Collinear Collision Chemistry: 1. A Simple Model for Inelastic and Reactive Collision Dynamics
ERIC Educational Resources Information Center
Mahan, Bruce H.
1974-01-01
Discusses a model for the collinear collision of an atom with a diatomic molecule on a simple potential surface. Indicates that the model can provide a framework for thinking about molecular collisions and reveal many factors which affect the dynamics of reactive and inelastic collisions. (CC)
On the overriding issue of train front end collision in rail vehicle dynamics
NASA Astrophysics Data System (ADS)
Yang, Chao; Li, Qiang; Xiao, Shoune; Wang, Xi
2018-04-01
A three-dimensional dynamic model of crashed vehicles coupled with moving tracks is developed to research the dynamic behaviour of the train front end collision on tangent tracks. The three-dimensional dynamic model consists of a crashed vehicle model, moving track models, a simple wheel-rail contact model, a velocity-based coupler model and the model of energy absorption and anti-climbing devices. The vector method dealing with the nonlinear wheel-rail geometry is put forward in the paper. The developed model is applicable in the scope that central collisions occur on tangent tracks at low speeds. The examples of the vehicle impacting with a rigid wall and the train front end collision are carried out to obtain the dynamic responses of vehicles. The overriding issue is studied on the basis of the wheel rise in train collisions. The results show that the second bogie of the first colliding vehicle possesses the maximal wheel rise. The wheel rise increases with the increase of vehicles. However, the number of vehicles has tiny influence on the overriding in train collisions at low speeds. On the contrary, the impact speed has significant influence on the overriding in train collisions. The wheel rise increases rapidly if the impact speed is close to the critical speed of overriding. The large wheel rise is principally generated by the great coupler force related to the rigid impact in the axial direction.
DOT National Transportation Integrated Search
2000-11-01
In an effort to study occupant survivability in train collisions, analyses and tests were conducted to understand and improve the crashworthiness of rail vehicles. A collision dynamics model was developed in order to estimate the rigid body motion of...
Two-dimensional model of resonant electron collisions with diatomic molecules and molecular cations
NASA Astrophysics Data System (ADS)
Vana, Martin; Hvizdos, David; Houfek, Karel; Curik, Roman; Greene, Chris H.; Rescigno, Thomas N.; McCurdy, C. William
2016-05-01
A simple model for resonant collisions of electrons with diatomic molecules with one electronic and one nuclear degree of freedom (2D model) which was solved numerically exactly within the time-independent approach was used to probe the local complex potential approximation and nonlocal approximation to nuclear dynamics of these collisions. This model was reformulated in the time-dependent picture and extended to model also electron collisions with molecular cations, especially with H2+.This model enables an assessment of approximate methods, such as the boomerang model or the frame transformation theory. We will present both time-dependent and time-independent results and show how we can use the model to extract deeper insight into the dynamics of the resonant collisions.
Effect of velocity-dependent friction on multiple-vehicle collisions in traffic flow
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2017-01-01
We present the dynamic model for the multiple-vehicle collisions to take into account the velocity-dependent friction force. We study the effect of the velocity-dependent friction on the chain-reaction crash on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle and the friction force depends highly on the vehicular speed. The first crash may induce more collisions. We investigate whether or not the first collision induces the multiple-vehicle collisions, numerically and analytically. The dynamic transitions occur from no collisions, through a single collision and double collisions, to multiple collisions with decreasing the headway. We explore the effect of the velocity-dependent friction on the dynamic transitions and the region maps in the multiple-vehicle collisions.
Composite quantum collision models
NASA Astrophysics Data System (ADS)
Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo
2017-09-01
A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.
Outcomes of Grazing Impacts between Sub-Neptunes in Kepler Multis
NASA Astrophysics Data System (ADS)
Hwang, Jason; Chatterjee, Sourav; Lombardi, James, Jr.; Steffen, Jason H.; Rasio, Frederic
2018-01-01
Studies of high-multiplicity, tightly packed planetary systems suggest that dynamical instabilities are common and affect both the orbits and planet structures, where the compact orbits and typically low densities make physical collisions likely outcomes. Since the structure of many of these planets is such that the mass is dominated by a rocky core, but the volume is dominated by a tenuous gas envelope, the sticky-sphere approximation, used in dynamical integrators, may be a poor model for these collisions. We perform five sets of collision calculations, including detailed hydrodynamics, sampling mass ratios, and core mass fractions typical in Kepler Multis. In our primary set of calculations, we use Kepler-36 as a nominal remnant system, as the two planets have a small dynamical separation and an extreme density ratio. We use an N-body code, Mercury 6.2, to integrate initially unstable systems and study the resultant collisions in detail. We use these collisions, focusing on grazing collisions, in combination with realistic planet models created using gas profiles from Modules for Experiments in Stellar Astrophysics and core profiles using equations of state from Seager et al. to perform hydrodynamic calculations, finding scatterings, mergers, and even a potential planet–planet binary. We dynamically integrate the remnant systems, examine the stability, and estimate the final densities, finding that the remnant densities are sensitive to the core masses, and collisions result in generally more stable systems. We provide prescriptions for predicting the outcomes and modeling the changes in mass and orbits following collisions for general use in dynamical integrators.
Role of collisions in erosion of regolith during a lunar landing.
Berger, Kyle J; Anand, Anshu; Metzger, Philip T; Hrenya, Christine M
2013-02-01
The supersonic gas plume of a landing rocket entrains lunar regolith, which is the layer of loose solids covering the lunar surface. This ejection is problematic due to scouring and dust impregnation of surrounding hardware, reduction in visibility for the crew, and spoofing of the landing sensors. To date, model predictions of erosion and ejection dynamics have been based largely on single-trajectory models in which the role of interparticle collisions is ignored. In the present work, the parameters affecting the erosion rate of monodisperse solids are investigated using the discrete element method (DEM). The drag and lift forces exerted by the rocket exhaust are incorporated via one-way coupling. The results demonstrate that interparticle collisions are frequent in the region immediately above the regolith surface; as many as 20% of particles are engaged in a collision at a given time. These collisions play an important role both in the erosion dynamics and in the final trajectories of particles. In addition, a direct assessment of the influence of collisions on the erosion rate is accomplished via a comparison between a "collisionless" DEM model and the original DEM model. This comparison shows that the erosion dynamics change drastically when collisions are considered and that the erosion rate is dependent on the collision parameters (coefficient of restitution and coefficient of friction). Physical explanations for these trends are provided.
Insight into collision zone dynamics from topography: numerical modelling results and observations
NASA Astrophysics Data System (ADS)
Bottrill, A. D.; van Hunen, J.; Allen, M. B.
2012-11-01
Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs) basin on the overriding plate after initial collision. This "collisional mantle dynamic basin" (CMDB) is caused by slab steepening drawing, material away from the base of the overriding plate. Also, during this initial collision phase, surface uplift is predicted on the overriding plate between the suture zone and the CMDB, due to the subduction of buoyant continental material and its isostatic compensation. After slab detachment, redistribution of stresses and underplating of the overriding plate cause the uplift to spread further into the overriding plate. This topographic evolution fits the stratigraphy found on the overriding plate of the Arabia-Eurasia collision zone in Iran and south east Turkey. The sedimentary record from the overriding plate contains Upper Oligocene-Lower Miocene marine carbonates deposited between terrestrial clastic sedimentary rocks, in units such as the Qom Formation and its lateral equivalents. This stratigraphy shows that during the Late Oligocene-Early Miocene the surface of the overriding plate sank below sea level before rising back above sea level, without major compressional deformation recorded in the same area. Our modelled topography changes fit well with this observed uplift and subsidence.
ERIC Educational Resources Information Center
Wee, Loo Kang
2012-01-01
We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In designing the simulations, we discuss briefly three pedagogical considerations namely (1) a…
Modeling of Momentum Correlations in Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Pruneau, Claude; Sharma, Monika
2010-02-01
Measurements of transverse momentum (pt) correlations and fluctuations in heavy ion collisions (HIC) are of interest because they provide information on the collision dynamics not readily available from number correlations. For instance, pt fluctuations are expected to diverge for a system near its tri-critical point [1]. Integral momentum correlations may also be used to estimate the shear viscosity of the quark gluon plasma produced in HIC [2]. Integral correlations measured over large fractions of the particle phase space average out several dynamical contributions and as such may be difficult to interpret. It is thus of interest to seek extensions of integral correlation variables that may provide more detailed information about the collision dynamics. We introduce a variety of differential momentum correlations and discuss their basic properties in the light of simple toy models. We also present theoretical predictions based on the PYTHIA, HIJING, AMPT, and EPOS models. Finally, we discuss the interplay of various dynamical effects that may play a role in the determination of the shear viscosity based on the broadening of momentum correlations measured as function of collision centrality. [1] L. Stodolsky, Phys. Rev. Lett. 75 (1995) 1044. [2] S. Gavin and M. A. Aziz, Phys. Rev. Lett. 97 (2006) 162302. )
Zhang, Wei; Wei, Shilin; Teng, Yanbin; Zhang, Jianku; Wang, Xiufang; Yan, Zheping
2017-01-01
In view of a dynamic obstacle environment with motion uncertainty, we present a dynamic collision avoidance method based on the collision risk assessment and improved velocity obstacle method. First, through the fusion optimization of forward-looking sonar data, the redundancy of the data is reduced and the position, size and velocity information of the obstacles are obtained, which can provide an accurate decision-making basis for next-step collision avoidance. Second, according to minimum meeting time and the minimum distance between the obstacle and unmanned underwater vehicle (UUV), this paper establishes the collision risk assessment model, and screens key obstacles to avoid collision. Finally, the optimization objective function is established based on the improved velocity obstacle method, and a UUV motion characteristic is used to calculate the reachable velocity sets. The optimal collision speed of UUV is searched in velocity space. The corresponding heading and speed commands are calculated, and outputted to the motion control module. The above is the complete dynamic obstacle avoidance process. The simulation results show that the proposed method can obtain a better collision avoidance effect in the dynamic environment, and has good adaptability to the unknown dynamic environment. PMID:29186878
Research on The Construction of Flexible Multi-body Dynamics Model based on Virtual Components
NASA Astrophysics Data System (ADS)
Dong, Z. H.; Ye, X.; Yang, F.
2018-05-01
Focus on the harsh operation condition of space manipulator, which cannot afford relative large collision momentum, this paper proposes a new concept and technology, called soft-contact technology. In order to solve the problem of collision dynamics of flexible multi-body system caused by this technology, this paper also proposes the concepts of virtual components and virtual hinges, and constructs flexible dynamic model based on virtual components, and also studies on its solutions. On this basis, this paper uses NX to carry out model and comparison simulation for space manipulator in 3 different modes. The results show that using the model of multi-rigid body + flexible body hinge + controllable damping can make effective control on amplitude for the force and torque caused by target satellite collision.
Insight into collision zone dynamics from topography: numerical modelling results and observations
NASA Astrophysics Data System (ADS)
Bottrill, A. D.; van Hunen, J.; Allen, M. B.
2012-07-01
Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs) deepening in the area of the back arc-basin after initial collision. This collisional mantle dynamic basin (CMDB) is caused by slab steepening drawing material away from the base of the overriding plate. Also during this initial collision phase, surface uplift is predicted on the overriding plate between the suture zone and the CMDB, due to the subduction of buoyant continental material and its isostatic compensation. After slab detachment, redistribution of stresses and underplating of the overriding plate causes the uplift to spread further into the overriding plate. This topographic evolution fits the stratigraphy found on the overriding plate of the Arabia-Eurasia collision zone in Iran and south east Turkey. The sedimentary record from the overriding plate contains Upper Oligocene-Lower Miocene marine carbonates deposited between terrestrial clastic sedimentary rocks, in units such as the Qom Formation and its lateral equivalents. This stratigraphy shows that during the Late Oligocene-Early Miocene the surface of the overriding plate sank below sea level before rising back above sea level, without major compressional deformation recorded in the same area. This uplift and subsidence pattern correlates well with our modelled topography changes.
Outcome regimes of binary raindrop collisions
NASA Astrophysics Data System (ADS)
Testik, Firat Y.
2009-11-01
This study delineates the physical conditions that are responsible for the occurrence of main outcome regimes (i.e., bounce, coalescence, and breakup) for binary drop collisions with a precipitation microphysics perspective. Physical considerations based on the collision kinetic energy and the surface energies of the colliding drops lead to the development of a theoretical regime diagram for the drop/raindrop collision outcomes in the We- p plane ( We — Weber number, p — raindrop diameter ratio). This theoretical regime diagram is supported by laboratory experimental observations of drop collisions using high-speed imaging. Results of this fundamental study bring in new insights into the quantitative understanding of drop dynamics, applications of which extend beyond precipitation microphysics. In particular, results of this drop collision study are expected to give impetus to the physics-based dynamic modeling of the drop size distributions that is essential for various typical modern engineering applications, including numerical modeling of evolution of raindrop size distribution in rain shaft.
SMACK: A New Algorithm for Modeling Collisions and Dynamics of Planetesimals in Debris Disks
NASA Technical Reports Server (NTRS)
Nesvold, Erika Rose; Kuchner, Marc J.; Rein, Hanno; Pan, Margaret
2013-01-01
We present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. We show that SMACK is stable to numerical viscosity and numerical heating over 10(exp 7) yr, and that it can reproduce analytic models of disk evolution. We use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit. Differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring.
NASA Astrophysics Data System (ADS)
Kral, Q.; Thebault, P.; Charnoz, S.
2014-01-01
The first attempt at developing a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013) is presented. So far, these two crucial mechanisms were studied separately, with N-body and statistical collisional codes respectively, because of stringent computational constraints. We present a new model named LIDT-DD which is able to follow over long timescales the coupled evolution of dynamics (including radiation forces) and collisions in a self-consistent way.
Ahu Akin, F; Ree, Jongbaik; Ervin, Kent M; Kyu Shin, Hyung
2005-08-08
The energetics and dynamics of collision-induced dissociation of O2- with Ar and Xe targets are studied experimentally using guided ion-beam tandem mass spectrometry. The cross sections and the collision dynamics are modeled theoretically by classical trajectory calculations. Experimental apparent threshold energies are 2.1 and 1.1 eV in excess of the thermochemical O2- bond dissociation energy for argon and xenon, respectively. Classical trajectory calculations confirm the observed threshold behavior and the dependence of cross sections on the relative kinetic energy. Representative trajectories reveal that the bond dissociation takes place on a short time scale of about 50 fs in strong direct collisions. Collision-induced dissociation is found to be remarkably restricted to the perpendicular approach of ArXe to the molecular axis of O2-, while collinear collisions do not result in dissociation. The higher collisional energy-transfer efficiency of xenon compared with argon is attributed to both mass and polarizability effects.
Diffusion of non-Gaussianity in heavy ion collisions
NASA Astrophysics Data System (ADS)
Kitazawa, Masakiyo; Asakawa, Masayuki; Ono, Hirosato
2014-05-01
We investigate the time evolution of higher order cumulants of bulk fluctuations of conserved charges in the hadronic stage in relativistic heavy ion collisions. The dynamical evolution of non-Gaussian fluctuations is modeled by the diffusion master equation. Using this model we predict that the fourth-order cumulant of net-electric charge is suppressed compared with the recently observed second-order one at ALICE for a reasonable parameter range. Significance of the measurements of various cumulants as functions of rapidity window to probe dynamical history of the hot medium created by heavy ion collisions is emphasized.
Development of FB-MultiPier dynamic vessel-collision analysis models, phase 2 : [summary].
DOT National Transportation Integrated Search
2014-07-01
When collisions between large vessels and bridge : supports occur, they can result in significant : damage to bridge and vessel. These collisions : are extremely hazardous, often taking lives on : the vessel and the bridge. Direct costs of repair : a...
A collision dynamics model of a multi-level train
DOT National Transportation Integrated Search
2006-11-05
In train collisions, multi-level rail passenger vehicles can deform in modes that are different from the behavior of single level cars. The deformation in single level cars usually occurs at the front end during a collision. In one particular inciden...
Analysis of collision safety associated with CEM and conventional cars mixed within a consist
DOT National Transportation Integrated Search
2003-11-16
collision dynamics model of a passenger train-to-passenger train collision has been developed to simulate the potential safety hazards and benefits associated with mixing conventional and crash energy management (CEM) cars within a consist. This pape...
Application of JAERI quantum molecular dynamics model for collisions of heavy nuclei
NASA Astrophysics Data System (ADS)
Ogawa, Tatsuhiko; Hashimoto, Shintaro; Sato, Tatsuhiko; Niita, Koji
2016-06-01
The quantum molecular dynamics (QMD) model incorporated into the general-purpose radiation transport code PHITS was revised for accurate prediction of fragment yields in peripheral collisions. For more accurate simulation of peripheral collisions, stability of the nuclei at their ground state was improved and the algorithm to reject invalid events was modified. In-medium correction on nucleon-nucleon cross sections was also considered. To clarify the effect of this improvement on fragmentation of heavy nuclei, the new QMD model coupled with a statistical decay model was used to calculate fragment production cross sections of Ag and Au targets and compared with the data of earlier measurement. It is shown that the revised version can predict cross section more accurately.
Collision safety comparison of conventional and crash energy management passenger rail car designs
DOT National Transportation Integrated Search
2003-04-22
In conjunction with full-scale equipment tests, collision dynamics models of passenger rail cars have been developed to investigate the benefits provided by incorporating energy-absorbing crush zones at the ends of the cars. In a collision, the major...
NASA Astrophysics Data System (ADS)
Gleghorn, Jason P.; Smith, James P.; Kirby, Brian J.
2013-09-01
Microfluidic obstacle arrays have been used in numerous applications, and their ability to sort particles or capture rare cells from complex samples has broad and impactful applications in biology and medicine. We have investigated the transport and collision dynamics of particles in periodic obstacle arrays to guide the design of convective, rather than diffusive, transport-based immunocapture microdevices. Ballistic and full computational fluid dynamics simulations are used to understand the collision modes that evolve in cylindrical obstacle arrays with various geometries. We identify previously unrecognized collision mode structures and differential size-based collision frequencies that emerge from these arrays. Previous descriptions of transverse displacements that assume unidirectional flow in these obstacle arrays cannot capture mode transitions properly as these descriptions fail to capture the dependence of the mode transitions on column spacing and the attendant change in the flow field. Using these analytical and computational simulations, we elucidate design parameters that induce high collision rates for all particles larger than a threshold size or selectively increase collision frequencies for a narrow range of particle sizes within a polydisperse population. Furthermore, we investigate how the particle Péclet number affects collision dynamics and mode transitions and demonstrate that experimental observations from various obstacle array geometries are well described by our computational model.
Robot body self-modeling algorithm: a collision-free motion planning approach for humanoids.
Leylavi Shoushtari, Ali
2016-01-01
Motion planning for humanoid robots is one of the critical issues due to the high redundancy and theoretical and technical considerations e.g. stability, motion feasibility and collision avoidance. The strategies which central nervous system employs to plan, signal and control the human movements are a source of inspiration to deal with the mentioned problems. Self-modeling is a concept inspired by body self-awareness in human. In this research it is integrated in an optimal motion planning framework in order to detect and avoid collision of the manipulated object with the humanoid body during performing a dynamic task. Twelve parametric functions are designed as self-models to determine the boundary of humanoid's body. Later, the boundaries which mathematically defined by the self-models are employed to calculate the safe region for box to avoid the collision with the robot. Four different objective functions are employed in motion simulation to validate the robustness of algorithm under different dynamics. The results also confirm the collision avoidance, reality and stability of the predicted motion.
NASA Astrophysics Data System (ADS)
Aarão Reis, F. D. A.; Pierre-Louis, O.
2018-04-01
We provide a theoretical framework to analyze the properties of frontal collisions of two growing interfaces considering different short-range interactions between them. Due to their roughness, the collision events spread in time and form rough domain boundaries, which defines collision interfaces in time and space. We show that statistical properties of such interfaces depend on the kinetics of the growing interfaces before collision, but are independent of the details of their interaction and of their fluctuations during the collision. Those properties exhibit dynamic scaling with exponents related to the growth kinetics, but their distributions may be nonuniversal. Our results are supported by simulations of lattice models with irreversible dynamics and local interactions. Relations to first passage processes are discussed and a possible application to grain-boundary formation in two-dimensional materials is suggested.
From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venugopalan, R.
2010-07-22
We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.
NASA Technical Reports Server (NTRS)
Kyriakopoulos, K. J.; Saridis, G. N.
1993-01-01
A formulation that makes possible the integration of collision prediction and avoidance stages for mobile robots moving in general terrains containing moving obstacles is presented. A dynamic model of the mobile robot and the dynamic constraints are derived. Collision avoidance is guaranteed if the distance between the robot and a moving obstacle is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. A feedback control is developed and local asymptotic stability is proved if the velocity of the moving obstacle is bounded. Furthermore, a solution to the problem of inverse dynamics for the mobile robot is given. Simulation results verify the value of the proposed strategy.
Energy-exchange collisions of dark-bright-bright vector solitons.
Radhakrishnan, R; Manikandan, N; Aravinthan, K
2015-12-01
We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.
Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko
2014-12-01
To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.
NASA Astrophysics Data System (ADS)
Kolyari I., G.
2018-05-01
The proposed theoretical model allows for the perfectly elastic collision of three bodies (three mass points) to calculate: 1) the definite value of the three bodies' projected velocities after the collision with a straight line, along which the bodies moved before the collision; 2) the definite value of the scattering bodies' velocities on the plane and the definite value of the angles between the bodies' momenta (or velocities), which the bodies obtain after the collision when moving on the plane. The proposed calculation model of the velocities of the three collided bodies is consistent with the dynamic model of the same bodies' interaction during the collision, taking into account that the energy flow is conserved for the entire system before and after the collision. It is shown that under the perfectly elastic interaction during the collision of three bodies the energy flow is conserved in addition to the momentum and energy conservation.
Dynamic simulation of train-truck collision at level crossings
NASA Astrophysics Data System (ADS)
Ling, Liang; Guan, Qinghua; Dhanasekar, Manicka; Thambiratnam, David P.
2017-01-01
Trains crashing onto heavy road vehicles stuck across rail tracks are more likely occurrences at level crossings due to ongoing increase in the registration of heavy vehicles and these long heavy vehicles getting caught in traffic after partly crossing the boom gate; these incidents lead to significant financial losses and societal costs. This paper presents an investigation of the dynamic responses of trains under frontal collision on road trucks obliquely stuck on rail tracks at level crossings. This study builds a nonlinear three-dimensional multi-body dynamic model of a passenger train colliding with an obliquely stuck road truck on a ballasted track. The model is first benchmarked against several train dynamics packages and its predictions of the dynamic response and derailment potential are shown rational. A geometry-based derailment assessment criterion is applied to evaluate the derailment behaviour of the frontal obliquely impacted trains under different conditions. Sensitivities of several key influencing parameters, such as the train impact speed, the truck mass, the friction at truck tyres, the train-truck impact angle, the contact friction at the collision zone, the wheel/rail friction and the train suspension are reported.
Quist, Brian W.; Seghete, Vlad; Huet, Lucie A.; Murphey, Todd D.
2014-01-01
During exploratory behavior, rats brush and tap their whiskers against objects, and the mechanical signals so generated constitute the primary sensory variables upon which these animals base their vibrissotactile perception of the world. To date, however, we lack a general dynamic model of the vibrissa that includes the effects of inertia, damping, and collisions. We simulated vibrissal dynamics to compute the time-varying forces and bending moment at the vibrissa base during both noncontact (free-air) whisking and whisking against an object (collision). Results show the following: (1) during noncontact whisking, mechanical signals contain components at both the whisking frequency and also twice the whisking frequency (the latter could code whisking speed); (2) when rats whisk rhythmically against an object, the intrinsic dynamics of the vibrissa can be as large as many of the mechanical effects of the collision, however, the axial force could still generate responses that reliably indicate collision based on thresholding; and (3) whisking velocity will have only a small effect on the transient response generated during a whisker–object collision. Instead, the transient response will depend in large part on how the rat chooses to decelerate its vibrissae after the collision. The model allows experimentalists to estimate error bounds on quasi-static descriptions of vibrissal shape, and its predictions can be used to bound realistic expectations from neurons that code vibrissal sensing. We discuss the implications of these results under the assumption that primary sensory neurons of the trigeminal ganglion are sensitive to various combinations of mechanical signals. PMID:25057187
NASA Technical Reports Server (NTRS)
Araki, Suguru
1991-01-01
The modeling of the dynamics of particle collisions within planetary rings is discussed. Particles in the rings collide with one another because they have small random motions in addition to their orbital velocity. The orbital speed is roughly 10 km/s, while the random motions have an average speed of about a tenth of a millimeter per second. As a result, the particle collisions are very gentle. Numerical analysis and simulation of the ring dynamics, performed with the aid of a supercomputer, is outlined.
Modelling droplet collision outcomes for different substances and viscosities
NASA Astrophysics Data System (ADS)
Sommerfeld, Martin; Kuschel, Matthias
2016-12-01
The main objective of the present study is the derivation of models describing the outcome of binary droplet collisions for a wide range of dynamic viscosities in the well-known collision maps (i.e. normalised lateral droplet displacement at collision, called impact parameter, versus collision Weber number). Previous studies by Kuschel and Sommerfeld (Exp Fluids 54:1440, 2013) for different solution droplets having a range of solids contents and hence dynamic viscosities (here between 1 and 60 mPa s) revealed that the locations of the triple point (i.e. coincidence of bouncing, stretching separation and coalescence) and the critical Weber number (i.e. condition for the transition from coalescence to separation for head-on collisions) show a clear dependence on dynamic viscosity. In order to extend these findings also to pure liquids and to provide a broader data basis for modelling the viscosity effect, additional binary collision experiments were conducted for different alcohols (viscosity range 1.2-15.9 mPa s) and the FVA1 reference oil at different temperatures (viscosity range 3.0-28.2 mPa s). The droplet size for the series of alcohols was around 365 and 385 µm for the FVA1 reference oil, in each case with fixed diameter ratio at Δ= 1. The relative velocity between the droplets was varied in the range 0.5-3.5 m/s, yielding maximum Weber numbers of around 180. Individual binary droplet collisions with defined conditions were generated by two droplet chains each produced by vibrating orifice droplet generators. For recording droplet motion and the binary collision process with good spatial and temporal resolution high-speed shadow imaging was employed. The results for varied relative velocity and impact angle were assembled in impact parameter-Weber number maps. With increasing dynamic viscosity a characteristic displacement of the regimes for the different collision scenarios was also observed for pure liquids similar to that observed for solutions. This displacement could be described on a physical basis using the similarity number and structure parameter K which was obtained through flow process evaluation and optimal proportioning of momentum and energy by Naue and Bärwolff (Transportprozesse in Fluiden. Deutscher Verlag für Grundstoffindustrie GmbH, Leipzig 1992). Two correlations including the structure parameter K could be derived which describe the location of the triple point and the critical We number. All fluids considered, pure liquids and solutions, are very well fitted by these physically based correlations. The boundary model of Jiang et al. (J Fluid Mech 234:171-190, 1992) for distinguishing between coalescence and stretching separation could be adapted to go through the triple point by the two involved model parameters C a and C b, which were correlated with the relaxation velocity u_{{relax}} = {σ/μ}. Based on the predicted critical Weber number, denoting the onset of reflexive separation, the model of Ashgriz and Poo (J Fluid Mech 221:183-204, 1990) was adapted accordingly. The proper performance of the new generalised models was validated based on the present and previous measurements for a wide range of dynamic viscosities (i.e. 1-60 mPa s) and liquid properties. Although the model for the lower boundary of bouncing (Estrade et al. in J Heat Fluid Flow 20:486-491, 1999) could be adapted through the shape factor, it was found not suitable for the entire range of Weber numbers and viscosities.
Methodology for Collision Risk Assessment of an Airspace Flow Corridor Concept
NASA Astrophysics Data System (ADS)
Zhang, Yimin
This dissertation presents a methodology to estimate the collision risk associated with a future air-transportation concept called the flow corridor. The flow corridor is a Next Generation Air Transportation System (NextGen) concept to reduce congestion and increase throughput in en-route airspace. The flow corridor has the potential to increase throughput by reducing the controller workload required to manage aircraft outside the corridor and by reducing separation of aircraft within corridor. The analysis in this dissertation is a starting point for the safety analysis required by the Federal Aviation Administration (FAA) to eventually approve and implement the corridor concept. This dissertation develops a hybrid risk analysis methodology that combines Monte Carlo simulation with dynamic event tree analysis. The analysis captures the unique characteristics of the flow corridor concept, including self-separation within the corridor, lane change maneuvers, speed adjustments, and the automated separation assurance system. Monte Carlo simulation is used to model the movement of aircraft in the flow corridor and to identify precursor events that might lead to a collision. Since these precursor events are not rare, standard Monte Carlo simulation can be used to estimate these occurrence rates. Dynamic event trees are then used to model the subsequent series of events that may lead to collision. When two aircraft are on course for a near-mid-air collision (NMAC), the on-board automated separation assurance system provides a series of safety layers to prevent the impending NNAC or collision. Dynamic event trees are used to evaluate the potential failures of these layers in order to estimate the rare-event collision probabilities. The results show that the throughput can be increased by reducing separation to 2 nautical miles while maintaining the current level of safety. A sensitivity analysis shows that the most critical parameters in the model related to the overall collision probability are the minimum separation, the probability that both flights fail to respond to traffic collision avoidance system, the probability that an NMAC results in a collision, the failure probability of the automatic dependent surveillance broadcast in receiver, and the conflict detection probability.
Collision dynamics of H+ + N2 at low energies based on time-dependent density-functional theory
NASA Astrophysics Data System (ADS)
Yu, W.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Gao, C.-Z.; Wei, B.
2018-02-01
Using time-dependent density-functional theory at the level of local density approximation augmented by a self-interaction correction and coupled non-adiabatically to molecular dynamics, we study, from a theoretical perspective, scattering dynamics of the proton in collisions with the N2 molecule at 30 eV. Nine different collision configurations are employed to analyze the proton energy loss spectra, electron depletion, scattering angles and self-interaction effects. Our results agree qualitatively with the experimental data and previous theoretical calculations. The discrepancies are ascribed to the limitation of the theoretical models in use. We find that self-interaction effects can significantly influence the electron capture and the excited diatomic vibrational motion, which is in consistent with other calculations. In addition, it is found that the molecular structure can be readily retrieved from the proton energy loss spectra due to a significant momentum transfer in head-on collisions.
Optimal motion planning for collision avoidance of mobile robots in non-stationary environments
NASA Technical Reports Server (NTRS)
Kyriakopoulos, K. J.; Saridis, G. N.
1992-01-01
An optimal control formulation of the problem of collision avoidance of mobile robots moving in general terrains containing moving obstacles is presented. A dynamic model of the mobile robot and the dynamic constraints are derived. Collision avoidance is guaranteed if the minimum distance between the robot and the object is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. Time consistency with the nominal plan is desirable. A numerical solution of the optimization problem is obtained. A perturbation control type of approach is used to update the optimal plan. Simulation results verify the value of the proposed strategy.
Resonance decay dynamics and their effects on pT spectra of pions in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Lo, Pok Man
2018-03-01
The influence of resonance decay dynamics on the momentum spectra of pions in heavy-ion collisions is examined. Taking the decay processes ω →3 π and ρ →2 π as examples, I demonstrate how the resonance width and details of decay dynamics (via the decay matrix element) can modify the physical observables. The latter effect is commonly neglected in statistical models. To remedy the situation, a theoretical framework for incorporating hadron dynamics into the analysis is formulated, which can be straightforwardly extended to describe general N -body decays.
Massive collisions in debris disks: possible application to the beta Pic disc
NASA Astrophysics Data System (ADS)
Kral, Q.; Thébault, P.; Augereau, J.-C.; Boccaletti, A.; Charnoz, S.
2014-09-01
The new LIDT-DD code has been used to study massive collisions in debris discs. This new hybrid model is a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013). It models the full complexity of debris discs' physics such as high velocity collisions, radiation-pressure affected orbits, wide range of grains' dynamical behaviour, etc. LIDT-DD can be used on many possible applications. Our first test case concerns the violent breakup of a massive planetesimal such as the ones happening during the late stages of planetary formation or with the biggest bodies in debris belts. We investigate the duration, magnitude and spatial structure of the signature left by such a violent event, as well as its observational detectability. We find that the breakup of a Ceres-sized body creates an asymmetric dust disc that is homogenized, by the coupled action of collisions and dynamics. The luminosity excess in the breakup's aftermath should be detectable by mid-IR photometry, from a 30 pc distance. As for the asymmetric structures, we derive synthetic images for the SPHERE/VLT and MIRI/JWST instruments, showing that they should be clearly visible and resolved from a 10 pc distance. We explain the observational signature of such impacts and give scaling laws to extrapolate our results to different configurations. These first results confirm that our code can be used to study the massive collision scenario to explain some asymmetries in the Beta-Pic disc.
Statistics of initial density perturbations in heavy ion collisions and their fluid dynamic response
NASA Astrophysics Data System (ADS)
Floerchinger, Stefan; Wiedemann, Urs Achim
2014-08-01
An interesting opportunity to determine thermodynamic and transport properties in more detail is to identify generic statistical properties of initial density perturbations. Here we study event-by-event fluctuations in terms of correlation functions for two models that can be solved analytically. The first assumes Gaussian fluctuations around a distribution that is fixed by the collision geometry but leads to non-Gaussian features after averaging over the reaction plane orientation at non-zero impact parameter. In this context, we derive a three-parameter extension of the commonly used Bessel-Gaussian event-by-event distribution of harmonic flow coefficients. Secondly, we study a model of N independent point sources for which connected n-point correlation functions of initial perturbations scale like 1 /N n-1. This scaling is violated for non-central collisions in a way that can be characterized by its impact parameter dependence. We discuss to what extent these are generic properties that can be expected to hold for any model of initial conditions, and how this can improve the fluid dynamical analysis of heavy ion collisions.
Model of mobile agents for sexual interactions networks
NASA Astrophysics Data System (ADS)
González, M. C.; Lind, P. G.; Herrmann, H. J.
2006-02-01
We present a novel model to simulate real social networks of complex interactions, based in a system of colliding particles (agents). The network is build by keeping track of the collisions and evolves in time with correlations which emerge due to the mobility of the agents. Therefore, statistical features are a consequence only of local collisions among its individual agents. Agent dynamics is realized by an event-driven algorithm of collisions where energy is gained as opposed to physical systems which have dissipation. The model reproduces empirical data from networks of sexual interactions, not previously obtained with other approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less
New Development on Modelling Fluctuations and Fragmentation in Heavy-Ion Collisions
NASA Astrophysics Data System (ADS)
Lin, Hao; Danielewicz, Pawel
2017-09-01
During heavy-ion collisions (HIC), colliding nuclei form an excited composite system. Instabilities present in the system may deform the shape of the system exotically, leading to a break-up into fragments. Many experimental efforts have been devoted to the nuclear multifragmentation phenomenon, while traditional HIC models, lacking in proper treatment of fluctuations, fall short in explaining it. In view of this, we are developing a new model to implement realistic fluctuations into transport simulation. The new model is motivated by the Brownian motion description of colliding particles. The effects of two-body collisions are recast in one-body diffusion processes. Vastly different dynamical paths are sampled by solving Langevin equations in momentum space. It is the stochastic sampling of dynamical paths that leads to a wide spread of exit channels. In addition, the nucleon degree of freedom is used to enhance the fluctuations. The model has been tested in reactions such as 112Sn + 112Sn and 58Ni + 58Ni, where reasonable results are yielded. An exploratory comparison on the 112Sn + 112Sn reaction at 50 MeV/nucleon with two other models, the stochastic mean-field (SMF) and the antisymmetrized molecular dynamics (AMD) models, has also been conducted. Work supported by the NSF Grant No. PHY-1403906.
Shannon information entropy in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Ma, Chun-Wang; Ma, Yu-Gang
2018-03-01
The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.
NASA Astrophysics Data System (ADS)
Kral, Q.; Thébault, P.; Augereau, J.-C.; Boccaletti, A.; Charnoz, S.
2014-12-01
LIDT-DD is a new hybrid model coupling the collisional and dynamical evolution in debris discs in a self-consistent way. It has been developed in a way that allows to treat a large number of different astrophysical cases where collisions and dynamics have an important role. This interplay was often totally neglected in previous studies whereas, even for the simplest configurations, the real physics of debris discs imposes strong constraints and interactions between dynamics and collisions. After presenting the LIDT-DD model, we will describe the evolution of violent stochastic collisional events with this model. These massive impacts have been invoked as a possible explanation for some debris discs displaying pronounced azimuthal asymmetries or having a luminosity excess exceeding that expected for systems at collisional steady-state. So far, no thorough modelling of the consequences of such stochastic events has been carried out, mainly because of the extreme numerical challenge of coupling the dynamical and collisional evolution of the released dust. We follow the collisional and dynamical evolution of dust released after the breakup of a Ceres-sized body at 6 AU from its central star. We investigate the duration, magnitude and spatial structure of the signature left by such a violent event, as well as its observational detectability. We use the GRaTer package to estimate the system's luminosity at different wavelengths and derive synthetic images for the SPHERE/VLT and MIRI/JWST instruments.
Optimal modeling of 1D azimuth correlations in the context of Bayesian inference
NASA Astrophysics Data System (ADS)
De Kock, Michiel B.; Eggers, Hans C.; Trainor, Thomas A.
2015-09-01
Analysis and interpretation of spectrum and correlation data from high-energy nuclear collisions is currently controversial because two opposing physics narratives derive contradictory implications from the same data, one narrative claiming collision dynamics is dominated by dijet production and projectile-nucleon fragmentation, the other claiming collision dynamics is dominated by a dense, flowing QCD medium. Opposing interpretations seem to be supported by alternative data models, and current model-comparison schemes are unable to distinguish between them. There is clearly need for a convincing new methodology to break the deadlock. In this study we introduce Bayesian inference (BI) methods applied to angular correlation data as a basis to evaluate competing data models. For simplicity the data considered are projections of two-dimensional (2D) angular correlations onto a 1D azimuth from three centrality classes of 200-GeV Au-Au collisions. We consider several data models typical of current model choices, including Fourier series (FS) and a Gaussian plus various combinations of individual cosine components. We evaluate model performance with BI methods and with power-spectrum analysis. We find that FS-only models are rejected in all cases by Bayesian analysis, which always prefers a Gaussian. A cylindrical quadrupole cos(2 ϕ ) is required in some cases but rejected for 0%-5%-central Au-Au collisions. Given a Gaussian centered at the azimuth origin, "higher harmonics" cos(m ϕ ) for m >2 are rejected. A model consisting of Gaussian +dipole cos(ϕ )+quadrupole cos(2 ϕ ) provides good 1D data descriptions in all cases.
The dynamics of head-on collisions of spherical stellar systems
NASA Astrophysics Data System (ADS)
Narasimhan, K. S. V. S.; Alladin, Saleh Mohammed
1986-12-01
Energy changes in a head-on collision between two unequal Plummer model stellar systems (galaxies) are studied analytically under the impulsive approximation. The variation of the disruptive effects within and the mass escape from systems widely differing in mass and scalelength ratios are determined, and some physical implications regarding the dynamical stability of the systems undergoing head-on collisions are indicated. It is found that if two systems differ considerably in size, both systems generally survive the collision if (1) the mass of the bigger is greater than about six times the mass of the smaller and (2) the density of the smaller is more than about twenty-five times the entity of the bigger system, when the velocity at minimum separation is equal to the parabolic velocity of escape.
NASA Astrophysics Data System (ADS)
Pusok, Adina E.; Kaus, Boris; Popov, Anton
2017-04-01
It is commonly accepted that slab detachment results from the development of extensional stresses within the subducting slab. Subduction slowdown due to arrival of buoyant continental material at the trench is considered to cause such stress build up in the slab. Following slab detachment, slab pull partially or completely loses its strength and hot asthenosphere may flow through the slab window, which can have major consequences for continental collision. The dynamics of slab detachment has been extensively studied in 2D (i.e. analytical and numerical), but 3D models of slab detachment during continental collision remain largely unexplored. Some of the previous 3D models have investigated the role of an asymmetric margin on the propagation of slab detachment (van Hunen and Allen, 2011), the impact of slab detachment on the curvature of orogenic belts (Capitanio and Replumaz, 2013), the role of the collision rate on slab detachment depth (Li et al., 2013) or the effect of along-trench variations on slab detachment (Duretz et al., 2014). However, rheology of mantle and lithosphere is known to have a major influence on the dynamics of subduction. Here, we explore a range of different rheological approximations to understand their sensitivity on the possible scenarios. We employ the code LaMEM (Kaus et al., 2016) to perform 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. The models exhibit a wide range of behaviours depending on the rheological law employed: from linear, to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow, dominated by viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, dominated by plastic breaking and inducing strong mantle flow in the slab window. Moreover, in models of viscous approximation, slab break-off starts in the slab interior due tot the nature of slab necking, while in models of non-linear visco-elasto-plastic rheology, slab tear will first occur at the edges of the continental collision.
Reactive multi-particle collision dynamics with reactive boundary conditions
NASA Astrophysics Data System (ADS)
Sayyidmousavi, Alireza; Rohlf, Katrin
2018-07-01
In the present study, an off-lattice particle-based method called the reactive multi-particle collision (RMPC) dynamics is extended to model reaction-diffusion systems with reactive boundary conditions in which the a priori diffusion coefficient of the particles needs to be maintained throughout the simulation. To this end, the authors have made use of the so-called bath particles whose purpose is only to ensure proper diffusion of the main particles in the system. In order to model partial adsorption by a reactive boundary in the RMPC, the probability of a particle being adsorbed, once it hits the boundary, is calculated by drawing an analogy between the RMPC and Brownian Dynamics. The main advantages of the RMPC compared to other molecular based methods are less computational cost as well as conservation of mass, energy and momentum in the collision and free streaming steps. The proposed approach is tested on three reaction-diffusion systems and very good agreement with the solutions to their corresponding partial differential equations is observed.
Dynamical initial-state model for relativistic heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chun; Schenke, Bjorn
We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a uctuating time depending on sampled final rapidities. Energy is deposited in space-time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directlymore » from the initial state model, including net-baryon rapidity distributions, 2-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. Here, we also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation.« less
Dynamical initial-state model for relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Shen, Chun; Schenke, Björn
2018-02-01
We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy-ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a fluctuating time depending on sampled final rapidities. Energy is deposited in space time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directly from the initial-state model, including net-baryon rapidity distributions, two-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. We also present the implementation of the model with 3+1-dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial-state model at proper times greater than the initial time for the hydrodynamic simulation.
Dynamical initial-state model for relativistic heavy-ion collisions
Shen, Chun; Schenke, Bjorn
2018-02-15
We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a uctuating time depending on sampled final rapidities. Energy is deposited in space-time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directlymore » from the initial state model, including net-baryon rapidity distributions, 2-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. Here, we also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation.« less
Fluid moments of the nonlinear Landau collision operator
Hirvijoki, E.; Lingam, M.; Pfefferle, D.; ...
2016-08-09
An important problem in plasma physics is the lack of an accurate and complete description of Coulomb collisions in associated fluid models. To shed light on the problem, this Letter introduces an integral identity involving the multivariate Hermite tensor polynomials and presents a method for computing exact expressions for the fluid moments of the nonlinear Landau collision operator. In conclusion, the proposed methodology provides a systematic and rigorous means of extending the validity of fluid models that have an underlying inverse-square force particle dynamics to arbitrary collisionality and flow.
DOT National Transportation Integrated Search
2008-01-31
Crash Energy Management (CEM) is a crashworthiness strategy that : incorporates crush zones into the design of passenger railcars. In the event of a : collision, crush zones are engineered to collapse in a controlled manner and : distribute crush to ...
Simulation of dental collisions and occlusal dynamics in the virtual environment.
Stavness, I K; Hannam, A G; Tobias, D L; Zhang, X
2016-04-01
Semi-adjustable articulators have often been used to simulate occlusal dynamics, but advances in intra-oral scanning and computer software now enable dynamics to be modelled mathematically. Computer simulation of occlusal dynamics requires accurate virtual casts, records to register them and methods to handle mesh collisions during movement. Here, physical casts in a semi-adjustable articulator were scanned with a conventional clinical intra-oral scanner. A coordinate measuring machine was used to index their positions in intercuspation, protrusion, right and left laterotrusion, and to model features of the articulator. Penetrations between the indexed meshes were identified and resolved using restitution forces, and the final registrations were verified by distance measurements between dental landmarks at multiple sites. These sites were confirmed as closely approximating via measurements made from homologous transilluminated vinylpolysiloxane interocclusal impressions in the mounted casts. Movements between the indexed positions were simulated with two models in a custom biomechanical software platform. In model DENTAL, 6 degree-of-freedom movements were made to minimise deviation from a straight line path and also shaped by dynamic mesh collisions detected and resolved mathematically. In model ARTIC, the paths were further constrained by surfaces matching the control settings of the articulator. Despite these differences, the lower mid-incisor point paths were very similar in both models. The study suggests that mathematical simulation utilising interocclusal 'bite' registrations can closely replicate the primary movements of casts mounted in a semi-adjustable articulator. Additional indexing positions and appropriate software could, in some situations, replace the need for mechanical semi-adjustable articulation and/or its virtual representation. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huthmacher, Klaus; Molberg, Andreas K.; Rethfeld, Bärbel
2016-10-01
A split-step numerical method for calculating ultrafast free-electron dynamics in dielectrics is introduced. The two split steps, independently programmed in C++11 and FORTRAN 2003, are interfaced via the presented open source wrapper. The first step solves a deterministic extended multi-rate equation for the ionization, electron–phonon collisions, and single photon absorption by free-carriers. The second step is stochastic and models electron–electron collisions using Monte-Carlo techniques. This combination of deterministic and stochastic approaches is a unique and efficient method of calculating the nonlinear dynamics of 3D materials exposed to high intensity ultrashort pulses. Results from simulations solving the proposed model demonstrate howmore » electron–electron scattering relaxes the non-equilibrium electron distribution on the femtosecond time scale.« less
Modeling the Dynamical Structure of the Haumea Family
NASA Astrophysics Data System (ADS)
Proudfoot, Benjamin; Ragozzine, Darin
2018-04-01
Collisions are known to be critical in explaining the full story of the outer Solar System. The dwarf planet Haumea provides a unique empirical view into this, as Haumea is the only known example of a collisional family in the Kuiper Belt. Although there have been many Haumea formation hypotheses presented in the literature, none are fully self-consistent. In particular, it is challenging to explain the low ejection velocity of the family. With the addition of many new Haumea family members (Maggard & Ragozzine 2018, in prep.), we further investigate how we can use collision models to recreate the current dynamical distribution of Haumea family members in (proper) a-e-i-dv-H space. Using synthetic families created using different collision models, we use a Bayesian methodology to infer the posterior distribution of our model parameters that best matches the current family. Our newest results continue to exclude the planar distribution of family members that would result from a ‘graze-and-merge’ type collision (e.g., Leinhardt et al. 2010) based on a lack of a-e-i correlation (Proudfoot & Ragozzine, DPS 2017, DDA 2017). We present here our results from more models. We have also validated a statistical method for automatically and self-consistently identifying interlopers from the background population.
2014-07-01
of models for variable conditions: – Use implicit models to eliminate constraint of sequence of fast time scales: c, ve, – Price to pay: lack...collisions: – Elastic – Bragiinski terms – Inelastic – warning! Rates depend on both T and relative velocity – Multi-fluid CR model from...merge/split for particle management, efficient sampling, inelastic collisions … – Level grouping schemes of electronic states, for dynamical coarse
A statistic-thermodynamic model for the DOM degradation in the estuary
NASA Astrophysics Data System (ADS)
Zheng, Quanan; Chen, Qin; Zhao, Haihong; Shi, Jiuxin; Cao, Yong; Wang, Dan
2008-03-01
This study aims to clarify the role of dissolved salts playing in the degradation process of terrestrial dissolved organic matter (DOM) at a scale of molecular movement. The molecular thermal movement is perpetual motion. In a multi-molecular system, this random motion also causes collision between the molecules. Seawater is a multi-molecular system consisting from water, salt, and terrestrial DOM molecules. This study attributes the DOM degradation in the estuary to the inelastic collision of DOM molecule with charged salt ions. From statistic-thermodynamic theories of molecular collision, the DOM degradation model and the DOM distribution model are derived. The models are validated by the field observations and satellite data. Thus, we conclude that the inelastic collision between the terrestrial DOM molecules and dissolved salt ions in seawater is a decisive dynamic mechanism for rapid loss of terrestrial DOM.
Kinetics of the chiral phase transition in a linear σ model
NASA Astrophysics Data System (ADS)
Wesp, Christian; van Hees, Hendrik; Meistrenko, Alex; Greiner, Carsten
2018-02-01
We study the dynamics of the chiral phase transition in a linear quark-meson σ model using a novel approach based on semiclassical wave-particle duality. The quarks are treated as test particles in a Monte Carlo simulation of elastic collisions and the coupling to the σ meson, which is treated as a classical field, via a kinetic approach motivated by wave-particle duality. The exchange of energy and momentum between particles and fields is described in terms of appropriate Gaussian wave packets. It has been demonstrated that energy-momentum conservation and the principle of detailed balance are fulfilled, and that the dynamics leads to the correct equilibrium limit. First schematic studies of the dynamics of matter produced in heavy-ion collisions are presented.
NASA Technical Reports Server (NTRS)
Deiwert, G. S.; Yoshikawa, K. K.
1975-01-01
A semiclassical model proposed by Pearson and Hansen (1974) for computing collision-induced transition probabilities in diatomic molecules is tested by the direct-simulation Monte Carlo method. Specifically, this model is described by point centers of repulsion for collision dynamics, and the resulting classical trajectories are used in conjunction with the Schroedinger equation for a rigid-rotator harmonic oscillator to compute the rotational energy transition probabilities necessary to evaluate the rotation-translation exchange phenomena. It is assumed that a single, average energy spacing exists between the initial state and possible final states for a given collision.
Momentum loss in proton-nucleus and nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Khan, Ferdous; Townsend, Lawrence W.
1993-01-01
An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.
Comparison of collision operators for the geodesic acoustic mode
NASA Astrophysics Data System (ADS)
Li, Yang; Gao, Zhe
2015-04-01
The collisional damping rate and real frequency of the geodesic acoustic mode (GAM) are solved from a drift kinetic model with different collision operators. As the ion collision rate increases, the damping rate increases at low collision rate but decays at high ion collision rate. Different collision operators do not change the overall trend but influence the magnitude of the damping rate. The collision damping is much overestimated with the number-conserving-only Krook operator; on the other hand, using the Lorentz operator with a constant collision rate, the damping is overestimated at low collision rate but underestimated at high collision rate. The results from the Krook operator with both number and energy conservation terms, the Lorentz operator with an energy-dependent collision rate and the full Hirshman-Sigmar-Clarke collision operator are very close. Meanwhile, as the ion collision rate increases, the GAM frequency decreases from the collisionless value, \\sqrt {7/4+τ} {vti}/R , to \\sqrt {1+τ} {vti}/R for the number-conserving-only Krook operator, but to \\sqrt {5/3+τ} {vti}/R for the other four operators, which conserve both number and energy, where τ, vti and R are the ratio of electron temperature to ion temperature, the ion thermal velocity and the major radius, respectively. The results imply that the property of energy conservation of the collision operator is important to the dynamics of the GAM as well as that of number conservation, which may provide guidance in choosing collision operators in further study of the zonal flow (ZF) dynamics, such as the nonlinear simulation of the ZF-turbulence system.
Prize of the best thesis 2015: Study of debris discs through state-of-the-art numerical modelling
NASA Astrophysics Data System (ADS)
Kral, Q.; Thébault, P.
