We report a detailed study of the 11B and 27Al NMR spin-lattice relaxation rates (1/T1) and the 27Al Knight shift (K) in Mg1-xAlxB2, 0<=x<=1. The evolution of (1/T1T) and K with x is in excellent agreement with the prediction of ab initio calculations of a highly anisotropic Fermi surface, consisting mainly of hole-type two-dimensional (2D) cylindrical sheets from bonding 2px,y boron orbitals. The density of states at the Fermi level also decreases sharply on Al doping and the 2D sheets collapse at x~0.55, where the superconducting phase disappears.

  10. Tensorial slip theory for gas flows and comparison with molecular dynamics simulations using an anisotropic gas-wall collision mechanism.

    PubMed

    Pham, Thanh Tung; To, Quy Dong; Lauriat, Guy; Léonard, Céline

    2013-05-01

    In this paper we examine the anisotropic slip theory for gas flows based on tangential accommodation coefficients and compare it with molecular dynamics (MD) results. A special gas-wall boundary condition is employed within MD simulations to mimic the anisotropic gas-wall collision mechanism. Results from MD simulations with different surface orientations show good agreement with the slip quantification proposed in this work.

  11. Thermodynamics of lattice QCD with 2 light dynamical (staggered) quark flavours on a 16 sup 3 times 8 lattice

    SciTech Connect

    Gottlieb, S.; Krasnitz, A. . Dept. of Physics); Heller, U.M.; Kennedy, A.D. . Supercomputer Computations Research Inst.); Kogut, J.B. . Dept. of Physics); Liu, W. ); Renken, R.L. (University of Central F

    1991-01-01

    Lattice QCD with 2 light staggered quark flavours is being simulated on a 16{sup 3} {times} 8 lattice to study the transition from hadronic matter to a quark gluon plasma. We have completed runs at m{sub q} = 0.0125 and are extending this to m{sub q} = 0.00625. We also examine the addition of a non-dynamical strange'' quark. Thermodynamic order parameters are being measured across the transition and further into the plasma phase, as are various screening lengths. No evidence for a first order transition is seen, and we estimate the transition temperature to be {Tc} = 143(7)MeV.

  12. Thermodynamics of lattice QCD with 2 light dynamical (staggered) quark flavours on a 16{sup 3} {times} 8 lattice

    SciTech Connect

    Gottlieb, S.; Krasnitz, A.; Heller, U.M.; Kennedy, A.D.; Kogut, J.B.; Liu, W.; Renken, R.L.; Sinclair, D.K.; Sugar, R.L.; Toussaint, D.; Wang, K.C.

    1991-12-31

    Lattice QCD with 2 light staggered quark flavours is being simulated on a 16{sup 3} {times} 8 lattice to study the transition from hadronic matter to a quark gluon plasma. We have completed runs at m{sub q} = 0.0125 and are extending this to m{sub q} = 0.00625. We also examine the addition of a non-dynamical ``strange`` quark. Thermodynamic order parameters are being measured across the transition and further into the plasma phase, as are various screening lengths. No evidence for a first order transition is seen, and we estimate the transition temperature to be {Tc} = 143(7)MeV.

  13. Anisotropic parallel self-diffusion coefficients near the calcite surface: A molecular dynamics study.

    PubMed

    Franco, Luís F M; Castier, Marcelo; Economou, Ioannis G

    2016-08-28

    Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two {101̄4} calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property. PMID:27586936

  14. Anisotropic parallel self-diffusion coefficients near the calcite surface: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Franco, Luís F. M.; Castier, Marcelo; Economou, Ioannis G.

    2016-08-01

    Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two { 10 1 ¯ 4 } calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property.

  15. Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong

    2010-07-01

    This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.

  16. Physical mechanism of anisotropic sensitivity in pentaerythritol tetranitrate from compressive-shear reaction dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zybin, Sergey V.; Goddard, William A.; Xu, Peng; van Duin, Adri C. T.; Thompson, Aidan P.

    2010-02-01

    We propose computational protocol (compressive shear reactive dynamics) utilizing the ReaxFF reactive force field to study chemical initiation under combined shear and compressive load. We apply it to predict the anisotropic initiation sensitivity observed experimentally for shocked pentaerythritol tetranitrate single crystals. For crystal directions known to be sensitive we find large stress overshoots and fast temperature increase that result in early bond-breaking processes whereas insensitive directions exhibit small stress overshoot, lower temperature increase, and little bond dissociation. These simulations confirm the model of steric hindrance to shear and capture the thermochemical processes dominating the phenomena of shear-induced chemical initiation.

  17. Anisotropic Elastography for Local Passive Properties and Active Contractility of Myocardium from Dynamic Heart Imaging Sequence

    PubMed Central

    Wang, Ge; Sun, L. Z.

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters. PMID:23165032

  18. Population dynamics of intraguild predation in a lattice gas system.

    PubMed

    Wang, Yuanshi; Wu, Hong

    2015-01-01

    In the system of intraguild predation (IGP) we are concerned with, species that are in a predator-prey relationship, also compete for shared resources (space or food). While several models have been established to characterize IGP, mechanisms by which IG prey and IG predator can coexist in IGP systems with spatial competition, have not been shown. This paper considers an IGP model, which is derived from reactions on lattice and has a form similar to that of Lotka-Volterra equations. Dynamics of the model demonstrate properties of IGP and mechanisms by which the IGP leads to coexistence of species and occurrence of alternative states. Intermediate predation is shown to lead to persistence of the predator, while extremely big predation can lead to extinction of one/both species and extremely small predation can lead to extinction of the predator. Numerical computations confirm and extend our results. While empirical observations typically exhibit coexistence of IG predator and IG prey, theoretical analysis in this work demonstrates exact conditions under which this coexistence can occur.

  19. Dynamics of a lattice gas system of three species

    NASA Astrophysics Data System (ADS)

    Wang, Yuanshi; Wu, Hong; Liang, Junhao

    2016-10-01

    This paper considers a mutualism system of three species in which each species provides resource for the next one in a one-directional loop, while there exists spatial competition among them. The system is characterized by a lattice gas model and the cases of obligate mutualisms, obligate-facultative mutualisms and facultative mutualisms are considered. Using dynamical systems theory, it is shown that (i) the mutualisms can lead to coexistence of species; (ii) A weak mutualism or an extremely strong mutualism will result in extinction of species, while even the superior facultative species will be driven into extinction by its over-strong mutualism on the next one; (iii) Initial population density plays a role in the coexistence of species. It is also shown that when there exists weak mutualism, an obligate species can survive by providing more benefit to the next one, and the inferior facultative species will not be driven into extinction if it can strengthen its mutualism on the next species. Moreover, Hopf bifurcation, saddle-node bifurcation and bifurcation of heteroclinic cycles are shown in the system. Projection method is extended to exhibit bistability in the three-dimensional model: when saddle-node bifurcation occurs, stable manifold of the saddle-node point divides intR+3 into two basins of attraction of two equilibria. Furthermore, Lyapunov method is applied to exhibit unstability of heteroclinic cycles. Numerical simulations confirm and extend our results.

  20. Population dynamics of intraguild predation in a lattice gas system.

    PubMed

    Wang, Yuanshi; Wu, Hong

    2015-01-01

    In the system of intraguild predation (IGP) we are concerned with, species that are in a predator-prey relationship, also compete for shared resources (space or food). While several models have been established to characterize IGP, mechanisms by which IG prey and IG predator can coexist in IGP systems with spatial competition, have not been shown. This paper considers an IGP model, which is derived from reactions on lattice and has a form similar to that of Lotka-Volterra equations. Dynamics of the model demonstrate properties of IGP and mechanisms by which the IGP leads to coexistence of species and occurrence of alternative states. Intermediate predation is shown to lead to persistence of the predator, while extremely big predation can lead to extinction of one/both species and extremely small predation can lead to extinction of the predator. Numerical computations confirm and extend our results. While empirical observations typically exhibit coexistence of IG predator and IG prey, theoretical analysis in this work demonstrates exact conditions under which this coexistence can occur. PMID:25447811

  1. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kalia, Rajiv K.; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-01

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision

  2. Dynamic analogues of Green and Gauss's formulas for unsteady dynamics of anisotropic elastic medium at antiplane deformation

    NASA Astrophysics Data System (ADS)

    Zakir'yanova, Gulmira

    2016-08-01

    The paper is devoted to the solution of non-stationary boundary value problems (BVP) for an anisotropic elastic medium at antiplane deformation. The solutions in class of shock wave are considered for strong hyperbolic equation which describes the motion of the considered medium. The statement of two initial boundary problems are given. The conditions on the wave fronts are obtained. The energy conservation law and questions of the uniqueness of the solutions in the class of shock waves are considered. Dynamic analogues of Green and Gauss's formulas constructed and their integral representations obtained.

  3. Onset of motion and dynamic reordering of a vortex lattice.

    PubMed

    Li, Guohong; Andrei, Eva Y; Xiao, Z L; Shuk, P; Greenblatt, M

    2006-01-13

    Time resolved transport measurements on a driven vortex lattice in an undoped 2H-NbSe2 crystal show that the response to a current pulse is governed by healing of defects as the lattice evolves from a stationary to a moving steady state and that the response time reflects the degree of order in the initial vortex state. We find that stationary field cooled vortex lattices become more ordered with decreasing temperature and identify a temperature below which a qualitative change in the response signals the disappearance of topological defects.

  4. Anisotropic mechanical properties of hexagonal SiC sheet: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yu, Ming; Liu, Emily; Zhang, Congyan

    2015-03-01

    The anisotropic mechanical properties of hexagonal SiC sheet have been studied using an efficient quantum mechanics molecular dynamics scheme based on a robust semi-empirical Hamiltonian (refereed as SCED-LCAO) [PRB 74, 15540; PHYSE 42, 1]. It was found that the SiC sheet could sustain the heavy load up to about 20 %. In particular, it was found that the SiC sheet also shows large difference in the strain direction. It will quickly crack after 20 % of strain in armchair the direction, but it will be slowly destroyed after 30% in the zigzag direction, indicating the anisotropic nature of the mechanical properties of the SiC sheet. The nominal and 2D membrane stresses will be analyzed, from where we will obtain the 2D Young's modulus at infinitesimal strain and the third-order (effective nonlinear) elastic modulus for the SiC sheet. The detail results and discussions will be reported in the presentation.

  5. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision.

    PubMed

    Li, Ying; Kalia, Rajiv K; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-14

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.

  6. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision.

    PubMed

    Li, Ying; Kalia, Rajiv K; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-14

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials. PMID:27110831

  7. The Anisotropic Dynamic Response of Ultrafast Shocked Single Crystal PETN and Beta-HMX

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Armstrong, Michael; Crowhurst, Jonathan; Austin, Ryan; Ferranti, Louis; Fried, Laurence; Bastea, Sorin

    2015-06-01

    We report results from ultrafast shockwave experiments conducted on single crystal high explosives. Experimental results consist of 12 picosecond time-resolved dynamic response wave profile data, (ultrafast time-domain interferometry-TDI), which are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. In addition, here we present unreacted equations of state data from PETN and beta-HMX up to higher pressures than previously reported, which are used to extend the predictive confidence of hydrodynamic simulations. Our previous results derived from a 360 ps drive duration yielded anisotropic elastic wave response in single crystal beta-HMX ((110) and (010) impact planes). Here we provide results using a 3x longer drive duration to probe the plastic response regime of these materials. We compare our ultrafast time domain interferometry (TDI) results with previous gun platform results. Ultrafast time scale resolution TDI measurements further guide the development of continuum models aimed to study pore collapse and energy localization in shock-compressed crystals of beta-HMX. This work was performed under the auspices of the U.S. Department of Energy jointly by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Ab initio study of the anharmonic lattice dynamics of iron at the γ -δ phase transition

    NASA Astrophysics Data System (ADS)

    Lian, Chao-Sheng; Wang, Jian-Tao; Chen, Changfeng

    2015-11-01

    We report calculations of phonon dispersions of iron (Fe) at its γ -δ phase transition using a self-consistent ab initio lattice dynamical method in conjunction with an effective magnetic force approach via the antiferromagnetic approximation. Our results show that anharmonic phonon-phonon interactions play a crucial role in stabilizing the δ -Fe phase in the open bcc lattice. In contrast, the lattice dynamics of the close-packed fcc γ -Fe phase are dominated by magnetic interactions. Simultaneous considerations of the lattice anharmonic and magnetic interactions produced temperature-dependent phonon dispersions for δ -Fe and γ -Fe phases in excellent agreement with recent experimental measurements. The present results highlight the key role of lattice anharmonicity in determining the structural stability of iron at high temperatures, which has significant implications for other high-temperature paramagnetic metals like Ce and Pu.

  9. Rotational Analysis of Spherical, Optically Anisotropic Janus Particles by Dynamic Microscopy.

    PubMed

    Wittmeier, Andrew; Holterhoff, Andrew Leeth; Johnson, Joel; Gibbs, John G

    2015-09-29

    We analyze the rotational dynamics of spherical colloidal Janus particles made from silica (SiO2) with a hemispherical gold/palladium (Au/Pd) cap. Since the refractive index difference between the surrounding fluid and a two-faced, optically anisotropic Janus microsphere is a function of the particle's orientation, it is possible to observe its rotational dynamics with bright-field optical microscopy. We investigate rotational diffusion and constant rotation of single Janus microspheres which are partially tethered to a solid surface so they are free to rotate but show little or no translational motion. Also, since the metal cap is a powerful catalyst in the breakdown of hydrogen peroxide, H2O2, the particles can be activated chemically. In this case, we analyze the motion of coupled Janus dimers which undergo a stable rotary motion about a mutual center. The analysis of both experimental and simulation data, which are microscopy and computer-generated videos, respectively, is based upon individual particle tracking and differential dynamic microscopy (DDM). DDM, which typically requires ensemble averages to extract meaningful information for colloidal dynamics, can be effective in certain situations for systems consisting of single entities. In particular, when translational motion is suppressed, both rotational diffusion and constant rotation can be probed.

  10. Role of nonlinear anisotropic damping in the magnetization dynamics of topological solitons

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Von

    2015-07-01

    The consequences of nonlinear anisotropic damping, driven by the presence of Rashba spin-orbit coupling in thin ferromagnetic metals, are examined for the dynamics of topological magnetic solitons such as domain walls, vortices, and skyrmions. The damping is found to affect Bloch and Néel walls differently in the steady-state regime below Walker breakdown and leads to a monotonic increase in the wall velocity above this transition for large values of the Rashba coefficient. For vortices and skyrmions, a generalization of the damping tensor within the Thiele formalism is presented. It is found that chiral components of the damping affect vortexlike and hedgehoglike skyrmions in different ways, but the dominant effect is an overall increase in the viscouslike damping.

  11. Molecular determinants for drug-receptor interactions. 8. Anisotropic and internal motions in morphine, nalorphine, oxymorphone, naloxone and naltrexone in aqueous solution by carbon-13 NMR spin-lattice relaxation times

    NASA Astrophysics Data System (ADS)

    Grassi, Antonio; Perly, Bruno; Pappalardo, Giuseppe C.

    1989-02-01

    Carbon-13 NMR spin-lattice relaxation times ( T1) were measured for morphine, oxymorphone, nalorphine, naloxone and naltrexone as hydrochloride salts in 2H 2O solution. The data refer to the molecules in the N-equatorial configuration. The experimental T1 values were interpreted using a model of anisotropic reorientation of a rigid body with superimposed internal motions of the flexible N-methyl, N-methyl-allyl and N-methyl-cyclopropyl fragments. The calculated internal motional rates were found to markedly decrease on passing from agonists to mixed (nalorphine) and pure (naloxone, naltrexone) antagonists. For these latter the observed trend of the internal flexibility about NC and CC bonds of the N-substituents is discussed in terms of a correlation with their relative antagonistic potencies. In fact, such an evidence of decreasing internal conformational dynamics in the order nalorphine, naloxone, naltrexone, appeared interestingly in line with the "two-state" model of opiate receptor operation mode proposed by Snyder.

  12. Dynamics of firefly luciferase inhibition by general anesthetics: Gaussian and anisotropic network analyses.

    PubMed

    Szarecka, Agnieszka; Xu, Yan; Tang, Pei

    2007-09-15

    The new crystal structures of the product-bound firefly luciferase combined with the previously determined substrate-free structures allow for a detailed analysis of the dynamics basis for the luciferase enzymatic activities. Using the Gaussian network model and the anisotropic network model, we show here that the superposition of the three slowest anisotropic network model modes, consisting of the bending, rotating, and rocking motions of the C-domain, accounts for large rearrangement of domains from the substrate-free (open) to product-bound (closed) conformation and thus constitutes a critical component of the enzyme's functions. The analysis also offers a unique platform to reexamine the molecular mechanism of the anesthetic inhibition of the firefly luciferase. Through perturbing the protein backbone network by introducing additional nodes to represent anesthetics, we found that the presence of two representative anesthetics, halothane and n-decanol, in different regions of luciferase had distinctively different effects on the protein's global motion. Only at the interface of the C- and N-domains did the anesthetics cause the most profound reduction in the overall flexibility of the C-domain and the concomitant increase in the flexibility of the loop, where the substitution of a conserved lysine residue was found experimentally to lead to >2-3 orders of magnitude reduction in activity. These anesthetic-induced dynamics changes can alter the normal function of the protein, appearing as an epiphenomenon of an "inhibition". The implication of the study is that a leading element for general anesthetic action on proteins is to disrupt the modes of motion essential to protein functions.

  13. Interacting bosons in a disordered lattice: Dynamical characterization of the quantum phase diagram

    NASA Astrophysics Data System (ADS)

    Buonsante, Pierfrancesco; Pezzè, Luca; Smerzi, Augusto

    2015-03-01

    We study the quantum dynamics of interacting bosons in a three-dimensional disordered lattice. We show that the superfluid current induced by an adiabatic acceleration of the disordered lattice undergoes a dynamical instability signaling the onset of the Bose-glass phase. The dynamical superfluid-Bose-glass phase diagram is found in very good agreement with static superfluid fraction calculation. A different boundary is obtained when the disorder is suddenly quenched in a moving periodic lattice. In this case we do not observe a dynamical instability but rather a depletion of the superfluid density. Our analysis is based on a dynamical Gutzwiller approach which we show to reproduce the quantum Monte Carlo static phase diagram in the strong interaction limit.

  14. The static force from lattice QCD with two dynamical quarks

    SciTech Connect

    Leder, B.; Knechtli, F.

    2011-05-23

    We report on the measurement of the static force from HYP-smeared Wilson loops in two flavour QCD. We analyse the quark mass dependence of the force at three lattice spacings. The QCD static force around distance r{sub 0} is compared with the force obtained from pure gauge theory, potential models and perturbation theory.

  15. Mixed models and reduction method for dynamic analysis of anisotropic shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Peters, J. M.

    1985-01-01

    A time-domain computational procedure is presented for predicting the dynamic response of laminated anisotropic shells. The two key elements of the procedure are: (1) use of mixed finite element models having independent interpolation (shape) functions for stress resultants and generalized displacements for the spatial discretization of the shell, with the stress resultants allowed to be discontinuous at interelement boundaries; and (2) use of a dynamic reduction method, with the global approximation vectors consisting of the static solution and an orthogonal set of Lanczos vectors. The dynamic reduction is accomplished by means of successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate the global approximation vectors. Then the Rayleigh-Ritz technique is used to generate a reduced system of ordinary differential equations in the amplitudes of these modes. The temporal integration of the reduced differential equations is performed by using an explicit half-station central difference scheme (Leap-frog method). The effectiveness of the proposed procedure is demonstrated by means of a numerical example and its advantages over reduction methods used with the displacement formulation are discussed.

  16. Measurement-based quantum lattice gas model of fluid dynamics in 2+1 dimensions.

    PubMed

    Micci, Michael M; Yepez, Jeffrey

    2015-09-01

    Presented are quantum simulation results using a measurement-based quantum lattice gas algorithm for Navier-Stokes fluid dynamics in 2+1 dimensions. Numerical prediction of the kinematic viscosity was measured by the decay rate of an initial sinusoidal flow profile. Due to local quantum entanglement in the quantum lattice gas, the minimum kinematic viscosity in the measurement-based quantum lattice gas is lower than achievable in a classical lattice gas. The numerically predicted viscosities precisely match the theoretical predictions obtained with a mean field approximation. Uniform flow profile with double shear layers, on a 16K×8K lattice, leads to the Kelvin-Helmholtz instability, breaking up the shear layer into pairs of counter-rotating vortices that eventually merge via vortex fusion and dissipate because of the nonzero shear viscosity.

  17. Scaling, cluster dynamics and complex oscillations in a multispecies Lattice Lotka-Volterra Model

    NASA Astrophysics Data System (ADS)

    Shabunin, A. V.; Efimov, A.; Tsekouras, G. A.; Provata, A.

    2005-03-01

    The cluster formation in the cyclic (4+1)-Lattice Lotka-Volterra Model is studied by Kinetic Monte Carlo simulations on a square lattice support. At the Mean Field level this model demonstrates conservative four-dimensional oscillations which, depending on the parameters, can be chaotic or quasi-periodic. When the system is realized on a square lattice substrate the various species organize in domains (clusters) with fractal boundaries and this is consistent with dissipative dynamics. For small lattice sizes, the entire lattice oscillates in phase and the size distribution of the clusters follows a pure power law distribution. When the system size is large many independently oscillating regions are formed and as a result the cluster size distribution in addition to the power law, acquires a exponential decay dependence. This combination of power law and exponential decay of distributions and correlations is indicative, in this case, of mixing and superposition of regions oscillating asynchronously.

  18. Effect of surfactant and solvent on spin-lattice relaxation dynamics of magnetic nanocrystals.

    PubMed

    Maiti, Sourav; Chen, Hsiang-Yun; Chen, Tai-Yen; Hsia, Chih-Hao; Son, Dong Hee

    2013-04-25

    The effect of varying the surfactant and solvent medium on the dynamics of spin-lattice relaxation in photoexcited Fe3O4 nanocrystals has been investigated by measuring the time-dependent magnetization employing pump-probe transient Faraday rotation technique. The variation of the surfactants having surface-binding functional groups modified not only the static magnetization but also the dynamics of the recovery of the magnetization occurring via spin-lattice relaxation in the photoexcited Fe3O4 nanocrystals. The variation of the polarity and size of the solvent molecules can also influence the spin-lattice relaxation dynamics. However, the effect is limited to the nanocrystals having sufficiently permeable surfactant layer, where the small solvent molecules (e.g., water) can access the surface and dynamically modify the ligand field on the surface. PMID:23003213

  19. Cascaded spin motive force driven by the dynamics of the skyrmion lattice

    SciTech Connect

    Ohe, Jun-ichiro; Shimada, Yuhki

    2013-12-09

    We numerically investigate the spin motive force (SMF) driven by the dynamics of a Skyrmion lattice. The rotating mode of the Skyrmion core excited by the AC magnetic field induces the large spin-dependent electric field near the core. Due to the collective dynamics of Skyrmion lattice, the measurable voltage is enhanced by the cascade effect of the SMF. The amplitude of the AC voltage is estimated to 30 μV in a macroscopic sample, where 100 Skyrmions exist between two probes. We also investigate the SMF due to the dynamics of the helical magnetic state, where the enhancement of the SMF does not occur.

  20. Simulating the dynamics of a single polymer chain in solution: Lattice Boltzmann vs Brownian dynamics

    NASA Astrophysics Data System (ADS)

    Duenweg, Burkhard

    2010-03-01

    Two well--established and complementary methodologies to simulate the dynamics of polymers in solution are (i) Brownian Dynamics (BD), and (ii) Molecular Dynamics coupled dissipatively to a lattice Boltzmann background (MD/LB). The talk gives a brief introduction into both methods, and then presents results of a recent comparative study that applied both methods to the same model of a single chain that moves in a solvent under the influence of thermal noise. Emphasis is put on the question how to map the parameters onto each other, in particular those that are crucial for the dynamics. The agreement of static properties is perfect, as it must be. The dynamic properties agree very well, if for the MD/LB case the effects of finite box size are eliminated by extrapolation. We also find that proper thermalization of all MD/LB degrees of freedom (including the so--called ``kinetic modes'') is necessary. Small deviations between BD and MD/LB remain as a result of the different simulation methodologies. Finally, the computational efficiency of the two methods is compared. For the single--chain system, BD is clearly much faster, while scaling estimates suggest that the opposite is true for semidilute solutions. References: *Tri T. Pham, Ulf D. Schiller, J. Ravi Prakash, and B. D"unweg, J. Chem. Phys. 131, 164114 (2009). *B. D"unweg and A. J. C. Ladd, Adv. Polym. Sci. 221, 89 (2009).

  1. Tunneling Dynamics and Gauge Potentials in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Dutta, S. K.; Teo, B. K.; Raithel, G.

    1999-09-01

    We study periodic well-to-well tunneling of 87Rb atoms on adiabatic potential surfaces of a 1D optical lattice. The observed dependence of the lowest-band tunneling period on the depth of the adiabatic potential can only be explained by an additional intensity-independent gauge potential predicted by Dum et al. The experimental data are in excellent agreement with our quantum Monte Carlo wave-function simulations and band structure calculations.

  2. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Wu, Genhua

    2014-08-01

    Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron.

  3. Swamp plots for dynamic aperture studies of PEP-II lattices

    SciTech Connect

    Yan, Y.T.; Irwin, J.; Cai, Y.; Chen, T.; Ritson, D.

    1995-06-01

    With a newly developed algorithm using resonance basis Lie generators and their evaluation with action-angle Poisson bracket maps (nPB tracking) the authors have been able to perform fast tracking for dynamic aperture studies of PEP-II lattices as well as incorporate lattice nonlinearities in beam-beam studies. They have been able to better understand the relationship between dynamic apertures and the tune shift and resonance coefficients in the generators of the one-turn maps. To obtain swamp plots (dynamic aperture vs. working point) of the PEP-II lattices, they first compute a one-turn resonance basis map for a nominal working point and then perform nPB tracking by switching the working point while holding fixed all other terms in the map. Results have been spot-checked by comparing with element-by-element tracking.

  4. Lattice dynamics and thermoelectric properties of nanocrystalline silicon-germanium alloys

    SciTech Connect

    Claudio, Tania; Stein, Niklas; Peterman, Nils; Stroppa, Daniel; Koza, Michael M.; Wiggers, Hartmut; Klobes, B.; Schierning, Gabi; Hermann, Raphael P.

    2015-10-26

    The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon- germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low- temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000C. A peak figure of merit zT = 0:88 at 900C is observed and comparatively insensitive to the aforementioned param- eter variations.

  5. The existence of traveling wave solutions for a bistable three-component lattice dynamical system

    NASA Astrophysics Data System (ADS)

    Guo, Jong-Shenq; Wu, Chin-Chin

    2016-01-01

    We study the traveling wave solutions for a three-component lattice dynamical system. This problem arises in the modeling of three species competing two food resources in an environment with migration in which the habitat is one-dimensional and is divided into countable niches. We are concerned with the case when two species have different preferences of food and the third species has both preferences of food. To understand which species win the competition under the bistable condition, the existence of a traveling wave solution for this lattice dynamical system is proven.

  6. Anisotropic compressive response of Stone-Thrower-Wales defects in graphene: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Rajasekaran, G.; Parashar, Avinash

    2016-09-01

    The mechanical properties of graphene sheet can be tailored with the help of topological defects. In this research article, the effects of Stone-Thrower-Wales (STW) defects on the mechanical properties of graphene sheet was investigated with the help of molecular dynamics based simulations. Authors has made an attempt to analyse the stress field developed in and around the vicinity of defect due to bond reorientation and further systematic evaluation has been carried out to study the effect of these stress fields against the applied axial compressive load. The results obtained with the pristine graphene were made to compare with the available open literature and the results were reported to be in good agreement with theoretical and experimental data. It was predicted that graphene with STW defect cannot able to bear compressive strength in zigzag direction, whereas on the other hand it was predicted that graphene sheet containing STW defect can bear higher compressive load in armchair direction, which shows an anisotropic response of STW defects in graphene. From the obtained results it can be observed that orientation of STW defects and the loading direction plays an important role to alter the strength of graphene under axial compression.

  7. Investigation of protein fluctuations via Anisotropic Network Model and Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Okan, Osman B.; Turgut, Deniz; Rammohan, Aravind; Garcia, Angel E.; Ozisik, Rahmi

    2014-03-01

    We use Anisotropic Network Model (ANM) and compare its protein fluctuation predictions against molecular dynamics (MD) simulations and experimental findings for 210 globular proteins. The ANM results are analyzed using bond orientational order (BOO) parameters. We show that BOO parameters could be reformulated as a sum of contact density and geometrical (distribution of contacts in space) components. This reformulation of BOO makes it possible to investigate the role of each individual component separately, and identify cut-off ranges where each component dominates protein fluctuations. Our results indicate that the widely accepted correlation between mean squared displacements (MSDs) and inverse contact density is valid for ANM within the cut-off range of 10-15 Å. We show that the two components of the BOO dominate protein fluctuations at different length scales: contact density at small length scales and geometric distribution of residues at length scales comparable to the protein size. It is also shown that the relationship between MSD and contact density is firmly rooted in BOO, and is rendered possible with a unique distribution of residues that nullifies the average geometric component's contribution to the BOO within the 10 -15 Å cut-off.__ The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and 1050966.

  8. Molecular dynamics in lipid bilayers. Anisotropic diffusion in an odd restoring potential.

    PubMed Central

    Alam, T M

    1993-01-01

    Recent 2H nuclear magnetic resonance spin relaxation studies have questioned the influence of restoring potential parity on the description of lipid or molecular reorientational dynamics. In biomembranes the polar head groups of lipid and sterol constituents are expected to associate with the aqueous interface; therefore, realistic descriptions of molecular reorientation in bilayer systems should use an odd restoring potential. The multiexponential correlation functions and related spectral density functions for small-step anisotropic diffusion in a pseudo-restoring potential of the form U(beta) = -lambda cos beta are evaluated as a function of molecular ordering . From analysis of these results the single exponential approximation used in previous investigations is found to overestimate the decay rate at lower order, but is reliable for > 0.6. The exception to this trend is the decay constant for the G11 (omega; t) correlation function, which is not accurately portrayed by the first-order approximations. A second-order single exponential approximation is presented, and is shown to be equivalent to the weighted sum of the multidecay constants. In general, the potential parity is found to have only minor effects on the spin relaxation rates obtained to describe molecular reorientation in lipid bilayers. PMID:8369401

  9. Spreading Dynamics of Nanodrops: a Lattice Boltzmann Study

    NASA Astrophysics Data System (ADS)

    Gross, Markus; Varnik, Fathollah

    2014-01-01

    Spreading of nano-droplets is an interesting and technologically relevant phenomenon, where thermal fluctuations lead to unexpected deviations from well-known deterministic laws. Here, we apply the newly developed fluctuating nonideal lattice Boltzmann (LB) method [M. Gross, M. E. Cates, F. Varnik and R. Adhikari, J. Stat. Mech.2011, P03030 (2011)] for the study of this issue. Confirming the predictions of Davidovich and coworkers [Phys. Rev. Lett.95, 244905 (2005)], we provide the first independent evidence for the existence of an asymptotic, self-similar noise-driven spreading regime in both two- (2D) and three-dimensional (3D) geometry. The cross over from the deterministic Tanner's law, where the drop's base radius b grows (in 3D) with time as b t1/10 and the noise dominated regime, where b t1/6 is also observed by tuning the strength of thermal noise.

  10. Lattice dynamics of CoO from first principles

    NASA Astrophysics Data System (ADS)

    Wdowik, U. D.; Parlinski, K.

    2007-03-01

    Cobaltous oxide (CoO) has been studied by using density-functional theory and the generalized-gradient approximation with correction for Hubbard energy. The calculated electronic structure indicates that CoO is a charge transfer insulator since the Co3d and O2p states are strongly hybridized. The calculated band gap and the spin magnetic moment on divalent Co are in good agreement with the experimentally observed values. The so-called direct method based on calculated Hellmann-Feynman forces is used to obtain the density of states and the dispersion relations of phonons. The temperature dependence of the mean-squared vibrational amplitudes and the behavior of the lattice contribution to heat capacity are analyzed and discussed in the framework of the harmonic approximation. The results of calculations agree with the existing theoretical and experimental data.

  11. Nonequilibrium Dynamical Mean-Field Theory for Bosonic Lattice Models

    NASA Astrophysics Data System (ADS)

    Strand, Hugo U. R.; Eckstein, Martin; Werner, Philipp

    2015-01-01

    We develop the nonequilibrium extension of bosonic dynamical mean-field theory and a Nambu real-time strong-coupling perturbative impurity solver. In contrast to Gutzwiller mean-field theory and strong-coupling perturbative approaches, nonequilibrium bosonic dynamical mean-field theory captures not only dynamical transitions but also damping and thermalization effects at finite temperature. We apply the formalism to quenches in the Bose-Hubbard model, starting from both the normal and the Bose-condensed phases. Depending on the parameter regime, one observes qualitatively different dynamical properties, such as rapid thermalization, trapping in metastable superfluid or normal states, as well as long-lived or strongly damped amplitude oscillations. We summarize our results in nonequilibrium "phase diagrams" that map out the different dynamical regimes.

  12. Dynamics, stability, and statistics on lattices and networks

    NASA Astrophysics Data System (ADS)

    Livi, Roberto

    2014-07-01

    These lectures aim at surveying some dynamical models that have been widely explored in the recent scientific literature as case studies of complex dynamical evolution, emerging from the spatio-temporal organization of several coupled dynamical variables. The first message is that a suitable mathematical description of such models needs tools and concepts borrowed from the general theory of dynamical systems and from out-of-equilibrium statistical mechanics. The second message is that the overall scenario is definitely reacher than the standard problems in these fields. For instance, systems exhibiting complex unpredictable evolution do not necessarily exhibit deterministic chaotic behavior (i.e., Lyapunov chaos) as it happens for dynamical models made of a few degrees of freedom. In fact, a very large number of spatially organized dynamical variables may yield unpredictable evolution even in the absence of Lyapunov instability. Such a mechanism may emerge from the combination of spatial extension and nonlinearity. Moreover, spatial extension allows one to introduce naturally disorder, or heterogeneity of the interactions as important ingredients for complex evolution. It is worth to point out that the models discussed in these lectures share such features, despite they have been inspired by quite different physical and biological problems. Along these lectures we describe also some of the technical tools employed for the study of such models, e.g., Lyapunov stability analysis, unpredictability indicators for "stable chaos," hydrodynamic description of transport in low spatial dimension, spectral decomposition of stochastic dynamics on directed networks, etc.

  13. Dynamics, stability, and statistics on lattices and networks

    SciTech Connect

    Livi, Roberto

    2014-07-15

    These lectures aim at surveying some dynamical models that have been widely explored in the recent scientific literature as case studies of complex dynamical evolution, emerging from the spatio-temporal organization of several coupled dynamical variables. The first message is that a suitable mathematical description of such models needs tools and concepts borrowed from the general theory of dynamical systems and from out-of-equilibrium statistical mechanics. The second message is that the overall scenario is definitely reacher than the standard problems in these fields. For instance, systems exhibiting complex unpredictable evolution do not necessarily exhibit deterministic chaotic behavior (i.e., Lyapunov chaos) as it happens for dynamical models made of a few degrees of freedom. In fact, a very large number of spatially organized dynamical variables may yield unpredictable evolution even in the absence of Lyapunov instability. Such a mechanism may emerge from the combination of spatial extension and nonlinearity. Moreover, spatial extension allows one to introduce naturally disorder, or heterogeneity of the interactions as important ingredients for complex evolution. It is worth to point out that the models discussed in these lectures share such features, despite they have been inspired by quite different physical and biological problems. Along these lectures we describe also some of the technical tools employed for the study of such models, e.g., Lyapunov stability analysis, unpredictability indicators for “stable chaos,” hydrodynamic description of transport in low spatial dimension, spectral decomposition of stochastic dynamics on directed networks, etc.

  14. Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta3N5

    NASA Astrophysics Data System (ADS)

    Nurlaela, Ela; Harb, Moussab; del Gobbo, Silvano; Vashishta, Manish; Takanabe, Kazuhiro

    2015-09-01

    Presented herein is a detailed discussion of the properties of the lattice dynamic and optoelectronic properties of tantalum(V) oxynitride (TaON) and tantalum(V) nitride (Ta3N5), from experimental and theoretical standpoint. The active Raman and infra red (IR) frequencies of TaON and Ta3N5 were measured using confocal Raman and Fourier Transform Infrared spectroscopies (FTIR) and calculated using the linear response method within the density functional perturbation theory (DFPT). The detailed study leads to an exhaustive description of the spectra, including the symmetry of the vibrational modes. Electronic structures of these materials were computed using DFT within the range-separated hybrid HSE06 exchange-correlation formalism. Electronic and ionic contributions to the dielectric constant tensors of these materials were obtained from DFPT within the linear response method using the PBE functional. Furthermore, effective mass of photogenerated holes and electrons at the band edges of these compounds were computed from the electronic band structure obtained at the DFT/HSE06 level of theory. The results suggest that anisotropic nature in TaON and Ta3N5 is present in terms of dielectric constant and effective masses.