2015-12-01
This proceeding summarises the thesis entitled ``Study of debris discs with a new generation numerical model'' by Quentin Kral, for which he obtained the prize of the best thesis in 2015. The thesis brought major contributions to the field of debris disc modelling. The main achievement is to have created, almost ex-nihilo, the first truly self-consistent numerical model able to simultaneously follow the coupled collisional and dynamical evolutions of debris discs. Such a code has been thought as being the ``Holy Grail'' of disc modellers for the past decade, and while several codes with partial dynamics/collisions coupling have been presented, the code developed in this thesis, called ``LIDT-DD'' is the first to achieve a full coupling. The LIDT-DD model, which is the first of a new-generation of fully self-consistent debris disc models is able to handle both planetesimals and dust and create new fragments after each collision. The main idea of LIDT-DD development was to merge into one code two approaches that were so far used separately in disc modelling, that is, an N-body algorithm to investigate the dynamics, and a statistical scheme to explore the collisional evolution. This complex scheme is not straightforward to develop as there are major difficulties to overcome: 1) collisions in debris discs are highly destructive and produce clouds of small fragments after each single impact, 2) the smallest (and most numerous) of these fragments have a strongly size-dependent dynamics because of the radiation pressure, and 3) the dust usually observed in discs is precisely these smallest grains. These extreme constraints had so far prevented all previous attempts at developing self-consistent disc models to succeed. The thesis contains many examples of the use of LIDT-DD that are not yet published but the case of the collision between two asteroid-like bodies is studied in detail. In particular, LIDT-DD is able to predict the different stages that should be observed after such massive collisions that happen mainly in the latest stages of planetary formation. Some giant impact signatures and observability predictions for VLT/SPHERE and JWST/MIRI are given. JWST should be able to detect many of such impacts and would enable to see on-going planetary formation in dozens of planetary systems.
Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory
NASA Astrophysics Data System (ADS)
Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.
2018-04-01
We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.
Momentum transfer in relativistic heavy ion charge-exchange reactions
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.
1991-01-01
Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.
Effect of vehicular size on chain-reaction crash
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2015-11-01
We present the dynamic model of the chain-reaction crash to take account of the vehicular size. Drivers brake according to taillights of the forward vehicle. We investigate the effect of the vehicular size on the chain-reaction crash (multiple-vehicle collision) in the traffic flow controlled by taillights. In the multiple-vehicle collision, the first crash induces more collisions. We investigate how the first collision induces the chain-reaction crash numerically. We derive, analytically, the transition points and the region maps for the chain-reaction crash in the traffic flow of vehicles with finite sizes. We clarify the effect of the vehicular size on the multiple-vehicle collision.
Adiabatic description of long range frequency sweeping
NASA Astrophysics Data System (ADS)
Breizman, Boris; Nyqvist, Robert; Lilley, Matthew
2012-10-01
A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behavior of phase space holes and clumps is analyzed, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.
From cold to hot nuclear matter
NASA Astrophysics Data System (ADS)
Bratkovskaya, E. L.; Cassing, W.; Konchakovski, V. P.; Toneev, V. D.
2015-11-01
The dynamics of partons and hadrons in relativistic nucleus-nucleus collisions is analyzed within the Parton-Hadron-String Dynamics (PHSD) transport approach which is based on a dynamical quasiparticle model for the partonic phase (DQPM) including a dynamical hadronization scheme with covariant transition rates. The PHSD approach is applied to nucleus-nucleus collisions from FAIR/NICA to LHC energies. The traces of partonic interactions are found in particular in the directed and elliptic flow of hadrons and in their transverse mass spectra. Whereas at RHIC and LHC energies the dynamics is dominated by partonic degrees-of-freedom in the hot QGP, we find at FAIR/NICA energies a moderately hot but dense matter where chiral symmetry restoration and hadronic potentials appear to play a major role.
NASA Astrophysics Data System (ADS)
Nedeljković, N. N.; Majkić, M. D.; Božanić, D. K.; Dojčilović, R. J.
2016-06-01
We consider the population dynamics of the intermediate Rydberg states of highly charged ions (core charge Z\\gg 1, principal quantum number {n}{{A}}\\gg 1) interacting with solid surfaces at arbitrary collision geometry. The recently developed resonant two-state vector model for the grazing incidence (2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202) is extended to the quasi-resonant case and arbitrary angle of incidence. According to the model, the population probabilities depend both on the projectile parallel and perpendicular velocity components, in a complementary way. A cascade neutralization process for {{{Xe}}}Z+ ions, for Z=15{--}45, interacting with a conductive-surface is considered by taking into account the population dynamics. For an arbitrary collision geometry and given range of ionic velocities, a micro-staircase model for the simultaneous calculation of the kinetic energy gain and the charge state of the ion in front of the surface is proposed. The relevance of the obtained results for the explanation of the formation of nanostructures on solid surfaces by slow highly charged ions for normal incidence geometry is briefly discussed.
Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks
NASA Astrophysics Data System (ADS)
Takeuchi, Satoshi
2018-02-01
A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.
Finite element simulation of lower limb injuries to the driver in minibus frontal collisions.
Shi, Liang-Liang; Lei, Chen; Li, Kui; Fu, Shuo-Zhen; Wu, Zheng-Wei; Yin, Zhi-Yong
2016-06-01
This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation: a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall. The impact velocities of both collisions were set at 56 km/h. The vehicle dynamic response, vehicle deceleration, and dashboard intrusion in the two collisions were compared. In the minibus rear-end truck collision, the peak values of the von Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively; while in the minibus head-on rigid wall collision, the data were 139 MPa and 99 MPa. Compared with the minibus head-on rigid wall collision, the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision. The results illustrate that a longer dashboard incursion distance corresponds to a higher von Mises equivalent stress at the femur. The simulation results are consistent with the driver's autopsy report on lower limbs injuries. These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb injuries to the driver in minibus frontal collisions.
A numerical investigation of continental collision styles
NASA Astrophysics Data System (ADS)
Ghazian, Reza Khabbaz; Buiter, Susanne J. H.
2013-06-01
Continental collision after closure of an ocean can lead to different deformation styles: subduction of continental crust and lithosphere, lithospheric thickening, folding of the unsubducted continents, Rayleigh-Taylor (RT) instabilities and/or slab break-off. We use 2-D thermomechanical models of oceanic subduction followed by continental collision to investigate the sensitivity of these collision styles to driving velocity, crustal and lithospheric temperature, continental rheology and the initial density difference between the oceanic lithosphere and the asthenosphere. We find that these parameters influence the collision system, but that driving velocity, rheology and lithospheric (rather than Moho and mantle) temperature can be classified as important controls, whereas reasonable variations in the initial density contrast between oceanic lithosphere and asthenosphere are not necessarily important. Stable continental subduction occurs over a relatively large range of values of driving velocity and lithospheric temperature. Fast and cold systems are more likely to show folding, whereas slow and warm systems can experience RT-type dripping. Our results show that a continent with a strong upper crust can experience subduction of the entire crust and is more likely to fold. Accretion of the upper crust at the trench is feasible when the upper crust has a moderate to weak strength, whereas the entire crust can be scraped-off in the case of a weak lower crust. We also illustrate that weakening of the lithospheric mantle promotes RT-type of dripping in a collision system. We use a dynamic collision model, in which collision is driven by slab pull only, to illustrate that adjacent plates can play an important role in continental collision systems. In dynamic collision models, exhumation of subducted continental material and sediments is triggered by slab retreat and opening of a subduction channel, which allows upward flow of buoyant materials. Exhumation continues after slab break-off by reverse motion of the subducting plate (`eduction') caused by the reduced slab pull. We illustrate how a simple force balance of slab pull, slab push, slab bending, viscous resistance and buoyancy can explain the different collision styles caused by variations in velocity, temperature, rheology, density differences and the interaction with adjacent plates.
Origin of the moon - The collision hypothesis
NASA Technical Reports Server (NTRS)
Stevenson, D. J.
1987-01-01
Theoretical models of lunar origin involving one or more collisions between the earth and other large sun-orbiting bodies are examined in a critical review. Ten basic propositions of the collision hypothesis (CH) are listed; observational data on mass and angular momentum, bulk chemistry, volatile depletion, trace elements, primordial high temperatures, and orbital evolution are summarized; and the basic tenets of alternative models (fission, capture, and coformation) are reviewed. Consideration is given to the thermodynamics of large impacts, rheological and dynamical problems, numerical simulations based on the CH, disk evolution models, and the chemical implications of the CH. It is concluded that the sound arguments and evidence supporting the CH are not (yet) sufficient to rule out other hypotheses.
Modeling of long range frequency sweeping for energetic particle modes
NASA Astrophysics Data System (ADS)
Nyqvist, R. M.; Breizman, B. N.
2013-04-01
Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.
NASA Astrophysics Data System (ADS)
Vonta, N.; Souliotis, G. A.; Loveland, W.; Kwon, Y. K.; Tshoo, K.; Jeong, S. C.; Veselsky, M.; Bonasera, A.; Botvina, A.
2016-12-01
We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: The dynamical stage of the collision is described with either the phenomenological deep-inelastic transfer model (DIT) or with the microscopic constrained molecular dynamics model (CoMD). The de-excitation or fission of the hot heavy projectile fragments is performed with the statistical multifragmentation model (SMM). We compared our model calculations with our previous experimental projectile-fission data of 238U (20 MeV/nucleon) + 208Pb and 197Au (20 MeV/nucleon) + 197Au and found an overall reasonable agreement. Our study suggests that projectile fission following peripheral heavy-ion collisions at this energy range offers an effective route to access very neutron-rich rare isotopes toward and beyond the astrophysical r-process path.
Study of short-lived resonances with the ALICE Experiment at the LHC
NASA Astrophysics Data System (ADS)
Karasu Uysal, Ayben
2012-02-01
The study of short-lived resonances allows the investigation of the collision dynamics and of the properties of the hot and dense medium created in high energy collisions. Moreover it is interesting to address the topics of the strangeness production by the analysis of strange resonances. First measurements of the phi(1020), Λ *(1520), K*(892), Ξ *(1530) and doubly charged Δ(1232) resonances in pp collisions at a center of mass energy of 7 TeV with the ALICE apparatus at the LHC are presented. Thermal model predictions of particle ratios in proton-proton collisions are shown.
The Underlying Physics in Wetted Particle Collisions
NASA Astrophysics Data System (ADS)
Donahue, Carly; Hrenya, Christine; Davis, Robert
2008-11-01
Wetted granular particles are relevant in many industries including the pharmaceutical and chemical industries and has applications to granulation, filtration, coagulation, spray coating, drying and pneumatic transport. In our current focus, we investigate the dynamics of a three-body normal wetted particle collision. In order to conduct collisions we use an apparatus called a ``Stokes Cradle,'' similar to the Newton's Cradle (desktop toy) except that the target particles are covered with oil. Here, we are able to vary the oil thickness, oil viscosity, and material properties. With a three particle collision there are four possible outcomes: fully agglomerated (FA); Newton's Cradle (NC), the striker and the first target ball are agglomerated and the last target ball is separated; Reverse Newton's Cradle (RNC), the striker is separated and the two targets are agglomerated; and fully separated (FS). Varying the properties of the collisions, we have observed all four outcomes. We use elastohydrodynamics as a theoretical basis for modeling the system. We also have considered the glass transition of the oil as the pressure increases upon impact and the cavitation of the oil as the pressure drops below the vapor pressure upon rebound. A toy model has been developed where the collision is modeled as a series of two-body collisions. A qualitative agreement between the toy model and experiments gives insight into the underlying physics.
NASA Astrophysics Data System (ADS)
Wee, Loo Kang
2012-05-01
We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In designing the simulations, we discuss briefly three pedagogical considerations namely (1) a consistent simulation world view with a pen and paper representation, (2) a data table, scientific graphs and symbolic mathematical representations for ease of data collection and multiple representational visualizations and (3) a game for simple concept testing that can further support learning. We also suggest using a physical world setup augmented by simulation by highlighting three advantages of real collision carts equipment such as a tacit 3D experience, random errors in measurement and the conceptual significance of conservation of momentum applied to just before and after collision. General feedback from the students has been relatively positive, and we hope teachers will find the simulation useful in their own classes.
Relating centrality to impact parameter in nucleus-nucleus collisions
NASA Astrophysics Data System (ADS)
Das, Sruthy Jyothi; Giacalone, Giuliano; Monard, Pierre-Amaury; Ollitrault, Jean-Yves
2018-01-01
In ultrarelativistic heavy-ion experiments, one estimates the centrality of a collision by using a single observable, say n , typically given by the transverse energy or the number of tracks observed in a dedicated detector. The correlation between n and the impact parameter b of the collision is then inferred by fitting a specific model of the collision dynamics, such as the Glauber model, to experimental data. The goal of this paper is to assess precisely which information about b can be extracted from data without any specific model of the collision. Under the sole assumption that the probability distribution of n for a fixed b is Gaussian, we show that the probability distribution of the impact parameter in a narrow centrality bin can be accurately reconstructed up to 5 % centrality. We apply our methodology to data from the Relativistic Heavy Ion Collider and the Large Hadron Collider. We propose a simple measure of the precision of the centrality determination, which can be used to compare different experiments.
[Computer simulation by passenger wound analysis of vehicle collision].
Zou, Dong-Hua; Liu, Nning-Guo; Shen, Jie; Zhang, Xiao-Yun; Jin, Xian-Long; Chen, Yi-Jiu
2006-08-15
To reconstruct the course of vehicle collision, so that to provide the reference for forensic identification and disposal of traffic accidents. Through analyzing evidences left both on passengers and vehicles, technique of momentum impulse combined with multi-dynamics was applied to simulate the motion and injury of passengers as well as the track of vehicles. Model of computer stimulation perfectly reconstructed phases of the traffic collision, which coincide with details found by forensic investigation. Computer stimulation is helpful and feasible for forensic identification in traffic accidents.
Collective effects in light-heavy ion collisions
NASA Astrophysics Data System (ADS)
Schenke, Björn; Venugopalan, Raju
2014-11-01
We present results for the azimuthal anisotropy of charged hadron distributions in A+A, p+A, d+A, and 3He+A collisions within the IP-Glasma+MUSIC model. Obtained anisotropies are due to the fluid dynamic response of the system to the fluctuating initial geometry of the interaction region. While the elliptic and triangular anisotropies in peripheral Pb+Pb collisions at √{ s} = 2.76 TeV are well described by the model, the same quantities in √{ s} = 5.02 TeV p+Pb collisions underestimate the experimental data. This disagreement can be due to neglected initial state correlations or the lack of a detailed description of the fluctuating spatial structure of the proton, or both. We further present predictions for azimuthal anisotropies in p+Au, d+Au, and 3He+Au collisions at √{ s} = 200 GeV. For d+Au and 3He+Au collisions we expect the detailed substructure of the nucleon to become less important.
Adiabatic description of long range frequency sweeping
NASA Astrophysics Data System (ADS)
Nyqvist, R. M.; Lilley, M. K.; Breizman, B. N.
2012-09-01
A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behaviour of phase space holes and clumps is analysed in the absence of diffusion, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.
Kast, Stefan M
2004-03-08
An argument brought forward by Sholl and Fichthorn against the stochastic collision-based constant temperature algorithm for molecular dynamics simulations developed by Kast et al. is refuted. It is demonstrated that the large temperature fluctuations noted by Sholl and Fichthorn are due to improperly chosen initial conditions within their formulation of the algorithm. With the original form or by suitable initialization of their variant no deficient behavior is observed.
Rubble-pile Simulations Using The Open Dynamics Engine
NASA Astrophysics Data System (ADS)
Korycansky, Donald; Asphaug, E.
2008-09-01
We describe a series of calculations of low-speed collisions of km-scale rubble piles (i.e. asteroids or planetesimals), similar to previous work (Korycansky and Asphaug 2006). The rubble piles are aggregates of polyhedra held together by gravity and friction. Collision velocities are typically of order 1 to 100 m/sec.In this work we make use of a so-called "physics engine" to solve the equations of rigid-body motion and collisions of the polyhedra. Such code libraries have been primarily developed for computer simulations and games. The chief advantage of these libraries is the inclusion of sophisticated algorithms for collision detection, which we have found to be the main computational bottleneck in our calculations. The package we have used is the Open Dynamics Engine, a freely available open-source library (www.ode.org). It solves the equations of motion to first-order accuracy in time and utilizes a fast algorithm for collision detection. We have found a factor of approximately 30 speed-up for our calculations, allowing the exploration of a much larger range of parameter space and the running of multiple calculations in order to sample the stochasticity of the results. For the calculations we report on here, the basic model is the collision of an impactor in the range 0.1--1 km in diameter with a target of 1 km diameter.argets are modeled with 1000 polyhedral elements and impactors modeled with 1 to 1000 elements depending on mass. Collisions of objects with both equal-mass elements, and elements chosen from a power-law distribution, are studied. We concentrate on determining the energy required for catastrophic disruption (Q*D) as a function of impactor/target mass atio and impactor parameter for off-center collisions. This work has been supported by NASA Planetary Geology and Geophysics Program grant NNX07AQ04G.
Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone
NASA Astrophysics Data System (ADS)
Pusok, A. E.; Kaus, B.; Popov, A.
2013-12-01
The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and/or indented into Asia. We investigate the way deep processes affect continental tectonics at convergent margins, addressing the role the continent subduction and indentation plays on the development of continental tectonics during convergence and we discuss the implications these offer for the Asian tectonics. Acknowledgements: Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on MOGON (ZDV Mainz computing center) and JUQUEEN (Jülich high-performance computing center).
Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang
2016-04-18
In this paper, an analysis method is proposed to study the forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions, built on the earlier work of Bzdak and Teaney [Phys. Rev. C 87, 024906 (2013)]. The method allows the decomposition of the centrality dependence of average multiplicity from the dynamical event-by-event (EbyE) fluctuation of multiplicity in pseudorapidity. Application of the method to AMPT (A Multi-Phase Transport model) and HIJING (Heavy Ion Jet INteraction Generator) models shows that the long-range component of the FB correlation is captured by a few longitudinal harmonics, with the first component driven by the asymmetry in themore » number of participating nucleons in the two colliding nuclei. The higher-order longitudinal harmonics are found to be strongly damped in AMPT compared to HIJING, due to weaker short-range correlations as well as the final-state effects present in the AMPT model. Two-particle pseudorapidity correlation reveals interesting charge-dependent short-range structures that are absent in HIJING model. Lastly, the proposed method opens an avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions. Future analysis directions and prospects of using the pseudorapidity correlation function to understand the centrality bias in p + p, p + A, and A + A collisions are discussed.« less
Nogueira, Juan J; Vázquez, Saulo A; Mazyar, Oleg A; Hase, William L; Perkins, Bradford G; Nesbitt, David J; Martínez-Núñez, Emilio
2009-04-23
The dynamics of collisions of CO2 with a perfluorinated alkanethiol self-assembled monolayer (F-SAM) on gold were investigated by classical trajectory calculations using explicit atom (EA) and united atom (UA) models to represent the F-SAM surface. The CO2 molecule was directed perpendicularly to the surface at initial collision energies of 1.6, 4.7, 7.7, and 10.6 kcal/mol. Rotational distributions of the scattered CO2 molecules are in agreement with experimental distributions determined for collisions of CO2 with liquid surfaces of perfluoropolyether. The agreement is especially good for the EA model. The role of the mass in the efficiency of the energy transfer was investigated in separate simulations in which the mass of the F atoms was replaced by either that of hydrogen or chlorine, while keeping the potential energy function unchanged. The calculations predict the observed trend that less energy is transferred to the surface as the mass of the alkyl chains increases. Significant discrepancies were found between results obtained with the EA and UA models. The UA surface leads to an enhancement of the energy transfer efficiency in comparison with the EA surface. The reason for this is in the softer structure of the UA surface, which facilitates transfer from translation to interchain vibrational modes.
Quantum dynamics of hydrogen atoms on graphene. II. Sticking.
Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco
2015-09-28
Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.
Quantum dynamics of hydrogen atoms on graphene. II. Sticking
NASA Astrophysics Data System (ADS)
Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene; Martinazzo, Rocco
2015-09-01
Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (˜0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.
Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows
NASA Astrophysics Data System (ADS)
Roohi, Ehsan; Stefanov, Stefan
2016-10-01
The motivation of this review paper is to present a detailed summary of different collision models developed in the framework of the direct simulation Monte Carlo (DSMC) method. The emphasis is put on a newly developed collision model, i.e., the Simplified Bernoulli trial (SBT), which permits efficient low-memory simulation of rarefied gas flows. The paper starts with a brief review of the governing equations of the rarefied gas dynamics including Boltzmann and Kac master equations and reiterates that the linear Kac equation reduces to a non-linear Boltzmann equation under the assumption of molecular chaos. An introduction to the DSMC method is provided, and principles of collision algorithms in the DSMC are discussed. A distinction is made between those collision models that are based on classical kinetic theory (time counter, no time counter (NTC), and nearest neighbor (NN)) and the other class that could be derived mathematically from the Kac master equation (pseudo-Poisson process, ballot box, majorant frequency, null collision, Bernoulli trials scheme and its variants). To provide a deeper insight, the derivation of both collision models, either from the principles of the kinetic theory or the Kac master equation, is provided with sufficient details. Some discussions on the importance of subcells in the DSMC collision procedure are also provided and different types of subcells are presented. The paper then focuses on the simplified version of the Bernoulli trials algorithm (SBT) and presents a detailed summary of validation of the SBT family collision schemes (SBT on transient adaptive subcells: SBT-TAS, and intelligent SBT: ISBT) in a broad spectrum of rarefied gas-flow test cases, ranging from low speed, internal micro and nano flows to external hypersonic flow, emphasizing first the accuracy of these new collision models and second, demonstrating that the SBT family scheme, if compared to other conventional and recent collision models, requires smaller number of particles per cell to obtain sufficiently accurate solutions.
The recent breakup of an asteroid in the main-belt region.
Nesvorný, David; Bottke, William F; Dones, Luke; Levison, Harold F
2002-06-13
The present population of asteroids in the main belt is largely the result of many past collisions. Ideally, the asteroid fragments resulting from each impact event could help us understand the large-scale collisions that shaped the planets during early epochs. Most known asteroid fragment families, however, are very old and have therefore undergone significant collisional and dynamical evolution since their formation. This evolution has masked the properties of the original collisions. Here we report the discovery of a family of asteroids that formed in a disruption event only 5.8 +/- 0.2 million years ago, and which has subsequently undergone little dynamical and collisional evolution. We identified 39 fragments, two of which are large and comparable in size (diameters of approximately 19 and approximately 14 km), with the remainder exhibiting a continuum of sizes in the range 2-7 km. The low measured ejection velocities suggest that gravitational re-accumulation after a collision may be a common feature of asteroid evolution. Moreover, these data can be used to check numerical models of larger-scale collisions.
NASA Astrophysics Data System (ADS)
Jiang, Z. H.; Liang, Z. J.; Wu, A. C.; Zheng, R. H.
2018-03-01
Experiments have been performed to study the chaotic dynamics of a ball bouncing on a vertically vibrating plate. The velocity dependence of collision duration and coefficient of restitution is determined, and phase portraits of chaotic structures for the flight time and the relative collision velocities are obtained. Numerical calculations are carried out to examine the effects of velocity-dependent collision duration on the ball dynamics. It is revealed that when the collision is instantaneous, sticking solutions are always observed, whereas when the collision duration is taken into account, sticking solutions are destroyed and thereby chaos behaviors are induced.
Energy dependence of strangeness production and event-byevent fluctuations
NASA Astrophysics Data System (ADS)
Rustamov, Anar
2018-02-01
We review the energy dependence of strangeness production in nucleus-nucleus collisions and contrast it with the experimental observations in pp and p-A collisions at LHC energies as a function of the charged particle multiplicities. For the high multiplicity final states the results from pp and p-Pb reactions systematically approach the values obtained from Pb-Pb collisions. In statistical models this implies an approach to the thermodynamic limit, where differences of mean multiplicities between various formalisms, such as Canonical and Grand Canonical Ensembles, vanish. Furthermore, we report on event-by-event net-proton fluctuations as measured by STAR at RHIC/BNL and by ALICE at LHC/CERN and discuss various non-dynamical contributions to these measurements, which should be properly subtracted before comparison to theoretical calculations on dynamical net-baryon fluctuations.
Collision and Break-off : Numerical models and surface observables
NASA Astrophysics Data System (ADS)
Bottrill, Andrew; van Hunen, Jeroen; Allen, Mark
2013-04-01
The process of continental collision and slab break-off has been explored by many authors using a number of different numerical models and approaches (Andrews and Billen, 2009; Gerya et al., 2004; van Hunen and Allen, 2011). One of the challenges of using numerical models to explore collision and break-off is relating model predictions to real observables from current collision zones. Part of the reason for this is that collision zones by their nature destroy a lot of potentially useful surface evidence of deep dynamics. One observable that offers the possibility for recording mantle dynamics at collision zones is topography. Here we present topography predictions from numerical models and show how these can be related to actual topography changes recoded in the sedimentary record. Both 2D and 3D numerical simulation of the closure of a small oceanic basin are presented (Bottrill et al., 2012; van Hunen and Allen, 2011). Topography is calculated from the normal stress at the surface applied to an elastic beam, to give a more realist prediction of topography by accounting for the expected elasticity of the lithosphere. Predicted model topography showed a number of interesting features on the overriding plate. The first is the formation of a basin post collision at around 300km from the suture. Our models also showed uplift postdating collision between the suture and this basin, caused by subduction of buoyant material. Once break-off has occurred we found that this uplift moved further into the overriding plate due to redistribution of stresses from the subducted plate. With our 3D numerical models we simulate a collision that propagates laterally along a subduction system. These models show that a basin forms, similar to that found in our 2D models, which propagates along the system at the same rate as collision. The apparent link between collision and basin formation leads to the investigation into the stress state in the overriding lithosphere. Preliminary results in this area indicate the stress experienced by the overriding lithosphere changes through the collision and slab break-off process. This change is stress affects the topography, but also offers another observable for understanding collision zones. We relate our numerical model to Arabia-Eurasia collision which is thought to have begun around 35 Ma (Allen and Armstrong, 2008; Vincent et al., 2007). The post collision basin predicted by our numerical model can be associated with the Miocene carbonate deposits of the Qom formation (Morley et al., 2009). These Miocene carbonate deposits are found at approximately 200-300km from the suture zone and are stratigraphically "sandwiched" between terrestrial clastic sedimentary formations. The position of these deposits shows that they are intimately related with the collision process, and that this area of the overriding plate has dipped below sea level for about 10 Myrs during the Early Miocene. Another geographic area that offers possibility for observation of topography change produced during continental collision is the Italian Apennines. Here, slab detachment is proposed to have started around 30 Ma and a tear propagated north to south along Italy (Wortel, 2000). Van der Meulen et al., (1998) observed a period of basin formation followed by uplift using the sedimentary record. Migrating depocentres were interpreted as evidence of a slab tear propagating north to south. These depocentres are located on the overriding plate with the maximum observed depression around 100 km from the suture (Ascione et al., 2012). These observed depocentres could be analogous to the depressions observed in our numerical models. Allen, M. B. and Armstrong, H. A.: Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling, Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1-2), 52-58, doi:10.1016/j.palaeo.2008.04.021, 2008. Andrews, E. R. and Billen, M. I.: Rheologic controls on the dynamics of slab detachment, Tectonophysics, 464(1-4), 60-69, doi:10.1016/j.tecto.2007.09.004, 2009. Ascione, A., Ciarcia, S., Di Donato, V., Mazzoli, S. and Vitale, S.: The Pliocene-Quaternary wedge-top basins of southern Italy: an expression of propagating lateral slab tear beneath the Apennines, Basin Research, 24(4), 456-474, doi:10.1111/j.1365-2117.2011.00534.x, 2012. Bottrill, A. D., Van Hunen, J. and Allen, M. B.: Insight into collision zone dynamics from topography: numerical modelling results and observations, Solid Earth, 3(2), 387-399, doi:10.5194/se-3-387-2012, 2012. Gerya, T. V., Yuen, D. a. and Maresch, W. V.: Thermomechanical modelling of slab detachment, Earth and Planetary Science Letters, 226(1-2), 101-116, doi:10.1016/j.epsl.2004.07.022, 2004. Van Hunen, J. and Allen, M. B.: Continental collision and slab break-off: A comparison of 3-D numerical models with observations, Earth and Planetary Science Letters, 302(1-2), 27-37, doi:10.1016/j.epsl.2010.11.035, 2011. Van der Meulen, M. J., Meulenkamp, J. E. and Wortel, R.: Lateral shifts of Apenninic foredeep depocentres reflecting detachment of subducted lithosphere, Earth and Planetary Science Letters, 154(1-4), 203-219, doi:10.1016/S0012-821X(97)00166-0, 1998. Morley, C. K., Kongwung, B., Julapour, A. A., Abdolghafourian, M., Hajian, M., Waples, D., Warren, J., Otterdoom, H., Srisuriyon, K. and Kazemi, H.: Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area, Geosphere, 5(4), 325-362, doi:10.1130/GES00223.1, 2009. Vincent, S. J., Morton, A. C., Carter, A., Gibbs, S. and Barabadze, T. G.: Oligocene uplift of the Western Greater Caucasus: an effect of initial Arabia?Eurasia collision, Terra Nova, 19(2), 160-166, doi:10.1111/j.1365-3121.2007.00731.x, 2007. Wortel, M. J. R.: Subduction and Slab Detachment in the Mediterranean-Carpathian Region, Science, 290(5498), 1910-1917, doi:10.1126/science.290.5498.1910, 2000.
Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Wei, Yuan; Li, Bowen; Wei, Xiaoming; Yu, Ying; Wong, Kenneth K. Y.
2018-02-01
The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability.
Ion acoustic shock wave in collisional equal mass plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in
The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipationmore » that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less
Uchida, Thomas K.; Sherman, Michael A.; Delp, Scott L.
2015-01-01
Impacts are instantaneous, computationally efficient approximations of collisions. Current impact models sacrifice important physical principles to achieve that efficiency, yielding qualitative and quantitative errors when applied to simultaneous impacts in spatial multibody systems. We present a new impact model that produces behaviour similar to that of a detailed compliant contact model, while retaining the efficiency of an instantaneous method. In our model, time and configuration are fixed, but the impact is resolved into distinct compression and expansion phases, themselves comprising sliding and rolling intervals. A constrained optimization problem is solved for each interval to compute incremental impulses while respecting physical laws and principles of contact mechanics. We present the mathematical model, algorithms for its practical implementation, and examples that demonstrate its effectiveness. In collisions involving materials of various stiffnesses, our model can be more than 20 times faster than integrating through the collision using a compliant contact model. This work extends the use of instantaneous impact models to scientific and engineering applications with strict accuracy requirements, where compliant contact models would otherwise be required. An open-source implementation is available in Simbody, a C++ multibody dynamics library widely used in biomechanical and robotic applications. PMID:27547093
NASA Astrophysics Data System (ADS)
Xu, Yingru; Bernhard, Jonah E.; Bass, Steffen A.; Nahrgang, Marlene; Cao, Shanshan
2018-01-01
By applying a Bayesian model-to-data analysis, we estimate the temperature and momentum dependence of the heavy quark diffusion coefficient in an improved Langevin framework. The posterior range of the diffusion coefficient is obtained by performing a Markov chain Monte Carlo random walk and calibrating on the experimental data of D -meson RAA and v2 in three different collision systems at the Relativistic Heavy-Ion Collidaer (RHIC) and the Large Hadron Collider (LHC): Au-Au collisions at 200 GeV and Pb-Pb collisions at 2.76 and 5.02 TeV. The spatial diffusion coefficient is found to be consistent with lattice QCD calculations and comparable with other models' estimation. We demonstrate the capability of our improved Langevin model to simultaneously describe the RAA and v2 at both RHIC and the LHC energies, as well as the higher order flow coefficient such as D meson v3. We show that by applying a Bayesian analysis, we are able to quantitatively and systematically study the heavy flavor dynamics in heavy-ion collisions.
New 3D model for dynamics modeling
NASA Astrophysics Data System (ADS)
Perez, Alain
1994-05-01
The wrist articulation represents one of the most complex mechanical systems of the human body. It is composed of eight bones rolling and sliding along their surface and along the faces of the five metacarpals of the hand and the two bones of the arm. The wrist dynamics are however fundamental for the hand movement, but it is so complex that it still remains incompletely explored. This work is a part of a new concept of computer-assisted surgery, which consists in developing computer models to perfect surgery acts by predicting their consequences. The modeling of the wrist dynamics are based first on the static model of its bones in three dimensions. This 3D model must optimise the collision detection procedure which is the necessary step to estimate the physical contact constraints. As many other possible computer vision models do not fit with enough precision to this problem, a new 3D model has been developed thanks to the median axis of the digital distance map of the bones reconstructed volume. The collision detection procedure is then simplified for contacts are detected between spheres. The experiment of this original 3D dynamic model products realistic computer animation images of solids in contact. It is now necessary to detect ligaments on digital medical images and to model them in order to complete a wrist model.
Strange and non-strange particle production in antiproton-nucleus collisions in the UrQMD model
NASA Astrophysics Data System (ADS)
Limphirat, Ayut; Kobdaj, Chinorat; Bleicher, Marcus; Yan, Yupeng; Stöcker, Horst
2009-06-01
The capabilities of the ultra-relativistic quantum molecular dynamics (UrQMD) model in describing antiproton-nucleus collisions are presented. The model provides a good description of the experimental data on multiplicities, transverse momentum distributions and rapidity distributions in antiproton-nucleus collisions. Special emphasis is put on the comparison of strange particles in reactions with nuclear targets ranging from 7Li, 12C, 32S, 64Cu to 131Xe because of the important role of strangeness for the exploration of hypernuclei at PANDA-FAIR. The productions of the double strange baryons Ξ- and \\bar{\\Xi}^+ , which may be used to produce double Λ hypernuclei, are predicted in this work for the reactions \\skew2\\bar{p} + 24Mg, 64Cu and 197Au.
Modeling collisions in circumstellar debris disks
NASA Astrophysics Data System (ADS)
Nesvold, Erika
2015-10-01
Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. I investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. I also find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ˜1--10MJup. I apply my model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and beta Pictoris. Finally, to show how SMACK can be used to analyze a single debris disk in detail, I present a new model of the beta Pictoris disk and planet system that, for the first time, combines simulations of the colliding planetesimals and the dynamics of the dust grains, allowing me to model features and asymmetries in both submillimeter and scattered light images of the disk. I combine a 100,000 superparticle SMACK simulation with N-body integrations of the dust produced by the simulated collisions. I find that secular perturbations of the planet's measured inclination and eccentricity can explain the observed warp and planetesimal ring, while collisions between planetesimals shape the disk by eroding close-in material. The complex 3D structure of the disk due to the perturbations from the planet creates an azimuthally asymmetric spatial distribution of collisions, which could contribute to the observed azimuthal clump of CO gas seen with ALMA. My simulations of the small dust grains produced by collisions demonstrate that the "birth ring" approximation for beta Pictoris fails to account for the ˜54% of dust mass produced outside of the planetesimal ring. I also reproduce the gross morphology of high-resolution scattered light images of the disk, including the two-disk "x"-pattern seen in scattered light, which has not been replicated by previous dust dynamics models.
Multiple-vehicle collision induced by a sudden stop in traffic flow
NASA Astrophysics Data System (ADS)
Sugiyama, Naoki; Nagatani, Takashi
2012-04-01
We study the dynamic process of the multiple-vehicle collision when a vehicle stops suddenly in a traffic flow. We apply the optimal-velocity model to the vehicular motion. If a vehicle does not decelerate successfully, it crashes into the vehicle ahead with a residual speed. The collision criterion is presented by vi(t)/Δxi(t)→∞ if Δxi(t)→0 where vi(t) and Δxi(t) are the speed and headway of vehicle i at time t. The number of crumpled vehicles depends on the initial velocity, the sensitivity, and the initial headway. We derive the region map (or phase diagram) for the multiple-vehicle collision.
Fluid dynamical description of relativistic nuclear collisions
NASA Technical Reports Server (NTRS)
Nix, J. R.; Strottman, D.
1982-01-01
On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Yang, Zhibo
2011-12-01
We present a first study of the energetics and dynamics of dissociation of deprotonated peptides using time- and collision-energy resolved surface-induced dissociation (SID) experiments. SID of four model peptides: RVYIHPF, HVYIHPF, DRVYIHPF, and DHVYIHPF was studied using a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for studying ion-surface collisions. Energy and entropy effects for the overall decomposition of the precursor ion were deduced by modeling the time- and collision energy-resolved survival curves using an RRKM based approach developed in our laboratory. The results were compared to the energetics and dynamics of dissociation of the correspondingmore » protonated species. We demonstrate that acidic peptides are less stable in the negative mode because of the low threshold associated with the kinetically hindered loss of H2O from [M-H]- ions. Comparison between the two basic peptides indicates that the lower stability of the [M-H]- ion of RVYIHPF as compared to HVYIHPF towards fragmentation is attributed to the differences in fragmentation mechanisms. Specifically, threshold energy associated with losses of NH3 and NHCNH from RVYIHPF is lower than the barrier for backbone fragmentation that dominates gas-phase decomposition of HVYIHPF. The results provide a first quantitative comparison between the energetics and dynamics of dissociation of [M+H]+ and [M-H]- ions of acidic and basic peptides.« less
Hypertriton and light nuclei production at Λ-production subthreshold energy in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Zhang, Song; Chen, Jin-Hui; Ma, Yu-Gang; Xu, Zhang-Bu; Cai, Xiang-Zhou; Ma, Guo-Liang; Zhong, Chen
2011-08-01
High-energy heavy-ion collisions produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion (3He), and hypertriton (3ΛH) at subthreshold energy of Aproduction (≈ 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few μb in 36Ar+36Ar, 40Ca+40Ca and 56Ni+56Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million collisions, which shows that the fixed-target heavy-ion collisions at CSR (Lanzhou/China) at Λ subthreshold energy are suitable for breaking new ground in hypernuclear physics.
Data-driven train set crash dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, Zhao; Zhu, Yunrui; Nie, Yinyu; Guo, Shihui; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2017-02-01
Traditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force-displacement curves and predicts a force-displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency.
NASA Astrophysics Data System (ADS)
Csörgő, Tamás Hegyi, Sándor Kittel, Wolfram
The Table of Contents for the book is as follows: * Preface * QCD IN MULTIPARTICLE PRODUCTION * QCD and multiparticle production - The status of the perturbative cascade * Test of QCD predictions for multiparticle production at LEP * Multijet final states in e+e- annihilation * Tests of QCD in two photon physics at LEP * Interplay between perturbative and non-perturbative QCD in three-jet events * QCD and hadronic final states at the LHC * Transverse energy and minijets in high energy collisions * Multiparticle production at RHIC and LHC: A classical point of view * High energy interaction with the nucleus in the perturbative QCD with Nc → ∞ * DIFFRACTIVE PRODUCTION AND SMALL-x * Introduction to low-x physics and diffraction * Low-x physics at HERA * Diffractive structure functions at the Tevatron * What is the experimental evidence for the BFKL Pomeron? * Self-organized criticality in gluon systems and its consequences * Scale anomaly and dipole scattering in QCD * Pomeron and AdS/CFT correspondence for QCD * INTERPLAY BETWEEN SOFT AND HARD PHENOMENA * Inclusive jet cross sections and BFKL dynamics searches in dijet cross sections * Soft and hard interactions in p bar{p} Collisions at √ s = 1800 and 630 GeV * Recent results on particle production from OPAL * New results on αs and optimized scales * Preliminary results of the standard model Higgs boson search at LEP 2 in 2000 * Ways to go between hard and soft QCD * Alternative scenarios for fragmentation of a gluonic Lund String * A simultaneous measurement of the QCD colour charges and the strong coupling from LEP multijet data * Branching processes and Koenigs function * Soft and hard QCD dynamics in J/ψ hadroproduction * HADRONIC FINAL STATES IN 1+1, 1+h AND h+h REACTIONS * Universality in hadron production in electron-positron, lepton-hadron and hadron-hadron reactions * Search for gluonic mesons in gluon jets * Vector-to-pseudoscalar and meson-to-baryon ratios in hadronic Z decays at LEP * Polarization and spin alignment in multihadronic Z0 decays * Jet physics at HERA * Final state studies at HERA * A gauge-invariant subtraction technique for non-inclusive observables in QCD * Baryon transport in dual models and the possibility of a backward peak in diffraction * ASTROPARTICLE PHYSICS * Cosmic rays in the energy range of the knee - Recent results from KASCADE * Imaging atmospheric Čerenkov telescopes: Techniques and results * Extensive air shower simulations with CORSIKA and the influence of high-energy hadronic interaction models * Future directions in astroparticle physics and the AUGER experiment * p+A COLLISIONS * pp and pA collisions at CERN SPS * Charmonium attenuation and the quark-gluon plasma * Gluon depletion and J/ψ suppression in pA collisions * CORRELATIONS AND FLUCTUATIONS - EXPERIMENT * Experimental correlation analysis: Foundations and practice * Intermittency and correlations at LEP and at HERA * Moments of the charged-particle multiplicity distribution in Z decays at LEP * On the scale of visible jets in high energy electron-positron collisions * HBT in relativistic heavy ion collisions * Comparison of the pion emission function in hadron-hadron and heavy ion collisions * Multiparticle correlations at LEP1 * Inter-W Bose-Einstein correlations ellipse ... or not? * Colour reconnection at LEP2 * CORRELATIONS AND FLUCTUATIONS - THEORY * Correlations and fluctuations - introduction * Coherence and incoherence in Bose-Einstein correlations * Bose-Einstein correlations in cascade processes and non-extensive statistics * A systematic approach to anomalous phenomena at high energies * Reconstruction of hadronization stage in Pb+Pb collisions at 158A GeV/c * Status of ring-like correlations and wavelets * Fluctuation probes of quark deconfinement * PQCD structure and hadronization in jets and heavy-ion collisions * Net-baryon fluctuations at the QCD critical point * Fractional Fokker-Planck equation in time variable and oscillation of cumulant moments * QCD and multiplicity scaling * RELATIVISTIC HEAVY ION COLLISIONS - EXPERIMENT * Introduction to multiparticle dynamics at RHIC * First results from the STAR experiment at RHIC * Preliminary results from the PHENIX experiment at RHIC * Forward energy and multiplicity in Au-Au reactions at √ {s_{nn} } = 130{text{GeV}} * Results from the PHOBOS experiment on Au+Au collisions at RHIC * Strangeness production in Pb-Pb collisions at the CERN SPS: Results from the WA97 experiment * Direct photon production in 158A GeV 208Pb+208Pb collisions * Search for critical phenomena in Pb+Pb collisions * Recent NA49 results on Pb+Pb collisions at CERN SPS * J/ψ suppression in Pb+Pb collisions at CERN SPS * RELATIVISTIC HEAVY ION COLLISIONS - THEORY * Hyperon ratios at RHIC and the coalescence predictions at mid-rapidity * Dynamics of nuclear collisions and the dependence of the onset of anomalous J/ψ suppression on nucleon numbers of colliding nuclei * Multi-boson effects in Bose-Einstein interferometry * The source of the "third flow component" * Collective flow and multiparticle azimuthal correlations * Microscopic strangeness enhancement mechanisms at the SPS * Jet quenching at finite opacity and its application at RHIC energy * Particle rapidity density and collective phenomena in heavy ion collisions * Elliptic flow from an on-shell parton cascade * Dilepton production in ultrarelativistic heavy ion collisions * Coulomb and core/halo corrections to Bose-Einstein n-particle correlations * CP VIOLATION IN MULTIPARTICLE DYNAMICS * New results from NA48 experiment on neutral kaon rare decays * Measurement of direct CP violation by the NA48 experiment at CERN * Aspects of parity, CP, and time reversal violation in hot QCD * Decay of parity odd bubbles * Parity and time reversal studies at RHIC * Constraining CP-violating TGCS and measuring W-polarization at OPAL * Buckyballs of QCD: Gluon junction networks * List of participants
Toward a Physical Characterization of Raindrop Collision Outcome Regimes
NASA Technical Reports Server (NTRS)
Testik, F. Y.; Barros, Ana P.; Bilven, Francis L.
2011-01-01
A comprehensive raindrop collision outcome regime diagram that delineates the physical conditions associated with the outcome regimes (i.e., bounce, coalescence, and different breakup types) of binary raindrop collisions is proposed. The proposed diagram builds on a theoretical regime diagram defined in the phase space of collision Weber numbers We and the drop diameter ratio p by including critical angle of impact considerations. In this study, the theoretical regime diagram is first evaluated against a comprehensive dataset for drop collision experiments representative of raindrop collisions in nature. Subsequently, the theoretical regime diagram is modified to explicitly describe the dominant regimes of raindrop interactions in (We, p) by delineating the physical conditions necessary for the occurrence of distinct types of collision-induced breakup (neck/filament, sheet, disk, and crown breakups) based on critical angle of impact consideration. Crown breakup is a subtype of disk breakup for lower collision kinetic energy that presents distinctive morphology. Finally, the experimental results are analyzed in the context of the comprehensive collision regime diagram, and conditional probabilities that can be used in the parameterization of breakup kernels in stochastic models of raindrop dynamics are provided.
Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density
NASA Astrophysics Data System (ADS)
Cassing, W.; Palmese, A.; Moreau, P.; Bratkovskaya, E. L.
2016-01-01
We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the parton-hadron-string dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the K+/π+ and the (Λ +Σ0) /π- ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modeling of chiral symmetry restoration is driven by the pion-nucleon Σ term in the computation of the quark scalar condensate that serves as an order parameter for CSR and also scales approximately with the effective quark masses ms and mq. Furthermore, the nucleon scalar density ρs, which also enters the computation of
, is evaluated within the nonlinear σ -ω model which is constrained by Dirac-Brueckner calculations and low-energy heavy-ion reactions. The Schwinger mechanism (for string decay) fixes the ratio of strange to light quark production in the hadronic medium. We find that above ˜80 A GeV the reaction dynamics of heavy nuclei is dominantly driven by partonic degrees of freedom such that traces of the chiral symmetry restoration are hard to identify. Our studies support the conjecture of "quarkyonic matter" in heavy-ion collisions from about 5 to 40 A GeV and provide a microscopic explanation for the maximum in the K+/π+ ratio at about 30 A GeV, which only shows up if a transition to partonic degrees of freedom is incorporated in the reaction dynamics and is discarded in the traditional hadron-string models.
Recent advances in vibro-impact dynamics and collision of ocean vessels
NASA Astrophysics Data System (ADS)
Ibrahim, Raouf A.
2014-11-01
The treatment of ship impacts and collisions takes different approaches depending on the emphasis of each discipline. For example, dynamicists, physicist, and mathematicians are dealing with developing analytical models and mappings of vibro-impact systems. On the other hand, naval architects and ship designers are interested in developing design codes and structural assessments due to slamming loads, liquid sloshing impact loads in liquefied natural gas tanks and ship grounding accidents. The purpose of this review is to highlight the main differences of the two disciplines. It begins with a brief account of the theory of vibro-impact dynamics based on modeling and mapping of systems experiencing discontinuous changes in their state of motion due to collision. The main techniques used in modeling include power-law phenomenological modeling, Hertzian modeling, and non-smooth coordinate transformations originally developed by Zhuravlev and Ivanov. In view of their effectiveness, both Zhuravlev and Ivanov non-smooth coordinate transformations will be described and assessed for the case of ship roll dynamics experiencing impact with rigid barriers. These transformations have the advantage of converting the vibro-impact oscillator into an oscillator without barriers such that the corresponding equation of motion does not contain any impact term. One of the recent results dealing with the coefficient of restitution is that its value monotonically decreases with the impact velocity and not unique but random in nature. Slamming loads and grounding events of ocean waves acting on the bottom of high speed vessels will be assessed with reference to the ship structural damage. It will be noticed that naval architects and marine engineers are treating these problems using different approaches from those used by dynamicists. The problem of sloshing impact in liquefied natural gas cargo and related problems will be assessed based on the numerical and experimental results. It is important for vessel designers to determine the capacity of ships to resist random slamming loads, sloshing loading impact, grounding accidents and ships collisions.
A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caflisch, R; Wang, C; Dimarco, G
2007-10-09
If the collisional time scale for Coulomb collisions is comparable to the characteristic time scales for a plasma, then simulation of Coulomb collisions may be important for computation of kinetic plasma dynamics. This can be a computational bottleneck because of the large number of simulated particles and collisions (or phase-space resolution requirements in continuum algorithms), as well as the wide range of collision rates over the velocity distribution function. This paper considers Monte Carlo simulation of Coulomb collisions using the binary collision models of Takizuka & Abe and Nanbu. It presents a hybrid method for accelerating the computation of Coulombmore » collisions. The hybrid method represents the velocity distribution function as a combination of a thermal component (a Maxwellian distribution) and a kinetic component (a set of discrete particles). Collisions between particles from the thermal component preserve the Maxwellian; collisions between particles from the kinetic component are performed using the method of or Nanbu. Collisions between the kinetic and thermal components are performed by sampling a particle from the thermal component and selecting a particle from the kinetic component. Particles are also transferred between the two components according to thermalization and dethermalization probabilities, which are functions of phase space.« less
Sequence and Temperature Dependence of the End-to-End Collision Dynamics of Single-Stranded DNA
Uzawa, Takanori; Isoshima, Takashi; Ito, Yoshihiro; Ishimori, Koichiro; Makarov, Dmitrii E.; Plaxco, Kevin W.
2013-01-01
Intramolecular collision dynamics play an essential role in biomolecular folding and function and, increasingly, in the performance of biomimetic technologies. To date, however, the quantitative studies of dynamics of single-stranded nucleic acids have been limited. Thus motivated, here we investigate the sequence composition, chain-length, viscosity, and temperature dependencies of the end-to-end collision dynamics of single-stranded DNAs. We find that both the absolute collision rate and the temperature dependencies of these dynamics are base-composition dependent, suggesting that base stacking interactions are a significant contributor. For example, whereas the end-to-end collision dynamics of poly-thymine exhibit simple, linear Arrhenius behavior, the behavior of longer poly-adenine constructs is more complicated. Specifically, 20- and 25-adenine constructs exhibit biphasic temperature dependencies, with their temperature dependences becoming effectively indistinguishable from that of poly-thymine above 335 K for 20-adenines and 328 K for 25-adenines. The differing Arrhenius behaviors of poly-thymine and poly-adenine and the chain-length dependence of the temperature at which poly-adenine crosses over to behave like poly-thymine can be explained by a barrier friction mechanism in which, at low temperatures, the energy barrier for the local rearrangement of poly-adenine becomes the dominant contributor to its end-to-end collision dynamics. PMID:23746521
Obstacle avoidance in social groups: new insights from asynchronous models
Croft, Simon; Budgey, Richard; Pitchford, Jonathan W.; Wood, A. Jamie
2015-01-01
For moving animals, the successful avoidance of hazardous obstacles is an important capability. Despite this, few models of collective motion have addressed the relationship between behavioural and social features and obstacle avoidance. We develop an asynchronous individual-based model for social movement which allows social structure within groups to be included. We assess the dynamics of group navigation and resulting collision risk in the context of information transfer through the system. In agreement with previous work, we find that group size has a nonlinear effect on collision risk. We implement examples of possible network structures to explore the impact social preferences have on collision risk. We show that any social heterogeneity induces greater obstacle avoidance with further improvements corresponding to groups containing fewer influential individuals. The model provides a platform for both further theoretical investigation and practical application. In particular, we argue that the role of social structures within bird flocks may have an important role to play in assessing the risk of collisions with wind turbines, but that new methods of data analysis are needed to identify these social structures. PMID:25833245
NASA Astrophysics Data System (ADS)
Naboka, V. Yu.; Akkelin, S. V.; Karpenko, Iu. A.; Sinyukov, Yu. M.
2015-01-01
A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a prethermal dynamics which is not completely understood yet. In the paper we employ a recently developed energy-momentum transport model of the prethermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.
Azimuthal correlations between directed and elliptic flow in heavy ion collisions
NASA Astrophysics Data System (ADS)
Wu, Feng-Juan; Shan, Lian-Qiang; Zhang, Jing-Bo; Tang, Gui-Xin; Huo, Lei
2008-12-01
A method for investigating the azimuthal correlations between directed and elliptic flow in heavy ion collisions is described. The transverse anisotropy of particle emission at AGS energies is investigated within the RQMD model. It is found that the azimuthal correlations between directed and elliptic flow are sensitive to the incident energy and impact parameter. The fluctuations in the initial stage and dynamical evolution of heavy ion collisions are not negligible. Supported by Natural Science Foundation of Heilongjiang Province (A0208) and Science Foundation of Harbin Institute of Technology (HIT.2002.47, HIT.2003.33)
A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chang, E-mail: cliuaa@ust.hk; Xu, Kun, E-mail: makxu@ust.hk; Sun, Quanhua, E-mail: qsun@imech.ac.cn
Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, themore » dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region where it is needed. The central ingredient of the UGKS is the coupled treatment of particle transport and collision in the flux evaluation across a cell interface, where a continuous flow dynamics from kinetic to hydrodynamic scales is modeled. The newly developed UGKS has the asymptotic preserving (AP) property of recovering the NS solutions in the continuum flow regime, and the full Boltzmann solution in the rarefied regime. In the mostly unexplored transition regime, the UGKS itself provides a valuable tool for the non-equilibrium flow study. The mathematical properties of the scheme, such as stability, accuracy, and the asymptotic preserving, will be analyzed in this paper as well.« less
Mesoscopic modelling and simulation of soft matter.