  15. Anisotropic universe with anisotropic sources

    SciTech Connect

    Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha E-mail: sukanta@iiserb.ac.in E-mail: snigdha@iiserb.ac.in

    2013-12-01

    We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.

  16. Scalar meson in dynamical and partially quenched two-flavor QCD: Lattice results and chiral loops

    SciTech Connect

    Prelovsek, S.; Dawson, C.; Izubuchi, T.; Orginos, K.; Soni, A.

    2004-11-01

    This is an exploratory study of the lightest nonsinglet scalar qq state on the lattice with two dynamical quarks. Domain wall fermions are used for both sea and valence quarks on a 16{sup 3}x32 lattice with an inverse lattice spacing of 1.7 GeV. We extract the scalar meson mass 1.58{+-}0.34 GeV from the exponential time dependence of the dynamical correlators with m{sub val}=m{sub sea} and N{sub f}=2. Since this statistical error bar from dynamical correlators is rather large, we analyze also the partially quenched lattice correlators with m{sub val}{ne}m{sub sea}. They are positive for m{sub val}{>=}m{sub sea} and negative for m{sub val}lattice correlators well. The leading unphysical contribution in partially quenched ChPT comes from the exchange of the two pseudoscalar fields and is also positive for m{sub val}{>=}m{sub sea} and negative for m{sub val}lattice correlators, the correlators are positive and exponentially falling. The resulting scalar meson mass 1.51{+-}0.19 GeV from the partially quenched correlators is consistent with the dynamical result and has an appreciably smaller error bar.

  17. Lattice dynamics in elemental modulated Sb 2 Te 3 films: Lattice dynamics in elemental modulated Sb 2 Te 3 films

    SciTech Connect

    Bessas, D.; Winkler, M.; Sergueev, I.; König, J. D.; Böttner, H.; Hermann, R. P.

    2015-09-03

    We investigate the crystallinity and the lattice dynamics in elemental modulated Sbinline imageTeinline image films microscopically using high energy synchrotron radiation diffraction combined with inline imageSb nuclear inelastic scattering. The correlation length is found to be finite but less than 100 . Moreover, the element specific density of phonon states is extracted. A comparison with the element specific density of phonon states in bulk Sbinline imageTeinline image confirms that the main features in the density of phonon states arise from the layered structure. The average speed of sound at inline image inline image, is almost the same compared to bulk Sbinline imageTeinline image at inline image, inline image. Similarly, the change in the acoustic cut-off energy is within the experimental detection limit. Therefore, we suggest that the lattice thermal conductivity in elemental modulated Sbinline imageTeinline image films should not be significantly changed from its bulk value.

  18. Structural, elastic, and lattice dynamic stability of yttrium selenide (YSe) under pressure: A first principle study

    SciTech Connect

    Sahoo, B. D. Joshi, K. D.; Gupta, Satish C.

    2014-11-21

    Structural, elastic, and lattice dynamical stability of YSe has been investigated as a function of pressure through first principles electronic band structure calculations. The comparison of enthalpies of rocksalt type (B1) and CsCl type cubic (B2) structures determined as a function of pressure suggests that the B1 phase will transform to B2 structure at ∼32 (30 GPa at 300 K obtained from comparison of Gibbs free energy at 300 K). The transition is identified to be of first order in nature with a volume discontinuity of ∼6.2% at the transition pressure. Furthermore, the theoretically determined equation of state has been utilized to derive various physical quantities, such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus. The single crystal elastic constants have been predicted at various pressures for both the B1 and B2 structures using the energy strain method. The activation barrier between B1 and B2 phases calculated at transition point is ∼19.7mRy/formula unit. Our lattice dynamic calculations show that both the B1 as well as B2 structures are lattice dynamically stable not only at ambient pressure but also at transition pressure. The B1 phase becomes lattice dynamically unstable at ∼112 GPa, i.e., much beyond the transition pressure. The effect of temperature on volume and bulk modulus of the YSe in B1 phase has also been examined.

  19. Pressure dependence of harmonic and an harmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity

    SciTech Connect

    Tang, Xiaoli; Dong, Jianjun

    2009-06-01

    We report a recent first-principles calculation of harmonic and anharmonic lattice dynamics of MgO. The 2nd order harmonic and 3rd order anharmonic interatomic interaction terms are computed explicitly, and their pressure dependences are discussed. The phonon mode Grueneisen parameters derived based on our calculated 3rd order lattice anharmonicity are in good agreement with those estimated using the finite difference method. The implications for lattice thermal conductivity at high pressure are discussed based on a simple kinetic transport theory.

  20. Quantum-Critical Dynamics of the Skyrmion Lattice.

    NASA Astrophysics Data System (ADS)

    Green, Andrew G.

    2002-03-01

    Slightly away from exact filling of the lowest Landau level, the quantum Hall ferromagnet contains a finite density of magnetic vortices or Skyrmions[1,2]. These Skyrmions are expected to form a square lattice[3], the low energy excitations of which (translation/phonon modes and rotation/breathing modes) lead to dramatically enhanced nuclear relaxation[4,5]. Upon changing the filling fraction, the rotational modes undergo a quantum phase transition where zero-point fluctuations destroy the orientational order of the Skyrmions[4,6]. I will discuss the effect of this quantum critical point upon nuclear spin relaxation[7]. [1]S. L. Sondhi et al., Phys. Rev. B47, 16419 (1993). [2]S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995), A. Schmeller et al., Phys. Rev. Lett. 75, 4290 (1995). [3]L. Brey et al, Phys. Rev. Lett. 75, 2562 (1995). [4]R. Côté et al., Phys. Rev. Lett. 78, 4825 (1997). [5]R. Tycko et al., Science 268, 1460 (1995). [6]Yu V. Nazarov and A. V. Khaetskii, Phys. Rev. Lett. 80, 576 (1998). [7]A. G. Green, Phys. Rev. B61, R16 299 (2000).

  1. Perturbative treatment of lattice dynamics in finite electric fields

    NASA Astrophysics Data System (ADS)

    Wang, Xinjie; Souza, Ivo; Vanderbilt, David

    2004-03-01

    The methods of density-functional perturbation theory have been shown to be very powerful for realistic calculations of lattice-vibrational, dielectric, elastic, and other response properties of crystals.(S. Baroni et al.), Rev. Mod. Phys. 73, 515 (2001). Recently, a total-energy method for insulators in nonzero electric fields has been proposed.(I. Souza, J. Íñiguez, and D. Vanderbilt, Phys. Rev. Lett. 89), 117602 (2002). However, the perturbative computation of response properties under a dc bias field has not previously been addressed. Here, perturbation theory is applied to a variational total-energy functional in the presence of a static, homogeneous electric field. An analytic expression is derived for the second derivative with respect to the phonon perturbation using the 2n+1 theorem. The expression is variational with respect to the first-order Bloch-like states, and can be minimized using standard conjugate-gradients methods. We implement the method in the ABINIT code and perform illustrative calculations of the interatomic force constant matrix of III-V semiconductors.

  2. Lattice Dynamical Properties of Ferroelectric Thin Films at the Nanoscale

    SciTech Connect

    Xi, Xiaoxing

    2014-01-13

    In this project, we have successfully demonstrated atomic layer-by-layer growth by laser MBE from separate targets by depositing SrTiO3 films from SrO and TiO2 targets. The RHEED intensity oscillation was used to monitor and control the growth of each SrO and TiO2 layer. We have shown that by using separate oxide targets, laser MBE can achieve the same level of stoichiometry control as the reactive MBE. We have also studied strain relaxation in LaAlO3 films and its effect on the 2D electron gas at LaAlO3/SrTiO3 interface. We found that there are two layers of different in-plane lattice constants in the LaAlO3 films, one next to the SrTiO3 substrate nearly coherently strained, while the top part relaxed as the film thickness increases above 20 unit cells. This strain relaxation significantly affect the transport properties of the LaAlO3/SrTiO3 interface.

  3. Bottomonium above Deconfinement in Lattice Nonrelativistic QCD

    SciTech Connect

    Aarts, G.; Kim, S.; Lombardo, M. P.; Oktay, M. B.; Ryan, S. M.; Sinclair, D. K.; Skullerud, J.-I.

    2011-02-11

    We study the temperature dependence of bottomonium for temperatures in the range 0.4T{sub c}dynamics for the bottom quark and full relativistic lattice QCD simulations for N{sub f}=2 light flavors on a highly anisotropic lattice. We find that the {Upsilon} is insensitive to the temperature in this range, while the {chi}{sub b} propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behavior consistent with nearly free dynamics at T{approx_equal}2T{sub c}.

  4. Direct characterization of photoinduced lattice dynamics in BaFe2As2.

    PubMed

    Gerber, S; Kim, K W; Zhang, Y; Zhu, D; Plonka, N; Yi, M; Dakovski, G L; Leuenberger, D; Kirchmann, P S; Moore, R G; Chollet, M; Glownia, J M; Feng, Y; Lee, J-S; Mehta, A; Kemper, A F; Wolf, T; Chuang, Y-D; Hussain, Z; Kao, C-C; Moritz, B; Shen, Z-X; Devereaux, T P; Lee, W-S

    2015-01-01

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands. PMID:26051704

  5. Direct characterization of photoinduced lattice dynamics in BaFe2As2

    NASA Astrophysics Data System (ADS)

    Gerber, S.; Kim, K. W.; Zhang, Y.; Zhu, D.; Plonka, N.; Yi, M.; Dakovski, G. L.; Leuenberger, D.; Kirchmann, P. S.; Moore, R. G.; Chollet, M.; Glownia, J. M.; Feng, Y.; Lee, J.-S.; Mehta, A.; Kemper, A. F.; Wolf, T.; Chuang, Y.-D.; Hussain, Z.; Kao, C.-C.; Moritz, B.; Shen, Z.-X.; Devereaux, T. P.; Lee, W.-S.

    2015-06-01

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands.

  6. Exciton-polariton gap soliton dynamics in moving acoustic square lattices

    NASA Astrophysics Data System (ADS)

    Buller, J. V. T.; Balderas-Navarro, R. E.; Biermann, K.; Cerda-Méndez, E. A.; Santos, P. V.

    2016-09-01

    The modulation by a surface acoustic wave (SAW) provides a powerful tool for the formation of tunable lattices of exciton-polariton macroscopic quantum states (MQSs) in semiconductor microcavities. The MQSs were resonantly excited in an optical parametric oscillator configuration. We investigate the temporal dynamics of these lattices using time and spatially resolved photoluminescence (PL). Photoluminescence images of the MQSs clearly show the motion of the lattice at the acoustic velocity. Interestingly, the PL intensity emitted by the MQSs as well as their coherence length oscillate with the position of the lattice sites relative to the exciting laser beam. The coherence length and the PL intensity are correlated. The PL oscillation amplitude depends on both the intensity and the size of the exciting laser spot and increases considerably for excitation intensities close to the optical threshold power for the formation of the MQS. The oscillations are explained by a model that takes into account the combined effects of SAW reflections, which dynamically distort the amplitude of the potential, and the spatial phase of the acoustic lattice within the exciting laser spot. This paper could pave the way to tailor polariton-based light-emitting sources with intensity variations controlled by the SAWs.

  7. Lattice Dynamics of EuO: Evidence for Giant Spin-Phonon Coupling

    NASA Astrophysics Data System (ADS)

    Pradip, R.; Piekarz, P.; Bosak, A.; Merkel, D. G.; Waller, O.; Seiler, A.; Chumakov, A. I.; Rüffer, R.; Oleś, A. M.; Parlinski, K.; Krisch, M.; Baumbach, T.; Stankov, S.

    2016-05-01

    Comprehensive studies of lattice dynamics in the ferromagnetic semiconductor EuO have been performed by a combination of inelastic x-ray scattering, nuclear inelastic scattering, and ab initio calculations. A remarkably large broadening of the transverse acoustic phonons was discovered at temperatures above and below the Curie temperature TC=69 K . This result indicates a surprisingly strong momentum-dependent spin-phonon coupling induced by the spin dynamics in EuO.

  8. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics

    NASA Astrophysics Data System (ADS)

    Murua, Joseba; Palacios, Rafael; Graham, J. Michael R.

    2012-11-01

    The unsteady vortex-lattice method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally expensive potential-flow models, such as the doublet-lattice method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the unsteady vortex-lattice method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Different formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the unsteady vortex-lattice method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The unsteady vortex-lattice method is unveiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling.

  9. Non-Markovian continuous-time quantum walks on lattices with dynamical noise

    NASA Astrophysics Data System (ADS)

    Benedetti, Claudia; Buscemi, Fabrizio; Bordone, Paolo; Paris, Matteo G. A.

    2016-04-01

    We address the dynamics of continuous-time quantum walks on one-dimensional disordered lattices inducing dynamical noise in the system. Noise is described as time-dependent fluctuations of the tunneling amplitudes between adjacent sites, and attention is focused on non-Gaussian telegraph noise, going beyond the usual assumption of fast Gaussian noise. We observe the emergence of two different dynamical behaviors for the walker, corresponding to two opposite noise regimes: slow noise (i.e., strong coupling with the environment) confines the walker into few lattice nodes, while fast noise (weak coupling) induces a transition between quantum and classical diffusion over the lattice. A phase transition between the two dynamical regimes may be observed by tuning the ratio between the autocorrelation time of the noise and the coupling between the walker and the external environment generating the noise. We also address the non-Markovianity of the quantum map by assessing its memory effects, as well as evaluating the information backflow to the system. Our results suggest that the non-Markovian character of the evolution is linked to the dynamical behavior in the slow noise regime, and that fast noise induces a Markovian dynamics for the walker.

  10. Dynamical instability and dispersion management of an attractive condensate in an optical lattice

    SciTech Connect

    Barontini, G.; Modugno, M.

    2007-10-15

    We investigate the stability of an attractive Bose-Einstein condensate in a one-dimensional lattice in the presence of radial confinement. We find that the system is dynamically unstable for low quasimomenta and becomes stable near the band edge, in a specular fashion with respect to the repulsive case. For low interactions the instability occurs via long-wavelength excitations that produce an oscillating density pattern in both real and momentum space instead of spoiling the condensate coherence. This behavior is illustrated by simulations for the expansion of the condensate in a moving lattice.

  11. Study of lattice dynamics in yttrium doped NdMnO{sub 3} using Raman spectroscopy

    SciTech Connect

    Yadav, Ruchika Elizabeth, Suja; Nair, Harikrishnan S.

    2014-04-24

    A systematic study of Raman spectra on Yttrium doped NdMnO{sub 3} polycrystalline samples was undertaken to understand the lattice dynamics in this compound. Raman active phonons were analyzed and the observed peak were assigned to elucidate various phonon modes in the range (200 - 800) cm{sup −1}. It was observed that at 325 cm{sup −1} phonon frequency shifts upward as much as upto 4 % with increase in Yttrium content. Lattice distortions manifest themselves by frequency shifts in both bending and tilt modes of MnO{sub 6} octahedra, resulting in increase of Raman band line-widths.

  12. Gibbs' principle for the lattice-kinetic theory of fluid dynamics

    NASA Astrophysics Data System (ADS)

    Karlin, I. V.; Bösch, F.; Chikatamarla, S. S.

    2014-09-01

    Gibbs' seminal prescription for constructing optimal states by maximizing the entropy under pertinent constraints is used to derive a lattice kinetic theory for the computation of high Reynolds number flows. The notion of modifying the viscosity to stabilize subgrid simulations is challenged in this kinetic framework. A lattice Boltzmann model for direct simulation of turbulent flows is presented without any need for tunable parameters and turbulent viscosity. Simulations at very high Reynolds numbers demonstrate a major extension of the operation range for fluid dynamics.

  13. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  14. Gibbs' principle for the lattice-kinetic theory of fluid dynamics.

    PubMed

    Karlin, I V; Bösch, F; Chikatamarla, S S

    2014-09-01

    Gibbs' seminal prescription for constructing optimal states by maximizing the entropy under pertinent constraints is used to derive a lattice kinetic theory for the computation of high Reynolds number flows. The notion of modifying the viscosity to stabilize subgrid simulations is challenged in this kinetic framework. A lattice Boltzmann model for direct simulation of turbulent flows is presented without any need for tunable parameters and turbulent viscosity. Simulations at very high Reynolds numbers demonstrate a major extension of the operation range for fluid dynamics.

  15. Lattice-ramp-induced dynamics in an interacting Bose-Bose mixture

    SciTech Connect

    Wernsdorfer, Julia; Hofstetter, Walter

    2010-04-15

    We investigate a bosonic quantum gas consisting of two interacting species in an optical lattice at zero and finite temperature. The equilibrium properties and dynamics of this system are obtained by means of the Gutzwiller mean-field method. In particular we model recent experiments where the ramp-up of the optical lattice occurs on a time scale comparable to the tunneling time of the bosons. We demonstrate the violation of adiabaticity of this process with respect to the many-body quantum states, and we reproduce and explain the oscillations of the visibility as a function of ramp-up time, as seen in experiments.

  16. Optical resonance problem in metamaterial arrays: a lattice dynamics approach.

    PubMed

    Liu, Wanguo

    2016-11-30

    A systematic dynamic theory is established to deal with the optical collective resonance in metamaterial arrays. As a reference model, we consider an infinite split ring resonator (SRR) array illuminated by a linearly polarized wave and introduce an N-degree-of-freedom forced oscillator equation to simplify the coupled-mode vibration problem. We derive a strict formula of resonance frequency (RF) and its adjustable range from the steady-state response. Unlike a single SRR possesses invariant RF, it successfully explains the mechanism of RF shift effect in the SRR array when the incident angle changes. Instead of full wave analysis, only one or two adjacent resonance modes can give an accurate response line shape. Our approach is applicable for metallic arrays with any N-particle cell at all incident angles and well matched with numerical results. It provides a versatile way to study the vibration dynamics in optical periodic many-body systems. PMID:27633098

  17. Optical resonance problem in metamaterial arrays: a lattice dynamics approach

    NASA Astrophysics Data System (ADS)

    Liu, Wanguo

    2016-11-01

    A systematic dynamic theory is established to deal with the optical collective resonance in metamaterial arrays. As a reference model, we consider an infinite split ring resonator (SRR) array illuminated by a linearly polarized wave and introduce an N-degree-of-freedom forced oscillator equation to simplify the coupled-mode vibration problem. We derive a strict formula of resonance frequency (RF) and its adjustable range from the steady-state response. Unlike a single SRR possesses invariant RF, it successfully explains the mechanism of RF shift effect in the SRR array when the incident angle changes. Instead of full wave analysis, only one or two adjacent resonance modes can give an accurate response line shape. Our approach is applicable for metallic arrays with any N-particle cell at all incident angles and well matched with numerical results. It provides a versatile way to study the vibration dynamics in optical periodic many-body systems.

  18. Dynamic aperture studies for the LHC high luminosity lattice

    SciTech Connect

    Maria, R. de; Giovannozzi, M.; McIntosh, E.; Nosochkov, Y. M.; Cai, Y.; Wang, M. -H.

    2015-07-14

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  19. Spontaneous formation of dynamical patterns with fractal fronts in the cyclic lattice Lotka-Volterra model.

    PubMed

    Provata, A; Tsekouras, G A

    2003-05-01

    Dynamical patterns, in the form of consecutive moving stripes or rings, are shown to develop spontaneously in the cyclic lattice Lotka-Volterra model, when realized on square lattice, at the reaction limited regime. Each stripe consists of different particles (species) and the borderlines between consecutive stripes are fractal. The interface width w between the different species scales as w(L,t) approximately L(alpha)f(t/L(z)), where L is the linear size of the interface, t is the time, and alpha and z are the static and dynamical critical exponents, respectively. The critical exponents were computed as alpha=0.49+/-0.03 and z=1.53+/-0.13 and the propagating fronts show dynamical characteristics similar to those of the Eden growth models.

  20. Free-energy derivatives and structure optimization within quasiharmonic lattice dynamics

    NASA Astrophysics Data System (ADS)

    Taylor, M. B.; Barrera, G. D.; Allan, N. L.; Barron, T. H. K.

    1997-12-01

    A method is presented for the calculation of the gradient of the free energy with respect to all the internal and external degrees of freedom of a periodic crystal. This gradient can be used in conjunction with a static-energy Hessian for efficient geometrical optimization of systems with large unit cells. The free energy is calculated using lattice statics and lattice dynamics in the quasiharmonic approximation, and its derivatives by means of first-order perturbation theory. In the present application of the method, particles are assumed to interact via arbitrary short-ranged spherically-symmetric pair potentials and long-ranged Coulomb forces, and polarizability effects are accounted for by use of the shell model. The method can be used directly as the basis for a computer program which makes efficient use of both storage and CPU time, especially for large unit cells. Detailed expressions for all the lattice sums are presented.

  1. I=2 ππ scattering from fully-dynamical mixed-action lattice QCD

    NASA Astrophysics Data System (ADS)

    Beane, Silas R.; Bedaque, Paulo F.; Orginos, Kostas; Savage, Martin J.

    2006-03-01

    We compute the I=2 ππ scattering length at pion masses of mπ˜294, 348, and 484 MeV in fully-dynamical lattice QCD using Lüscher’s finite-volume method. The calculation is performed with domain-wall valence-quark propagators on asqtad-improved MILC configurations with staggered sea quarks at a single lattice spacing, b˜0.125fm. Chiral perturbation theory is used to perform the extrapolation of the scattering length from lattice quark masses down to the physical value, and we find mπa2=-0.0426±0.0006±0.0003±0.0018, in good agreement with experiment. The I=2 ππ scattering phase shift is calculated to be δ=-43±10±5° at |p|˜544MeV for mπ˜484MeV.

  2. Orbital magnetism of ultracold fermionic gases in a lattice: Dynamical mean-field approach

    NASA Astrophysics Data System (ADS)

    Cichy, Agnieszka; Sotnikov, Andrii

    2016-05-01

    We study finite-temperature properties of ultracold four-component mixtures of alkaline-earth-metal-like atoms in optical lattices that can be effectively described by the two-band spin-1 /2 Hubbard model including Hund's exchange coupling term. Our main goal is to investigate the effect of exchange interactions on finite-temperature magnetic phases for a wide range of lattice fillings. We use the dynamical mean-field theory approach and its real-space generalization to obtain finite-temperature phase diagrams including transitions to magnetically ordered phases. It allows to determine optimal experimental regimes for approaching long-range ferromagnetic ordering in ultracold gases. We also calculate the entropy in the vicinity of magnetically ordered phases, which provides quantitative predictions for ongoing and future experiments aiming at approaching and studying long-range ordered states in optical lattices.

  3. Dynamic aperture calculation for the RHIC 2010 100 GeV Au-Au run lattices

    SciTech Connect

    Luo, Y.; Brown, K.; Fischer, W.; Ptitsyn, V.; Roser, T.; Schoefer, V.; Tepikian, S.; Trbojevic, D.

    2010-08-01

    In this note we summarize the dynamic aperture calculation with the 2010 RHIC 100 GeV Au-Au run lattices. This study was initiated to understand the observed large beam decay in the Yellow ring after rf re-bucketing in the beginning of this run. The off-line linear lattice models and the interaction region non-linearity models are used. The large beam decay in the Yellow ring after re-bucketing was eventually eliminated by lowering the Yellow tunes to 0.21 from 0.235 with {beta}* = 0.7m lattice. In this note we only focus on the numeric simulation instead of the beam experiments.

  4. Ground-state properties of small-size nonlinear dynamical lattices

    NASA Astrophysics Data System (ADS)

    Buonsante, P.; Kevrekidis, P. G.; Penna, V.; Vezzani, A.

    2007-01-01

    We investigate the ground state of a system of interacting particles in small nonlinear lattices with M⩾3 sites, using as a prototypical example the discrete nonlinear Schrödinger equation that has been recently used extensively in the contexts of nonlinear optics of waveguide arrays and Bose-Einstein condensates in optical lattices. We find that, in the presence of attractive interactions, the dynamical scenario relevant to the ground-state and the lowest-energy modes of such few-site nonlinear lattices reveals a variety of nontrivial features that are absent in the large/infinite lattice limits: the single-pulse solution and the uniform solution are found to coexist in a finite range of the lattice intersite coupling where, depending on the latter, one of them represents the ground state; in addition, the single-pulse mode does not even exist beyond a critical parametric threshold. Finally, the onset of the ground-state (modulational) instability appears to be intimately connected with a nonstandard (“double transcritical”) type of bifurcation that, to the best of our knowledge, has not been reported previously in other physical systems.

  5. Analytical study of the structural-dynamics and sound radiation of anisotropic multilayered fibre-reinforced composites

    NASA Astrophysics Data System (ADS)

    Täger, Olaf; Dannemann, Martin; Hufenbach, Werner A.

    2015-04-01

    Lightweight structures for high-technology applications are designed to meet the increasing demands on low structural weight and maximum stiffness. These classical lightweight properties result in lower inertial forces that consequently lead to higher vibration amplitudes thereby increasing sound radiation. Here, special anisotropic multilayered composites offer a high vibro-acoustic lightweight potential. The authors developed analytical vibro-acoustic simulation models, which allow a material-adapted structural-dynamic and sound radiation analysis of anisotropic multilayered composite plates. Compared to numerical methods FEM/BEM these analytical models allow a quick and physically based analysis of the vibro-acoustic properties of anisotropic composite plates. This advantage can be seen by the presented extensive parameter studies, which have been performed in order to analyse the influence of composite-specific design variables on the resulting vibro-acoustic behaviour. Here, it was found that the vibro-acoustic parameters like eigenfrequency and modal damping show direction-dependent properties. Furthermore, the investigations reveal that laminated composites show a so-called damping-dominated sound radiation behaviour. Based on these studies, a vibro-acoustic design procedure is proposed and design guidelines are derived.

  6. Dynamical screening in correlated electron systems—from lattice models to realistic materials

    NASA Astrophysics Data System (ADS)

    Werner, Philipp; Casula, Michele

    2016-09-01

    Recent progress in treating the dynamical nature of the screened Coulomb interaction in strongly correlated lattice models and materials is reviewed with a focus on computational schemes based on the dynamical mean field approximation. We discuss approximate and exact methods for the solution of impurity models with retarded interactions, and explain how these models appear as auxiliary problems in various extensions of the dynamical mean field formalism. The current state of the field is illustrated with results from recent applications of these schemes to U-V Hubbard models and correlated materials.

  7. Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks

    SciTech Connect

    Huey-Wen Lin; Shigemi Ohta

    2006-07-23

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is about 1.7 GeV and the spatial volume is about (1.9 fm){sup 3}. Despite the small volume, the ratio of the isovector vector and axial charges g{sub A}/g{sub V} and that of structure function moments {sub u-d}/{sub {Delta} u - {Delta} d} are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is about 1.6 GeV and the spatial volume is about (3.0 fm){sup 3}. Even with preliminary statistics of 25-30 gauge configurations, the ratios g{sub A}/g{sub V} and {sub u-d}/{sub {Delta} u - {Delta} d} are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d{sub 1}, though yet to be renormalized, appears small in both sets.

  8. NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS.

    SciTech Connect

    LIN H.-W.; OHTA, S.

    2006-10-02

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a{sup -1} {approx} 1.7GeV and the spatial volume is about (1.9fm){sup 3}. Despite the small volume, the ratio of the isovector vector and axial charges g{sub A}/g{sub V} and that of structure function moments {sub u-d}/{sub {Delta}u-{Delta}d} are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a{sup -1} {approx} 1.6GeV and the spatial volume is about (3.0fm){sup 3}. Even with preliminary statistics of 25-30 gauge configurations, the ratios g{sub A}/g{sub V} and {sub u-d}/{sub {Delta}u-{Delta}d} are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d{sub 1}, though yet to be renormalized, appears small in both sets.

  9. Sudden-quench dynamics of Bardeen-Cooper-Schrieffer states in deep optical lattices

    NASA Astrophysics Data System (ADS)

    Nuske, Marlon; Mathey, L.; Tiesinga, Eite

    2016-08-01

    We determine the exact dynamics of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultracold atoms in a deep hexagonal optical lattice. The dynamical evolution is triggered by a quench of the lattice potential such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf|/2 π in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the BCS order parameter Δ . The oscillation frequency of Δ is not reproduced by treating the time evolution in mean-field theory. In our theory, the momentum noise (i.e., density-density) correlation functions oscillate at frequency | Uf|/2 π as well as at its second harmonic. For a very deep lattice, with zero tunneling energy, the oscillations of momentum occupation numbers are undamped. Nonzero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. The damping occurs even for a finite-temperature initial BCS state, but not for a noninteracting Fermi gas. Furthermore, damping is stronger for larger order parameter and may therefore be used as a signature of the BCS state. Finally, our theory shows that the noise correlation functions in a honeycomb lattice will develop strong anticorrelations near the Dirac point.

  10. Pressure effect on elastic, lattice dynamic and superconducting behaviour of yttrium sulfide: A first principle study

    SciTech Connect

    Sahoo, B. D. Joshi, K. D.; Gupta, Satish C.

    2014-03-28

    First principles calculations have been carried out to analyze structural, elastic, and dynamic stability of yttrium sulphide (YS) under hydrostatic compression. The comparison of enthalpies of rocksalt type (B1) and CsCl type cubic (B2) structures determined as a function of compression suggests the B1 → B2 transition at ∼49 GPa (the same transition occurs at ∼48 GPa at 300 K). Various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus have been derived from the theoretically determined equation of state. The single crystal elastic constants derived from the energy strain method agree well with the experimental values. The activation barrier between B1 and B2 phases calculated at transition point is ∼17/mRy/f.u. Our lattice dynamic calculations show that at ambient condition, the B1 phase is lattice dynamically stable, and frequencies of phonon modes in different high symmetry directions of Brillouin zone agrees well with experimental values. The B2 phase also is dynamical stable at ambient condition as well as at ∼49 GPa, supporting our static lattice calculation. The effect of temperature on volume and bulk modulus of the YS in B1 phase has also been examined. The superconducting temperature of ∼2.78 K determine at zero pressure agrees well with experimental data. The effect of pressure is found to suppress the superconducting nature of this material.

  11. Multiscale crystal defect dynamics: a dual-lattice process zone model

    NASA Astrophysics Data System (ADS)

    Li, Shaofan; Ren, Bo; Minaki, Hiroyuki

    2014-05-01

    In this work, we present the theoretical and computational formulations of a multiscale crystal defect dynamics (MCDD) for the simulation of crystal defects at small scales. The main novelties of the proposed MCDD are: (1) We use the dual-lattice tessellation to construct a dual-lattice process zone model that can represent different types of crystal defects in a single crystal; (2) We adopt a fourth-order (four scales) hierarchical strain gradient theory to model constitutive behaviours of various defect process zones, in which the atomistic-informed higher order Cauchy-Born rule is employed, and (3) We employ the Barycentric finite element technique to construct finite element shape functions for polygonal and polyhedral process zone elements. The proposed MCDD method provides an efficient and viable alternative for both molecular dynamics and dislocation dynamics in simulations of defect evolutions such as void growth, dislocation nucleation, and fracture. In particular, MCDD offers a mesoscale description for dynamic lattice microstructure, defect microstructure, and their interactions. The method offers a possible solution for studying nanoscale and mesoscale crystalline plasticity.

  12. Stability and lattice dynamics of SiO2 cristobalite

    NASA Astrophysics Data System (ADS)

    Coh, Sinisa; Vanderbilt, David

    2008-03-01

    Among the phases of SiO2 are alpha and beta cristobalite. Despite early indications that the higher-temperature beta phase might be cubic (Fd3m), it is now accepted that it is in fact tetragonal (I42d), and that the experiments suggesting a cubic structure were averaging spatially or dynamically over tetragonal domains. Recently, Zhang and Scott (J. Phys. Cond.Matt. 19, 275201) suggested that the lower-temperature alpha phase, widely accepted to be tetragonal (P41212), might be an artifact in a similar way. With this motivation we investigate the energy landscape in the vicinity of cristobalite phases using first-principles calculations. We use the ABINIT implementation of density-functional theory in a plane-wave pseudopotential framework. We find that both the P41212 alpha and I42d beta phases are local minima, thus reinforcing that the identification of the alpha phase as belonging to the P41212 structure. We compute the frequencies of phonon modes at high-symmetry k-points in both structures and compare with experiment. We also identify a minimum-energy path connecting the alpha and beta phases through an intermediate orthorhombic phase (P212121), and find a surprisingly low barrier of ˜5,eV per formula unit. We note that a simple rigid-unit mode picture gives a good rough description of these energetics, and we map out the minimum-energy path in the space of rigid unit rotations in a physically insightful way.

  13. Multistable particle-field dynamics in cavity-generated optical lattices

    NASA Astrophysics Data System (ADS)

    Winterauer, Dominik J.; Niedenzu, Wolfgang; Ritsch, Helmut

    2015-05-01

    Polarizable particles trapped in a resonator-sustained optical-lattice potential generate strong position-dependent backaction on the intracavity field. In the quantum regime, particles in different energy bands are connected to different intracavity light intensities and optical-lattice depths. This generates a highly nonlinear coupled particle-field dynamics. For a given pump strength and detuning, a factorizing mean-field approach predicts several self-consistent stationary solutions of strongly distinct photon numbers and motional states. Quantum Monte Carlo wave-function simulations of the master equation confirm these predictions and reveal complex multimodal photon-number and particle-momentum distributions. Using larger nanoparticles in such a setup thus constitutes a well-controllable playground to study nonlinear quantum dynamics and the buildup of macroscopic quantum superpositions at the quantum-classical boundary.

  14. Lattice dynamics and thermoelectric properties of nanocrystalline silicon-germanium alloys

    DOE PAGESBeta

    Claudio, Tania; Stein, Niklas; Peterman, Nils; Stroppa, Daniel; Koza, Michael M.; Wiggers, Hartmut; Klobes, B.; Schierning, Gabi; Hermann, Raphael P.

    2015-10-26

    The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon- germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low- temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000C. A peak figure of merit zT = 0:88 at 900C is observed and comparatively insensitive to the aforementioned param-more » eter variations.« less

  15. Lattice Boltzmann model for collisionless electrostatic drift wave turbulence obeying Charney-Hasegawa-Mima dynamics

    NASA Astrophysics Data System (ADS)

    Held, M.; Kendl, A.

    2015-10-01

    A lattice Boltzmann method (LBM) approach to the Charney-Hasegawa-Mima (CHM) model for adiabatic drift wave turbulence in magnetised plasmas is implemented. The CHM-LBM model contains a barotropic equation of state for the potential, a force term including a cross-product analogous to the Coriolis force in quasigeostrophic models, and a density gradient source term. Expansion of the resulting lattice Boltzmann model equations leads to cold-ion fluid continuity and momentum equations, which resemble CHM dynamics under drift ordering. The resulting numerical solutions of standard test cases (monopole propagation, stable drift modes and decaying turbulence) are compared to results obtained by a conventional finite difference scheme that directly discretizes the CHM equation. The LB scheme resembles characteristic CHM dynamics apart from an additional shear in the density gradient direction. The occurring shear reduces with the drift ratio and is ascribed to the compressible limit of the underlying LBM.

  16. Dynamics of non-planar vortices in the classical 2D anisotropic heisenberg model at finite temperatures

    NASA Astrophysics Data System (ADS)

    Kamppeter, T.; Mertens, F. G.; Sánchez, Angel; Gronbech-Jensen, N.; Bishop, A. R.; Dominguez-Adame, F.

    The 2-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry bears non-planar vortices which exhibit a localized structure of the z-components of the spins around the vortex center. In order to study the dynamics of these vortices under thermal fluctuations we use the Landau-Lifshitz equation and add white noise and Gilbert damping. Using a collective variable theory we derive an equation of motion with stochastic forces which are shown to represent white noise with an effective diffusion constant. We compare the results with Langevin dynamics simulations for the Landau-Lifshitz equation and find three temperature regimes: For low temperatures the dynamics is described by a 3rd-order equation of motion, for intermediate temperatures by a 1st-order equation. For higher temperatures, but still below the Kosterlitz-Thouless transition temperature, the spontaneous appearance of vortex-antivortex pairs does not allow a single-particle description.

  17. Lattice dynamics of proton conductor SrZrO{sub 3} in orthorhombic phase

    SciTech Connect

    Sharma, Anupam Deep; Sinha, M. M.

    2014-04-24

    In the this paper, we are presenting the results of our theoretical investigation on the zone centre phonon frequencies and phonon dispersion relation of SrZrO{sub 3} in its orthorhombic phase by using lattice dynamical simulation method based on short range force constant model to understand the role of phonon in this system. The calculations involves interatomic force constants upto third neighbour. The calculated zone centre phonon frequencies in Raman mode, agrees well with available existing results.

  18. Lattice dynamics and spin-phonon interactions in multiferroic RMn2O5: Shell model calculations

    NASA Astrophysics Data System (ADS)

    Litvinchuk, A. P.

    2009-08-01

    The results of the shell model lattice dynamics calculations of multiferroic RMn2O5 materials (space group Pbam) are reported. Theoretical even-parity eigenmode frequencies are compared with those obtained experimentally in polarized Raman scattering experiments for R=Ho,Dy. Analysis of displacement patterns allows to identify vibrational modes which facilitate spin-phonon coupling by modulating the Mn-Mn exchange interaction and provides explanation of the observed anomalous temperature behavior of phonons.

  19. Wave-packet dynamics on Chern-band lattices in a trap

    NASA Astrophysics Data System (ADS)

    Roy, Sthitadhi; Grushin, Adolfo G.; Moessner, Roderich; Haque, Masudul

    2015-12-01

    The experimental realization of lattices with Chern bands in ultracold-atom and photonic systems has motivated the study of time-dependent phenomena, such as spatial propagation, in lattices with nontrivial topology. We study the dynamics of Gaussian wave packets on the Haldane honeycomb Chern-band lattice model, in the presence of a harmonic trap. We focus on the transverse response to a force, which is due partly to the Berry curvature and partly to the transverse component of the energy band curvature. We evaluate the accuracy of a semiclassical description, which treats the wave packet as a point particle in both real and momentum space, in reproducing the motion of a realistic wave packet with finite extent. We find that, in order to accurately capture the wave-packet dynamics, the extent of the wave packet in momentum space needs to be taken into account: The dynamics is sensitive to the interplay of band dispersion and Berry curvature over the finite region of momentum (reciprocal) space where the wave packet has support. Moreover, if the wave packet is prepared with a finite initial momentum, the semiclassical analysis reproduces its motion as long as it has a large overlap with the eigenstates of a single band. The semiclassical description generally improves with increasing real-space size of the wave packet, as long as the external conditions (e.g., external force) remain uniform throughout the spatial extent of the wave packet.

  20. Lattice dynamics and electronic structure of mixed halofluoride scintillators under high pressure

    SciTech Connect

    Kanchana, V.; Yedukondalu, N.; Vaitheeswaran, G.

    2015-06-24

    We report the structural, lattice dynamics and electronic structure of mixed halo-fluoride scintillators MClF (M = Ca, Sr) based on density functional theory within generalized gradient approximation. The pressure dependent structural parameters and zone centered phonon frequencies are in reasonable agreement with the available experimental data. Both the structures are dynamically stable up to 50 GPa. MClF compounds are found to have a direct band gap along Γ−Γ direction at ambient as well as under pressure. It is found that these materials can serve as good storage phosphors in the low pressure region from the calculated electronic structure and optical spectra.

  1. Lattice Dynamics of EuO: Evidence for Giant Spin-Phonon Coupling.

    PubMed

    Pradip, R; Piekarz, P; Bosak, A; Merkel, D G; Waller, O; Seiler, A; Chumakov, A I; Rüffer, R; Oleś, A M; Parlinski, K; Krisch, M; Baumbach, T; Stankov, S

    2016-05-01

    Comprehensive studies of lattice dynamics in the ferromagnetic semiconductor EuO have been performed by a combination of inelastic x-ray scattering, nuclear inelastic scattering, and ab initio calculations. A remarkably large broadening of the transverse acoustic phonons was discovered at temperatures above and below the Curie temperature T_{C}=69  K. This result indicates a surprisingly strong momentum-dependent spin-phonon coupling induced by the spin dynamics in EuO. PMID:27203332

  2. Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction

    NASA Astrophysics Data System (ADS)

    Guo, J. L.; Zhang, X. Z.

    2016-09-01

    Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented.

  3. Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction.

    PubMed

    Guo, J L; Zhang, X Z

    2016-01-01

    Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented. PMID:27596050

  4. Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction

    PubMed Central

    Guo, J. L.; Zhang, X. Z.

    2016-01-01

    Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented. PMID:27596050

  5. The filler-rubber interface in styrene butadiene nanocomposites with anisotropic silica particles: morphology and dynamic properties.

    PubMed

    Tadiello, L; D'Arienzo, M; Di Credico, B; Hanel, T; Matejka, L; Mauri, M; Morazzoni, F; Simonutti, R; Spirkova, M; Scotti, R

    2015-05-28

    Silica-styrene butadiene rubber (SBR) nanocomposites were prepared by using shape-controlled spherical and rod-like silica nanoparticles (NPs) with different aspect ratios (AR = 1-5), obtained by a sol-gel route assisted by a structure directing agent. The nanocomposites were used as models to study the influence of the particle shape on the formation of nanoscale immobilized rubber at the silica-rubber interface and its effect on the dynamic-mechanical behavior. TEM and AFM tapping mode analyses of nanocomposites demonstrated that the silica particles are surrounded by a rubber layer immobilized at the particle surface. The spherical filler showed small contact zones between neighboring particles in contact with thin rubber layers, while anisotropic particles (AR > 2) formed domains of rods preferentially aligned along the main axis. A detailed analysis of the polymer chain mobility by different time domain nuclear magnetic resonance (TD-NMR) techniques evidenced a population of rigid rubber chains surrounding particles, whose amount increases with the particle anisotropy, even in the absence of significant differences in terms of chemical crosslinking. Dynamic measurements demonstrate that rod-like particles induce stronger reinforcement of rubber, increasing with the AR. This was related to the self-alignment of the anisotropic silica particles in domains able to immobilize rubber. PMID:25899456

  6. SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.

    2016-10-01

    Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades. Catalogue identifier: AFAN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Apache License, Version 2.0 No. of lines in distributed program, including test data, etc.: 1611165 No. of bytes in distributed program, including test data, etc.: 367246683

  7. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies

    NASA Astrophysics Data System (ADS)

    Costandy, Joseph; Michalis, Vasileios K.; Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K.; Economou, Ioannis G.

    2016-03-01

    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies.

  8. Lattice-level measurement of material strength with LCLS during ultrafast dynamic compression

    NASA Astrophysics Data System (ADS)

    Milathianaki, Despina; Boutet, Sebastien; Ratner, Daniel; White, William; Williams, Garth; Gleason, Arianna; Swift, Damian; Higginbotham, Andrew; Wark, Justin

    2013-10-01

    An in-depth understanding of the stress-strain behavior of materials during ultrafast dynamic compression requires experiments that offer in-situ observation of the lattice at the pertinent temporal and spatial scales. To date, the lattice response under extreme strain-rate conditions (>108 s-1) has been inferred predominantly from continuum-level measurements and multi-million atom molecular dynamics simulations. Several time-resolved x-ray diffraction experiments have captured important information on plasticity kinetics, while limited to nanosecond timescales due to the lack of high brilliance ultrafast x-ray sources. Here we present experiments at LCLS combining ultrafast laser-shocks and serial femtosecond x-ray diffraction. The high spectral brightness (~1012 photons per pulse, ΔE/E = 0.2%) and subpicosecond temporal resolution (<100 fs pulsewidth) of the LCLS x-ray free electron laser allow investigations that link simulations and experiments at the fundamental temporal and spatial scales for the first time. We present movies of the lattice undergoing rapid shock-compression, composed by a series of single femtosecond x-ray snapshots, demonstrating the transient behavior while successfully decoupling the elastic and plastic response in polycrystalline Cu.

  9. Di-hydrogen contact induced lattice instabilities and structural dynamics in complex hydride perovskites.

    PubMed

    Schouwink, P; Hagemann, H; Embs, J P; D'Anna, V; Černý, R

    2015-07-01

    The structural phase transitions occurring in a series of perovskite-type complex hydrides based on the tetrahydroborate anion BH4(-) are investigated by means of in situ synchrotron x-ray powder diffraction, vibrational spectroscopy, thermal methods and ab initio calculations in the solid state. Structural dynamics of the BH4 anion are followed with quasi-elastic neutron scattering. We show that unexpected temperature-induced lattice instabilities in perovskite-type ACa(BH4)3 (A = K, Rb, Cs) have their origin in close hydridic di-hydrogen contacts. The rich lattice dynamics lead to coupling between internal B-H vibrations and phonons, resulting in distortions in the high-temperature polymorph that are identical in symmetry to well-known instabilities in oxide perovskites, generally condensing at lower temperatures. It is found that anion-substitution BH4(-) <-> (X = Halide) can relax distortions in ACa(BH4)3 by eliminating coulomb repulsive H(-)···H(-) effects. The interesting nature of phase transition in ACa(BH4)3 enters an unexplored field of weak interactions in ceramic-like host lattices and is the principal motivation for this study. Close di-hydrogen contacts suggest new concepts to tailor crystal symmetries in complex hydride perovskites in the future. PMID:26076047

  10. Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides

    NASA Astrophysics Data System (ADS)

    Mei, Antonio Rodolph Bighetti

    Transition metal (TM) nitrides, due to their unique combination of remarkable physical properties and simple NaCl structure, are presently utilized in a broad range of applications and as model systems in the investigation of complex phenomena. Group-IVB nitrides TiN, ZrN, and HfN have transport properties which include superconductivity and high electrical conductivity; consequentially, they have become technologically important as electrodes and contacts in the semiconducting and superconducting industries. The Group-VB nitride VN, which exhibits enhanced ductility, is a fundamental component in superhard and tough nanostructured hard coatings. In this thesis, I investigate the lattice dynamics responsible for controlling superconductivity and electrical conductivities in Group-IVB nitrides and elasticity and structural stability of the NaCl-structure Group-VB nitride VN. Our group has already synthesized high-quality epitaxial TiN, HfN, and CeN layers on MgO(001) substrates. By irradiating the growth surface with high ion fluxes at energies below the bulk lattice-atom displacement threshold, dense epitaxial single crystal TM nitride films with extremely smooth surfaces have been grown using ultra-high vacuum magnetically-unbalanced magnetron sputter deposition. Using this approach, I completed the Group-IVB nitride series by growing epitaxial ZrN/MgO(001) films and then grew Group-VB nitride VN films epitaxially on MgO(001), MgO(011), and MgO(111). The combination of high-resolution x-ray diffraction (XRD) reciprocal lattice maps (RLMs), high-resolution cross-sectional transmission electron microscopy (HR-XTEM), and selected-area electron diffraction (SAED) show that single-crystal stoichiometric ZrN films grown at 450 °C are epitaxially oriented cube-on-cube with respect to their MgO(001) substrates, (001) ZrN||(001)MgO and [100]ZrN||[100]MgO. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm. X-ray reflectivity results reveal that

  11. On structural and lattice dynamic stability of LaF3 under high pressure: A first principle study

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.

    2015-06-01

    Structural and lattice dynamical stability of the LaF3 has been analyzed as a function of hydrostatic compression through first principle electronic band structure calculations. The comparison of enthalpies of various plausible structures calculated at various pressures suggests a phase transition from ambient condition tysonite structure (space group P-3c1) to a primitive orthorhombic structure (space group Pmmn) at a pressure of ˜19.5 GPa, in line with the experimental value of 16 GPa. Further, it is predicted that this phase will remain stable up to 100 GPa (the maximum pressure up to which calculations have been performed in the present work). The theoretically determined equation of state displays a good agreement with experimental data. Various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus have been derived from the theoretically determined equation of state and compared with the available experimental data. Our lattice dynamic calculations correctly demonstrate that at zero pressure the tysonite structure is lattice dynamically stable whereas the Pmmn structure is unstable lattice dynamically. Further, at transition pressure the theoretically calculated phonon spectra clearly show that the Pmmn phase emerges as lattice dynamically stable phase whereas the tysonite structure becomes unstable dynamically, supporting our static lattice calculations.

  12. On structural and lattice dynamic stability of LaF{sub 3} under high pressure: A first principle study

    SciTech Connect

    Sahoo, B. D. Joshi, K. D.; Gupta, Satish C.

    2015-06-24

    Structural and lattice dynamical stability of the LaF3 has been analyzed as a function of hydrostatic compression through first principle electronic band structure calculations. The comparison of enthalpies of various plausible structures calculated at various pressures suggests a phase transition from ambient condition tysonite structure (space group P-3c1) to a primitive orthorhombic structure (space group Pmmn) at a pressure of ∼19.5 GPa, in line with the experimental value of 16 GPa. Further, it is predicted that this phase will remain stable up to 100 GPa (the maximum pressure up to which calculations have been performed in the present work). The theoretically determined equation of state displays a good agreement with experimental data. Various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus have been derived from the theoretically determined equation of state and compared with the available experimental data. Our lattice dynamic calculations correctly demonstrate that at zero pressure the tysonite structure is lattice dynamically stable whereas the Pmmn structure is unstable lattice dynamically. Further, at transition pressure the theoretically calculated phonon spectra clearly show that the Pmmn phase emerges as lattice dynamically stable phase whereas the tysonite structure becomes unstable dynamically, supporting our static lattice calculations.

  13. Light-driven dynamic Archimedes spirals and periodic oscillatory patterns of topological solitons in anisotropic soft matter.

    PubMed

    Martinez, Angel; Smalyukh, Ivan I

    2015-02-23

    Oscillatory and excitable systems commonly exhibit formation of dynamic non-equilibrium patterns. For example, rotating spiral patterns are observed in biological, chemical, and physical systems ranging from organization of slime mold cells to Belousov-Zhabotinsky reactions, and to crystal growth from nuclei with screw dislocations. Here we describe spontaneous formation of spiral waves and a large variety of other dynamic patterns in anisotropic soft matter driven by low-intensity light. The unstructured ambient or microscope light illumination of thin liquid crystal films in contact with a self-assembled azobenzene monolayer causes spontaneous formation, rich spatial organization, and dynamics of twisted domains and topological solitons accompanied by the dynamic patterning of azobenzene group orientations within the monolayer. Linearly polarized incident light interacts with the twisted liquid crystalline domains, mimicking their dynamics and yielding patterns in the polarization state of transmitted light, which can be transformed to similar dynamic patterns in its intensity and interference color. This shows that the delicate light-soft-matter interaction can yield complex self-patterning of both. We uncover underpinning physical mechanisms and discuss potential uses. PMID:25836496

  14. Light-driven dynamic Archimedes spirals and periodic oscillatory patterns of topological solitons in anisotropic soft matter.

    PubMed

    Martinez, Angel; Smalyukh, Ivan I

    2015-02-23

    Oscillatory and excitable systems commonly exhibit formation of dynamic non-equilibrium patterns. For example, rotating spiral patterns are observed in biological, chemical, and physical systems ranging from organization of slime mold cells to Belousov-Zhabotinsky reactions, and to crystal growth from nuclei with screw dislocations. Here we describe spontaneous formation of spiral waves and a large variety of other dynamic patterns in anisotropic soft matter driven by low-intensity light. The unstructured ambient or microscope light illumination of thin liquid crystal films in contact with a self-assembled azobenzene monolayer causes spontaneous formation, rich spatial organization, and dynamics of twisted domains and topological solitons accompanied by the dynamic patterning of azobenzene group orientations within the monolayer. Linearly polarized incident light interacts with the twisted liquid crystalline domains, mimicking their dynamics and yielding patterns in the polarization state of transmitted light, which can be transformed to similar dynamic patterns in its intensity and interference color. This shows that the delicate light-soft-matter interaction can yield complex self-patterning of both. We uncover underpinning physical mechanisms and discuss potential uses.

  15. Off-momentum dynamic aperture for lattices in the RHIC heavy ion runs

    SciTech Connect

    Luo Y.; Bai, M.; Blaskiewicz, M.; Gu, X.; Fischer, W.; Marusic, A.; Roser, T.; Tepikian, S.; Zhang, S.

    2012-05-20

    To reduce transverse emittance growth rates from intrabeam scattering in the RHIC heavy ion runs, a lattice with an increased phase advance in the arc FODO cells was adopted in 2008-2011. During these runs, a large beam loss due to limited off-momentum dynamic aperture was observed during longitudinal RF re-bucketing and with transverse cooling. Based on the beam loss observations in the previous ion runs and the calculated off-momentum apertures, we decided to adopt the lattice used before 2008 for the 2012 U-U and Cu-Au runs. The observed beam decay and the measured momentum aperture in the 2012 U-U run are presented.

  16. Quantum Critical Dynamics of Bose-Einstein Condensates in a Shaken Optical Lattice

    NASA Astrophysics Data System (ADS)

    Clark, Logan W.; Feng, Lei; Ha, Li-Chung; Chin, Cheng

    2016-05-01

    From condensed matter to cosmology, systems which cross a continuous, symmetry-breaking phase transition are expected to generate topological defects whose density scales universally with the rate at which the phase transition is crossed. We experimentally test the application of this universal Kibble-Zurek scaling prediction to quantum phase transitions by studying ultracold bosons in a shaken optical lattice. When the lattice shaking amplitude crosses a critical threshold, an ordinary Bose condensate transitions to an effectively ferromagnetic pseudo-spinor condensate with discrete, magnetized regions separated by domain walls. We appraise the dynamic scaling laws for both the time at which the domain structure forms and the typical size of the domains by varying the quench rate across the transition. We explore the regime in which the universal prediction applies, as well as potential deviations at extreme quench rates.

  17. Study on the Lattice Dynamics of the Argyrodite Ag8GeTe6

    NASA Astrophysics Data System (ADS)

    Hitchcock, Dale; Thompson, Emily; He, Jian; Bredesen, Isaac; Keppends, Veelre; Mandrus, David

    2014-03-01

    Ag8GeTe6 was initially studied as a super ionic-electronic mixed conductor in the 1970s, and more recently has attracted new interest for its thermoelectric performance. A key to the desirable thermoelectric performance of Ag8GeTe6 is its exceptionally low lattice thermal conductivity (~ 0.25W/m*K at 300K), which is intimately related to its structure, consecutive structural instabilities, and unusual lattice dynamics (e.g., anharmonicity). In this work, we have studied Ag8GeTe6 by means of thermal conductivity, electrical conductivity, Seebeck coefficient, Hall coefficient, magnetic susceptibility, resonant ultrasound spectroscopy (RUS), photoacoustic spectroscopy, and synchrotron x-ray diffraction at low temperatures in order to further understand the coexistence of mixed conduction and high thermoelectric performance at elevated temperatures. This work is supported by NSF DMR 1307740.

  18. Lattice Dynamics of Colloidal Crystals During Photopolymerization of Acrylic Monomer Matrix

    NASA Technical Reports Server (NTRS)

    Sunkara, H. B,; Penn, B. G.; Frazier, D. O.; Ramachandran, N.

    1998-01-01

    The photoinitiated bulk polymerization process, which has been used recently in the manufacture of solid optical diffraction filters, is examined to understand the dynamics of both the crystalline colloidal arrays (CCA) and the host monomer species. Our analysis indicates that volume shrinkage of the monomer, changes in the dielectric properties of the monomer, and inhomogeneities of polymerization reaction rate across the dispersion during the polymerization process, are the major contributors for observed lattice compression and lattice disorder of the CCA of silica spheres in polymerized acrylic/methacrylic ester films. The effect of orientation of photocell with respect to the radiation source on Bragg diffraction of CCA indicated the presence of convective stirring in the thin fluid system during the photopolymerization that deleteriously affects the periodic array structures. To devise reproducible and more efficient optical filters, experimental methods to minimize or eliminate convective instabilities in monomeric dispersions during polymerization are suggested.

  19. Universal threshold for the dynamical behavior of lattice systems with long-range interactions.

    PubMed

    Bachelard, Romain; Kastner, Michael

    2013-04-26

    Dynamical properties of lattice systems with long-range pair interactions, decaying like 1/r(α) with the distance r, are investigated, in particular the time scales governing the relaxation to equilibrium. Upon varying the interaction range α, we find evidence for the existence of a threshold at α=d/2, dependent on the spatial dimension d, at which the relaxation behavior changes qualitatively and the corresponding scaling exponents switch to a different regime. Based on analytical as well as numerical observations in systems of vastly differing nature, ranging from quantum to classical, from ferromagnetic to antiferromagnetic, and including a variety of lattice structures, we conjecture this threshold and some of its characteristic properties to be universal.

  20. Mean-field dynamics of two-mode Bose-Einstein condensates in highly anisotropic potentials: interference, dimensionality and entanglement

    NASA Astrophysics Data System (ADS)

    Tacla, Alexandre B.; Caves, Carlton M.

    2013-02-01

    We study the mean-field dynamics and the reduced-dimension character of two-mode Bose-Einstein condensates (BECs) in highly anisotropic traps. By means of perturbative techniques, we show that the tightly confined (transverse) degrees of freedom can be decoupled from the dynamical equations at the expense of introducing additional effective three-body, attractive, intra- and inter-mode interactions into the dynamics of the loosely confined (longitudinal) degrees of freedom. These effective interactions are mediated by changes in the transverse wave function. The perturbation theory is valid as long as the nonlinear scattering energy is small compared to the transverse energy scales. This approach leads to reduced-dimension mean-field equations that optimally describe the evolution of a two-mode condensate in general quasi-one-dimensional (1D) and quasi-two-dimensional geometries. We use this model to investigate the relative phase and density dynamics of a two-mode, cigar-shaped 87Rb BEC. We study the relative-phase dynamics in the context of a nonlinear Ramsey interferometry scheme, which has recently been proposed as a novel platform for high-precision interferometry. Numerical integration of the coupled, time-dependent, three-dimensional, two-mode Gross-Pitaevskii equations for various atom numbers shows that this model gives a considerably more refined analytical account of the mean-field evolution than an idealized quasi-1D description.

  1. Intentional anisotropic strain relaxation in (112{sup ¯}2) oriented Al{sub 1−x}In{sub x}N one-dimensionally lattice matched to GaN

    SciTech Connect

    Buß, E. R. Rossow, U.; Bremers, H.; Hangleiter, A.; Meisch, T.; Caliebe, M.; Scholz, F.

    2014-09-22

    We report on (112{sup ¯}2) oriented Al{sub 1−x}In{sub x}N grown by low pressure metal organic vapor phase epitaxy on (112{sup ¯}2) GaN templates on patterned r-plane sapphire. The indium incorporation efficiency as well as the growth rate of (112{sup ¯}2) oriented layers are similar to c-plane oriented Al{sub 1−x}In{sub x}N layers. Deposition of thick Al{sub 1−x}In{sub x}N layers does not lead to additional roughening like in case of c-plane oriented Al{sub 1−x}In{sub x}N. Independent of the thickness, the degree of relaxation of layers lattice matched in m-direction is in the range of 33%–45% in [112{sup ¯}3{sup ¯}]-direction. Associated with the relaxation in [112{sup ¯}3{sup ¯}]-direction, there is a tilt of the Al{sub 1−x}In{sub x}N layers around the [11{sup ¯}00] axis due to slip of threading dislocations on the basal (0001)-plane. Relaxation in m-direction is not observable for layers lattice matched in [112{sup ¯}3{sup ¯}] direction. The possibility to adjust the lattice parameter of AlInN in [112{sup ¯}3{sup ¯}] direction without changing the lattice parameter in m-direction by anisotropic strain relaxation opens up opportunities for subsequent growth of optically active structures. One possibility is to form relaxed buffer layers for GaInN quantum well structures.

  2. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    SciTech Connect

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan; Golzhauser, Armin; Zuo, Jian-Min; Zavadil, Kevin R.; Gewirth, Andrew A.; Nuzzo, Ralph G.

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.

  3. Influence of lattice dynamics on charge transport in the dianthra[2,3-b:2',3'-f]-thieno[3,2-b]thiophene organic crystals from a theoretical study.

    PubMed

    Nan, Guangjun; Li, Zesheng

    2012-07-14

    The influence of lattice dynamics on carrier mobility has received much attention in organic crystalline semiconductors, because the molecular components are held together by weak interactions and the transfer integrals between neighboring molecular orbitals are extremely sensitive to small nuclear displacements. Recently, it has been shown that the dynamic disorder has little effect on hole mobility in the ab plane of pentacene, but a reasonable explanation is absent for such a puzzle. To better understand the effect of lattice vibrations on carrier transport, a further study is required for other organic materials. In this work, a mixed molecular dynamic and quantum-chemical methodology is used to assess the effect of nuclear dynamics on hole mobility in the dianthra[2,3-b:2',3'-f]-thieno[3,2-b]thiophene (DATT) crystals which exhibit high air stability with the hole mobility as large as that in rubrene-based devices. It is found that the lattice vibrations lead to an increasing encumbrance for hole transport in the ab plane of the DATT crystals as the temperature increases. By comparing the crystal structures of DATT and pentacene, the reduced hole mobility in DATT is attributed to the unsymmetric arrays of nearest-neighboring molecular dimers in the ab plane, because the electronic coupling exhibits unbalanced thermal fluctuations for the nearest-neighboring dimers which then induces a stronger oscillation for carriers along the directions with asymmetric packing. To further relate the dynamic disorder with hole transport, the variations of anisotropic mobilities are also analyzed. As a result, the negligible effect of lattice dynamics on the hole mobility in pentacene is explained by the centrosymmetric molecular packing of the nearest-neighboring molecular pairs in the ab plane. PMID:22648093

  4. Evaluating the dynamic aperture evaluation for the new RHIC 250 GeV polarized proton lattice

    SciTech Connect

    Gu, X.; Luo, Y.; Fischer, W.; Huang, H.; Tepikian, S.

    2011-03-28

    To increase luminosity in the Relativistic Heavy Ion Collider's (RHIC's) polarized proton 250 GeV operations, we are considering reducing {beta}* to 0.65 m at the interaction points (IPs), and increasing bunch intensity. The new working point near the 2/3 integer will used on the ramp to preserve polarization. In addition, we plan to adjust the betatron-phase advances between IP6 and IP8 to (k+1/2)*{pi} so to lower the dynamic beta-beat from the beam-beam interaction. The effects of all these changes will impact the dynamic aperture, and hence, it must be evaluated carefully. In this article, we present the results of tracking the dynamic aperture with the proposed lattices.

  5. Simulation of the many-body dynamical quantum Hall effect in an optical lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Wei; Yang, Xu-Chen

    2016-05-01

    We propose an experimental scheme to simulate the many-body dynamical quantum Hall effect with ultra-cold bosonic atoms in a one-dimensional optical lattice. We first show that the required model Hamiltonian of a spin-1/2 Heisenberg chain with an effective magnetic field and tunable parameters can be realized in this system. For dynamical response to ramping the external fields, the quantized plateaus emerge in the Berry curvature of the interacting atomic spin chain as a function of the effective spin-exchange interaction. The quantization of this response in the parameter space with the interaction-induced topological transition characterizes the many-body dynamical quantum Hall effect. Furthermore, we demonstrate that this phenomenon can be observed in practical cold atom experiments with numerical simulations.

  6. Resonant collective dynamics of the weakly pinned soliton lattice in a monoaxial chiral helimagnet

    NASA Astrophysics Data System (ADS)

    Kishine, Jun-ichiro; Proskurin, I.; Bostrem, I. G.; Ovchinnikov, A. S.; Sinitsyn, Vl. E.

    2016-02-01

    We study the spin dynamics of a confined chiral soliton lattice whose ends are weakly held. We demonstrate that in this case the system possesses its own resonant frequency. To study features of the resonant dynamics, we analyze the collective motion of the system driven by an oscillating magnetic field directed along the chiral axis. By using the method of collective coordinates we find analytically the resonant frequency and verify the result by numerical simulation of the spin dynamics with the aid of Landau-Lifshitz-Gilbert equations. The numerical simulation shows an appearance of the asymmetric profile of the frequency response function with increasing ac field, which is typical for a nonlinear resonance. To give an explanation of this behavior, we invoke the multiple-time-scale method and predict an emergence of hysteresis phenomena. We also demonstrate that the spin-motive force is strongly amplified by the resonant oscillations.

  7. The Design, Synthesis, and Study of Solid-State Molecular Rotors: Structure/Function Relationships for Condensed-Phase Anisotropic Dynamics

    NASA Astrophysics Data System (ADS)

    Vogelsberg, Cortnie Sue

    Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently

  8. Phase transitions and damage spreading in a nonequilibrium lattice gas model with mixed dynamic rules

    NASA Astrophysics Data System (ADS)

    Rubio Puzzo, M. Leticia; Saracco, Gustavo P.; Bab, Marisa A.

    2016-02-01

    Phase transitions and damage spreading for a lattice gas model with mixed driven lattice gas (DLG)-Glauber dynamics are studied by means of Monte Carlo simulations. In order to control the number of sites updated according to the nonconservative Glauber dynamics, a parameter pɛ [ 0 , 1 ] is defined. In this way, for p = 0 the system corresponds to the DLG model with biased Kawasaki conservative dynamics, while for p = 1 it corresponds to the Ising model with Glauber dynamics. The results obtained show that the introduction of nonconservative dynamics dramatically affects the behavior of the DLG model, leading to the existence of Ising-like phase transitions from fully occupied to disordered states. The short-time dynamics results suggest that this transition is second order for values of p = 0.1 and p > 0.6 and first order for 0.1 < p ≤ 0.6. On the other hand, damage always spreads within the investigated temperature range and reaches a saturation value Dsat that depends on the system size, the temperature, and p. The value of Dsat in the thermodynamic limit is estimated by performing a finite-size analysis. For p < 0.6 the results show a change in the behavior of Dsat with temperature, similar to those reported for the pure (p = 0) DLG model. However, for p ≥ 0.6 the data remind us of the Ising (p = 1) curves. In each case, a damage temperature TD(p) can be defined as the value where either Dsat reaches a maximum or it becomes nonzero. This temperature is, within error bars, similar to the reported values of the temperatures that characterize the mentioned phase transitions.

  9. Bloch oscillations and quench dynamics of interacting bosons in an optical lattice

    NASA Astrophysics Data System (ADS)

    Mahmud, K. W.; Jiang, L.; Tiesinga, E.; Johnson, P. R.

    2014-02-01

    We study the dynamics of interacting superfluid bosons in a one-dimensional vertical optical lattice after a sudden increase of the lattice potential depth. We show that this system can be exploited to investigate the effects of strong interactions on Bloch oscillations. We perform theoretical modeling of this system, identify experimental challenges, and explore a regime of Bloch oscillations characterized by interaction-induced matter-wave collapse and revivals which modify the Bloch oscillations dynamics. In addition, we study three dephasing mechanisms: finite value of tunneling, effective three-body interactions, and a background harmonic potential. We also find that the center-of-mass motion in the presence of finite tunneling goes through collapse and revivals, giving an example of quantum transport where interaction-induced revivals are important. We quantify the effects of residual harmonic trapping on the momentum distribution dynamics and show the occurrence of an interaction-modified temporal Talbot effect. Finally, we analyze the prospects and challenges of exploiting Bloch oscillations of cold atoms in the strongly interacting regime for precision measurement of the gravitational acceleration g.

  10. RVB signatures in the spin dynamics of the square-lattice Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ghioldi, E. A.; Gonzalez, M. G.; Manuel, L. O.; Trumper, A. E.

    2016-03-01

    We investigate the spin dynamics of the square-lattice spin-\\frac{1}{2} Heisenberg antiferromagnet by means of an improved mean-field Schwinger boson calculation. By identifying both, the long-range Néel and the RVB-like components of the ground state, we propose an educated guess for the mean-field magnetic excitation consisting on a linear combination of local and bond spin flips to compute the dynamical structure factor. Our main result is that when this magnetic excitation is optimized in such a way that the corresponding sum rule is fulfilled, we recover the low- and high-energy spectral weight features of the experimental spectrum. In particular, the anomalous spectral weight depletion at (π,0) found in recent inelastic neutron scattering experiments can be attributed to the interference of the triplet bond excitations of the RVB component of the ground state. We conclude that the Schwinger boson theory seems to be a good candidate to adequately interpret the dynamic properties of the square-lattice Heisenberg antiferromagnet.

  11. Lattice design and beam dynamics studies for the PLS-II

    NASA Astrophysics Data System (ADS)

    Shin, S.; Kim, D.; Hwang, I.; Kim, M.; Choi, J.; Liu, G.; Hou, J.; Chunjarean, S.; Kim, K.-R.; Huang, J.; Nam, S.

    2013-08-01

    Pohang Light Source (PLS) [1] had operated for 14 year successfully. To meet the request of the increasing user community, the PLS-II that is the upgrade project of PLS have been carried out. Main design goals of the PLS-II lattice are to increase beam energy to 3 GeV, to increase number of insertion devices by factor of two (20 IDs), to increase beam current to 400 mA and to reduce beam emittance below 10 nm with existing PLS tunnel and injection system. Following the desired design criteria, DBA lattice had been chosen such that the full storage ring includes 12 long straight sections and 12 short straight sections for installation of insertion devices with keeping beam emittance as small as possible. Through the six months of commissioning in the later half of 2011 and user operation in full period of 2012, we have successfully operated 14 insertion devices operation and top-up operation with 200 mA beam current and 5.8 nm beam emittance. It is especially important that good understanding of the machine operation and limitations can be achieved by comparison of experimental and simulation data during realizing final PLS-II goal and stable operation. Therefore, this paper describes the results of lattice design and beam dynamics studies for the PLS-II [2,3].

  12. Dynamics and stability of Bose-Einstein solitons in tilted optical lattices

    SciTech Connect

    Diaz, E.; Dominguez-Adame, F.; Gaul, C.; Lima, R. P. A.; Mueller, C. A.

    2010-05-15

    Bloch oscillations of Bose-Einstein condensates realize sensitive matter-wave interferometers. We investigate the dynamics and stability of bright-soliton wave packets in one-dimensional tilted optical lattices with a modulated mean-field interaction g(t). By means of a time-reversal argument, we prove the stability of Bloch oscillations of breathing solitons that would be quasistatically unstable. Floquet theory shows that these breathing solitons can be more stable against certain experimental perturbations than rigid solitons or even noninteracting wave packets.

  13. Generalized Courant-Snyder Theory for Charged-Particle Dynamics in General Focusing Lattices

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Davidson, Ronald C.; Chung, Moses; Burby, Joshua W.

    2013-09-01

    The Courant-Snyder (CS) theory for one degree of freedom is generalized to the case of coupled transverse dynamics in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D sympletic rotation. The envelope equation, the transfer matrix, and the CS invariant of the original CS theory all have their counterparts, with remarkably similar expressions, in the generalized theory.

  14. Volumetric Lattice Boltzmann Simulation for Fluid dynamics and Turbulence in Practical Syringes

    NASA Astrophysics Data System (ADS)

    Lima, Everton; Deep, Debanjan; Yu, Huidan (Whitney)

    2012-11-01

    We conduct numerical experiments to study fluid dynamics and turbulence in syringes using volumetric lattice Boltzmann method (VLBM) that is developed for dealing with arbitrary moving boundaries. Several common used medical syringes are used to predict the efficiency and safety of syringes experiencing low flow infusion rates. It is found that smaller size syringes reach a steady flow rate much sooner than larger ones, which are in quantitative agreement with experimental results. The relation between the syringe size and its steady flow rate is revealed. At low flow rates, corner vortices are observed. We explore conditions that lead to turbulent flow aiming to aid safer syringe application in nursing practices.

  15. Anisotropic diffusion of nonspherical molecules in dense liquids: A molecular dynamics simulation of isolated ellipsoids in the sea of spheres

    NASA Astrophysics Data System (ADS)

    Ravichandran, S.; Bagchi, B.

    1999-10-01

    Detailed molecular dynamics simulations of the rotational and the translational motions of Gay-Berne ellipsoids in a sea of Lennard-Jones spheres have been carried out. It is found that while the translational motion of an ellipsoid is isotropic at low density, it becomes increasingly anisotropic with density until the ratio of the parallel to the perpendicular diffusion coefficients becomes nearly equal to the value of the aspect ratio at high density. The latter is in agreement with the prediction of Navier-Stokes hydrodynamics with slip boundary condition. The product of the translational diffusion coefficient and the rotational correlation time also attains a hydrodynamic-like density independent behavior only at high density. The reorientational correlation function becomes nonexponential at high density and low temperature where it also develops a slow decay. The perpendicular component of the velocity time correlation function exhibits a clear double minimum, only at high density, which becomes more pronounced as the aspect ratio is increased.

  16. Dispersion and shear-induced orientation of anisotropic nanoparticle filled polymer nanocomposites: insights from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Zijian; Wang, Zixuan; Wang, Lu; Liu, Jun; Wu, Youping; Zhang, Liqun

    2016-07-01

    Although a large number of studies have been performed to study the dispersion behavior of spherical nanoparticles (NPs) in the polymer matrix, little effort has been directed to anisotropic NPs via simulation, which is convenient for controlling the physical parameters compared to experiment. In this work we adopt molecular dynamics simulation to study polymer nanocomposites filled with anisotropic NPs such as graphene and carbon nanotubes (CNTs). We investigate the effects of the grafting position, grafting density, the length and flexibility of the grafted chains on the dispersion of graphene and CNTs. In particular, we find that when the grafting position is located on the surface center of the graphene or the middle of the CNT, the dispersion state is the best, leading to the greatest stress–strain behavior. Meanwhile, the mechanical property can be further strengthened by introducing chemical couplings in the interfacial region, by chemically tethering the grafted chains to the matrix chains. To monitor the processing effect, we exert a dynamic periodic shear deformation in the x direction with its gradient in the y direction. Polymer chains are found to align in the x direction, graphene sheets align in the xoz plane and CNTs orientate in the z direction. We study the effects of the shear amplitude, the shear frequency, polymer–NP interaction strength and volume fraction of NPs on the stress–strain behavior. We also observe that the relaxation process following the shear deformation deteriorates the mechanical performance, resulting from the disorientation of polymer chains and NPs. In general, this work could provide valuable guidance in manipulating the distribution and alignment of graphene and CNTs in the polymer matrix.