Schiller, Ulf D; Krüger, Timm; Henrich, Oliver
2017-12-20
The deformability of soft condensed matter often requires modelling of hydrodynamical aspects to gain quantitative understanding. This, however, requires specialised methods that can resolve the multiscale nature of soft matter systems. We review a number of the most popular simulation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics, multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and the lattice-Boltzmann method. We conclude this review with a short glance at current compute architectures for high-performance computing and community codes for soft matter simulation.
A cloud/particle model of the interstellar medium - Galactic spiral structure
NASA Technical Reports Server (NTRS)
Levinson, F. H.; Roberts, W. W., Jr.
1981-01-01
A cloud/particle model for gas flow in galaxies is developed that incorporates cloud-cloud collisions and supernovae as dominant local processes. Cloud-cloud collisions are the main means of dissipation. To counter this dissipation and maintain local dispersion, supernova explosions in the medium administer radial snowplow pushes to all nearby clouds. The causal link between these processes is that cloud-cloud collisions will form stars and that these stars will rapidly become supernovae. The cloud/particle model is tested and used to investigate the gas dynamics and spiral structures in galaxies where these assumptions may be reasonable. Particular attention is given to whether large-scale galactic shock waves, which are thought to underlie the regular well-delineated spiral structure in some galaxies, form and persist in a cloud-supernova dominated interstellar medium; this question is answered in the affirmative.
NASA Astrophysics Data System (ADS)
Chatterjee, Arghya; Chatterjee, Sandeep; Nayak, Tapan K.; Ranjan Sahoo, Nihar
2016-12-01
Susceptibilities of conserved quantities, such as baryon number, strangeness and electric charge are sensitive to the onset of quantum chromodynamics phase transition, and are expected to provide information on the matter produced in heavy-ion collision experiments. A comprehensive study of the second order diagonal susceptibilities and cross correlations has been made within a thermal model approach of the hadron resonance gas model as well as with a hadronic transport model, ultra-relativistic quantum molecular dynamics. We perform a detailed analysis of the effect of detector acceptances and choice of particle species in the experimental measurements of the susceptibilities for heavy-ion collisions corresponding to \\sqrt{{s}{NN}} = 4 GeV to 200 GeV. The transverse momentum cutoff dependence of suitably normalised susceptibilities are proposed as useful observables to probe the properties of the medium at freezeout.
Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto
2017-01-01
The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision. PMID:29186851
Sun, Rui; Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto
2017-11-25
The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision.
An Approach Toward Understanding Wildlife-Vehicle Collisions
NASA Astrophysics Data System (ADS)
Litvaitis, John A.; Tash, Jeffrey P.
2008-10-01
Among the most conspicuous environmental effects of roads are vehicle-related mortalities of wildlife. Research to understand the factors that contribute to wildlife-vehicle collisions can be partitioned into several major themes, including (i) characteristics associated with roadkill hot spots, (ii) identification of road-density thresholds that limit wildlife populations, and (iii) species-specific models of vehicle collision rates that incorporate information on roads (e.g., proximity, width, and traffic volume) and animal movements. We suggest that collision models offer substantial opportunities to understand the effects of roads on a diverse suite of species. We conducted simulations using collision models and information on Blanding’s turtles ( Emydoidea blandingii), bobcats ( Lynx rufus), and moose ( Alces alces), species endemic to the northeastern United States that are of particular concern relative to collisions with vehicles. Results revealed important species-specific differences, with traffic volume and rate of movement by candidate species having the greatest influence on collision rates. We recommend that future efforts to reduce wildlife-vehicle collisions be more proactive and suggest the following protocol. For species that pose hazards to drivers (e.g., ungulates), identify collision hot spots and implement suitable mitigation to redirect animal movements (e.g., underpasses, fencing, and habitat modification), reduce populations of problematic game species via hunting, or modify driver behavior (e.g., dynamic signage that warns drivers when animals are near roads). Next, identify those species that are likely to experience additive (as opposed to compensatory) mortality from vehicle collisions and rank them according to vulnerability to extirpation. Then combine information on the distribution of at-risk species with information on existing road networks to identify areas where immediate actions are warranted.
Lifetime of binary asteroids versus gravitational encounters and collisions
NASA Technical Reports Server (NTRS)
Chauvineau, Bertrand; Farinella, Paolo; Mignard, F.
1992-01-01
We investigate the effect on the dynamics of a binary asteroid in the case of a near encounter with a third body. The dynamics of the binary is modeled as a two-body problem perturbed by an approaching body in the following ways: near encounters and collisions with a component of the system. In each case, the typical value of the two-body energy variation is estimated, and a random walk for the cumulative effect is assumed. Results are applied to some binary asteroid candidates. The main conclusion is that the collisional disruption is the dominant effect, giving lifetimes comparable to or larger than the age of the solar system.
Three species one-dimensional kinetic model for weakly ionized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, J., E-mail: jorge.gonzalez@upm.es; Donoso, J. M.; Tierno, S. P.
2016-06-15
A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting setmore » of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi–analytical method feasibility accounts for non–linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.« less
Semiclassical theory of electronically nonadiabatic transitions in molecular collision processes
NASA Technical Reports Server (NTRS)
Lam, K. S.; George, T. F.
1979-01-01
An introductory account of the semiclassical theory of the S-matrix for molecular collision processes is presented, with special emphasis on electronically nonadiabatic transitions. This theory is based on the incorporation of classical mechanics with quantum superposition, and in practice makes use of the analytic continuation of classical mechanics into the complex space of time domain. The relevant concepts of molecular scattering theory and related dynamical models are described and the formalism is developed and illustrated with simple examples - collinear collision of the A+BC type. The theory is then extended to include the effects of laser-induced nonadiabatic transitions. Two bound continuum processes collisional ionization and collision-induced emission also amenable to the same general semiclassical treatment are discussed.
Rapidity dependence in holographic heavy ion collisions
Wilke van der Schee; Schenke, Bjorn
2015-12-11
We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √s NN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but themore » rapidity spectra in our current model is narrower than the experimental data.« less
Effect of perception irregularity on chain-reaction crash in low visibility
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2015-06-01
We present the dynamic model of the chain-reaction crash to take into account the irregularity of the perception-reaction time. When a driver brakes according to taillights of the forward vehicle, the perception-reaction time varies from driver to driver. We study the effect of the perception irregularity on the chain-reaction crash (multiple-vehicle collision) in low-visibility condition. The first crash may induce more collisions. We investigate how the first collision induces the chain-reaction crash numerically. We derive, analytically, the transition points and the region maps for the chain-reaction crash in traffic flow of vehicles with irregular perception times. We clarify the effect of the perception irregularity on the multiple-vehicle collision.
A virtual simulator designed for collision prevention in proton therapy.
Jung, Hyunuk; Kum, Oyeon; Han, Youngyih; Park, Hee Chul; Kim, Jin Sung; Choi, Doo Ho
2015-10-01
In proton therapy, collisions between the patient and nozzle potentially occur because of the large nozzle structure and efforts to minimize the air gap. Thus, software was developed to predict such collisions between the nozzle and patient using treatment virtual simulation. Three-dimensional (3D) modeling of a gantry inner-floor, nozzle, and robotic-couch was performed using SolidWorks based on the manufacturer's machine data. To obtain patient body information, a 3D-scanner was utilized right before CT scanning. Using the acquired images, a 3D-image of the patient's body contour was reconstructed. The accuracy of the image was confirmed against the CT image of a humanoid phantom. The machine components and the virtual patient were combined on the treatment-room coordinate system, resulting in a virtual simulator. The simulator simulated the motion of its components such as rotation and translation of the gantry, nozzle, and couch in real scale. A collision, if any, was examined both in static and dynamic modes. The static mode assessed collisions only at fixed positions of the machine's components, while the dynamic mode operated any time a component was in motion. A collision was identified if any voxels of two components, e.g., the nozzle and the patient or couch, overlapped when calculating volume locations. The event and collision point were visualized, and collision volumes were reported. All components were successfully assembled, and the motions were accurately controlled. The 3D-shape of the phantom agreed with CT images within a deviation of 2 mm. Collision situations were simulated within minutes, and the results were displayed and reported. The developed software will be useful in improving patient safety and clinical efficiency of proton therapy.
Chain-reaction crash in traffic flow controlled by taillights
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2015-02-01
We study the chain-reaction crash (multiple-vehicle collision) in low-visibility condition on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle. The first crash may induce more collisions. We investigate whether or not the first collision induces the chain-reaction crash, numerically and analytically. The dynamic transitions occur from no collisions through a single collision, double collisions and triple collisions, to multiple collisions with decreasing the headway. Also, we find that the dynamic transition occurs from the finite chain reaction to the infinite chain reaction when the headway is less than the critical value. We derive, analytically, the transition points and the region maps for the chain-reaction crash in traffic flow controlled by taillights.
NASA Technical Reports Server (NTRS)
Borderies, Nicole
1989-01-01
Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.
DOT National Transportation Integrated Search
2011-09-01
This report presents the test results and finite element correlations of a full-scale dynamic collision test with rail vehicles as part of the Federal Railroad Administrations research program on improved crashworthiness of locomotive structures. ...
Covariant kaon dynamics and kaon flow in heavy ion collisions
NASA Astrophysics Data System (ADS)
Zheng, Yu-Ming; Fuchs, C.; Faessler, Amand; Shekhter, K.; Yan, Yu-Peng; Kobdaj, Chinorat
2004-03-01
The influence of the chiral mean field on the K+ transverse flow in heavy ion collisions at SIS energy is investigated within covariant kaon dynamics. For the kaon mesons inside the nuclear medium a quasiparticle picture including scalar and vector fields is adopted and compared to the standard treatment with a static potential. It is confirmed that a Lorentz force from spatial component of the vector field provides an important contribution to the in-medium kaon dynamics and strongly counterbalances the influence of the vector potential on the K+ in-plane flow. The FOPI data can be reasonably described using in-medium kaon potentials based on effective chiral models. The information on the in-medium K+ potential extracted from kaon flow is consistent with the knowledge from other sources.
NASA Astrophysics Data System (ADS)
Zinoviev, Sergei
2014-05-01
Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the deformation systems. 2) folded (folded-thrust) deformation systems combine deformation zones with relic lenses of Paleozoid substratum, and predominantly conform systems of the main faults. Despite a high degree of regional deformation the sedimentary-stratified and intrusive-contact relations of geological bodies are stored within the deformation systems, and this differs in the main the collision systems from zones of dynamic metamorphism. 3) regional zones of dynamic metamorphism of Kuznetsk-Altai region are the concentration belts of multiple mechanic deformations and contrast dynamometamorphism of complexes. The formational basis of dynamic metamorphism zones is tectonites of the collision stage. Zones of dynamic metamorphism attract special attention in the structural model of Kuznetsk-Altai region. They not only form the typical tectonic framework of collision sutures, but also contain the main part of ore deposits of this region. Pulse mode of structure formation of Kuznetsk-Altai region is detected. Major collision events in Kuznetsk-Altai region were in the late-Carboniferous-Triassic time (307-310, 295-285, 260-250 and 240-220 Ma). This study was supported by a grant of the Russian Foundation for Basic Research (project nos. 14-05-00117).
Charged-to-neutral correlation at forward rapidity in Au+Au collisions at s NN = 200 GeV
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2015-03-20
Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at √s NN=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess tomore » the model prediction when charged particles and photons are measured in the same acceptance. Thus, we find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (< 1%) deviation is observed.« less
NASA Astrophysics Data System (ADS)
Cui, Jie; Li, Zhiying; Krems, Roman V.
2015-10-01
We consider a problem of extrapolating the collision properties of a large polyatomic molecule A-H to make predictions of the dynamical properties for another molecule related to A-H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A-X. We assume that the effect of the -H →-X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can be used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C6H5CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He — C6H6 collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C6H5CN with He.
The dynamics of milk droplet-droplet collisions
NASA Astrophysics Data System (ADS)
Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.
2018-01-01
Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol solutions experiments. While milk concentrates have complex chemical composition and rheology, glycerol solutions are Newtonian fluids and therefore easy to characterize. The collision morphologies of glycerol solutions and milk concentrates are similar, and the regime maps can be described by the same phenomenological model developed in this work. The regime of bouncing, however, was not observed for any of the milk concentrates.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Chandrodoy; Bhalerao, Rajeev S.; Ollitrault, Jean-Yves; Pal, Subrata
2018-03-01
We evaluate the effects of preequilibrium dynamics on observables in ultrarelativistic heavy-ion collisions. We simulate the initial nonequilibrium phase within a multiphase transport (AMPT) model, while the subsequent near-equilibrium evolution is modeled using (2+1)-dimensional relativistic viscous hydrodynamics. We match the two stages of evolution carefully by calculating the full energy-momentum tensor from AMPT and using it as input for the hydrodynamic evolution. We find that when the preequilibrium evolution is taken into account, final-state observables are insensitive to the switching time from AMPT to hydrodynamics. Unlike some earlier treatments of preequilibrium dynamics, we do not find the initial shear viscous tensor to be large. With a shear viscosity to entropy density ratio of 0.12, our model describes quantitatively a large set of experimental data on Pb+Pb collisions at the Large Hadron Collider over a wide range of centrality: differential anisotropic flow vn(pT) (n =2 -6 ) , event-plane correlations, correlation between v2 and v3, and cumulant ratio v2{4 } /v2{2 } .
NASA Astrophysics Data System (ADS)
Gale, Charles; Jeon, Sangyong; Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju
2013-01-01
Anisotropic flow coefficients v1-v5 in heavy ion collisions are computed by combining a classical Yang-Mills description of the early time Glasma flow with the subsequent relativistic viscous hydrodynamic evolution of matter through the quark-gluon plasma and hadron gas phases. The Glasma dynamics, as realized in the impact parameter dependent Glasma (IP-Glasma) model, takes into account event-by-event geometric fluctuations in nucleon positions and intrinsic subnucleon scale color charge fluctuations; the preequilibrium flow of matter is then matched to the music algorithm describing viscous hydrodynamic flow and particle production at freeze-out. The IP-Glasma+MUSIC model describes well both transverse momentum dependent and integrated vn data measured at the Large Hadron Collider and the Relativistic Heavy Ion Collider. The model also reproduces the event-by-event distributions of v2, v3 and v4 measured by the ATLAS Collaboration. The implications of our results for better understanding of the dynamics of the Glasma and for the extraction of transport properties of the quark-gluon plasma are outlined.
Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.
Ki, Dae-Han; Jung, Young-Dae
2013-04-21
The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.
Asteroid collisions: Target size effects and resultant velocity distributions
NASA Technical Reports Server (NTRS)
Ryan, Eileen V.
1993-01-01
To study the dynamic fragmentation of rock to simulate asteroid collisions, we use a 2-D, continuum damage numerical hydrocode which models two-body impacts. This hydrocode monitors stress wave propagation and interaction within the target body, and includes a physical model for the formation and growth of cracks in rock. With this algorithm we have successfully reproduced fragment size distributions and mean ejecta speeds from laboratory impact experiments using basalt, and weak and strong mortar as target materials. Using the hydrocode, we have determined that the energy needed to fracture a body has a much stronger dependence on target size than predicted from most scaling theories. In addition, velocity distributions obtained indicate that mean ejecta speeds resulting from large-body collisions do not exceed escape velocities.
Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong
2014-12-21
The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.
Emergent dynamic structures and statistical law in spherical lattice gas automata.
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
Emergent dynamic structures and statistical law in spherical lattice gas automata
NASA Astrophysics Data System (ADS)
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
NASA Astrophysics Data System (ADS)
Pradhan, Aniruddhe; Akhavan, Rayhaneh
2017-11-01
Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ <= 4 in the near-wall region, which is comparable to Δ+ <= 2 required in DNS. At larger grid resolutions SRT becomes unstable, while MRT remains stable but gives unacceptably large errors. LES with no model gave errors comparable to the Dynamic Smagorinsky Model (DSM) and the Wall Adapting Local Eddy-viscosity (WALE) model. The resulting errors in the prediction of the friction coefficient in turbulent channel flow at a bulk Reynolds Number of 7860 (Reτ 442) with Δ+ = 4 and no-model, DSM and WALE were 1.7%, 2.6%, 3.1% with SRT, and 8.3% 7.5% 8.7% with MRT, respectively. These results suggest that LES of wall-bounded turbulent flows with LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.
Event-by-Event Simulations of Early Gluon Fields in High Energy Nuclear Collisions
NASA Astrophysics Data System (ADS)
Nickel, Matthew; Rose, Steven; Fries, Rainer
2017-09-01
Collisions of heavy ions are carried out at ultra relativistic speeds at the Relativistic Heavy Ion Collider and the Large Hadron Collider to create Quark Gluon Plasma. The earliest stages of such collisions are dominated by the dynamics of classical gluon fields. The McLerran-Venugopalan (MV) model of color glass condensate provides a model for this process. Previous research has provided an analytic solution for event averaged observables in the MV model. Using the High Performance Research Computing Center (HPRC) at Texas A&M, we have developed a C++ code to explicitly calculate the initial gluon fields and energy momentum tensor event by event using the analytic recursive solution. The code has been tested against previously known analytic results up to fourth order. We have also have been able to test the convergence of the recursive solution at high orders in time and studied the time evolution of color glass condensate.
Energy dependence of Kπ, pπ and Kp fluctuations in Au+Au collisions from √s NN=7.7 to 200 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.
A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical Kπ, pπ, and Kp fluctuations as measured by the STAR experiment in central 0–5% Au+Au collisions from center-of-mass collision energies √s NN=7.7 to 200 GeV are presented. The observable νdyn was used to quantify the magnitudemore » of the dynamical fluctuations in event-by-event measurements of the Kπ, pπ, and Kp pairs. The energy dependences of these fluctuations from central 0–5% Au+Au collisions all demonstrate a smooth evolution with collision energy.« less
A parallel Discrete Element Method to model collisions between non-convex particles
NASA Astrophysics Data System (ADS)
Rakotonirina, Andriarimina Daniel; Delenne, Jean-Yves; Wachs, Anthony
2017-06-01
In many dry granular and suspension flow configurations, particles can be highly non-spherical. It is now well established in the literature that particle shape affects the flow dynamics or the microstructure of the particles assembly in assorted ways as e.g. compacity of packed bed or heap, dilation under shear, resistance to shear, momentum transfer between translational and angular motions, ability to form arches and block the flow. In this talk, we suggest an accurate and efficient way to model collisions between particles of (almost) arbitrary shape. For that purpose, we develop a Discrete Element Method (DEM) combined with a soft particle contact model. The collision detection algorithm handles contacts between bodies of various shape and size. For nonconvex bodies, our strategy is based on decomposing a non-convex body into a set of convex ones. Therefore, our novel method can be called "glued-convex method" (in the sense clumping convex bodies together), as an extension of the popular "glued-spheres" method, and is implemented in our own granular dynamics code Grains3D. Since the whole problem is solved explicitly, our fully-MPI parallelized code Grains3D exhibits a very high scalability when dynamic load balancing is not required. In particular, simulations on up to a few thousands cores in configurations involving up to a few tens of millions of particles can readily be performed. We apply our enhanced numerical model to (i) the collapse of a granular column made of convex particles and (i) the microstructure of a heap of non-convex particles in a cylindrical reactor.
Distance estimation and collision prediction for on-line robotic motion planning
NASA Technical Reports Server (NTRS)
Kyriakopoulos, K. J.; Saridis, G. N.
1991-01-01
An efficient method for computing the minimum distance and predicting collisions between moving objects is presented. This problem has been incorporated in the framework of an in-line motion planning algorithm to satisfy collision avoidance between a robot and moving objects modeled as convex polyhedra. In the beginning the deterministic problem, where the information about the objects is assumed to be certain is examined. If instead of the Euclidean norm, L(sub 1) or L(sub infinity) norms are used to represent distance, the problem becomes a linear programming problem. The stochastic problem is formulated, where the uncertainty is induced by sensing and the unknown dynamics of the moving obstacles. Two problems are considered: (1) filtering of the minimum distance between the robot and the moving object, at the present time; and (2) prediction of the minimum distance in the future, in order to predict possible collisions with the moving obstacles and estimate the collision time.
Effects of collision cascade density on radiation defect dynamics in 3C-SiC
Bayu Aji, L. B.; Wallace, J. B.; Kucheyev, S. O.
2017-01-01
Effects of the collision cascade density on radiation damage in SiC remain poorly understood. Here, we study damage buildup and defect interaction dynamics in 3C-SiC bombarded at 100 °C with either continuous or pulsed beams of 500 keV Ne, Ar, Kr, or Xe ions. We find that bombardment with heavier ions, which create denser collision cascades, results in a decrease in the dynamic annealing efficiency and an increase in both the amorphization cross-section constant and the time constant of dynamic annealing. The cascade density behavior of these parameters is non-linear and appears to be uncorrelated. These results demonstrate clearly (and quantitatively) an important role of the collision cascade density in dynamic radiation defect processes in 3C-SiC. PMID:28304397
Effects of collision cascade density on radiation defect dynamics in 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayu Aji, L. B.; Wallace, J. B.; Kucheyev, S. O.
Effects of the collision cascade density on radiation damage in SiC remain poorly understood. We study damage buildup and defect interaction dynamics in 3C-SiC bombarded at 100 °C with either continuous or pulsed beams of 500 keV Ne, Ar, Kr, or Xe ions. Here, we find that bombardment with heavier ions, which create denser collision cascades, results in a decrease in the dynamic annealing efficiency and an increase in both the amorphization cross-section constant and the time constant of dynamic annealing. The cascade density behavior of these parameters is non-linear and appears to be uncorrelated. Our results demonstrate clearly (andmore » quantitatively) an important role of the collision cascade density in dynamic radiation defect processes in 3C-SiC.« less
Effects of collision cascade density on radiation defect dynamics in 3C-SiC
Bayu Aji, L. B.; Wallace, J. B.; Kucheyev, S. O.
2017-03-17
Effects of the collision cascade density on radiation damage in SiC remain poorly understood. We study damage buildup and defect interaction dynamics in 3C-SiC bombarded at 100 °C with either continuous or pulsed beams of 500 keV Ne, Ar, Kr, or Xe ions. Here, we find that bombardment with heavier ions, which create denser collision cascades, results in a decrease in the dynamic annealing efficiency and an increase in both the amorphization cross-section constant and the time constant of dynamic annealing. The cascade density behavior of these parameters is non-linear and appears to be uncorrelated. Our results demonstrate clearly (andmore » quantitatively) an important role of the collision cascade density in dynamic radiation defect processes in 3C-SiC.« less
Event-by-event mean p T fluctuations in pp and Pb–Pb collisions at the LHC
Abelev, B.; Adam, J.; Adamová, D.; ...
2014-10-15
Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at √s = 0.9, 2.76 and 7 TeV, and Pb–Pb collisions at √ sNN = 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Dynamical fluctuations indicative of correlated particle emission are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb–Pb data exhibit a similar multiplicity dependence as that observed in pp. In centralmore » Pb–Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb–Pb are in qualitative agreement with previous measurements in Au–Au at lower collision energies and with expectations from models that incorporate collective phenomena.« less
Collisional quenching dynamics and reactivity of highly vibrationally excited molecules
NASA Astrophysics Data System (ADS)
Liu, Qingnan
Highly excited molecules are of great importance in many areas of chemistry including photochemistry. The dynamics of highly excited molecules are affected by the intermolecular and intramolecular energy flow between many different kinds of motions. This thesis reports investigations of the collisional quenching and reactivity of highly excited molecules aimed at understanding the dynamics of highly excited molecules. There are several important questions that are addressed. How do molecules behave in collisions with a bath gas? How do the energy distributions evolve in time? How is the energy partitioned for both the donor and bath molecules after collisions? How do molecule structure, molecule state density and intermolecular potential play the role during collisional energy transfer? To answer these questions, collisional quenching dynamics and reactivity of highly vibrationally excited azabenzene molecules have been studied using high resolution transient IR absorption spectroscopy. The first study shows that the alkylated pyridine molecules that have been excited with Evib˜38,800 cm-1 impart less rotational and translational energy to CO2 than pyridine does. Comparison between the alkylated donors shows that the strong collisions are reduced for donors with longer alkyl chains by lowering the average energy per mode but longer alkyl chain have increased flexibility and higher state densities that enhance energy loss via strong collisions. In the second study, the role of hydrogen bonding interactions is explored in collision of vibrationally excited pyridines with H2O. Substantial difference in the rotational energy of H 2O is correlated with the structure of the global energy minimum. A torque-inducing mechanism is proposed that involves directed movement of H 2O between sigma and pi-hydrogen bonding interactions with the pyridine donors. In the third study the dynamics of strong and weak collisions for highly vibrationally excited methylated pyridine molecules with HOD are reported. Lower limits to the overall collision rate are directly determined from experimental measurements and compared to Lennard-Jones models which underestimate the collision rate for highly vibrationally excited azabenzenes with HOD. The fourth study explores reactive collisions of highly vibrationally excited pyridine molecules. D-atom abstraction reactions of highly vibrationally excited pyridine-d5 molecules and chlorine radical show a rate enhancement of ˜90 relative to the reaction of room temperature pyridine-d5 with chlorine radical. A single quantum of C-D stretching vibration is observed to be used for the vibrational driven reaction. Reactions of 2-picoline-d3 with chlorine radical do not show a similar enhancement. For this case, the fast rotation of --CD3 group in highly vibrationally excited 2-picoline-d3 inhibits the D-atom abstraction.
Modeling the locomotion of the African trypanosome using multi-particle collision dynamics
NASA Astrophysics Data System (ADS)
Babu, Sujin B.; Stark, Holger
2012-08-01
The African trypanosome is a single flagellated micro-organism that causes the deadly sleeping sickness in humans and animals. We study the locomotion of a model trypanosome by modeling the spindle-shaped cell body using an elastic network of vertices with additional bending rigidity. The flagellum firmly attached to the model cell body is either straight or helical. A bending wave propagates along the flagellum and pushes the trypanosome forward in its viscous environment, which we simulate with the method of multi-particle collision dynamics. The relaxation dynamics of the model cell body due to a static bending wave reveals the sperm number from elastohydrodynamics as the relevant parameter. Characteristic cell body conformations for the helically attached flagellum resemble experimental observations. We show that the swimming velocity scales as the root of the angular frequency of the bending wave reminiscent of predictions for an actuated slender rod attached to a large viscous load. The swimming velocity for one geometry collapses on a single master curve when plotted versus the sperm number. The helically attached flagellum leads to a helical swimming path and a rotation of the model trypanosome about its long axis as observed in experiments. The simulated swimming velocity agrees with the experimental value.
Widths of transverse momentum distributions in intermediate-energy heavy-ion collisions.
Khan, F; Townsend, L W
1993-08-01
The need to include dynamical collision momentum transfer contributions, arising from interacting nuclear and Coulomb fields, to estimates of fragment momentum distributions is discussed. Methods based upon an optical potential model are presented. Comparisons with recent experimental data of the Siegen group for variances of transverse momentum distributions for gold nuclei at 980 A MeV fragmenting on silver foil and plastic nuclear track detector targets are made. The agreement between theory and experiment is good.
Update: Advancement of Contact Dynamics Modeling for Human Spaceflight Simulation Applications
NASA Technical Reports Server (NTRS)
Brain, Thomas A.; Kovel, Erik B.; MacLean, John R.; Quiocho, Leslie J.
2017-01-01
Pong is a new software tool developed at the NASA Johnson Space Center that advances interference-based geometric contact dynamics based on 3D graphics models. The Pong software consists of three parts: a set of scripts to extract geometric data from 3D graphics models, a contact dynamics engine that provides collision detection and force calculations based on the extracted geometric data, and a set of scripts for visualizing the dynamics response with the 3D graphics models. The contact dynamics engine can be linked with an external multibody dynamics engine to provide an integrated multibody contact dynamics simulation. This paper provides a detailed overview of Pong including the overall approach and modeling capabilities, which encompasses force generation from contact primitives and friction to computational performance. Two specific Pong-based examples of International Space Station applications are discussed, and the related verification and validation using this new tool are also addressed.
Dynamical study of low Earth orbit debris collision avoidance using ground based laser
NASA Astrophysics Data System (ADS)
Khalifa, N. S.
2015-06-01
The objective of this paper was to investigate the orbital velocity changes due to the effect of ground based laser force. The resulting perturbations of semi-major axis, miss distance and collision probability of two approaching objects are studied. The analytical model is applied for low Earth orbit debris of different eccentricities and area to mass ratio and the numerical test shows that laser of medium power ∼5 kW can perform a small change Δ V ‾ of an average magnitude of 0.2 cm/s which can be accumulated over time to be about 3 cm/day. Moreover, it is confirmed that applying laser Δ V ‾ results in decreasing collision probability and increasing miss distance in order to avoid collision.
Isovector dipole resonance and shear viscosity in low energy heavy-ion collisions
NASA Astrophysics Data System (ADS)
Guo, C. Q.; Ma, Y. G.; He, W. B.; Cao, X. G.; Fang, D. Q.; Deng, X. G.; Zhou, C. L.
2017-05-01
The ratio of shear viscosity over entropy density in low energy heavy-ion collision has been calculated by using the Green-Kubo method in the framework of an extended quantum molecular dynamics model. After the system almost reaches a local equilibration for a head-on 40Ca+100Mo collision, thermodynamic and transport properties are extracted. Meanwhile, the isovector giant dipole resonance (IVGDR) of the collision system also is studied. By the Gaussian fits to the IVGDR photon spectra, the peak energies of the IVGDR are extracted at different incident energies. The result shows that the IVGDR peak energy has a positive correlation with the ratio of shear viscosity over entropy density. This is a quantum effect and indicates a difference between nuclear matter and classical fluid.
Non-Parametric Collision Probability for Low-Velocity Encounters
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell
2007-01-01
An implicit, but not necessarily obvious, assumption in all of the current techniques for assessing satellite collision probability is that the relative position uncertainty is perfectly correlated in time. If there is any mis-modeling of the dynamics in the propagation of the relative position error covariance matrix, time-wise de-correlation of the uncertainty will increase the probability of collision over a given time interval. The paper gives some examples that illustrate this point. This paper argues that, for the present, Monte Carlo analysis is the best available tool for handling low-velocity encounters, and suggests some techniques for addressing the issues just described. One proposal is for the use of a non-parametric technique that is widely used in actuarial and medical studies. The other suggestion is that accurate process noise models be used in the Monte Carlo trials to which the non-parametric estimate is applied. A further contribution of this paper is a description of how the time-wise decorrelation of uncertainty increases the probability of collision.
Acoustics and dynamics of coaxial interacting vortex rings
NASA Technical Reports Server (NTRS)
Shariff, Karim; Leonard, Anthony; Zabusky, Norman J.; Ferziger, Joel H.
1988-01-01
Using a contour dynamics method for inviscid axisymmetric flow we examine the effects of core deformation on the dynamics and acoustic signatures of coaxial interacting vortex rings. Both 'passage' and 'collision' (head-on) interactions are studied for initially identical vortices. Good correspondence with experiments is obtained. A simple model which retains only the elliptic degree of freedom in the core shape is used to explain some of the calculated features.
Robot environment expert system
NASA Technical Reports Server (NTRS)
Potter, J. L.
1985-01-01
The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hyunuk; Kum, Oyeon; Han, Youngyih, E-mail: youngyih@skku.edu
Purpose: In proton therapy, collisions between the patient and nozzle potentially occur because of the large nozzle structure and efforts to minimize the air gap. Thus, software was developed to predict such collisions between the nozzle and patient using treatment virtual simulation. Methods: Three-dimensional (3D) modeling of a gantry inner-floor, nozzle, and robotic-couch was performed using SolidWorks based on the manufacturer’s machine data. To obtain patient body information, a 3D-scanner was utilized right before CT scanning. Using the acquired images, a 3D-image of the patient’s body contour was reconstructed. The accuracy of the image was confirmed against the CT imagemore » of a humanoid phantom. The machine components and the virtual patient were combined on the treatment-room coordinate system, resulting in a virtual simulator. The simulator simulated the motion of its components such as rotation and translation of the gantry, nozzle, and couch in real scale. A collision, if any, was examined both in static and dynamic modes. The static mode assessed collisions only at fixed positions of the machine’s components, while the dynamic mode operated any time a component was in motion. A collision was identified if any voxels of two components, e.g., the nozzle and the patient or couch, overlapped when calculating volume locations. The event and collision point were visualized, and collision volumes were reported. Results: All components were successfully assembled, and the motions were accurately controlled. The 3D-shape of the phantom agreed with CT images within a deviation of 2 mm. Collision situations were simulated within minutes, and the results were displayed and reported. Conclusions: The developed software will be useful in improving patient safety and clinical efficiency of proton therapy.« less
Gyrokinetics with Advanced Collision Operators
NASA Astrophysics Data System (ADS)
Belli, E. A.; Candy, J.
2014-10-01
For gyrokinetic studies in the pedestal region, collisions are expected to play a more critical role than in the core and there is concern that more advanced collision operators, as well as numerical methods optimized for the strong collisionality regime, are needed. For this purpose, a new gyrokinetic solver CGYRO has been developed for precise studies of high collisionality regimes. Building on GYRO and NEO, CGYRO uses the NEO pitch angle and energy velocity-space coordinate system to optimize the accuracy of the collision dynamics, particularly for multi-species collisions and including energy diffusion. With implementation of the reduced Hirshman-Sigmar collision operator with full cross-species coupling, CGYRO recovers linear ITG growth rates and the collisional GAM test at moderate collision frequency. Methods to improve the behavior in the collisionless regime, particularly for the trapped/passing particle boundary physics for kinetic electrons, are studied. Extensions to advanced model operators with finite-k⊥ corrections, e.g., the Sugama operator, and the impact of high collisionality on linear gyrokinetic stability in the edge are explored. Work supported by the US DOE under DE-FG02-95ER54309.
NASA Astrophysics Data System (ADS)
Lin, Yufu; Chen, Lizhu; Li, Zhiming
2017-10-01
Fluctuations of conserved quantities are believed to be sensitive observables to probe the signature of the QCD phase transition and critical point. It was argued recently that measuring the genuine correlation functions (CFs) could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. With the AMPT (a multiphase transport) model, the centrality and energy dependence of various orders of CFs of net protons in Au + Au collisions at √{sN N}=7.7 , 11.5, 19.6, 27, 39, 62.4, and 200 GeV are investigated. The model results show that the number of antiprotons is important and should be taken into account in the calculation of CFs at high energy and/or in peripheral collisions. It is also found that the contribution of antiprotons is more important for higher order correlations than for lower ones. The CFs of antiprotons and mixed correlations play roles comparable to those of protons at high energies. Finally, we make comparisons between the model calculation and experimental data measured in the STAR experiment at the BNL Relativistic Heavy Ion Collider.
How Reflected Wave Fronts Dynamically Establish Hooke's Law in a Spring
ERIC Educational Resources Information Center
Fahy, Stephen; O'Riordan, John; O'Sullivan, Colm; Twomey, Patrick
2012-01-01
A simple benchtop experiment in which a moving cart collides with a fixed spring is described. Force-time and force-distance data recorded during the collision display the transit of compression wave fronts through the spring following impact. These data can be used by students to develop a computational model of the dynamics of this simple…
Locomotive crashworthiness research : modeling, simulation, and validation
DOT National Transportation Integrated Search
2001-07-01
A technique was developed to realistically simulate the dynamic, nonlinear structural behavior of moving rail vehicles and objects struck during a collision. A new approach considered the interdependence of the many vehicles connected in typical rail...
NASA Astrophysics Data System (ADS)
Kral, Q.; Thébault, P.; Charnoz, S.
2013-10-01
Context. In most current debris disc models, the dynamical and the collisional evolutions are studied separately with N-body and statistical codes, respectively, because of stringent computational constraints. In particular, incorporating collisional effects (especially destructive collisions) into an N-body scheme has proven a very arduous task because of the exponential increase of particles it would imply. Aims: We present here LIDT-DD, the first code able to mix both approaches in a fully self-consistent way. Our aim is for it to be generic enough to be applied to any astrophysical case where we expect dynamics and collisions to be deeply interlocked with one another: planets in discs, violent massive breakups, destabilized planetesimal belts, bright exozodiacal discs, etc. Methods: The code takes its basic architecture from the LIDT3D algorithm for protoplanetary discs, but has been strongly modified and updated to handle the very constraining specificities of debris disc physics: high-velocity fragmenting collisions, radiation-pressure affected orbits, absence of gas that never relaxes initial conditions, etc. It has a 3D Lagrangian-Eulerian structure, where grains of a given size at a given location in a disc are grouped into super-particles or tracers whose orbits are evolved with an N-body code and whose mutual collisions are individually tracked and treated using a particle-in-a-box prescription designed to handle fragmenting impacts. To cope with the wide range of possible dynamics for same-sized particles at any given location in the disc, and in order not to lose important dynamical information, tracers are sorted and regrouped into dynamical families depending on their orbits. A complex reassignment routine that searches for redundant tracers in each family and reassignes them where they are needed, prevents the number of tracers from diverging. Results: The LIDT-DD code has been successfully tested on simplified cases for which robust results have been obtained in past studies: we retrieve the classical features of particle size distributions in unperturbed discs and the outer radial density profiles in ~r-1.5 outside narrow collisionally active rings as well as the depletion of small grains in dynamically cold discs. The potential of the new code is illustrated with the test case of the violent breakup of a massive planetesimal within a debris disc. Preliminary results show that we are able for the first time to quantify the timescale over which the signature of such massive break-ups can be detected. In addition to studying such violent transient events, the main potential future applications of the code are planet and disc interactions, and more generally, any configurations where dynamics and collisions are expected to be intricately connected.
Dynamic models to analyse the influence of the seat belt in a frontal collision
NASA Astrophysics Data System (ADS)
Oana, Oţăt; Nicolae, Dumitru; Ilie, Dumitru
2017-10-01
Traffic accidents are influenced by various factors, yet, the highest impacting ones are related to vehicle impact speed and collision type. Also, passive vehicle safety systems play a significant role upon the injuries suffered by vehicle occupants. Under the circumstances, a particularly important aspect to consider when using such systems is the position of the vehicle’s driver and its occupants. In what follows we embark upon an in-depth analysis in order to investigate the contact effects between the seat belt and the driver, under a dynamic regime. We set out to identify the variation of the kinematic and dynamic parameters for both the driver and the seat belt via comparative analyses between the normal position of the driver and some other out of position instances, considered as critical.
Baryon-antibaryon dynamics in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Seifert, E.; Cassing, W.
2018-04-01
The dynamics of baryon-antibaryon annihilation and reproduction (B B ¯↔3 M ) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model. At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon (B B ¯ ) pairs while for the LHC energy of √{sN N}=2.76 TeV a small net enhancement is found relative to calculations without annihilation (and reproduction) channels. Accordingly, the sizable difference between data and statistical calculations in Pb+Pb collisions at √{sN N}=2.76 TeV for proton and antiproton yields [ALICE Collaboration, B. Abelev et al., Phys. Rev. C 88, 044910 (2013), 10.1103/PhysRevC.88.044910], where a deviation of 2.7 σ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons and antiprotons). Furthermore, we find that the B B ¯↔3 M reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2-2.5 can be extracted from the PHSD calculations for central Au+Au collisions.
Sevink, G J A; Schmid, F; Kawakatsu, T; Milano, G
2017-02-22
We have extended an existing hybrid MD-SCF simulation technique that employs a coarsening step to enhance the computational efficiency of evaluating non-bonded particle interactions. This technique is conceptually equivalent to the single chain in mean-field (SCMF) method in polymer physics, in the sense that non-bonded interactions are derived from the non-ideal chemical potential in self-consistent field (SCF) theory, after a particle-to-field projection. In contrast to SCMF, however, MD-SCF evolves particle coordinates by the usual Newton's equation of motion. Since collisions are seriously affected by the softening of non-bonded interactions that originates from their evaluation at the coarser continuum level, we have devised a way to reinsert the effect of collisions on the structural evolution. Merging MD-SCF with multi-particle collision dynamics (MPCD), we mimic particle collisions at the level of computational cells and at the same time properly account for the momentum transfer that is important for a realistic system evolution. The resulting hybrid MD-SCF/MPCD method was validated for a particular coarse-grained model of phospholipids in aqueous solution, against reference full-particle simulations and the original MD-SCF model. We additionally implemented and tested an alternative and more isotropic finite difference gradient. Our results show that efficiency is improved by merging MD-SCF with MPCD, as properly accounting for hydrodynamic interactions considerably speeds up the phase separation dynamics, with negligible additional computational costs compared to efficient MD-SCF. This new method enables realistic simulations of large-scale systems that are needed to investigate the applications of self-assembled structures of lipids in nanotechnologies.
Coherent dynamic structure factors of strongly coupled plasmas: A generalized hydrodynamic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Di; Hu, GuangYue; Gong, Tao
2016-05-15
A generalized hydrodynamic fluctuation model is proposed to simplify the calculation of the dynamic structure factor S(ω, k) of non-ideal plasmas using the fluctuation-dissipation theorem. In this model, the kinetic and correlation effects are both included in hydrodynamic coefficients, which are considered as functions of the coupling strength (Γ) and collision parameter (kλ{sub ei}), where λ{sub ei} is the electron-ion mean free path. A particle-particle particle-mesh molecular dynamics simulation code is also developed to simulate the dynamic structure factors, which are used to benchmark the calculation of our model. A good agreement between the two different approaches confirms the reliabilitymore » of our model.« less
Dash Cam videos on YouTube™ offer insights into factors related to moose-vehicle collisions.
Rea, Roy V; Johnson, Chris J; Aitken, Daniel A; Child, Kenneth N; Hesse, Gayle
2018-03-26
To gain a better understanding of the dynamics of moose-vehicle collisions, we analyzed 96 videos of moose-vehicle interactions recorded by vehicle dash-mounted cameras (Dash Cams) that had been posted to the video-sharing website YouTube™. Our objective was to determine the effects of road conditions, season and weather, moose behavior, and driver response to actual collisions compared to near misses when the collision was avoided. We identified 11 variables that were consistently observable in each video and that we hypothesized would help to explain a collision or near miss. The most parsimonious logistic regression model contained variables for number of moose, sight time, vehicle slows, and vehicle swerves (AIC c w = 0.529). This model had good predictive accuracy (AUC = 0.860, SE = 0.041). The only statistically significant variable from this model that explained the difference between moose-vehicle collisions and near misses was 'Vehicle slows'. Our results provide no evidence that road surface conditions (dry, wet, ice or snow), roadside habitat type (forested or cleared), the extent to which roadside vegetation was cleared, natural light conditions (overcast, clear, twilight, dark), season (winter, spring and summer, fall), the presence of oncoming traffic, or the direction from which the moose entered the roadway had any influence on whether a motorist collided with a moose. Dash Cam videos posted to YouTube™ provide a unique source of data for road safety planners trying to understand what happens in the moments just before a moose-vehicle collision and how those factors may differ from moose-vehicle encounters that do not result in a collision. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.
Swift, Nathan B; Hsiung, Bor-Kai; Kennedy, Emily B; Tan, Kwek-Tze
2016-08-01
Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 130 keratin spines were mounted vertically in thin substrates to mimic the natural spine layout on hedgehogs. A weighted crash pendulum was employed to induce and measure the effects of repeated collisions against samples, with the aim to evaluate the influence of various parameters including humidity effect, impact energy, and substrate hardness. Results reveal that softer samples-due to humidity conditioning and/or substrate material used-exhibit greater durability over multiple impacts, while the more rigid samples exhibit greater energy absorption performance at the expense of durability. This trend is exaggerated during high-energy collisions. Comparison of the results to baseline tests with industry standard impact absorbing foam, wherein the spines exhibit similar energy absorption, verifies the dynamic impact absorption capabilities of hedgehog spines and their candidacy as a structural model for engineered impact technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tran, H.; Hartmann, J. M.
2011-06-01
Collision induced velocity changes for pure H{_2} have been computed from classical dynamic simulations. The results have been compared with the Keilson-Storer model from four different points of view. The first involves various autocorrelation functions associated with the velocity. The second and third give more detailed information, and are time evolutions of some conditional probabilities for changes of the velocity modulus and orientation and the collision kernels themselves. The fourth considers the evolutions, with density, of the half widths of the Q(1) lines of the isotropic Raman (1-0) fundamental band and of the (2-0) overtone quadrupole band. These spectroscopic data enable an indirect test of the models since velocity changes translate into line-shape modifications through the speed dependence of collisional parameters and the Dicke narrowing of the Doppler contribution to the profile. The results indicate that, while the KS approach gives a poor description of detailed velocity-to-velocty changes, it leads to accurate results for the correlation functions and spectral shapes, quantities related to large averages over the velocity. It is also shown that the use of collision kernels directly derived from MDS lead to an almost perfect prediction of all considered quantities (correlation functions, conditional probabilities, and spectral shapes). Finally, the results stress the need for very accurate calculations of line-broadening and -shifting coefficients from the intermolecular potential to obviate the need for experimental data and permit fully meaningful tests of the models. H. Tran, J.M. Hartmann J. Chem. Phys. 130, 094301, 2009.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Jie; Krems, Roman V.; Li, Zhiying
2015-10-21
We consider a problem of extrapolating the collision properties of a large polyatomic molecule A–H to make predictions of the dynamical properties for another molecule related to A–H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A–X. We assume that the effect of the −H →−X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can bemore » used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C{sub 6}H{sub 5}CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He — C{sub 6}H{sub 6} collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C{sub 6}H{sub 5}CN with He.« less
NASA Technical Reports Server (NTRS)
1988-01-01
Topics addressed include: Cretaceous-Tertiary mass extinctions; geologial indicators for meteorite collisions; carbon dioxide catastrophes; volcanism; climatic changes; geochemistry; mineralogy; fossil records; biospheric traumas; stratigraphy; mathematical models; and ocean dynamics.
NASA Astrophysics Data System (ADS)
Kolomeitsev, E. E.; Toneev, V. D.; Voronyuk, V.
2018-06-01
We study the formation of fluid vorticity and the hyperon polarization in heavy-ion collisions at energies available at the JINR Nuclotron-based Ion Collider fAcility in the framework of the parton-hadron-string dynamic model, taking into account both hadronic and quark-gluonic (partonic) degrees of freedom. The vorticity properties in peripheral Au+Au collisions at √{sN N}=7.7 GeV are demonstrated and confronted with other models. The obtained result for the Λ polarization is in agreement with the experimental data by the STAR Collaboration, whereas the model is not able to explain the observed high values of the antihyperon Λ ¯ polarization.
Charge exchange between two nearest neighbour ions immersed in a dense plasma
NASA Astrophysics Data System (ADS)
Sauvan, P.; Angelo, P.; Derfoul, H.; Leboucher-Dalimier, E.; Devdariani, A.; Calisti, A.; Talin, B.
1999-04-01
In dense plasmas the quasimolecular model is relevant to describe the radiative properties: two nearest neighbor ions remain close to each other during a time scale of the order of the emission time. Within the frame of a quasistatic approach it has been shown that hydrogen-like spectral line shapes can exhibit satellite-like features. In this work we present the effect on the line shapes of the dynamical collision between the two ions exchanging transiently their bound electron. This model is suitable for the description of the core, the wings and the red satellite-like features. It is post-processed to the self consistent code (IDEFIX) giving the adiabatic transition energies and the oscillator strengths for the transient molecule immersed in a dense free electron bath. It is shown that the positions of the satellites are insensitive to the dynamics of the ion-ion collision. Results for fluorine Lyβ are presented.
Robust Landing Using Time-to-Collision Measurement with Actuator Saturation
NASA Technical Reports Server (NTRS)
Kuwata, Yoshiaki; Matthies, Larry
2009-01-01
This paper considers a landing problem for an MAV that uses only a monocular camera for guidance. Although this sensor cannot measure the absolute distance to the target, by using optical flow algorithms, time-to-collision to the target is obtained. Existing work has applied a simple proportional feedback control to simple dynamics and demonstrated its potential. However, due to the singularity in the time-to-collision measurement around the target, this feedback could require an infinite control action. This paper extends the approach into nonlinear dynamics. In particular, we explicitly consider the saturation of the actuator and include the effect of the aerial drag. It is shown that the convergence to the target is guaranteed from a set of initial conditions, and the boundaries of such initial conditions in the state space are numerically obtained. The paper then introduces parametric uncertainties in the vehicle model and in the time-to-collision measurements. Using an argument similar to the nominal case, the robust convergence to the target is proven, but the region of attraction is shown to shrink due to the existence of uncertainties. The numerical simulation validates these theoretical results.
High-performance multiprocessor architecture for a 3-D lattice gas model
NASA Technical Reports Server (NTRS)
Lee, F.; Flynn, M.; Morf, M.
1991-01-01
The lattice gas method has recently emerged as a promising discrete particle simulation method in areas such as fluid dynamics. We present a very high-performance scalable multiprocessor architecture, called ALGE, proposed for the simulation of a realistic 3-D lattice gas model, Henon's 24-bit FCHC isometric model. Each of these VLSI processors is as powerful as a CRAY-2 for this application. ALGE is scalable in the sense that it achieves linear speedup for both fixed and increasing problem sizes with more processors. The core computation of a lattice gas model consists of many repetitions of two alternating phases: particle collision and propagation. Functional decomposition by symmetry group and virtual move are the respective keys to efficient implementation of collision and propagation.
NASA Astrophysics Data System (ADS)
Sushko, Iryna; Gardini, Laura; Matsuyama, Kiminori
2018-05-01
We consider a two-dimensional continuous noninvertible piecewise smooth map, which characterizes the dynamics of innovation activities in the two-country model of trade and product innovation proposed in [7]. This two-dimensional map can be viewed as a coupling of two one-dimensional skew tent maps, each of which characterizes the innovation dynamics in each country in the absence of trade, and the coupling parameter depends inversely on the trade cost between the two countries. Hence, this model offers a laboratory for studying how a decline in the trade cost, or globalization, might synchronize endogenous fluctuations of innovation activities in the two countries. In this paper, we focus on the bifurcation scenarios, how the phase portrait of the two-dimensional map changes with a gradual decline of the trade cost, leading to border collision, merging, expansion and final bifurcations of the coexisting chaotic attractors. An example of peculiar border collision bifurcation leading to an increase of dimension of the chaotic attractor is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, William A., E-mail: wadawson@ucdavis.edu
2013-08-01
Merging galaxy clusters have become one of the most important probes of dark matter, providing evidence for dark matter over modified gravity and even constraints on the dark matter self-interaction cross-section. To properly constrain the dark matter cross-section it is necessary to understand the dynamics of the merger, as the inferred cross-section is a function of both the velocity of the collision and the observed time since collision. While the best understanding of merging system dynamics comes from N-body simulations, these are computationally intensive and often explore only a limited volume of the merger phase space allowed by observed parametermore » uncertainty. Simple analytic models exist but the assumptions of these methods invalidate their results near the collision time, plus error propagation of the highly correlated merger parameters is unfeasible. To address these weaknesses I develop a Monte Carlo method to discern the properties of dissociative mergers and propagate the uncertainty of the measured cluster parameters in an accurate and Bayesian manner. I introduce this method, verify it against an existing hydrodynamic N-body simulation, and apply it to two known dissociative mergers: 1ES 0657-558 (Bullet Cluster) and DLSCL J0916.2+2951 (Musket Ball Cluster). I find that this method surpasses existing analytic models-providing accurate (10% level) dynamic parameter and uncertainty estimates throughout the merger history. This, coupled with minimal required a priori information (subcluster mass, redshift, and projected separation) and relatively fast computation ({approx}6 CPU hours), makes this method ideal for large samples of dissociative merging clusters.« less
Dynamic model of the force driving kinesin to move along microtubule-Simulation with a model system
NASA Astrophysics Data System (ADS)
Chou, Y. C.; Hsiao, Yi-Feng; To, Kiwing
2015-09-01
A dynamic model for the motility of kinesin, including stochastic-force generation and step formation is proposed. The force driving the motion of kinesin motor is generated by the impulse from the collision between the randomly moving long-chain stalk and the ratchet-shaped outer surface of microtubule. Most of the dynamical and statistical features of the motility of kinesin are reproduced in a simulation system, with (a) ratchet structures similar to the outer surface of microtubule, (b) a bead chain connected to two heads, similarly to the stalk of the real kinesin motor, and (c) the interaction between the heads of the simulated kinesin and microtubule. We also propose an experiment to discriminate between the conventional hand-over-hand model and the dynamic model.