  17. Dispersion and shear-induced orientation of anisotropic nanoparticle filled polymer nanocomposites: insights from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Zijian; Wang, Zixuan; Wang, Lu; Liu, Jun; Wu, Youping; Zhang, Liqun

    2016-07-01

    Although a large number of studies have been performed to study the dispersion behavior of spherical nanoparticles (NPs) in the polymer matrix, little effort has been directed to anisotropic NPs via simulation, which is convenient for controlling the physical parameters compared to experiment. In this work we adopt molecular dynamics simulation to study polymer nanocomposites filled with anisotropic NPs such as graphene and carbon nanotubes (CNTs). We investigate the effects of the grafting position, grafting density, the length and flexibility of the grafted chains on the dispersion of graphene and CNTs. In particular, we find that when the grafting position is located on the surface center of the graphene or the middle of the CNT, the dispersion state is the best, leading to the greatest stress-strain behavior. Meanwhile, the mechanical property can be further strengthened by introducing chemical couplings in the interfacial region, by chemically tethering the grafted chains to the matrix chains. To monitor the processing effect, we exert a dynamic periodic shear deformation in the x direction with its gradient in the y direction. Polymer chains are found to align in the x direction, graphene sheets align in the xoz plane and CNTs orientate in the z direction. We study the effects of the shear amplitude, the shear frequency, polymer-NP interaction strength and volume fraction of NPs on the stress-strain behavior. We also observe that the relaxation process following the shear deformation deteriorates the mechanical performance, resulting from the disorientation of polymer chains and NPs. In general, this work could provide valuable guidance in manipulating the distribution and alignment of graphene and CNTs in the polymer matrix.

  18. Dispersion and shear-induced orientation of anisotropic nanoparticle filled polymer nanocomposites: insights from molecular dynamics simulation.

    PubMed

    Zheng, Zijian; Wang, Zixuan; Wang, Lu; Liu, Jun; Wu, Youping; Zhang, Liqun

    2016-07-01

    Although a large number of studies have been performed to study the dispersion behavior of spherical nanoparticles (NPs) in the polymer matrix, little effort has been directed to anisotropic NPs via simulation, which is convenient for controlling the physical parameters compared to experiment. In this work we adopt molecular dynamics simulation to study polymer nanocomposites filled with anisotropic NPs such as graphene and carbon nanotubes (CNTs). We investigate the effects of the grafting position, grafting density, the length and flexibility of the grafted chains on the dispersion of graphene and CNTs. In particular, we find that when the grafting position is located on the surface center of the graphene or the middle of the CNT, the dispersion state is the best, leading to the greatest stress-strain behavior. Meanwhile, the mechanical property can be further strengthened by introducing chemical couplings in the interfacial region, by chemically tethering the grafted chains to the matrix chains. To monitor the processing effect, we exert a dynamic periodic shear deformation in the x direction with its gradient in the y direction. Polymer chains are found to align in the x direction, graphene sheets align in the xoz plane and CNTs orientate in the z direction. We study the effects of the shear amplitude, the shear frequency, polymer-NP interaction strength and volume fraction of NPs on the stress-strain behavior. We also observe that the relaxation process following the shear deformation deteriorates the mechanical performance, resulting from the disorientation of polymer chains and NPs. In general, this work could provide valuable guidance in manipulating the distribution and alignment of graphene and CNTs in the polymer matrix. PMID:27196704

  19. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles

    PubMed Central

    Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; Shen, Qun; Wang, Jun

    2016-01-01

    Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. Here, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expected two-phase coexistence throughout the entire charging process. We expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences. PMID:27516044

  20. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles.

    PubMed

    Wang, Jiajun; Karen Chen-Wiegart, Yu-Chen; Eng, Christopher; Shen, Qun; Wang, Jun

    2016-01-01

    Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. Here, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expected two-phase coexistence throughout the entire charging process. We expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences. PMID:27516044

  1. Superradiance Lattice

    NASA Astrophysics Data System (ADS)

    Wang, Da-Wei; Liu, Ren-Bao; Zhu, Shi-Yao; Scully, Marlan O.

    2015-01-01

    We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on electromagnetically induced transparency (EIT). For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective uniform force in momentum space. The quantum lattice dynamics, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing, and dynamic localization can be observed in the SL. The two-dimensional SL provides a flexible platform for Dirac physics in graphene. The SL can be extended to three and higher dimensions where no analogous real space lattices exist with new physics waiting to be explored.

  2. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    DOE PAGESBeta

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan; Golzhauser, Armin; Zuo, Jian-Min; Zavadil, Kevin R.; Gewirth, Andrew A.; et al

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less

  3. Charm spectroscopy on dynamical 2+1 flavor domain wall fermion lattices with a relativistic heavy quark action

    SciTech Connect

    Min Li; Huey-Wen Lin

    2007-10-01

    We present a preliminary calculation of the charmonium spectrum using the dynamical 2+1 flavor $24^3\\times 64$ domain wall fermion lattice configurations generated by the RBC and UKQCD collaborations. We use the relativistic heavy quark action with 3 parameters non-perturbatively determined by matching to experimental quantities. Chiral extrapolation is done on four light sea quark masses from 0.005 to 0.03, with $m_s=0.04$ and $m_{res}=0.003$. We can either predict meson masses assuming the lattice spacing is known from other methods, or calculate the lattice spacing using those quantities.

  4. Spin-orbit-coupled Bose-Einstein condensates in a one-dimensional optical lattice.

    PubMed

    Hamner, C; Zhang, Yongping; Khamehchi, M A; Davis, Matthew J; Engels, P

    2015-02-20

    We investigate a spin-orbit-coupled Bose-Einstein condensate loaded into a translating optical lattice. We experimentally demonstrate the lack of Galilean invariance in the spin-orbit-coupled system, which leads to anisotropic behavior of the condensate depending on the direction of translation of the lattice. The anisotropy is theoretically understood by an effective dispersion relation. We experimentally confirm this theoretical picture by probing the dynamical instability of the system.

  5. Spin-Orbit-Coupled Bose-Einstein Condensates in a One-Dimensional Optical Lattice

    NASA Astrophysics Data System (ADS)

    Hamner, C.; Zhang, Yongping; Khamehchi, M. A.; Davis, Matthew J.; Engels, P.

    2015-02-01

    We investigate a spin-orbit-coupled Bose-Einstein condensate loaded into a translating optical lattice. We experimentally demonstrate the lack of Galilean invariance in the spin-orbit-coupled system, which leads to anisotropic behavior of the condensate depending on the direction of translation of the lattice. The anisotropy is theoretically understood by an effective dispersion relation. We experimentally confirm this theoretical picture by probing the dynamical instability of the system.

  6. Field-induced dynamical properties of the XXZ model on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Maksimov, P. A.; Chernyshev, A. L.

    2016-01-01

    We present a comprehensive 1 /S study of the field-induced dynamical properties of the nearest-neighbor XXZ antiferromagnet on a honeycomb lattice using the formalism of nonlinear spin-wave theory developed for this model. The external magnetic field controls spin frustration in the system and induces noncollinearity of the spin structure, which is essential for the two-magnon decay processes. Our results include an intriguing field-evolution of the regions of the Brillouin zone wherein decays of spin excitations are prominent, a detailed classification of the decay channels involving magnons from both excitation branches, and a thorough analysis of the singularities in the magnon spectra due to coupling to the two-magnon continuum, all of which are illustrated for several field and anisotropy values. We highlight a number of features related to either the non-Bravais nature of the lattice or the existence of the Dirac-like points in the spectrum. In addition, the asymptotic behavior of the decay rates near high-symmetry points is analyzed in detail. The inelastic neutron-scattering spin-spin structure factor is obtained in the leading 1 /S order and is shown to exhibit qualitatively distinct fingerprints of the decay-induced magnon dynamics such as quasiparticle peaks broadened by decays and strong spectral weight redistribution.

  7. Fast optimization of binary clusters using a novel dynamic lattice searching method.

    PubMed

    Wu, Xia; Cheng, Wen

    2014-09-28

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.

  8. Fast optimization of binary clusters using a novel dynamic lattice searching method

    SciTech Connect

    Wu, Xia Cheng, Wen

    2014-09-28

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd){sub 79} clusters with DFT-fit parameters of Gupta potential.

  9. Critical dynamics of the jamming transition in one-dimensional nonequilibrium lattice-gas models

    NASA Astrophysics Data System (ADS)

    Priyanka; Jain, Kavita

    2016-04-01

    We consider several one-dimensional driven lattice-gas models that show a phase transition in the stationary state between a high-density fluid phase in which the typical length of a hole cluster is of order unity and a low-density jammed phase where a hole cluster of macroscopic length forms in front of a particle. Using a hydrodynamic equation for an interface growth model obtained from the driven lattice-gas models of interest here, we find that in the fluid phase, the roughness exponent and the dynamic exponent that, respectively, characterize the scaling of the saturation width and the relaxation time of the interface with the system size are given by the Kardar-Parisi-Zhang exponents. However, at the critical point, we show analytically that when the equal-time density-density correlation function decays slower than inverse distance, the roughness exponent varies continuously with a parameter in the hop rates, but it is one-half otherwise. Using these results and numerical simulations for the density-density autocorrelation function, we further find that the dynamic exponent z =3 /2 in all cases.

  10. Critical dynamics of the jamming transition in one-dimensional nonequilibrium lattice-gas models.

    PubMed

    Priyanka; Jain, Kavita

    2016-04-01

    We consider several one-dimensional driven lattice-gas models that show a phase transition in the stationary state between a high-density fluid phase in which the typical length of a hole cluster is of order unity and a low-density jammed phase where a hole cluster of macroscopic length forms in front of a particle. Using a hydrodynamic equation for an interface growth model obtained from the driven lattice-gas models of interest here, we find that in the fluid phase, the roughness exponent and the dynamic exponent that, respectively, characterize the scaling of the saturation width and the relaxation time of the interface with the system size are given by the Kardar-Parisi-Zhang exponents. However, at the critical point, we show analytically that when the equal-time density-density correlation function decays slower than inverse distance, the roughness exponent varies continuously with a parameter in the hop rates, but it is one-half otherwise. Using these results and numerical simulations for the density-density autocorrelation function, we further find that the dynamic exponent z=3/2 in all cases. PMID:27176251

  11. Interplay between lattice dynamics and the low-pressure phase of simple cubic polonium

    NASA Astrophysics Data System (ADS)

    Zaoui, A.; Belabbes, A.; Ahuja, R.; Ferhat, M.

    2011-04-01

    Low-pressure structural properties of simple cubic polonium are explored through first-principles density-functional theory based relativistic total energy calculations using pseudopotentials and plane-wave basis set, as well as linear-response theory. We have found that Po undergoes structural phase transition at low pressure near 2 GPa, where the element transforms from simple cubic to a mixture of two trigonal phases namely, hR1 (α=86°) and hR2 (α=97.9°) structures. The lattice dynamics calculations provide strong support for the observed phase transition, and show the dynamical stability (instability) of the hR2 (hR1) phase.

  12. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  13. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    SciTech Connect

    Chui, C. P.; Zhou, Yan

    2014-03-15

    Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD) simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  14. Ultrafast time dynamics studies of periodic lattices with free electron laser radiation

    SciTech Connect

    Quevedo, W.; Busse, G.; Hallmann, J.; More, R.; Petri, M.; Rajkovic, I.; Krasniqi, F.; Rudenko, A.; Tschentscher, T.; Stojanovic, N.; Duesterer, S.; Treusch, R.; Tolkiehn, M.; Techert, S.

    2012-11-01

    It has been proposed that radiation from free electron laser (FEL) at Hamburg (FLASH) can be used for ultrafast time-resolved x-ray diffraction experiments based on the near-infrared (NIR) pump/FEL probe scheme. Here, investigation probing the ultrafast structural dynamics of periodic nano-crystalline organic matter (silver behenate) with such a scheme is reported. Excitation with a femtosecond NIR laser leads to an ultrafast lattice modification which time evolution has been studied through the scattering of vacuum ultraviolet FEL pulses. The found effect last for 6 ps and underpins the possibility for studying nanoperiodic dynamics down to the FEL source time resolution. Furthermore, the possibility of extending the use of silver behenate (AgBh) as a wavelength and temporal calibration tool for experiments with soft x-ray/FEL sources is suggested.

  15. Dynamics of pedestrians in regions with no visibility— A lattice model without exclusion

    NASA Astrophysics Data System (ADS)

    Cirillo, Emilio N. M.; Muntean, Adrian

    2013-09-01

    We investigate the motion of pedestrians through obscure corridors where the lack of visibility (due to smoke, fog, darkness, etc.) hides the precise position of the exits. We focus our attention on a set of basic mechanisms, which we assume to be governing the dynamics at the individual level. Using a lattice model, we explore the effects of non-exclusion on the overall exit flux (evacuation rate). More precisely, we study the effect of the buddying threshold (of no-exclusion per site) on the dynamics of the crowd and investigate to which extent our model confirms the following pattern revealed by investigations on real emergencies: If the evacuees tend to cooperate and act altruistically, then their collective action tends to favor the occurrence of disasters. The research reported here opens many fundamental questions and should be seen therefore as a preliminary investigation of the very complex behavior of the people and their motion in dark regions.

  16. Lattice dynamics and anomalous softening in the YbFe4Sb12 skutterudite

    SciTech Connect

    Mochel, A.; Sergueev, I.; Wille, H. -C.; Voigt, J.; Prager, M.; Stone, Matthew B; Sales, Brian C; Guguchia, Z.; Shengelaya, A.; Keppens, V.; Hermann, Raphael P.

    2011-01-01

    The lattice dynamics of the filled skutterudite YbFe{sub 4}Sb{sub 12} was studied by resonant ultrasound spectroscopy and an anomalous softening in the temperature dependence of the elastic constants at {approx}50 K was observed. This anomaly can not be explained by the dynamics of the filler, in contrast to other filled skutterudites. We have further investigated the origin of this anomaly using macroscopic and microscopic measurements. A rearrangement of the spectral weight of the Yb phonon states was observed in the temperature dependence of the density of phonon states, obtained by inelastic neutron scattering. We suggest that the anomaly is due to a change of the Yb valence state and that the anomaly and the phonon spectral weight rearrangement have the same origin.

  17. Electron spin dynamics and spin-lattice relaxation of trityl radicals in frozen solutions.

    PubMed

    Chen, Hanjiao; Maryasov, Alexander G; Rogozhnikova, Olga Yu; Trukhin, Dmitry V; Tormyshev, Victor M; Bowman, Michael K

    2016-09-28

    Electron spin-lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, were studied under conditions relevant to their use in dissolution dynamic nuclear polarization (DNP). The dependence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM was obtained at X- and W-bands (0.35 and 3.5 Tesla, respectively). The relaxation is quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers identified as triads of trityl radicals that spontaneously form in the frozen samples. These centers relax by an Orbach-Aminov mechanism and determine the relaxation, saturation and electron spin dynamics during DNP. PMID:27560644

  18. Capillary filling and Haines jump dynamics using free energy Lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Zacharoudiou, Ioannis; Boek, Edo S.

    2016-06-01

    We investigate numerically the dynamics of capillary filling and Haines jump events using free energy Lattice Boltzmann (LB) simulations. Both processes are potentially important multi-phase pore-scale flow processes for geological CO2 sequestration and oil recovery. We first focus on capillary filling and demonstrate that the numerical method can capture the correct dynamics in the limit of long times for both high and low viscosity ratios, i.e. the method gives the correct scaling for the length of the penetrating fluid column as a function of time. Examining further the early times of capillary filling, three consecutive length vs. time regimes have been observed, in agreement with available experimental work in the literature. In addition, we carry out simulations of Haines jump events in idealised and realistic rock pore geometries. We observe that the Haines jump events are cooperative, non-local and associated with both drainage and imbibition dynamics. Our observations show that the pore filling dynamics is controlled by the Ohnesorge number, associated with the balance between viscous forces and inertial / surface tension forces. Using this concept, we are able to identify the type of pore filling dynamics that will occur.

  19. Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2

    NASA Astrophysics Data System (ADS)

    Kim, Younghee; Jhon, Young In; Park, June; Kim, Jae Hun; Lee, Seok; Jhon, Young Min

    2016-01-01

    Tungsten ditelluride (WTe2) is a layered material that exhibits excellent magnetoresistance and thermoelectric behaviors, which are deeply related with its distorted orthorhombic phase that may critically affect the lattice dynamics of this material. Here, we report comprehensive characterization of Raman spectra of WTe2 from bulk to monolayer using experimental and computational methods. We find that mono and bi-layer WTe2 are easily identified by Raman spectroscopy since two or one Raman modes that are observed in higher-layer WTe2 are greatly suppressed below the noise level in the mono- and bi-layer WTe2, respectively. In addition, the frequency of in-plane A17 mode of WTe2 remains almost constant as the layer number decreases, while all the other Raman modes consistently blueshift, which is completely different from the vibrational behavior of hexagonal metal dichalcogenides. First-principles calculation validates experimental results and reveals that anomalous lattice vibrations in WTe2 are attributed to the formation of tungsten chains that make WTe2 structurally one-dimensional.Tungsten ditelluride (WTe2) is a layered material that exhibits excellent magnetoresistance and thermoelectric behaviors, which are deeply related with its distorted orthorhombic phase that may critically affect the lattice dynamics of this material. Here, we report comprehensive characterization of Raman spectra of WTe2 from bulk to monolayer using experimental and computational methods. We find that mono and bi-layer WTe2 are easily identified by Raman spectroscopy since two or one Raman modes that are observed in higher-layer WTe2 are greatly suppressed below the noise level in the mono- and bi-layer WTe2, respectively. In addition, the frequency of in-plane A17 mode of WTe2 remains almost constant as the layer number decreases, while all the other Raman modes consistently blueshift, which is completely different from the vibrational behavior of hexagonal metal dichalcogenides

  20. Anisotropic heat transport in nanoconfined polyamide-6,6 oligomers: atomistic reverse nonequilibrium molecular dynamics simulation.

    PubMed

    Eslami, Hossein; Mohammadzadeh, Laila; Mehdipour, Nargess

    2012-03-14

    While polymers are known as thermal insulators, recent studies show that stretched single chains of polymers have a very high thermal conductivity. In this work, our new simulation scheme for simulation of heat flow in nanoconfined fluids [H. Eslami, L. Mohammadzadeh, and N. Mehdipour, J. Chem. Phys. 135, 064703 (2011)] is employed to study the effect of chain ordering (stretching) on the rate of heat transfer in polyamide-6,6 nanoconfined between graphene surfaces. Our results for the heat flow in the parallel direction (the plane of surfaces) show that the coefficient of thermal conductivity depends on the intersurface distance and is much higher than that of the bulk polymer. A comparison of results in this work with our former findings on the heat flow in the perpendicular direction, with the coefficient of heat conductivity less than the bulk sample, reveal that well-organized polymer layers between the confining surfaces show an anisotropic heat conduction; the heat conduction in the direction parallel to the surfaces is much higher than that in the perpendicular direction. The origin of such anisotropy in nanometric heat flow is shown to be the dramatic anisotropy in chain conformations (chain stretching) beside the confining surfaces. The results indicate that the coefficients of heat conductivity in both directions, normal and parallel to the surfaces, depend on the degree of polymer layering between the surfaces and the pore width. PMID:22423855

  1. Effects of numerical and physical anisotropic diffusion on branching phenomena of negative-streamer dynamics

    NASA Astrophysics Data System (ADS)

    Eichwald, O.; Bensaad, H.; Ducasse, O.; Yousfi, M.

    2012-09-01

    This paper is a contribution to the fluid modelling and simulation of the spontaneous branching of an initial mono-filamentary negative streamer propagating in molecular nitrogen at atmospheric pressure. The effects of both numerical diffusion and physical anisotropic diffusion on the branching structure are studied. We used MUSCL-type flux limiters where an artificial amount of numerical diffusion can be introduced through the choice of the value of a characteristic slope parameter. It was shown that a small amount of numerical diffusion can inhibit the spontaneous streamer branching. This means that the use of a high-order numerical scheme preventing the numerical diffusion and dispersion is a major parameter that must be taken into account in the interpretation of the simulated streamer development and splitting. This paper also clearly shows that the consideration of the anisotropy of electron diffusion affects the streamer head structure in comparison with the isotropic diffusion case. This especially occurs for electrons in gases presenting a large difference between the longitudinal and transversal diffusion coefficients as in N2 or in air.

  2. Wave propagation in equivalent continuums representing truss lattice materials

    SciTech Connect

    Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; Barton, Nathan R.

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures consisting of these lattice materials, but the design of such structures will require accurate, efficient simulation techniques. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss is complicated by microinertial effects. This paper derives a dynamic equivalent continuum model for periodic truss structures and verifies it against detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long-wavelength characteristics of the response such as anisotropic elastic soundspeeds. The formulation presented here also improves upon previous work by preserving equilibrium at truss joints for affine lattice deformation and by improving numerical stability by eliminating vertices in the effective yield surface.

  3. Molecular dynamics and analytical Langevin equation approach for the self-diffusion constant of an anisotropic fluid.

    PubMed

    Colmenares, Pedro J; López, Floralba; Olivares-Rivas, Wilmer

    2009-12-01

    We carried out a molecular-dynamics (MD) study of the self-diffusion tensor of a Lennard-Jones-type fluid, confined in a slit pore with attractive walls. We developed Bayesian equations, which modify the virtual layer sampling method proposed by Liu, Harder, and Berne (LHB) [P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B 108, 6595 (2004)]. Additionally, we obtained an analytical solution for the corresponding nonhomogeneous Langevin equation. The expressions found for the mean-squared displacement in the layers contain naturally a modification due to the mean force in the transverse component in terms of the anisotropic diffusion constants and mean exit time. Instead of running a time consuming dual MD-Langevin simulation dynamics, as proposed by LHB, our expression was used to fit the MD data in the entire survival time interval not only for the parallel but also for the perpendicular direction. The only fitting parameter was the diffusion constant in each layer. PMID:20365134

  4. Molecular dynamics and analytical Langevin equation approach for the self-diffusion constant of an anisotropic fluid

    NASA Astrophysics Data System (ADS)

    Colmenares, Pedro J.; López, Floralba; Olivares-Rivas, Wilmer

    2009-12-01

    We carried out a molecular-dynamics (MD) study of the self-diffusion tensor of a Lennard-Jones-type fluid, confined in a slit pore with attractive walls. We developed Bayesian equations, which modify the virtual layer sampling method proposed by Liu, Harder, and Berne (LHB) [P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B 108, 6595 (2004)]. Additionally, we obtained an analytical solution for the corresponding nonhomogeneous Langevin equation. The expressions found for the mean-squared displacement in the layers contain naturally a modification due to the mean force in the transverse component in terms of the anisotropic diffusion constants and mean exit time. Instead of running a time consuming dual MD-Langevin simulation dynamics, as proposed by LHB, our expression was used to fit the MD data in the entire survival time interval not only for the parallel but also for the perpendicular direction. The only fitting parameter was the diffusion constant in each layer.

  5. Molecular dynamics and analytical Langevin equation approach for the self-diffusion constant of an anisotropic fluid.

    PubMed

    Colmenares, Pedro J; López, Floralba; Olivares-Rivas, Wilmer

    2009-12-01

    We carried out a molecular-dynamics (MD) study of the self-diffusion tensor of a Lennard-Jones-type fluid, confined in a slit pore with attractive walls. We developed Bayesian equations, which modify the virtual layer sampling method proposed by Liu, Harder, and Berne (LHB) [P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B 108, 6595 (2004)]. Additionally, we obtained an analytical solution for the corresponding nonhomogeneous Langevin equation. The expressions found for the mean-squared displacement in the layers contain naturally a modification due to the mean force in the transverse component in terms of the anisotropic diffusion constants and mean exit time. Instead of running a time consuming dual MD-Langevin simulation dynamics, as proposed by LHB, our expression was used to fit the MD data in the entire survival time interval not only for the parallel but also for the perpendicular direction. The only fitting parameter was the diffusion constant in each layer.

  6. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies.

    PubMed

    Costandy, Joseph; Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2016-03-28

    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies. PMID:27036466

  7. Excited state baryon spectroscopy from lattice QCD

    DOE PAGESBeta

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less

  8. Excited state baryon spectroscopy from lattice QCD

    SciTech Connect

    Edwards, Robert G.; Richards, David G.; Dudek, Jozef J.; Wallace, Stephen J.

    2011-10-01

    We present a calculation of the Nucleon and Delta excited state spectra on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including J=(7/2), of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of SU(6) x O(3) representations and a counting of levels that is consistent with the nonrelativistic qqq constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the 'missing resonance problem' and shows no signs of parity doubling of states.

  9. Excited state baryon spectroscopy from lattice QCD

    SciTech Connect

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.

  10. Cluster dynamic mean-field study on the superconductivity in doped honeycomb lattice Hubbard model

    NASA Astrophysics Data System (ADS)

    Xu, Xiao Yan; Dang, Hung T.; Wessel, Stefen; Meng, Zi Yang

    The issue of superconductivities emerging from doped honeycomb lattice Mott insulator remains inconclusive. Existing proposals, such as p+ip triplet pairing driven by ferromagnetic fluctuations, d+id singlet pairing driven by antiferromagnetic fluctuations or van Hove singularities in the band structure, are not compatible. This is mainly due to the limitation of various approximated techniques employed in addressing such question with inherent strongly correlated nature. Trying to clarify the situation, we perform large-scale cluster dynamic mean-field simulations to explore the superconductivity instabilities in the doped honeycomb lattice Hubbard model, from medium to strong coupling. To benchmark, we make use of both interaction- and hybridization-expansion continuous time quantum Monte Carlo methods to exactly solve the quantum cluster embedded in self-consistently determined mean-field bath. Temperature dependence of various superconducting susceptibilities are calculated, hence, we provide the least biased results of the competition of the superconductivity in different channels in the phase diagram spanned by doping and electronic interaction.

  11. Highly anisotropic exchange interactions of jeff=1/2 iridium moments on the fcc lattice in La2B IrO6 (B =Mg ,Zn )

    NASA Astrophysics Data System (ADS)

    Aczel, A. A.; Cook, A. M.; Williams, T. J.; Calder, S.; Christianson, A. D.; Cao, G.-X.; Mandrus, D.; Kim, Yong-Baek; Paramekanti, A.

    2016-06-01

    We have performed inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO6 and La2MgIrO6 , which are characterized by A-type antiferromagnetic ground states. The powder inelastic neutron scattering data on these geometrically frustrated jeff=1/2 Mott insulators provide clear evidence for gapped spin-wave excitations with very weak dispersion. The INS results and thermodynamic data on these materials can be reproduced by conventional Heisenberg-Ising models with significant uniaxial Ising anisotropy and sizeable second-neighbor ferromagnetic interactions. Such a uniaxial Ising exchange interaction is symmetry forbidden on the ideal fcc lattice, so that it can only arise from the weak crystal distortions away from the ideal fcc limit. This may suggest that even weak distortions in jeff=1/2 Mott insulators might lead to strong exchange anisotropies. More tantalizingly, however, we find an alternative viable explanation of the INS results in terms of spin models with a dominant Kitaev interaction. In contrast to the uniaxial Ising exchange, the highly directional Kitaev interaction is a type of exchange anisotropy which is symmetry allowed even on the ideal fcc lattice. The Kitaev model has a magnon gap induced by quantum order by disorder, while weak anisotropies of the Kitaev couplings generated by the symmetry lowering due to lattice distortions can pin the order and enhance the magnon gap. Our findings highlight how even conventional magnetic orders in heavy transition metal oxides may be driven by highly directional exchange interactions rooted in strong spin-orbit coupling.

  12. Highly anisotropic exchange interactions of jeff=12 iridium moments on the fcc lattice in La2BIrO6 (B=Mg,Zn)

    DOE PAGESBeta

    Aczel, A. A.; Cook, A. M.; Williams, T. J.; Calder, S.; Christianson, A. D.; Cao, G. -X.; Mandrus, D.; Kim, Yong-Baek; Paramekanti, A.

    2016-06-20

    Here we have performed inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites Lamore » $_2$ZnIrO$_6$ and La$_2$MgIrO$_6$, which are characterized by A-type antiferromagnetic ground states. The powder inelastic neutron scattering data on these geometrically frustrated $$j_{\\rm eff}=1/2$$ Mott insulators provide clear evidence for gapped spin wave excitations with very weak dispersion. The INS results and thermodynamic data on these materials can be reproduced by conventional Heisenberg-Ising models with significant uniaxial Ising anisotropy and sizeable second-neighbor ferromagnetic interactions. Such a uniaxial Ising exchange interaction is symmetry-forbidden on the ideal fcc lattice, so that it can only arise from the weak crystal distortions away from the ideal fcc limit. This may suggest that even weak distortions in $$j_{\\rm eff}=1/2$$ Mott insulators might lead to strong exchange anisotropies. More tantalizingly, however, we find an alternative viable explanation of the INS results in terms of spin models with a dominant Kitaev interaction. In contrast to the uniaxial Ising exchange, the highly-directional Kitaev interaction is a type of exchange anisotropy which is symmetry-allowed even on the ideal fcc lattice. The Kitaev model has a magnon gap induced by quantum order-by-disorder, while weak anisotropies of the Kitaev couplings generated by the symmetry-lowering due to lattice distortions can pin the order and enhance the magnon gap. In conclusion, our findings highlight how even conventional magnetic orders in heavy transition metal oxides may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling.« less

  13. Anisotropic power-law inflation

    SciTech Connect

    Kanno, Sugumi; Soda, Jiro; Watanabe, Masa-aki E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2010-12-01

    We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.

  14. Solvation dynamics in a Brownian dipolar lattice. Comparison between computer simulation and various molecular theories of solvation dynamics

    NASA Astrophysics Data System (ADS)

    Komath, Sneha Sudha; Bagchi, Biman

    1993-06-01

    Several recent theoretical and computer simulation studies have considered solvation dynamics in a Brownian dipolar lattice which provides a simple model solvent for which detailed calculations can be carried out. In this article a fully microscopic calculation of the solvation dynamics of an ion in a Brownian dipolar lattice is presented. The calculation is based on the non-Markovian molecular hydrodynamic theory developed recently. The main assumption of the present calculation is that the two-particle orientational correlation functions of the solid can be replaced by those of the liquid state. It is shown that such a calculation provides an excellent agreement with the computer simulation results. More importantly, the present calculations clearly demonstrate that the frequency-dependent dielectric friction plays an important role in the long time decay of the solvation time correlation function. We also find that the present calculation provides somewhat better agreement than either the dynamic mean spherical approximation (DMSA) or the Fried-Mukamel theory which use the simulated frequency-dependent dielectric function. It is found that the dissipative kernels used in the molecular hydrodynamic approach and in the Fried-Mukamel theory are vastly different, especially at short times. However, in spite of this disagreement, the two theories still lead to comparable results in good agreement with computer simulation, which suggests that even a semiquantitatively accurate dissipative kernel may be sufficient to obtain a reliable solvation time correlation function. A new wave vector and frequency-dependent dissipative kernel (or memory function) is proposed which correctly goes over to the appropriate expressions in both the single particle and the collective limits. This form is expected to lead to better results than all the existing descriptions.

  15. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3)

    NASA Astrophysics Data System (ADS)

    Zurhelle, Alexander F.; Deringer, Volker L.; Stoffel, Ralf P.; Dronskowski, Richard

    2016-03-01

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ▵H f (Bi2Te3)  =  -102 kJ mol-1 at 298 K.

  16. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3).

    PubMed

    Zurhelle, Alexander F; Deringer, Volker L; Stoffel, Ralf P; Dronskowski, Richard

    2016-03-23

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ΔHf (Bi2Te3)  =  -102 kJ mol(-1) at 298 K.

  17. Field-induced dynamical properties of the XXZ model on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Maksimov, Pavel; Chernyshev, Alexander

    We present a comprehensive 1 / S study of the field-induced dynamical properties of the nearest-neighbor XXZ antiferromagnet on a honeycomb lattice using the formalism of the nonlinear spin-wave theory developed for this model. External magnetic field controls spin frustration in the system and induces non-collinearity of the spin structure, which is essential for the two-magnon decay processes. Our results include an intriguing field-evolution of the regions of the Brillouin zone where decays of spin excitations are prominent, a thorough analysis of the singularities in the magnon spectra due to coupling to the two-magnon continuum, the asymptotic behavior of the decay rates near high-symmetry points, and inelastic neutron-scattering spin-spin structure factor obtained in the leading 1 / S order. Supported by DOE.

  18. Dynamic structure factor of a Fibonacci lattice: A renormalization-group approach

    NASA Astrophysics Data System (ADS)

    Karmakar, S. N.; Chakrabarti, Arunava; Moitra, R. K.

    1992-08-01

    We present a real-space renormalization-group method for evaluating the exact dynamic structure factor S(q,ω) of a quasiperiodic Fibonacci chain. Contrary to earlier work that takes account only of the global aspects of the symmetry of the chain, our method additionally takes care of the local environmental aspects of the symmetry by separating the original lattice into a finite number of self-similar interpenetrating sublattices, followed by elimination of the coupling between them. Our method also yields correctly the positions of the Bragg peaks of the Fibonacci chain. Moreover, the present method allows the sites of the chain to be grouped into classes following a ``genealogical'' classification, the members of a given class being equivalent up to a certain length scale. Based on this classification, the proof of the existence of a key site, which has only been conjectured in our earlier work using numerical search, has been given.

  19. Coupled ion and network dynamics in polymer electrolytes: Monte Carlo study of a lattice model

    NASA Astrophysics Data System (ADS)

    Dürr, O.; Dieterich, W.; Nitzan, A.

    2004-12-01

    Monte Carlo simulations are used to study ion and polymer chain dynamic properties in a simplified lattice model with only one species of mobile ions. The ions interact attractively with specific beads in the host chains, while polymer beads repel each other. Cross linking of chains by the ions reduces chain mobilities which in turn suppresses ionic diffusion. Diffusion constants for ions and chains as a function of temperature follow the Vogel-Tammann-Fulcher (VTF) law with a common VTF temperature at low ion concentration, but both decouple at higher concentrations, in agreement with experimental observations. Our model allows us to introduce pressure as an independent variable through calculations of the equation of state using the quasichemical approximation, and to detect an exponential pressure dependence of the ionic diffusion.

  20. Monte Carlo Study of Real Time Dynamics on the Lattice.

    PubMed

    Alexandru, Andrei; Başar, Gökçe; Bedaque, Paulo F; Vartak, Sohan; Warrington, Neill C

    2016-08-19

    Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from a highly oscillatory phase of the path integral. In this Letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and, in principle, applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm. PMID:27588844

  1. Lattice dynamics and the nature of structural transitions in organolead halide perovskites

    DOE PAGESBeta

    Comin, Riccardo; Crawford, Michael K.; Said, Ayman H.; Herron, Norman; Guise, William E.; Wang, Xiaoping; Whitfield, Pamela S.; Jain, Ankit; Gong, Xiwen; McGaughey, Alan J. H.; et al

    2016-09-09

    Organolead halide perovskites are a family of hybrid organic-inorganic compounds whose remark- able optoelectronic properties have been under intensive scrutiny in recent years. Here we use inelastic X-ray scattering to study low-energy lattice excitations in single crystals of methylammonium lead iodide and bromide perovskites. Our ndings conrm the displacive nature of the cubic-to- tetragonal phase transition, which is further shown, using neutron and x-ray diraction, to be close to a tricritical point. The experimental sound speed, around 100-200 m/s, suggests that electron- phonon scattering is likely a limiting factor for further improvements in carrier mobility. Lastly, we detect quasistatic symmetry-breakingmore » nanodomains persisting well into the high-temperature cubic phase, possibly stabilized by local defects. These ndings reveal key structural properties of these materials, but also bear important implications for carrier dynamics across an extended temperature range relevant for photovoltaic applications.« less

  2. Lattice dynamics calculations for ferropericlase with internally consistent LDA+U method

    NASA Astrophysics Data System (ADS)

    Fukui, Hiroshi; Tsuchiya, Taku; Baron, Alfred Q. R.

    2012-12-01

    Vibrational densities of states and phonon dispersion relations for Mg0.875Fe0.125O ferropericlase in the high- and low-spin (HS and LS) states were calculated from first principles lattice dynamics using the internally consistent LDA+Utechnique. Finite-temperature thermodynamic properties were determined based on the quasi-harmonic approximation including the HS and LS mixing entropy and the magnetic entropy effects, which gave pressure and temperature variations of the low-spin fraction. Our results suggest that for thermodynamic modeling of the earth's interior, the effect of the mixed spin state cannot be ignored in the lower mantle, especially the lowermost part. The anomaly in the seismic wave velocity due to the spin crossover transition of ferropericlase, if it exists, is difficult to detect because of the wide pressure range of the transition, which is broadened by the temperature effect and the damping of the amplitude of the slow seismic wave.

  3. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3).

    PubMed

    Zurhelle, Alexander F; Deringer, Volker L; Stoffel, Ralf P; Dronskowski, Richard

    2016-03-23

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ΔHf (Bi2Te3)  =  -102 kJ mol(-1) at 298 K. PMID:26894844

  4. Kinetic theory of correlated fluids: from dynamic density functional to Lattice Boltzmann methods.

    PubMed

    Marconi, Umberto Marini Bettolo; Melchionna, Simone

    2009-07-01

    Using methods of kinetic theory and liquid state theory we propose a description of the nonequilibrium behavior of molecular fluids, which takes into account their microscopic structure and thermodynamic properties. The present work represents an alternative to the recent dynamic density functional theory, which can only deal with colloidal fluids and is not apt to describe the hydrodynamic behavior of a molecular fluid. The method is based on a suitable modification of the Boltzmann transport equation for the phase space distribution and provides a detailed description of the local structure of the fluid and its transport coefficients. Finally, we propose a practical scheme to solve numerically and efficiently the resulting kinetic equation by employing a discretization procedure analogous to the one used in the Lattice Boltzmann method.

  5. Thermodynamic and dynamic anomalies in a one-dimensional lattice model of liquid water

    NASA Astrophysics Data System (ADS)

    Barbosa, Marco Aurélio A.; Barbosa, Fernando Vito; Oliveira, Fernando Albuquerque

    2011-01-01

    We investigate the occurrence of waterlike thermodynamic and dynamic anomalous behavior in a one dimensional lattice gas model. The system thermodynamics is obtained using the transfer matrix technique and anomalies on density and thermodynamic response functions are found. When the hydrogen bond (molecules separated by holes) is more attractive than the van der Waals interaction (molecules in contact) a transition between two fluid structures is found at null temperature and high pressure. This transition is analogous to a `critical point' and intimately connects the anomalies in density and in thermodynamic response functions. Monte Carlo simulations were performed in the neighborhood of this transition and used to calculate the self diffusion constant, which increases with density as in liquid water.

  6. Dynamical Behavior of Multi-Robot Systems Using Lattice Gas Automata

    SciTech Connect

    Cameron, S.M.; Robinett, R.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-03-11

    Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned robotic vehicles (e.g., RATLERs, Robotic All-ten-sin Lunar Exploration Rover-class vehicles). Overall design methodology is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's deformation rate, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with knowledge, the

  7. Lattice dynamics and thermal expansion behavior in the metal cyanides M CN (M =Cu , Ag, Au): Neutron inelastic scattering and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Singh, Baltej; Mittal, R.; Rols, S.; Chaplot, S. L.

    2016-04-01

    We report measurement of temperature dependence of phonon spectra in quasi-one-dimensional metal cyanides M CN (M =Cu , Ag, Au). Ab initio lattice dynamics calculations have been performed to interpret the phonon spectra as well as to understand the anomalous anisotropic thermal expansion behavior in these compounds. We bring out the differences in the phonon mode behavior to explain the differences in the thermal expansion behavior among the three compounds. The chain-sliding modes are found to contribute maximum to the negative thermal expansion along the "c " axis in the Cu and Ag compounds, while the same modes contribute to positive thermal expansion in the Au compound. Several low-energy transverse modes lead to positive thermal expansion in the a -b plane in all the compounds. The calculated Born-effective charges show that AuCN has a covalent nature of bonding, which results in least distortion as well as the least number of unstable modes among the three cyanides. This result is well correlated with the fact that the coefficient of negative thermal expansion along the c axis in AuCN is the smallest.

  8. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    SciTech Connect

    Banerjee, Tanmoy Paul, Bishwajit; Sarkar, B. C.

    2014-03-15

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  9. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Paul, Bishwajit; Sarkar, B. C.

    2014-03-01

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  10. Dynamic phase transition in the prisoner's dilemma on a lattice with stochastic modifications

    NASA Astrophysics Data System (ADS)

    Saif, M. Ali; Gade, Prashant M.

    2010-03-01

    We present a detailed study of the prisoner's dilemma game with stochastic modifications on a two-dimensional lattice, in the presence of evolutionary dynamics. By very nature of the rules, the cooperators have incentives to cheat and fear being cheated. They may cheat even when this is not dictated by the evolutionary dynamics. We consider two variants here. In each case, the agents mimic the action (cooperation or defection) in the previous time step of the most successful agent in the neighborhood. But over and above this, the fraction p of cooperators spontaneously change their strategy to pure defector at every time step in the first variant. In the second variant, there are no pure cooperators. All cooperators keep defecting with probability p at every time step. In both cases, the system switches from a coexistence state to an all-defector state for higher values of p. We show that the transition between these states unambiguously belongs to the directed percolation universality class in 2 + 1 dimensions. We also study the local persistence. The persistence exponents obtained are higher than the ones obtained in previous studies, underlining their dependence on details of the dynamics.

  11. The influence of lattice geometry on anti-ferromagnetic correlations and their dynamics in the Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Jotzu, Gregor; Greif, Daniel; Messer, Michael; Desbuqois, Rémi; Görg, Frederik; Esslinger, Tilman

    2016-05-01

    It is well known that in the thermodynamic limit, quantum effects hinder the formation of true long-range order in lower dimensions. However, on shorter length-scales correlations can actually be enhanced by reducing the connectivity of a lattice. Here we report on the observation of anti-ferromagnetic correlations of ultracold fermions in a variety of optical lattice geometries that are well described by the Hubbard model, including dimers, 1D chains, ladders, isolated and coupled honeycomb planes, as well as square and cubic lattices. The dependence of total correlations and their distribution on the specific geometry is experimentally probed by measuring the spin correlator along different lattice tunnelling bonds. We study distinct geometries as well as continuous crossovers between them, and find a strong dependence on the specific configuration. By dynamically changing the lattice geometry and studying the time-evolution of the system, we determine the time required for the formation and redistribution of spin correlations. Timescales ranging from a sudden quench of the lattice geometry to an adiabatic evolution are probed.

  12. A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.

    2006-01-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.

  13. Anisotropic relaxation dynamics in a dipolar Fermi gas driven out of equilibrium.

    PubMed

    Aikawa, K; Frisch, A; Mark, M; Baier, S; Grimm, R; Bohn, J L; Jin, D S; Bruun, G M; Ferlaino, F

    2014-12-31

    We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic 167Er fermions, spin polarized in the lowest Zeeman sublevel. In this system, elastic collisions arise purely from universal dipolar scattering. Based on cross-dimensional rethermalization experiments, we observe a strong anisotropy of the scattering, which manifests itself in a large angular dependence of the thermal relaxation dynamics. Our result is in good agreement with recent theoretical predictions. Furthermore, we measure the rethermalization rate as a function of temperature for different angles and find that the suppression of collisions by Pauli blocking is not influenced by the dipole orientation. PMID:25615326

  14. Anisotropic Relaxation Dynamics in a Dipolar Fermi Gas Driven Out of Equilibrium

    NASA Astrophysics Data System (ADS)

    Aikawa, K.; Frisch, A.; Mark, M.; Baier, S.; Grimm, R.; Bohn, J. L.; Jin, D. S.; Bruun, G. M.; Ferlaino, F.

    2014-12-01

    We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic Er 167 fermions, spin polarized in the lowest Zeeman sublevel. In this system, elastic collisions arise purely from universal dipolar scattering. Based on cross-dimensional rethermalization experiments, we observe a strong anisotropy of the scattering, which manifests itself in a large angular dependence of the thermal relaxation dynamics. Our result is in good agreement with recent theoretical predictions. Furthermore, we measure the rethermalization rate as a function of temperature for different angles and find that the suppression of collisions by Pauli blocking is not influenced by the dipole orientation.

  15. Covariant stringlike dynamics of scroll wave filaments in anisotropic cardiac tissue.

    PubMed

    Verschelde, Henri; Dierckx, Hans; Bernus, Olivier

    2007-10-19

    It has been hypothesized that stationary scroll wave filaments in cardiac tissue describe a geodesic in a curved space whose metric is the inverse diffusion tensor. Several numerical studies support this hypothesis, but no analytical proof has been provided yet for general anisotropy. In this Letter, we derive dynamic equations for the filament in the case of general anisotropy. These equations are covariant under general spatial coordinate transformations and describe the motion of a stringlike object in a curved space whose metric tensor is the inverse diffusion tensor. Therefore the behavior of scroll wave filaments in excitable media with anisotropy is similar to the one of cosmic strings in a curved universe. Our dynamic equations are valid for thin filaments and for general anisotropy. We show that stationary filaments obey the geodesic equation. PMID:17995301

  16. Spectral and structural stability properties of charged particle dynamics in coupled lattices

    SciTech Connect

    Qin, Hong; Chung, Moses; Davidson, Ronald C.; Burby, Joshua W.

    2015-05-15

    It has been realized in recent years that coupled focusing lattices in accelerators and storage rings have significant advantages over conventional uncoupled focusing lattices, especially for high-intensity charged particle beams. A theoretical framework and associated tools for analyzing the spectral and structural stability properties of coupled lattices are formulated in this paper, based on the recently developed generalized Courant-Snyder theory for coupled lattices. It is shown that for periodic coupled lattices that are spectrally and structurally stable, the matrix envelope equation must admit matched solutions. Using the technique of normal form and pre-Iwasawa decomposition, a new method is developed to replace the (inefficient) shooting method for finding matched solutions for the matrix envelope equation. Stability properties of a continuously rotating quadrupole lattice are investigated. The Krein collision process for destabilization of the lattice is demonstrated.

  17. A parallel implementation of the Lattice Solid Model for large scale simulation of earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Abe, S.; Place, D.; Mora, P.

    2001-12-01

    The particle based lattice solid model has been used successfully as a virtual laboratory to simulate the dynamics of faults, earthquakes and gouge processes. The phenomena investigated with the lattice solid model range from the stick-slip behavior of faults, localization phenomena in gouge and the evolution of stress correlation in multi-fault systems, to the influence of rate and state-dependent friction laws on the macroscopic behavior of faults. However, the results from those simulations also show that in order to make a next step towards more realistic simulations it will be necessary to use three-dimensional models containing a large number of particles with a range of sizes, thus requiring a significantly increased amount of computing resources. Whereas the computing power provided by a single processor can be expected to double every 18 to 24 months, parallel computers which provide hundreds of times the computing power are available today and there are several efforts underway to construct dedicated parallel computers and associated simulation software systems for large-scale earth science simulation (e.g. The Australian Computational Earth Systems Simulator[1] and Japanese Earth Simulator[2])". In order to use the computing power made available by those large parallel computers, a parallel version of the lattice solid model has been implemented. In order to guarantee portability over a wide range of computer architectures, a message passing approach based on MPI has been used in the implementation. Particular care has been taken to eliminate serial bottlenecks in the program, thus ensuring high scalability on systems with a large number of CPUs. Measures taken to achieve this objective include the use of asynchronous communication between the parallel processes and the minimization of communication with and work done by a central ``master'' process. Benchmarks using models with up to 6 million particles on a parallel computer with 128 CPUs show that the

  18. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.

    PubMed

    Martinez, Esteban A; Muschik, Christine A; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-23

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories. PMID:27337339

  19. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron–positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle–antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  20. Static and dynamic properties of interacting spin-1 bosons in an optical lattice

    NASA Astrophysics Data System (ADS)

    Natu, Stefan S.; Pixley, J. H.; Das Sarma, S.

    2015-04-01

    We study the physics of interacting spin-1 bosons in an optical lattice using a variational Gutzwiller technique. We compute the mean-field ground state wave function and discuss the evolution of the condensate, spin, nematic, and singlet order parameters across the superfluid-Mott transition. We then extend the Gutzwiller method to derive the equations governing the dynamics of low energy excitations in the lattice. Linearizing these equations, we compute the excitation spectra in the superfluid and Mott phases for both ferromagnetic and antiferromagnetic spin-spin interactions. In the superfluid phase, we recover the known excitation spectrum obtained from Bogoliubov theory. In the nematic Mott phase, we obtain gapped, quadratically dispersing particle and hole-like collective modes, whereas in the singlet Mott phase, we obtain a nondispersive gapped mode, corresponding to the breaking of a singlet pair. For the ferromagnetic Mott insulator, the Gutzwiller mean-field theory only yields particle-hole-like modes but no Goldstone mode associated with long-range spin order. To overcome this limitation, we supplement the Gutzwiller theory with a Schwinger boson mean-field theory which captures superexchange-driven fluctuations. In addition to the gapped particle-hole-like modes, we obtain a gapless quadratically dispersing ferromagnetic spin-wave Goldstone mode. We discuss the evolution of the singlet gap, particle-hole gap, and the effective mass of the ferromagnetic Goldstone mode as the superfluid-Mott phase boundary is approached from the insulating side. We discuss the relevance and validity of Gutzwiller mean-field theories to spinful systems, and potential extensions of this framework to include more exotic physics which appears in the presence of spin-orbit coupling or artificial gauge fields.

  1. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  2. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.

    PubMed

    Martinez, Esteban A; Muschik, Christine A; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-22

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  3. Light scattering and dissipative dynamics of many fermionic atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Langer, S.; Schachenmayer, J.; Daley, A. J.

    2014-08-01

    We investigate the many-body dissipative dynamics of fermionic atoms in an optical lattice in the presence of incoherent light scattering. Deriving and solving a master equation to describe this process microscopically for many particles, we observe contrasting behavior in terms of the robustness against this type of heating for different many-body states. In particular, we find that the magnetic correlations exhibited by a two-component gas in the Mott insulating phase should be particularly robust against decoherence from light scattering, because the decoherence in the lowest band is suppressed by a larger factor than the time scales for effective superexchange interactions that drive coherent dynamics. Furthermore, the derived formalism naturally generalizes to analogous states with SU(N) symmetry. In contrast, for typical atomic and laser parameters, two-particle correlation functions describing bound dimers for strong attractive interactions exhibit superradiant effects due to the indistinguishability of off-resonant photons scattered by atoms in different internal states. This leads to rapid decay of correlations describing off-diagonal long-range order for these states. Our predictions should be directly measurable in ongoing experiments, providing a basis for characterizing and controlling heating processes in quantum simulation with fermions.

  4. Knotted Vortices: Entropic Lattice Boltzmann Method for Simulation of Vortex dynamics

    NASA Astrophysics Data System (ADS)

    Boesch, Fabian; Chikatamarla, Shyam; Karlin, Ilya

    2013-11-01

    Knotted and interlinked vortex structures in real fluids are conjectured to play a major role in hydrodynamic flow dissipation. Much interest lies in determining their temporal stability and the mechanism through which knots dissolve. Kleckner and Irvine recently have shown the existence of such knotted vortices experimentally by accelerating hydrofoils in water. In the present work we employ the entropic lattice Boltzmann method (ELBM) to perform DNS simulations of the creation and dynamics of knotted vortex rings inspired by the experimental setup in. ELBM renders LBM scheme unconditionally stable by restoring the second law of thermodynamics (the Boltzmann H-theorem), and thus enables simulations of large domains and high Reynolds numbers with DNS quality. The results presented in this talk provide an in-depth study of the dynamics of knotted vortices and vortex reconnection events and confirm the existence of trefoil knots in silicio for the first time. This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s347.

  5. Computational fluid dynamics in the microcirculation and microfluidics: what role can the lattice Boltzmann method play?

    PubMed

    O'Connor, Joseph; Day, Philip; Mandal, Parthasarathi; Revell, Alistair

    2016-05-16

    Patient-specific simulations, efficient parametric analyses, and the study of complex processes that are otherwise experimentally intractable are facilitated through the use of Computational Fluid Dynamics (CFD) to study biological flows. This review discusses various CFD methodologies that have been applied across different biological scales, from cell to organ level. Through this discussion the lattice Boltzmann method (LBM) is highlighted as an emerging technique capable of efficiently simulating fluid problems across the midrange of scales; providing a practical analytical tool compared to methods more attuned to the extremities of scale. Furthermore, the merits of the LBM are highlighted through examples of previous applications and suggestions for future research are made. The review focusses on applications in the midrange bracket, such as cell-cell interactions, the microcirculation, and microfluidic devices; wherein the inherent mesoscale nature of the LBM renders it well suited to the incorporation of fluid-structure interaction effects, molecular/particle interactions and interfacial dynamics. The review demonstrates that the LBM has the potential to become a valuable tool across a range of emerging areas in bio-CFD, such as understanding and predicting disease, designing lab-on-a-chip devices, and elucidating complex biological processes.

  6. Dynamic behaviors of liquid droplets on a gas diffusion layer surface: Hybrid lattice Boltzmann investigation

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Huang, Jun-Jie

    2015-07-01

    Water management is one of the key issues in proton exchange membrane fuel cells. Fundamentally, it is related to dynamic behaviors of droplets on a gas diffusion layer (GDL) surface, and consequently they are investigated in this work. A two-dimensional hybrid method is employed to implement numerical simulations, in which the flow field is solved by using the lattice Boltzmann method and the interface between droplet and gas is captured by solving the Cahn-Hilliard equation directly. One or two liquid droplets are initially placed on the GDL surface of a gas channel, which is driven by the fully developed Poiseuille flow. At a fixed channel size, the effects of viscosity ratio of droplet to gas ( μ ∗ ), Capillary number (Ca, ratio of gas viscosity to surface tension), and droplet interaction on the dynamic behaviors of droplets are systematically studied. By decreasing viscosity ratio or increasing Capillary number, the single droplet can detach from the GDL surface easily. On the other hand, when two identical droplets stay close to each other or a larger droplet is placed in front of a smaller droplet, the removal of two droplets is promoted.

  7. Non-equilibrium dynamics and state preparation in bilayer optical lattices

    NASA Astrophysics Data System (ADS)

    Langer, Stephan; Daley, Andrew J.

    2014-03-01

    We study dynamical schemes to obtain low entropy ground states of strongly interacting many body systems. The focus of our work is on ultra-cold Bose and Fermi gases in bilayer optical lattice systems with separately tunable interlayer coupling, energy offset between the layers and repulsive interactions. The case of two coupled one-dimensional chains is treated in a numerically exact manner using the adaptive time-dependent density matrix renormalization group which allows us to study the change of offset and interlayer coupling in real time. We identify parameter regimes where the ground state of the coupled system in the limit of small interlayer coupling consists of a Mott insulator in one layer and a superfluid/metallic state in the other layer can serve as an entropy reservoir. We then investigate the time-dependent dynamics of this system, studying entropy transfer between layers and the emergence of characteristic many-body correlations as we change the layer offset energy and coupling strength. In addition to applications as a preparation scheme for fully interacting Mott-insulator states, feasible with available experimental techniques, the investigated protocols could be easily adapted to also allow for a controlled preparation of highly excited states.

  8. Molecular simulations and lattice dynamics determination of Stillinger-Weber GaN thermal conductivity

    SciTech Connect

    Liang, Zhi; Jain, Ankit; McGaughey, Alan J. H.; Keblinski, Pawel

    2015-09-28

    The bulk thermal conductivity of Stillinger-Weber (SW) wurtzite GaN in the [0001] direction at a temperature of 300 K is calculated using equilibrium molecular dynamics (EMD), non-equilibrium MD (NEMD), and lattice dynamics (LD) methods. While the NEMD method predicts a thermal conductivity of 166 ± 11 W/m·K, both the EMD and LD methods predict thermal conductivities that are an order of magnitude greater. We attribute the discrepancy to significant contributions to thermal conductivity from long-mean free path phonons. We propose that the Grüneisen parameter for low-frequency phonons is a good predictor of the severity of the size effects in NEMD thermal conductivity prediction. For weakly anharmonic crystals characterized by small Grüneisen parameters, accurate determination of thermal conductivity by NEMD is computationally impractical. The simulation results also indicate the GaN SW potential, which was originally developed for studying the atomic-level structure of dislocations, is not suitable for prediction of its thermal conductivity.

  9. Interaction and dynamics of defects in convective roll patterns of anisotropic fluids

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Weber, Andreas; Kramer, Lorenz

    1991-09-01

    We present an overview of the dynamics and interaction of defects in roll patterns of electroconvection in nematic liquid crystals (EHC). For the decay of an Eckhaus-unstable pattern we distinguish three regimes, depending on the width of the system perpendicular to the wavenumber mismatch. Motivated by recent experiments, we examine the annihilation process of defects in patterns with wavenumber near to band center, where the motion of the defects is dominated by the interaction. The comparison with the experiments shows that this process can be described even quantitatively within the framework of Ginzburg-Landau theory.

  10. Direct measurement of lattice dynamics and optical phonon excitation in semiconductor nanocrystals using femtosecond stimulated Raman spectroscopy.

    PubMed

    Hannah, Daniel C; Brown, Kristen E; Young, Ryan M; Wasielewski, Michael R; Schatz, George C; Co, Dick T; Schaller, Richard D

    2013-09-01

    We report femtosecond stimulated Raman spectroscopy measurements of lattice dynamics in semiconductor nanocrystals and characterize longitudinal optical (LO) phonon production during confinement-enhanced, ultrafast intraband relaxation. Stimulated Raman signals from unexcited CdSe nanocrystals produce a spectral shape similar to spontaneous Raman signals. Upon photoexcitation, stimulated Raman amplitude decreases owing to experimentally resolved ultrafast phonon generation rates within the lattice. We find a ∼600  fs, particle-size-independent depletion time attributed to hole cooling, evidence of LO-to-acoustic down-conversion, and LO phonon mode softening. PMID:25166708

  11. The Gell-Mann - Okubo Mass Relation among Baryons from Fully-Dynamical, Mixed-Action Lattice QCD

    SciTech Connect

    Konstantinos Orginos; Silas Beane; Martin Savage

    2007-10-01

    We explore the Gell-Mann - Okubo mass relation among the octet baryons using fully-dynamical, mixed-action (domain-wall on rooted-staggered) lattice QCD calculations at a lattice spacing of b {approx} 0.125 fm and pion masses of m{sub pi} {approx} 290 MeV, 350 MeV, 490 MeV and 590 MeV. Deviations from the Gell-Mann - Okubo mass relation are found to be small at each quark mass.

  12. Strong coupling constant from vacuum polarization functions in three-flavor lattice QCD with dynamical overlap fermions

    SciTech Connect

    Shintani, E.; Aoki, S.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Onogi, T.; Yamada, N.

    2010-10-25

    We determine the strong coupling constant {alpha}{sub s} from a lattice calculation of vacuum polarization functions (VPF) in three-flavor QCD with dynamical overlap fermions. Fitting lattice data of VPF to the continuum perturbative formula including the operator product expansion, we extract the QCD scale parameter {Lambda}{sub MS}{sup -(3)}. At the Z boson mass scale, we obtain {alpha}{sub s}{sup (5)}(M{sub z}) = 0.1181(3)(+14/-12), where the first error is statistical and the second is our estimate of various systematic uncertainties.

  13. Local equilibrium solutions in simple anisotropic cosmological models, as described by relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shogin, Dmitry; Amund Amundsen, Per

    2016-10-01

    We test the physical relevance of the full and the truncated versions of the Israel–Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.

  14. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    SciTech Connect

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S.

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  15. Anisotropic lattice thermal expansion of PbFeBO4: A study by X-ray and neutron diffraction, Raman spectroscopy and DFT calculations

    SciTech Connect

    Murshed, M. Mangir; Mendive, Cecilia B.; Curti, Mariano; Nénert, Gwilherm; Kalita, Patricia E.; Lipinska, Kris; Cornelius, Andrew L.; Huq, Ashfia; Gesing, Thorsten M.

    2014-11-01

    We present the lattice thermal expansion of mullite-type PbFeBO4 in this study. The thermal expansion coefficients of the metric parameters were obtained from composite data collected from temperature-dependent neutron and X-ray powder diffraction between 10 K and 700 K. The volume thermal expansion was modeled using extended Grüneisen first-order approximation to the zero-pressure equation of state. The additive frame of the model includes harmonic, quasi-harmonic and intrinsic anharmonic potentials to describe the change of the internal energy as a function of temperature. Moreover, the unit-cell volume at zero-pressure and 0 K was optimized during the DFT simulations. Harmonic frequencies of the optical Raman modes at the Γ-point of the Brillouin zone at 0 K were also calculated by DFT, which help to assign and crosscheck the experimental frequencies. The low-temperature Raman spectra showed significant anomaly in the antiferromagnetic regions, leading to softening or hardening of some phonons. Selected modes were analyzed using a modified Klemens model. The shift of the frequencies and the broadening of the line-widths helped to understand the anharmonic vibrational behaviors of the PbO4, FeO6 and BO3 polyhedra as a function of temperature.

  16. Anisotropic lattice thermal expansion of PbFeBO4: A study by X-ray and neutron diffraction, Raman spectroscopy and DFT calculations

    DOE PAGESBeta

    Murshed, M. Mangir; Mendive, Cecilia B.; Curti, Mariano; Nénert, Gwilherm; Kalita, Patricia E.; Lipinska, Kris; Cornelius, Andrew L.; Huq, Ashfia; Gesing, Thorsten M.

    2014-11-01

    We present the lattice thermal expansion of mullite-type PbFeBO4 in this study. The thermal expansion coefficients of the metric parameters were obtained from composite data collected from temperature-dependent neutron and X-ray powder diffraction between 10 K and 700 K. The volume thermal expansion was modeled using extended Grüneisen first-order approximation to the zero-pressure equation of state. The additive frame of the model includes harmonic, quasi-harmonic and intrinsic anharmonic potentials to describe the change of the internal energy as a function of temperature. Moreover, the unit-cell volume at zero-pressure and 0 K was optimized during the DFT simulations. Harmonic frequencies ofmore » the optical Raman modes at the Γ-point of the Brillouin zone at 0 K were also calculated by DFT, which help to assign and crosscheck the experimental frequencies. The low-temperature Raman spectra showed significant anomaly in the antiferromagnetic regions, leading to softening or hardening of some phonons. Selected modes were analyzed using a modified Klemens model. The shift of the frequencies and the broadening of the line-widths helped to understand the anharmonic vibrational behaviors of the PbO4, FeO6 and BO3 polyhedra as a function of temperature.« less

  17. The Low Earth Orbit validation of a dynamic and anisotropic trapped radiation model through ISS measurements

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Nealy, John E.; Wilson, John W.

    2011-10-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of radiation environmental models, nuclear transport code algorithms and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo-Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate six degree of freedom (DOF) description of ISS trajectory and orientation. It is imperative that we understand ISS exposures dynamically for crew career planning, and insure that the regulatory requirements of keeping exposure as low as reasonably achievable (ALARA) are adequately implemented. This is especially true as ISS nears some form of completion with increasing complexity, resulting in a larger drag coefficient, and requiring operation at higher altitudes with increased exposure rates. In this paper ISS environmental model is configured for 11A (circa mid 2005), and uses non-isotropic and dynamic geomagnetic transmission and trapped proton models. ISS 11A and LEO model validations are important steps in preparation for the design and validation for the next generation manned vehicles. While the described cutoff rigidity, trapped proton and electron formalisms as coded in a package named GEORAD (GEOmagnetic RADiation) and a web interface named OLTARIS (On-line Tool for the Assessment of Radiation in Space) are applicable to the LEO, Medium Earth Orbit (MEO) and

  18. Lattice dynamics and Born instability in yttrium aluminum garnet, Y3A15O12

    NASA Astrophysics Data System (ADS)

    Goel, Prabhatasree; Mittal, R.; Choudhury, N.; Chaplot, S. L.

    2010-02-01

    We report lattice dynamics calculations of various microscopic and macroscopic vibrational and thermodynamic properties of yttrium aluminum garnet (YAG), Y3Al5O12, as a function of pressure up to 100 GPa and temperature up to 1500 K. YAG is an important solid-state laser material with several technological applications. Garnet has a complex structure with several interconnected dodecahedra, octahedra and tetrahedra. Unlike other aluminosilicate garnets, there are no distinct features to distinguish between intramolecular and intermolecular vibrations of the crystal. At ambient pressure, low energy phonons involving mainly the vibrations of yttrium atoms play a primary role in the manifestations of elastic and thermodynamic behavior. The aluminum atoms in tetrahedral and octahedral coordination are found to be dynamically distinct. Garnet's stability can be discerned from the response of its phonon frequencies to increasing pressure. The dynamics of both octahedral and tetrahedral aluminum atoms undergo radical changes under compression which have an important bearing on their high pressure and temperature properties. At 100 GPa, YAG develops a large phonon bandgap (90-110 meV) and its microscopic and macroscopic physical properties are found to be profoundly different from that at the ambient pressure phase. There are significant changes in the high pressure thermal expansion and specific heat. The mode Grüneisen parameters show significant changes in the low energy range with pressure. Our studies show that the YAG structure becomes mechanically unstable around P = 108 GPa due to the violation of the Born stability criteria. Although this does not rule out thermodynamic crossover to a lower free energy phase at lower pressure, this places an upper bound of P = 110 GPa for the mechanical stability of YAG.

  19. Extracting Electric Polarizabilities from Lattice QCD

    SciTech Connect

    Will Detmold, William Detmold, Brian Tiburzi, Andre Walker-Loud

    2009-05-01

    Charged and neutral, pion and kaon electric polarizabilities are extracted from lattice QCD using an ensemble of anisotropic gauge configurations with dynamical clover fermions. We utilize classical background fields to access the polarizabilities from two-point correlation functions. Uniform background fields are achieved by quantizing the electric field strength with the proper treatment of boundary flux. These external fields, however, are implemented only in the valence quark sector. A novel method to extract charge particle polarizabilities is successfully demonstrated for the first time.

  20. Understanding anisotropic growth behavior of hexagonal ice on a molecular scale: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Seo, Myungjoo; Jang, Eunseon; Kim, Kyeongjin; Choi, Saehyun; Kim, Jun Soo

    2012-10-01

    Although distinct growth behaviors on different faces of hexagonal ice have long been suggested, their understanding on a molecular scale has been hampered due to experimental difficulties near interfaces. We present a molecular dynamics simulation study to unravel the molecular origin of anisotropy in the growth kinetics of hexagonal ice by visualizing the formation of transient water structures in the growing ice interface. During ice growth, the formation of transient structures and their rearrangement to the final ice configuration are observed irrespective of growth direction. However, we find that their structure and duration differ significantly depending on growth direction. In the direction perpendicular to the basal face of hexagonal ice along which growth occurs most slowly, a two-dimensional transient structure, which is formed by competing hexagonal and cubic arrangements within the same layer, persists for a significant period of time, contrasted with short-lived transient structures in other directions. This observation of such transient water structures and their rearrangement during ice growth provides a clear explanation of different growth rates on each face of hexagonal ice on a molecular scale.

  1. Formation of double glass in binary mixtures of anisotropic particles: Dynamic heterogeneities in rotations and displacements

    NASA Astrophysics Data System (ADS)

    Takae, Kyohei; Onuki, Akira

    2013-10-01

    We study glass behavior in a mixture of elliptic and circular particles in two dimensions at low temperatures using an orientation-dependent Lennard-Jones potential. The ellipses have a mild aspect ratio (˜1.2) and tend to align at low temperatures, while the circular particles play the role of impurities disturbing the ellipse orientations at a concentration of 20%. These impurities have a size smaller than that of the ellipses and attract them in the homeotropic alignment. As a result, the coordination number around each impurity is mostly 5 or 4 in glassy states. We realize double glass, where both the orientations and the positions are disordered but still hold mesoscopic order. We find a strong heterogeneity in the flip motions of the ellipses, which sensitively depends on the impurity clustering. In our model, a small fraction of the ellipses still undergo flip motions relatively rapidly even at low temperatures. In contrast, the nonflip rotations (with angle changes not close to ±π) are mainly caused by the cooperative configuration changes involving many particles. Then, there arises a long-time heterogeneity in the nonflip rotations closely correlated with the dynamic heterogeneity in displacements.

  2. Formation of double glass in binary mixtures of anisotropic particles: dynamic heterogeneities in rotations and displacements.

    PubMed

    Takae, Kyohei; Onuki, Akira

    2013-10-01

    We study glass behavior in a mixture of elliptic and circular particles in two dimensions at low temperatures using an orientation-dependent Lennard-Jones potential. The ellipses have a mild aspect ratio (∼1.2) and tend to align at low temperatures, while the circular particles play the role of impurities disturbing the ellipse orientations at a concentration of 20%. These impurities have a size smaller than that of the ellipses and attract them in the homeotropic alignment. As a result, the coordination number around each impurity is mostly 5 or 4 in glassy states. We realize double glass, where both the orientations and the positions are disordered but still hold mesoscopic order. We find a strong heterogeneity in the flip motions of the ellipses, which sensitively depends on the impurity clustering. In our model, a small fraction of the ellipses still undergo flip motions relatively rapidly even at low temperatures. In contrast, the nonflip rotations (with angle changes not close to ±π) are mainly caused by the cooperative configuration changes involving many particles. Then, there arises a long-time heterogeneity in the nonflip rotations closely correlated with the dynamic heterogeneity in displacements. PMID:24229182

  3. Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations.

    PubMed

    Meena, Santosh Kumar; Sulpizi, Marialore

    2013-12-01

    We use molecular dynamics simulations in order to understand the microscopic origin of the asymmetric growth mechanism in gold nanorods. We provide the first atomistic model of different surfaces on gold nanoparticles in a growing electrolyte solution, and we describe the interaction of the metal with the surfactants, namely, cetyltrimethylammonium bromide (CTAB) and the ions. An innovative aspect is the inclusion of the role of the surfactants, which are explicitly modeled. We find that on all the investigated surfaces, namely, (111), (110), and (100), CTAB forms a layer of distorted cylindrical micelles where channels among micelles provide direct ion access to the surface. In particular, we show how AuCl2(-) ions, which are found in the growth solution, can freely diffuse from the bulk solution to the gold surface. We also find that the (111) surface exhibits a higher CTAB packing density and a higher electrostatic potential. Both elements would favor the growth of gold nanoparticles along the (111) direction. These findings are in agreement with the growth mechanisms proposed by the experimental groups of Murphy and Mulvaney. PMID:24224887

  4. Droplet impact dynamics for two liquids impinging on anisotropic superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Pearson, John T.; Maynes, Daniel; Webb, Brent W.

    2012-09-01

    Droplet impingement experiments were performed on grooved hydrophobic surfaces with cavity fractions of 0, 80, and 93 % using droplets of water and a 50 %/50 % water/glycerol mixture. The influence of liquid viscosity, cavity fraction, and spreading direction, relative to the surface grooves, is explored qualitatively and quantitatively. The maximum droplet spread diameter, velocity of the rebounding jet, and the time delay between droplet impact and jet emission were characterized for Weber numbers, We, based on droplet impact speed and diameter, up to 500. The unequal shear stresses and contact angles influence the maximum spread diameters in the two primary spread directions. At We > 100, the ratio of the spread diameter along the direction of the grooves to the spread diameter perpendicular to the grooves increases above unity with increasing We. The maximum droplet spread diameter is compared to recent predictive models, and the data reveal differing behavior for the two fluids considered. The results also reveal the existence of very high relative jet velocities in the range 5 ≤ We ≤ 15 for water droplets, while such jets were not observed for the more viscous mixture. Further, in the range 115 ≤ We ≤ 265, the water/glycerol jet formation dynamics are radically different from the water behavior. Most evident is the existence of two-pronged jets, which arise from the anisotropy of the surface and the unequal shear stresses and contact angles that prevail on the surfaces. It is these influences that give rise to differences in the maximum spread diameters in the two primary spread directions. Similar two-pronged jet emission was observed for water over the very narrow range of We from 91 to 96. The issuing jet velocities were also observed to increase with increasing cavity fraction for both fluids and over the entire range of We explored. Lastly, the elapsed time between droplet impact and jet emission decreased with increasing cavity fraction.

  5. Brownian dynamics simulations of coagulation of dilute uniform and anisotropic particles under shear flow spanning low to high Peclet numbers

    NASA Astrophysics Data System (ADS)

    Mohammadi, Maziar; Larson, Eric D.; Liu, Jun; Larson, Ronald G.

    2015-01-01

    Brownian dynamics simulations are performed to study the binding kinetics in the dilute-sphere limit by considering interactions of two spheres under shear flow across the entire range of Peclet numbers, spanning both perikinetic (diffusion-controlled) and orthokinetic (flow-controlled) coagulation regimes. The dilute regime is attained by carrying out two-sphere simulations in periodic boxes of different sizes and aspect ratios and extrapolating toward the infinite box limit. Effects of particle type (Janus and isotropic particles), shear rate, hydrodynamic interactions, and inter-particle potential are explored. We find that rectangular boxes with appropriate aspect ratios overcome a particle "shadow effect" that cannot be overcome with cubic boxes unless huge boxes are used. With rectangular boxes, we obtain converged binding kinetics for the whole Peclet number range, while cubic boxes of increasing size allow converged results only in the absence of flow. We consider the effect of binding both in a secondary minimum controlled by a combination of electrostatic repulsion and depletion attraction, as well as in a primary minimum governed by induced-dipole attraction. Results are computed using both realistic interaction potentials and by replacing the potential with a simple cutoff gap distance at which binding is deemed to occur. Results agree with several existing reports including Smoluchowski predictions in the zero- and infinite-shear-rate limits, and high-Pe perturbation results of Feke and Schowalter [J. Fluid Mech. 133, 17-35 (1983)] at Peclet numbers (Pe) above 100. Finally, we compute binding times for anisotropic Janus particles which have both repulsive and attractive faces, for a wide range of Pe number.

  6. First principles analysis of lattice dynamics for Fe-based superconductors and entropically-stabilized phases

    SciTech Connect

    Hahn, Steven

    2012-01-01

    Modern calculations are becoming an essential, complementary tool to inelastic x-ray scattering studies, where x-rays are scattered inelastically to resolve meV phonons. Calculations of the inelastic structure factor for any value of Q assist in both planning the experiment and analyzing the results. Moreover, differences between the measured data and theoretical calculations help identify important new physics driving the properties of novel correlated systems. We have used such calculations to better and more e ciently measure the phonon dispersion and elastic constants of several iron pnictide superconductors. This dissertation describes calculations and measurements at room temperature in the tetragonal phase of CaFe{sub 2}As{sub 2} and LaFeAsO. In both cases, spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improves the agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase. In addition, we discuss a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD), which goes beyond the harmonic approximation to include phonon-phonon interactions and produce a temperature-dependent phonon dispersion. We used this technique to study the HCP to BCC transition in beryllium.