Understanding the quantum nature of low-energy C(3P j ) + He inelastic collisions.
Bergeat, Astrid; Chefdeville, Simon; Costes, Michel; Morales, Sébastien B; Naulin, Christian; Even, Uzi; Kłos, Jacek; Lique, François
2018-05-01
Inelastic collisions that occur between open-shell atoms and other atoms or molecules, and that promote a spin-orbit transition, involve multiple interaction potentials. They are non-adiabatic by nature and cannot be described within the Born-Oppenheimer approximation; in particular, their theoretical modelling becomes very challenging when the collision energies have values comparable to the spin-orbit splitting. Here we study inelastic collisions between carbon in its ground state C( 3 P j=0 ) and helium atoms-at collision energies in the vicinity of spin-orbit excitation thresholds (~0.2 and 0.5 kJ mol -1 )-that result in spin-orbit excitation to C( 3 P j=1 ) and C( 3 P j=2 ). State-to-state integral cross-sections are obtained from crossed-beam experiments with a beam source that provides an almost pure beam of C( 3 P j=0 ) . We observe very good agreement between experimental and theoretical results (acquired using newly calculated potential energy curves), which validates our characterization of the quantum dynamical resonances that are observed. Rate coefficients at very low temperatures suitable for chemical modelling of the interstellar medium are also calculated.
Understanding the quantum nature of low-energy C(3Pj) + He inelastic collisions
NASA Astrophysics Data System (ADS)
Bergeat, Astrid; Chefdeville, Simon; Costes, Michel; Morales, Sébastien B.; Naulin, Christian; Even, Uzi; Kłos, Jacek; Lique, François
2018-05-01
Inelastic collisions that occur between open-shell atoms and other atoms or molecules, and that promote a spin-orbit transition, involve multiple interaction potentials. They are non-adiabatic by nature and cannot be described within the Born-Oppenheimer approximation; in particular, their theoretical modelling becomes very challenging when the collision energies have values comparable to the spin-orbit splitting. Here we study inelastic collisions between carbon in its ground state C(3Pj=0) and helium atoms—at collision energies in the vicinity of spin-orbit excitation thresholds ( 0.2 and 0.5 kJ mol-1)—that result in spin-orbit excitation to C(3Pj=1) and C(3Pj=2). State-to-state integral cross-sections are obtained from crossed-beam experiments with a beam source that provides an almost pure beam of C(3Pj=0) . We observe very good agreement between experimental and theoretical results (acquired using newly calculated potential energy curves), which validates our characterization of the quantum dynamical resonances that are observed. Rate coefficients at very low temperatures suitable for chemical modelling of the interstellar medium are also calculated.
Distance estimation and collision prediction for on-line robotic motion planning
NASA Technical Reports Server (NTRS)
Kyriakopoulos, K. J.; Saridis, G. N.
1992-01-01
An efficient method for computing the minimum distance and predicting collisions between moving objects is presented. This problem is incorporated into the framework of an in-line motion-planning algorithm to satisfy collision avoidance between a robot and moving objects modeled as convex polyhedra. In the beginning, the deterministic problem where the information about the objects is assumed to be certain is examined. L(1) or L(infinity) norms are used to represent distance and the problem becomes a linear programming problem. The stochastic problem is formulated where the uncertainty is induced by sensing and the unknown dynamics of the moving obstacles. Two problems are considered: First, filtering of the distance between the robot and the moving object at the present time. Second, prediction of the minimum distance in the future in order to predict the collision time.
Improvement on Fermionic properties and new isotope production in molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Wang, Ning; Wu, Tong; Zeng, Jie; Yang, Yongxu; Ou, Li
2016-06-01
By considering momentum transfer in the Fermi constraint procedure, the stability of the initial nuclei and fragments produced in heavy-ion collisions can be further improved in quantum molecular dynamics simulations. The case of a phase-space occupation probability larger than one is effectively reduced with the proposed procedure. Simultaneously, the energy conservation can be better described for both individual nuclei and heavy-ion reactions. With the revised version of the improved quantum molecular dynamics model, the fusion excitation functions of 16O+186W and the central collisions of Au+Au at 35 AMeV are re-examined. The fusion cross sections at sub-barrier energies and the charge distribution of fragments are relatively better reproduced due to the reduction of spurious nucleon emission. The charge and isotope distribution of fragments in Xe+Sn, U+U and Zr+Sn at intermediate energies are also predicted. More unmeasured extremely neutron-rich fragments with Z = 16-28 are observed in the central collisions of 238U+238U than that of 96Zr+124Sn, which indicates that multi-fragmentation of U+U may offer a fruitful pathway to new neutron-rich isotopes.
NASA Astrophysics Data System (ADS)
Xiao, Zhi-Gang; Yong, Gao-Chan; Chen, Lie-Wen; Li, Bao-An; Zhang, Ming; Xiao, Guo-Qing; Xu, Nu
2014-02-01
The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions, especially those induced by radioactive beams, but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the / ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the / ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the / ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more / data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the K +/ K 0 ratio, meson and high-energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.
Planning 3-D collision-free paths using spheres
NASA Technical Reports Server (NTRS)
Bonner, Susan; Kelley, Robert B.
1989-01-01
A scheme for the representation of objects, the Successive Spherical Approximation (SSA), facilitates the rapid planning of collision-free paths in a 3-D, dynamic environment. The hierarchical nature of the SSA allows collision-free paths to be determined efficiently while still providing for the exact representation of dynamic objects. The concept of a freespace cell is introduced to allow human 3-D conceptual knowledge to be used in facilitating satisfying choices for paths. Collisions can be detected at a rate better than 1 second per environment object per path. This speed enables the path planning process to apply a hierarchy of rules to create a heuristically satisfying collision-free path.
Cumulants and correlation functions versus the QCD phase diagram
Bzdak, Adam; Koch, Volker; Strodthoff, Nils
2017-05-12
Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less
Cumulants and correlation functions versus the QCD phase diagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzdak, Adam; Koch, Volker; Strodthoff, Nils
Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less
NASA Astrophysics Data System (ADS)
Hall, Felix H. J.; Eberle, Pascal; Hegi, Gregor; Raoult, Maurice; Aymar, Mireille; Dulieu, Olivier; Willitsch, Stefan
2013-08-01
Cold chemical reactions between laser-cooled Ca+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the range of collision energies ⟨E coll⟩/k B=20 mK-20 K. The lowest energies were achieved in experiments using single localised Ca+ ions. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes in this system (non-radiative and radiative charge transfer as well as radiative association leading to the formation of CaRb+ molecular ions) have been analysed using high-level quantum-chemical calculations of the potential energy curves of CaRb+ and quantum-scattering calculations for the radiative channels. For the present low-energy scattering experiments, it is shown that the energy dependence of the reaction rate constants is governed by long-range interactions in line with the classical Langevin model, but their magnitude is determined by short-range non-adiabatic and radiative couplings which only weakly depend on the asymptotic energy. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral reactive collisions.
Reading the Signatures of Extrasolar Planets in Debris Disks
NASA Technical Reports Server (NTRS)
Kuchner, Marc J.
2009-01-01
An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.
Energy decay in a granular gas collapse
NASA Astrophysics Data System (ADS)
Almazán, Lidia; Serero, Dan; Salueña, Clara; Pöschel, Thorsten
2017-01-01
An inelastic hard ball bouncing repeatedly off the ground comes to rest in finite time by performing an infinite number of collisions. Similarly, a granular gas under the influence of external gravity, condenses at the bottom of the confinement due to inelastic collisions. By means of hydrodynamical simulations, we find that the condensation process of a granular gas reveals a similar dynamics as the bouncing ball. Our result is in agreement with both experiments and particle simulations, but disagrees with earlier simplified hydrodynamical description. Analyzing the result in detail, we find that the adequate modeling of pressure plays a key role in continuum modeling of granular matter.
Ab initio treatment of ion-induced charge transfer dynamics of isolated 2-deoxy-D-ribose.
Bacchus-Montabonel, Marie-Christine
2014-08-21
Modeling-induced radiation damage in biological systems, in particular, in DNA building blocks, is of major concern in cancer therapy studies. Ion-induced charge-transfer dynamics may indeed be involved in proton and hadrontherapy treatments. We have thus performed a theoretical approach of the charge-transfer dynamics in collision of C(4+) ions and protons with isolated 2-deoxy-D-ribose in a wide collision energy range by means of ab initio quantum chemistry molecular methods. The comparison of both projectile ions has been performed with regard to previous theoretical and experimental results. The charge transfer appears markedly less efficient with the 2-deoxy-D-ribose target than that with pyrimidine nucleobases, which would induce an enhancement of the fragmentation process in agreement with experimental measurements. The mechanism has been analyzed with regard to inner orbital excitations, and qualitative tendencies have been pointed out for studies on DNA buiding block damage.
Dynamics and the Wilson Cycle: An EarthScope vision
NASA Astrophysics Data System (ADS)
Ebinger, Cynthia; Humphreys, Eugene; Williams, Michael; van der Lee, Suzan; Levin, Vadim; Webb, Laura; Becker, Thorsten
2017-04-01
Wilson's model has two major components, each with distinctive observables. Initial subduction of ocean lithosphere collides continents across a closing ocean basin, creating a mountain range; rifting then initiates within the collisional orogeny and progresses to create oceanic spreading and creation of a new ocean basin. Subduction eventually initiates near the old, cold, and heavily sedimented continental margin, leading to subduction, and repeating the cycle. This model is largely kinematic in nature, and predictive in application. We re-evaluate the Wilson Cycle in light of process-oriented perspectives afforded by the surface to mantle Earthscope results. Repeating episodes of mountain building by means of continental collisions remains clear, but new observations augment or diverge from Wilson's concepts. A 'new' component stems from observations from both the East and West coasts: translational fault systems played critical roles in continental accretion, collision, and rifting. Earthscope data sets also have enabled imaging of the structure of western U.S. lithosphere with unprecedented detail. From new and existing data sets, we conclude that collision occurs in 'ribbons' in large part linked to the shapes of the landmasses colliding landmasses, and deformation includes a major component of transform tectonics. Post-orogenic gravitational collapse may occur far inboard of the site of collision. A third 'new' feature is that plate coupling with the mantle leads to deformation outside the classic Wilson Cycle. For example, the passive margin of eastern N. America shows tectonic activity, uplift, and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of lithosphere-asthenosphere coupling. A 'fourth' observation is that lateral density contrasts and volatile migration during subduction and collision effectively refertilize mantle lithosphere, and pre-condition later tectonic cycles.
NASA Astrophysics Data System (ADS)
BoŻek, Piotr; Broniowski, Wojciech
2017-07-01
We analyze the phenomenon of size-flow transmutation in ultrarelativistic nuclear collisions in a model where the initial size fluctuations are driven by the wounded quarks and the collectivity is provided by viscous hydrodynamics. It is found that the model properly reproduces the data for the transverse momentum fluctuations measured for Pb +Pb collisions at √{sN N}=2.76 TeV by the ALICE Collaboration. The agreement holds for a remarkably wide range of centralities, from 0-5 % up to 70-80 %, and displays a departure from a simple scaling with (dNch/d η ) 1 /2 in the form seen in the data. The overall agreement in the model with wounded quarks is significantly better than with nucleon participants. This feature joins the previously found wounded quark multiplicity scaling in the argumentation in favor of subnucleonic degrees of freedom in the early dynamics. We also examine in detail the correlations between measures of the initial size and final average transverse momentum of hadrons. Predictions are made for the transverse momentum fluctuations in p +Pb collisions at √{sN N}=5.02 TeV.
Olson, Daniel W.; Dutta, Sarit; Laachi, Nabil; Tian, Mingwei; Dorfman, Kevin D.
2011-01-01
Using the two-state, continuous-time random walk model, we develop expressions for the mobility and the plate height during DNA electrophoresis in an ordered post array that delineate the contributions due to (i) the random distance between collisions and (ii) the random duration of a collision. These contributions are expressed in terms of the means and variances of the underlying stochastic processes, which we evaluate from a large ensemble of Brownian dynamics simulations performed using different electric fields and molecular weights in a hexagonal array of 1 μm posts with a 3 μm center-to-center distance. If we fix the molecular weight, we find that the collision frequency governs the mobility. In contrast, the average collision duration is the most important factor for predicting the mobility as a function of DNA size at constant Péclet number. The plate height is reasonably well-described by a single post rope-over-pulley model, provided that the extension of the molecule is small. Our results only account for dispersion inside the post array and thus represent a theoretical lower bound on the plate height in an actual device. PMID:21290387
Extension of local front reconstruction method with controlled coalescence model
NASA Astrophysics Data System (ADS)
Rajkotwala, A. H.; Mirsandi, H.; Peters, E. A. J. F.; Baltussen, M. W.; van der Geld, C. W. M.; Kuerten, J. G. M.; Kuipers, J. A. M.
2018-02-01
The physics of droplet collisions involves a wide range of length scales. This poses a challenge to accurately simulate such flows with standard fixed grid methods due to their inability to resolve all relevant scales with an affordable number of computational grid cells. A solution is to couple a fixed grid method with subgrid models that account for microscale effects. In this paper, we improved and extended the Local Front Reconstruction Method (LFRM) with a film drainage model of Zang and Law [Phys. Fluids 23, 042102 (2011)]. The new framework is first validated by (near) head-on collision of two equal tetradecane droplets using experimental film drainage times. When the experimental film drainage times are used, the LFRM method is better in predicting the droplet collisions, especially at high velocity in comparison with other fixed grid methods (i.e., the front tracking method and the coupled level set and volume of fluid method). When the film drainage model is invoked, the method shows a good qualitative match with experiments, but a quantitative correspondence of the predicted film drainage time with the experimental drainage time is not obtained indicating that further development of film drainage model is required. However, it can be safely concluded that the LFRM coupled with film drainage models is much better in predicting the collision dynamics than the traditional methods.
Collisions of deformable cells lead to collective migration
NASA Astrophysics Data System (ADS)
Löber, Jakob; Ziebert, Falko; Aranson, Igor S.
2015-03-01
Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.
Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking.
Caputo, Joshua M; Collins, Steven H
2014-12-03
Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m · s(-1). Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models.
Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking
NASA Astrophysics Data System (ADS)
Caputo, Joshua M.; Collins, Steven H.
2014-12-01
Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m.s-1. Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models.
Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking
Caputo, Joshua M.; Collins, Steven H.
2014-01-01
Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m·s−1. Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models. PMID:25467389
NASA Astrophysics Data System (ADS)
Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.
2014-03-01
Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).
Sensor Fusion Based Model for Collision Free Mobile Robot Navigation
Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar
2015-01-01
Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766
Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.
Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar
2015-12-26
Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and 24 fuzzy rules for the robot's movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.
Rotational and translational effects in collisions of electronically excited diatomic hydrides
NASA Technical Reports Server (NTRS)
Crosley, David R.
1988-01-01
Collisional quenching and vibrational energy proceed competitively with rotational energy transfer for several excited states of the diatomic radicals OH, NH, and CH. This occurs for a wide variety of molecular collision partners. This phenomenon permits the examination of the influence of rotational motion on the collision dynamics of these theoretically tractable species. Measurements can also be made as a function of temperature, i.e., collision velocity. In OH (sup 2 sigma +), both vibrational transfer and quenching are found to decrease with an increase in rotational level, while quenching decreases with increasing temperature. This behavior indicates that for OH, anisotropic attractive forces govern the entrance channel dynamics for these collisions. The quenching of NH (sup 3 pi sub i) by many (although not all) collision partners also decreases with increasing rotational and translational energy, and NH (sup 1 pi) behaves much like OH (sup 2 sigma +). However, the quenching of CH (sup 2 delta) appears to decrease with increasing rotation but increases with increasing temperature, suggesting in this case anisotropic forces involving a barrier or repulsive wall. Such similarities and differences should furnish useful comparisons with both simple and detailed theoretical pictures of the appropriate collision dynamics.
Development of FB-MultiPier dynamic vessel-collision analysis models, phase 2.
DOT National Transportation Integrated Search
2014-07-01
Massive waterway vessels such as barges regularly transit navigable waterways in the U.S. During passages that fall within : the vicinity of bridge structures, vessels may (under extreme circumstances) deviate from the intended vessel transit path. A...
NASA Astrophysics Data System (ADS)
Batyuk, P.; Blaschke, D.; Bleicher, M.; Ivanov, Yu. B.; Karpenko, Iu.; Merts, S.; Nahrgang, M.; Petersen, H.; Rogachevsky, O.
2016-10-01
We present an event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, ultrarelativistic quantum molecular dynamics, to account for hadronic final-state interactions. We present first results for nuclear collisions of the Facility for Antiproton and Ion Research-Nuclotron-based Ion Collider Facility energy scan program (Au+Au collisions, √{sN N}=4 -11 GeV ). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model equations of state, one with a first-order phase transition and the other with a crossover-type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.
NASA Astrophysics Data System (ADS)
Bryon, Jacob
2017-09-01
The chiral magnetic effect (CME) arises from the chirality imbalance of quarks and its interaction to the strong magnetic field generated in non-central heavy-ion collisions. Possible formation of domains of quarks with chirality imbalances is an intrinsic property of the Quantum ChromoDynamics (QCD), which describes the fundamental strong interactions among quarks and gluons. Azimuthal-angle correlations have been used to measure the magnitude of charge- separation across the reaction plane, which was predicted to arise from the CME. However, backgrounds from collective motion (flow) of the collision system can also contribute to the correlation observable. In this poster, we investigate the magnitude of the background utilizing the AMPT model, which contains no CME signals. We demonstrate, for Au +Au collisions at 200 and 39 GeV, a scheme to remove the flow background via the event-shape engineering with the vanishing magnitude of the flow vector. We also calculate the ensemble average of the charge-separation observable, and provide a background baseline for the experimental data.
The effects of van der Waals attractions on cloud droplet growth by coalescence
NASA Technical Reports Server (NTRS)
Rogers, Jan R.; Davis, Robert H.
1990-01-01
The inclusion of van der Waals attractions in the interaction between cloud droplets has been recently shown to significantly increase the collision efficiencies of the smaller droplets. In the current work, these larger values for the collision efficiencies are used in a population dynamics model of the droplet size distribution evolution with time, in hopes of at least partially resolving the long-standing paradox in cloud microphysics that predicted rates of the onset of precipitation are generally much lower than those which are observed. Evolutions of several initial cloud droplet spectra have been tracked in time. Size evolutions are compared as predicted from the use of collision efficiencies computed using two different models to allow for droplet-droplet contact: one which considers slip flow effects only, and one which considers the combined effects of van der Waals forces and slip flow. The rate at which the droplet mass density function shifts to larger droplet sizes is increased by typically 20-25 percent, when collision efficiencies which include van der Waals forces are used.
NASA Astrophysics Data System (ADS)
Cheong, M. K.; Bahiki, M. R.; Azrad, S.
2016-10-01
The main goal of this study is to demonstrate the approach of achieving collision avoidance on Quadrotor Unmanned Aerial Vehicle (QUAV) using image sensors with colour- based tracking method. A pair of high definition (HD) stereo cameras were chosen as the stereo vision sensor to obtain depth data from flat object surfaces. Laser transmitter was utilized to project high contrast tracking spot for depth calculation using common triangulation. Stereo vision algorithm was developed to acquire the distance from tracked point to QUAV and the control algorithm was designed to manipulate QUAV's response based on depth calculated. Attitude and position controller were designed using the non-linear model with the help of Optitrack motion tracking system. A number of collision avoidance flight tests were carried out to validate the performance of the stereo vision and control algorithm based on image sensors. In the results, the UAV was able to hover with fairly good accuracy in both static and dynamic collision avoidance for short range collision avoidance. Collision avoidance performance of the UAV was better with obstacle of dull surfaces in comparison to shiny surfaces. The minimum collision avoidance distance achievable was 0.4 m. The approach was suitable to be applied in short range collision avoidance.
A High-resolution 3D Geodynamical Model of the Present-day India-Asia Collision System
NASA Astrophysics Data System (ADS)
Kaus, B.; Baumann, T.
2015-12-01
We present a high-resolution, 3D geodynamic model of the present-day India-Asia collision system. The model is separated into multiple tectonic blocks, for which we estimate the first order rheological properties and the impact on the dynamics of the collision system. This is done by performing systematic simulations with different rheologies to minimize the misfit to observational constraints such as the GPS-velocity field. The simulations are performed with the parallel staggered grid FD code LaMEM using a numerical resolution of at least 512x512x256 cells to resolve dynamically important shear zones reasonably well. A fundamental part of this study is the reconstruction of the 3D present-day geometry of Tibet and the adjacent regions. Our interpretations of crust and mantle lithosphere geometry are jointly based on a globally available shear wave tomography (Schaeffer and Lebedev, 2013) and the Crust 1.0 model (Laske et al. http://igppweb.ucsd.edu/~gabi/crust1.html). We regionally refined and modified our interpretations based on seismicity distributions and focal mechanisms and incorporated regional receiver function studies to improve the accuracy of the Moho in particular. Results suggest that we can identify at least one "best-fit" solution in terms of rheological model properties that reproduces the observed velocity field reasonably well, including the strong rotation of the GPS velocity around the eastern syntax of the Himalaya. We also present model co-variances to illustrate the trade-offs between the rheological model parameters, their respective uncertainties, and the model fit. Schaeffer, A.J., Lebedev, S., 2013. Global shear speed structure of the upper mantle and transition zone. Geophysical Journal International 194, 417-449. doi:10.1093/gji/ggt095
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Hansen, C. J.; Jarboe, T. R.
2017-10-01
A self-consistent, two-fluid (plasma-neutral) dynamic neutral model has been implemented into the 3-D, Extended-MHD code PSI-Tet. A monatomic, hydrogenic neutral fluid reacts with a plasma fluid through elastic scattering collisions and three inelastic collision reactions: electron-impact ionization, radiative recombination, and resonant charge-exchange. Density, momentum, and energy are evolved for both the plasma and neutral species. The implemented plasma-neutral model in PSI-Tet is being used to simulate decaying spheromak configurations in the HIT-SI experimental geometry, which is being compare to two-photon absorption laser induced fluorescence measurements (TALIF) made on the HIT-SI3 experiment. TALIF is used to measure the absolute density and temperature of monatomic deuterium atoms. Neutral densities on the order of 1015 m-3 and neutral temperatures between 0.6-1.7 eV were measured towards the end of decay of spheromak configurations with initial toroidal currents between 10-12 kA. Validation results between TALIF measurements and PSI-Tet simulations with the implemented dynamic neutral model will be presented. Additionally, preliminary dynamic neutral simulations of the HIT-SI/HIT-SI3 spheromak plasmas sustained with inductive helicity injection will be presented. Lastly, potential benefits of an expansion of the two-fluid model into a multi-fluid model that includes multiple neutral species and tracking of charge states will be discussed.
Strange hadron production in pp, pPb, and PbPb collisions at LHC energies
NASA Astrophysics Data System (ADS)
Ni, Hong
2018-02-01
Identified particle spectra provide an important tool for understanding the particle production mechanism and the dynamical evolution of the medium created in relativistic heavy ion collisions. Studies involving strange and multi-strange hadrons, such as K0S, Λ, and Ξ-, carry additional information since there is no net strangeness content in the initial colliding system. Strangeness enhancement in AA collisions with respect to pp and pA collisions has long been considered as one of the signatures for quark-gluon plasma (QGP) formation. Recent observations of collective effects in high-multiplicity pp and pA collisions raise the question of whether QGP can also be formed in the smaller systems. Systematic studies of strange particle abundance, particle ratios, and nuclear modification factors can shed light on this issue. The CMS experiment has excellent strange-particle reconstruction capabilities over a broad kinematic range, and dedicated high-multiplicity triggers in pp and pPb collisions. The spectra of K0S, Λ, and Ξ- hadrons have been measured in various multiplicity and rapidity regions as a function of pT in pp, pPb, and PbPb collisions for several collision energies. The spectral shapes and particle ratios are compared in the different collision systems for events that have the same multiplicity and interpreted in the context of hydrodynamics models.
A study of internal energy relaxation in shocks using molecular dynamics based models
NASA Astrophysics Data System (ADS)
Li, Zheng; Parsons, Neal; Levin, Deborah A.
2015-10-01
Recent potential energy surfaces (PESs) for the N2 + N and N2 + N2 systems are used in molecular dynamics (MD) to simulate rates of vibrational and rotational relaxations for conditions that occur in hypersonic flows. For both chemical systems, it is found that the rotational relaxation number increases with the translational temperature and decreases as the rotational temperature approaches the translational temperature. The vibrational relaxation number is observed to decrease with translational temperature and approaches the rotational relaxation number in the high temperature region. The rotational and vibrational relaxation numbers are generally larger in the N2 + N2 system. MD-quasi-classical trajectory (QCT) with the PESs is also used to calculate the V-T transition cross sections, the collision cross section, and the dissociation cross section for each collision pair. Direct simulation Monte Carlo (DSMC) results for hypersonic flow over a blunt body with the total collision cross section from MD/QCT simulations, Larsen-Borgnakke with new relaxation numbers, and the N2 dissociation rate from MD/QCT show a profile with a decreased translational temperature and a rotational temperature close to vibrational temperature. The results demonstrate that many of the physical models employed in DSMC should be revised as fundamental potential energy surfaces suitable for high temperature conditions become available.
Electronic excitation and quenching of atoms at insulator surfaces
NASA Technical Reports Server (NTRS)
Swaminathan, P. K.; Garrett, Bruce C.; Murthy, C. S.
1988-01-01
A trajectory-based semiclassical method is used to study electronically inelastic collisions of gas atoms with insulator surfaces. The method provides for quantum-mechanical treatment of the internal electronic dynamics of a localized region involving the gas/surface collision, and a classical treatment of all the nuclear degrees of freedom (self-consistently and in terms of stochastic trajectories), and includes accurate simulation of the bath-temperature effects. The method is easy to implement and has a generality that holds promise for many practical applications. The problem of electronically inelastic dynamics is solved by computing a set of stochastic trajectories that on thermal averaging directly provide electronic transition probabilities at a given temperature. The theory is illustrated by a simple model of a two-state gas/surface interaction.
Chain-reaction crash on a highway in high visibility
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2016-05-01
We study the chain-reaction crash (multiple-vehicle collision) in high-visibility condition on a highway. In the traffic situation, drivers control their vehicles by both gear-changing and braking. Drivers change the gears according to the headway and brake according to taillights of the forward vehicle. We investigate whether or not the first collision induces the chain-reaction crash numerically. It is shown that dynamic transitions occur from no collisions, through a single collision, to multiple collisions with decreasing the headway. Also, we find that the dynamic transition occurs from the finite chain reaction to the infinite chain reaction when the headway is less than the critical value. We compare the multiple-vehicle collisions in high-visibility with that in low-visibility. We derive the transition points and the region maps for the chain-reaction crash in high visibility.
NASA Astrophysics Data System (ADS)
Burnett, Keith
2018-03-01
We discuss Danny Segal's key roles in the development of the spectroscopy of collision complexes at Imperial College and Oxford. We explain how his work lead to a number of new insights into collision dynamics in external fields.
Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He
NASA Astrophysics Data System (ADS)
Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.
2018-02-01
The collision dynamics of optically centrifuged CO2 with Ar and He are reported here. The optical centrifuge produces an ensemble of CO2 molecules in high rotational states (with J ˜ 220) with oriented angular momentum. Polarization-dependent high-resolution transient IR absorption spectroscopy was used to measure the relaxation dynamics in the presence of Ar or He by probing the CO2 J = 76 and 100 states with Er o t=2306 and 3979 cm-1, respectively. The data show that He relaxes the CO2 super rotors more quickly than Ar. Doppler-broadened line profiles show that He collisions induce substantially larger rotation-to-translation energy transfer. CO2 super rotors have greater orientational anisotropy with He collisions and the anisotropy from the He collisions persists longer than with Ar. Super rotor relaxation dynamics are discussed in terms of mass effects related to classical gyroscope physics and collisional rotational adiabaticity.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1976-01-01
A semiclassical collision model is applied to the study of energy transfer rates between a vibrationally excited diatomic molecule and a structureless atom. The molecule is modeled as an anharmonic oscillator with a multitude of dynamically coupled vibrational states. Three main aspects in the prediction of vibrational energy transfer rates are considered. The applicability of the semiclassical model to an anharmonic oscillator is first evaluated for collinear encounters. Second, the collinear semiclassical model is applied to obtain numerical predictions of the vibrational energy transfer rate dependence on the initial vibrational state quantum number. Thermally averaged vibration-translation rate coefficients are predicted and compared with CO-He experimental values for both ground and excited initial states. The numerical model is also used as a basis for evaluating several less complete but analytic models. Third, the role of rational motion in the dynamics of vibrational energy transfer is examined. A three-dimensional semiclassical collision model is constructed with coupled rotational motion included. Energy transfer within the molecule is shown to be dominated by vibration-rotation transitions with small changes in angular momentum. The rates of vibrational energy transfer in molecules with rational frequencies that are very small in comparison to their vibrational frequency are shown to be adequately treated by the preceding collinear models.
NASA Astrophysics Data System (ADS)
Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.
2007-10-01
During the last several years we have undertaken a systematic study of heavy residues formed in quasi-elastic and deep- inelastic collisions near and below the Fermi energy [1,2]. Presently, we are exploring the possibility of extracting information on the dynamics by comparing our heavy residue data to calculations using microscopic models based on the quantum molecular dynamics approach (QMD). We have performed detailed calculations of QMD type using the recent version of the constrained molecular dynamics code CoMD of M. Papa [3]. CoMD is especially designed for reactions near the Fermi energy. It implements an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon, thus restoring the Pauli principle at each time step of the collision. Results of the calculations and comparisons with our residue data will be presented and discussed in detail. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003); Nucl. Instrum. Methods B 204 166 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001).
NASA Astrophysics Data System (ADS)
Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.
2008-10-01
A systematic study of quasi-elastic and deep-inelastic collisions at Fermi energies has been undertaken at Texas A&M aiming at obtaining information on the mechanism of nucleon exchange and the course towards N/Z equilibration [1,2]. We expect to get insight in the dynamics and the nuclear equation of state by comparing our experimental heavy residue data to detailed calculations using microscopic models of quantum molecular dynamics (QMD) type. At present, we have performed detailed calculations using the code CoMD (Constrained Molecular Dynamics) of A. Bonasera and M. Papa [3]. The code implements an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon, effectively restoring the Pauli principle at each time step of the collision. Results of the calculations and comparisons with our data will be presented and implications concerning the isospin part of the nuclear equation of state will be discussed. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001).
Examination of directed flow as a signal for a phase transition in relativistic nuclear collisions
NASA Astrophysics Data System (ADS)
Steinheimer, J.; Auvinen, J.; Petersen, H.; Bleicher, M.; Stöcker, H.
2014-05-01
The sign change of the slope of the directed flow of baryons has been predicted as a signal for a first order phase transition within fluid dynamical calculations. Recently, the directed flow of identified particles was measured by the STAR Collaboration in the beam energy scan program. In this article, we examine the collision energy dependence of directed flow v1 in fluid dynamical model descriptions of heavy ion collisions for √sNN =3-20 GeV. The first step is to reproduce the existing predictions within pure fluid dynamical calculations. As a second step we investigate the influence of the order of the phase transition on the anisotropic flow within a state-of-the-art hybrid approach that describes other global observables reasonably well. We find that, in the hybrid approach, there seems to be no sensitivity of the directed flow on the equation of state and in particular on the existence of a first order phase transition. In addition, we explore more subtle sensitivities such as the Cooper-Frye transition criterion and discuss how momentum conservation and the definition of the event plane affects the results. At this point, none of our calculations matches qualitatively the behavior of the STAR data; the values of the slopes are always larger than in the data.
From fluid dynamics to microscopic transport approach
NASA Astrophysics Data System (ADS)
Saini, Abhilasha; Bhardwaj, Sudhir; Keswani, Bright
2018-05-01
Here we are exploring the widespread features or the characteristics of the microscopic transport modeling and also the speculations made for the approach to fit it to the dynamics of high energy heavy ion collisions, when we see its expansion in space-time dimensions. The explanation of initial stages of the hot and high dense region, the hydrodynamics is instigated and further moderate stages of reaction are complemented to microscopic transport.
NASA Astrophysics Data System (ADS)
Xinyu-Tan; Duanming-Zhang; Shengqin-Feng; Li, Zhi-hua; Li, Guan; Li, Li; Dan, Liu
2006-05-01
The dynamics characteristic and effect of atoms and particulates ejected from the surface generated by nanosecond pulsed-laser ablation are very important. In this work, based on the consideration of the inelasticity and non-uniformity of the plasma particles thermally desorbed from a plane surface into vacuum induced by nanosecond laser ablation, the one-dimensional particles flow is studied on the basis of a quasi-molecular dynamics (QMD) simulation. It is assumed that atoms and particulates ejected from the surface of a target have a Maxwell velocity distribution corresponding to the surface temperature. Particles collisions in the ablation plume. The particles mass is continuous and satisfies fractal theory distribution. Meanwhile, the particles are inelastic. Our results show that inelasticity and non-uniformity strongly affect the dynamics behavior of the particles flow. Along with the decrease of restitution coefficient e and increase of fractional dimension D, velocity distributions of plasma particles system all deviate from the initial Gaussian distribution. The increasing of dissipation energy ΔE leads to density distribution clusterized and closed up to the center mass. Predictions of the particles action based on the proposed fractal and inelasticity model are found to be in agreement with the experimental observation. This verifies the validity of the present model for the dynamics behavior of pulsed-laser-induced particles flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratihar, Subha; Barnes, George L.; Laskin, Julia
In this Perspective mass spectrometry experiments and chemical dynamics simulations are described which have explored the atomistic dynamics of protonated peptide ions, peptide-H+, colliding with organic surfaces. These studies have investigated surface-induced dissociation (SID) for which peptide-H+ fragments upon collision with the surface, peptide-H+ physisorption on the surface, soft landing (SL), and peptide-H+ reaction with the surface, reactive landing (RL). The simulations include QM+MM and QM/MM direct dynamics. For collisions with self-assembled monolayer (SAM) surfaces there is quite good agreement between experiment and simulation in the efficiency of energy transfer to the peptide-H+ ion’s internal degrees of freedom. Both themore » experiments and simulations show two mechanisms for peptide-H+ fragmentation, i.e. shattering and statistical, RRKM dynamics. Mechanisms for SL are probed in simulations of collisions of protonated dialanine with a perfluorinated SAM surface. RL has been studied experimentally for a number of peptide-H+ + surface systems, and qualitative agreement between simulation and experiment is found for two similar systems.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... Dynamic and Quasi-Static Testing in 2008 a. Test Article Design b. Dynamic Testing of a Collision Post c... requirements concerning structural deformation and energy absorption by collision posts and corner posts at the... Testing in 2002 a. Test Article Designs b. Dynamic Impact Testing c. Analysis 2. Industry-Sponsored Quasi...
Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model
NASA Astrophysics Data System (ADS)
Guo, Chong-Qiang; Zhang, Chun-Jian; Xu, Jun
2017-12-01
We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic 197Au+197Au collisions at √{s_{NN}} = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings.
Ionic wave propagation and collision in an excitable circuit model of microtubules
NASA Astrophysics Data System (ADS)
Guemkam Ghomsi, P.; Tameh Berinyoh, J. T.; Moukam Kakmeni, F. M.
2018-02-01
In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.
Ionic wave propagation and collision in an excitable circuit model of microtubules.
Guemkam Ghomsi, P; Tameh Berinyoh, J T; Moukam Kakmeni, F M
2018-02-01
In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.
Dynamics and kinetics of reversible homo-molecular dimerization of polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Mao, Qian; Ren, Yihua; Luo, K. H.; van Duin, Adri C. T.
2017-12-01
Physical dimerization of polycyclic aromatic hydrocarbons (PAHs) has been investigated via molecular dynamics (MD) simulation with the ReaxFF reactive force field that is developed to bridge the gap between the quantum mechanism and classical MD. Dynamics and kinetics of homo-molecular PAH collision under different temperatures, impact parameters, and orientations are studied at an atomic level, which is of great value to understand and model the PAH dimerization. In the collision process, the enhancement factors of homo-molecular dimerizations are quantified and found to be larger at lower temperatures or with smaller PAH instead of size independent. Within the capture radius, the lifetime of the formed PAH dimer decreases as the impact parameter increases. Temperature and PAH characteristic dependent forward and reverse rate constants of homo-molecular PAH dimerization are derived from MD simulations, on the basis of which a reversible model is developed. This model can predict the tendency of PAH dimerization as validated by pyrene dimerization experiments [H. Sabbah et al., J. Phys. Chem. Lett. 1(19), 2962 (2010)]. Results from this study indicate that the physical dimerization cannot be an important source under the typical flame temperatures and PAH concentrations, which implies a more significant role played by the chemical route.
Initial state with shear in peripheral heavy ion collisions
NASA Astrophysics Data System (ADS)
Magas, V. K.; Gordillo, J.; Strottman, D.; Xie, Y. L.; Csernai, L. P.
2018-06-01
In the present work we propose a new way of constructing the initial state for further hydrodynamic simulation of relativistic heavy ion collisions based on Bjorken-like solution applied streak by streak in the transverse plane. Previous fluid dynamical calculations in Cartesian coordinates with an initial state based on a streak by streak Yang-Mills field led for peripheral higher energy collisions to large angular momentum, initial shear flow and significant local vorticity. Recent experiments verified the existence of this vorticity via the resulting polarization of emitted Λ and Λ ¯ particles. At the same time parton cascade models indicated the existence of more compact initial state configurations, which we are going to simulate in our approach. The proposed model satisfies all the conservation laws, including conservation of a strong initial angular momentum, which is present in noncentral collisions. As a consequence of this large initial angular momentum we observe the rotation of the whole system as well as the fluid shear in the initial state, which leads to large flow vorticity. Another advantage of the proposed model is that the initial state can be given in both [t,x,y,z] and [τ ,x ,y ,η ] coordinates and thus can be tested by all 3+1D hydrodynamical codes which exist in the field.
SU-F-T-242: A Method for Collision Avoidance in External Beam Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzurovic, I; Cormack, R
2016-06-15
Purpose: We proposed a method for collision avoidance (CA) in external beam radiation therapy (EBRT). The method encompasses the analysis of all positions of the moving components of the beam delivery system such as the treatment table and gantry, including patient specific information obtained from the CT images. This method eliminates the need for time-consuming dry-runs prior to the actual treatments. Methods: The QA procedure for EBRT requires that the collision should be checked prior to treatment. We developed a system capable of a rigorous computer simulation of all moving components including positions of the couch and gantry during themore » delivery, position of the patients, and imaging equipment. By running this treatment simulation it is possible to quantify and graphically represent all positions and corresponding trajectories of all points of the moving parts during the treatment delivery. The development of the workflow for implementation of the CA includes several steps: a) derivation of combined dynamic equation of motion of the EBRT delivery systems, b) developing the simulation model capable of drawing the motion trajectories of the specific points, c) developing the interface between the model and the treatment plan parameters such as couch and gantry parameters for each field. Results: The patient CT images were registered to the treatment couch so the patient dimensions were included into the simulation. The treatment field parameters were structured in the xml-file which was used as the input into the dynamic equations. The trajectories of the moving components were plotted on the same graph using the dynamic equations. If the trajectories intersect that was the signal that collision exists. Conclusion: This CA method was proved to be effective in the simulation of treatment delivery. The proper implementation of this system can potentially improve the QA program and increase the efficacy in the clinical setup.« less
Thermospheric production of O(1S) by dissociative recombination of vibrationally excited O2(+)
NASA Technical Reports Server (NTRS)
Yee, Jeng-Hwa; Killeen, T. L.
1986-01-01
High spectral resolution line profiles at 5577 A of the nighttime, F-region O(1S) emission measured by the Fabry-Perot interferometer on board the Dynamics Explorer satellite are analyzed using a continuous O(1S) relaxation model. The model is an improvement over the previous model of Killeen and Hays (1981) in that energy loss via elastic collision is considered in addition to the single collision, excitation exchange thermalization process. The results show that the active channel for O(1S) production is capture into the 1Sigma(+)u repulsive state of O2 and that the main contributor to its production is the dissociative recombination of O2(+) ions in vibrational levels v = 1 and 2 in agreement with the quantal calculations of Guberman (1983).
Modeling of driver's collision avoidance maneuver based on controller switching model.
Kim, Jong-Hae; Hayakawa, Soichiro; Suzuki, Tatsuya; Hayashi, Koji; Okuma, Shigeru; Tsuchida, Nuio; Shimizu, Masayuki; Kido, Shigeyuki
2005-12-01
This paper presents a modeling strategy of human driving behavior based on the controller switching model focusing on the driver's collision avoidance maneuver. The driving data are collected by using the three-dimensional (3-D) driving simulator based on the CAVE Automatic Virtual Environment (CAVE), which provides stereoscopic immersive virtual environment. In our modeling, the control scenario of the human driver, that is, the mapping from the driver's sensory information to the operation of the driver such as acceleration, braking, and steering, is expressed by Piecewise Polynomial (PWP) model. Since the PWP model includes both continuous behaviors given by polynomials and discrete logical conditions, it can be regarded as a class of Hybrid Dynamical System (HDS). The identification problem for the PWP model is formulated as the Mixed Integer Linear Programming (MILP) by transforming the switching conditions into binary variables. From the obtained results, it is found that the driver appropriately switches the "control law" according to the sensory information. In addition, the driving characteristics of the beginner driver and the expert driver are compared and discussed. These results enable us to capture not only the physical meaning of the driving skill but the decision-making aspect (switching conditions) in the driver's collision avoidance maneuver as well.
Low-speed impacts between rubble piles modeled as collections of polyhedra, 2
NASA Astrophysics Data System (ADS)
Korycansky, D. G.; Asphaug, Erik
2009-11-01
We present the results of additional calculations involving the collisions of km-scale rubble piles. In new work, we used the Open Dynamics Engine (ODE), an open-source library for the simulation of rigid-body dynamics that incorporates a sophisticated collision-detection and resolution routine. We found that using ODE resulted in a speed-up of approximately a factor of 30 compared with previous code. In this paper we report on the results of almost 1200 separate runs, the bulk of which were carried out with 1000-2000 elements. We carried out calculations with three different combinations of the coefficients of friction η and (normal) restitution ɛ: low (η=0,ɛ=0.8), medium (η=0,ɛ=0.5), and high (η=0.5,ɛ=0.5) dissipation. For target objects of ˜1 km in radius, we found reduced critical disruption energy values QRD∗ in head-on collisions from 2 to 100 J kg -1 depending on dissipation and impactor/target mass ratio. Monodisperse objects disrupted somewhat more easily than power-law objects in general. For oblique collisions of equal-mass objects, mildly off-center collisions (b/b0=0.5) seemed to be as efficient or possibly more efficient at collisional disruption as head-on collisions. More oblique collisions were less efficient and the most oblique collisions we tried (b/b0=0.866) required up to ˜200 J kg -1 for high-dissipation power-law objects. For calculations with smaller numbers of elements (total impactor ni+targetnT=20 or 200 elements) we found that collisions were more efficient for smaller numbers of more massive elements, with QRD∗ values as low as 0.4Jkg for low-dissipation cases. We also analyzed our results in terms of the relations proposed by Stewart and Leinhardt [Stewart, S.T., Leinhardt, Z.M., 2009. Astrophys. J. 691, L133-L137] where m1/(mi+mT)=1-QR/2QRD∗ where QR is the impact kinetic energy per unit total mass mi+mT. Although there is a significant amount of scatter, our results generally bear out the suggested relation.
Dynamics of droplet collision and flame-front motion
NASA Astrophysics Data System (ADS)
Pan, Kuo-Long
Three physical phenomena were experimentally and computationally investigated in this research, namely the dynamics of head-on droplet-droplet collision, head-on droplet-film collision, and laminar premixed flames, with emphasis on the transition between bouncing and merging of the liquid surfaces for the droplet collision studies, and on the susceptibility to exhibit hydrodynamic instability for the flame dynamics. All three problems share the common feature of having an active deformable interface separating two flow regions of disparate densities, and as such can be computationally described using the adopted immersed boundary technique. Experimentally, the droplets (˜300 mum diameter) were generated using the ink jet printing technique, and imaged using stroboscopy for the droplet-droplet collision events and high-speed cine-photography for the droplet-film collision events. For the study of droplet-droplet collision, the instant of merging was experimentally determined and then used as an input in the computational simulation of the entire collision event. The simulation identified the differences between collision and merging at small and large Weber numbers, and satisfactorily described the dynamics of the inter-droplet gap including the role of the van der Waals force in effecting surface rupture. For the study of droplet-film collision, extensive experimental mapping showed that the collision dynamics is primarily affected by the droplet Weber number (We) and the film thickness scaled by the droplet radius (H), that while droplet absorption by the film is facilitated with increasing droplet Weber number, the boundary of transition is punctuated by an absorption peninsula, in the We-H space, within which absorption is further facilitated for smaller Weber numbers. Results from computation simulation revealed the essential dependence of the collision dynamics on the restraining nature of the solid surface, the energy exchange between the droplet and the film, and the coherent motion of the gas-liquid interfaces. Partial absorption with the emission of a secondary droplet of smaller size was also observed and explained. For the study of flame dynamics, the immersed-boundary method developed for multiphase flows was first modified by noting the difference between the singular properties on the flame surface and multiphase boundary, leading to the development of a secondary criterion for the immersion technique in order to satisfy sufficient conservation and avoid spurious pressure oscillations in the flame movement. Furthermore, an improved weighting scheme was adopted for the proper interpolation of the propagation velocity at the interface. The modified numerical method was then applied to study the influence of imposed vortices on the propagation and structure of laminar premixed flames. Results showed that, for moderate or weak vortex strength, the vortices serve as initiation sources for the hydrodynamic instability, which then takes over as the primary mechanism for flame wrinkling and the generation of the post-flame counter-rotating vortices. However, for sufficiently strong vortices, the flame surface is convoluted by the imposed vortices, while the post-flame vorticities are generated by the baroclinic torque as a consequence of the pressure gradients associated with the vortices and the hydrodynamic cells.
Signatures of massive collisions in debris discs. A self-consistent numerical model
NASA Astrophysics Data System (ADS)
Kral, Q.; Thébault, P.; Augereau, J.-C.; Boccaletti, A.; Charnoz, S.
2015-01-01
Context. Violent stochastic collisional events have been invoked as a possible explanation for some debris discs displaying pronounced azimuthal asymmetries or having a luminosity excess exceeding that expected for systems at collisional steady-state. So far, no thorough modelling of the consequences of such stochastic events has been carried out, mainly because of the extreme numerical challenge of coupling the dynamical and collisional evolution of the released dust. Aims: We perform the first fully self-consistent modelling of the aftermath of massive breakups in debris discs. We follow the collisional and dynamical evolution of dust released after the breakup of a Ceres-sized body at 6 AU from its central star. We investigate the duration, magnitude, and spatial structure of the signature left by such a violent event, as well as its observational detectability. Methods: We use the recently developed LIDT-DD code, which handles the coupled collisional and dynamical evolution of debris discs. The main focus is placed on the complex interplay between destructive collisions, Keplerian dynamics, and radiation pressure forces. We use the GRaTer package to estimate the system's luminosity at different wavelengths. Results: The breakup of a Ceres-sized body at 6 AU creates an asymmetric dust disc that is homogenized by the coupled action of collisions and dynamics on a timescale of a few 105 years. After a transient period where it is very steep, the particle size distribution in the system relaxes to a collisional steady-state law after ~104 years. The luminosity excess in the breakup's aftermath should be detectable by mid-IR photometry, from a 30 pc distance, over a period of ~106 years that exceeds the duration of the asymmetric phase of the disc (a few 105 years). As for the asymmetric structures, we derive synthetic images for the VLT/SPHERE and JWST/MIRI instruments, showing that they should be clearly visible and resolved from a 10 pc distance. Images at 1.6 μm (marginally), 11.4, and 15.5 μm show the inner disc structures, while 23 μm images display the outer disc asymmetries.
The influence of velocity-changing collisions on resonant degenerate four-wave mixing
NASA Technical Reports Server (NTRS)
Richardson, W. H.; Maleki, L.; Garmire, Elsa
1989-01-01
The phase-conjugate signal observed in resonant degenerate four-wave mixing on the 6 3P2 to 7 3S1 transition of atomic Hg in an Hg-Ar discharge is investigated. At a fixed Ar pressure the variation of the signal with pump powers is explained by a model that includes the effects of velocity-changing collisions (VCCs). As the Ar pressure was varied from 0 to 1 torr, an increase in the phase-conjugate signal was observed and is ascribed to a change in the discharge dynamics with Ar pressure and to the influence of VCCs. To further clarify the role of collisions and optical pumping, degenerate four-wave mixing spectra are examined as a function of pump power. Line shapes are briefly discussed.
Car-to-pedestrian collision reconstruction with injury as an evaluation index.
Weng, Yiliu; Jin, Xianlong; Zhao, Zhijie; Zhang, Xiaoyun
2010-07-01
Reconstruction of accidents is currently considered as a useful means in the analysis of accidents. By multi-body dynamics and numerical methods, and by adopting vehicle and pedestrian models, the scenario of the crash can often be simulated. When reconstructing the collisions, questions often arise regarding the criteria for the evaluation of simulation results. This paper proposes a reconstruction method for car-to-pedestrian collisions based on injuries of the pedestrians. In this method, pedestrian injury becomes a critical index in judging the correctness of the reconstruction result and guiding the simulation process. Application of this method to a real accident case is also presented in this paper. The study showed a good agreement between injuries obtained by numerical simulation and that by forensic identification. Copyright 2010 Elsevier Ltd. All rights reserved.
Studies of the nucler equation of state using numerical calculations of nuclear drop collisions
NASA Technical Reports Server (NTRS)
Alonso, C. T.; Leblanc, J. M.; Wilson, J. R.
1982-01-01
A numerical calculation for the full thermal dynamics of colliding nuclei was developed. Preliminary results are reported for the thermal fluid dynamics in such processes as Coulomb scattering, fusion, fusion-fission, bulk oscillations, compression with heating, and collisions of heated nuclei.
NASA Astrophysics Data System (ADS)
Fu, Yu-Hang; Bai, Lin; Luo, Kai-Hong; Jin, Yong; Cheng, Yi
2017-04-01
In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced.
Equations of motion of test particles for solving the spin-dependent Boltzmann–Vlasov equation
Xia, Yin; Xu, Jun; Li, Bao-An; ...
2016-06-16
A consistent derivation of the equations of motion (EOMs) of test particles for solving the spin-dependent Boltzmann–Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-ion collisions are identified. Themore » resulting EOMs provide a solid foundation for using the test-particle approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons of model simulations with experimental data will help to constrain the poorly known in-medium nucleon spin–orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.« less
Abrupt Upper-Plate Tilting Upon Slab-Transition-Zone Collision
NASA Astrophysics Data System (ADS)
Crameri, F.; Lithgow-Bertelloni, C. R.