  7. Topological dynamics and current-induced motion in a skyrmion lattice

    NASA Astrophysics Data System (ADS)

    Martinez, J. C.; Jalil, M. B. A.

    2016-03-01

    We study the Thiele equation for current-induced motion in a skyrmion lattice through two soluble models of the pinning potential. Comprised by a Magnus term, a dissipative term and a pinning force, Thiele’s equation resembles Newton’s law but in virtue of the topological character to the first, it differs significantly from Newtonian mechanics and because the Magnus force is dominant, unlike its mechanical counterpart—the Coriolis force—skyrmion trajectories do not necessarily have mechanical counterparts. This is important if we are to understand skyrmion dynamics and tap into its potential for data-storage technology. We identify a pinning threshold velocity for the one-dimensional pinning potential and for a two-dimensional attractive potential we find a pinning point and the skyrmion trajectories toward that point are spirals whose frequency (compare Kepler’s second law) and amplitude-decay depend only on the Gilbert constant and potential at the pinning point. Other scenarios, e.g. other choices of initial spin velocity, a repulsive potential, etc are also investigated.

  8. First-principles study of the electronic, optical properties and lattice dynamics of tantalum oxynitride.

    PubMed

    Li, Pan; Fan, Weiliu; Li, Yanlu; Sun, Honggang; Cheng, Xiufeng; Zhao, Xian; Jiang, Minhua

    2010-08-01

    First-principles calculations of the electronic, optical properties and lattice dynamics of tantalum oxynitride are performed with the density functional theory plane-wave pseudopotential method. The analysis of the electronic structure shows a covalent nature in Ta-N bonds and Ta-O bonds. The hybridization of anion 2p and Ta 5d states results in enhanced dispersion of the valence band, raising the top of the valence band and leading to the visible-light response in TaON. It has a high dielectric constant, and the anisotropy is displayed obviously in the lower energy region. Our calculation indicated that TaON has excellent dielectric properties along [010] direction. Various optical properties, including the reflectivity, absorption coefficient, refractive index, and the energy-loss spectrum are derived from the complex dielectric function. We also present phonon dispersion relation, zone-center optical mode frequency, density of phonon states, and some thermodynamic properties. The experimental IR modes (B(u) at 808 cm(-1) and A(u) at 863 cm(-1)) are reproduced well and assigned to a combination of stretching and bending vibrations for the Ta-N bond and Ta-O bond. The thermodynamic properties of TaON, such as heat capacity and Debye temperature, which were important parameters for the measurement of crystal physical properties, were first given for reference. Our investigations provide useful information for the potential application of this material.

  9. Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells

    NASA Astrophysics Data System (ADS)

    Lloyd-Williams, Jonathan H.; Monserrat, Bartomeu

    2015-11-01

    We study the direct calculation of total energy derivatives for lattice dynamics and electron-phonon coupling calculations using supercell matrices with nonzero off-diagonal elements. We show that it is possible to determine the response of a periodic system to a perturbation characterized by a wave vector with reduced fractional coordinates (m1/n1,m2/n2,m3/n3) using a supercell containing a number of primitive cells equal to the least common multiple of n1,n2, and n3. If only diagonal supercell matrices are used, a supercell containing n1n2n3 primitive cells is required. We demonstrate that the use of nondiagonal supercells significantly reduces the computational cost of obtaining converged zero-point energies and phonon dispersions for diamond and graphite. We also perform electron-phonon coupling calculations using the direct method to sample the vibrational Brillouin zone with grids of unprecedented size, which enables us to investigate the convergence of the zero-point renormalization to the thermal and optical band gaps of diamond.

  10. Lattice dynamics and elastic properties of the 4f electron system: CeN

    NASA Astrophysics Data System (ADS)

    Kanchana, V.; Vaitheeswaran, G.; Zhang, Xinxin; Ma, Yanming; Svane, A.; Eriksson, O.

    2011-11-01

    The electronic structure, structural stability, and lattice dynamics of cerium mononitride are investigated using ab initio density-functional methods involving an effective potential derived from the generalized gradient approximation and without special treatment for the 4f states. The 4f states are hence allowed to hop from site to site, without an on-site Hubbard U, and contribute to the bonding, in a picture often referred to as itinerant. It is argued that this picture is appropriate for CeN at low temperatures, while the anomalous thermal expansion observed at elevated temperatures indicates entropy-driven localization of the Ce f electrons, similar to the behavior of elemental cerium. The elastic constants are predicted from the total energy variation of strained crystals and are found to be large, typical for nitrides. The phonon dispersions are calculated showing no soft modes, and the Grüneisen parameter behaves smoothly. The electronic structure is also calculated using the quasiparticle self-consistent GW approximation (where G denotes the Green's function and W denotes the screened interaction). The Fermi surface of CeN is dominated by large egg-shaped electron sheets centered on the X points, which stem from the p-f mixing around the X point. In contrast, assuming localized f electrons leads to a semimetallic picture with small band overlaps around X.

  11. Lattice dynamics of II-VI mixed semiconductor ZnS 1- xSe x

    NASA Astrophysics Data System (ADS)

    Kushwaha, A. K.

    2008-09-01

    Lattice dynamical properties of II-VI compounds having zinc-blende structure have been calculated by three-body shell model. This model incorporates the effect of the short-range repulsive interactions up to and including the second nearest neighbours, in addition to the long-range Coulombic interactions in the frame work of the rigid-shell model with both the ions are polarizable. The model involves in total eleven disposable parameters. Using the above proposed model the phonon dispersion relations for mixed II-VI semiconductor ZnS 1- xSe x are plotted. We find an overall good agreement with the experimental results. The application of the present model has been made to calculate the phonon dispersion relations of ZnS, ZnSe and mixed semiconductor ZnS 1- xSe x. The comparison of the theoretical results with the available experimental has been made along high symmetry directions. A reasonably good agreement is observed between theory and experiments.

  12. Lattice dynamics of BaFe2X3(X=S,Se) compounds

    DOE PAGESBeta

    Popović, Z. V.; Šćepanović, M.; Lazarević, N.; Opačić, M.; Radonjić, M. M.; Tanasković, D.; Lei, Hechang; Petrovic, C.

    2015-02-27

    We present the Raman scattering spectra of the S=2 spin ladder compounds BaFe₂X₃ (X=S,Se) in a temperature range between 20 and 400 K. Although the crystal structures of these two compounds are both orthorhombic and very similar, they are not isostructural. The unit cell of BaFe₂S₃ (BaFe₂Se₃) is base-centered Cmcm (primitive Pnma), giving 18 (36) modes to be observed in the Raman scattering experiment. We have detected almost all Raman active modes, predicted by factor group analysis, which can be observed from the cleavage planes of these compounds. Assignment of the observed Raman modes of BaFe₂S(Se)₃ is supported by themore » lattice dynamics calculations. The antiferromagnetic long-range spin ordering in BaFe₂Se₃ below TN=255K leaves a fingerprint both in the A1g and B3g phonon mode linewidth and energy.« less

  13. Dynamical polarization function, plasmons, and screening in silicene and other buckled honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Nicol, E. J.

    2014-05-01

    We explore the dielectric properties of graphene-like two-dimensional Kane-Mele topological insulators manifest in buckled honeycomb lattices (such as silicene and germanene). The effect of an on-site potential difference (Δz) between sublattices is given particular attention. We present the results for the real and imaginary parts of the dynamical polarization function. We show that these results display features of three regimes (topological insulator, valley-spin polarized metal, and trivial band insulator) and may be used to extract information on the strength of the intrinsic spin-orbit coupling. We study the inverse dielectric function and provide numerical results for the plasmon branch. We discuss the behavior of the plasmon as a function of sublattice potential difference and show that the behavior of the plasmon branch as Δz is varied is dependent on the location of the chemical potential with respect to the gaps. The static polarization is discussed and numerical results for the screening of a charged impurity are provided. We observe a beating phenomenon in the effective potential which is dependent on Δz.

  14. Ion-Specific Control of the Self-Assembly Dynamics of a Nanostructured Protein Lattice

    PubMed Central

    2015-01-01

    Self-assembling proteins offer a potential means of creating nanostructures with complex structure and function. However, using self-assembly to create nanostructures with long-range order whose size is tunable is challenging, because the kinetics and thermodynamics of protein interactions depend sensitively on solution conditions. Here we systematically investigate the impact of varying solution conditions on the self-assembly of SbpA, a surface-layer protein from Lysinibacillus sphaericus that forms two-dimensional nanosheets. Using high-throughput light scattering measurements, we mapped out diagrams that reveal the relative yield of self-assembly of nanosheets over a wide range of concentrations of SbpA and Ca2+. These diagrams revealed a localized region of optimum yield of nanosheets at intermediate Ca2+ concentration. Replacement of Mg2+ or Ba2+ for Ca2+ indicates that Ca2+ acts both as a specific ion that is required to induce self-assembly and as a general divalent cation. In addition, we use competitive titration experiments to find that 5 Ca2+ bind to SbpA with an affinity of 67.1 ± 0.3 μM. Finally, we show via modeling that nanosheet assembly occurs by growth from a negligibly small critical nucleus. We also chart the dynamics of nanosheet size over a variety of conditions. Our results demonstrate control of the dynamics and size of the self-assembly of a nanostructured lattice, the constituents of which are one of a class of building blocks able to form novel hybrid nanomaterials. PMID:25494454

  15. Ion-specific control of the self-assembly dynamics of a nanostructured protein lattice.

    PubMed

    Rad, Behzad; Haxton, Thomas K; Shon, Albert; Shin, Seong-Ho; Whitelam, Stephen; Ajo-Franklin, Caroline M

    2015-01-27

    Self-assembling proteins offer a potential means of creating nanostructures with complex structure and function. However, using self-assembly to create nanostructures with long-range order whose size is tunable is challenging, because the kinetics and thermodynamics of protein interactions depend sensitively on solution conditions. Here we systematically investigate the impact of varying solution conditions on the self-assembly of SbpA, a surface-layer protein from Lysinibacillus sphaericus that forms two-dimensional nanosheets. Using high-throughput light scattering measurements, we mapped out diagrams that reveal the relative yield of self-assembly of nanosheets over a wide range of concentrations of SbpA and Ca(2+). These diagrams revealed a localized region of optimum yield of nanosheets at intermediate Ca(2+) concentration. Replacement of Mg(2+) or Ba(2+) for Ca(2+) indicates that Ca(2+) acts both as a specific ion that is required to induce self-assembly and as a general divalent cation. In addition, we use competitive titration experiments to find that 5 Ca(2+) bind to SbpA with an affinity of 67.1 ± 0.3 μM. Finally, we show via modeling that nanosheet assembly occurs by growth from a negligibly small critical nucleus. We also chart the dynamics of nanosheet size over a variety of conditions. Our results demonstrate control of the dynamics and size of the self-assembly of a nanostructured lattice, the constituents of which are one of a class of building blocks able to form novel hybrid nanomaterials.

  16. Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li4SiO4 and its capability for CO2 capture

    SciTech Connect

    Duan, Yuhua; Parlinski, K.

    2011-01-01

    The structural, electronic, lattice dynamical, optical, thermodynamic, and CO{sub 2} capture properties of monoclinic and triclinic phases of Li{sub 4}SiO{sub 4} are investigated by combining density functional theory with phonon lattice dynamics calculations. We found that these two phases have some similarities in their bulk and thermodynamic properties. The calculated bulk modulus and the cohesive energies of these two phases are close to each other. Although both of them are insulators, the monoclinic phase of Li{sub 4}SiO{sub 4} has a direct band gap of 5.24 eV while the triclinic Li{sub 4}SiO{sub 4} phase has an indirect band gap of 4.98 eV. In both phases of Li{sub 4}SiO{sub 4}, the s orbital of O mainly contributes to the lower-energy second valence band (VB{sub 2}) and the p orbitals contribute to the fist valence band (VB{sub 1}) and the conduction bands (CBs). The s orbital of Si mainly contributes to the lower portions of the VB1 and VB{sub 2}, and Si p orbitals mainly contribute to the higher portions of the VB{sub 1} and VB{sub 2}. The s and p orbitals of Li contribute to both VBs and to CBs, and Li p orbitals have a higher contribution than the Li s orbital. There is possibly a phonon soft mode existing in triclinic {gamma}-Li{sub 4}SiO{sub 4}; in the monoclinic Li{sub 4}SiO{sub 4}, there are three phonon soft modes, which correspond to the one type of Li disordered over a few sites. Their LO-TO splitting indicates that both phases of Li{sub 4}SiO{sub 4} are polar anisotropic materials. The calculated infrared absorption spectra for LO and TO modes are different for these two phases of Li{sub 4}SiO{sub 4}. The calculated relationships of the chemical potential versus temperature and CO{sub 2} pressure for reaction of Li{sub 4}SiO{sub 4} with CO{sub 2} shows that Li{sub 4}SiO{sub 4} could be a good candidate for a high-temperature CO{sub 2} sorbent while used for postcombustion capture technology.

  17. Anisotropic Kepler and anisotropic two fixed centres problems

    NASA Astrophysics Data System (ADS)

    Maciejewski, Andrzej J.; Przybylska, Maria; Szumiński, Wojciech

    2016-09-01

    In this paper we show that the anisotropic Kepler problem is dynamically equivalent to a system of two point masses which move in perpendicular lines (or planes) and interact according to Newton's law of universal gravitation. Moreover, we prove that generalised version of anisotropic Kepler problem as well as anisotropic two centres problem are non-integrable. This was achieved thanks to investigation of differential Galois groups of variational equations along certain particular solutions. Properties of these groups yield very strong necessary integrability conditions.

  18. Phase stability and lattice dynamics of ammonium azide under hydrostatic compression.

    PubMed

    Yedukondalu, N; Vaitheeswaran, G; Anees, P; Valsakumar, M C

    2015-11-21

    We have investigated the effect of hydrostatic pressure and temperature on phase stability of hydro-nitrogen solids using dispersion corrected density functional theory calculations. From our total energy calculations, ammonium azide (AA) is found to be the thermodynamic ground state of N4H4 compounds in preference to trans-tetrazene (TTZ), hydro-nitrogen solid-1 (HNS-1) and HNS-2 phases. We have carried out a detailed study on structure and lattice dynamics of the equilibrium phase (AA). AA undergoes a phase transition to TTZ at around ∼39-43 GPa followed by TTZ to HNS-1 at around 80-90 GPa under the studied temperature range 0-650 K. The accelerated and decelerated compression of a and c lattice constants suggest that the ambient phase of AA transforms to a tetragonal phase and then to a low symmetry structure with less anisotropy upon further compression. We have noticed that the angle made by type-II azides with the c-axis shows a rapid decrease and reaches a minimum value at 12 GPa, and thereafter increases up to 50 GPa. Softening of the shear elastic moduli is suggestive of a mechanical instability of AA under high pressure. In addition, we have also performed density functional perturbation theory calculations to obtain the vibrational spectrum of AA at ambient as well as at high pressures. Furthermore, we have made a complete assignment of all the vibrational modes which is in good agreement with the experimental observations at ambient pressure. Moreover, the calculated pressure dependent IR spectra show that the N-H stretching frequencies undergo red and blue-shifts corresponding to strengthening and weakening of hydrogen bonding, respectively, below and above 4 GPa. The intensity of the N-H asymmetric stretching mode B2u is found to diminish gradually and the weak coupling between NH4 and N3 ions makes B1u and B3u modes to degenerate with progression of pressure up to 4 GPa which causes weakening of hydrogen bonding and these effects may lead to a

  19. Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development

    PubMed Central

    Morishita, Yoshihiro; Kuroiwa, Atsushi; Suzuki, Takayuki

    2015-01-01

    Tissue-level characterization of deformation dynamics is crucial for understanding organ morphogenetic mechanisms, especially the interhierarchical links among molecular activities, cellular behaviors and tissue/organ morphogenetic processes. Limb development is a well-studied topic in vertebrate organogenesis. Nevertheless, there is still little understanding of tissue-level deformation relative to molecular and cellular dynamics. This is mainly because live recording of detailed cell behaviors in whole tissues is technically difficult. To overcome this limitation, by applying a recently developed Bayesian approach, we here constructed tissue deformation maps for chick limb development with high precision, based on snapshot lineage tracing using dye injection. The precision of the constructed maps was validated with a clear statistical criterion. From the geometrical analysis of the map, we identified three characteristic tissue growth modes in the limb and showed that they are consistent with local growth factor activity and cell cycle length. In particular, we report that SHH signaling activity changes dynamically with developmental stage and strongly correlates with the dynamic shift in the tissue growth mode. We also found anisotropic tissue deformation along the proximal-distal axis. Morphogenetic simulation and experimental studies suggested that this directional tissue elongation, and not local growth, has the greatest impact on limb shaping. This result was supported by the novel finding that anisotropic tissue elongation along the proximal-distal axis occurs independently of cell proliferation. Our study marks a pivotal point for multi-scale system understanding in vertebrate development. PMID:25858459

  20. Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory

    NASA Astrophysics Data System (ADS)

    Qin, Hong

    2014-10-01

    The dynamics of charged particles in general linear focusing lattices is analyzed using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The general focusing lattices are allowed to include quadrupole, skew-quadrupole, solenoidal, and dipole components, as well as variation of beam energy and torsion of the fiducial orbit. The scalar envelope function is generalized into an envelope matrix, and the scalar envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation. The phase advance is generalized into a 4D symplectic rotation, or an U(2) element. Other components of the original CS theory, such as the CS invariant, transfer matrix, and Twiss functions all have their counterparts in the generalized theory with remarkably similar expressions. The gauge group of the generalized theory is analyzed. If the gauge freedom is fixed with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space quantum mechanics and optics has been recently realized. It is shown that the spectral and structural stability properties of a general focusing lattice are uniquely determined by the generalized phase advance. For structural stability, the generalized CS theory developed enables application of the Krein-Moser theory to significantly simplify the theoretical and numerical analysis. The generalized CS theory provides an effective tool to study the coupled dynamics of high-intensity charged particle beams and to discover more optimized lattice designs in the larger parameter space of general focusing lattices. Research supported by the U.S. Department of Energy.

  1. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

    NASA Astrophysics Data System (ADS)

    Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel

    2016-02-01

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.

  2. Perspectives in Lattice QCD

    NASA Astrophysics Data System (ADS)

    Kuramashi, Yoshinobu

    2007-12-01

    Preface -- Fixed point actions, symmetries and symmetry transformations on the lattice / P. Hasenfratz -- Algorithms for dynamical fennions / A. D. Kennedy -- Applications of chiral perturbation theory to lattice QCD / Stephen R. Sharpe -- Lattice QCD with a chiral twist / S. Sint -- Non-perturbative QCD: renormalization, O(A) - Improvement and matching to Heavy Quark effective theory / Rainer Sommer.

  3. First-Principles Study of Lattice Dynamics, Structural Phase Transition, and Thermodynamic Properties of Barium Titanate

    NASA Astrophysics Data System (ADS)

    Zhang, Huai-Yong; Zeng, Zhao-Yi; Zhao, Ying-Qin; Lu, Qing; Cheng, Yan

    2016-08-01

    Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO3) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO3 and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO3 among four phases and the thermodynamic properties of BaTiO3 in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral→orthorhombic→tetragonal→cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient αV, heat capacity CV, Grüneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO3 are estimated from 0 K to 200 K.

  4. Improved understanding of the dynamic response in anisotropic directional composite materials through the combination of experiments and modeling

    NASA Astrophysics Data System (ADS)

    Alexander, C.

    2013-06-01

    Recently there has been renewed interest in the dynamic response of composite materials; specifically low density epoxy resin binders strengthened with continuous reinforcing fibers. This is in part due to the widespread use of carbon fiber composites in military, commercial, industrial, and aerospace applications. The design community requires better understanding of these materials in order to make full use of their unique properties. Experimental testing has been performed on a unidirectional carbon fiber - epoxy composite, engineered to have high uniformity and low porosity. Planar impact testing was performed at the Shock Thermodynamics Applied Research (STAR) facility at Sandia National Labs resulting in pressures up to 15 GPa in the composite material. Results illustrate the anisotropic nature of the response under shock loading. Along the fiber direction, a two-wave structure similar to typical elastic-plastic response is observed, however, when shocked transverse to the fibers, only a single bulk shock wave is detected. The two-wave structure persists when impact occurs at angles up to 45 degrees off the fiber direction. At higher pressures, the epoxy matrix dissociates resulting in a loss of anisotropy. Details of the experimental configurations and results will be presented and discussed. Greater understanding of the mechanisms responsible for the observed response has been achieved through the use of numerical modeling of the system at the micromechanical level using the CTH hydrocode. From the simulation results it is evident that the observed two-wave structure in the longitudinal fiber direction is the result of a fast moving elastic precursor wave traveling in the carbon fibers ahead of the bulk response in the epoxy resin. Similarly, in the transverse direction, results show a collapse of the resin component consistent with the experimental observation of a single shock wave traveling at speeds associated with bulk carbon. These results will be

  5. Quantum dynamics of charge transfer on the one-dimensional lattice: Wave packet spreading and recurrence

    NASA Astrophysics Data System (ADS)

    V, N. Likhachev; O, I. Shevaleevskii; G, A. Vinogradov

    2016-01-01

    The wave function temporal evolution on the one-dimensional (1D) lattice is considered in the tight-binding approximation. The lattice consists of N equal sites and one impurity site (donor). The donor differs from other lattice sites by the on-site electron energy E and the intersite coupling C. The moving wave packet is formed from the wave function initially localized on the donor. The exact solution for the wave packet velocity and the shape is derived at different values E and C. The velocity has the maximal possible group velocity v = 2. The wave packet width grows with time ˜ t1/3 and its amplitude decreases ˜ t-1/3. The wave packet reflects multiply from the lattice ends. Analytical expressions for the wave packet front propagation and recurrence are in good agreement with numeric simulations.

  6. Soft mode characteristics of up-up-down-down spin chains: The role of exchange interactions on lattice dynamics

    SciTech Connect

    Guo, Y. J.; Gao, Y. J.; Ge, C. N; Guo, Y. Y.; Yan, Z. B.; Liu, J.-M.

    2015-05-07

    In this work, the dynamics of a diatomic chain is investigated with ↑↑↓↓ spin order in which the dispersion relation characterizes the effect of magnetic interactions on the lattice dynamics. The optical or acoustic mode softening in the center or boundary of the Brillouin zone can be observed, indicating the transitions of ferroelectric state, antiferromagnetic state, or ferroelastic state. The coexistence of the multiferroic orders related to the ↑↑↓↓ spin order represents a type of intrinsic multiferroic with strong ferroelectric order and different microscopic mechanisms.

  7. Dynamical quantum phase transition of a two-component Bose-Einstein condensate in an optical lattice

    SciTech Connect

    Collin, Anssi; Martikainen, Jani-Petri; Larson, Jonas

    2010-01-15

    We study the dynamics of a two-component Bose-Einstein condensate where the two components are coupled via an optical lattice. In particular, we focus on the dynamics as one drives the system through a critical point of a first-order phase transition characterized by a jump in the internal populations. Solving the time-dependent Gross-Pitaevskii equation, we analyze the breakdown of adiabaticity, impact of nonlinear atom-atom scattering, and role of a harmonic trapping potential. Our findings demonstrate that the phase transition is resilient to both contact interaction between atoms and external trapping confinement.

  8. Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides

    NASA Astrophysics Data System (ADS)

    Mei, Antonio Rodolph Bighetti

    Transition metal (TM) nitrides, due to their unique combination of remarkable physical properties and simple NaCl structure, are presently utilized in a broad range of applications and as model systems in the investigation of complex phenomena. Group-IVB nitrides TiN, ZrN, and HfN have transport properties which include superconductivity and high electrical conductivity; consequentially, they have become technologically important as electrodes and contacts in the semiconducting and superconducting industries. The Group-VB nitride VN, which exhibits enhanced ductility, is a fundamental component in superhard and tough nanostructured hard coatings. In this thesis, I investigate the lattice dynamics responsible for controlling superconductivity and electrical conductivities in Group-IVB nitrides and elasticity and structural stability of the NaCl-structure Group-VB nitride VN. Our group has already synthesized high-quality epitaxial TiN, HfN, and CeN layers on MgO(001) substrates. By irradiating the growth surface with high ion fluxes at energies below the bulk lattice-atom displacement threshold, dense epitaxial single crystal TM nitride films with extremely smooth surfaces have been grown using ultra-high vacuum magnetically-unbalanced magnetron sputter deposition. Using this approach, I completed the Group-IVB nitride series by growing epitaxial ZrN/MgO(001) films and then grew Group-VB nitride VN films epitaxially on MgO(001), MgO(011), and MgO(111). The combination of high-resolution x-ray diffraction (XRD) reciprocal lattice maps (RLMs), high-resolution cross-sectional transmission electron microscopy (HR-XTEM), and selected-area electron diffraction (SAED) show that single-crystal stoichiometric ZrN films grown at 450 °C are epitaxially oriented cube-on-cube with respect to their MgO(001) substrates, (001) ZrN||(001)MgO and [100]ZrN||[100]MgO. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm. X-ray reflectivity results reveal that

  9. Optically induced spin wave dynamics in [Co/Pd]{sub 8} antidot lattices with perpendicular magnetic anisotropy

    SciTech Connect

    Pal, S.; Das, K.; Barman, A.; Klos, J. W.; Gruszecki, P.; Krawczyk, M.; Hellwig, O.

    2014-10-20

    We present an all-optical time-resolved measurement of spin wave (SW) dynamics in a series of antidot lattices based on [Co(0.75 nm)/Pd(0.9 nm)]{sub 8} multilayer (ML) systems with perpendicular magnetic anisotropy. The spectra depend significantly on the areal density of the antidots. The observed SW modes are qualitatively reproduced by the plane wave method. The interesting results found in our measurements and calculations at small lattice constants can be attributed to the increase of areal density of the shells with modified magnetic properties probably due to distortion of the regular ML structure by the Ga ion bombardment and to increased coupling between localized modes. We propose and discuss the possible mechanisms for this coupling including exchange interaction, tunnelling, and dipolar interactions.

  10. Investigating the magnetovolume effect in isotropic body-centered-cubic iron using spin-lattice dynamics simulations

    SciTech Connect

    Chui, C. P.; Zhou, Yan

    2014-08-15

    The understanding of the magnetovolume effect lacks explicit consideration of spin-lattice coupling at the atomic level, despite abundant theoretical and experimental studies throughout the years. This research gap is filled by the recently developed spin-lattice dynamics technique implemented in this study, which investigates the magnetovolume effect of isotropic body-centered-cubic (BCC) iron, a topic that has previously been subject to macroscopic analysis only. This approach demonstrates the magnetic anomaly followed by the volumetric changes associated with the effect, each characterized by the corresponding field-induced inflection temperature. The temperature of the heat capacity peaks is useful in determining the temperature for retarding the atomic volume increase. Moreover, this work shows the correlation between the effects of temperature and field strength in determining the equilibrium atomic volume of a ferromagnetic material under a magnetic field.

  11. Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao

    2015-11-01

    Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV , which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.

  12. Investigating the magnetovolume effect in isotropic body-centered-cubic iron using spin-lattice dynamics simulations

    NASA Astrophysics Data System (ADS)

    Chui, C. P.; Zhou, Yan

    2014-08-01

    The understanding of the magnetovolume effect lacks explicit consideration of spin-lattice coupling at the atomic level, despite abundant theoretical and experimental studies throughout the years. This research gap is filled by the recently developed spin-lattice dynamics technique implemented in this study, which investigates the magnetovolume effect of isotropic body-centered-cubic (BCC) iron, a topic that has previously been subject to macroscopic analysis only. This approach demonstrates the magnetic anomaly followed by the volumetric changes associated with the effect, each characterized by the corresponding field-induced inflection temperature. The temperature of the heat capacity peaks is useful in determining the temperature for retarding the atomic volume increase. Moreover, this work shows the correlation between the effects of temperature and field strength in determining the equilibrium atomic volume of a ferromagnetic material under a magnetic field.

  13. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5.

    PubMed

    Mankowsky, R; Subedi, A; Först, M; Mariager, S O; Chollet, M; Lemke, H T; Robinson, J S; Glownia, J M; Minitti, M P; Frano, A; Fechner, M; Spaldin, N A; Loew, T; Keimer, B; Georges, A; Cavalleri, A

    2014-12-01

    Terahertz-frequency optical pulses can resonantly drive selected vibrational modes in solids and deform their crystal structures. In complex oxides, this method has been used to melt electronic order, drive insulator-to-metal transitions and induce superconductivity. Strikingly, coherent interlayer transport strongly reminiscent of superconductivity can be transiently induced up to room temperature (300 kelvin) in YBa2Cu3O6+x (refs 9, 10). Here we report the crystal structure of this exotic non-equilibrium state, determined by femtosecond X-ray diffraction and ab initio density functional theory calculations. We find that nonlinear lattice excitation in normal-state YBa2Cu3O6+x at above the transition temperature of 52 kelvin causes a simultaneous increase and decrease in the Cu-O2 intra-bilayer and, respectively, inter-bilayer distances, accompanied by anisotropic changes in the in-plane O-Cu-O bond buckling. Density functional theory calculations indicate that these motions cause drastic changes in the electronic structure. Among these, the enhancement in the character of the in-plane electronic structure is likely to favour superconductivity.

  14. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5.

    PubMed

    Mankowsky, R; Subedi, A; Först, M; Mariager, S O; Chollet, M; Lemke, H T; Robinson, J S; Glownia, J M; Minitti, M P; Frano, A; Fechner, M; Spaldin, N A; Loew, T; Keimer, B; Georges, A; Cavalleri, A

    2014-12-01

    Terahertz-frequency optical pulses can resonantly drive selected vibrational modes in solids and deform their crystal structures. In complex oxides, this method has been used to melt electronic order, drive insulator-to-metal transitions and induce superconductivity. Strikingly, coherent interlayer transport strongly reminiscent of superconductivity can be transiently induced up to room temperature (300 kelvin) in YBa2Cu3O6+x (refs 9, 10). Here we report the crystal structure of this exotic non-equilibrium state, determined by femtosecond X-ray diffraction and ab initio density functional theory calculations. We find that nonlinear lattice excitation in normal-state YBa2Cu3O6+x at above the transition temperature of 52 kelvin causes a simultaneous increase and decrease in the Cu-O2 intra-bilayer and, respectively, inter-bilayer distances, accompanied by anisotropic changes in the in-plane O-Cu-O bond buckling. Density functional theory calculations indicate that these motions cause drastic changes in the electronic structure. Among these, the enhancement in the character of the in-plane electronic structure is likely to favour superconductivity. PMID:25471882

  15. Anisotropic spinfoam cosmology

    NASA Astrophysics Data System (ADS)

    Rennert, Julian; Sloan, David

    2014-01-01

    The dynamics of a homogeneous, anisotropic universe are investigated within the context of spinfoam cosmology. Transition amplitudes are calculated for a graph consisting of a single node and three links—the ‘Daisy graph’—probing the behaviour a classical Bianchi I spacetime. It is shown further how the use of such single node graphs gives rise to a simplification of states such that all orders in the spin expansion can be calculated, indicating that it is the vertex expansion that contains information about quantum dynamics.

  16. Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Davidson, Ronald C.; Burby, Joshua W.; Chung, Moses

    2014-04-01

    The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a U(2) element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Other components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.

  17. Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory

    SciTech Connect

    Qin, Hong; Davidson, Ronald C.; Burby, Joshua W.; Chung, Moses

    2014-04-08

    The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a Uð2Þ element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Other components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.

  18. Regions of tunneling dynamics for few bosons in an optical lattice subjected to a quench of the imposed harmonic trap

    NASA Astrophysics Data System (ADS)

    Mistakidis, Simeon; Koutentakis, Georgios; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2016-05-01

    Recent experimental advances have introduced an interplay in the trapping length scales of the lattice and the harmonic confinement. This fact motivates the investigation to prepare atomic gases at certain quantum states by utilizing a composite atomic trap consisting of a lattice potential that is embedded inside an overlying harmonic trap. In the present work, we examine how frequency modulations of the overlying harmonic trap stimulate the dynamics of an 1D few-boson gas. The gas is initially prepared at a highly confined state, and the subsequent dynamics induced by a quench of the harmonic trap frequency to a lower value is examined. It is shown that a non-interacting gas always diffuses to the outer sites. In contrast the response of the interacting system is more involved and is dominated by a resonance, which is induced by the bifurcation of the low-lying eigenstates. Our study reveals that the position of the resonance depends both on the atom number and the interaction coupling, manifesting its many body nature. The corresponding mean field treatment as well as the single-band approximation have been found to be inadequate for the description of the tunneling dynamics in the interacting case. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  19. Response to dynamical modulation of the optical lattice for fermions in the Hubbard model

    SciTech Connect

    Xu Zhaoxin; Yang Shuxiang; Sheehy, Daniel E.; Moreno, Juana; Jarrell, Mark; Chiesa, Simone; Su Shiquan; Scalettar, Richard T.

    2011-08-15

    Fermionic atoms in a periodic optical lattice provide a realization of the single-band Hubbard model. Using quantum Monte Carlo simulations along with the maximum-entropy method, we evaluate the effect of a time-dependent perturbative modulation of the optical lattice amplitude on atomic correlations, revealed in the fraction of doubly occupied sites. We find that the effect of modulation depends strongly on the filling--the response of the double occupation is significantly different in the half-filled Mott insulator from that in the doped Fermi liquid region.

  20. Lattice Dynamics of Colloidal Crystals During Photopolymerization of Acrylic Monomer Matrix

    NASA Technical Reports Server (NTRS)

    Sunkara, Hari B.; Benjamin, Penn G.; Donald, Frazier O.; Ramachandran, N.

    1997-01-01

    Polymerization process are the major contributors for observed lattice compression and lattice disorder of the Crystalline Colloidal Arrays (CCA) of silica spheres in polymerized acrylic/methacrylic ester films. The effect of orientation of photocell with respect to the readiation source on Bragg diffraction of CCA indicated the presence of convective stirring in thin fluid system during the photopolymerization that deleteriously affect the periodic array structures. To devise reproducible and more efficient optical filters, experimental methods to minimize or eliminate convective instabilities in monomeric dispersions during polymerization are suggested.

  1. The spin dynamics in distorted kagome lattices: a comparative Raman study.

    PubMed

    Wulferding, D; Lemmens, P; Yoshida, H; Okamoto, Y; Hiroi, Z

    2012-05-01

    Despite the conceptional importance of realizing spin liquids in solid states only few compounds are known. On the other hand the effect of lattice distortions and anisotropies on the magnetic exchange topology and the fluctuation spectrum is an interesting problem. We compare the excitation spectra of the two s = 1/2 kagome lattice compounds, volborthite and vesignieite, using Raman scattering. We demonstrate that even small modifications of the crystal structure may have a huge effect on the phonon spectrum and low-temperature properties.

  2. Impact of Loss on the Wave Dynamics in Photonic Waveguide Lattices

    NASA Astrophysics Data System (ADS)

    Golshani, M.; Weimann, S.; Jafari, Kh.; Nezhad, M. Khazaei; Langari, A.; Bahrampour, A. R.; Eichelkraut, T.; Mahdavi, S. M.; Szameit, A.

    2014-09-01

    We analyze the impact of loss in lattices of coupled optical waveguides and find that, in such a case, the hopping between adjacent waveguides is necessarily complex. This results not only in a transition of the light spreading from ballistic to diffusive, but also in a new kind of diffraction that is caused by loss dispersion. We prove our theoretical results with experimental observations.

  3. Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors.

    PubMed

    Skelton, Jonathan M; Tiana, Davide; Parker, Stephen C; Togo, Atsushi; Tanaka, Isao; Walsh, Aron

    2015-08-14

    We perform a systematic comparison of the finite-temperature structure and properties of four bulk semiconductors (PbS, PbTe, ZnS, and ZnTe) predicted by eight popular exchange-correlation functionals from quasi-harmonic lattice-dynamics calculations. The performance of the functionals in reproducing the temperature dependence of a number of material properties, including lattice parameters, thermal-expansion coefficients, bulk moduli, heat capacities, and phonon frequencies, is evaluated quantitatively against available experimental data. We find that the phenomenological over- and under-binding characteristics of the local-density approximation and the PW91 and Perdew-Burke-Enzerhof (PBE) generalised-gradient approximation (GGA) functionals, respectively, are exaggerated at finite temperature, whereas the PBEsol GGA shows good general performance across all four systems. The Tao-Perdew-Staroverov-Scuseria (TPSS) and revTPSS meta-GGAs provide relatively small improvements over PBE, with the latter being better suited to calculating structural and dynamical properties, but both are considerably more computationally demanding than the simpler GGAs. The dispersion-corrected PBE-D2 and PBE-D3 functionals perform well in describing the lattice dynamics of the zinc chalcogenides, whereas the lead chalcogenides appear to be challenging for these functionals. These findings show that quasi-harmonic calculations with a suitable functional can predict finite-temperature structure and properties with useful accuracy, and that this technique can serve as a means of evaluating the performance of new functionals in the future. PMID:26277159

  4. One-dimensional lattice of oscillators coupled through power-law interactions: continuum limit and dynamics of spatial Fourier modes.