2017-12-01
During its sinking, the remnant of a surface plate crosses and interacts with multiple boundaries in Earth's interior. The most-prominent dynamic interaction arises at the upper-mantle transition zone where the sinking plate is strongly affected by the higher-viscosity lower mantle. Within our numerical model, we unravel, for the first time, that this very collision of the sinking slab with the transition zone induces a sudden, dramatic downward tilt of the upper plate towards the subduction trench. The slab-transition zone collision sets parts of the higher-viscosity lower mantle in motion. Naturally, this then induces an overall larger return flow cell that, at its onset, tilts the upper plate abruptly by around 0.05 degrees and over around 10 Millions of years. Such a significant and abrupt variation in surface topography should be clearly visible in temporal geologic records of large-scale surface elevation and might explain continental-wide tilting as observed in Australia since the Eocene or North America during the Phanerozoic. Unravelling this crucial mantle-lithosphere interaction was possible thanks to state-of-the-art numerical modelling (powered by StagYY; Tackley 2008, PEPI) and post-processing (powered by StagLab; www.fabiocrameri.ch/software). The new model that is introduced here to study the dynamically self-consistent temporal evolution of subduction features accurate subduction-zone topography, robust single-sided plate sinking, stronger plates close to laboratory values, an upper-mantle phase transition and, crucially, simple continents at a free surface. A novel, fully-automated post-processing includes physical model diagnostics like slab geometry, mantle flow pattern, upper-plate tilt angle and trench location.
Formation of massive seed black holes via collisions and accretion
NASA Astrophysics Data System (ADS)
Boekholt, T. C. N.; Schleicher, D. R. G.; Fellhauer, M.; Klessen, R. S.; Reinoso, B.; Stutz, A. M.; Haemmerlé, L.
2018-05-01
Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here, we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (104-105 M⊙) objects. Our calculations demonstrate that the interplay among stellar dynamics, gas accretion, and protostellar evolution is particularly relevant. Gas accretion on to the protostars enhances their radii, resulting in an enhanced collisional cross-section. We show that the fraction of collisions can increase from 0.1 to 1 per cent of the initial population to about 10 per cent when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.
Simulation Study on Missile Penetration Based on LS - DYNA
NASA Astrophysics Data System (ADS)
Tang, Jue; Sun, Xinli
2017-12-01
Penetrating the shell armor is an effective means of destroying hard targets with multiple layers of protection. The penetration process is a high-speed impact dynamics research category, involving high pressure, high temperature, high speed and internal material damage, including plugging, penetration, spalling, caving, splashing and other complex forms, therefore, Analysis is one of the difficulties in the study of impact dynamics. In this paper, the Lagrang algorithm and the SPH algorithm are used to analyze the penetrating steel plate, and the penetration model of the rocket penetrating the steel plate, the failure mode of the steel plate and the missile and the advantages and disadvantages of Lagrang algorithm and SPH algorithm in the simulation of high-speed collision problem are analyzed and compared, which provides a reference for the study of simulation collision problem.
Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model
NASA Astrophysics Data System (ADS)
Reid, Daniel A. P.; Hildenbrandt, H.; Padding, J. T.; Hemelrijk, C. K.
2012-02-01
The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed analysis. Their insights may guide empirical work. Particularly the recently introduced multiparticle collision dynamics method may be suitable for the study of moving organisms because it is computationally fast, simple to implement, and has a continuous representation of space. As regards the study of hydrodynamics of moving organisms, the method has only been applied at low Reynolds numbers (below 120) for soft, permeable bodies, and static fishlike shapes. In the present paper we use it to study the hydrodynamics of an undulating fish at Reynolds numbers 1100-1500, after confirming its performance for a moving insect wing at Reynolds number 75. We measure (1) drag, thrust, and lift forces, (2) swimming efficiency and spatial structure of the wake, and (3) distribution of forces along the fish body. We confirm the resemblance between the simulated undulating fish and empirical data. In contrast to theoretical predictions, our model shows that for steadily undulating fish, thrust is produced by the rear 2/3 of the body and that the slip ratio U/V (with U the forward swimming speed and V the rearward speed of the body wave) correlates negatively (instead of positively) with the actual Froude efficiency of swimming. Besides, we show that the common practice of modeling individuals while constraining their sideways acceleration causes them to resemble unconstrained fish with a higher tailbeat frequency.
Full-dimensional quantum dynamics of rovibrationally inelastic scattering between CN and H2
NASA Astrophysics Data System (ADS)
Yang, Benhui; Wang, X. H.; Stancil, P. C.; Bowman, J. M.; Balakrishnan, N.; Forrey, R. C.
2016-12-01
We report six-dimensional (6D) potential energy surface (PES) and rovibrational scattering calculations for the CN-H2 collision system. The PES was computed using the high-level ab initio spin-restricted coupled-cluster with single, double, and perturbative triple excitations-F12B method and fitted to an analytic function using an invariant polynomial method in 6D. Quantum close-coupling calculations are reported for rotational transitions in CN by H2 and D2 collisions in 6D as well as four-dimensional (4D) within a rigid rotor model for collision energies of 1.0-1500 cm-1. Comparisons with experimental data and previous 4D calculations are presented for CN rotational levels j1 = 4 and 11. For the first time, rovibrational quenching cross sections and rate coefficients of CN (v1 = 1,j1 = 0) in collisions with para- and ortho-H2 are also reported in full-dimension. Agreement for pure rotational transitions is found to be good, but no experimental data on rovibrational collisional quenching for CN-H2 are available. Applications of the current rotational and rovibrational rate coefficients in astrophysical modeling are briefly discussed.
Quantitative prediction of collision-induced vibration-rotation distributions from physical data
NASA Astrophysics Data System (ADS)
Marsh, Richard J.; McCaffery, Anthony J.
2003-04-01
We describe a rapid, accurate technique for computing state-to-state cross-sections in collision-induced vibration-rotation transfer (VRT) using only physical data, i.e. spectroscopic constants, bond length, mass and velocity distribution. The probability of linear-to-angular momentum (AM) conversion is calculated for a set of trajectories, each of which is subjected to energy conservation boundary conditions. No mechanism is specified for inducing vibrational state change. In the model, this constitutes a velocity or momentum barrier that must be overcome before rotational AM may be generated in the new vibrational state. The method is subjected to stringent testing by calculating state-to-state VRT probabilities for diatomics in highly excited vibrational, rotational and electronic states. Comparison is made to experimental data and to results from quantum mechanical and from quasi-classical trajectory calculations. There is quantitative agreement with data from all three sources, indicating that despite its simplicity the essential physics of collisions involving highly excited species is captured in the model. We develop further the concept of the molecular efficiency factor as an indicative parameter in collision dynamics, and derive an expression for ji > 0 and for VRT.
a Study on Strain Rate Effect in Collision Analysis of Rolling STOCK
NASA Astrophysics Data System (ADS)
Kim, Seung Rok; Koo, Jeong Seo
In this paper, the strain rate effect of energy absorption members in rolling stock is studied using the virtual testing model (VTM) for Korean high speed train (KHST). The VTM of KHST was simulated for two different strain rate conditions. The VTM is composed of FE models for structures, and nonlinear spring/damper models for dynamic components. To simplify numerical model for the full rake KHST, the first three units consist of full flexible multi-body dynamic models, and the remainder does 1-D spring/damper/mass models. To evaluate the strain rate effect of KHST, the crash simulation was performed under the accident scenario for a collision with a rigid mass of 15 tons at 110kph. The numerical results show that the overall crash response of the train is not largely affected as much as expected, but individual components have some different deformations according to strain rate. The deformation of the front end structure without strain rate effect is larger than that with it. However, the deformation of the rear end structure without strain rate effect is smaller than that with it. Finally, the intrusion of the driver's cabin is overestimated for no strain rate effect when compared to the case with it.
Collisions of deformable cells lead to collective migration
Löber, Jakob; Ziebert, Falko; Aranson, Igor S.
2015-03-17
Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignmentmore » of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.« less
Collisions of deformable cells lead to collective migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Löber, Jakob; Ziebert, Falko; Aranson, Igor S.
Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignmentmore » of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.« less
Production mechanism of new neutron-rich heavy nuclei in the 136Xe +198Pt reaction
NASA Astrophysics Data System (ADS)
Li, Cheng; Wen, Peiwei; Li, Jingjing; Zhang, Gen; Li, Bing; Xu, Xinxin; Liu, Zhong; Zhu, Shaofei; Zhang, Feng-Shou
2018-01-01
The multinucleon transfer reaction of 136Xe +198Pt at Elab = 7.98 MeV/nucleon is investigated by using the improved quantum molecular dynamics model. The quasielastic, deep-inelastic, and quasifission collision mechanisms are studied via analyzing the angular distributions of fragments and the energy dissipation processes during the collisions. The measured isotope production cross sections of projectile-like fragments are reasonably well reproduced by the calculation of the ImQMD model together with the GEMINI code. The isotope production cross sections for the target-like fragments and double differential cross sections of 199Pt, 203Pt, and 208Pt are calculated. It is shown that about 50 new neutron-rich heavy nuclei can be produced via deep-inelastic collision mechanism, where the production cross sections are from 10-3 to 10-6 mb. The corresponding emission angle and the kinetic energy for these new neutron-rich nuclei locate at 40∘-60∘ and 100-200 MeV, respectively.
Elastic-plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments
NASA Astrophysics Data System (ADS)
Ratynskaia, S.; Tolias, P.; Shalpegin, A.; Vignitchouk, L.; De Angeli, M.; Bykov, I.; Bystrov, K.; Bardin, S.; Brochard, F.; Ripamonti, D.; den Harder, N.; De Temmerman, G.
2015-08-01
Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.
NASA Astrophysics Data System (ADS)
Kozhedub, Y. S.; Bondarev, A. I.; Cai, X.; Gumberidze, A.; Hagmann, S.; Kozhuharov, C.; Maltsev, I. A.; Plunien, G.; Shabaev, V. M.; Shao, C.; Stöhlker, Th.; Tupitsyn, I. I.; Yang, B.; Yu, D.
2017-10-01
Non-perturbative calculations of the relativistic quantum dynamics of electrons in the Bi83+-Xe collisions at 70 AMeV are performed. A method of calculation employs an independent particle model with effective single-electron Dirac-Kohn-Sham operator. Solving of the single-electron equations is based on the coupled-channel approach with atomic-like Dirac-Sturm-Fock orbitals, localized at the ions (atoms). Special attention is paid to the inner-shell processes. Intensities of the K satellite and hypersatellite target radiation are evaluated. The role of the relativistic effects is studied.
NASA Astrophysics Data System (ADS)
Czechowski, Z.; Leliwa-Kopystyński, J.; Teisseyre, R.
Contents: 1. On the probability of the formation of planetary systems. 2. Condensation triggered by supernova explosion and tidal capture theory. 3. Foundations of accretion theory. 4. The structure and evolution of the protoplanetary disk. 5. Coagulation of orbiting bodies. 6. Collision phenomena related to planetology: accretion, fragmentation, cratering. 7. Dynamics of planetesimals: Introduction, Safronov's approach, elements of the kinetic theory of gases, Nakagawa's approach, approaches considering inelastic collisions and gravitational encounters of planetesimals, Hämeen-Anttila approach, planetesimals with different masses. 8. Growth of the planetary embryo: Basic equations, model of growth of planetary embryos. 9. Origin of the Moon and the satellites.
Dynamic Test of a Collision Post of a State-of-the-Art End Frame Design
DOT National Transportation Integrated Search
2008-09-24
In support of the Federal Railroad Administration's (FRA) : Railroad Equipment Safety Program, a full-scale dynamic test : of a collision post of a state-of-the-art (SOA) end frame was : conducted on April 16, 2008. The purpose of the test was to : e...
Cluster formation in nuclear reactions from mean-field inhomogeneities
NASA Astrophysics Data System (ADS)
Napolitani, Paolo; Colonna, Maria; Mancini-Terracciano, Carlo
2018-05-01
Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbation, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10 ‑ 21s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which in its latest development unifies in a common approach the description of fluctuations in nuclear matter, and a predictive description of the disintegration of nuclei into nuclear fragments. After a theoretical introduction, a few practical examples will be illustrated. This paper resumes the extended analysis of fluctuations in nuclear matter of ref. [2] and briefly reviews applications to heavy-ion collisions.
Will Deep Impact Make a Splash?
NASA Technical Reports Server (NTRS)
Sheldon, Robert B.; Hoover, Richard B.
2005-01-01
Recent cometary observations from spacecraft flybys support the hypothesis that short-period comets have been substantially modified by the presence of liquid water. Such a model can resolve many outstanding questions of cometary dynamics, as well as the differences between the flyby observations and the dirty snowball paradigm. The model also predicts that the Deep Impact mission, slated for a July 4, 2005 collision with Comet Temple-1, will encounter a layered, heterogenous nucleus with subsurface liquid water capped by dense crust. Collision ejecta will include not only vaporized material, but liquid water and large pieces of crust. Since the water will immediately boil, we predict that the water vapor signature of Deep Impact may be an order of magnitude larger than that expected from collisional vaporization alone.
From Cannibalism to Active Motion of Groups
NASA Astrophysics Data System (ADS)
Romanczuk, Pawel; Schimansky-Geier, Lutz
2008-03-01
The detailed mechanisms leading to collective dynamics in groups of animals and insect are still poorly understood. A recent study by Simpson et. al. suggests cannibalism as a driving mechanism for coordinated migration of mormon crickets [1]. Based on this result we propose a simple generic model of brownian particles interacting by asymmetric, non-conservative collisions accounting for cannibalistic behavior and the corresponding avoidance strategy. We discuss our model in one and two dimensions and show that a certain type of collisions drives the system out of equilibrium and leads to coordinated active motion of groups.[1] Stephen J. Simpson, Gregory A. Sword, Patrick D. Lorch and Iain D. Couzin: Cannibal crickets on a forced march for protein and salt, PNAS, 103:4152-4156, 2006
Nuclear stopping in central Xe+Sn collisions: Confrontation with experimental data
NASA Astrophysics Data System (ADS)
Rajni, Vermani, Yogesh K.
2018-05-01
The influence of symmetry energy and cross section on nuclear stopping is studied in central 54129Xe+50 120Sn Sn collisions at Fermi energies (Elab≈ 20-100 MeV/nucleon). The analysis is conducted using isospin dependent quantum molecular dynamics (IQMD) transport model. Model calculations are done using reduced isospin dependent nucleon-nucleon cross section (σiso) and isospin independent cross section (σnoiso). Calculations using the two versions of cross section are analyzed with and without symmetry energy (Esym). The results are then compared with the experimental data taken with 4π multidetector INDRA. From this comparison, we conclude that nuclear stopping and related production of light charged particles (LCPs) are strongly influenced by isospin dependence of nucleon-nucleon cross section.
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
Enhanced nucleon transfer in tip collisions of 238U+124Sn
NASA Astrophysics Data System (ADS)
Sekizawa, Kazuyuki
2017-10-01
Multinucleon transfer processes in low-energy heavy ion reactions have attracted increasing interest in recent years aiming at the production of new neutron-rich isotopes. Clearly, it is an imperative task to further develop understanding of underlying reaction mechanisms to lead experiments to success. In this paper, from systematic time-dependent Hartree-Fock calculations for the 238U+124Sn reaction, it is demonstrated that transfer dynamics depend strongly on the orientations of 238U, quantum shells, and collision energies. Two important conclusions are obtained: (i) Experimentally observed many-proton transfer from 238U to 124Sn can be explained by a multinucleon transfer mechanism governed by enhanced neck evolution in tip collisions; (ii) novel reaction dynamics are observed in tip collisions at energies substantially above the Coulomb barrier, where a number of nucleons are transferred from 124Sn to 238U, producing transuranium nuclei as primary reaction products, which could be a means to synthesize superheavy nuclei. Both results indicate the importance of the neck (shape) evolution dynamics, which are sensitive to orientations, shell effects, and collision energies, for exploring possible pathways to produce new unstable nuclei.
Time Dependence of Collision Probabilities During Satellite Conjunctions
NASA Technical Reports Server (NTRS)
Hall, Doyle T.; Hejduk, Matthew D.; Johnson, Lauren C.
2017-01-01
The NASA Conjunction Assessment Risk Analysis (CARA) team has recently implemented updated software to calculate the probability of collision (P (sub c)) for Earth-orbiting satellites. The algorithm can employ complex dynamical models for orbital motion, and account for the effects of non-linear trajectories as well as both position and velocity uncertainties. This “3D P (sub c)” method entails computing a 3-dimensional numerical integral for each estimated probability. Our analysis indicates that the 3D method provides several new insights over the traditional “2D P (sub c)” method, even when approximating the orbital motion using the relatively simple Keplerian two-body dynamical model. First, the formulation provides the means to estimate variations in the time derivative of the collision probability, or the probability rate, R (sub c). For close-proximity satellites, such as those orbiting in formations or clusters, R (sub c) variations can show multiple peaks that repeat or blend with one another, providing insight into the ongoing temporal distribution of risk. For single, isolated conjunctions, R (sub c) analysis provides the means to identify and bound the times of peak collision risk. Additionally, analysis of multiple actual archived conjunctions demonstrates that the commonly used “2D P (sub c)” approximation can occasionally provide inaccurate estimates. These include cases in which the 2D method yields negligibly small probabilities (e.g., P (sub c)) is greater than 10 (sup -10)), but the 3D estimates are sufficiently large to prompt increased monitoring or collision mitigation (e.g., P (sub c) is greater than or equal to 10 (sup -5)). Finally, the archive analysis indicates that a relatively efficient calculation can be used to identify which conjunctions will have negligibly small probabilities. This small-P (sub c) screening test can significantly speed the overall risk analysis computation for large numbers of conjunctions.
Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles
NASA Astrophysics Data System (ADS)
Lou, Wentao; Zhu, Miaoyong
2013-06-01
A computation fluid dynamics-population balance model (CFD-PBM) coupled model has been proposed to investigate the bubbly plume flow and inclusion behavior including growth, size distribution, and removal in gas-stirred ladles, and some new and important phenomena and mechanisms were presented. For the bubbly plume flow, a modified k- ɛ model with extra source terms to account for the bubble-induced turbulence was adopted to model the turbulence, and the bubble turbulent dispersion force was taken into account to predict gas volume fraction distribution in the turbulent gas-stirred system. For inclusion behavior, the phenomena of inclusions turbulent random motion, bubbles wake, and slag eye forming on the molten steel surface were considered. In addition, the multiple mechanisms both that promote inclusion growth due to inclusion-inclusion collision caused by turbulent random motion, shear rate in turbulent eddy, and difference inclusion Stokes velocities, and the mechanisms that promote inclusion removal due to bubble-inclusion turbulence random collision, bubble-inclusion turbulent shear collision, bubble-inclusion buoyancy collision, inclusion own floatation near slag-metal interface, bubble wake capture, and wall adhesion were investigated. The importance of different mechanisms and total inclusion removal ratio under different conditions, and the distribution of inclusion number densities in ladle, were discussed and clarified. The results show that at a low gas flow rate, the inclusion growth is mainly attributed to both turbulent shear collision and Stokes collision, which is notably affected by the Stokes collision efficiency, and the inclusion removal is mainly attributed to the bubble-inclusion buoyancy collision and inclusion own floatation near slag-metal interface. At a higher gas flow rate, the inclusions appear as turbulence random motion in bubbly plume zone, and both the inclusion-inclusion and inclusion-bubble turbulent random collisions become important for inclusion growth and removal. With the increase of the gas flow rate, the total removal ratio increases, but when the gas flow rate exceeds 200 NL/min in 150-ton ladle, the total removal ration almost does not change. For the larger size inclusions, the number density in bubbly plume zone is less than that in the sidewall recirculation zones, but for the small size inclusions, the distribution of number density shows the opposite trend.
Nuclear quantum many-body dynamics. From collective vibrations to heavy-ion collisions
NASA Astrophysics Data System (ADS)
Simenel, Cédric
2012-11-01
A summary of recent researches on nuclear dynamics with realistic microscopic quantum approaches is presented. The Balian-Vénéroni variational principle is used to derive the time-dependent Hartree-Fock (TDHF) equation describing the dynamics at the mean-field level, as well as an extension including small-amplitude quantum fluctuations which is equivalent to the time-dependent random-phase approximation (TDRPA). Such formalisms as well as their practical implementation in the nuclear physics framework with modern three-dimensional codes are discussed. Recent applications to nuclear dynamics, from collective vibrations to heavy-ion collisions are presented. Particular attention is devoted to the interplay between collective motions and internal degrees of freedom. For instance, the harmonic nature of collective vibrations is questioned. Nuclei are also known to exhibit superfluidity due to pairing residual interaction. Extensions of the theoretical approach to study such pairing vibrations are now available. Large amplitude collective motions are investigated in the framework of heavy-ion collisions leading, for instance, to the formation of a compound system. How fusion is affected by the internal structure of the collision partners, such as their deformation, is discussed. Other mechanisms in competition with fusion, and responsible for the formation of fragments which differ from the entrance channel (transfer reactions, deep-inelastic collisions, and quasi-fission) are investigated. Finally, studies of actinide collisions forming, during very short times of few zeptoseconds, the heaviest nuclear systems available on Earth, are presented.
NASA Astrophysics Data System (ADS)
Zhusubaliyev, Zhanybai T.; Avrutin, Viktor; Rubanov, Vasily G.; Bushuev, Dmitry A.; Titov, Dmitry V.; Yanochkina, Olga O.
2018-05-01
The paper describes a new scenario for the transition to complex dynamics in a vibrating system with an unbalanced rotor and a relay feedback control. We show that the transition from a regular dynamics without switching events in the relay element to an irregular dynamics which takes place completely in the hysteresis region occurs via a cascade of persistence border collisions.
High baryon and energy densities achievable in heavy-ion collisions at √{sN N}=39 GeV
NASA Astrophysics Data System (ADS)
Ivanov, Yu. B.; Soldatov, A. A.
2018-02-01
Baryon and energy densities, which are reached in central Au+Au collisions at collision energy of √{sN N}= 39 GeV, are estimated within the model of three-fluid dynamics. It is shown that the initial thermalized mean proper baryon and energy densities in a sizable central region approximately are nB/n0≈ 10 and ɛ ≈ 40 GeV/fm3, respectively. The study indicates that the deconfinement transition at the stage of interpenetration of colliding nuclei makes the system quite opaque. The final fragmentation regions in these collisions are formed not only by primordial fragmentation fireballs, i.e., the baryon-rich matter passed through the interaction region (containing approximately 30% of the total baryon charge), but also by the baryon-rich regions of the central fireball pushed out to peripheral rapidities by the subsequent almost one-dimensional expansion of the central fireball along the beam direction.
Role of friction in vertically oscillated granular materials
NASA Astrophysics Data System (ADS)
Moon, Sung Joon; Swift, J. B.; Swinney, Harry L.
2002-11-01
We use a previously validated molecular dynamics simulation of vertically oscillated granular layers to study how the contact friction affects standing wave patterns. Our collision model follows Walton(O. R. Walton, in Particulate Two-Phase Flow), edited by M. C. Roco (Butterworth-Heinemann, Boston, 1993), p. 884.: Dissipation in the normal component of colliding velocity is characterized by the normal coefficient of restitution e (0<= e < 1), and interaction in the tangential component by the tangential coefficient of restitution β = β(μ,e,Φ), where -1<= β <= β_0, μ is the static coefficient of friction on the surface of grains, Φ is the collision angle, and β0 corresponds to the crossover between static and sliding friction. We varied the above parameters independently for the grain-grain collisions and for the grain-wall collisions. The grain-grain friction changes the phase diagram of patterns significantly, and the patterns become fuzzy as the friction is decreased. The grain-wall friction is necessary to stabilize the patterns.
Precollisional velocity correlations in a hard-disk fluid with dissipative collisions.
Soto, R; Piasecki, J; Mareschal, M
2001-09-01
Velocity correlations are studied in granular fluids, modeled by the inelastic hard sphere gas. Making a density expansion of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the evolution of the reduced distributions, we predict the presence of precollisional velocity correlations. They are created by the propagation through correlated sequences of collisions (ring events) of the velocity correlations generated after dissipative collisions. The correlations have their origin in the dissipative character of collisions, being always present in granular fluids. The correlations, that manifest microscopically as an alignment of the velocities of a colliding pair produce modifications of collisional averages, in particular, the virial pressure. The pressure shows a reduction with respect to the elastic case as a consequence of the velocity alignment. Good qualitative agreement is obtained for the comparison of the numerical evaluations of the obtained analytical expressions and molecular dynamics results that showed evidence of precollisional velocity correlations [R. Soto and M. Mareschal, Phys. Rev. E 63, 041303 (2001)].
NASA Astrophysics Data System (ADS)
Ahmad, Saeed; Holopainen, Hannu; Huovinen, Pasi
2017-05-01
In hydrodynamical modeling of ultrarelativistic heavy-ion collisions, the freeze-out is typically assumed to take place at a surface of constant temperature or energy density. A more physical approach is to assume that freeze-out takes place at a surface of constant Knudsen number. We evaluate the Knudsen number as a ratio of the expansion rate of the system to the pion-scattering rate and apply the constant Knudsen number freeze-out criterion to the ideal hydrodynamical description of heavy-ion collisions at the Relativistic Heavy Ion Collider at BNL (√{sNN}=200 GeV) and the Large Hadron Collider (√{sNN}=2760 GeV) energies. We see that once the numerical values of freeze-out temperature and freeze-out Knudsen number are chosen to produce similar pT distributions, the elliptic and triangular anisotropies are similar too, in both event-by-event and averaged initial state calculations.
Pseudorapidity correlations in heavy ion collisions from viscous fluid dynamics
Monnai, A.; Schenke, B.
2015-11-26
We demonstrate by explicit calculations in 3+1 dimensional viscous relativistic fluid dynamics how two-particle pseudorapidity correlation functions in heavy ion collisions at the LHC and RHIC depend on the number of particle producing sources and the transport properties of the produced medium. In particular, we present results for the Legendre coefficients of the two-particle pseudorapidity correlation function, a n,m, in Pb+Pb collisions at 2760 GeV and Au+Au collisions at 200 GeV from viscous hydrodynamics with three dimensionally fluctuating initial conditions. Our results suggest that the a n,m provide important constraints on initial state fluctuations and the transport properties of themore » quark gluon plasma.« less
Patterns, transitions and the role of leaders in the collective dynamics of a simple robotic flock
NASA Astrophysics Data System (ADS)
Tarcai, Norbert; Virágh, Csaba; Ábel, Dániel; Nagy, Máté; Várkonyi, Péter L.; Vásárhelyi, Gábor; Vicsek, Tamás
2011-04-01
We have developed an experimental setup of very simple self-propelled robots to observe collective motion emerging as a result of inelastic collisions only. A circular pool and commercial RC boats were the basis of our first setup, where we demonstrated that jamming, clustering, disordered and ordered motion are all present in such a simple experiment and showed that the noise level has a fundamental role in the generation of collective dynamics. Critical noise ranges and the transition characteristics between the different collective patterns were also examined. In our second experiment we used a real-time tracking system and a few steerable model boats to introduce intelligent leaders into the flock. We demonstrated that even a very small portion of guiding members can determine group direction and enhance ordering through inelastic collisions. We also showed that noise can facilitate and speed up ordering with leaders. Our work was extended with an agent-based simulation model, too, and close similarity between real and simulation results was observed. The simulation results show clear statistical evidence of three states and negative correlation between density and ordered motion due to the onset of jamming. Our experiments confirm the different theoretical studies and simulation results in the literature on the subject of collision-based, noise-dependent and leader-driven self-propelled particle systems.
Dynamic of negative ions in potassium-D-ribose collisions.
Almeida, D; Ferreira da Silva, F; García, G; Limão-Vieira, P
2013-09-21
We present negative ion formation from collisions of neutral potassium atoms with D-ribose (C5H10O5), the sugar unit in the DNA/RNA molecule. From the negative ion time-of-flight (TOF) mass spectra, OH(-) is the main fragment detected in the collision range 50-100 eV accounting on average for 50% of the total anion yield. Prominence is also given to the rich fragmentation pattern observed with special attention to O(-) (16 m/z) formation. These results are in sharp contrast to dissociative electron attachment experiments. The TOF mass spectra assignments show that these channels are also observed, albeit with a much lower relative intensity. Branching ratios of the most abundant fragment anions as a function of the collision energy are obtained, allowing to establish a rationale on the collision dynamics.
On the rates of type Ia supernovae originating from white dwarf collisions in quadruple star systems
NASA Astrophysics Data System (ADS)
Hamers, Adrian S.
2018-04-01
We consider the evolution of stellar hierarchical quadruple systems in the 2+2 (two binaries orbiting each other's barycentre) and 3+1 (triple orbited by a fourth star) configurations. In our simulations, we take into account the effects of secular dynamical evolution, stellar evolution, tidal evolution and encounters with passing stars. We focus on type Ia supernovae (SNe Ia) driven by collisions of carbon-oxygen (CO) white dwarfs (WDs). Such collisions can arise from several channels: (1) collisions due to extremely high eccentricities induced by secular evolution, (2) collisions following a dynamical instability of the system, and (3) collisions driven by semisecular evolution. The systems considered here have initially wide inner orbits, with initial semilatus recti larger than 12 {au}, implying no interaction if the orbits were isolated. However, taking into account dynamical evolution, we find that ≈0.4 (≈0.6) of 2+2 (3+1) systems interact. In particular, Roche Lobe overflow can be triggered possibly in highly eccentric orbits, dynamical instability can ensue due to mass-loss-driven orbital expansion or secular evolution, or a semisecular regime can be entered. We compute the delay-time distributions (DTDs) of collision-induced SNe Ia, and find that they are flatter compared to the observed DTD. Moreover, our combined SNe Ia rates are (3.7± 0.7) × 10^{-6} M_⊙^{-1} and (1.3± 0.2) × 10^{-6} M_⊙^{-1} for 2+2 and 3+1 systems, respectively, three orders of magnitude lower compared to the observed rate, of order 10^{-3} M_⊙^{-1}. The low rates can be ascribed to interactions before the stars evolve to CO WDs. However, our results are lower limits given that we considered a subset of quadruple systems.
On the rates of Type Ia supernovae originating from white dwarf collisions in quadruple star systems
NASA Astrophysics Data System (ADS)
Hamers, Adrian S.
2018-07-01
We consider the evolution of stellar hierarchical quadruple systems in the 2+2 (two binaries orbiting each other's barycentre) and 3+1 (triple orbited by a fourth star) configurations. In our simulations, we take into account the effects of secular dynamical evolution, stellar evolution, tidal evolution, and encounters with passing stars. We focus on Type Ia supernovae (SNe Ia) driven by collisions of carbon-oxygen (CO) white dwarfs (WDs). Such collisions can arise from several channels: (1) collisions due to extremely high eccentricities induced by secular evolution, (2) collisions following a dynamical instability of the system, and (3) collisions driven by semisecular evolution. The systems considered here have initially wide inner orbits, with initial semilatus recti larger than 12 au, implying no interaction if the orbits were isolated. However, taking into account dynamical evolution, we find that ≈0.4 (≈0.6) of 2+2 (3+1) systems interact. In particular, Roche lobe overflow can be triggered possibly in highly eccentric orbits, dynamical instability can ensue due to mass-loss-driven orbital expansion or secular evolution, or a semisecular regime can be entered. We compute the delay-time distributions (DTDs) of collision-induced SNe Ia, and find that they are flatter compared to the observed DTD. Moreover, our combined SNe Ia rates are (3.7± 0.7) × 10^{-6} M_{⊙}^{-1} and (1.3± 0.2) × 10^{-6} M_{⊙}^{-1} for 2+2 and 3+1 systems, respectively, three orders of magnitude lower compared to the observed rate, of the order of 10^{-3} M_{⊙}^{-1}. The low rates can be ascribed to interactions before the stars evolve to CO WDs. However, our results are lower limits given that we considered a subset of quadruple systems.
Dynamics of inhomogeneous chiral condensates
NASA Astrophysics Data System (ADS)
Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago
2018-01-01
We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.
Mode-Specific SN2 Reaction Dynamics.
Wang, Yan; Song, Hongwei; Szabó, István; Czakó, Gábor; Guo, Hua; Yang, Minghui
2016-09-01
Despite its importance in chemistry, the microscopic dynamics of bimolecular nucleophilic substitution (SN2) reactions is still not completely elucidated. In this publication, the dynamics of a prototypical SN2 reaction (F(-) + CH3Cl → CH3F + Cl(-)) is investigated using a high-dimensional quantum mechanical model on an accurate potential energy surface (PES) and further analyzed by quasi-classical trajectories on the same PES. While the indirect mechanism dominates at low collision energies, the direct mechanism makes a significant contribution. The reactivity is found to depend on the specific reactant vibrational mode excitation. The mode specificity, which is more prevalent in the direct reaction, is rationalized by a transition-state-based model.
Variable Weight Fractional Collisions for Multiple Species Mixtures
2017-08-28
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 6 / 21 VARIABLE WEIGHTS FOR DYNAMIC RANGE Continuum to Discrete ...Representation: Many Particles →̃ Continuous Distribution Discretized VDF Yields Vlasov But Collision Integral Still a Problem Particle Methods VDF to Delta...Function Set Collisions between Discrete Velocities But Poorly Resolved Tail (Tail Critical to Inelastic Collisions) Variable Weights Permit Extra DOF in
Solitary waves in dimer binary collision model
NASA Astrophysics Data System (ADS)
Ahsan, Zaid; Jayaprakash, K. R.
2017-01-01
Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.
NASA Astrophysics Data System (ADS)
Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.
2008-04-01
A systematic study of heavy residues formed in peripheral collisions below the Fermi energy has been undertaken at Texas A&M aiming at obtaining information on the mechanism of nucleon exchange and the course towards N/Z equilibration [1,2]. We expect to get insight on the dynamics and the nuclear equation of state by comparing our heavy residue data to detailed calculations using microscopic models of quantum molecular dynamics (QMD) type. We are performing calculations using two codes: the CoMD code of M. Papa, A. Bonasera [3] and the CHIMERA-QMD code of J. Lukasik [4]. Both codes implement an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon restoring the Pauli principle at each time step of the collision. CHIMERA-QMD uses a Pauli potential term to mimic the Pauli principle. Results of the calculations and comparisons with our residue data will be presented. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001). [4] J. Lukasik, Z. Majka, Acta Phys. Pol. B 24, 1959 (1993).
The Dynamical Dipole Radiation in Dissipative Collisions with Exotic Beams
NASA Astrophysics Data System (ADS)
di Toro, M.; Colonna, M.; Rizzo, C.; Baran, V.
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. We will review in detail all the main properties, yield, spectrum, damping and angular distributions, revealing important isospin effects. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. Predictions are also presented for deep-inelastic and fragmentation collisions induced by neutron rich projectiles. The importance of studying violent collisions with radioactive beams at low and Fermi energies is finally stressed.
Fully dynamical simulation of central nuclear collisions.
van der Schee, Wilke; Romatschke, Paul; Pratt, Scott
2013-11-27
We present a fully dynamical simulation of central nuclear collisions around midrapidity at LHC energies. Unlike previous treatments, we simulate all phases of the collision, including the equilibration of the system. For the simulation, we use numerical relativity solutions to anti-de Sitter space/conformal field theory for the preequilibrium stage, viscous hydrodynamics for the plasma equilibrium stage, and kinetic theory for the low-density hadronic stage. Our preequilibrium stage provides initial conditions for hydrodynamics, resulting in sizable radial flow. The resulting light particle spectra reproduce the measurements from the ALICE experiment at all transverse momenta.
Beam-Energy Dependence of Directed Flow of Λ , Λ ¯, K±, Ks0, and ϕ in Au +Au Collisions
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Horvat, S.; Huang, X.; Huang, B.; Huang, T.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, X.; Li, Y.; Li, W.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, P.; Liu, H.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, Y. G.; Ma, L.; Ma, R.; Ma, G. L.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, J.; Xu, Z.; Xu, Q. H.; Xu, Y. F.; Xu, N.; Yang, S.; Yang, Y.; Yang, C.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, J. B.; Zhang, J.; Zhang, S.; Zhang, Y.; Zhang, X. P.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, C.; Zhou, L.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration
2018-02-01
Rapidity-odd directed-flow measurements at midrapidity are presented for Λ , Λ ¯, K±, Ks0, and ϕ at √{sN N }=7.7 , 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV in Au +Au collisions recorded by the Solenoidal Tracker detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum rule can be a valuable new tool for probing the collision dynamics.
NASA Astrophysics Data System (ADS)
Mihalache, D.; Mazilu, D.; Lederer, F.; Leblond, H.; Malomed, B. A.
2008-03-01
We present generic outcomes of collisions between stable solitons with intrinsic vorticity S=1 or S=2 in the complex Ginzburg-Landau equation with the cubic-quintic nonlinearity, for the axially symmetric configuration. An essential ingredient of the complex Ginzburg-Landau equation is an effective transverse diffusivity (which is known in models of laser cavities), as vortex solitons cannot be stable without it. For the sake of comparison, results are also included for fundamental three-dimensional solitons, with S=0 . Depending on the collision momentum, χ , three generic outcomes are identified: merger of the solitons into a single one, at small χ ; quasielastic interaction, at large χ ; and creation of an extra soliton, in an intermediate region. In addition to the final outcomes, we also highlight noteworthy features of the transient dynamics.
The effect of Lorentz-like force on collective flows of K + in Au+Au collisions at 1.5 GeV/nucleon
NASA Astrophysics Data System (ADS)
Du, YuShan; Wang, YongJia; Li, QingFeng; Liu, Ling
2018-06-01
Producing kaon mesons in heavy-ion collisions at beam energies below their threshold energy is an important way to investigate the properties of dense nuclear matter. In this study, based on the newly updated version of the ultrarelativistic quantum molecular dynamics model, we introduce the kaon-nucleon (KN) potential, including both the scalar and vector (also dubbed Lorentz-like) aspects. We revisit the influence of the KN potential on the collective flow of K + mesons produced in Au+Au collisions at E lab = 1.5 GeV/nucleon and find that the contribution of the newly included Lorentz-like force is very important, particulary for describing the directed flow of K +. Finally, the corresponding KaoS data of both directed and elliptic flows can be simultaneously reproduced well.
Hadron rapidity spectra within a hybrid model
NASA Astrophysics Data System (ADS)
Khvorostukhin, A. S.; Toneev, V. D.
2017-03-01
A multistage hybrid model is constructed what joins the initial non-equilibrium stage of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system treated within ideal hydrodynamics (the second stage). Particles can still rescatter after hydrodynamical expansion that is the third interaction stage. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra.
NASA Astrophysics Data System (ADS)
Domínguez-Gutiérrez, F. Javier; Cabrera-Trujillo, R.
2014-05-01
Total, n = 2 , and 3 charge transfer and n = 2 target excitation probabilities for collision of Li+ with ground state atomic hydrogen are calculated numerically, in the impact energy collision range 0.25-5 keV. The total wave function at the end of the dynamics of the collision is obtained by solving the time-dependent Schrödinger equation by means the finite-difference method. We use a pseudo-potential method to model the electronic structure of the Li+ ion. The n = 2 , and 3 charge transfer and n = 2 target excitation probabilities are obtained by projecting the stationary states of Lithium and Hydrogen neutral atoms to the total wave function of the collision, respectively; the stationary states of Li and H are obtained numerically. To assess the validity of our method, our numerical results have been compared with those obtained experimentally and by other theoretical methods found in the literature. We study the laser-assited collision by using a short (3 fs at FWHM) and intense (3.15 ×12 W/cm2) Gaussian laser pulse. We consider a wavelength range between 400 - 1000 nm in steps of 100 nm. Finally, we analyze the laser assisted collision by a qualitatively way with a two level approach. We acknowledge support from grant PAPIIT IN 110-714 and CONACyT (Ph.D. scholarship).
Low-speed impacts between rubble piles modeled as collections of polyhedra
NASA Astrophysics Data System (ADS)
Korycansky, D. G.; Asphaug, Erik
2006-04-01
We present results of modeling rubble piles as collections of polyhedra. The use of polyhedra allows more realistic (irregular) shapes and interactions (e.g. collisions), particularly for objects of different sizes. Rotational degrees of freedom are included in the modeling, which may be important components of the motion. We solved the equations of rigid-body dynamics, including frictional/inelastic collisions, for collections of up to several hundred elements. As a demonstration of the methods and to compare with previous work by other researchers, we simulated low-speed collisions between km-scale bodies with the same general parameters as those simulated by Leinhardt et al. [Leinhardt, Z.M., Richardson, D.C., Quinn, T., 2000. Icarus 146, 133-151]. High-speed collisions appropriate to present-day asteroid encounters require additional treatment of shock effects and fragmentation and are the subject of future work; here we study regimes appropriate to planetesimal accretion and re-accretion in the aftermath of catastrophic events. Collisions between equal-mass objects at low speeds ( <10 cms) were simulated for both head-on and off-center collisions between rubble piles made of a power-law mass spectrum of sub-elements. Very low-speed head-on collisions produce single objects from the coalescence of the impactors. For slightly higher speeds, extensive disruption occurs, but re-accretion produces a single object with most of the total mass. For increasingly higher speeds, the re-accreted object has smaller mass, finally resulting in complete catastrophic disruption with all sub-elements on escape trajectories and only small amounts of mass in re-accreted bodies. Off-center collisions at moderately low speeds produce two re-accreted objects of approximately equal mass, separating at greater than escape speed. At high speed, complete disruption occurs as with the high-speed head-on collisions. Head-on collisions at low to moderate speeds result in objects of mostly oblate shape, while higher speed collisions produce mostly prolate objects, as do off-center collisions at moderate and high speeds. Collisions carried out with the same dissipative coefficients (coefficient of restitution ɛ=0.8, zero friction) as used by Leinhardt et al. [Leinhardt, Z.M., Richardson, D.C., Quinn, T., 2000. Icarus 146, 133-151] result in a value for specific energy for disruption QD∗≈1.4 J/kg, somewhat lower than the value of 2 J/kg found by them, while collisions with a lower coefficient of restitution and friction [ ɛ=0.5, ɛ=0, μ=0.5, similar to those used by Michel, et al. [Michel, P., Benz, W., Richardson, D.C., 2004. Planet. Space Sci. 52, 1109-1117] for SPH + N-body calculations] yield QD∗≈4.5 J/kg.
Modeling the Extended Neutral Atmosphere and Plasma Environment near Saturn
NASA Technical Reports Server (NTRS)
Richardson, John D.
2003-01-01
In the three years of this study we have published five papers in refereed journals. We have first examined satellite sources and their contribution to the observed neutral cloud. Based on the total calculated satellite sources and the spatial distribution of sputtered H20, we concluded that they cannot produce observed OH cloud. The E-ring contribution has been also studied in detail.In order to produce observed OH cloud we suggested that the E-ring might be the dominant source in inner Saturnian magnetosphere. We proposed a possible resupply mechanism which is needed to keep both E-ring and OH cloud in the present state: collisions between E-ring grains and remains of a disrupted satellite near Enceladus Lagrangian points. In this scenario a large amount of material, ranging from a few micrometers to hundred of meters, which is optically invisible at present, is likely to exist there. The fourth paper compares the magnetosheaths of the outer planets. A surprising result is that the hot proton component comprises about 40% of the total density, much larger than predicted by shock theory. Gas dynamic models of the boundaries show that the magnetospheres of Jupiter and Saturn are flattened at the poles. The last paper was published in GRL and is the first based of the model of neutrals developed as a main goal of this grant and which is now operational.This Monte Carlo collision code self- consistently determines the neutral distribution. from the rings and satellites until they are lost by ionization, by collisions with rings, moons, or Saturn, or by escape from Saturn. Our model is unique in that it includes the effects of plasma chemistry and both plasma-neutral and neutral neutral collisions to determine the dynamical evolution of the water group neutrals in Saturn's magnetosphere. The lifetimes of the neutrals against loss to photoionization, charge exchange, electron dissociation and electron impact dissociation are based on the model given by (Richardson et al. 1998) and vary with position in the magnetosphere. The dominant neutral dissociation channels H20->OH+H, H20-> O+H2, and OH->O+H2 are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Swagato; Venugopalan, Raju; Yin, Yi
Exploiting the universality between the QCD critical point and the three-dimensional Ising model, closed form expressions derived for nonequilibrium critical cumulants on the crossover side of the critical point reveal that they can differ in both magnitude and sign from equilibrium expectations. Here, we demonstrate here that key elements of the Kibble-Zurek framework of nonequilibrium phase transitions can be employed to describe the dynamics of these critical cumulants. Lastly, our results suggest that observables sensitive to critical dynamics in heavy-ion collisions should be expressible as universal scaling functions, thereby providing powerful model-independent guidance in searches for the QCD critical point.
Flexible Virtual Structure Consideration in Dynamic Modeling of Mobile Robots Formation
NASA Astrophysics Data System (ADS)
El Kamel, A. Essghaier; Beji, L.; Lerbet, J.; Abichou, A.
2009-03-01
In cooperative mobile robotics, we look for formation keeping and maintenance of a geometric configuration during movement. As a solution to these problems, the concept of a virtual structure is considered. Based on this idea, we have developed an efficient flexible virtual structure, describing the dynamic model of n vehicles in formation and where the whole formation is kept dependant. Notes that, for 2D and 3D space navigation, only a rigid virtual structure was proposed in the literature. Further, the problem was limited to a kinematic behavior of the structure. Hence, the flexible virtual structure in dynamic modeling of mobile robots formation presented in this paper, gives more capabilities to the formation to avoid obstacles in hostile environment while keeping formation and avoiding inter-agent collision.
Systematic study of 16O-induced fusion with the improved quantum molecular dynamics model
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhao, Kai; Li, Zhuxia
2014-11-01
The heavy-ion fusion reactions with 16O bombarding on 62Ni,65Cu,74Ge,148Nd,180Hf,186W,208Pb,238U are systematically investigated with the improved quantum molecular dynamics model. The fusion cross sections at energies near and above the Coulomb barriers can be reasonably well reproduced by using this semiclassical microscopic transport model with the parameter sets SkP* and IQ3a. The dynamical nucleus-nucleus potentials and the influence of Fermi constraint on the fusion process are also studied simultaneously. In addition to the mean field, the Fermi constraint also plays a key role for the reliable description of the fusion process and for improving the stability of fragments in heavy-ion collisions.
Electron-beam-ion-source (EBIS) modeling progress at FAR-TECH, Inc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J. S., E-mail: kim@far-tech.com; Zhao, L., E-mail: kim@far-tech.com; Spencer, J. A., E-mail: kim@far-tech.com
FAR-TECH, Inc. has been developing a numerical modeling tool for Electron-Beam-Ion-Sources (EBISs). The tool consists of two codes. One is the Particle-Beam-Gun-Simulation (PBGUNS) code to simulate a steady state electron beam and the other is the EBIS-Particle-In-Cell (EBIS-PIC) code to simulate ion charge breeding with the electron beam. PBGUNS, a 2D (r,z) electron gun and ion source simulation code, has been extended for efficient modeling of EBISs and the work was presented previously. EBIS-PIC is a space charge self-consistent PIC code and is written to simulate charge breeding in an axisymmetric 2D (r,z) device allowing for full three-dimensional ion dynamics.more » This 2D code has been successfully benchmarked with Test-EBIS measurements at Brookhaven National Laboratory. For long timescale (< tens of ms) ion charge breeding, the 2D EBIS-PIC simulations take a long computational time making the simulation less practical. Most of the EBIS charge breeding, however, may be modeled in 1D (r) as the axial dependence of the ion dynamics may be ignored in the trap. Where 1D approximations are valid, simulations of charge breeding in an EBIS over long time scales become possible, using EBIS-PIC together with PBGUNS. Initial 1D results are presented. The significance of the magnetic field to ion dynamics, ion cooling effects due to collisions with neutral gas, and the role of Coulomb collisions are presented.« less
Advanced time integration algorithms for dislocation dynamics simulations of work hardening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sills, Ryan B.; Aghaei, Amin; Cai, Wei
Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less
Advanced time integration algorithms for dislocation dynamics simulations of work hardening
Sills, Ryan B.; Aghaei, Amin; Cai, Wei
2016-04-25
Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less
NASA Astrophysics Data System (ADS)
Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.
2018-04-01
We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, N.; Takahashi, M.
We report a collision dynamics study on ionization-excitation processes of He and H{sub 2} by means of (e, 2e) electron momentum spectroscopy. The two-step mechanism, one of the second-order terms of the plane-wave Born series model, has been found to play a particular role in the processes at an incident electron energy of 1.2 keV.
Exploring Quarks, Gluons and the Higgs Boson
ERIC Educational Resources Information Center
Johansson, K. Erik
2013-01-01
With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…
NASA Astrophysics Data System (ADS)
Qiao, C. Y.; Wei, H. L.; Ma, C. W.; Zhang, Y. L.; Wang, S. S.
2015-07-01
Background: The isobaric yield ratio difference (IBD) method is found to be sensitive to the density difference of neutron-rich nucleus induced reaction around the Fermi energy. Purpose: An investigation is performed to study the IBD results in the transport model. Methods: The antisymmetric molecular dynamics (AMD) model plus the sequential decay model gemini are adopted to simulate the 140 A MeV 58 ,64Ni +9Be reactions. A relative small coalescence radius Rc= 2.5 fm is used for the phase space at t = 500 fm/c to form the hot fragment. Two limitations on the impact parameter (b 1 =0 -2 fm and b 2 =0 -9 fm) are used to study the effect of central collisions in IBD. Results: The isobaric yield ratios (IYRs) for the large-A fragments are found to be suppressed in the symmetric reaction. The IBD results for fragments with neutron excess I = 0 and 1 are obtained. A small difference is found in the IBDs with the b 1 and b 2 limitations in the AMD simulated reactions. The IBD with b 1 and b 2 are quite similar in the AMD + GEMINI simulated reactions. Conclusions: The IBDs for the I =0 and 1 chains are mainly determined by the central collisions, which reflects the nuclear density in the core region of the reaction system. The increasing part of the IBD distribution is found due to the difference between the densities in the peripheral collisions of the reactions. The sequential decay process influences the IBD results. The AMD + GEMINI simulation can better reproduce the experimental IBDs than the AMD simulation.
Spacecraft Collision Avoidance
NASA Astrophysics Data System (ADS)
Bussy-Virat, Charles
The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed five days in advance. In particular, the PDF model is able to predict rapid enhancements in the solar wind speed. It was found that 60% of the positive predictions were correct, while 91% of the negative predictions were correct, and 20% to 33% of the peaks in the speed were found by the model. En-semble forecasts provide the forecasters with an estimation of the uncertainty in the prediction, which can be used to derive uncertainties in the atmospheric density and in the drag acceleration. The dissertation then demonstrates that uncertainties in the atmospheric density result in large uncertainties in the prediction of the probability of collision. As an example, the effects of a geomagnetic storm on the probability of collision are illustrated. The research aims at providing tools and analyses that help understand and predict the effects of uncertainties in the atmospheric density on the probability of collision. The ultimate motivation is to support mission operators in making the correct decision with regard to a potential collision avoidance maneuver by providing an uncertainty on the prediction of the probability of collision instead of a single value. This approach can help avoid performing unnecessary costly maneuvers, while making sure that the risk of collision is fully evaluated.
Quantifying subsidence of the Sunda shelf (SE Asia) from coral reef morphology
NASA Astrophysics Data System (ADS)
Sarr, Anta-Clarisse; Husson, Laurent; Pastier, Anne-Morwenn; Becker, Thorsten; Holt, Adam; Alpert, Lisa; Arias Ruiz, Camillo; Elliot, Mary; Pedoja, Kevin; Imran, Andi Muhammad
2017-04-01
The vertical motions of the lithosphere have deeply shaped the geography of SE Asia over the last 5 Myrs. The wide continental Sunda and Sahul platforms have been periodically inundated in the West and Southeast, respectively, whereas myriad of islands have emerged in the more central region of "Wallacea". The long wavelength pattern of vertical motion is mirrored by the coastal geomorphology, which displays a striking bimodal repartition throughout the area. Sequences of uplifted terraces, notches and cliffs are prominent in Wallacea - and attest for its general uplift. Conversely, emerged paleo-reefs are absent above modern reefs and wide alluvial plains dominate coastal areas surrounding Sunda and Sahul shelves and suggests that subsidence prevails. In order to quantify the subsidence of the Sunda shelf, we used a probabilistic approach based on a numerical model that reproduces the development of coral reefs sequences trough time, in response to relative sea level variations. The model accounts for growth reef rate, sea level variations, sub-marine erosion and subsequent sedimentation. This method enables to evaluate the field of parameters (slope, vertical rate, reef growth rate) that satisfyingly reproduce the observed morphology. Comparison of the predicted and observed morphologies of the island of Belitung (Sunda shelf) yields short-term subsidence rates ranging from -0.20 to -0.45 mm/yr. Because the shelf is really shallow (typically - 30 m, and up to -120 m), such subsidence rates set the timing of the drowning of Sundaland. It implies that the platform would have been permanently emerged recently, even during period of high sea level stand. The slower, long-term Neogene subsidence of SE Asia, responds to the subduction dynamics of the Sumatra-Java slab. We tested the possibility that the collision of the Australian continent with the Banda Arc modified this long-term behavior. Because the transition from oceanic subduction to continental collision modifies the subduction dynamics, subsidence rates should have increased in the Sunda shelf and decreased in Wallacea. Subsidence over most part of Wallacea came indeed to an end in the last 5 Myrs, when the australian margin collided with the Banda arc, and uplift has taken over in the most recent period of time. We use three-dimensional subduction numerical models to show how the Australian collision has modified dynamic topography in the overriding plate, and suggest that the pattern of dynamic topography variations following Australia-Banda collision could have contributed to differential vertical deformation in SE Asia.
Migration of tungsten dust in tokamaks: role of dust-wall collisions
NASA Astrophysics Data System (ADS)
Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.
2013-12-01
The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.
Perkins, Bradford G; Nesbitt, David J
2007-08-09
Energy transfer dynamics at the gas-liquid interface have been probed with a supersonic molecular beam of CO2 and a clean perfluorinated-liquid surface in vacuum. High-resolution infrared spectroscopy measures both the rovibrational state populations and the translational distributions for the scattered CO2 flux. The present study investigates collision dynamics as a function of incident angle (thetainc = 0 degrees, 30 degrees, 45 degrees, and 60 degrees), where column-integrated quantum state populations are detected along the specular-scattering direction (i.e., thetascat approximately thetainc). Internal state rovibrational and Doppler translational distributions in the scattered CO2 yield clear evidence for nonstatistical behavior, providing quantum-state-resolved support for microscopic branching of the gas-liquid collision dynamics into multiple channels. Specifically, the data are remarkably well described by a two-temperature model, which can be associated with both a trapping desorption (TD) component emerging at the surface temperature (Trot approximately TS) and an impulsive scattering (IS) component appearing at hyperthermal energies (Trot > TS). The branching ratio between the TD and IS channels is found to depend strongly on thetainc, with the IS component growing dramatically with increasingly steeper angle of incidence.
A Dynamic Model for Forecasting New Cloud Development
1988-12-19
Fourseand Vefor cay 2,or at our0 LT~ Z7 :rZ198 -’ut l o b o u d r f ro m sh o we a ct v t na o t h o t he a lm i 13 in di c at ed Or-& I W PFA ,.M...nucleation model includes: sorption /deposition, contact nucleation by Brownian collision plus thermophoresis plus diffusiophoresis, secondary ice
Jasper, Ahren W; Miller, James A; Klippenstein, Stephen J
2013-11-27
The low-pressure-limit unimolecular decomposition of methane, CH4 (+M) ⇆ CH3 + H (+M), is characterized via low-order moments of the total energy, E, and angular momentum, J, transferred due to collisions. The low-order moments are calculated using ensembles of classical trajectories, with new direct dynamics results for M = H2O and new results for M = O2 compared with previous results for several typical atomic (M = He, Ne, Ar, Kr) and diatomic (M = H2 and N2) bath gases and one polyatomic bath gas, M = CH4. The calculated moments are used to parametrize three different models of the energy transfer function, from which low-pressure-limit rate coefficients for dissociation, k0, are calculated. Both one-dimensional and two-dimensional collisional energy transfer models are considered. The collision efficiency for M = H2O relative to the other bath gases (defined as the ratio of low-pressure limit rate coefficients) is found to depend on temperature, with, e.g., k0(H2O)/k0(Ar) = 7 at 2000 K but only 3 at 300 K. We also consider the rotational collision efficiency of the various baths. Water is the only bath gas found to fully equilibrate rotations, and only at temperatures below 1000 K. At elevated temperatures, the kinetic effect of "weak-collider-in-J" collisions is found to be small. At room temperature, however, the use of an explicitly two-dimensional master equation model that includes weak-collider-in-J effects predicts smaller rate coefficients by 50% relative to the use of a statistical model for rotations. The accuracies of several methods for predicting relative collision efficiencies that do not require solving the master equation and that are based on the calculated low-order moments are tested. Troe's weak collider efficiency, βc, includes the effect of saturation of collision outcomes above threshold and accurately predicts the relative collision efficiencies of the nine baths. Finally, a brief discussion is presented of mechanistic details of the energy transfer process, as inferred from the trajectories.
Study regarding seat’s rigidity during rear end collisions using a MADYMO occupant model
NASA Astrophysics Data System (ADS)
Ionut Radu, Alexandru; Cofaru, Corneliu; Tolea, Bogan; Popescu, Mihaela
2017-10-01
The aim of this paper is to study the effects of different front occupant backseat’s rigidities in the case of a rear end collision using a multibody virtual model of an occupant. Simulation will be conducted in PC Crash, the most common accident reconstruction software using a MADYMO multibody occupant to simulate kinematics and dynamic of the passenger. Different backseat torques will be used to see how this will influence the acceleration in the head and torso of the occupant. Also, a real crash test is made to analyze the kinematics of the occupant. We believe that the softer seat’s rigidity will reduce not only the head’s acceleration but also reduces the effect of „whiplash” upon the neck due to the fact that the backseat will rotate backwards increasing its displacement and absorb some of the energy generated by the collision. Although a softer seat could reduce the head’s acceleration, a broken seat will increase it due to the fact that the impact of the backseat with the vehicle’s rear seats will generate a second collision. So, in order to achieve a lower acceleration, a controlled torque is recommended and a controlled angular displacement of the backseat is to be used.
Collisional and dynamical processes in moon and planet formation
NASA Technical Reports Server (NTRS)
1979-01-01
The collisional and dynamical processes in moon and planet formation are discussed. A hydrodynamic code of collision calculations, the orbital element changes due to gravitational scattering, a validation of the mass shifting algorithm, a theory of rotations, and the origin of asteroids are studied. A numerical model of planet growth is discussed and a methodology to evaluate the rate at which megaregolith increases its depth as a function of total accumulate number of impacts on an initially smooth, coherent surface is described.
"Hypothetical" Heavy Particles Dynamics in LES of Turbulent Dispersed Two-Phase Channel Flow
NASA Technical Reports Server (NTRS)
Gorokhovski, M.; Chtab, A.
2003-01-01
The extensive experimental study of dispersed two-phase turbulent flow in a vertical channel has been performed in Eaton's research group in the Mechanical Engineering Department at Stanford University. In Wang & Squires (1996), this study motivated the validation of LES approach with Lagrangian tracking of round particles governed by drag forces. While the computed velocity of the flow have been predicted relatively well, the computed particle velocity differed strongly from the measured one. Using Monte Carlo simulation of inter-particle collisions, the computation of Yamamoto et al. (2001) was specifically performed to model Eaton's experiment. The results of Yamamoto et al. (2001) improved the particle velocity distribution. At the same time, Vance & Squires (2002) mentioned that the stochastic simualtion of inter-particle collisions is too expensive, requiring significantly more CPU resources than one needs for the gas flow computation. Therefore, the need comes to account for the inter-particle collisions in a simpler and still effective way. To present such a model in the framework of LES/Lagrangian particle approach, and to compare the calculated results with Eaton's measurement and modeling of Yamamoto is the main objective of the present paper.
NASA Astrophysics Data System (ADS)
Capitanio, F. A.
2017-12-01
The quantification of the exact tectonic forces budget on Earth has remained thus far elusive. Geodetic velocities provide relevant constraints on the current dynamics of the coupling between collision and continental tectonics, however in the Tibetan plateau these support contrasting, non-unique models. Here, we compare numerical models of coupled India-Asia plate convergence, collision and continent interiors tectonics to the geodetically-constrained motions in the Tibetan Plateau to provide a quantitative assessment of the driving forces of plate tectonics in the area. The models develop a range of long-term evolutions remarkably similar to the Asian tectonics in the Cenozoic, reproducing the current large-scale motions pattern under a range of conditions. Balancing the convergent margin forces, following subduction, and the far-field forcing along the trail of the subducting continent, the geodetic rates in the Tibetan Plateau can be matched. The comparisons support the discussion on the likely processes at work, allowing inferences on the drivers of plateau formation and its role on the plate margin-interiors tectonics. More in general, the outcomes highlight the unique role of the Tibetan Plateau as a pressure gauge for the tectonic forces on Earth.
Monotonic entropy growth for a nonlinear model of random exchanges.
Apenko, S M
2013-02-01
We present a proof of the monotonic entropy growth for a nonlinear discrete-time model of a random market. This model, based on binary collisions, also may be viewed as a particular case of Ulam's redistribution of energy problem. We represent each step of this dynamics as a combination of two processes. The first one is a linear energy-conserving evolution of the two-particle distribution, for which the entropy growth can be easily verified. The original nonlinear process is actually a result of a specific "coarse graining" of this linear evolution, when after the collision one variable is integrated away. This coarse graining is of the same type as the real space renormalization group transformation and leads to an additional entropy growth. The combination of these two factors produces the required result which is obtained only by means of information theory inequalities.
The atmosphere of a dirty-clathrate cometary nucleus - A two-phase, multifluid model
NASA Astrophysics Data System (ADS)
Marconi, M. L.; Mendis, D. A.
1983-10-01
The dynamical and thermal structure of a dirty-clathrate cometary nucleus' gas atmosphere is presently given a self-consistent, transonic multifluid solution in which, although the heavy neutron and ion species are treated as a single fluid in the collision-dominated region, the photoproduced H is treated separately. The thermal profile of the atmosphere thus obtained is entirely different from those predicted by the earlier, single-fluid models as well as the multifluid models which assumed equipartition of energy between electrons and ions. While the electron gas, like the neutrals and the ions, cools due to expansion, its main mode of energy loss in the inner coma is by way of inelastic collisions with the predominant H2O molecule. The high electron temperature in the outer coma also decreases the efficiency of electron removal by dissociative recombination, thereby increasing electron density throughout the coma.
Monotonic entropy growth for a nonlinear model of random exchanges
NASA Astrophysics Data System (ADS)
Apenko, S. M.
2013-02-01
We present a proof of the monotonic entropy growth for a nonlinear discrete-time model of a random market. This model, based on binary collisions, also may be viewed as a particular case of Ulam's redistribution of energy problem. We represent each step of this dynamics as a combination of two processes. The first one is a linear energy-conserving evolution of the two-particle distribution, for which the entropy growth can be easily verified. The original nonlinear process is actually a result of a specific “coarse graining” of this linear evolution, when after the collision one variable is integrated away. This coarse graining is of the same type as the real space renormalization group transformation and leads to an additional entropy growth. The combination of these two factors produces the required result which is obtained only by means of information theory inequalities.
Modeling The Frontal Collison In Vehicles And Determining The Degree Of Injury On The Driver
NASA Astrophysics Data System (ADS)
Oţăt, Oana Victoria
2015-09-01
The present research study aims at analysing the kinematic and the dynamic behaviour of the vehicle's driver in a frontal collision. Hence, a subsequent objective of the research paper is to establish the degree of injury suffered by the driver. Therefore, in order to achieve the objectives set, first, we had to define the type of the dummy placed in the position of the driver, and then to design the three-element assembly, i.e. the chair-steering wheel-dashboard assembly. Based on this model, the following step focused on the positioning of the dummy, which has also integrated the defining of the contacts between the components of the dummy and the seat elements. Seeking to model such a behaviour that would highly accurately reflect the driver's movements in a frontal collision, passive safety systems have also been defined and simulated, namely the seatbelt and the frontal airbag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, R.; Beiersdorfer, P.; Harris, C. L.
2016-01-21
Charge-exchange collisions of slow Ne 10+ ions with He, Ne, and Ar targets were studied with simultaneous x-ray and cold-target recoil-ion-momentum spectroscopy proving the contribution of several mechanisms to the radiative stabilization of apparent (4,4) doubly excited states for He and Ne targets and of (5,6) states for Ar. In particular, the stabilization efficiency of the mechanism of dynamic auto-transfer to Rydberg states is confirmed. Moreover, we present evidence for direct radiative decays of (4,4) states populated in collisions with He, which is an experimental indication of the population of so-called unnatural-parity states in such collisions. Lastly, these mechanisms leadmore » to the emission of x-rays that have considerably higher energies than those predicted by current spectral models and may explain recent observations of anomalously large x-ray emission from Rydberg levels.« less
Wang, Feng; Hong, Xuhai; Wang, Jian; Kim, Kwang S
2011-04-21
Recently we developed a theoretical model of ion-atom collisions, which was made on the basis of a time-dependent density functional theory description of the electron dynamics and a classical treatment of the heavy particle motion. Taking advantage of the real-space grid method, we introduce a "coordinate space translation" technique to allow one to focus on a certain space of interest such as the region around the projectile or the target. Benchmark calculations are given for collisions between proton and oxygen over a wide range of impact energy. To extract the probability of charge transfer, the formulation of Lüdde and Dreizler [J. Phys. B 16, 3973 (1983)] has been generalized to ensemble-averaging application in the particular case of O((3)P). Charge transfer total cross sections are calculated, showing fairly good agreements between experimental data and present theoretical results.
Beam-Energy Dependence of Directed Flow of Λ , Λ ¯ , K ± , K s 0 , and φ in Au + Au Collisions
Adamczyk, L.; Adams, J. R.; Adkins, J. K.; ...
2018-02-06
Rmore » apidity-odd directed-flow measurements at midrapidity are presented for Λ , Λ ¯ , K ± , K s 0 , and φ at √ sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV in Au + Au collisions recorded by the Solenoidal Tracker detector at the elativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. esults show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum rule can be a valuable new tool for probing the collision dynamics.« less
Beam-Energy Dependence of Directed Flow of Λ , Λ ¯ , K ± , K s 0 , and φ in Au + Au Collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.; Adams, J. R.; Adkins, J. K.
Rmore » apidity-odd directed-flow measurements at midrapidity are presented for Λ , Λ ¯ , K ± , K s 0 , and φ at √ sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV in Au + Au collisions recorded by the Solenoidal Tracker detector at the elativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. esults show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum rule can be a valuable new tool for probing the collision dynamics.« less
Schenke, Björn; Schlichting, Sören; Tribedy, Prithwish; ...
2016-10-14
The mass ordering of mean transverse momentummore » $$\\langle$$p T$$\\rangle$$ and of the Fourier harmonic coefficient v 2 (p T) of azimuthally anisotropic particle distributions in high energy hadron collisions is often interpreted as evidence for the hydrodynamic flow of the matter produced. We investigate an alternative initial state interpretation of this pattern in high-multiplicity proton-proton collisions at the LHC. The QCD Yang-Mills equations describing the dynamics of saturated gluons are solved numerically with initial conditions obtained from the color-glass-condensate-based impact-parameter-dependent glasma model. The gluons are subsequently fragmented into various hadron species employing the well established Lund string fragmentation algorithm of the pythia event generator. Lastly, we find that this initial state approach reproduces characteristic features of bulk spectra, in particular, the particle mass dependence of $$\\langle$$p T$$\\rangle$$ and v 2 (p T).« less
Analytical formulation of impulsive collision avoidance dynamics
NASA Astrophysics Data System (ADS)
Bombardelli, Claudio
2014-02-01
The paper deals with the problem of impulsive collision avoidance between two colliding objects in three dimensions and assuming elliptical Keplerian orbits. Closed-form analytical expressions are provided that accurately predict the relative dynamics of the two bodies in the encounter b-plane following an impulsive delta-V manoeuvre performed by one object at a given orbit location prior to the impact and with a generic three-dimensional orientation. After verifying the accuracy of the analytical expressions for different orbital eccentricities and encounter geometries the manoeuvre direction that maximises the miss distance is obtained numerically as a function of the arc length separation between the manoeuvre point and the predicted collision point. The provided formulas can be used for high-accuracy instantaneous estimation of the outcome of a generic impulsive collision avoidance manoeuvre and its optimisation.
Route to non-Abelian quantum turbulence in spinor Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Mawson, Thomas; Ruben, Gary; Simula, Tapio
2015-06-01
We have studied computationally the collision dynamics of spin-2 Bose-Einstein condensates initially confined in a triple-well trap. Depending on the phase structure of the initial-state spinor wave function, the collision of the three condensate fragments produces one of many possible vortex-antivortex lattices, after which the system transitions to quantum turbulence. We find that the emerging vortex lattice structures can be described in terms of multiwave interference. We show that the three-fragment collisions can be used to systematically produce staggered vortex-antivortex honeycomb lattices of fractional-charge vortices, whose collision dynamics are known to be non-Abelian. Such condensate collider experiments could potentially be used as a controllable pathway to generating non-Abelian superfluid turbulence with networks of vortex rungs.
Numerical reconstruction and injury biomechanism in a car-pedestrian crash accident.
Zou, Dong-Hua; Li, Zheng-Dong; Shao, Yu; Feng, Hao; Chen, Jian-Guo; Liu, Ning-Guo; Huang, Ping; Chen, Yi-Jiu
2012-12-01
To reconstruct a car-pedestrian crash accident using numerical simulation technology and explore the injury biomechanism as forensic evidence for injury identification. An integration of multi-body dynamic, finite element (FE), and classical method was applied to a car-pedestrian crash accident. The location of the collision and the details of the traffic accident were determined by vehicle trace verification and autopsy. The accident reconstruction was performed by coupling the three-dimensional car behavior from PC-CRASH with a MADYMO dummy model. The collision FE models of head and leg, developed from CT scans of human remains, were loaded with calculated dummy collision parameters. The data of the impact biomechanical responses were extracted in terms of von Mises stress, relative displacement, strain and stress fringes. The accident reconstruction results were identical with the examined ones and the biomechanism of head and leg injuries, illustrated through the FE methods, were consistent with the classical injury theories. The numerical simulation technology is proved to be effective in identifying traffic accidents and exploring of injury biomechanism.
Peculiarities of structural transformations in metal nanoparticles at high speed collisions
NASA Astrophysics Data System (ADS)
Zolnikov, K. P.; Kryzhevich, D. S.; Korchuganov, A. V.
2018-01-01
A molecular dynamics simulation of nanosized particle collision under the electrical explosion of metal wires of different types was conducted. Interatomic interactions were described on the base of the embedded atom method. Used potentials allowed describing with high accuracy many mechanical and physical properties which are very important for the simulations of nanoparticle collisions with high velocities. The dynamics of the nanosized particle formation at the electric pulse explosion of metal wires of different types was studied. Features of particle collisions on the example of nanoscale particles of copper and nickel, whose velocities varied from 50 to 1500 m/s were investigated. The peculiarities of structural transformations in the colliding particles depending on the velocity of collision were determined. The intervals of collision velocities in which interaction between particles is elastic or leads to the formation of structural defects or melting were calculated. The analysis of the structure and distribution of chemical elements over the cross section of the particles which were synthesized under simultaneous explosions of different metal wires was carried out.
NASA Astrophysics Data System (ADS)
Kumar, Rohit; Puri, Rajeev K.
2018-03-01
Employing the quantum molecular dynamics (QMD) approach for nucleus-nucleus collisions, we test the predictive power of the energy-based clusterization algorithm, i.e., the simulating annealing clusterization algorithm (SACA), to describe the experimental data of charge distribution and various event-by-event correlations among fragments. The calculations are constrained into the Fermi-energy domain and/or mildly excited nuclear matter. Our detailed study spans over different system masses, and system-mass asymmetries of colliding partners show the importance of the energy-based clusterization algorithm for understanding multifragmentation. The present calculations are also compared with the other available calculations, which use one-body models, statistical models, and/or hybrid models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Waged, Khaled; Benha University, Faculty of Science, Physics Department; Felemban, Nuha
2011-07-15
We describe how various hadronic cascade models, which are implemented in the geant4 toolkit, describe proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c, recently measured in the hadron production (HARP) experiment at CERN. The Binary, ultrarelativistic quantum molecular dynamics (UrQMD) and modified FRITIOF (FTF) hadronic cascade models are chosen for investigation. The first two models are based on limited (Binary) and branched (UrQMD) binary scattering between cascade particles which can be either a baryon or meson, in the three-dimensional space of the nucleus, while the latter (FTF) considersmore » collective interactions between nucleons only, on the plane of impact parameter. It is found that the slow (p{sub T}{<=}0.3 GeV/c) proton spectra are quite sensitive to the different treatments of cascade pictures, while the fast (p{sub T}>0.3 GeV/c) proton spectra are not strongly affected by the differences between the FTF and UrQMD models. It is also shown that the UrQMD and FTF combined with Binary (FTFB) models could reproduce both proton and charged pion spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c with the same accuracy.« less
Non-Linear Dynamics of Saturn's Rings
NASA Astrophysics Data System (ADS)
Esposito, L. W.
2016-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries determines the power law index, using results of numerical simulations in the tidal environment. Aggregates can explain many dynamic aspects of the rings and can renew rings by shielding and recycling the material within them, depending on how long the mass is sequestered. We can ask: Are Saturn's rings a chaotic non-linear driven system?
Quantum molecular dynamics a microscopic model from UNILAC to CERN energies
NASA Astrophysics Data System (ADS)
Hartnack, C.; Zhuxia, Li; Neise, L.; Peilert, G.; Rosenhauer, A.; Sorge, H.; Aichelin, J.; Stöcker, H.; Greiner, W.
1989-04-01
We demonstrate that the microscopic QMD approach is useful to study heavy ion collisions from fusion fussion phenomena to the quest for signals of the quark gluon plasma. We discuss the possibilities and difficulties to determine the nuclear equation of state from heavy ion collisions. We investigate the influence of momentum dependent interactions and of in medium corrections to the nucleon-nucleon cross sections in the framework of the QMD model. The model is extended to low energies by including a Pauli potential in the nucleon-nucleon interaction. We show that it is possible to extract information on the effective cross sections from the experimental rapidity distributions of the fragments. We also investigate the transverse momentum of complex fragments with and without in medium corrections. The experimental data yield evidence for a stiff equation of state. A covariant extension of the QMD model is presented, which is applied to very high energy (10…200 AGeV) heavy ion collisions. Particle production and decay of heavy resonances are included. Predictions of the stopping power at AGS and SPS are presented. The importance of secondary scattering and nuclear stopping up to the highest energies is demonstrated. This is particularly important for the recently observed enhancement of strangeness production, which was proposed as a signal for QGP formation.
Xu, Shenghua; Sun, Zhiwei
2007-04-14
Collisions of a particle pair induced by optical tweezers have been employed to study colloidal stability. In order to deepen insights regarding the collision-sticking dynamics of a particle pair in the optical trap that were observed in experimental approaches at the particle level, the authors carry out a Brownian dynamics simulation. In the simulation, various contributing factors, including the Derjaguin-Landau-Verwey-Overbeek interaction of particles, hydrodynamic interactions, optical trapping forces on the two particles, and the Brownian motion, were all taken into account. The simulation reproduces the tendencies of the accumulated sticking probability during the trapping duration for the trapped particle pair described in our previous study and provides an explanation for why the two entangled particles in the trap experience two different statuses.
Runaway electron dynamics in tokamak plasmas with high impurity content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martín-Solís, J. R., E-mail: solis@fis.uc3m.es; Loarte, A.; Lehnen, M.
2015-09-15
The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impuritiesmore » are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.« less
Anomalous chiral transport in heavy ion collisions from Anomalous-Viscous Fluid Dynamics
NASA Astrophysics Data System (ADS)
Shi, Shuzhe; Jiang, Yin; Lilleskov, Elias; Liao, Jinfeng
2018-07-01
Chiral anomaly is a fundamental aspect of quantum theories with chiral fermions. How such microscopic anomaly manifests itself in a macroscopic many-body system with chiral fermions, is a highly nontrivial question that has recently attracted significant interest. As it turns out, unusual transport currents can be induced by chiral anomaly under suitable conditions in such systems, with the notable example of the Chiral Magnetic Effect (CME) where a vector current (e.g. electric current) is generated along an external magnetic field. A lot of efforts have been made to search for CME in heavy ion collisions, by measuring the charge separation effect induced by the CME transport. A crucial challenge in such effort, is the quantitative prediction for the CME signal. In this paper, we develop the Anomalous-Viscous Fluid Dynamics (AVFD) framework, which implements the anomalous fluid dynamics to describe the evolution of fermion currents in QGP, on top of the neutral bulk background described by the VISH2+1 hydrodynamic simulations for heavy ion collisions. With this new tool, we quantitatively and systematically investigate the dependence of the CME signal to a series of theoretical inputs and associated uncertainties. With realistic estimates of initial conditions and magnetic field lifetime, the predicted CME signal is quantitatively consistent with measured change separation data in 200GeV Au-Au collisions. Based on analysis of Au-Au collisions, we further make predictions for the CME observable to be measured in the planned isobaric (Ru-Ru v.s. Zr-Zr) collision experiment, which could provide a most decisive test of the CME in heavy ion collisions.
J/ψ suppression at forward rapidity in Pb-Pb collisions at √{sNN} = 5.02 TeV
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration
2017-03-01
The inclusive J/ψ production has been studied in Pb-Pb and pp collisions at the centre-of-mass energy per nucleon pair √{sNN} = 5.02 TeV, using the ALICE detector at the CERN LHC. The J/ψ meson is reconstructed, in the centre-of-mass rapidity interval 2.5 < y < 4 and in the transverse-momentum range pT < 12 GeV / c, via its decay to a muon pair. In this Letter, we present results on the inclusive J/ψ cross section in pp collisions at √{ s} = 5.02 TeV and on the nuclear modification factor RAA. The latter is presented as a function of the centrality of the collision and, for central collisions, as a function of the transverse momentum pT of the J/ψ. The measured RAA values indicate a suppression of the J/ψ in nuclear collisions and are then compared to our previous results obtained in Pb-Pb collisions at √{sNN} = 2.76 TeV. The ratio of the RAA values at the two energies is also computed and compared to calculations of statistical and dynamical models. The numerical value of the ratio for central events (0-10% centrality) is 1.17 ± 0.04 (stat) ± 0.20 (syst). In central events, as a function of pT, a slight increase of RAA with collision energy is visible in the region 2
J/ ψ suppression at forward rapidity in Pb–Pb collisions at s NN = 5.02 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, J.; Adamová, D.; Aggarwal, M. M.
Tmore » he inclusive J/ψ production has been studied in Pb–Pb and pp collisions at the centre-of-mass energy per nucleon pair s NN = 5.02 eV , using the ALICE detector at the CERN LHC. he J/ψ meson is reconstructed, in the centre-of-mass rapidity interval 2.5 < y < 4 and in the transverse-momentum range p < 12 GeV/c, via its decay to a muon pair. In this Letter, we present results on the inclusive J/ψ cross section in pp collisions at √s = 5.02 eV and on the nuclear modification factor R AA. he latter is presented as a function of the centrality of the collision and, for central collisions, as a function of the transverse momentum p of the J/ψ. he measured R AA values indicate a suppression of the J/ψ in nuclear collisions and are then compared to our previous results obtained in Pb–Pb collisions at s NN = 2.76 eV . he ratio of the R AA values at the two energies is also computed and compared to calculations of statistical and dynamical models. he numerical value of the ratio for central events (0–10% centrality) is 1.17 ± 0.04(stat) ± 0.20(syst). In central events, as a function of p , a slight increase of R AA with collision energy is visible in the region 2 < p < 6 GeV/c. heoretical calculations qualitatively describe the measurements, within uncertainties.« less
J/ ψ suppression at forward rapidity in Pb–Pb collisions at s NN = 5.02 TeV
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2017-01-10
Tmore » he inclusive J/ψ production has been studied in Pb–Pb and pp collisions at the centre-of-mass energy per nucleon pair s NN = 5.02 eV , using the ALICE detector at the CERN LHC. he J/ψ meson is reconstructed, in the centre-of-mass rapidity interval 2.5 < y < 4 and in the transverse-momentum range p < 12 GeV/c, via its decay to a muon pair. In this Letter, we present results on the inclusive J/ψ cross section in pp collisions at √s = 5.02 eV and on the nuclear modification factor R AA. he latter is presented as a function of the centrality of the collision and, for central collisions, as a function of the transverse momentum p of the J/ψ. he measured R AA values indicate a suppression of the J/ψ in nuclear collisions and are then compared to our previous results obtained in Pb–Pb collisions at s NN = 2.76 eV . he ratio of the R AA values at the two energies is also computed and compared to calculations of statistical and dynamical models. he numerical value of the ratio for central events (0–10% centrality) is 1.17 ± 0.04(stat) ± 0.20(syst). In central events, as a function of p , a slight increase of R AA with collision energy is visible in the region 2 < p < 6 GeV/c. heoretical calculations qualitatively describe the measurements, within uncertainties.« less
General Path-Integral Successive-Collision Solution of the Bounded Dynamic Multi-Swarm Problem.
1983-09-23
coefficients (i.e., moments of the distribution functions), and/or (il) fnding the distribution functions themselves. The present work is concerned with the...collisions since their first appearance in the system. By definition, a swarm particle sufers a *generalized collision" either when it collides with a...studies6-rand the present work have contributed to- wards making the path-integral successive-collision method a practicable tool of transport theory
Moran, Stephan G; Key, Jason S; McGwin, Gerald; Keeley, Jason W; Davidson, James S; Rue, Loring W
2004-07-01
Head injury is a significant cause of both morbidity and mortality. Motor vehicle collisions (MVCs) are the most common source of head injury in the United States. No studies have conclusively determined the applicability of computer models for accurate prediction of head injuries sustained in actual MVCs. This study sought to determine the applicability of such models for predicting head injuries sustained by MVC occupants. The Crash Injury Research and Engineering Network (CIREN) database was queried for restrained drivers who sustained a head injury. These collisions were modeled using occupant dynamic modeling (MADYMO) software, and head injury scores were generated. The computer-generated head injury scores then were evaluated with respect to the actual head injuries sustained by the occupants to determine the applicability of MADYMO computer modeling for predicting head injury. Five occupants meeting the selection criteria for the study were selected from the CIREN database. The head injury scores generated by MADYMO were lower than expected given the actual injuries sustained. In only one case did the computer analysis predict a head injury of a severity similar to that actually sustained by the occupant. Although computer modeling accurately simulates experimental crash tests, it may not be applicable for predicting head injury in actual MVCs. Many complicating factors surrounding actual MVCs make accurate computer modeling difficult. Future modeling efforts should consider variables such as age of the occupant and should account for a wider variety of crash scenarios.
Molecular dynamics simulations of collision-induced absorption: Implementation in LAMMPS
NASA Astrophysics Data System (ADS)
Fakhardji, W.; Gustafsson, M.
2017-02-01
We pursue simulations of collision-induced absorption in a mixture of argon and xenon gas at room temperature by means of classical molecular dynamics. The established theoretical approach (Hartmann et al. 2011 J. Chem. Phys. 134 094316) is implemented with the molecular dynamics package LAMMPS. The bound state features in the absorption spectrum are well reproduced with the molecular dynamics simulation in comparison with a laboratory measurement. The magnitude of the computed absorption, however, is underestimated in a large part of the spectrum. We suggest some aspects of the simulation that could be improved.
Eternal inflation, bubble collisions, and the disintegration of the persistence of memory
NASA Astrophysics Data System (ADS)
Freivogel, Ben; Kleban, Matthew; Nicolis, Alberto; Sigurdson, Kris
2009-08-01
We compute the probability distribution for bubble collisions in an inflating false vacuum which decays by bubble nucleation. Our analysis generalizes previous work of Guth, Garriga, and Vilenkin to the case of general cosmological evolution inside the bubble, and takes into account the dynamics of the domain walls that form between the colliding bubbles. We find that incorporating these effects changes the results dramatically: the total expected number of bubble collisions in the past lightcone of a typical observer is N ~ γ Vf/Vi , where γ is the fastest decay rate of the false vacuum, Vf is its vacuum energy, and Vi is the vacuum energy during inflation inside the bubble. This number can be large in realistic models without tuning. In addition, we calculate the angular position and size distribution of the collisions on the cosmic microwave background sky, and demonstrate that the number of bubbles of observable angular size is NLS ~ (Ωk)1/2N, where Ωk is the curvature contribution to the total density at the time of observation. The distribution is almost exactly isotropic.
Smart Collision Avoidance and Hazard Routing Mechanism for Intelligent Transport Network
NASA Astrophysics Data System (ADS)
Singh, Gurpreet; Gupta, Pooja; Wahab, Mohd Helmy Abd
2017-08-01
The smart vehicular ad-hoc network is the network that consists of vehicles for smooth movement and better management of the vehicular connectivity across the given network. This research paper aims to propose a set of solution for the VANETs consisting of the automatic driven vehicles, also called as the autonomous car. Such vehicular networks are always prone to collision due to the natural or un-natural reasons which must be solved before the large-scale deployment of the autonomous transport systems. The newly designed intelligent transport movement control mechanism is based upon the intelligent data propagation along with the vehicle collision and traffic jam prevention schema [8], which may help the future designs of smart cities to become more robust and less error-prone. In the proposed model, the focus is on designing a new dynamic and robust hazard routing protocol for intelligent vehicular networks for improvement of the overall performance in various aspects. It is expected to improve the overall transmission delay as well as the number of collisions or adversaries across the vehicular network zone.
NASA Astrophysics Data System (ADS)
Radhakrishnan, Sooraj
2018-02-01
Heavy flavor quarks, owing to their large masses, are predominantly produced through initial hard parton scatterings in heavy-ion collisions, and thus are excellent probes to study properties of the strongly coupled Quark Gluon Plasma (sQGP) medium produced in these collisions. Measurements of anisotropic flow harmonics of heavy flavor hadrons can provide information on the properties of the medium, including the heavy flavor transport coefficient. Charm quark hadronization mechanism in the sQGP medium can be studied through measurements of yields of different charm hadrons. In these proceedings we report on the measurements of elliptic and triangular flow harmonics of D0 mesons as well as the yield ratios of D±s/D0 and Λ±c/D0 in Au+Au collisions at = 200 GeV at RHIC with the STAR detector. These measurements use the STAR Heavy Flavor Tracker (HFT) to reconstruct charm hadrons via their hadronic decay channels. Results are compared to model calculations and the implications on the understanding of charm quark dynamics in the medium are discussed.
NASA Astrophysics Data System (ADS)
Sarcevic, Ina; Tan, Chung-I.
2000-07-01
The Table of Contents for the full book PDF is as follows: * Preface * Monday morning session: Hadronic Final States - Conveners: E. de Wolf and J. W. Gary * Session Chairman: J. W. Gary * Inclusive Jets at the Tevatron * Forward Jets, Dijets, and Subjets at the Tevatron * Inclusive Hadron Production and Dijets at HERA * Recent Opal Results on Photon Structure and Interactions * Review of Two-Photon Physics at LEP * Session Chairman: E. de Wolf * An Intriguing Area-Law-Based Hadron Production Scheme in e+e- Annihilation and Its Possible Extensions * Hyperfine Splitting in Hadron Production at High Energies * Event Selection Effects on Multiplicities in Quark and Gluon Jets * Quark and Gluon Jet Properties at LEP * Rapidity Gaps in Quark and Gluon Jets -- A Perturbative Approach * Monday afternoon session: Diffractive and Small-x - Conveners: M. Derrick and A. White * Session Chairman: A. White * Structure Functions: Low x, High y, Low Q2 * The Next-to-Leading Dynamics of the BFKL Pomeron * Renormalization Group Improved BFKL Equation * Session Chairman: G. Briskin * New Experimental Results on Diffraction at HERA * Diffractive Parton Distributions in Light-Cone QCD * The Logarithmic Derivative of the F2 Structure Function and Saturation * Spin Dependence of Diffractive DIS * Monday evening session * Session Chairman: M. Braun * Tests of QCD with Particle Production at HERA: Review and Outlook * Double Parton Scattering and Hadron Structure in Transverse Space * The High Density Parton Dynamics from Eikonal and Dipole Pictures * Hints of Higher Twist Effects in the Slope of the Proton Structure Function * Tuesday morning session: Correlations and Fluctuations - Conveners: R. Hwa and M. Tannenbaum * Session Chairman: A. Giovannini -- Fluctuations and Correlations * Bose-Einstein Results from L3 * Short-Range and Long-Range Correlations in DIS at HERA * Coior Mutation Model, Intermittency, and Erraticity * QCD Queuing and Hadron Multiplicity * Soft and Semi-hard Components in Multiplicity Distributions in the TeV Region * Qualitative Difference Between Particle Production Dynamics in Soft and Hard Processes * Session Chairman: M. Tannenbaum -- Bose-Einstein Correlations * Questions in Bose-Einstein Correlations * The Source Size Dependence on the mhadron Applying Fermi and Bose Statistics and I-Spin Invariance * Signal of Partial UA(1) Symmetry Restoration from Two-Pion Bose-Einstein Correlations * Multiparticle Bose-Einstein Correlations in Heavy-Ion Collisions * Tuesday afternoon session: Heavy Ion Collisions - Conveners: B. Müller and J. Statchel * Session Chairman: J. Stachel * Probing Baryon Freeze-out Density at the AGS with Proton Correlations * Centrality Dependence of Hadronic Observables at CERN SPS * Study of Transverse Momentum Spectra in pp Collisions with a Statistical Model of Hadronisation * Session Chairman: B. Brower * Production of Light (Anti-)Nuclei with E864 at the AGS * QCD Critical Point in Heavy-Ion Collision Experiments * Tuesday evening session * Session Chairman: H. M. Fried * Oscillating Hq, Event Shapes, and QCD * Critical Behavior of Quark-Hadron Phase Transition * Shadowing of Gluons at RHIC and LHC * Parton Distributions in Nuclei at Small x * Wednesday morning session: Diffraction and Small x - Conveners: M. Derrick and A. White * Session Chairman: C. Pajares * High-Energy Effective Action from Scattering of Shock Waves in QCD * The Triangle Anomaly in the Triple-Regge Limit * CDF Results on Hard Diffraction and Rapidity Gap Physics * DØ Results on Hard Diffraction * Interjet Rapidity Gaps in Perturbative QCD * Pomeron: Beyond the Standard Approach * Factorization and Diffractive Production at Collider Energies * Thursday morning session: Heavy Ion Collisions - Conveners: B. Müller and J. B. Stachel * Session Chairman: N. Schmitz * Summary of J/ψ Suppression Data and Preliminary Results on Multiplicity Distributions in PB-PB Collisions from the NA50 Experiment * Duality and Chiral Restoration from Dilepton Production in Relativistic Heavy-Ion Collisions * Session Chairman: I. Sarcevic * Transport-Theoretical Analysis of Reaction Dynamics, Particle Production and Freeze-out at RHIC * Inclusive Particle Spectra and Exotic Particle Searches Using STAR * The First Fermi in a High Energy Nuclear Collision * Probing the Space-Time Evolution of Heavy Ion Collisions with Bremsstrahlung * Thursday afternoon session: Hadronic Final States - Conveners: E. de Wolf and J. Gary * Session Chairman: F. Verbeure * QCD with SLD * QCD at LEP II * Multidimensional Analysis of the Bose-Einstein Correlations at DELPHI * Study of Color Singlet with Gluonic Subsinglet by Color Effective Hamiltonian * Correlations and Fluctuations - Conveners: R. Hwa and M. Tannenbaum * Session Chairman: R. C. Hwa -- Fluctuations in Heavy-Ion Collisions * Scale-Local Statistical Measures and the Multiparticle Final State * Centrality and ET Fluctuations from p + Be to Au + Au at AGS Energies * Order Parameter of Single Event * Multiplicities, Transverse Momenta and Their Correlations from Percolating Colour Strings * Probing the QCD Critical Point in Nuclear Collisions * Event-by-Event Fluctuations in Pb + Pb Collisions at the CERN SPS * Friday morning session: High Energy Collisions and Cosmic-Ray/Astrophysics - Conveners: F. Halzen and T. Stanev * Session Chairman: U. Sukhatme * Rethinking the Eikonal Approximation * QCD and Total Cross-Sections * The Role of Multiple Parton Collisions in Hadron Collisions * Effective Cross Sections and Spatial Structure of the Hadrons * Looking for the Odderon * QCD in Embedded Coordinates * Session Chairman: F. Bopp * Extensive Air Sbowers and Hadronic Interaction Models * Penetration of the Earth by Ultrahigh Energy Neutrinos and the Parton Distributions Inside the Nucleon * Comparison of Prompt Muon Observations to Charm Expectations * Friday afternoon session: Recent Developments - Conveners: R. Brower and I. Sarcevic * Session Chairman: G. Guralnik * The Relation Between Gauge Theories and Gravity * From Black Holes to Pomeron: Tensor Glueball and Pomeron Intercept at Strong Coupling * Summary Talks * Summary of Results of the Ultrarelativistic Heavy Ion Fixed Target Program * Review of Theory Talks * Summary of Experimental Talks * List of Participants
Numerical study of the magnetized friction force
NASA Astrophysics Data System (ADS)
Fedotov, A. V.; Bruhwiler, D. L.; Sidorin, A. O.; Abell, D. T.; Ben-Zvi, I.; Busby, R.; Cary, J. R.; Litvinenko, V. N.
2006-07-01
Fundamental advances in experimental nuclear physics will require ion beams with orders of magnitude luminosity increase and temperature reduction. One of the most promising particle accelerator techniques for achieving these goals is electron cooling, where the ion beam repeatedly transfers thermal energy to a copropagating electron beam. The dynamical friction force on a fully ionized gold ion moving through magnetized and unmagnetized electron distributions has been simulated, using molecular dynamics techniques that resolve close binary collisions. We present a comprehensive examination of theoretical models in use by the electron cooling community. Differences in these models are clarified, enabling the accurate design of future electron cooling systems for relativistic ion accelerators.
Effects of unconventional breakup modes on incomplete fusion of weakly bound nuclei
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis; Quraishi, Daanish
2018-02-01
The incomplete fusion dynamics of 6Li+209Bi collisions at energies above the Coulomb barrier is investigated. The classical dynamical model implemented in the platypus code is used to understand and quantify the impact of both 6Li resonance states and transfer-triggered breakup modes (involving short-lived projectile-like nuclei such as 8Be and 5Li) on the formation of incomplete fusion products. Model calculations explain the experimental incomplete-fusion excitation function fairly well, indicating that (i) delayed direct breakup of 6Li reduces the incomplete fusion cross sections and (ii) the neutron-stripping channel practically determines those cross sections.
Universal Off-Equilibrium Scaling of Critical Cumulants in the QCD Phase Diagram
Mukherjee, Swagato; Venugopalan, Raju; Yin, Yi
2016-11-23
Exploiting the universality between the QCD critical point and the three-dimensional Ising model, closed form expressions derived for nonequilibrium critical cumulants on the crossover side of the critical point reveal that they can differ in both magnitude and sign from equilibrium expectations. Here, we demonstrate here that key elements of the Kibble-Zurek framework of nonequilibrium phase transitions can be employed to describe the dynamics of these critical cumulants. Lastly, our results suggest that observables sensitive to critical dynamics in heavy-ion collisions should be expressible as universal scaling functions, thereby providing powerful model-independent guidance in searches for the QCD critical point.
An abstract approach to evaporation models in rarefied gas dynamics
NASA Astrophysics Data System (ADS)
Greenberg, W.; van der Mee, C. V. M.
1984-03-01
Strong evaporation models involving 1D stationary problems with linear self-adjoint collision operators and solutions in abstract Hilbert spaces are investigated analytically. An efficient algorithm for locating the transition from existence to nonexistence of solutions is developed and applied to the 1D and 3D BGK model equations and the 3D BGK model in moment form, demonstrating the nonexistence of stationary evaporation states with supersonic drift velocities. Applications to similar models in electron and phonon transport, radiative transfer, and neutron transport are suggested.
The non-statistical dynamics of the 18O + 32O2 isotope exchange reaction at two energies
NASA Astrophysics Data System (ADS)
Van Wyngarden, Annalise L.; Mar, Kathleen A.; Quach, Jim; Nguyen, Anh P. Q.; Wiegel, Aaron A.; Lin, Shi-Ying; Lendvay, Gyorgy; Guo, Hua; Lin, Jim J.; Lee, Yuan T.; Boering, Kristie A.
2014-08-01
The dynamics of the 18O(3P) + 32O2 isotope exchange reaction were studied using crossed atomic and molecular beams at collision energies (Ecoll) of 5.7 and 7.3 kcal/mol, and experimental results were compared with quantum statistical (QS) and quasi-classical trajectory (QCT) calculations on the O3(X1A') potential energy surface (PES) of Babikov et al. [D. Babikov, B. K. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lesard, and R. Schinke, J. Chem. Phys. 118, 6298 (2003)]. In both QS and QCT calculations, agreement with experiment was markedly improved by performing calculations with the experimental distribution of collision energies instead of fixed at the average collision energy. At both collision energies, the scattering displayed a forward bias, with a smaller bias at the lower Ecoll. Comparisons with the QS calculations suggest that 34O2 is produced with a non-statistical rovibrational distribution that is hotter than predicted, and the discrepancy is larger at the lower Ecoll. If this underprediction of rovibrational excitation by the QS method is not due to PES errors and/or to non-adiabatic effects not included in the calculations, then this collision energy dependence is opposite to what might be expected based on collision complex lifetime arguments and opposite to that measured for the forward bias. While the QCT calculations captured the experimental product vibrational energy distribution better than the QS method, the QCT results underpredicted rotationally excited products, overpredicted forward-bias and predicted a trend in the strength of forward-bias with collision energy opposite to that measured, indicating that it does not completely capture the dynamic behavior measured in the experiment. Thus, these results further underscore the need for improvement in theoretical treatments of dynamics on the O3(X1A') PES and perhaps of the PES itself in order to better understand and predict non-statistical effects in this reaction and in the formation of ozone (in which the intermediate O3* complex is collisionally stabilized by a third body). The scattering data presented here at two different collision energies provide important benchmarks to guide these improvements.
SU-F-BRD-11: A Virtual Simulator Designed for Collision Prevention in Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, H; Kum, O; Park, H
2015-06-15
Purpose: In proton therapy, collisions between patient and nozzle potentially occur in attaining minimal air gap due to the large nozzle structure. Thus, we developed software predicting the collisions of the nozzle and patient by simulating treatments. Methods: 3D modeling of a gantry inner-floor, nozzle and robotic-couch was done by using the SolidWorks based on the manufacturer’s machine data. To obtain patient body information, a 3D-scanner was utilized to scan a patient right before CT scanning. From the acquired images, a 3D-image of the patient’s body contour was reconstructed. The accuracy of the image was confirmed against the CT imagemore » for a humanoid phantom. The machine components and the virtual patient were combined on the treatment-room coordinate system, resulting in a virtual simulator. The simulator simulated the motion of its components such as rotation and translation of gantry, nozzle and couch, in real scale. Collision, if any, was examined both in static mode and dynamic mode. The static mode checks only at fixed positions of the machine’s components while dynamic mode examines while one component is in motion. Collision was notified if any voxel of two components, for example a nozzle and a patient or couch, overlapped when calculating volume locations. The event and collision point are visualized and colliding volumes are reported. Results: All components were successfully assembled and the motions could be accurately controlled. The 3D-shape of a phantom agreed with CT images within a deviation of 2 mm. Collision situations can be simulated within minutes and the results are displayed and reported. Conclusion: The developed software will be useful in improving patient safety and clinical efficiency for proton therapy. This work was supported by the National Research Foundation of Korea funded by Ministry of Science, ICT & Future Planning (2012M3A9B6055201, 2013M2A2A7043507), and Samsung Medical Center grant (GFO1130081)« less
Advanced Hybrid Modeling of Hall Thruster Plumes
2010-06-16
Hall thruster operated in the Large Vacuum Test Facility at the University of Michigan. The approach utilizes the direct simulation Monte Carlo method and the Particle-in-Cell method to simulate the collision and plasma dynamics of xenon neutrals and ions. The electrons are modeled as a fluid using conservation equations. A second code is employed to model discharge chamber behavior to provide improved input conditions at the thruster exit for the plume simulation. Simulation accuracy is assessed using experimental data previously
Simulation study on dynamics model of two kinds of on-orbit soft-contact mechanism
NASA Astrophysics Data System (ADS)
Ye, X.; Dong, Z. H.; Yang, F.
2018-05-01
Aiming at the problem that the operating conditions of the space manipulator is harsh and the space manipulator could not bear the large collision momentum, this paper presents a new concept and technical method, namely soft contact technology. Based on ADAMS dynamics software, this paper compares and simulates the mechanism model of on-orbit soft-contact mechanism based on the bionic model and the integrated double joint model. The main purpose is to verify the path planning ability and the momentum buffering ability based on the different design concept mechanism. The simulation results show that both the two mechanism models have the path planning function before the space target contact, and also has the momentum buffer and controllability during the space target contact process.
Collisions with Springs: A Useful Context for the Study of Analytical Dynamics
ERIC Educational Resources Information Center
Twomey, Patrick; O'Sullivan, Colm; O'Riordan, John; Fahy, Stephen
2012-01-01
A recent paper in this journal describes an experimental demonstration of the conservation of total momentum before, during, and after an elastic collision between two bodies. The experiment also appears to show that total kinetic energy is conserved in the process, including "during" the collision. There is a danger that this may give rise to…
Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Aji, L. B. Bayu; Shao, L.; Kucheyev, S. O.
2018-05-01
The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ˜-30 ° C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ˜0.1 eV , independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ˜0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.
Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si.
Wallace, J B; Aji, L B Bayu; Shao, L; Kucheyev, S O
2018-05-25
The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ∼-30 °C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ∼0.1 eV, independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ∼0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.
Simulation studies of self-organization of microtubules and molecular motors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian, Z.; Karpeev, D.; Aranson, I. S.
We perform Monte Carlo type simulation studies of self-organization of microtubules interacting with molecular motors. We model microtubules as stiff polar rods of equal length exhibiting anisotropic diffusion in the plane. The molecular motors are implicitly introduced by specifying certain probabilistic collision rules resulting in realignment of the rods. This approximation of the complicated microtubule-motor interaction by a simple instant collision allows us to bypass the 'computational bottlenecks' associated with the details of the diffusion and the dynamics of motors and the reorientation of microtubules. Consequently, we are able to perform simulations of large ensembles of microtubules and motors onmore » a very large time scale. This simple model reproduces all important phenomenology observed in in vitro experiments: Formation of vortices for low motor density and raylike asters and bundles for higher motor density.« less
Search for heavy long-lived particles that decay to photons at CDF II.
Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-09-21
We present the first search for heavy, long-lived particles that decay to photons at a hadron collider. We use a sample of gamma + jet + missing transverse energy events in pp[over] collisions at square root[s] = 1.96 TeV taken with the CDF II detector. Candidate events are selected based on the arrival time of the photon at the detector. Using an integrated luminosity of 570 pb(-1) of collision data, we observe 2 events, consistent with the background estimate of 1.3+/-0.7 events. While our search strategy does not rely on model-specific dynamics, we set cross section limits in a supersymmetric model with [Formula: see text] and place the world-best 95% C.L. lower limit on the [Formula: see text] mass of 101 GeV/c(2) at [Formula: see text].
NASA Astrophysics Data System (ADS)
Rajaram, Vignesh; Subramanian, Shankar C.
2016-07-01
An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Hardware-in-Loop experimental results showed that the SMC and full state feedback controller were able to prevent the collision. However, when the discrepancies in the form of parametric variations were included, the SMC provided better results in terms of reduced stopping distance and lower controller effort compared to the full state feedback controller.
NASA Astrophysics Data System (ADS)
Lang, Lin; Tian, Zean; Xiao, Shifang; Deng, Huiqiu; Ao, Bingyun; Chen, Piheng; Hu, Wangyu
2017-02-01
Molecular dynamics simulations have been performed to investigate the structural evolution of Cu64.5Zr35.5 metallic glasses under irradiation. The largest standard cluster analysis (LSCA) method was used to quantify the microstructure within the collision cascade regions. It is found that the majority of clusters within the collision cascade regions are full and defective icosahedrons. Not only the smaller structures (common neighbor subcluster) but also primary clusters greatly changed during the collision cascades; while most of these radiation damages self-recover quickly in the following quench states. These findings indicate the Cu-Zr metallic glasses have excellent irradiation-resistance properties.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces
NASA Astrophysics Data System (ADS)
Zutz, Amelia Marie
Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.