    PubMed

    Gupta, Shamik; Potters, Max; Ruffo, Stefano

    2012-06-01

    We study synchronization in a system of phase-only oscillators residing on the sites of a one-dimensional periodic lattice. The oscillators interact with a strength that decays as a power law of the separation along the lattice length and is normalized by a size-dependent constant. The exponent α of the power law is taken in the range 0≤α<1. The oscillator frequency distribution is symmetric about its mean (taken to be zero) and is nonincreasing on [0,∞). In the continuum limit, the local density of oscillators evolves in time following the continuity equation that expresses the conservation of the number of oscillators of each frequency under the dynamics. This equation admits as a stationary solution the unsynchronized state uniform both in phase and over the space of the lattice. We perform a linear stability analysis of this state to show that when it is unstable, different spatial Fourier modes of fluctuations have different stability thresholds beyond which they grow exponentially in time with rates that depend on the Fourier modes. However, numerical simulations show that at long times all the nonzero Fourier modes decay in time, while only the zero Fourier mode (i.e., the "mean-field" mode) grows in time, thereby dominating the instability process and driving the system to a synchronized state. Our theoretical analysis is supported by extensive numerical simulations.

  5. Up quark mass in lattice QCD with three light dynamical quarks and implications for strong CP invariance.

    PubMed

    Nelson, Daniel R; Fleming, George T; Kilcup, Gregory W

    2003-01-17

    A standing mystery in the standard model is the unnatural smallness of the strong CP violating phase. A massless up quark has long been proposed as one potential solution. A lattice calculation of the constants of the chiral Lagrangian essential for the determination of the up quark mass, 2alpha(8)-alpha(5), is presented. We find 2alpha(8)-alpha(5)=0.29+/-0.18, which corresponds to m(u)/m(d)=0.410+/-0.036. This is the first such calculation using a physical number of dynamical light quarks, N(f)=3.

  6. Ab initio investigation of the electronic, lattice dynamic and thermodynamic properties of ScCd intermetallic alloy

    NASA Astrophysics Data System (ADS)

    Adetunji, B. I.; Olayinka, A. S.; Fashae, J. B.; Ozebo, V. C.

    2016-08-01

    The electronic structures, lattice dynamics and thermodynamic properties of rare-earth intermetallic ScCd alloy are studied by the first-principles plane-wave pseudopotential method within the generalized gradient approximation in the framework of density functional pertubation theory. The band structure, density of states, phonon dispersion frequencies, vibrational free energy Fvib, specific heat capacity CV and entropy are studied between 0 K and 1500 K. Finally, using the calculated phonon density of states, the thermodynamic properties are determined within the quasi-harmonic approximation and a value of 47.9 (J/molṡK) at 300 K for specific heat capacity of ScCd is predicted.

  7. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential.

    PubMed

    Chen, Wenduo; Zhu, Youliang; Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851

  8. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential

    PubMed Central

    Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851

  9. Anisotropic superconductivity and vortex dynamics in magnetially coupled F/S and F/S/F hybrids.

    SciTech Connect

    Karapetrov, G.; Belkin, A.; Iavarone, M.; Fedor, J.; Novosad, V.; Milosevic, M. V.; Peeters, F. M.

    2011-01-01

    Magnetically coupled superconductor-ferromagnet hybrids offer advanced routes for nanoscale control of superconductivity. Magnetotransport characteristics and scanning tunneling microscopy images of vortex structures in superconductor-ferromagnet hybrids reveal rich superconducting phase diagrams. Focusing on a particular combination of a ferromagnet with a well-ordered periodic magnetic domain structure with alternating out-of-plane component of magnetization, and a small coherence length superconductor, we find directed nucleation of superconductivity above the domain wall boundaries. We show that near the superconductor-normal state phase boundary the superconductivity is localized in narrow mesoscopic channels. In order to explore the Abrikosov flux line ordering in F/S hybrids, we use a combination of scanning tunneling microscopy and Ginzburg-Landau simulations. The magnetic stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinning-anti-pinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-1D arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. In F/S/F hybrids we demonstrate the evolution of the anisotropic conductivity in the superconductor that is magnetically coupled with two adjacent ferromagnetic layers. Stripe magnetic domain structures in both F-layers are aligned under each other, resulting in a directional superconducting order parameter in the superconducting layer. The conductance anisotropy strongly depends on the period of the magnetic domains and the strength of the local magnetization. The anisotropic conductivity of up to three orders of magnitude can be achieved with a spatial critical temperature modulation of 5% of T{sub c

  10. Superalloy Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Nathal, M. V.; Hebsur, M. G.; Kraus, D. L.

    2003-01-01

    In their simplest form, lattice block panels are produced by direct casting and result in lightweight, fully triangulated truss-like configurations which provide strength and stiffness [2]. The earliest realizations of lattice block were made from A1 and steels, primarily under funding from the US Navy [3]. This work also showed that the mechanical efficiency (eg., specific stiffness) of lattice block structures approached that of honeycomb structures [2]. The lattice architectures are also less anisotropic, and the investment casting route should provide a large advantage in cost and temperature capability over honeycombs which are limited to alloys that can be processed into foils. Based on this early work, a program was initiated to determine the feasibility of extending the high temperature superalloy lattice block [3]. The objective of this effort was to provide an alternative to intermetallics and composites in achieving a lightweight high temperature structure without sacrificing the damage tolerance and moderate cost inherent in superalloys. To establish the feasibility of the superalloy lattice block concept, work was performed in conjunction with JAMCORP, Inc. Billerica, MA, to produce a number of lattice block panels from both IN71 8 and Mar-M247.

  11. A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes

    NASA Astrophysics Data System (ADS)

    Lu, Peng-Xian; Qu, Ling-Bo; Cheng, Qiao-Huan

    2013-11-01

    In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the electronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics.

  12. Quantum statistics in the spin-lattice dynamics simulation of formation and migration of mono-vacancy in BCC iron

    NASA Astrophysics Data System (ADS)

    Wen, Haohua; Woo, C. H.

    2016-03-01

    Contributions from the vibrational thermodynamics of phonons and magnons in the dynamic simulations of thermally activated atomic processes in crystalline materials were considered within the framework of classical statistics in conventional studies. The neglect of quantum effects produces the wrong lattice and spin dynamics and erroneous activation characteristics, sometimes leading to the incorrect results. In this paper, we consider the formation and migration of mono-vacancy in BCC iron over a large temperature range from 10 K to 1400 K, across the ferro/paramagnetic phase boundary. Entropies and enthalpies of migration and formation are calculated using quantum heat baths based on a Bose-Einstein statistical description of thermal excitations in terms of phonons and magnons. Corrections due to the use of classical heat baths are evaluated and discussed.

  13. Internal nonlinear dynamics of a short lattice DNA model in terms of propagating kink-antikink solitons

    NASA Astrophysics Data System (ADS)

    Vanitha, M.; Daniel, M.

    2012-04-01

    We study the internal nonlinear dynamics of an inhomogeneous short lattice DNA model by solving numerically the governing discrete perturbed sine-Gordon equations under the limits of a uniform and a nonuniform angular rotation of bases. The internal dynamics is expressed in terms of open-state configurations represented by kink and antikink solitons with fluctuations. The inhomogeneity in the strands and hydrogen bonds as well as nonuniformity in the rotation of bases introduce fluctuations in the profile of the solitons without affecting their robust nature and the propagation. These fluctuations spread into the tail regions of the soliton in the case of periodic inhomogeneity. However, the localized form of inhomogeneity generates amplified fluctuations in the profile of the soliton. The fluctuations are expected to enhance the denaturation process in the DNA molecule.

  14. Exotic and excited-state meson spectroscopy and radiative transitions from lattice QCD

    SciTech Connect

    Christopher Thomas

    2010-09-01

    We discuss recent progress in extracting the excited meson spectrum and radiative transition form factors using lattice QCD. We mention results in the charmonium sector, including the first lattice QCD calculation of radiative transition rates involving excited charmonium states, highlighting results for high spin and exotic states. We present recent results on a highly excited isovector meson spectrum from dynamical anisotropic lattices. Using carefully constructed operators we show how the continuum spin of extracted states can be reliably identified and confidently extract excited states, states with exotic quantum numbers and states of high spin. This spectrum includes the first spin-four state extracted from lattice QCD. We conclude with some comments on future prospects.

  15. Structure and lattice dynamics of PrFe3(BO3)4: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.

    2016-06-01

    The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A "seed" frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A 2 mode. The calculated results are in agreement with the known experimental data.

  16. Dynamics of an Electron in a Magnetic Field and in a Periodic Lattice

    NASA Astrophysics Data System (ADS)

    Adorjan, A. J.; Kaufman, M.

    1996-11-01

    We study the trajectory and the time dependence of the velocity of an electron moving in a 2d crystal in the presence of a magnetic field. This model is relevant to artificial 2d lattices(T.Geisel, J.Wagenhuber, P.Niebauer, G.Obermair, Phys.Rev.Lett.64,1581(1990)). The model is analyzed numerically by approximating the differential equations of motion with difference equations. To perform the calculations we use the mathematical package MathCad. We plan to use this study in undergraduate classes as an as an example of a research topic of current interest.

  17. Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt.

    PubMed

    MacLellan, D A; Carroll, D C; Gray, R J; Booth, N; Burza, M; Desjarlais, M P; Du, F; Neely, D; Powell, H W; Robinson, A P L; Scott, G G; Yuan, X H; Wahlström, C-G; McKenna, P

    2014-10-31

    The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.

  18. Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt

    SciTech Connect

    MacLellan, D.  A.; Carroll, D.  C.; Gray, R.  J.; Booth, N.; Burza, M.; Desjarlais, M.  P.; Du, F.; Neely, D.; Powell, H.  W.; Robinson, A.  P. L.; Scott, G.  G.; Yuan, X.  H.; Wahlström, C. -G.; McKenna, P.

    2014-10-31

    The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.

  19. Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt.

    PubMed

    MacLellan, D A; Carroll, D C; Gray, R J; Booth, N; Burza, M; Desjarlais, M P; Du, F; Neely, D; Powell, H W; Robinson, A P L; Scott, G G; Yuan, X H; Wahlström, C-G; McKenna, P

    2014-10-31

    The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture. PMID:25396375

  20. Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta{sub 3}N{sub 5}

    SciTech Connect

    Nurlaela, Ela; Harb, Moussab; Gobbo, Silvano del; Vashishta, Manish; Takanabe, Kazuhiro

    2015-09-15

    Presented herein is a detailed discussion of the properties of the lattice dynamic and optoelectronic properties of tantalum(V) oxynitride (TaON) and tantalum(V) nitride (Ta{sub 3}N{sub 5}), from experimental and theoretical standpoint. The active Raman and infra red (IR) frequencies of TaON and Ta{sub 3}N{sub 5} were measured using confocal Raman and Fourier Transform Infrared spectroscopies (FTIR) and calculated using the linear response method within the density functional perturbation theory (DFPT). The detailed study leads to an exhaustive description of the spectra, including the symmetry of the vibrational modes. Electronic structures of these materials were computed using DFT within the range-separated hybrid HSE06 exchange–correlation formalism. Electronic and ionic contributions to the dielectric constant tensors of these materials were obtained from DFPT within the linear response method using the PBE functional. Furthermore, effective mass of photogenerated holes and electrons at the band edges of these compounds were computed from the electronic band structure obtained at the DFT/HSE06 level of theory. The results suggest that anisotropic nature in TaON and Ta{sub 3}N{sub 5} is present in terms of dielectric constant and effective masses. - Graphical abstract: Detailed investigation has been conducted from combined experimental and theoretical approaches on Raman and IR spectroscopies, electronic structures, dielectric constants and effective masses of TaON and Ta{sub 3}N{sub 5}. - Highlights: • Crystal structures of TaON and Ta{sub 3}N{sub 5} are discussed based on XRD and DFT calculation. • Raman and IR spectra of TaON and Ta{sub 3}N{sub 5} materials are measured and computed by DFPT method. • Optoelectronic properties of TaON and Ta{sub 3}N{sub 5} are discussed. • Dielectric constant and effective masses of TaON and Ta{sub 3}N{sub 5} are calculated.

  1. Entropic lattice Boltzmann model for gas dynamics: Theory, boundary conditions, and implementation.

    PubMed

    Frapolli, N; Chikatamarla, S S; Karlin, I V

    2016-06-01

    We present in detail the recently introduced entropic lattice Boltzmann model for compressible flows [N. Frapolli et al., Phys. Rev. E 92, 061301(R) (2015)PLEEE81539-375510.1103/PhysRevE.92.061301]. The model is capable of simulating a wide range of laminar and turbulent flows, from thermal and weakly compressible flows to transonic and supersonic flows. The theory behind the construction of the model is laid out and its thermohydrodynamic limit is discussed. Based on this theory and the hydrodynamic limit thereof, we also construct the boundary conditions necessary for the simulation of solid walls. We present the inlet and outlet boundary conditions as well as no-slip and free-slip boundary conditions. Details necessary for the implementation of the compressible lattice Boltzmann model are also reported. Finally, simulations of compressible flows are presented, including two-dimensional supersonic and transonic flows around a diamond and a NACA airfoil, the simulation of the Schardin problem, and the three-dimensional simulation of the supersonic flow around a conical geometry. PMID:27415382

  2. Entropic lattice Boltzmann model for gas dynamics: Theory, boundary conditions, and implementation

    NASA Astrophysics Data System (ADS)

    Frapolli, N.; Chikatamarla, S. S.; Karlin, I. V.

    2016-06-01

    We present in detail the recently introduced entropic lattice Boltzmann model for compressible flows [N. Frapolli et al., Phys. Rev. E 92, 061301(R) (2015), 10.1103/PhysRevE.92.061301]. The model is capable of simulating a wide range of laminar and turbulent flows, from thermal and weakly compressible flows to transonic and supersonic flows. The theory behind the construction of the model is laid out and its thermohydrodynamic limit is discussed. Based on this theory and the hydrodynamic limit thereof, we also construct the boundary conditions necessary for the simulation of solid walls. We present the inlet and outlet boundary conditions as well as no-slip and free-slip boundary conditions. Details necessary for the implementation of the compressible lattice Boltzmann model are also reported. Finally, simulations of compressible flows are presented, including two-dimensional supersonic and transonic flows around a diamond and a NACA airfoil, the simulation of the Schardin problem, and the three-dimensional simulation of the supersonic flow around a conical geometry.

  3. Entropic lattice Boltzmann model for gas dynamics: Theory, boundary conditions, and implementation.

    PubMed

    Frapolli, N; Chikatamarla, S S; Karlin, I V

    2016-06-01

    We present in detail the recently introduced entropic lattice Boltzmann model for compressible flows [N. Frapolli et al., Phys. Rev. E 92, 061301(R) (2015)PLEEE81539-375510.1103/PhysRevE.92.061301]. The model is capable of simulating a wide range of laminar and turbulent flows, from thermal and weakly compressible flows to transonic and supersonic flows. The theory behind the construction of the model is laid out and its thermohydrodynamic limit is discussed. Based on this theory and the hydrodynamic limit thereof, we also construct the boundary conditions necessary for the simulation of solid walls. We present the inlet and outlet boundary conditions as well as no-slip and free-slip boundary conditions. Details necessary for the implementation of the compressible lattice Boltzmann model are also reported. Finally, simulations of compressible flows are presented, including two-dimensional supersonic and transonic flows around a diamond and a NACA airfoil, the simulation of the Schardin problem, and the three-dimensional simulation of the supersonic flow around a conical geometry.

  4. Nonequilibrium dynamics of bosonic atoms in optical lattices: Decoherence of many-body states due to spontaneous emission

    NASA Astrophysics Data System (ADS)

    Pichler, H.; Daley, A. J.; Zoller, P.

    2010-12-01

    We analyze in detail the heating of bosonic atoms in an optical lattice due to incoherent scattering of light from the lasers forming the lattice. Because atoms scattered into higher bands do not thermalize on the time scale of typical experiments, this process cannot be described by the total energy increase in the system alone (which is determined by single-particle effects). The heating instead involves an important interplay between the atomic physics of the heating process and the many-body physics of the state. We characterize the effects on many-body states for various system parameters, where we observe important differences in the heating for strongly and weakly interacting regimes, as well as a strong dependence on the sign of the laser detuning from the excited atomic state. We compute heating rates and changes to characteristic correlation functions based on both perturbation-theory calculations and a time-dependent calculation of the dissipative many-body dynamics. The latter is made possible for one-dimensional systems by combining time-dependent density-matrix-renormalization-group methods with quantum trajectory techniques.

  5. Nucleon Axial Charge in (2+1)-Flavor Dynamical-Lattice QCD with Domain-Wall Fermions

    SciTech Connect

    Yamazaki, T.; Aoki, Y.; Blum, T.; Lin, H. W.; Lin, M. F.; Ohta, S.; Sasaki, S.; Tweedie, R. J.; Zanotti, J. M.

    2008-05-02

    We present results for the nucleon axial charge g{sub A} at a fixed lattice spacing of 1/a=1.73(3) GeV using 2+1 flavors of domain wall fermions on size 16{sup 3}x32 and 24{sup 3}x64 lattices (L=1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of the Monte Carlo trajectory at the lightest m{sub {pi}} is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion mass dependence at m{sub {pi}}=330 MeV. We also find a scaling with the single variable m{sub {pi}}L which can also be seen in previous two-flavor domain wall and Wilson fermion calculations. Using this scaling to eliminate the finite-volume effect, we obtain g{sub A}=1.20(6)(4) at the physical pion mass, m{sub {pi}}=135 MeV, where the first and second errors are statistical and systematic. The observed finite-volume scaling also appears in similar quenched simulations, but disappear when V{>=}(2.4 fm){sup 3}. We argue this is a dynamical quark effect.

  6. Lattice dynamics of a mist-chemical vapor deposition-grown corundum-like Ga2O3 single crystal

    NASA Astrophysics Data System (ADS)

    Cuscó, R.; Domènech-Amador, N.; Hatakeyama, T.; Yamaguchi, T.; Honda, T.; Artús, L.

    2015-05-01

    The lattice dynamical properties of the corundum-like α-phase of Ga2O3 are investigated by means of Raman scattering experiments and ab-initio calculations. A high-quality, single-crystal thick epilayer was grown on sapphire by the mist-chemical vapor deposition method. The phonon frequencies at the Brillouin zone center of all the Raman-active modes are determined by polarized Raman scattering measurements on an α-Ga2O3 single crystal. By performing backscattering measurements from (0001) and (10 1 ¯ 0 ) faces, all Raman active modes are unambiguously identified. Density functional perturbation theory calculations were carried out to determine the symmetry and the frequency of the α-Ga2O3 lattice modes. We find a good agreement between the theoretical predictions and the Raman spectra. The relative intensity of the different modes and their polarizability are discussed. The Raman spectrum is dominated by a narrow A1g peak which indicates the high crystalline quality of the layers grown by the mist chemical vapor deposition method.

  7. Effects of lateral diffusion on morphology and dynamics of a microscopic lattice-gas model of pulsed electrodeposition

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Roberts, Daniel E.; Rikvold, Per Arne

    2005-02-01

    The influence of nearest-neighbor diffusion on the decay of a metastable low-coverage phase (monolayer adsorption) in a square lattice-gas model of electrochemical metal deposition is investigated by kinetic Monte Carlo simulations. The phase-transformation dynamics are compared to the well-established Kolmogorov-Johnson-Mehl-Avrami theory. The phase transformation is accelerated by diffusion, but remains in accord with the theory for continuous nucleation up to moderate diffusion rates. At very high diffusion rates the phase-transformation kinetic shows a crossover to instantaneous nucleation. Then, the probability of medium-sized clusters is reduced in favor of large clusters. Upon reversal of the supersaturation, the adsorbate desorbs, but large clusters still tend to grow during the initial stages of desorption. Calculation of the free energy of subcritical clusters by enumeration of lattice animals yields a quasiequilibrium distribution which is in reasonable agreement with the simulation results. This is an improvement relative to classical droplet theory, which fails to describe the distributions, since the macroscopic surface tension is a bad approximation for small clusters.

  8. Computer code for the atomistic simulation of lattice defects and dynamics. [COMENT code

    SciTech Connect

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability.

  9. Lattice dynamics of the high-temperature shape-memory alloy Nb-Ru

    SciTech Connect

    Shapiro, S. M.; Xu, G.; Gu, G.; Fonda, R. W.

    2006-06-01

    Nb-Ru is a high-temperature shape-memory alloy that undergoes a martensitic transformation from a parent cubic {beta}-phase into a tetragonal {beta}{sup '} phase at T{sub M}{approx}900 deg. C. Measurements of the phonon dispersion curves on a single crystal show that the [110]-TA{sub 2} phonon branch, corresponding in the q=0 limit to the elastic constant C{sup '}=1/2(C{sub 11}-C{sub 12}) has an anomalous temperature dependence. Nearly the entire branch softens with decreasing temperature as T{sub M} is approached. The temperature dependence of the low-q phonon energies suggests that the elastic constants would approach 0 as T approaches T{sub M}, indicating a second-order transition. No additional lattice modulation is observed in the cubic phase.

  10. From the Dynamics of Coupled Map Lattices to the Psychological Arrow of Time

    NASA Astrophysics Data System (ADS)

    Atmanspacher, Harald; Filk, Thomas; Scheingraber, Herbert

    2006-10-01

    Stable neuronal assemblies are generally regarded as neural correlates of mental representations. Their temporal sequence corresponds to the experience of a direction of time, sometimes called the psychological time arrow. We show that the stability of particular, biophysically motivated models of neuronal assemblies, called coupled map lattices, is supported by causal interactions among neurons and obstructed by non-causal or anti-causal interactions among neurons. This surprising relation between causality and stability suggests that those neuronal assemblies that are stable due to causal neuronal interactions, and thus correlated with mental representations, generate a psychological time arrow. Yet this impact of causal interactions among neurons on the directed sequence of mental representations does not rule out the possibility of mentally less efficacious non-causal or anti-causal interactions among neurons.

  11. Structure and lattice dynamics of rare-earth ferroborate crystals: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.; Serdtsev, A. V.; Kashchenko, M. A.; Klimin, S. A.

    2016-08-01

    The ab initio calculation of the crystal structure and the phonon spectrum of crystals RFe3(BO3)4 ( R = Pr, Nd, Sm) has been performed in the framework of the density functional theory. The ion coordinates in the unit cell, the lattice parameters, the frequencies and the types of fundamental vibrations, and also the intensities of lines in the Raman spectrum and infrared reflection spectra have been found. The elastic constants of the crystals have been calculated. For low-frequency A 2 mode in PrFe3(BO3)4, a "seed" vibration frequency that strongly interacts with the electronic excitation on a praseodymium ion was found. The calculation results satisfactory agree with the experimental data.

  12. Conformation and diffusion behavior of ring polymers in solution: A comparison between molecular dynamics, multiparticle collision dynamics, and lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Hegde, Govind A.; Chang, Jen-fang; Chen, Yeng-long; Khare, Rajesh

    2011-11-01

    We have studied the effect of chain topology on the structural properties and diffusion of polymers in a dilute solution in a good solvent. Specifically, we have used three different simulation techniques to compare the chain size and diffusion coefficient of linear and ring polymers in solution. The polymer chain is modeled using a bead-spring representation. The solvent is modeled using three different techniques: molecular dynamics (MD) simulations with a particulate solvent in which hydrodynamic interactions are accounted through the intermolecular interactions, multiparticle collision dynamics (MPCD) with a point particle solvent which has stochastic interactions with the polymer, and the lattice Boltzmann method in which the polymer chains are coupled to the lattice fluid through friction. Our results show that the three methods give quantitatively similar results for the effect of chain topology on the conformation and diffusion behavior of the polymer chain in a good solvent. The ratio of diffusivities of ring and linear polymers is observed to be close to that predicted by perturbation calculations based on the Kirkwood hydrodynamic theory.

  13. Pressure effects on the elastic and lattice dynamics properties of AlP from first-principles calculations

    SciTech Connect

    Lakel, S.; Okbi, F.; Ibrir, M.; Almi, K.

    2015-03-30

    We have performed first-principles calculations to investigate the behavior under hydrostatic pressure of the structural, elastic and lattice dynamics properties of aluminum phosphide crystal (AlP), in both zinc-blende (B3) and nickel arsenide (B8) phases. Our calculated structural and electronic properties are in good agreement with previous theoretical and experimental results. The elastic constants, bulk modulus (B), shear modulus (G), and Young's modulus (E), Born effective charge and static dielectric constant ε{sub 0}, were calculated with the generalized gradient approximations and the density functional perturbation theory (DFPT). Our results in the pressure behavior of the elastic and dielectric properties of both phases are compared and contrasted with the common III–V materials. The Born effective charge ZB decreases linearly with pressure increasing, while the static dielectric constant decreases quadratically with the increase of pressure.

  14. Lattice dynamics and electron-phonon interaction in Bi/Bi2Te3 (111) heteroepitaxial film

    NASA Astrophysics Data System (ADS)

    Huang, G. Q.; Li, B.

    2013-12-01

    Bi/Bi2Te3 (111) heteroepitaxial film is a novel system which combines two-dimensional and three-dimensional topological insulators. The lattice dynamical properties and the electron-phonon coupling in this heteroepitaxial film are calculated by including spin-orbit coupling from density functional perturbation theory. Full phonon dispersion curves are calculated and the zone-center Raman active modes are analyzed. There is a large mismatch in the phonon densities of states between ultrathin Bi deposited layers and Bi2Te3 substrate, which might have a significant improvement of thermoelectric performance of this system. The large electron-phonon coupling λ in Bi/Bi2Te3 heteroepitaxial film suggests that this system may hopefully become a topological superconductor.

  15. Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments

    NASA Astrophysics Data System (ADS)

    Khare, Ankur; Himmetoglu, Burak; Johnson, Melissa; Norris, David J.; Cococcioni, Matteo; Aydil, Eray S.

    2012-04-01

    The electronic structure, lattice dynamics, and Raman spectra of the kesterite, stannite, and pre-mixed Cu-Au (PMCA) structures of Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) were calculated using density functional theory (DFT). Differences in longitudinal and transverse optical (LO-TO) splitting in kesterite, stannite, and PMCA structures can be used to differentiate them. The Γ-point phonon frequencies, which give rise to Raman scattering, exhibit small but measurable shifts, for these three structures. Experimentally measured Raman scattering from CZTS and CZTSe thin films were examined in light of DFT calculations and deconvoluted to explain subtle shifts and asymmetric line shapes often observed in CZTS and CZTSe Raman spectra. Raman spectroscopy in conjunction with ab initio calculations can be used to differentiate between kesterite, stannite, and PMCA structures of CZTS and CZTSe.

  16. Lattice dynamics and chemical bonding in Sb{sub 2}Te{sub 3} from first-principles calculations

    SciTech Connect

    Wang, Bao-Tian; Souvatzis, Petros; Eriksson, Olle; Zhang, Ping

    2015-05-07

    Pressure effects on the lattice dynamics and the chemical bonding of the three-dimensional topological insulator, Sb{sub 2}Te{sub 3}, have been studied from a first-principles perspective in its rhombohedral phase. Where it is possible to compare, theory agrees with most of the measured phonon dispersions. We find that the inclusion of relativistic effects, in terms of the spin-orbit interaction, affects the vibrational features to some extend and creates large fluctuations on phonon density of state in high frequency zone. By investigations of structure and electronic structure, we analyze in detail the semiconductor to metal transition at ∼2 GPa followed by an electronic topological transition at a pressure of ∼4.25 GPa.

  17. Crystal structure and lattice dynamics of Sr{sub 3}Y(BO{sub 3}){sub 3}

    SciTech Connect

    Maczka, M. Waskowska, A.; Majchrowski, A.; Kisielewski, J.; Szyrski, W.; Hanuza, J.

    2008-12-15

    X-ray, Raman and infrared (IR) studies of the Sr{sub 3}Y(BO{sub 3}){sub 3} (BOYS) single crystal grown by the Czochralski technique are presented. The crystal structure is trigonal, space group R3-bar (no. 148), and comprises six formula units in the unit cell with the hexagonal axes a=12.527(2) and c=9.280(2) A. The assignment of the observed vibrational modes is proposed on the basis of lattice dynamics calculations. The unusual large bandwidth of the internal modes and the enhancement of the principal mean square thermal displacements for BO{sub 3} and Y(1) indicate that some type of disorder is present in the studied crystal. - Graphical abstract: View of the crystal structure of BOYS along the c-axis.

  18. Dual subduction tectonics and plate dynamics of central Japan shown by three-dimensional P-wave anisotropic structure

    NASA Astrophysics Data System (ADS)

    Ishise, Motoko; Miyake, Hiroe; Koketsu, Kazuki

    2015-07-01

    The central Japanese subduction zone is characterized by a complex tectonic setting affected by the dual subduction of oceanic plates and collisions between the island arcs. To better understand of the subduction system, we performed an anisotropic tomography analysis using P-wave arrival times from local earthquakes to determine the three-dimensional structure of P-wave azimuthal anisotropy in the overriding plate and the Pacific and Philippine Sea (PHS) slabs. The principal characteristics of anisotropy in the subducted and subducting plates are (1) in the overriding plate, the distribution pattern of fast direction of crustal anisotropy coincides with that of the strike of geological structure, (2) in the two oceanic plates, fast propagation directions of P-wave were sub-parallel to the directions of seafloor spreading. Additionally, our tomographic images demonstrate that (1) the bottom of the Median Tectonic Line, the longest fault zone in Japan, reaches to the lower crust, and seems to link to the source region of an inter-plate earthquake along the PHS slab, (2) the segmentation of the PHS slab - the Izu Islands arc, the Nishi-Shichito ridge, and the Shikoku basin - due to the formation history, is reflected in the regional variation of anisotropy. The tomographic study further implies that there might be a fragment of the Pacific slab suggested by a previous study beneath the Tokyo metropolitan area. The overall findings strongly indicate that seismic anisotropy analysis provide potentially useful information to understand a subduction zone.

  19. Engineering novel optical lattices.

    PubMed

    Windpassinger, Patrick; Sengstock, Klaus

    2013-08-01

    Optical lattices have developed into a widely used and highly recognized tool to study many-body quantum physics with special relevance for solid state type systems. One of the most prominent reasons for this success is the high degree of tunability in the experimental setups. While at the beginning quasi-static, cubic geometries were mainly explored, the focus of the field has now shifted toward new lattice topologies and the dynamical control of lattice structures. In this review we intend to give an overview of the progress recently achieved in this field on the experimental side. In addition, we discuss theoretical proposals exploiting specifically these novel lattice geometries. PMID:23828639

  20. Quasi-energy spectrum and dynamical localizations of two charged particles in a one-dimensional lattice system

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Suqing, Duan; Zhao, Xian-Geng

    2006-04-01

    The quasi-energy spectrum of two charged particles in a one-dimensional lattice system driven by an external field are theoretically studied with the help of numerical calculations. It is found that the quasi-energy spectrum splits into two regions. In the gourd-shaped region the Floquet states mainly contain the Wannier states |l,m> (l≠m), which describe the two particles occupy the different sites. The (avoid) crossing points in this region are corresponding to the dynamical localizations of the two particles which initially occupy on different sites when the distance between the initial sites is large. These conditions of dynamical localization are the same as that in single particle system. In the other region (electron electron or electron hole pair region), the Floquet states mainly contain the Wannier states |l,l>, which describe the two particles simultaneously occupy the lth site. The (avoid) crossing points in this region are corresponding to the dynamical localizations of the two particles happening which initially occupy on same site.

  1. Long-time averaged dynamics of a Bose-Einstein condensate in a bichromatic optical lattice with external harmonic confinement

    NASA Astrophysics Data System (ADS)

    Sakhel, Asaad R.

    2016-07-01

    The dynamics of a Bose-Einstein condensate are examined numerically in the presence of a one-dimensional bichromatic optical lattice (BCOL) with external harmonic confinement in the strongly interacting regime. The condensate is excited by a focusing stirring red laser. Two realizations of the BCOL are considered, one with a rational and the other with an irrational ratio of the two constituting wave lengths. The system is simulated by the time-dependent Gross Pitaevskii equation that is solved using the Crank Nicolson method in real time. It is found that for a weak BCOL, the long-time averaged physical observables of the condensate respond only very weakly (or not at all) to changes in the secondary OL depth V1 showing that under these conditions the harmonic trap plays a dominant role in governing the dynamics. However, for a much larger strength of the BCOL, the response is stronger as it begins to compete with the external harmonic trap, such that the frequency of Bloch oscillations of the bosons rises with V1 yielding higher time-averages. Qualitatively there is no difference between the dynamics of the condensate resulting from the use of a rational or irrational ratio of the wavelengths since the external harmonic trap washes it out. It is further found that in the presence of an external harmonic trap, the BCOL acts in favor of superflow.

  2. Three-dimensional dynamics of a fermionic Mott wedding-cake in clean and disordered optical lattices

    PubMed Central

    Kartsev, A.; Karlsson, D.; Privitera, A.; Verdozzi, C.

    2013-01-01

    Non-equilibrium quantum phenomena are ubiquitous in nature. Yet, theoretical predictions on the real-time dynamics of many-body quantum systems remain formidably challenging, especially for high dimensions, strong interactions or disordered samples. Here we consider a notable paradigm of strongly correlated Fermi systems, the Mott phase of the Hubbard model, in a setup resembling ultracold-gases experiments. We study the three-dimensional expansion of a cloud into an optical lattice after removing the confining potential. We use time-dependent density-functional theory combined with dynamical mean-field theory, considering interactions below and above the Mott threshold, as well as disorder effects. At strong coupling, we observe multiple timescales in the melting of the Mott wedding-cake structure, as the Mott plateau persist orders of magnitude longer than the band insulating core. We also show that disorder destabilises the Mott plateau and that, compared to a clean setup, localisation can decrease, creating an interesting dynamic crossover during the expansion. PMID:23999144

  3. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating

    NASA Astrophysics Data System (ADS)

    Valbuena, Alejandro; Mateu, Mauricio G.

    2015-09-01

    Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior of protein assemblies in order to improve their suitability as nanomaterials. In this study, the capsid protein of the human immunodeficiency virus was induced to self-assemble as a continuous, single layered, ordered nanocoating onto an inorganic substrate. Atomic force microscopy (AFM) was used to quantify the mechanical behavior and the equilibrium dynamics (``breathing'') of this virus-based, self-assembled protein lattice in close to physiological conditions. The results uniquely provided: (i) evidence that AFM can be used to directly visualize in real time and quantify slow breathing motions leading to dynamic disorder in protein nanocoatings and viral capsid lattices; (ii) characterization of the dynamics and mechanics of a viral capsid lattice and protein-based nanocoating, including flexibility, mechanical strength and remarkable self-repair capacity after mechanical damage; (iii) proof of principle that chemical additives can modify the dynamics and mechanics of a viral capsid lattice or protein-based nanocoating, and improve their applied potential by increasing their mechanical strength and elasticity. We discuss the implications for the development of mechanically resistant and compliant biocoatings precisely organized at the nanoscale, and of novel antiviral agents acting on fundamental physical properties of viruses.Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications

  4. Topologically Reconfigurable Atomic Lattice Quantum Metamaterial

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj; Mrejen, Michael; Kim, Jeongmin; Wu, Chihhui; Wang, Yuan; Rostovtsev, Yuri; Zhang, Xiang

    Metamaterials have attracted unprecedented attention owing to their exceptional light-matter interaction properties. However, harnessing metamaterial at single photon or few photon excitations is still a long way to go due to several critical challenges such as optical loss, defects to name a few. Here we introduce and theoretically demonstrate a novel platform toward quantum metamaterial, immune to aforementioned challenges, with ultra-cold neutral atoms trapped in an artificial crystal of light. Such periodic atomic density grating -an atomic lattice- exhibits extreme anisotropic optical response where it behaves like a metal in one direction but dielectric along orthogonal directions. We harness the interacting dark resonance physics to eliminate the absorption loss and demonstrate an all-optical and ultra-fast control over the photonic topological transition from a close to an open topology at the same frequency. Such atomic lattice quantum metamaterial enables dynamic manipulation of the decay rate of a quantum emitter by more than an order of magnitude. Our proposal brings together two important contemporary realm of science - cold atom physics and metamaterial for applications in both fundamental and applied science. Atomic lattice quantum metamaterial may provide new opportunities, at single or few photon level, for quantum sensing, quantum information processing with metamaterials.

  5. Study on the anisotropic response of condensed-phase RDX under repeated stress wave loading via ReaxFF molecular dynamics simulation.

    PubMed

    Wang, Ning; Peng, Jinhua; Pang, Aimin; Hu, Jianjiang; He, Tieshan

    2016-09-01

    Anisotropic mechanical response and chemical reaction process of cyclotrimethylene trinitramine (RDX) along crystal orientations were studied with molecular dynamics simulations using ReaxFF potential under repeated stress wave loading. In the simulations, shocks were propagated along the [010], [001], [210], [100], [111], and [102] orientations of crystal RDX at initial particle velocity Up in the range of 1∼4 km/s. For shocks at Up ≤ 2 km/s, local stacking fault and molecular conformational change can only cause marginal temperature and pressure increase without molecular decomposition. As shocks increase to Up ≥ 2.5 km/s, rupture of N-NO2 bond accompanied by partial HONO elimination dominates the main chemical reactions at the initial stage. The ordering of the follow-up consumption of NO2 and ring-breaking rate is directly consistent with that of increasing rate in temperature and pressure. The (210) and (100) planes are more sensitive to shocks in temperature and pressure profiles than the (111) plane, which agrees well with experimental observations and theoretical results in the literature. Therefore, the repeated dynamic loading model in conjunction with MD simulation using ReaxFF potential for crystal RDX indicates that these methods can be applied to study the mechanical response and chemical reaction process of polymer bonded explosives that are commonly subjected to compressive and tensile stress waves observed in practice.

  6. Study on the anisotropic response of condensed-phase RDX under repeated stress wave loading via ReaxFF molecular dynamics simulation.

    PubMed

    Wang, Ning; Peng, Jinhua; Pang, Aimin; Hu, Jianjiang; He, Tieshan

    2016-09-01

    Anisotropic mechanical response and chemical reaction process of cyclotrimethylene trinitramine (RDX) along crystal orientations were studied with molecular dynamics simulations using ReaxFF potential under repeated stress wave loading. In the simulations, shocks were propagated along the [010], [001], [210], [100], [111], and [102] orientations of crystal RDX at initial particle velocity Up in the range of 1∼4 km/s. For shocks at Up ≤ 2 km/s, local stacking fault and molecular conformational change can only cause marginal temperature and pressure increase without molecular decomposition. As shocks increase to Up ≥ 2.5 km/s, rupture of N-NO2 bond accompanied by partial HONO elimination dominates the main chemical reactions at the initial stage. The ordering of the follow-up consumption of NO2 and ring-breaking rate is directly consistent with that of increasing rate in temperature and pressure. The (210) and (100) planes are more sensitive to shocks in temperature and pressure profiles than the (111) plane, which agrees well with experimental observations and theoretical results in the literature. Therefore, the repeated dynamic loading model in conjunction with MD simulation using ReaxFF potential for crystal RDX indicates that these methods can be applied to study the mechanical response and chemical reaction process of polymer bonded explosives that are commonly subjected to compressive and tensile stress waves observed in practice. PMID:27568527

  7. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating.

    PubMed

    Valbuena, Alejandro; Mateu, Mauricio G

    2015-09-28

    Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior of protein assemblies in order to improve their suitability as nanomaterials. In this study, the capsid protein of the human immunodeficiency virus was induced to self-assemble as a continuous, single layered, ordered nanocoating onto an inorganic substrate. Atomic force microscopy (AFM) was used to quantify the mechanical behavior and the equilibrium dynamics ("breathing") of this virus-based, self-assembled protein lattice in close to physiological conditions. The results uniquely provided: (i) evidence that AFM can be used to directly visualize in real time and quantify slow breathing motions leading to dynamic disorder in protein nanocoatings and viral capsid lattices; (ii) characterization of the dynamics and mechanics of a viral capsid lattice and protein-based nanocoating, including flexibility, mechanical strength and remarkable self-repair capacity after mechanical damage; (iii) proof of principle that chemical additives can modify the dynamics and mechanics of a viral capsid lattice or protein-based nanocoating, and improve their applied potential by increasing their mechanical strength and elasticity. We discuss the implications for the development of mechanically resistant and compliant biocoatings precisely organized at the nanoscale, and of novel antiviral agents acting on fundamental physical properties of viruses.

  8. Preablation electron and lattice dynamics on the silicon surface excited by a femtosecond laser pulse

    SciTech Connect

    Ionin, A. A.; Kudryashov, S. I. Seleznev, L. V.; Sinitsyn, D. V.; Lednev, V. N.; Pershin, S. M.

    2015-11-15

    The study of the time-resolved optical reflection from the silicon surface excited by single femtosecond laser pulses below and near the melting threshold reveals fast (less than 10 ps) Auger recombination of a photogenerated electron–hole plasma with simultaneous energy transfer to the lattice. The acoustic relaxation of the excited surface layer indicates (according to reported data) a characteristic depth of 150 nm of the introduction of the laser radiation energy, which is related to direct linear laser radiation absorption in the photoexcited material due to a decrease in the energy bandgap. The surface temperature, which is probed at a time delay of about 100 ps from the reflection thermomodulation of probe radiation and the integrated continuous thermal emission from the surface, increases with the laser fluence and, thus, favors a nonlinear increase in the fluorescence of sublimated silicon atoms. The surface temperature estimated near the picosecond melting threshold demonstrates a substantial (20%) overheating of the material with respect to the equilibrium melting temperature. Above the melting threshold, the delay of formation of the material melt decreases rapidly (from several tens of picoseconds to several fractions of a picosecond) when the laser fluence and, correspondingly, the surface temperature increase. In the times of acoustic relaxation of the absorbing layer and even later, the time modulation of the optical reflectivity of the material demonstrates acoustic reverberations with an increasing period, which are related to the formation of melt nuclei in the material.

  9. Dynamic and Structural Studies of Metastable Vortex Lattice Domains in MgB2

    NASA Astrophysics Data System (ADS)

    de Waard, E. R.; Kuhn, S. J.; Rastovski, C.; Eskildsen, M. R.; Leishman, A.; Dewhurst, C. D.; Debeer-Schmitt, L.; Littrell, K.; Karpinski, J.; Zhigadlo, N. D.

    Small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in the type-II superconductor MgB2 have revealed an unprecedented degree of metastability that is demonstrably not due to vortex pinning, [C. Rastovski et al . , Phys. Rev. Lett. 111, 107002 (2013)]. The VL can be driven to the GS through successive application of an AC magnetic field. Here we report on detailed studies of the transition kinetics and structure of the VL domains. Stroboscopic studies of the transition revealed a stretched exponential decrease of the metastable volume fraction as a function of the number of applied AC cycles, with subtle differences depending on whether the AC field is oriented parallel or perpendicular to the DC field used to create the VL. We speculate the slower transition kinetics for the transverse AC field may be due to vortex cutting. Spatial studies include scanning SANS measurements showing the VL domain distribution within the MgB2 single crystal as well as measurements of VL correlation lengths. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  10. Regulation of Mouse Oocyte Microtubule and Organelle Dynamics by PADI6 and the Cytoplasmic Lattices

    PubMed Central

    Kan, Rui; Yurttas, Piraye; Kim, Boram; Jin, Mei; Wo, Luccie; Lee, Bora; Gosden, Roger; Coonrod, Scott A.

    2010-01-01

    Organelle positioning and movement in oocytes is largely mediated by microtubules (MTs) and their associated motor proteins. While yet to be studied in germ cells, cargo trafficking in somatic cells is also facilitated by specific recognition of acetylated MTs by motor proteins. We have previously shown that oocyte-restricted PADI6 is essential for formation of a novel oocyte-restricted fibrous structure, the cytoplasmic lattices (CPLs). Here, we show that α-tubulin appears to be associated with the PADI6/CPL complex. Next, we demonstrate that organelle positioning and redistribution is defective in PADI6-null oocytes and that alteration of MT polymerization or MT motor activity does not induce organelle redistribution in these oocytes. Finally, we report that levels of acetylated microtubules are dramatically suppressed in the cytoplasm of PADI6-null oocytes, suggesting that the observed organelle redistribution failure is due to defects in stable cytoplasmic MTs. These results demonstrate that the PADI6/CPL superstructure plays a key role in regulating MT-mediated organelle positioning and movement. PMID:21147087

  11. Wave-packet dynamics of noninteracting ultracold bosons in an amplitude-modulated parabolic optical lattice

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Tomotake; Watanabe, Shinichi

    2015-06-01

    The recent Aarhus experiment [Phys. Rev. A 88, 023620 (2013), 10.1103/PhysRevA.88.023620] produced wave packets by applying amplitude modulation to a trapped Bose-Einstein condensate (BEC) of 87Rb using an optical lattice. The present paper renders a theoretical account of this experimental production of wave packets and their subsequent time evolution, focusing on a one-dimensional noninteracting bosonic system as a fundamental starting point for accurate quantum analysis. Since experimental manipulation requires efficient wave-packet creation, we introduce the "single-Q Rabi model" to give a simple and reliable description of the interband transition. As a natural extension, we demonstrate enhancement of the wave-packet production by the "two-step Rabi oscillation method" using either one or two frequencies. The subsequent time evolution is affected by the intertwining of Bragg reflection and the Landau-Zener transition at each band gap, which is analyzed with the aid of a semiclassical theory [Phys. Rev. Lett. 110, 085302 (2013), 10.1103/PhysRevLett.110.085302].

  12. Dynamical quantum correlations of Ising models on an arbitrary lattice and their resilience to decoherence

    NASA Astrophysics Data System (ADS)

    Foss-Feig, M.; Hazzard, K. R. A.; Bollinger, J. J.; Rey, A. M.; Clark, C. W.

    2013-11-01

    Ising models, and the physical systems described by them, play a central role in generating entangled states for use in quantum metrology and quantum information. In particular, ultracold atomic gases, trapped ion systems, and Rydberg atoms realize long-ranged Ising models, which even in the absence of a transverse field can give rise to highly non-classical dynamics and long-range quantum correlations. In the first part of this paper, we present a detailed theoretical framework for studying the dynamics of such systems driven (at time t = 0) into arbitrary unentangled non-equilibrium states, thus greatly extending and unifying the work of Foss-Feig et al (2013 Phys. Rev. A 87 042101). Specifically, we derive exact expressions for closed-time-path ordered correlation functions, and use these to study experimentally relevant observables, e.g. Bloch vector and spin-squeezing dynamics. In the second part, these correlation functions are then used to derive closed-form expressions for the dynamics of arbitrary spin-spin correlation functions in the presence of both T1 (spontaneous spin relaxation/excitation) and T2 (dephasing) type decoherence processes. Even though the decoherence is local, our solution reveals that the competition between Ising dynamics and T1 decoherence gives rise to an emergent non-local dephasing effect, thereby drastically amplifying the degradation of quantum correlations. In addition to identifying the mechanism of this deleterious effect, our solution points toward a scheme to eliminate it via measurement-based coherent feedback.

  13. Application of a lattice Boltzmann-immersed boundary method for fluid-filament dynamics and flow sensing.

    PubMed

    O׳Connor, Joseph; Revell, Alistair; Mandal, Parthasarathi; Day, Philip

    2016-07-26

    Complex fluid-structure interactions between elastic filaments, or cilia, immersed in viscous flows are commonplace in nature and bear important roles. Some biological systems have evolved to interpret flow-induced motion into signals for the purpose of feedback response. Given the challenges associated with extracting meaningful experimental data at this scale, there has been particular focus on the numerical study of these effects. Porous models have proven useful where cilia arrangements are relatively dense, but for more sparse configurations the dynamic interactions of individual structures play a greater role and direct modelling becomes increasingly necessary. The present study reports efforts towards explicit modelling of regularly spaced wall-mounted cilia using a lattice Boltzmann-immersed boundary method. Both steady and forced unsteady 2D channel flows at different Reynolds numbers are investigated, with and without the presence of a periodic array of elastic inextensible filaments. It is demonstrated that the structure response depends significantly on Reynolds number. For low Reynolds flow, the recirculation vortex aft of successive filaments is small relative to the cilia spacing and does not fully bridge the gap, in which case the structure lags the flow. At higher Reynolds number, when this gap is fully bridged the structure and flow move in phase. The trapping of vortices between cilia is associated with relatively lower wall shear stress. At low to intermediate Reynolds, vortex bridging is incomplete and large deflection is still possible, which is reflected in the tip dynamics and wall shear stress profiles. PMID:26718062

  14. Spin-lattice relaxation study of the methyl proton dynamics in solid 9,10-dimethyltriptycene (DMT).

    PubMed

    Piślewski, N; Tritt-Goc, J; Bielejewski, M; Rachocki, A; Ratajczyk, T; Szymański, S

    2009-06-01

    Proton spin-lattice relaxation studies are performed for powder samples of 9,10-dimethyltriptycene (DMT) and its isotopomer DMT-d(12) in which all the non-methyl protons in the molecule are replaced by deuterons. The relaxation data are interpreted in terms of the conventional relaxation theory based on the random jump model in which the Pauli correlations between the relevant spin and torsional states are discarded. The Arrhenius activation energies, obtained from the relaxation data, 25.3 and 24.8 kJ mol(-1) for DMT and DMT-d(12), respectively, are very high as for the methyl groups. The validity of the jump model in the present case is considered from the perspective of Haupt theory in which the Pauli principle is explicitly invoked. To this purpose, the dynamic quantities entering the Haupt model are reinterpreted in the spirit of the damped quantum rotation (DQR) approach introduced recently for the purpose of NMR lineshape studies of hindered molecular rotators. Theoretical modelling of the relevant methyl group dynamics, based on the DQR theory, was performed. From these calculations it is inferred that direct assessments of the torsional barrier heights, based on the Arrhenius activation energies extracted from relaxation data, should be treated with caution.

  15. The influence of time-dependent electric and magnetic fields on the dynamic localization of lattice electrons

    NASA Astrophysics Data System (ADS)

    Papp, E.; Micu, C.; Aur, L.

    2008-12-01

    In this paper we deal with the derivation of dynamic localization conditions for electrons on the one-dimensional (1D) lattice under the influence of ac electric and magnetic fields of the same frequency. We resort, for convenience, to a tight-binding single-band Hamiltonian. Our emphasis is on a more fundamental theoretical understanding by investigating interplays between such fields and the nearest-neighbor hopping interactions characterizing the Hamiltonian. In general, such conditions get expressed in terms of infinite sums of binary products of Bessel functions of the first kind. These sums are hardly tractable, but we found that selecting in a suitable manner the phases of time-dependent modulations leads to controllable frequency-mixing effects providing appreciable simplifications. Such mixings concern competitions between the number of flux quanta and the quotients of field amplitudes and field frequencies. More exactly, tuning one of the mixed frequencies to zero opens the way to establishing the simplified dynamic localization conditions. By resorting again to the zeros of the Bessel function of zeroth order. This results in quickly tractable relationships between the amplitudes of electric and magnetic fields, the field frequency, and the zeros referred to just above. Pure field limits and superpositions between uniform electric and time-dependent magnetic fields are also discussed. Comments concerning the role of disorder and of the Coulomb interaction are also made.

  16. Magnetic lattice dynamics of the oxygen-free FeAs pnictides: how sensitive are phonons to magnetic ordering?

    PubMed

    Zbiri, Mohamed; Mittal, Ranjan; Rols, Stéphane; Su, Yixi; Xiao, Yinguo; Schober, Helmut; Chaplot, Samrath L; Johnson, Mark R; Chatterji, Tapan; Inoue, Yasunori; Matsuishi, Satoru; Hosono, Hideo; Brueckel, Thomas

    2010-08-11

    To shed light on the role of magnetism on the superconducting mechanism of the oxygen-free FeAs pnictides, we investigate the effect of magnetic ordering on phonon dynamics in the low-temperature orthorhombic parent compounds, which present a spin density wave. The study covers both the 122 (AFe(2)As(2); A = Ca, Sr, Ba) and 1111 (AFeAsF; A = Ca, Sr) phases. We extend our recent work on the Ca (122 and 1111) and Ba (122) cases by treating, computationally and experimentally, the 122 and 1111 Sr compounds. The effect of magnetic ordering is investigated through detailed non-magnetic and magnetic lattice dynamical calculations. The comparison of the experimental and calculated phonon spectra shows that the magnetic interactions/ordering have to be included in order to reproduce well the measured density of states. This highlights a spin-correlated phonon behavior which is more pronounced than the apparently weak electron-phonon coupling estimated in these materials. Furthermore, there is no noticeable difference between phonon spectra of the 122 Ba and Sr, whereas there are substantial differences when comparing these to CaFe(2)As(2) originating from different aspects of structure and bonding.

  17. Effects of anisotropy in simple lattice geometries on many-body properties of ultracold fermions in optical lattices

    NASA Astrophysics Data System (ADS)

    Golubeva, Anna; Sotnikov, Andrii; Hofstetter, Walter

    2015-10-01

    We study the effects of anisotropic hopping amplitudes on quantum phases of ultracold fermions in optical lattices described by the repulsive Fermi-Hubbard model. In particular, using dynamical mean-field theory (DMFT) we investigate the dimensional crossover between the isotropic square and the isotropic cubic lattice. We analyze the phase transition from the antiferromagnetic to the paramagnetic state and observe a significant change in the critical temperature: depending on the interaction strength, the anisotropy can lead to both a suppression or increase. We also investigate the localization properties of the system, such as the compressibility and double occupancy. Using the local-density approximation in combination with DMFT we conclude that density profiles can be used to detect the mentioned anisotropy-driven transitions.

  18. Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors

    SciTech Connect

    Golovan, L. A.; Zabotnov, S. V. Timoshenko, V. Yu.; Kashkarov, P. K.

    2009-02-15

    The effective-medium model has been generalized within the dipole approximation, with allowance for the shape anisotropy and dynamic depolarization of semiconductor nanoparticles. The calculations revealed nonmonotonic dependences for the birefringence and dichroism on the nanoparticle size. Comparison of the measured and calculated refractive index dispersion of birefringent porous silicon layers in the near-IR region indicates that consideration for the dynamic depolarization gives a better description of the optical properties for this material in comparison with the generally used effective-medium electrostatic approximation.

  19. Dynamic correlation functions and Boltzmann-Langevin approach for driven one-dimensional lattice gas.

    PubMed

    Pierobon, Paolo; Parmeggiani, Andrea; von Oppen, Felix; Frey, Erwin

    2005-09-01

    We study the dynamics of the totally asymmetric exclusion process with open boundaries by phenomenological theories complemented by extensive Monte Carlo simulations. Upon combining domain wall theory with a kinetic approach known as Boltzmann-Langevin theory we are able to give a complete qualitative picture of the dynamics in the low- and high-density regimes and at the corresponding phase boundary. At the coexistence line between high- and low-density phases we observe a time scale separation between local density fluctuations and collective domain wall motion, which are well accounted for by the Boltzmann-Langevin and domain wall theory, respectively. We present Monte Carlo data for the correlation functions and power spectra in the full parameter range of the model.

  20. Quantum walks and wavepacket dynamics on a lattice with twisted photons.

    PubMed

    Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W; Marrucci, Lorenzo

    2015-03-01

    The "quantum walk" has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations. PMID:26601157

  1. Transport dynamics in quantum lattice models and the discrete truncated Wigner approximation

    NASA Astrophysics Data System (ADS)

    Schachenmayer, Johannes; Pupillo, Guido; Tignone, Edoardo; Genes, Claudiu; Pikovski, Alexander; Rey, Ana Maria

    2015-05-01

    Transport of physical quantities such as energy, charge, or information plays a crucial role in a vast variety of scientific fields ranging from materials science/solid-state physics, to photonics/quantum information, to biological systems. The robustness of quantum coherences in the presence of de-coherent sources, and how those affect transport efficiency are important open questions. Addressing them can not only impact our fundamental understanding of quantum science but at the same time can lead to important technological applications. Here, we present a scheme of how to dramatically enhance the energy transport efficiency of a material by coupling it to a cavity mode, an idea with profound implications for organic semi-conductor materials. In addition we report on progress of how to numerically tackle the problem of quantum transport dynamics with a newly developed method, the dTWA, which allows to simulate quantum-dynamics even in large systems and high dimensions.

  2. Correlated random walk on lattices. II. Tracer diffusion through a two-component dynamic background

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, R. A.

    1983-06-01

    A detailed calculation of frequency- and wave-vector-dependent correlation functions for an arbitrary tracer diffusing in a regular crystal against a background of hopping classical particles has recently been given by Tahir-Kheli and Elliott

    [Phys. Rev. B 27, 844 (1983)]
    . Here we present an important generalization of this work to a system with a dynamic background consisting of two arbitrary species of particles. In particular, the generalization includes a system where the tracer concentration itself is finite while an arbitrary concentration of other atoms is also present in the dynamic stream. The theory is exact to the leading nontrivial order in particle concentration xA and xB. In the intermediate-concentration regime, the theory incorporates dominant fluctuations from the mean field. The present model can serve to usefully describe incoherent neutron scattering in metal-hydride interstitial solutions such as MAxABxB with A,B≡H, D, and T and M≡Pd and Ti. Moreover, it can be used to treat tracer diffusion dynamics in nonstoichiometric metal oxides and, somewhat more simplistically, ionic conduction in the superionic state.

  3. Finite-volume versus streaming-based lattice Boltzmann algorithm for fluid-dynamics simulations: A one-to-one accuracy and performance study.

    PubMed

    Shrestha, Kalyan; Mompean, Gilmar; Calzavarini, Enrico

    2016-02-01

    A finite-volume (FV) discretization method for the lattice Boltzmann (LB) equation, which combines high accuracy with limited computational cost is presented. In order to assess the performance of the FV method we carry out a systematic comparison, focused on accuracy and computational performances, with the standard streaming lattice Boltzmann equation algorithm. In particular we aim at clarifying whether and in which conditions the proposed algorithm, and more generally any FV algorithm, can be taken as the method of choice in fluid-dynamics LB simulations. For this reason the comparative analysis is further extended to the case of realistic flows, in particular thermally driven flows in turbulent conditions. We report the successful simulation of high-Rayleigh number convective flow performed by a lattice Boltzmann FV-based algorithm with wall grid refinement.

  4. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  5. Influence of carbon dopants on the structure, elasticity and lattice dynamics of Ti5Si3C x Nowotny phases

    NASA Astrophysics Data System (ADS)

    Wdowik, Urszula D.; Wasik, Magdalena; Twardowska, Agnieszka

    2016-02-01

    Density functional theory studies on the Ti5Si3C x systems with various concentrations of carbon impurities (x=0, 0.25, 0.50, 1.00 ) are reported. The effects of interstitial carbon atoms on crystal and electronic structures, and on the elastic and vibrational properties of the Ti5Si3C x compound are analysed and discussed. The results of the present investigations indicate not only strong bonding between carbon atoms and their neighbouring titanium atoms, but also the effects of carbon impurities on the atomic bonds beyond the immediate proximity of the dopants. These determine to a great extent the electron densities of states, and the structural and elastic properties of the Ti5Si3C x Nowotny phases. Although carbon atoms tend to stabilise Ti5Si3C x phases, they also have a negative effect on their ductile properties. The strong impact of carbon impurities on the lattice dynamics of Ti5Si3C x compounds is revealed by the phonon and Raman spectra, which remain sensitive to changes in the interatomic distances. In C-doped systems the phonon bands originating from the vibrations of carbon impurities appear at high frequencies and remain well-separated from the lower lying phonon bands dominated by the vibrations of Ti and Si sublattices. The lower frequency phonon bands also experience changes due to the incorporated dopants. Impurities occupying the interstitials of the Ti5Si3 lattice are responsible for the appearance of new infrared active and optically inactive modes of A 2u , E 1u and E 2u symmetries, leaving the number of Raman active modes unchanged. Modifications to the dynamical properties of ternary Ti5Si3C x phases manifest themselves via shifts and the suppression of phonon peaks as well as the emergence of new phonon peaks which are absent in the binary Ti5Si3 system. The observed effects become enhanced with an increased concentration of carbon impurities.

  6. Excited state nucleon spectrum with two flavors of dynamical fermions

    SciTech Connect

    Bulava, John M.; Foley, Justin; Morningstar, Colin; Edwards, Robert G.; Joo, Balint; Lin, Huey-Wen; Richards, David G.; Engelson, Eric; Wallace, Stephen J.; Lichtl, Adam; Mathur, Nilmani

    2009-02-01

    Highly excited states for isospin (1/2) baryons are calculated for the first time using lattice QCD with two flavors of dynamical quarks. Anisotropic lattices are used with two pion masses, m{sub {pi}}=416(36) MeV and 578(29) MeV. The lowest four energies are reported in each of the six irreducible representations of the octahedral group at each pion mass. The lattices used have dimensions 24{sup 3}x64, spatial lattice spacing a{sub s}{approx_equal}0.11 fm, and temporal lattice spacing a{sub t}=(1/3)a{sub s}. Clear evidence is found for a (5{sup -}/2) state in the pattern of negative-parity excited states. This agrees with the pattern of physical states and spin (5/2) has been realized for the first time on the lattice.

  7. Dynamic structure factor of a Bose-Einstein condensate in a one-dimensional optical lattice

    SciTech Connect

    Menotti, C.; Kraemer, M.; Stringari, S.; Pitaevskii, L.

    2003-05-01

    We study the effect of a one-dimensional periodic potential on the dynamic structure factor of an interacting Bose-Einstein condensate at zero temperature. We show that, due to phononic correlations, the excitation strength toward the first band develops a typical oscillating behavior as a function of the momentum transfer, and vanishes at even multiples of the Bragg momentum. The effects of interactions on the static structure factor are found to be significantly amplified by the presence of the optical potential. Our predictions can be tested in stimulated photon scattering experiments.

  8. Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of InSb.

    PubMed

    Zijlstra, Eeuwe S; Walkenhorst, Jessica; Garcia, Martin E

    2008-09-26

    We compute the potential energy surface of femtosecond-laser-excited InSb along the directions in which the crystal becomes soft. Using dynamical simulations the time dependence of the atomic coordinates is obtained. We find that at high excitation densities the anharmonicity of the potential energy surface becomes significant after approximately 100 fs. On the basis of our results we explain recent time-resolved x-ray diffraction experiments. We point out that an alternative model for ultrafast melting [A. M. Lindenberg, Science 308, 392 (2005)] is inconsistent with our calculations.

  9. Anharmonic Noninertial Lattice Dynamics during Ultrafast Nonthermal Melting of InSb

    NASA Astrophysics Data System (ADS)

    Zijlstra, Eeuwe S.; Walkenhorst, Jessica; Garcia, Martin E.

    2008-09-01

    We compute the potential energy surface of femtosecond-laser-excited InSb along the directions in which the crystal becomes soft. Using dynamical simulations the time dependence of the atomic coordinates is obtained. We find that at high excitation densities the anharmonicity of the potential energy surface becomes significant after ˜100fs. On the basis of our results we explain recent time-resolved x-ray diffraction experiments. We point out that an alternative model for ultrafast melting [A. M. Lindenberg , Science 308, 392 (2005)SCIEAS0036-807510.1126/science.1107996] is inconsistent with our calculations.

  10. Anharmonic lattice dynamics in germanium measured with ultrafast x-ray diffraction.

    PubMed

    Cavalleri, A; Siders, C W; Brown, F L; Leitner, D M; Tóth, C; Squier, J A; Barty, C P; Wilson, K R; Sokolowski-Tinten, K; Horn Von Hoegen, M; von der Linde, D; Kammler, M

    2000-07-17

    Damping of impulsively generated coherent acoustic oscillations in a femtosecond laser-heated thin germanium film is measured as a function of fluence by means of ultrafast x-ray diffraction. By simultaneously measuring picosecond strain dynamics in the film and in the unexcited silicon substrate, we separate anharmonic damping from acoustic transmission through the buried interface. The measured damping rate and its dependence on the calculated temperature of the thermal bath is consistent with estimated four-body, elastic dephasing times (T2) for 7-GHz longitudinal acoustic phonons in germanium.

  11. Dynamics of exciton-polaritons in discrete lattices under incoherent localized pumping

    NASA Astrophysics Data System (ADS)

    Yulin, A. V.; Chestnov, I. Yu.; Ma, X.; Schumacher, S.; Peschel, U.; Egorov, O. A.

    2016-08-01

    The paper deals with the spontaneous coherence building up between exciton-polaritons trapped in an array of deep potential wells in the presence of an incoherent pump. A theoretical approach based on a standard tight-binding mean-field approximation is used to reduce the continuous periodic problem to a discrete model. The typical dynamics of the nonlinear exciton-polariton system for the cases of spatially uniform and for localized pumps are discussed. Special attention is paid to the "staggered" coherent steady states with π jumps in the phases between neighboring sites and to "uniform" states with a smooth phase distribution. It is shown that, apart from the states with a single frequency, mixed states with spectra with several harmonics can form in the system. The selection mechanism that controls the type of steady state growing from a weak noise is studied. It is found that in the case of localized pumps the decaying tails of the solutions play a crucial role in the dynamics of the polaritons. The applicability of the obtained theoretical results for a qualitative explanation of the complex phenomena observed in recent experiments is discussed.

  12. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.

    PubMed

    Edison, J R; Monson, P A

    2013-11-12

    We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes. PMID:24102541

  13. Genetic evidence for a role of centrin-associated proteins in the organization and dynamics of the infraciliary lattice in Paramecium.

    PubMed

    Klotz, C; Garreau de Loubresse, N; Ruiz, F; Beisson, J

    1997-01-01

    Within the superfamily of "EF-hand Ca2+-modulated proteins," centrins constitute a family of cytoskeletal proteins that are highly conserved from lower eukaryotes to man. Their cytoskeletal specialization is manifest in their capacity to form filamentous contractile arrays of various shapes and functions and by their association with microtubule organizing centres (MTOCs). While the latter property has been conserved throughout the evolution of eukaryotes, centrin-based contractile structures are only found in protists where they form arrays of widely diverse organization and function. In the ciliate Paramecium tetraurelia, three centrin genes have been characterized, which may be part of a larger centrin gene family [Madeddu et al., 1996: Eur J. Biochem. 238:121-128]. The products of these genes were originally identified as components of the infraciliary lattice, a contractile cytoskeletal network [Garreau de Loubresse et al., 1991: Biol. Cell 71:217-225]. We show here that centrins are localized not only in this lattice but also in basal bodies and in the cord, a filamentous structure associated with the oral apparatus. We demonstrate that in the infraciliary lattice, but not in basal bodies, centrins are associated with high-molecular-weight proteins (ca. 350 kD). Their role in the biogenesis of the infraciliary lattice is documented by cytological and biochemical properties of the mutant "démaillé" (dem1) characterized by altered centrin-associated proteins and abnormal organization and dynamics of the infraciliary lattice.

  14. Cascade Baryon Spectrum from Lattice QCD

    SciTech Connect

    Mathur, Nilmani; Bulava, John; Edwards, Robert; Engelson, Eric; Joo, Balint; Lichtl, Adam; Lin, Huey-Wen; Morningstar, Colin; Richards, David; Wallace, Stephen

    2008-12-01

    A comprehensive study of the cascade baryon spectrum using lattice QCD affords the prospect of predicting the masses of states not yet discovered experimentally, and determining the spin and parity of those states for which the quantum numbers are not yet known. The study of the cascades, containing two strange quarks, is particularly attractive for lattice QCD in that the chiral effects are reduced compared to states composed only of u/d quarks, and the states are typically narrow. We report preliminary results for the cascade spectrum obtained by using anisotropic Nf = 2 Wilson lattices with temporal lattice spacing 5.56 GeV?1.

  15. Lattice dynamics and thermal equation of state of cubic CaSiO3 perovskite

    NASA Astrophysics Data System (ADS)

    Sun, T.; Wentzcovitch, R. M.

    2013-12-01

    CaSiO3 perovskite (CaPv) is believed to be the third most abundant mineral in the Earth's lower mantle and is a major component of subducted mid-ocean ridge basalt (MORB). A well constrained thermal equation of state for CaPv is key to several geophysical problems, e.g., lower mantle composition, density contrast between mantle and plates, nature of D' region, etc. Its experimental and theoretical determination have been very challenging because the cubic structure that CaPv adopts at lower mantle conditions is unstable at low temperatures and some of its harmonic phonons have imaginary frequencies. We have used a recently developed hybrid method combining ab initio molecular dynamics with vibrational normal mode analysis to compute its free energy and thermal equation of state at lower mantle conditions. These results are essential to understand the fate of subducted MORB in the mantle. Research supported by NSF grants EAR-1319361 and EAR-1019853

  16. Optimization of dynamic aperture for hadron lattices in eRHIC

    SciTech Connect

    Jing, Yichao; Litvinenko, Vladimir; Trbojevic, Dejan

    2015-05-03

    The potential upgrade of the Relativistic Heavy Ion Collider (RHIC) to an electron ion collider (eRHIC) involves numerous extensive changes to the existing collider complex. The expected very high luminosity is planned to be achieved at eRHIC with the help of squeezing the beta function of the hadron ring at the IP to a few cm, causing a large rise of the natural chromaticities and thus bringing with it challenges for the beam long term stability (Dynamic aperture). We present our effort to expand the DA by carefully tuning the nonlinear magnets thus controlling the size of the footprints in tune space and all lower order resonance driving terms. We show a reasonably large DA through particle tracking over millions of turns of beam revolution.

  17. Formation of a topological monopole lattice and its dynamics in three-dimensional chiral magnets

    NASA Astrophysics Data System (ADS)

    Yang, Seong-Gyu; Liu, Ye-Hua; Han, Jung Hoon

    2016-08-01

    Topologically protected swirl of the magnetic texture known as the skyrmion has become ubiquitous in both metallic and insulating chiral magnets. Meanwhile the existence of its three-dimensional analog, known as the magnetic monopole, has been suggested by various indirect experimental signatures in MnGe compound. Although Ginzburg-Landau arguments in favor of the formation of a three-dimensional crystal of monopoles and antimonopoles have been put forward, no microscopic model Hamiltonian was shown to support such a phase. Here we present strong numerical evidence from Monte Carlo simulations for the formation of a rocksalt crystal structure of monopoles and antimonopoles in short-period chiral magnets. Real-time simulation of the spin dynamics suggests there is only one internal excitation mode in the monopole crystal state in the frequency range of several gigahertz for the material parameters of MnGe.

  18. THE EMMA LATTICE DESIGN

    SciTech Connect

    BERG,J.S.; RUGGIERO, A.; MACHIDA, S.; KOSCIELNIAK, S.

    2007-06-25

    EMMA is a 10 to 20 MeV electron ring designed to test our understanding of beam dynamics in a relativistic linear non-scaling fixed field alternating gradient accelerator (FFAG). This paper describes the design of the EMMA lattice. We begin with a summary of the experimental goals that impact the lattice design, and then outline what motivated the choice for the basic lattice parameters, such as the type of cells, the number of cells, and the RF frequency. We next list the different configurations that we wish to operate the machine in so as to accomplish our experimental goals. Finally, we enumerate the detailed lattice parameters, showing how these parameters result from the various lattice configurations.

  19. Contact processes with competitive dynamics in bipartite lattices: effects of distinct interactions

    NASA Astrophysics Data System (ADS)

    Pianegonda, Salete; Fiore, Carlos E.

    2014-05-01

    The two-dimensional contact process (CP) with a competitive dynamics proposed by Martins et al (2011 Phys. Rev. E 84 011125) leads to the appearance of an unusual active-asymmetric phase, in which the system sublattices are unequally populated. It differs from the usual CP only by the fact that particles also interact with their next-nearest neighbor sites via a distinct strength creation rate, and for the inclusion of an inhibition effect, proportional to the local density. Aimed at investigating the robustness of such an asymmetric phase, in this paper we study the influence of distinct interactions for two bidimensional CPs. In the first model, the interaction between first neighbors requires a minimal neighborhood of adjacent particles for creating new offspring, whereas second neighbors interact as usual (e.g. at least one neighboring particle is required). The second model takes the opposite situation, in which the restrictive dynamics is in the interaction between next-nearest neighbor sites. Both models are investigated under mean field theory (MFT) and Monte Carlo simulations. In similarity with results by Martins et al, the inclusion of distinct sublattice interactions maintains the occurrence of an asymmetric active phase and re-entrant transition lines. In contrast, remarkable differences are presented, such as discontinuous phase transitions (even between the active phases), the appearance of tricritical points and the stabilization of active phases under larger values of control parameters. Finally, we have shown that the critical behaviors are not altered due to the change of interactions, in which the absorbing transitions belong to the directed percolation (DP) universality class, whereas second-order active phase transitions belong to the Ising universality class.

  20. Switching dynamics and linear response spectra of a driven one-dimensional nonlinear lattice containing an intrinsic localized mode.

    PubMed

    Sato, M; Imai, S; Fujita, N; Shi, W; Takao, Y; Sada, Y; Hubbard, B E; Ilic, B; Sievers, A J

    2013-01-01

    An intrinsic localized mode (ILM) represents a localized vibrational excitation in a nonlinear lattice. Such a mode will stay in resonance as the driver frequency is changed adiabatically until a bifurcation point is reached, at which point the ILM switches and disappears. The dynamics behind switching in such a many body system is examined here through experimental measurements and numerical simulations. Linear response spectra of a driven micromechanical array containing an ILM were measured in the frequency region between two fundamentally different kinds of bifurcation points that separate the large amplitude ILM state from the two low amplitude vibrational states. Just as a natural frequency can be associated with a driven harmonic oscillator, a similar natural frequency has been found for a driven ILM via the beat frequency between it and a weak, tunable probe. This finding has been confirmed using numerical simulations. The behavior of this nonlinear natural frequency plays important but different roles as the two bifurcation points are approached. At the upper transition its frequency coalesces with the driver and the resulting bifurcation is very similar to the saddle-node bifurcation of a single driven Duffing oscillator, which is treated in an Appendix. The lower transition occurs when the four-wave mixing partner of the natural frequency of the ILM intersects the topmost extended band mode of the same symmetry. The properties of linear local modes associated with the driven ILM are also identified experimentally for the first time and numerically but play no role in these transitions. PMID:23410417