Studies of Disks Around the Sun and Other Stars
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1997-01-01
This is a NASA Origins of Solar Systems research program, and this NASA Headquarters grant has now been transferred to a new grant at NASA GSFC (NAG5-4082). Thus the need for this 'Final Report' on a project that is not, in fact, complete. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to "standard" theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Our program consists of modeling collisions in the Kuiper Belt and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper Belt collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model is to be used to study the evolution of surface mass density and the object-size spectrum in the disk.
Ratio of shear viscosity to entropy density in multifragmentation of Au + Au
NASA Astrophysics Data System (ADS)
Zhou, C. L.; Ma, Y. G.; Fang, D. Q.; Li, S. X.; Zhang, G. Q.
2012-06-01
The ratio of the shear viscosity (η) to entropy density (s) for the intermediate energy heavy-ion collisions has been calculated by using the Green-Kubo method in the framework of the quantum molecular dynamics model. The theoretical curve of η/s as a function of the incident energy for the head-on Au + Au collisions displays that a minimum region of η/s has been approached at higher incident energies, where the minimum η/s value is about 7 times Kovtun-Son-Starinets (KSS) bound (1/4π). We argue that the onset of minimum η/s region at higher incident energies corresponds to the nuclear liquid gas phase transition in nuclear multifragmentation.
Vorticity in heavy-ion collisions at the JINR Nuclotron-based Ion Collider fAcility
NASA Astrophysics Data System (ADS)
Ivanov, Yu. B.; Soldatov, A. A.
2017-05-01
Vorticity of matter generated in noncentral heavy-ion collisions at energies of the Nuclotron-based Ion Collider fAcility (NICA) at the Joint Institute for Nuclear Research (JINR) in Dubna is studied. Simulations are performed within the model of the three-fluid dynamics (3FD) which reproduces the major part of bulk observables at these energies. Comparison with earlier calculations is done. The qualitative pattern of the vorticity evolution is analyzed. It is demonstrated that the vorticity is mainly located at the border between participants and spectators. In particular, this implies that the relative Λ -hyperon polarization should be stronger at rapidities of the fragmentation regions than that in the midrapidity region.
Interaction dynamics of multiple autonomous mobile robots in bounded spatial domains
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1989-01-01
A general navigation strategy for multiple autonomous robots in a bounded domain is developed analytically. Each robot is modeled as a spherical particle (i.e., an effective spatial domain about the center of mass); its interactions with other robots or with obstacles and domain boundaries are described in terms of the classical many-body problem; and a collision-avoidance strategy is derived and combined with homing, robot-robot, and robot-obstacle collision-avoidance strategies. Results from homing simulations involving (1) a single robot in a circular domain, (2) two robots in a circular domain, and (3) one robot in a domain with an obstacle are presented in graphs and briefly characterized.
Intermediate mass black holes in AGN discs - I. Production and growth
NASA Astrophysics Data System (ADS)
McKernan, B.; Ford, K. E. S.; Lyra, W.; Perets, H. B.
2012-09-01
Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in discs around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disc. Stars, compact objects and binaries can migrate, accrete and merge within discs around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disc, gas in the disc damps NCO orbits. If gas damping dominates, NCOs remain in the disc with circularized orbits and large collision cross-sections. IMBH seeds can grow extremely rapidly by collisions with disc NCOs at low relative velocities, allowing for super-Eddington growth rates. Once an IMBH seed has cleared out its feeding zone of disc NCOs, growth of IMBH seeds can become dominated by gas accretion from the active galactic nucleus (AGN) disc. However, the IMBH can migrate in the disc and expand its feeding zone, permitting a super-Eddington accretion rate to continue. Growth of IMBH seeds via NCO collisions is enhanced by a pile-up of migrators. We highlight the remarkable parallel between the growth of IMBH in AGN discs with models of giant planet growth in protoplanetary discs. If an IMBH becomes massive enough it can open a gap in the AGN disc. IMBH migration in AGN discs may stall, allowing them to survive the end of the AGN phase and remain in galactic nuclei. Our proposed mechanisms should be more efficient at growing IMBH in AGN discs than the standard model of IMBH growth in stellar clusters. Dynamical heating of disc NCOs by cusp stars is transferred to the gas in an AGN disc helping to maintain the outer disc against gravitational instability. Model predictions, observational constraints and implications are discussed in a companion paper (Paper II).
Cold chemistry with cold molecules
NASA Astrophysics Data System (ADS)
Shagam, Yuval
Low temperature chemistry has been predicted to be dominated by quantum effects, such as shape resonances, where colliding particles exhibit wave-like behavior and tunnel through potential barriers. Observation of these quantum effects provides valuable insight into the microscopic mechanism that governs scattering processes. Our recent advances in the control of neutral supersonic molecular beams, namely merged beam experiments, have enabled continuous tuning of collision energies from the classical regime at room temperature down to 0.01 kelvin, where a quantum description of the dynamics is necessary. I will discuss our use of this technique to study how the dynamics change when molecules participate in collisions, demonstrating the crucial role the molecular quantum rotor plays. We have found that at low temperatures rotational state of the molecule can strongly affect collision dynamics considerably changing reaction rates, due to the different symmetries of the molecular wavefunction.
Collision group and renormalization of the Boltzmann collision integral.
Saveliev, V L; Nanbu, K
2002-05-01
On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.
Collision group and renormalization of the Boltzmann collision integral
NASA Astrophysics Data System (ADS)
Saveliev, V. L.; Nanbu, K.
2002-05-01
On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.
Radar-based collision avoidance for unmanned surface vehicles
NASA Astrophysics Data System (ADS)
Zhuang, Jia-yuan; Zhang, Lei; Zhao, Shi-qi; Cao, Jian; Wang, Bo; Sun, Han-bing
2016-12-01
Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.
Mathematical model for self-propelled droplets driven by interfacial tension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagai, Ken H.; Tachibana, Kunihito; Tobe, Yuta
2016-03-21
We propose a model for the spontaneous motion of a droplet induced by inhomogeneity in interfacial tension. The model is derived from a variation of the Lagrangian of the system and we use a time-discretized Morse flow scheme to perform its numerical simulations. Our model can naturally simulate the dynamics of a single droplet, as well as that of multiple droplets, where the volume of each droplet is conserved. We reproduced the ballistic motion and fission of a droplet, and the collision of two droplets was also examined numerically.
Vehicle-pedestrian collisions - Aspects regarding pedestrian kinematics, dynamics and biomechanics
NASA Astrophysics Data System (ADS)
Petrescu, L.; Petrescu, Al
2017-10-01
Vehicle-pedestrian collisions result in a substantial number of pedestrian fatalities and injuries worldwide. Concern continues to limit and reduce the tragic consequences suffered by pedestrians involved in road accidents, caused the vehicle-pedestrian accident reconstruction become an important area and distinctly outlined in the reconstruction of road incidents involving vehicle. This paper analyzes the dynamics of vehicle-pedestrian impact influence over pedestrian biomechanics, which is directly connected with the severity of injury after contact with the vehicle profile and with the place where the pedestrian is projected. The main goal of this paper is to highlight some features of reconstruction of road accidents involving pedestrian, looking at the kinematics and dynamics of pedestrian impact for a better understanding of the phenomena that occur. The study on the dynamics and biomechanics of the pedestrian hit by the vehicle is useful in order to understand how the injuries, including the lethal ones, are generated in the collision, what is essential in road accidents reconstruction.
Dynamic conductivity and plasmon profile of aluminum in the ultra-fast-matter regime
NASA Astrophysics Data System (ADS)
Dharma-wardana, M. W. C.
2016-06-01
We use an explicitly isochoric two-temperature theory to analyze recent x-ray laser scattering data for aluminum in the ultra-fast-matter (UFM) regime up to 6 eV. The observed surprisingly low conductivities are explained by including strong electron-ion scattering effects using the phase shifts calculated via the neutral-pseudo-atom model. The difference between the static conductivity for UFM-Al and equilibrium aluminum in the warm-dense matter state is clearly brought out by comparisons with available density-fucntional+molecular-dynamics simulations. Thus the applicability of the Mermin model to UFM is questioned. The static and dynamic conductivity, collision frequency, and the plasmon line shape, evaluated within the simplest Born approximation for UFM aluminum, are in good agreement with experiment.
BRIEF COMMUNICATION: A note on the Coulomb collision operator in curvilinear coordinates
NASA Astrophysics Data System (ADS)
Goncharov, P. R.
2010-10-01
The dynamic friction force, diffusion tensor, flux density in velocity space and Coulomb collision term are expressed in curvilinear coordinates via Trubnikov potential functions corresponding to each species of a background plasma. For comparison, explicit formulae are given for the dynamic friction force, diffusion tensor and collisional flux density in velocity space in curvilinear coordinates via Rosenbluth potential functions summed over all species of the background plasma.
Theory of Electronic, Atomic and Molecular Collisions.
1983-09-01
coordinate in a reactive collision. Dynamical entropy Is defined as a statistical property of a dynamical scattering matrix, indexed by internal states of a...matrix U by enforcing certain internal symmetries that are a property of canonical transformation matrices (FCANON algorithm: Section IV...channels are present in Eq. (12). This low of accuracy is a property of the system of coupled differential equations, not of any particular method of
Collision dynamics of two-dimensional non-Abelian vortices
NASA Astrophysics Data System (ADS)
Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio
2017-09-01
We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.
Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.
2018-03-22
Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.
Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less
NASA Astrophysics Data System (ADS)
Sornborger, Andrew T.; Stancil, Phillip; Geller, Michael R.
2018-05-01
One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born-Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈ 10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3-8 channels and circuit depths < 1000.
A New Aloha Anti-Collision Algorithm Based on CDMA
NASA Astrophysics Data System (ADS)
Bai, Enjian; Feng, Zhu
The tags' collision is a common problem in RFID (radio frequency identification) system. The problem has affected the integrity of the data transmission during the process of communication in the RFID system. Based on analysis of the existing anti-collision algorithm, a novel anti-collision algorithm is presented. The new algorithm combines the group dynamic frame slotted Aloha algorithm with code division multiple access technology. The algorithm can effectively reduce the collision probability between tags. Under the same number of tags, the algorithm is effective in reducing the reader recognition time and improve overall system throughput rate.
Modeling detour behavior of pedestrian dynamics under different conditions
NASA Astrophysics Data System (ADS)
Qu, Yunchao; Xiao, Yao; Wu, Jianjun; Tang, Tao; Gao, Ziyou
2018-02-01
Pedestrian simulation approach has been widely used to reveal the human behavior and evaluate the performance of crowd evacuation. In the existing pedestrian simulation models, the social force model is capable of predicting many collective phenomena. Detour behavior occurs in many cases, and the important behavior is a dominate factor of the crowd evacuation efficiency. However, limited attention has been attracted for analyzing and modeling the characteristics of detour behavior. In this paper, a modified social force model integrated by Voronoi diagram is proposed to calculate the detour direction and preferred velocity. Besides, with the consideration of locations and velocities of neighbor pedestrians, a Logit-based choice model is built to describe the detour direction choice. The proposed model is applied to analyze pedestrian dynamics in a corridor scenario with either unidirectional or bidirectional flow, and a building scenario in real-world. Simulation results show that the modified social force model including detour behavior could reduce the frequency of collision and deadlock, increase the average speed of the crowd, and predict more practical crowd dynamics with detour behavior. This model can also be potentially applied to understand the pedestrian dynamics and design emergent management strategies for crowd evacuations.
Direct modeling for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct construction of discrete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process. With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydrodynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime.
Axial current generation by P-odd domains in QCD matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iatrakis, Ioannis; Yin, Yi; Lin, Shu
2015-06-23
The dynamics of topological domains which break parity (P) and charge-parity (CP) symmetry of QCD are studied. We derive in a general setting that those local domains will generate an axial current and quantify the strength of the induced axial current. Thus, our findings are verified in a top-down holographic model. The relation between the real time dynamics of those local domains and the chiral magnetic field is also elucidated. We finally argue that such an induced axial current would be phenomenologically important in a heavy-ion collisions experiment.
A statistical physics viewpoint on the dynamics of the bouncing ball
NASA Astrophysics Data System (ADS)
Chastaing, Jean-Yonnel; Géminard, Jean-Christophe; Bertin, Eric
2016-06-01
We compute, in a statistical physics perspective, the dynamics of a bouncing ball maintained in a chaotic regime thanks to collisions with a plate experiencing an aperiodic vibration. We analyze in details the energy exchanges between the bead and the vibrating plate, and show that the coupling between the bead and the plate can be modeled in terms of both a dissipative process and an injection mechanism by an energy reservoir. An analysis of the injection statistics in terms of fluctuation relation is also provided.
Reid, Tim; du Plessis, Johan; Colyn, Robin; Benn, Grant; Millikin, Rhonda
2018-01-01
Pre-construction assessments of bird collision risk at proposed wind farms are often confounded by insufficient or poor quality data describing avian flight paths through the development area. These limitations can compromise the practical value of wind farm impact studies. We used radar- and observer-based methods to quantify great white pelican flights in the vicinity of a planned wind farm on the Cape west coast, South Africa, and modelled turbine collision risk under various scenarios. Model outputs were combined with pre-existing demographic data to evaluate the possible influence of the wind farm on the pelican population, and to examine impact mitigation options. We recorded high volumes of great white pelican movement through the wind farm area, coincident with the breeding cycle of the nearby colony and associated with flights to feeding areas located about 50 km away. Pelicans were exposed to collision risk at a mean rate of 2.02 High Risk flights.h-1. Risk was confined to daylight hours, highest during the middle of the day and in conditions of strong north-westerly winds, and 82% of High Risk flights were focused on only five of the proposed 35 turbine placements. Predicted mean mortality rates (22 fatalities.yr-1, 95% Cl, 16–29, with average bird and blade speeds and 95% avoidance rates) were not sustainable, resulting in a negative population growth rate (λ = 0.991). Models suggested that removal of the five highest risk turbines from the project, or institution of a curtailment regimen that shuts down at least these turbines at peak traffic times, could theoretically reduce impacts to manageable levels. However, in spite of the large quantities of high quality data used in our analyses, our collision risk model remains compromised by untested assumptions about pelican avoidance rates and uncertainties about the existing dynamics of the pelican population, and our findings are probably not reliable enough to ensure sustainable development. PMID:29408877
Jenkins, Andrew R; Reid, Tim; du Plessis, Johan; Colyn, Robin; Benn, Grant; Millikin, Rhonda
2018-01-01
Pre-construction assessments of bird collision risk at proposed wind farms are often confounded by insufficient or poor quality data describing avian flight paths through the development area. These limitations can compromise the practical value of wind farm impact studies. We used radar- and observer-based methods to quantify great white pelican flights in the vicinity of a planned wind farm on the Cape west coast, South Africa, and modelled turbine collision risk under various scenarios. Model outputs were combined with pre-existing demographic data to evaluate the possible influence of the wind farm on the pelican population, and to examine impact mitigation options. We recorded high volumes of great white pelican movement through the wind farm area, coincident with the breeding cycle of the nearby colony and associated with flights to feeding areas located about 50 km away. Pelicans were exposed to collision risk at a mean rate of 2.02 High Risk flights.h-1. Risk was confined to daylight hours, highest during the middle of the day and in conditions of strong north-westerly winds, and 82% of High Risk flights were focused on only five of the proposed 35 turbine placements. Predicted mean mortality rates (22 fatalities.yr-1, 95% Cl, 16-29, with average bird and blade speeds and 95% avoidance rates) were not sustainable, resulting in a negative population growth rate (λ = 0.991). Models suggested that removal of the five highest risk turbines from the project, or institution of a curtailment regimen that shuts down at least these turbines at peak traffic times, could theoretically reduce impacts to manageable levels. However, in spite of the large quantities of high quality data used in our analyses, our collision risk model remains compromised by untested assumptions about pelican avoidance rates and uncertainties about the existing dynamics of the pelican population, and our findings are probably not reliable enough to ensure sustainable development.
The fueling of active galaxies
NASA Technical Reports Server (NTRS)
Hernquist, Lars
1991-01-01
Collisions of galaxies are often invoked to explain violent phenomena in the universe. The dynamics of interacting galaxies is intrinsically three-dimensional and involves both gas and stellar dynamics. In general, a computational approach is needed to model galactic collisions. Galaxy encounters are studied using a hybrid N-body/hydrodynamics code, capable of integrating systems of stars, gas, and dark matter in a fully self-consistent manner. These experiments demonstrate that gravitational coupling between gas and stars in galactic interactions can drive most of the gas throughout a galaxy into the nucleus of a merger remnant. The high densities in these gas concentrations are likely to result in strong bursts of star formation. Hence, this process may explain the nuclear starbursts in some systems of interacting galaxies. Further collapse of these gas concentrations can trigger even more intense activity if some gas is eventually accreted by a supermassive black hole. Such an evolutionary sequence may account for some quasars and active galactic nuclei.
Aerial cooperative transporting and assembling control using multiple quadrotor-manipulator systems
NASA Astrophysics Data System (ADS)
Qi, Yuhua; Wang, Jianan; Shan, Jiayuan
2018-02-01
In this paper, a fully distributed control scheme for aerial cooperative transporting and assembling is proposed using multiple quadrotor-manipulator systems with each quadrotor equipped with a robotic manipulator. First, the kinematic and dynamic models of a quadrotor with multi-Degree of Freedom (DOF) robotic manipulator are established together using Euler-Lagrange equations. Based on the aggregated dynamic model, the control scheme consisting of position controller, attitude controller and manipulator controller is presented. Regarding cooperative transporting and assembling, multiple quadrotor-manipulator systems should be able to form a desired formation without collision among quadrotors from any initial position. The desired formation is achieved by the distributed position controller and attitude controller, while the collision avoidance is guaranteed by an artificial potential function method. Then, the transporting and assembling tasks request the manipulators to reach the desired angles cooperatively, which is achieved by the distributed manipulator controller. The overall stability of the closed-loop system is proven by a Lyapunov method and Matrosov's theorem. In the end, the proposed control scheme is simplified for the real application and then validated by two formation flying missions of four quadrotors with 2-DOF manipulators.
Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang
2014-01-01
Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.
Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang
2014-01-01
Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian. PMID:25097870
Simulating immersed particle collisions: the Devil's in the details
NASA Astrophysics Data System (ADS)
Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart
2015-11-01
Simulating densely-packed particle-laden flows with any degree of confidence requires accurate modeling of particle-particle collisions. To this end, we investigate a few collision models from the fluids and granular flow communities using sphere-wall collisions, which have been studied by a number of experimental groups. These collisions involve enough complexities--gravity, particle-wall lubrication forces, particle-wall contact stresses, particle-wake interactions--to challenge any collision model. Evaluating the successes and shortcomings of the collision models, we seek improvements in order to obtain more consistent results. We will highlight several implementation details that are crucial for obtaining accurate results.
NASA Astrophysics Data System (ADS)
Li, Ying; Kalia, Rajiv K.; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya
2016-05-01
At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08769d
Actual Romanian research in post-newtonian dynamics
NASA Astrophysics Data System (ADS)
Mioc, V.; Stavinschi, M.
2007-05-01
We survey the recent Romanian results in the study of the two-body problem in post-Newtonian fields. Such a field is characterized, in general, by a potential of the form U(q)=|q|^{-1}+ something (small, but not compulsorily). We distinguish some classes of post-Newtonian models: relativistic (Schwarzschild, Fock, Einstein PN, Reissner-Nordström, Schwarzschild - de Sitter, etc.) and nonrelativistic (Manev, Mücket-Treder, Seeliger, gravito-elastic, etc.). Generalized models (the zonal-satellite problem, quasihomogeneous fields), as well as special cases (anisotropic Manev-type and Schwarzschild-type models, Popovici or Popovici-Manev photogravitational problem), were also tackled. The methods used in such studies are various: analytical (using mainly the theory of perturbations, but also other theories: functions of complex variable, variational calculus, etc.), geometric (qualitative approach of the theory of dynamical systems), and numerical (especially using the Poincaré-section technique). The areas of interest and the general results obtained focus on: exact or approximate analytical solutions; characteristics of local flows (especially at limit situations: collision and escape); quasiperiodic and periodic orbits; equilibria; symmetries; chaoticity; geometric description of the global flow (and physical interpretation of the phase-space structure). We emphasize some special features, which cannot be met within the Newtonian framework: black-hole effect, oscillatory collisions, radial librations, bounded orbits for nonnegative energy, existence of unstable circular motion (or unstable rest), symmetric periodic orbits within anisotropic models, etc.
Singularity free N-body simulations called 'Dynamic Universe Model' don't require dark matter
NASA Astrophysics Data System (ADS)
Naga Parameswara Gupta, Satyavarapu
For finding trajectories of Pioneer satellite (Anomaly), New Horizons satellite going to Pluto, the Calculations of Dynamic Universe model can be successfully applied. No dark matter is assumed within solar system radius. The effect on the masses around SUN shows as though there is extra gravitation pull toward SUN. It solves the Dynamics of Extra-solar planets like Planet X, satellite like Pioneer and NH for 3-Position, 3-velocity 3-accelaration for their masses, considering the complex situation of Multiple planets, Stars, Galaxy parts and Galaxy centre and other Galaxies Using simple Newtonian Physics. It already solved problems Missing mass in Galaxies observed by galaxy circular velocity curves successfully. Singularity free Newtonian N-body simulations Historically, King Oscar II of Sweden an-nounced a prize to a solution of N-body problem with advice given by Güsta Mittag-Leffler in 1887. He announced `Given a system of arbitrarily many mass points that attract each according to Newton's law, under the assumption that no two points ever collide, try to find a representation of the coordinates of each point as a series in a variable that is some known function of time and for all of whose values the series converges uniformly.'[This is taken from Wikipedia]. The announced dead line that time was1st June 1888. And after that dead line, on 21st January 1889, Great mathematician Poincaré claimed that prize. Later he himself sent a telegram to journal Acta Mathematica to stop printing the special issue after finding the error in his solution. Yet for such a man of science reputation is important than money. [ Ref Book `Celestial mechanics: the waltz of the planets' By Alessandra Celletti, Ettore Perozzi, page 27]. He realized that he has been wrong in his general stability result! But till now nobody could solve that problem or claimed that prize. Later all solutions resulted in singularities and collisions of masses, given by many people . . . . . . . . . . . . . . . . . . . . . . . . .. Now I can say that the Dynamic Universe Model solves this classical N-body problem where only Newtonian Gravi-tation law and classical Physics were used. The solution converges at all points. There are no multiple values, diverging solutions or divided by zero singularities. Collisions of masses depend on physical values of masses and their space distribution only. These collisions do not happen due to internal inherent problems of Dynamic universe Model. If the mass distribution is homogeneous and isotropic, the masses will colloid. If the mass distribution is heterogeneous and anisotropic, they do not colloid. This approach solves many problems which otherwise can not be solved by General relativity, Steady state universe model etc. . .
Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor
NASA Technical Reports Server (NTRS)
Prinz, F. B.
1991-01-01
Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.
NASA Astrophysics Data System (ADS)
Guerdane, M.; Berghoff, M.
2018-04-01
By combining molecular dynamics (MD) simulations with phase-field (PF) and phase-field crystal (PFC) modeling we study collision-controlled growth kinetics from the melt for pure Fe. The MD/PF comparison shows, on the one hand, that the PF model can be properly designed to reproduce quantitatively different aspects of the growth kinetics and anisotropy of planar and curved solid-liquid interfaces. On the other hand, this comparison demonstrates the ability of classical MD simulations to predict morphology and dynamics of moving curved interfaces up to a length scale of about 0.15 μ m . After mapping the MD model to the PF one, the latter permits to analyze the separate contribution of different anisotropies to the interface morphology. The MD/PFC agreement regarding the growth anisotropy and morphology extends the trend already observed for the here used PFC model in describing structural and elastic properties of bcc Fe.
Dynamic Vibrotactile Signals for Forward Collision Avoidance Warning Systems
Meng, Fanxing; Gray, Rob; Ho, Cristy; Ahtamad, Mujthaba
2015-01-01
Objective: Four experiments were conducted in order to assess the effectiveness of dynamic vibrotactile collision-warning signals in potentially enhancing safe driving. Background: Auditory neuroscience research has demonstrated that auditory signals that move toward a person are more salient than those that move away. If this looming effect were found to extend to the tactile modality, then it could be utilized in the context of in-car warning signal design. Method: The effectiveness of various vibrotactile warning signals was assessed using a simulated car-following task. The vibrotactile warning signals consisted of dynamic toward-/away-from-torso cues (Experiment 1), dynamic versus static vibrotactile cues (Experiment 2), looming-intensity- and constant-intensity-toward-torso cues (Experiment 3), and static cues presented on the hands or on the waist, having either a low or high vibration intensity (Experiment 4). Results: Braking reaction times (BRTs) were significantly faster for toward-torso as compared to away-from-torso cues (Experiments 1 and 2) and static cues (Experiment 2). This difference could not have been attributed to differential responses to signals delivered to different body parts (i.e., the waist vs. hands; Experiment 4). Embedding a looming-intensity signal into the toward-torso signal did not result in any additional BRT benefits (Experiment 3). Conclusion: Dynamic vibrotactile cues that feel as though they are approaching the torso can be used to communicate information concerning external events, resulting in a significantly faster reaction time to potential collisions. Application: Dynamic vibrotactile warning signals that move toward the body offer great potential for the design of future in-car collision-warning system. PMID:25850161
Coordinated Dynamic Behaviors for Multirobot Systems With Collision Avoidance.
Sabattini, Lorenzo; Secchi, Cristian; Fantuzzi, Cesare
2017-12-01
In this paper, we propose a novel methodology for achieving complex dynamic behaviors in multirobot systems. In particular, we consider a multirobot system partitioned into two subgroups: 1) dependent and 2) independent robots. Independent robots are utilized as a control input, and their motion is controlled in such a way that the dependent robots solve a tracking problem, that is following arbitrarily defined setpoint trajectories, in a coordinated manner. The control strategy proposed in this paper explicitly addresses the collision avoidance problem, utilizing a null space-based behavioral approach: this leads to combining, in a non conflicting manner, the tracking control law with a collision avoidance strategy. The combination of these control actions allows the robots to execute their task in a safe way. Avoidance of collisions is formally proven in this paper, and the proposed methodology is validated by means of simulations and experiments on real robots.
Asteroid family dynamics in the inner main belt
NASA Astrophysics Data System (ADS)
Dykhuis, Melissa Joy
The inner main asteroid belt is an important source of near-Earth objects and terrestrial planet impactors; however, the dynamics and history of this region are challenging to understand, due to its high population density and the presence of multiple orbital resonances. This dissertation explores the properties of two of the most populous inner main belt family groups --- the Flora family and the Nysa-Polana complex --- investigating their memberships, ages, spin properties, collision dynamics, and range in orbital and reflectance parameters. Though diffuse, the family associated with asteroid (8) Flora dominates the inner main belt in terms of the extent of its members in orbital parameter space, resulting in its significant overlap with multiple neighboring families. This dissertation introduces a new method for membership determination (the core sample method) which enables the distinction of the Flora family from the background, permitting its further analysis. The Flora family is shown to have a signature in plots of semimajor axis vs. size consistent with that expected for a collisional family dispersed as a result of the Yarkovsky radiation effect. The family's age is determined from the Yarkovsky dispersion to be 950 My. Furthermore, a survey of the spin sense of 21 Flora-region asteroids, accomplished via a time-efficient modification of the epoch method for spin sense determination, confirms the single-collision Yarkovsky-dispersed model for the family's origin. The neighboring Nysa-Polana complex is the likely source region for many of the carbonaceous near-Earth asteroids, several of which are important targets for spacecraft reconnaissance and sample return missions. Family identification in the Nysa-Polana complex via the core sample method reveals two families associated with asteroid (135) Hertha, both with distinct age and reflectance properties. The larger of these two families demonstrates a correlation in semimajor axis and eccentricity indicating that its family-forming collision occurred near the parent body's aphelion. In addition, the Eulalia family is connected with a possible second component, suggesting an anisotropic distribution of ejecta from its collision event.
The quantum dynamics of electronically nonadiabatic chemical reactions
NASA Technical Reports Server (NTRS)
Truhlar, Donald G.
1993-01-01
Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally adiabatic functions in various quantum scattering algorithms.
Continental underplating after slab break-off
NASA Astrophysics Data System (ADS)
Magni, V.; Allen, M. B.; van Hunen, J.; Bouilhol, P.
2017-09-01
We present three-dimensional numerical models to investigate the dynamics of continental collision, and in particular what happens to the subducted continental lithosphere after oceanic slab break-off. We find that in some scenarios the subducting continental lithosphere underthrusts the overriding plate not immediately after it enters the trench, but after oceanic slab break-off. In this case, the continental plate first subducts with a steep angle and then, after the slab breaks off at depth, it rises back towards the surface and flattens below the overriding plate, forming a thick horizontal layer of continental crust that extends for about 200 km beyond the suture. This type of behaviour depends on the width of the oceanic plate marginal to the collision zone: wide oceanic margins promote continental underplating and marginal back-arc basins; narrow margins do not show such underplating unless a far field force is applied. Our models show that, as the subducted continental lithosphere rises, the mantle wedge progressively migrates away from the suture and the continental crust heats up, reaching temperatures >900 °C. This heating might lead to crustal melting, and resultant magmatism. We observe a sharp peak in the overriding plate rock uplift right after the occurrence of slab break-off. Afterwards, during underplating, the maximum rock uplift is smaller, but the affected area is much wider (up to 350 km). These results can be used to explain the dynamics that led to the present-day crustal configuration of the India-Eurasia collision zone and its consequences for the regional tectonic and magmatic evolution.
A collision model for safety evaluation of autonomous intelligent cruise control.
Touran, A; Brackstone, M A; McDonald, M
1999-09-01
This paper describes a general framework for safety evaluation of autonomous intelligent cruise control in rear-end collisions. Using data and specifications from prototype devices, two collision models are developed. One model considers a train of four cars, one of which is equipped with autonomous intelligent cruise control. This model considers the car in front and two cars following the equipped car. In the second model, none of the cars is equipped with the device. Each model can predict the possibility of rear-end collision between cars under various conditions by calculating the remaining distance between cars after the front car brakes. Comparing the two collision models allows one to evaluate the effectiveness of autonomous intelligent cruise control in preventing collisions. The models are then subjected to Monte Carlo simulation to calculate the probability of collision. Based on crash probabilities, an expected value is calculated for the number of cars involved in any collision. It is found that given the model assumptions, while equipping a car with autonomous intelligent cruise control can significantly reduce the probability of the collision with the car ahead, it may adversely affect the situation for the following cars.
COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinhardt, Zoee M.; Stewart, Sarah T., E-mail: Zoe.Leinhardt@bristol.ac.uk, E-mail: sstewart@eps.harvard.edu
2012-01-20
Collisions are the core agent of planet formation. In this work, we derive an analytic description of the dynamical outcome for any collision between gravity-dominated bodies. We conduct high-resolution simulations of collisions between planetesimals; the results are used to isolate the effects of different impact parameters on collision outcome. During growth from planetesimals to planets, collision outcomes span multiple regimes: cratering, merging, disruption, super-catastrophic disruption, and hit-and-run events. We derive equations (scaling laws) to demarcate the transition between collision regimes and to describe the size and velocity distributions of the post-collision bodies. The scaling laws are used to calculate mapsmore » of collision outcomes as a function of mass ratio, impact angle, and impact velocity, and we discuss the implications of the probability of each collision regime during planet formation. Collision outcomes are described in terms of the impact conditions and the catastrophic disruption criteria, Q*{sub RD}-the specific energy required to disperse half the total colliding mass. All planet formation and collisional evolution studies have assumed that catastrophic disruption follows pure energy scaling; however, we find that catastrophic disruption follows nearly pure momentum scaling. As a result, Q*{sub RD} is strongly dependent on the impact velocity and projectile-to-target mass ratio in addition to the total mass and impact angle. To account for the impact angle, we derive the interacting mass fraction of the projectile; the outcome of a collision is dependent on the kinetic energy of the interacting mass rather than the kinetic energy of the total mass. We also introduce a new material parameter, c*, that defines the catastrophic disruption criteria between equal-mass bodies in units of the specific gravitational binding energy. For a diverse range of planetesimal compositions and internal structures, c* has a value of 5 {+-} 2; whereas for strengthless planets, we find c* = 1.9 {+-} 0.3. We refer to the catastrophic disruption criteria for equal-mass bodies as the principal disruption curve, which is used as the reference value in the calculation of Q*{sub RD} for any collision scenario. The analytic collision model presented in this work will significantly improve the physics of collisions in numerical simulations of planet formation and collisional evolution.« less
Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne.
Hong, Xuhai; Wang, Feng; Jiao, Yalong; Su, Wenyong; Wang, Jianguo; Gou, Bingcong
2013-08-28
Based on the time-dependent density functional theory, a method is developed to study ion-atom collision dynamics, which self-consistently couples the quantum mechanical description of electron dynamics with the classical treatment of the ion motion. Employing real-time and real-space method, the coordinate space translation technique is introduced to allow one to focus on the region of target or projectile depending on the actual concerned process. The benchmark calculations are performed for the collisions of He(2+) + Ne, and the time evolution of electron density distribution is monitored, which provides interesting details of the interaction dynamics between the electrons and ion cores. The cross sections of single and many electron capture and loss have been calculated in the energy range of 1-1000 keV/amu, and the results show a good agreement with the available experiments over a wide range of impact energies.
NASA Astrophysics Data System (ADS)
Jiang, Hai
The study of identified particles from deuteron(d)+gold(Au) collisions provide a crucial reference to investigate nuclear effects observed in Au+Au collisions where a thermalized partonic state - Quark Gluon Plasma (QGP) - is thought to have been created. The measurements of transverse mass (mT) and momentum (pT) spectra at mid-rapidity (| y| < 1) for the identified strange hadrons: K0S , Λ + Λ and xi- + xi+ from d+Au collisions are presented. The measured pT covers 0.4 < p T < 6.0 GeV/c for K0S and Λ + Λ and 0.6 < pT < 5.0 GeV/c for xi- + xi+. These particles were reconstructed from the topological characteristics of their weak decays in the STAR Time Projection Chamber (TPC). The mT spectra of these particles are well described by a double exponential function which can be understood by two component models: soft (thermal) hadron production at low mT and hard hadron production at high mT. The integrated yields (dN/dy) and mean pT (< pT >) of these particles are calculated from the fit functions for different centralities. The dN/dy normalized to the number of participants (Npart) increase with Npart. The Λ(Λ ) dN/dy values at the mid-rapidity and forward rapidity regions agree with the EPOS model calculations. The measured Λ/ K0S ratios show the greatest baryon enhancement at pT ˜ 2 GeV/c in d+Au collisions. The strangeness enhancement going from d+Au to Au+Au collisions grows with the number of strange quark in a hadron. The magnitude of the enhancement is in the same order as the SPS measurement. The nuclear modification factors RCP normalized to binary collisions indicate that the Cronin effect in d+Au collisions has a distinct particle type dependence. The RCP ratios show a distinct baryon versus meson dependence: the RCP for xi- + xi+ follows that for Λ + Λ while the R CP for the φ is close to that for the K0S . The mechanism based on initial hadron or parton multiple scattering is not sufficient to explain this particle type dependence. Hadronization processes through multi-parton dynamics such as coalescence and recombination models are likely to be important for explaining baryon enhancement and the Cronin effect in high-energy d+Au collisions.
Dynamical and collisional evolution of Halley-type comets
NASA Astrophysics Data System (ADS)
van der Helm, E.; Jeffers, S. V.
2012-03-01
The number of observed Halley-type comets is hundreds of times less than predicted by models (Levison, H.F., Dones, L., Duncan, M.J. [2001]. Astron. J. 121, 2253-2267). In this paper we investigate the impact of collisions with planetesimals on the evolution of Halley-type comets. First we compute the dynamical evolution of a sub-set of 21 comets using the MERCURY integrator package over 100 Myr. The dynamical lifetime is determined to be of the order of 105-106 years in agreement with previous work. The collisional probability of Halley-type comets colliding with known asteroids, a simulated population of Kuiper-belt objects, and planets, is calculated using a modified, Öpik-based collision code. Our results show that the catastrophic disruption of the cometary nucleus has a very low probability of occurring, and disruption through cumulative minor impacts is concluded to be negligible. The dust mantle formed from ejected material falling back to the comet’s surface is calculated to be less than a few centimeters thick, which is insignificant compared to the mantle formed by volatile depletion, while planetary encounters were found to be a negligible disruption mechanism.
Nano-swimmers in biological membranes and propulsion hydrodynamics in two dimensions.
Huang, Mu-Jie; Chen, Hsuan-Yi; Mikhailov, Alexander S
2012-11-01
Active protein inclusions in biological membranes can represent nano-swimmers and propel themselves in lipid bilayers. A simple model of an active inclusion with three particles (domains) connected by variable elastic links is considered. First, the membrane is modeled as a two-dimensional viscous fluid and propulsion behavior in two dimensions is examined. After that, an example of a microscopic dynamical simulation is presented, where the lipid bilayer structure of the membrane is resolved and the solvent effects are included by multiparticle collision dynamics. Statistical analysis of data reveals ballistic motion of the swimmer, in contrast to the classical diffusion behavior found in the absence of active transitions between the states.
Ekpyrosis and inflationary dynamics in heavy ion collisions: the role of quantum fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dusling, K.; Venugopalan, R.; Gelis, F.
We summarize recent significant progress in the development of a first-principles formalism to describe the formation and evolution of matter in very high energy heavy ion collisions. The key role of quantum fluctuations both before and after a collision is emphasized. Systematic computations are now feasible to address early time isotropization, flow, parton energy loss and the Chiral Magnetic Effect.
Impact parameter smearing effects on isospin sensitive observables in heavy ion collisions
NASA Astrophysics Data System (ADS)
Li, Li; Zhang, Yingxun; Li, Zhuxia; Wang, Nan; Cui, Ying; Winkelbauer, Jack
2018-04-01
The validity of impact parameter estimation from the multiplicity of charged particles at low-intermediate energies is checked within the framework of the improved quantum molecular dynamics model. The simulations show that the multiplicity of charged particles cannot estimate the impact parameter of heavy ion collisions very well, especially for central collisions at the beam energies lower than ˜70 MeV/u due to the large fluctuations of the multiplicity of charged particles. The simulation results for the central collisions defined by the charged particle multiplicity are compared to those by using impact parameter b =2 fm and it shows that the charge distribution for 112Sn+112Sn at the beam energy of 50 MeV/u is different evidently for two cases; and the chosen isospin sensitive observable, the coalescence invariant single neutron to proton yield ratio, reduces less than 15% for neutron-rich systems Sn,132124+124Sn at Ebeam=50 MeV/u, while the coalescence invariant double neutron to proton yield ratio does not have obvious difference. The sensitivity of the chosen isospin sensitive observables to effective mass splitting is studied for central collisions defined by the multiplicity of charged particles. Our results show that the sensitivity is enhanced for 132Sn+124Sn relative to that for 124Sn+124Sn , and this reaction system should be measured in future experiments to study the effective mass splitting by heavy ion collisions.
A new version of JQMD for soft heavy-ion collisions
NASA Astrophysics Data System (ADS)
Mancusi, Davide; Niita, Koji; Sihver, Lembit
The JQMD model (JAERI Quantum Molecular Dynamics) has been successfully used for a long time now to describe many different aspects of nuclear reactions in a unified way. However, in soft, peripheral heavy-ion collisions, the JQMD model shows instabilities and spurious fluctuations that are responsible for an overestimation of few-nucleon-removal cross sections. The reasons of this shortcoming are, firstly, that the JQMD is not fully relativistically covariant, and secondly, that the fermionic nature of the nuclear ground state cannot be faithfully reproduced in a semi-classical framework. We present here R-JQMD, an improved and fully covariant version of JQMD that also features a new ground-state initialisation algorithm for nuclei. The new code is only marginally slower than JQMD and it produces physically sounder results. We also discuss whether R-JQMD can be adjusted to improve JQMD's agreement with measured heavy-ion fragmentation cross sections.
Elastic and inelastic collisions of swarms
NASA Astrophysics Data System (ADS)
Armbruster, Dieter; Martin, Stephan; Thatcher, Andrea
2017-04-01
Scattering interactions of swarms in potentials that are generated by an attraction-repulsion model are studied. In free space, swarms in this model form a well-defined steady state describing the translation of a stable formation of the particles whose shape depends on the interaction potential. Thus, the collision between a swarm and a boundary or between two swarms can be treated as (quasi)-particle scattering. Such scattering experiments result in internal excitations of the swarm or in bound states, respectively. In addition, varying a parameter linked to the relative importance of damping and potential forces drives transitions between elastic and inelastic scattering of the particles. By tracking the swarm's center of mass, a refraction rule is derived via simulations relating the incoming and outgoing directions of a swarm hitting the wall. Iterating the map derived from the refraction law allows us to predict and understand the dynamics and bifurcations of swarms in square boxes and in channels.
NASA Technical Reports Server (NTRS)
Houseman, G.; England, P.
1986-01-01
The present investigation has the objective to perform numerical experiments on a rheologically simple continuum model for the continental lithosphere. It is attempted to obtain a better understanding of the dynamics of continental deformation. Calculations are presented of crustal thickness distributions, stress, strain, strain rate fields, latitudinal displacements, and finite rotations, taking into account as basis a model for continental collision which treats the litoshphere as a thin viscous layer subject to indenting boundary conditions. The results of this paper support the conclusions of England and McKenzie (1982) regarding the role of gravity in governing the deformation of a thin viscous layer subject to indenting boundary conditions. The results of the experiments are compared with observations of topography, stress and strain rate fields, and palaeomagnetic latitudinal displacements in Asia.
In-flight dynamics of volcanic ballistic projectiles
NASA Astrophysics Data System (ADS)
Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.
2017-09-01
Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.
Lombardi, A; Faginas-Lago, N; Pacifici, L; Grossi, G
2015-07-21
Carbon dioxide molecules can store and release tens of kcal/mol upon collisions, and such an energy transfer strongly influences the energy disposal and the chemical processes in gases under the extreme conditions typical of plasmas and hypersonic flows. Moreover, the energy transfer involving CO2 characterizes the global dynamics of the Earth-atmosphere system and the energy balance of other planetary atmospheres. Contemporary developments in kinetic modeling of gaseous mixtures are connected to progress in the description of the energy transfer, and, in particular, the attempts to include non-equilibrium effects require to consider state-specific energy exchanges. A systematic study of the state-to-state vibrational energy transfer in CO2 + CO2 collisions is the focus of the present work, aided by a theoretical and computational tool based on quasiclassical trajectory simulations and an accurate full-dimension model of the intermolecular interactions. In this model, the accuracy of the description of the intermolecular forces (that determine the probability of energy transfer in molecular collisions) is enhanced by explicit account of the specific effects of the distortion of the CO2 structure due to vibrations. Results show that these effects are important for the energy transfer probabilities. Moreover, the role of rotational and vibrational degrees of freedom is found to be dominant in the energy exchange, while the average contribution of translations, under the temperature and energy conditions considered, is negligible. Remarkable is the fact that the intramolecular energy transfer only involves stretching and bending, unless one of the colliding molecules has an initial symmetric stretching quantum number greater than a threshold value estimated to be equal to 7.
Diffusional correlations among multiple active sites in a single enzyme.
Echeverria, Carlos; Kapral, Raymond
2014-04-07
Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.
Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy
NASA Astrophysics Data System (ADS)
Wang, Xianbing; Lin, Heyun; Fang, Shuhua; Jin, Ping; Wang, Junhua; Ho, S. L.
2011-04-01
A new flux-weakening control strategy for permanent magnet contactors is proposed. By matching the dynamic attraction force and the antiforce, the terminal velocity and collision energy of the movable iron in the closing process are significantly reduced. The movable iron displacement is estimated by detecting the closing voltage and current with the proposed control. A dynamic mathematical model is also established under four kinds of excitation scenarios. The attraction force and flux linkage are predicted by finite element method and the dynamics of the closing process is simulated using the 4th-order Runge-Kutta algorithm. Experiments are carried out on a 250A prototype with an intelligent control unit to verify the proposed control strategy.
Collisions of deformable cells lead to collective migration
NASA Astrophysics Data System (ADS)
Aranson, Igor; Löber, Jakob; Ziebert, Falko
2015-03-01
Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - actomyosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility. J. L. acknowledges funding from the German Science Foundation (DFG) within the GRK 1558. F. Z. acknowledges funding from the German Science Foundation (DFG) via Project ZI 1232/2-1. I. S. A. was supported by the US Department of Energy (DOE), Office of.
NASA Astrophysics Data System (ADS)
Dulieu, O.; Hall, F. H. J.; Eberle, P.; Hegi, G.; Raoult, M.; Aymar, M.; Willitsch, S.
2013-05-01
Cold chemical reactions between laser-cooled Ca+ or Ba+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the collision energy range Ecoll /kB = 20 mK-20 K. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes including the radiative formation of CaRb+ and BaRb+ molecular ions has been analyzed using accurate potential energy curves and quantum-scattering calculations for the radiative channels. It is shown that the energy dependence of the reaction rates is governed by long-range interactions, while its magnitude is determined by short-range non-adiabatic and radiative couplings. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral collisions. This work was supported by the Swiss National Science Foundation and the COST Action ''Ion Traps for Tomorrow's Applications''.
Lightwave-driven quasiparticle collisions on a subcycle timescale
NASA Astrophysics Data System (ADS)
Langer, F.; Hohenleutner, M.; Schmid, C. P.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.
2016-05-01
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances—called quasiparticles—such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
Lightwave-driven quasiparticle collisions on a subcycle timescale.
Langer, F; Hohenleutner, M; Schmid, C P; Poellmann, C; Nagler, P; Korn, T; Schüller, C; Sherwin, M S; Huttner, U; Steiner, J T; Koch, S W; Kira, M; Huber, R
2016-05-12
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances--called quasiparticles--such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
Pawlak, Mariusz; Shagam, Yuval; Klein, Ayelet; Narevicius, Edvardas; Moiseyev, Nimrod
2017-03-16
We recently developed an adiabatic theory for cold molecular collision experiments. In our previous application of this theory ( Pawlak, M.; et al. J. Chem. Phys. 2015 , 143 , 074114 ), we assumed that during the experiment the collision of an atom with a diatom takes place when the diatom is in the ground rotational state and is located in a plane. In this paper, we present how the variational approach of the adiabatic theory for low-temperature collision experiments can be used for the study a 5D collision between the atom and the diatomic molecule with no limitations on its rotational quantum states and no plane restrictions. Moreover, we show here the dramatic differences in the measured reaction rates of He(2 3 S 1 ) + ortho/para-H 2 → He(1s 2 ) + ortho/para-H 2 + + e - resulting from the anisotropic long-range interactions in the reaction. In collisions of metastable helium with molecular hydrogen in the ground rotational state, the isotropic potential term dominates the dynamics. When the collision is with molecular hydrogen in the first excited rotational state, the nonisotropic interactions play an important role in the dynamics. The agreement of our results with the latest experimental findings ( Klein , A. ; et al. Nat. Phys. 2017 , 13 , 35 - 38 ) is very good.
NASA Astrophysics Data System (ADS)
Tseng, Tai-Lin; Chi, Hui-Ching; Huang, Bor-Shouh; Godoladze, Tea; Javakhishvili, Zurab; Karakhanyan, Arkadi
2015-04-01
Recent studies of seismic tomography show velocity anomalies in the mantle transition zone (TZ) under Zagros and Iranian Plateau, which are created by active collision between Africa and Eurasia. Remnants of Neo-Tethys slab that subducted before the collision might had experienced a break-off and likely be rested in the deep mantle. In this study, we utilize triplicate arrivals of high-resolution P waveforms to investigate the velocity structure of mantle beneath this continental collision zone and the surroundings. By combining several broadband arrays in eastern Turkey and Caucasus, we construct a fan of profiles, each about 800 km long, which consist of triplicate waveforms generated from the 410- and 660-km discontinuities. The method is particularly sensitive to the size of the velocity contrast for the sampled regions, including the central Iranian Plateau, Turan shield and part of South Caspian basin. Our results show that the lower TZ under the stable Turan shield is fast. The corresponding 660-km contrast is about 4.5% only, smaller than the value in global average model IASP91, but fairly close to that under the northern Indian shield in Precambrian age. For profiles sampling Iran, we observe azimuthal changes in the waveforms which require further data division or grouping. The preliminary analysis suggests that the velocity near the bottom of the TZ is comparable to model appropriate for Turan and probably has a slightly shallower 660-km discontinuity. We hope the comparisons between velocity structures under different terranes can improve our understandings to the lithosphere-mantle dynamics under the process of continental collision.
Constructing a Teleseismic Tomographic Image of Taiwan using BATS Recordings
NASA Astrophysics Data System (ADS)
Krajewski, J.; Roecker, S.
2005-12-01
Taiwan is an evolving arc-continent collision located at a complicated part of the plate boundary between the Eurasian and Philippine Sea plates. To better understand the role of the upper mantle in the dynamics of this collision, we reviewed 4 years of data from the Broadband Array in Taiwan for Seismology (BATS) in Taiwan to construct a teleseismic dataset for tomographic imaging of the subsurface of the island. From an initial selection of approximately 300 events, we used waveform correlation to generate a dataset of 4500 relative arrival times. To calculate accurate travel times in three dimensional wavespeed models over the large lateral distances in our model (~800 km), we solve the eikonal equation directly in a spherical coordinate system. We reduce the influence of smearing of crustal heterogeneity into the deeper mantle, we fix the upper 30 km to a previously determined P wavespeed model for the region. Initial resolution tests suggest a spatial limit on the order of 40 km.
Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.
2007-09-01
Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.
Observables and open problems for NICA
NASA Astrophysics Data System (ADS)
Bratkovskaya, E. L.; Cassing, W.; Moreau, P.; Palmese, A.
2016-08-01
The restoration of chiral symmetry in hot dense nuclear systems in competition with a transition to deconfined matter in central nucleus-nucleus collisions at NICA energies is a central problem of nuclear physics. To explore these transitions we study the production of hadrons in nucleus-nucleus collisions from 4 to 160A GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral-symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. The modeling of chiral-symmetry restoration in PHSD is driven by the pion-nucleon Σ-term in the computation of the quark scalar condensate < q bar{q} rangle that serves as an order parameter for CSR and is assumed to scale with the effective quark masses ms and mq. Furthermore, the nucleon scalar density ρs, which also enters the computation of < q bar{q} rangle, is evaluated within the nonlinear σ- ω model which is constrained by Dirac-Brueckner calculations and low-energy heavy-ion reactions. The essential impact of CSR is found in the Schwinger mechanism (for string decay) which fixes the ratio of strange to light quark production in the hadronic medium. We find that above ˜ 80 A GeV the reaction dynamics of heavy nuclei is dominantly driven by partonic degrees-of-freedom such that traces of the chiral-symmetry restoration are hard to identify. Our studies support the conjecture of "quarkyonic matter" in heavy-ion collisions from about 5 to 40A GeV and suggest a microscopic explanation for the maximum in the K+/π+ ratio at about 30A GeV which only shows up if in addition to CSR a deconfinement transition to partonic degrees-of-freedom is incorporated in the reaction dynamics.
Impact splash chondrule formation during planetesimal recycling
NASA Astrophysics Data System (ADS)
Lichtenberg, Tim; Golabek, Gregor J.; Dullemond, Cornelis P.; Schönbächler, Maria; Gerya, Taras V.; Meyer, Michael R.
2018-03-01
Chondrules, mm-sized igneous-textured spherules, are the dominant bulk silicate constituent of chondritic meteorites and originate from highly energetic, local processes during the first million years after the birth of the Sun. So far, an astrophysically consistent chondrule formation scenario explaining major chemical, isotopic and textural features, in particular Fe,Ni metal abundances, bulk Fe/Mg ratios and intra-chondrite chemical and isotopic diversity, remains elusive. Here, we examine the prospect of forming chondrules from impact splashes among planetesimals heated by radioactive decay of short-lived radionuclides using thermomechanical models of their interior evolution. We show that intensely melted planetesimals with interior magma oceans became rapidly chemically equilibrated and physically differentiated. Therefore, collisional interactions among such bodies would have resulted in chondrule-like but basaltic spherules, which are not observed in the meteoritic record. This inconsistency with the expected dynamical interactions hints at an incomplete understanding of the planetary growth regime during the lifetime of the solar protoplanetary disk. To resolve this conundrum, we examine how the observed chemical and isotopic features of chondrules constrain the dynamical environment of accreting chondrite parent bodies by interpreting the meteoritic record as an impact-generated proxy of early solar system planetesimals that underwent repeated collision and reaccretion cycles. Using a coupled evolution-collision model we demonstrate that the vast majority of collisional debris feeding the asteroid main belt must be derived from planetesimals which were partially molten at maximum. Therefore, the precursors of chondrite parent bodies either formed primarily small, from sub-canonical aluminum-26 reservoirs, or collisional destruction mechanisms were efficient enough to shatter planetesimals before they reached the magma ocean phase. Finally, we outline the window in parameter space for which chondrule formation from planetesimal collisions can be reconciled with the meteoritic record and how our results can be used to further constrain early solar system dynamics.
Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Smirnov; Y. Raitses; N.J. Fisch
2004-06-24
Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explainmore » the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.« less
Aging in freely evolving granular gas with impact velocity dependent coefficient of restitution
NASA Astrophysics Data System (ADS)
Kumari, Shikha; Ahmad, Syed Rashid
2018-05-01
The evolution of granular system is governed by the concept of coefficient of restitution that gives a relationship between normal component of relative velocities before and after collision. Most of the studies consider a simplified collision model where particles interact through coefficient of restitution which is a constant while in reality, the coefficient of restitution must be a variable that depends on the impact velocity of colliding particles. In this work, we have considered the aging in the velocity autocorrelation function, A(τw, τ) for a granular gas of realistic particles interacting through coefficient of restitution that is depending on impact velocity. Molecular dynamics simulation is used to study granular gas that is evolving freely in absence of any external force. From the simulation results, we observe that A(τw, τ) depends explicitly on waiting time τw and collision time τ. Initially, the function decays exponentially but as the waiting time increases the decay of function becomes slow due to correlations that emerge in velocity field.
Development of soft-sphere contact models for thermal heat conduction in granular flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, A. B.; Pannala, S.; Ma, Z.
2016-06-08
Conductive heat transfer to flowing particles occurs when two particles (or a particle and wall) come into contact. The direct conduction between the two bodies depends on the collision dynamics, namely the size of the contact area and the duration of contact. For soft-sphere discrete-particle simulations, it is computationally expensive to resolve the true collision time because doing so would require a restrictively small numerical time step. To improve the computational speed, it is common to increase the 'softness' of the material to artificially increase the collision time, but doing so affects the heat transfer. In this work, two physically-basedmore » correction terms are derived to compensate for the increased contact area and time stemming from artificial particle softening. By including both correction terms, the impact that artificial softening has on the conductive heat transfer is removed, thus enabling simulations at greatly reduced computational times without sacrificing physical accuracy.« less
Experimental Plans for Subsystems of a Shock Wave Driven Gas Core Reactor
NASA Technical Reports Server (NTRS)
Kazeminezhad, F.; Anghai, S.
2008-01-01
This Contractor Report proposes a number of plans for experiments on subsystems of a shock wave driven pulsed magnetic induction gas core reactor (PMI-GCR, or PMD-GCR pulsed magnet driven gas core reactor). Computer models of shock generation and collision in a large-scale PMI-GCR shock tube have been performed. Based upon the simulation results a number of issues arose that can only be addressed adequately by capturing experimental data on high pressure (approx.1 atmosphere or greater) partial plasma shock wave effects in large bore shock tubes ( 10 cm radius). There are three main subsystems that are of immediate interest (for appraisal of the concept viability). These are (1) the shock generation in a high pressure gas using either a plasma thruster or pulsed high magnetic field, (2) collision of MHD or gas dynamic shocks, their interaction time, and collision pile-up region thickness, and (3) magnetic flux compression power generation (not included here).
Shen, Y; Kevrekidis, P G; Sen, S; Hoffman, A
2014-08-01
Our aim in the present work is to develop approximations for the collisional dynamics of traveling waves in the context of granular chains in the presence of precompression. To that effect, we aim to quantify approximations of the relevant Hertzian FPU-type lattice through both the Korteweg-de Vries (KdV) equation and the Toda lattice. Using the availability in such settings of both one-soliton and two-soliton solutions in explicit analytical form, we initialize such coherent structures in the granular chain and observe the proximity of the resulting evolution to the underlying integrable (KdV or Toda) model. While the KdV offers the possibility to accurately capture collisions of solitary waves propagating in the same direction, the Toda lattice enables capturing both copropagating and counterpropagating soliton collisions. The error in the approximation is quantified numerically and connections to bounds established in the mathematical literature are also given.
A novel representation for planning 3-D collision-free paths
NASA Technical Reports Server (NTRS)
Bonner, Susan; Kelley, Robert B.
1990-01-01
A new scheme for the representation of objects, the successive spherical approximation (SSA), facilitates the rapid planning of collision-free paths in a dynamic three-dimensional environment. The hierarchical nature of the SSA allows collisions to be determined efficiently while still providing an exact representation of objects. The rapidity with which collisions can be detected, less than 1 sec per environment object per path, makes it possible to use a generate-and-test path-planning strategy driven by human conceptual knowledge to determine collision-free paths in a matter of seconds on a Sun 3/180 computer. A hierarchy of rules, based on the concept of a free space cell, is used to find heuristically satisfying collision-free paths in a structured environment.
From RHIC to LHC: Lessons on the QGP
NASA Astrophysics Data System (ADS)
Heinz, Ulrich
2011-10-01
Recent data from heavy-ion collisions at RHIC and LHC, together with significant advances in theory, have allowed us to make significant first steps in proceeding from a qualitative understanding of high energy collision dynamics to a quantitative characterization of the transport properties of the hot and dense QCD matter created in these collisions. The almost perfectly liquid nature of the Quark-Gluon Plasma (QGP) created at RHIC has recently also been confirmed at the much higher LHC energies, and we can now constrain the specific QGP shear viscosity (η / s) QGP to within a factor of 2.5 of its conjectured lower quantum bound. Viscous hydrodynamics, coupled to a microscopic hadron cascade at late times, has proven to be an extremely successful and highly predictive model for the QGP evolution at RHIC and LHC. The experimental discovery of higher order harmonic flow coefficients and their theoretically predicted differential sensitivity to shear viscosity promises additional gains in precision by about a factor 5 in (η / s) QGP for the very near future. The observed modification of jets and suppression of high-pT hadrons confirms the picture of the QGP as a strongly coupled colored liquid, and recent LHC data yield strong constraints on parton energy loss models, putting significant strain on some theoretical approaches, tuned to RHIC data, that are based on leading-order perturbative QCD. Thermal photon radiation provides important cross-checks on the early stages of dynamical evolution models and constrains the initial QGP temperature, but the recently measured strong photon elliptic flow challenges our present understanding of photon emission rates in the hadronic phase. Recent progress in developing a complete theoretical model for all stages of the QGP fireball expansion, from strong fluctuating gluon fields at its beginning to final hadronic freeze-out, and remaining challenges will be discussed. Work supported by DOE (grants DE-SC0004286 and DE-SC0004104 (JET Collaboration)).
Probing the microscopic corrugation of liquid surfaces with gas-liquid collisions
NASA Technical Reports Server (NTRS)
King, Mackenzie E.; Nathanson, Gilbert M.; Hanning-Lee, Mark A.; Minton, Timothy K.
1993-01-01
We have measured the directions and velocities of Ne, Ar, and Xe atoms scattering from perfluorinated ether and hydrocarbon liquids to probe the relationship between the microscopic roughness of liquid surfaces and gas-liquid collision dynamics. Impulsive energy transfer is governed by the angle of deflection: head-on encounters deposit more energy than grazing collisions. Many atoms scatter in the forward direction, particularly at glancing incidence. These results imply that the incoming atoms recoil locally from protruding C-H and C-F groups in hard spherelike collisions.
NASA Astrophysics Data System (ADS)
Henry, Eric M.
The CHIMERA multi-detector array at LNS Catania has been used to study the inverse-kinematics reaction of 78Kr + 40Ca at a bombarding energy of 10 A MeV. The multi-detector is capable of detecting individual products of the collision essential for the reconstruction of the collision dynamics. This is the first time CHIMERA has been used at low-energy, which offered a unique challenge for the calibration and interpretation of experimental data. Initial interrogation of the calibrated data revealed a class of selected events characterized by two coincident heavy fragments (atomic number Z>3) that together account for the majority of the total mass of the colliding system. These events are consistent with the complete fusion and subsequent binary split (fission) of a composite nucleus. The observed fission fragments are characterized by a broad A, Z distribution and are centered about symmetric fission while exhibiting relative velocities significantly higher than given by Viola systematics. Additional analysis of the kinematic relationship between the fission fragments was performed. Of note, is that the center-of-mass angular distribution (dsigma/dtheta) of the fission fragments exhibits an unexpected anisotropy inconsistent with a compound-nucleus reaction. This anisotropy is indicative of a dynamic fusion/fission-like process. The observed angular distribution features a forward-backward anisotropy most prevalent for mass-asymmetric events. Furthermore, the more massive fragment of mass-asymmetric events appears to emerge preferentially in the forward direction, along the beam axis. Analysis of the angular distribution of alpha particles emitted from these fission fragments suggests the events are associated mostly with central collisions. The observations associated with this subset of events are similar to those reported for dynamic fragmentation of projectile-like fragments, but have not before been observed for a fusion/fission-like process. Comparisons to dynamic and statistical reaction model predictions are inconsistent with known phenomena, but suggest a peculiar dynamics-driven scenario. A plausible explanation of the experimental results is the existence of a phenomenon similar to a "fusion window", or a range of impact parameters in which complete fusion cannot be achieved. In this scenario, the system must absorb all the relative motion and convert it to vibrational energy or heat. As the energy increases the system may not be able to accommodate this conversion of energy without breaking apart.
Molecular dynamics and vibrational relaxations in liquid nitromethane.
NASA Astrophysics Data System (ADS)
Grazia Giorgini, Maria; Mariani, Leonardo; Morresi, Assunta; Paliani, Giulio; Cataliotti, Rosario Sergio
The vibrational relaxation processes of totally symmetric v1 (CH stretching and v5 (NO2 bending) motions of liquid nitromethane have been studied as a function of temperature and concentration in CD3NO2 and CCl4 solutions. The experimental vibrational correlation functions of these two modes have shown that relaxation is collision assisted and suitable for modelling with the stochastic Kubo-Rothschild theory.
Collision Dynamics of O(3P) + DMMP Using a Specific Reaction Parameters Potential Form
2012-01-27
CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18 . NUMBER OF PAGES 14 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified...b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39- 18 Collision Dynamics of O(3P...SRP POTENTIAL Although there have been great strides in developing accurate, multidimensional, global potential energy surfaces, 18 −24 mole- cules with
Sebert Kuhlmann, Anne K; Brett, John; Thomas, Deborah; Sain, Stephan R
2009-09-01
We examined patterns of pedestrian-motor vehicle collisions and associated environmental characteristics in Denver, Colorado. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Spatial analysis revealed global clustering of pedestrian-motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian-motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian-motor vehicle collisions and promoting walking as a routine physical activity.
Blaizot, Jean-Paul; Liao, Jinfeng; Mehtar-Tani, Yacine
2016-12-01
We analyze the interplay of elastic and inelastic collisions in the thermalization of the quark-gluon plasma, using kinetic theory. Our main focus is the dynamics and equilibration of long wavelength modes.
Analysis of occupant protection strategies in train collisions
DOT National Transportation Integrated Search
1995-11-01
A study of the occupant dynamics and predicted fatalities due to secondary impact for passengers involved in train collisions with impact speeds up to 140 mph is described. The principal focus is on the : effectiveness of alternative strategies for p...
Studies of Disks Around the Sun and Other Stars
NASA Technical Reports Server (NTRS)
Stern, S. Alan (Principal Investigator)
1996-01-01
We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This two-element program consists modeling collisions in the Kuiper Disk and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper disk collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model will be used to study the evolution of surface mass density and the object-size spectrum in the disk. The observational effort focuses on obtaining submm/mm-wave flux density measurements of 25-30 IR excess stars in order to better constrain the masses, spatial extents and structure of their dust ensembles.
Collision cross section measurements for biomolecules within a high-resolution FT-ICR cell: theory.
Guo, Dan; Xin, Yi; Li, Dayu; Xu, Wei
2015-04-14
In this study, an energetic hard-sphere ion-neutral collision model was proposed to bridge-link ion collision cross section (CCS) with the image current collected from a high-resolution Fourier transform ion cyclotron resonance (FT-ICR) cell. By investigating the nonlinear effects induced by high-order electric fields and image charge forces, the energetic hard-sphere collision model was validated through experiments. Suitable application regions for the energetic hard-sphere collision model, as well as for the conventional Langevin and hard-sphere collision models, were also discussed. The energetic hard-sphere collision model was applied in the extraction of ion CCSs from high-resolution FT-ICR mass spectra. Discussions in the present study also apply to FT-Orbitraps and FT-quadrupole ion traps.
The role of the baryon junction in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Vance, Stephen Earl
The non-perturbative nature of the conserved baryon number of nuclei is investigated by studying the role of the baryon junction in relativistic heavy-ion collisions. The junction, J, of a baryon originates in the Standard Model of Strong Interactions (QCD) and is the vertex which connects the color flux (Wilson) lines flowing from the three valence quarks. In high energy interactions, the baryon junction can play a dynamical role through the Regge exchange of junction states. We show that the junction exchange provides a natural mechanism for the transport of baryon number into the central rapidity region and has the remarkable ability to produce valence hyperons, including W- baryons. This mechanism is used to describe the observed baryon stopping and associated hyperon production in nucleus-nucleus collisions at the CERN SPS. We also show that junction - antijunction excitations or JJ loops provide a new mechanism for baryon pair production and lead to enhanced hyperon and antihyperon production. The combination of these two mechanisms is able to explain part of the anomalous hyperon production observed in Pb + Pb collisions at the SPS. Using the junction initial state dynamics, final state strangeness exchange interactions are shown to further enhance hyperon production and are proposed as an explanation of the remaining anomalous hyperon production. With larger phase space (higher energy) accessible at the newly constructed BNL RHIC facility, we propose that the observation of valence W- baryons in pp collisions will be a decisive observable to confirm the junction exchange picture of baryon number transport. In addition, we note that novel rapidity correlations between baryons and antibaryons of completely different quark flavors, like D++(uuu) and W+( ss s) , are predicted by the JJ loop mechanism. For numerical calculations of multiparticle observables associated with these junction mechanisms, we developed the HIJING/BB¯ nuclear event generator. HIJING/BB¯ was then coupled to the General Cascade Program (GCP) to study the role of the final state flavor changing interactions.
Theoretical Studies of Gas Phase Elementary and Carbon Nanostructure Growth Reactions
2013-09-19
time dynamics of electron transfer in a prototype redox reaction that occurs in reactive collisions between neutral and ionic fullerenes is discussed...The LvNMD show that the electron transfer occurs within 60 fs directly preceding the collision of the fullerenes , followed by structural changes...collisions between neutral and multiply charged fullerenes . 2 B. Collaboration with the AFRL. Collaboration with the VIggiano group at AFRL at
Hadron rapidity spectra within a hybrid model
NASA Astrophysics Data System (ADS)
Khvorostukhin, A. S.; Toneev, V. D.
2017-01-01
A 2-stage hybrid model is proposed that joins the fast initial state of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system at the second stage, treated within ideal hydrodynamics. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider under construction in Dubna. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra. However, reproducing proton rapidity spectra, our hybrid model cannot describe the rapidity distributions of pions. The model should be improved by taking into consideration viscosity effects at the hydrodynamical stage of system evolution.
Martinazzo, R; Assoni, S; Marinoni, G; Tantardini, G F
2004-05-08
We compare the efficiency of the Eley-Rideal (ER) reaction with the formation of hot-atom (HA) species in the simplest case, i.e., the scattering of a projectile off a single adsorbate, considering the Hydrogen and Hydrogen-on-Ni(100) system. We use classical mechanics and the accurate embedded diatomics-in-molecules potential to study the collision system over a wide range of collision energies (0.10-1.50 eV), both with a rigid and a nonrigid Ni substrate and for impact on the occupied and neighboring empty cells. In the rigid model metastable and truly bound hot-atoms occur and we find that the cross section for the formation of bound hot-atoms is considerably higher than that for the ER reaction over the whole range of collision energies examined. Metastable hot-atoms form because of the inefficient energy transfer to the adsorbate and have lifetimes of the order 0.1-0.7 ps, depending on the collision energy. When considering the effects of lattice vibrations we find, on average, a consistent energy transfer to the substrate, say 0.1-0.2 eV, which forced us to devise a two-step dynamical model to get rid of the problems associated with the use of periodic boundary conditions. Results for long-lived HA formation due to scattering on the occupied cell at a surface temperature of 120 K agree well with those of the rigid model, suggesting that in the above process the substrate plays only a secondary role and further calculations at surface temperatures of 50 and 300 K are in line with these findings. However, considerably high cross sections for formation of long-lived hot-atoms result also from scattering off the neighboring cells where the energy transfer to the lattice cannot be neglected. Metastable hot-atoms are reduced in number and have usually lifetimes shorter than those of the rigid-model, say less than 0.3 ps. In addition, ER cross sections are only slightly affected by the lattice motion and show a little temperature dependence. Finally, we find also that absorption and reflection strongly depend on the correct consideration of lattice vibrations and the occurrence of trapping. (c) 2004 American Institute of Physics.
Swarming behaviors in multi-agent systems with nonlinear dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Wenwu, E-mail: wenwuyu@gmail.com; School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001; Chen, Guanrong
2013-12-15
The dynamic analysis of a continuous-time multi-agent swarm model with nonlinear profiles is investigated in this paper. It is shown that, under mild conditions, all agents in a swarm can reach cohesion within a finite time, where the upper bounds of the cohesion are derived in terms of the parameters of the swarm model. The results are then generalized by considering stochastic noise and switching between nonlinear profiles. Furthermore, swarm models with limited sensing range inducing changing communication topologies and unbounded repulsive interactions between agents are studied by switching system and nonsmooth analysis. Here, the sensing range of each agentmore » is limited and the possibility of collision among nearby agents is high. Finally, simulation results are presented to demonstrate the validity of the theoretical analysis.« less
Korner-Nievergelt, Fränzi; Brinkmann, Robert; Niermann, Ivo; Behr, Oliver
2013-01-01
Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates) remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production. PMID:23844144
Korner-Nievergelt, Fränzi; Brinkmann, Robert; Niermann, Ivo; Behr, Oliver
2013-01-01
Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates) remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production.
Effect of work of adhesion on deep bed filtration process
NASA Astrophysics Data System (ADS)
Przekop, Rafał; Jackiewicz, Anna; WoŻniak, Michał; Gradoń, Leon
2016-06-01
Collection of aerosol particles in the particular steps of the technology of their production, and purification of the air at the workplace and atmospheric environment, requires the efficient method of separation of particulate matter from the carrier gas. There are many papers published in last few years in which the deposition of particles on fibrous collectors is considered, Most of them assume that collisions between particle and collector surface is 100% effective. In this work we study the influence of particles and fiber properties on the deposition efficiency. For the purpose of this work the lattice-Boltzmann model describes fluid dynamics, while the solid particle motion is modeled by the Brownian dynamics. The interactions between particles and surface are modelled using energy balanced oscillatory model. The work of adhesion was estimated using Atomic Force Microscopy.
Effect of work of adhesion on deep bed filtration process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przekop, Rafał; Jackiewicz, Anna; Gradoń, Leon
2016-06-08
Collection of aerosol particles in the particular steps of the technology of their production, and purification of the air at the workplace and atmospheric environment, requires the efficient method of separation of particulate matter from the carrier gas. There are many papers published in last few years in which the deposition of particles on fibrous collectors is considered, Most of them assume that collisions between particle and collector surface is 100% effective. In this work we study the influence of particles and fiber properties on the deposition efficiency. For the purpose of this work the lattice-Boltzmann model describes fluid dynamics,more » while the solid particle motion is modeled by the Brownian dynamics. The interactions between particles and surface are modelled using energy balanced oscillatory model. The work of adhesion was estimated using Atomic Force Microscopy.« less
Ionic transport in high-energy-density matter
Stanton, Liam G.; Murillo, Michael S.
2016-04-08
Ionic transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. Here, we developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. These results have been validated with molecular-dynamics simulations for self-diffusion, interdiffusion, viscosity, and thermal conductivity. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. By using a velocity-dependent screening model, we examine the role of dynamical screening in transport. Implications of thesemore » results for Coulomb logarithm approaches are discussed.« less
Phase-space dynamics of runaway electrons in magnetic fields
Guo, Zehua; McDevitt, Christopher Joseph; Tang, Xian-Zhu
2017-02-16
Dynamics of runaway electrons in magnetic fields are governed by the competition of three dominant physics: parallel electric field acceleration, Coulomb collision, and synchrotron radiation. Examination of the energy and pitch-angle flows reveals that the presence of local vortex structure and global circulation is crucial to the saturation of primary runaway electrons. Models for the vortex structure, which has an O-point to X-point connection, and the bump of runaway electron distribution in energy space have been developed and compared against the simulation data. Lastly, identification of these velocity-space structures opens a new venue to re-examine the conventional understanding of runawaymore » electron dynamics in magnetic fields.« less
Interaction dynamics of multiple mobile robots with simple navigation strategies
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1989-01-01
The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.
Goldsmith, H L; Quinn, T A; Drury, G; Spanos, C; McIntosh, F A; Simon, S I
2001-01-01
During inflammation, neutrophil capture by vascular endothelial cells is dependent on L-selectin and beta(2)-integrin adhesion receptors. One of us (S.I.S.) previously demonstrated that homotypic neutrophil aggregation is analogous to this process in that it is also mediated by these receptors, thus providing a model for studying the dynamics of neutrophil adhesion. In the present work, we set out to confirm the hypothesis that cell-cell adhesion via selectins serves to increase the lifetimes of neutrophil doublets formed through shear-induced two-body collisions. In turn, this would facilitate the engagement of more stable beta(2)-integrin bonds and thus increase the two-body collision efficiency (fraction of collisions resulting in the formation of nonseparating doublets). To this end, suspensions of unstimulated neutrophils were subjected to a uniform shear field in a transparent counter-rotating cone and plate rheoscope, and the formation of doublets and growth of aggregates recorded using high-speed videomicroscopy. The dependence of neutrophil doublet lifetime and two-body collision-capture efficiency on shear rate, G, from 14 to 220 s(-1) was investigated. Bond formation during a two-body collision was indicated by doublets rotating well past the orientation predicted for break-up of doublets of inert spheres. A striking dependence of doublet lifetime on shear rate was observed. At low shear (G = 14 s(-1)), no collision capture occurred, and doublet lifetimes were no different from those of neutrophils pretreated with a blocking antibody to L-selectin, or in Ca(++)-depleted EDTA buffers. At G > or = 66 s(-1), doublet lifetimes increased, with increasing G reaching values twice those for the L-selectin-blocked controls. This correlated with capture efficiencies in excess of 20%, and, at G > or = 110 s(-1), led to the rapid formation of large aggregates, and this in the absence of exogenous chemotactic stimuli. Moreover, the aggregates almost completely broke up when the shear rate was reduced below 66 s(-1). Partial inhibition of aggregate formation was achieved by blocking beta(2)-integrin receptors with antibody. By direct observation of the shear-induced interactions between neutrophils, these data reveal that steady application of a threshold level of shear rate is sufficient to support homotypic neutrophil aggregation. PMID:11566775
Multiplicity fluctuations and collective flow in small colliding systems
NASA Astrophysics Data System (ADS)
Kawaguchi, Koji; Murase, Koichi; Hirano, Tetsufumi
2017-11-01
Recent observation of collective-flow-like behaviours in small colliding systems attracts significant theoretical and experimental interests. In large colliding systems, large collective flow has been interpreted as manifestation of almost-perfect fluidity of the quark gluon plasma (QGP). So it is quite intriguing to explore how small the QGP can be as a fluid. Multiplicity fluctuations play a crucial role in centrality definition of the events in small colliding systems since the fluctuations are, in general, more important as the system size is getting smaller. To consider the correct multiplicity fluctuations, we employ PYTHIA which naturally describes multiplicity distribution in p+p collisions. We superpose p+p collisions by taking into account the number of participants and that of binary collisions from Monte-Carlo version of Glauber model and evaluate initial entropy density distributions which contain not only multiplicity fluctuations but also fluctuations of longitudinal profiles. Solving hydrodynamic equations followed by the hadronic afterburner, we calculate transverse momentum spectra, elliptic and triangular flow parameters in p+Au, d+Au and 3He+Au collisions at the RHIC energy and p+Pb collisions at the LHC energy. Although a large fraction of final anisotropic flow parameters comes from the fluid-dynamical stage, the effects of hadronic rescatterings turn out to be also important as well in understanding of the flow data in small colliding systems.
NASA Astrophysics Data System (ADS)
Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.
2017-09-01
The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.
Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data
Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan
2017-01-01
In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials. PMID:28264517
Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data.
Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan
2017-02-28
In road traffic accidents, the analysis of a vehicle's collision angle plays a key role in identifying a traffic accident's form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke's law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teitelbaum, Lawrence Paul
1992-04-01
We have measured the transverse momentum spectra 1/p T dN/dp T and rapidity distributions dN/dy of negatively charged hadrons and protons for central 32S + 32S interactions at 200 GeV/nucleon incident energy. The negative hadron dN/dy distribution is too broad to be accounted for by thermal models which demand isotropic particle emission. It is compatible with models which emphasize longitudinal dynamics, by either a particle production mechanism, as in the Lund fragmentation model, or by introducing one-dimensional hydrodynamic expansion, as in the Landau model. The proton dN/dy distribution, although showing no evidence for a peak in the target fragmentation region,more » exhibits limited nuclear stopping power. We estimate the mean rapidity shift of participant target protons to be Δy ~ 1.5, greater than observed for pp collisions, less than measured in central pA collisions, and much less than would be observed for a single equilibrated fireball at midrapidity. Both the negative hadron and proton dN/dy distributions can be fit by a symmetric Landau two-fireball model. Although the spectrum possesses a two-component structure, a comparison to pp data at comparable center-of-mass energy shows no evidence for enhanced production at low p T. The two-component structure can be explained by a thermal and chemical equilibrium model which takes into account the kinematics of resonance decay. Using an expression motivated by longitudinal expansion we find the same temperature for both the protons and negative hadrons at freezeout, T f ~ 170 MeV. We conclude that the charged particle spectra of negative hadrons and protons can be accommodated in a simple collision picture of limited nuclear stopping, evolution through a state of thermal equilibrium, followed by longitudinal hydrodynamic expansion until freezeout.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teitelbaum, L.P.
1992-04-01
We have measured the transverse momentum spectra 1/p[sub T] dN/dp[sub T] and rapidity distributions dN/dy of negatively charged hadrons and protons for central [sup 32]S + [sup 32]S interactions at 200 GeV/nucleon incident energy. The negative hadron dN/dy distribution is too broad to be accounted for by thermal models which demand isotropic particle emission. It is compatible with models which emphasize longitudinal dynamics, by either a particle production mechanism, as in the Lund fragmentation model, or by introducing one-dimensional hydrodynamic expansion, as in the Landau model. The proton dN/dy distribution, although showing no evidence for a peak in the targetmore » fragmentation region, exhibits limited nuclear stopping power. We estimate the mean rapidity shift of participant target protons to be [Delta]y [approximately] 1.5, greater than observed for pp collisions, less than measured in central pA collisions, and much less than would be observed for a single equilibrated fireball at midrapidity. Both the negative hadron and proton dN/dy distributions can be fit by a symmetric Landau two-fireball model. Although the spectrum possesses a two-component structure, a comparison to pp data at comparable center-of-mass energy shows no evidence for enhanced production at low p[sub T]. The two-component structure can be explained by a thermal and chemical equilibrium model which takes into account the kinematics of resonance decay. Using an expression motivated by longitudinal expansion we find the same temperature for both the protons and negative hadrons at freezeout, T[sub f] [approximately] 170 MeV. We conclude that the charged particle spectra of negative hadrons and protons can be accommodated in a simple collision picture of limited nuclear stopping, evolution through a state of thermal equilibrium, followed by longitudinal hydrodynamic expansion until freezeout.« less
Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, Marshall C.; Romero Gomez, Pedro DJ
mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environmentmore » by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more representative of blade-strike probability than the steady solution is, mainly because DEM particles accounted for the full fish length, thus resolving (instead of modeling) the collision event.« less
Probing parton dynamics of QCD matter with Ω and ϕ production
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Z.; Xu, J.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, Z.; Zhang, J. B.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2016-02-01
We present measurements of Ω and ϕ production at midrapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies √{sN N}=7.7 , 11.5 , 19.6 , 27, and 39 GeV by the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of N (Ω-+Ω¯+) /[2 N (ϕ ) ] . These ratios as a function of transverse momentum pT fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at √{sN N}=19.6 , 27, and 39 GeV, and in central collisions at 11.5 GeV in the intermediate pT region of 2.4 -3.6 GeV/c . We further evaluate empirically the strange quark pT distributions at hadronization by studying the Ω /ϕ ratios scaled by the number of constituent quarks (NCQ). The NCQ-scaled Ω /ϕ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to √{sN N}≥19.6 GeV. The shapes of the presumably thermal strange quark distributions in 0-60% most central collisions at 7.7 GeV show significant deviations from those in 0-10% most central collisions at higher energies. These features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark matter to hadronic matter at collision energies below 19.6 GeV.
Probing parton dynamics of QCD matter with Ω and Φ production
Adamczyk, L.
2016-02-24
In this paper, we present measurements of Ω and Φ production at midrapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies √sNN = 7.7, 11.5, 19.6 , 27, and 39 GeV by the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of N(Ω - +more » $$\\overline{Ω}$$ +) / [2N (Φ)] . These ratios as a function of transverse momentum p T fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at √sNN = 19.6, 27, and 39 GeV, and in central collisions at 11.5 GeV in the intermediate p T region of 2.4 - 3.6 GeV/ . We further evaluate empirically the strange quark p T distributions at hadronization by studying the Ω/Φ ratios scaled by the number of constituent quarks (NCQ). The NCQ-scaled Ω/Φ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to √sNN ≥ 19.6 GeV. The shapes of the presumably thermal strange quark distributions in 0–60% most central collisions at 7.7 GeV show significant deviations from those in 0–10% most central collisions at higher energies. Lastly, these features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark matter to hadronic matter at collision energies below 19.6 GeV.« less
Large-scale deformation related to the collision of the Aleutian Arc with Kamchatka
Gesit, Eric L.; Scholl, David W.
1994-01-01
The far western Aleutian Island Arc is actively colliding with Kamchatka. Westward motion of the Aleutian Arc is brought about by the tangential relative motion of the Pacific plate transferred to major, right-lateral shear zones north and south of the arc. Early geologic mapping of Cape Kamchatka (a promontory of Kamchatka along strike with the Aleutian Arc) revealed many similarities to the geology of the Aleutian Islands. Later studies support the notion that Cape Kamchatka is the farthest west Aleutian “island” and that it has been accreted to Kamchatka by the process of arc-continent collision. Deformation associated with the collision onshore Kamchatka includes gravimetrically determined crustal thickening and formation of a narrow thrust belt of intensely deformed rocks directly west of Cape Kamchatka. The trend of the thrust faults is concave toward the collision zone, indicating a radial distribution of maximum horizontal compressive stress. Offshore, major crustal faults trend either oblique to the Kamchatka margin or parallel to major Aleutian shear zones. These offshore faults are complex, accommodating both strike-slip and thrust displacements as documented by focal mechanisms and seismic reflection data. Earthquake activity is much higher in the offshore region within a zone bounded to the north by the northernmost Aleutian shear zone and to the west by an apparent aseismic front. Analysis of focal mechanisms in the region indicate that the present-day arc-continent “contact zone” is located directly east of Cape Kamchatka. In modeling the dynamics of the collision zone using thin viscous sheet theory, the rheological parameters are only partially constrained to values of n (the effective power law exponent) ≥ 3 and Ar(the Argand number) ≤ 30. These values are consistent with a forearc thermal profile of Kamchatka, previously determined from heat flow modeling. The thin viscous sheet modeling also indicates that onshore thrust faulting is a consequence, not only of compressive stresses resulting from the west directed collision, but also of sediment-induced coupling of the subducting Pacific plate.
Dark solitons in laser radiation build-up dynamics.
Woodward, R I; Kelleher, E J R
2016-03-01
We reveal the existence of slowly decaying dark solitons in the radiation build-up dynamics of bright pulses in all-normal dispersion mode-locked fiber lasers, numerically modeled in the framework of a generalized nonlinear Schrödinger equation. The evolution of noise perturbations to quasistationary dark solitons is examined, and the significance of background shape and soliton-soliton collisions on the eventual soliton decay is established. We demonstrate the role of a restoring force in extending soliton interactions in conservative systems to include the effects of dissipation, as encountered in laser cavities, and generalize our observations to other nonlinear systems.
Real-time inextensible surgical thread simulation.
Xu, Lang; Liu, Qian
2018-03-27
This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.
Recent progress in plasma modelling at INFN-LNS
NASA Astrophysics Data System (ADS)
Neri, L.; Castro, G.; Torrisi, G.; Galatà, A.; Mascali, D.; Celona, L.; Gammino, S.
2016-02-01
At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via "cold" approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevin formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an "as-a-whole" picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.
Recent progress in plasma modelling at INFN-LNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neri, L., E-mail: neri@lns.infn.it; Castro, G.; Mascali, D.
2016-02-15
At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via “cold” approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevinmore » formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an “as-a-whole” picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.« less
NASA Astrophysics Data System (ADS)
Lue, L.
2005-01-01
The collision statistics of hard hyperspheres are investigated. An exact, analytical formula is developed for the distribution of speeds of a sphere on collision, which is shown to be related to the average time between collisions for a sphere with a particular velocity. In addition, the relationship between the collision rate and the compressibility factor is generalized to arbitrary dimensions. Molecular dynamics simulations are performed for d=3, 4, and 5 dimensional hard-hypersphere fluids. From these simulations, the equation of state of these systems, the self-diffusion coefficient, the shear viscosity, and the thermal conductivity are determined as a function of density. Various aspects of the collision statistics and their dependence on the density and dimensionality of the system are also studied.
An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine.
Bacchus-Montabonel, Marie-Christine; Tergiman, Yvette Suzanne
2011-05-28
Charge transfer in collisions of carbon ions on a thymine target has been studied theoretically in a wide collision range by means of ab initio quantum chemistry molecular methods. The process appears markedly anisotropic in the whole energy domain, significantly favoured in the perpendicular orientation. A specific decrease of the charge transfer cross sections at low collision energies may be pointed out and could induce an enhancement of the complementary fragmentation processes for collision energies down to about 10 eV, as observed for the low-electron fragmentation process. Such feature may be of important interest in ion-induced biomolecular radiation damage. This journal is © the Owner Societies 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yorita, Kohei
2005-03-01
We have measured the top quark mass with the dynamical likelihood method (DLM) using the CDF II detector at the Fermilab Tevatron. The Tevatron produces top and anti-top pairs in pp collisions at a center of mass energy of 1.96 TeV. The data sample used in this paper was accumulated from March 2002 through August 2003 which corresponds to an integrated luminosity of 162 pb -1.
Dynamics of low velocity collisions of ice particle, coated with frost
NASA Technical Reports Server (NTRS)
Bridges, F.; Lin, D.; Boone, L.; Darknell, D.
1991-01-01
We continued our investigations of low velocity collisions of ice particles for velocities in range 10(exp -3) - 2 cm/s. The work focused on two effects: (1) the sticking forces for ice particles coated with CO2 frost, and (2) the completion of a 2-D pendulum system for glancing collisions. A new computer software was also developed to control and monitor the position of the 2-D pendulum.
Sebert Kuhlmann, Anne K.; Thomas, Deborah; R. Sain, Stephan
2009-01-01
Objectives. We examined patterns of pedestrian–motor vehicle collisions and associated environmental characteristics in Denver, Colorado. Methods. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Results. Spatial analysis revealed global clustering of pedestrian–motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. Conclusions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian–motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian–motor vehicle collisions and promoting walking as a routine physical activity. PMID:19608966
Collisions of Ir Oxide Nanoparticles with Carbon Nanopipettes: Experiments with One Nanoparticle.
Zhou, Min; Yu, Yun; Hu, Keke; Xin, Huolin L; Mirkin, Michael V
2017-03-07
Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrO x NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. High-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.
Collisions of Ir oxide nanoparticles with carbon nanopipettes: Experiments with one nanoparticle
Zhou, Min; Yu, Yun; Hu, Keke; ...
2017-02-03
Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrOxmore » NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. Lastly, high-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.« less
Shin, Kwang Cheol; Park, Seung Bo; Jo, Geun Sik
2009-01-01
In the fields of production, manufacturing and supply chain management, Radio Frequency Identification (RFID) is regarded as one of the most important technologies. Nowadays, Mobile RFID, which is often installed in carts or forklift trucks, is increasingly being applied to the search for and checkout of items in warehouses, supermarkets, libraries and other industrial fields. In using Mobile RFID, since the readers are continuously moving, they can interfere with each other when they attempt to read the tags. In this study, we suggest a Time Division Multiple Access (TDMA) based anti-collision algorithm for Mobile RFID readers. Our algorithm automatically adjusts the frame size of each reader without using manual parameters by adopting the dynamic frame size adjustment strategy when collisions occur at a reader. Through experiments on a simulated environment for Mobile RFID readers, we show that the proposed method improves the number of successful transmissions by about 228% on average, compared with Colorwave, a representative TDMA based anti-collision algorithm. PMID:22399942
Shin, Kwang Cheol; Park, Seung Bo; Jo, Geun Sik
2009-01-01
In the fields of production, manufacturing and supply chain management, Radio Frequency Identification (RFID) is regarded as one of the most important technologies. Nowadays, Mobile RFID, which is often installed in carts or forklift trucks, is increasingly being applied to the search for and checkout of items in warehouses, supermarkets, libraries and other industrial fields. In using Mobile RFID, since the readers are continuously moving, they can interfere with each other when they attempt to read the tags. In this study, we suggest a Time Division Multiple Access (TDMA) based anti-collision algorithm for Mobile RFID readers. Our algorithm automatically adjusts the frame size of each reader without using manual parameters by adopting the dynamic frame size adjustment strategy when collisions occur at a reader. Through experiments on a simulated environment for Mobile RFID readers, we show that the proposed method improves the number of successful transmissions by about 228% on average, compared with Colorwave, a representative TDMA based anti-collision algorithm.
Extending birthday paradox theory to estimate the number of tags in RFID systems.
Shakiba, Masoud; Singh, Mandeep Jit; Sundararajan, Elankovan; Zavvari, Azam; Islam, Mohammad Tariqul
2014-01-01
The main objective of Radio Frequency Identification systems is to provide fast identification for tagged objects. However, there is always a chance of collision, when tags transmit their data to the reader simultaneously. Collision is a time-consuming event that reduces the performance of RFID systems. Consequently, several anti-collision algorithms have been proposed in the literature. Dynamic Framed Slotted ALOHA (DFSA) is one of the most popular of these algorithms. DFSA dynamically modifies the frame size based on the number of tags. Since the real number of tags is unknown, it needs to be estimated. Therefore, an accurate tag estimation method has an important role in increasing the efficiency and overall performance of the tag identification process. In this paper, we propose a novel estimation technique for DFSA anti-collision algorithms that applies birthday paradox theory to estimate the number of tags accurately. The analytical discussion and simulation results prove that the proposed method increases the accuracy of tag estimation and, consequently, outperforms previous schemes.
Extending Birthday Paradox Theory to Estimate the Number of Tags in RFID Systems
Shakiba, Masoud; Singh, Mandeep Jit; Sundararajan, Elankovan; Zavvari, Azam; Islam, Mohammad Tariqul
2014-01-01
The main objective of Radio Frequency Identification systems is to provide fast identification for tagged objects. However, there is always a chance of collision, when tags transmit their data to the reader simultaneously. Collision is a time-consuming event that reduces the performance of RFID systems. Consequently, several anti-collision algorithms have been proposed in the literature. Dynamic Framed Slotted ALOHA (DFSA) is one of the most popular of these algorithms. DFSA dynamically modifies the frame size based on the number of tags. Since the real number of tags is unknown, it needs to be estimated. Therefore, an accurate tag estimation method has an important role in increasing the efficiency and overall performance of the tag identification process. In this paper, we propose a novel estimation technique for DFSA anti-collision algorithms that applies birthday paradox theory to estimate the number of tags accurately. The analytical discussion and simulation results prove that the proposed method increases the accuracy of tag estimation and, consequently, outperforms previous schemes. PMID:24752285
NASA Astrophysics Data System (ADS)
Lei, Hong; Jiang, Jimin; Yang, Bin; Zhao, Yan; Zhang, Hongwei; Wang, Weixian; Dong, Guiwen
2018-04-01
Mathematical simulation is an effective tool to analyze the fluid flow and the inclusion behavior in the bloom continuous caster with mold electromagnetic stirring (M-EMS). The mathematical model is applied to the modeling of magnetic field, flow field, and inclusion field. Due to the introduction of Archimedes force, the collision mechanism and inclusion's slipping velocity should be modified in the inclusion mass and population conservation model. Numerically predicted magnetic field, flow field, and the inclusion spatial distribution conform to the experimental results in the existing literature. Lorentz force plays an important role in the fluid flow, and Archimedes force plays an important role in the inclusion distribution in the continuous caster. Due to Brownian collision, Stokes collision, Archimedes collision, and turbulent collision, the coalescence among inclusions occurs in the bloom continuous caster with M-EMS. Among the four types of collisions, turbulent collision occurs most frequently, followed by Archimedes collision and Stokes collision. The frequency of Brownian collision is several orders of magnitudes smaller and is therefore negligible. The inclusion volume concentration, number density, and characteristic radius exhibit a U-shape in the continuous caster without M-EMS. However, with M-EMS, they exhibit an inverted U-shape.
A piecewise smooth model of evolutionary game for residential mobility and segregation
NASA Astrophysics Data System (ADS)
Radi, D.; Gardini, L.
2018-05-01
The paper proposes an evolutionary version of a Schelling-type dynamic system to model the patterns of residential segregation when two groups of people are involved. The payoff functions of agents are the individual preferences for integration which are empirically grounded. Differently from Schelling's model, where the limited levels of tolerance are the driving force of segregation, in the current setup agents benefit from integration. Despite the differences, the evolutionary model shows a dynamics of segregation that is qualitatively similar to the one of the classical Schelling's model: segregation is always a stable equilibrium, while equilibria of integration exist only for peculiar configurations of the payoff functions and their asymptotic stability is highly sensitive to parameter variations. Moreover, a rich variety of integrated dynamic behaviors can be observed. In particular, the dynamics of the evolutionary game is regulated by a one-dimensional piecewise smooth map with two kink points that is rigorously analyzed using techniques recently developed for piecewise smooth dynamical systems. The investigation reveals that when a stable internal equilibrium exists, the bimodal shape of the map leads to several different kinds of bifurcations, smooth, and border collision, in a complicated interplay. Our global analysis can give intuitions to be used by a social planner to maximize integration through social policies that manipulate people's preferences for integration.
Thermal Effects for Quark and Gluon Distributions in Heavy-Ion Collisions at Nica
NASA Astrophysics Data System (ADS)
Lykasov, G. I.; Sissakian, A. N.; Sorin, A. S.; Teryaev, O. V.
2011-10-01
In-medium effects for distributions of quarks and gluons in central A+A collisions are considered. We suggest a duality principle, which means similarity of thermal spectra of hadrons produced in heavy-ion collisions and inclusive spectra which can be obtained within the dynamic quantum scattering theory. Within the suggested approach we show that the mean square of the transverse momentum for these partons grows and then saturates when the initial energy increases. It leads to the energy dependence of hadron transverse mass spectra which is similar to that observed in heavy ion collisions.
Holography and off-center collisions of localized shock waves
Chesler, Paul M.; Yaffe, Laurence G.
2015-10-12
Using numerical holography, we study the collision, at non-zero impact parameter, of bounded, localized distributions of energy density chosen to mimic relativistic heavy ion collisions, in strongly coupled N=4 supersymmetric Yang-Mills theory. Both longitudinal and transverse dynamics in the dual field theory are properly described. Using the gravitational description, we solve 5D Einstein equations with no dimensionality reducing symmetry restrictions to find the asymptotically anti-de Sitter spacetime geometry. Here, the implications of our results on the understanding of early stages of heavy ion collisions, including the development of transverse radial flow, are discussed.
Exact solutions of a hierarchy of mixing speeds models
NASA Astrophysics Data System (ADS)
Cornille, H.; Platkowski, T.
1992-07-01
This paper presents several new aspects of discrete kinetic theory (DKT). First a hierarchy of d-dimensional (d=1,2,3) models is proposed with (2d+3) velocities and three moduli speeds: 0, 2, and a third one that can be arbitrary. It is assumed that the particles at rest have an internal energy which, for microscopic collisions, supplies for the loss of the kinetic energy. In a more general way than usual, collisions are allowed that mix particles with different speeds. Second, for the (1+1)-dimensional restriction of the systems of PDE for these models which have two independent quadratic collision terms we construct different exact solutions. The usual types of exact solutions are studied: periodic solutions and shock wave solutions obtained from the standard linearization of the scalar Riccati equations called Riccatian shock waves. Then other types of solutions of the coupled Riccati equations are found called non-Riccatian shock waves and they are compared with the previous ones. The main new result is that, between the upstream and downstream states, these new solutions are not necessarily monotonous. Further, for the shock problem, a two-dimensional dynamical system of ODE is solved numerically with limit values corresponding to the upstream and downstream states. As a by-product of this study two new linearizations for the Riccati coupled equations with two functions are proposed.
Simulations of Dynamical Friction Including Spatially-Varying Magnetic Fields
NASA Astrophysics Data System (ADS)
Bell, G. I.; Bruhwiler, D. L.; Litvinenko, V. N.; Busby, R.; Abell, D. T.; Messmer, P.; Veitzer, S.; Cary, J. R.
2006-03-01
A proposed luminosity upgrade to the Relativistic Heavy Ion Collider (RHIC) includes a novel electron cooling section, which would use ˜55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. We consider the dynamical friction force exerted on individual ions due to a relevant electron distribution. The electrons may be focussed by a strong solenoid field, with sensitive dependence on errors, or by a wiggler field. In the rest frame of the relativistic co-propagating electron and ion beams, where the friction force can be simulated for nonrelativistic motion and electrostatic fields, the Lorentz transform of these spatially-varying magnetic fields includes strong, rapidly-varying electric fields. Previous friction force simulations for unmagnetized electrons or error-free solenoids used a 4th-order Hermite algorithm, which is not well-suited for the inclusion of strong, rapidly-varying external fields. We present here a new algorithm for friction force simulations, using an exact two-body collision model to accurately resolve close interactions between electron/ion pairs. This field-free binary-collision model is combined with a modified Boris push, using an operator-splitting approach, to include the effects of external fields. The algorithm has been implemented in the VORPAL code and successfully benchmarked.
Chen, Shu Jian; Yao, Xupei; Zheng, Changxi; Duan, Wen Hui
2017-11-01
Non-equilibrium molecular dynamics was used to simulate the dynamics of atoms at the atom probe surface and five objective functions were used to quantify errors. The results suggested that before ionization, thermal vibration and collision caused the atoms to displace up to 1Å and 25Å respectively. The average atom displacements were found to vary between 0.2 and 0.5Å. About 9 to 17% of the atoms were affected by collision. Due to the effects of collision and ion-ion repulsion, the back-calculated positions were on average 0.3-0.5Å different from the pre-ionized positions of the atoms when the number of ions generated per pulse was minimal. This difference could increase up to 8-10Å when 1.5ion/nm 2 were evaporated per pulse. On the basis of the results, surface ion density was considered an important factor that needed to be controlled to minimize error in the evaporation process. Copyright © 2017. Published by Elsevier B.V.
Hosseinpour, Mehdi; Sahebi, Sina; Zamzuri, Zamira Hasanah; Yahaya, Ahmad Shukri; Ismail, Noriszura
2018-06-01
According to crash configuration and pre-crash conditions, traffic crashes are classified into different collision types. Based on the literature, multi-vehicle crashes, such as head-on, rear-end, and angle crashes, are more frequent than single-vehicle crashes, and most often result in serious consequences. From a methodological point of view, the majority of prior studies focused on multivehicle collisions have employed univariate count models to estimate crash counts separately by collision type. However, univariate models fail to account for correlations which may exist between different collision types. Among others, multivariate Poisson lognormal (MVPLN) model with spatial correlation is a promising multivariate specification because it not only allows for unobserved heterogeneity (extra-Poisson variation) and dependencies between collision types, but also spatial correlation between adjacent sites. However, the MVPLN spatial model has rarely been applied in previous research for simultaneously modelling crash counts by collision type. Therefore, this study aims at utilizing a MVPLN spatial model to estimate crash counts for four different multi-vehicle collision types, including head-on, rear-end, angle, and sideswipe collisions. To investigate the performance of the MVPLN spatial model, a two-stage model and a univariate Poisson lognormal model (UNPLN) spatial model were also developed in this study. Detailed information on roadway characteristics, traffic volume, and crash history were collected on 407 homogeneous segments from Malaysian federal roads. The results indicate that the MVPLN spatial model outperforms the other comparing models in terms of goodness-of-fit measures. The results also show that the inclusion of spatial heterogeneity in the multivariate model significantly improves the model fit, as indicated by the Deviance Information Criterion (DIC). The correlation between crash types is high and positive, implying that the occurrence of a specific collision type is highly associated with the occurrence of other crash types on the same road segment. These results support the utilization of the MVPLN spatial model when predicting crash counts by collision manner. In terms of contributing factors, the results show that distinct crash types are attributed to different subsets of explanatory variables. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neutron displacement cross-sections for tantalum and tungsten at energies up to 1 GeV
NASA Astrophysics Data System (ADS)
Broeders, C. H. M.; Konobeyev, A. Yu.; Villagrasa, C.
2005-06-01
The neutron displacement cross-section has been evaluated for tantalum and tungsten at energies from 10 -5 eV up to 1 GeV. The nuclear optical model, the intranuclear cascade model combined with the pre-equilibrium and evaporation models were used for the calculations. The number of defects produced by recoil atoms nuclei in materials was calculated by the Norgett, Robinson, Torrens model and by the approach combining calculations using the binary collision approximation model and the results of the molecular dynamics simulation. The numerical calculations were done using the NJOY code, the ECIS96 code, the MCNPX code and the IOTA code.
NASA Astrophysics Data System (ADS)
Lüdde, Hans Jürgen; Horbatsch, Marko; Kirchner, Tom
2018-05-01
We apply a recently introduced model for an independent-atom-like calculation of ion-impact electron transfer and ionization cross sections to proton collisions from water, neon, and carbon clusters. The model is based on a geometrical interpretation of the cluster cross section as an effective area composed of overlapping circular disks that are representative of the atomic contributions. The latter are calculated using a time-dependent density-functional-theory-based single-particle description with accurate exchange-only ground-state potentials. We find that the net capture and ionization cross sections in p-X n collisions are proportional to n α with 2/3 ≤ α ≤ 1. For capture from water clusters at 100 keV impact energy α is close to one, which is substantially different from the value α = 2/3 predicted by a previous theoretical work based on the simplest-level electron nuclear dynamics method. For ionization at 100 keV and for capture at lower energies we find smaller α values than for capture at 100 keV. This can be understood by considering the magnitude of the atomic cross sections and the resulting overlaps of the circular disks that make up the cluster cross section in our model. Results for neon and carbon clusters confirm these trends. Simple parametrizations are found which fit the cross sections remarkably well and suggest that they depend on the relevant bond lengths.
Capturing Transient Endoperoxide in the Singlet Oxygen Oxidation of Guanine.
Lu, Wenchao; Liu, Jianbo
2016-02-24
The chemistry of singlet O2 toward the guanine base of DNA is highly relevant to DNA lesion, mutation, cell death, and pathological conditions. This oxidative damage is initiated by the formation of a transient endoperoxide through the Diels-Alder cycloaddition of singlet O2 to the guanine imidazole ring. However, no endoperoxide formation was directly detected in native guanine or guanosine, even at -100 °C. Herein, gas-phase ion-molecule scattering mass spectrometry was utilized to capture unstable endoperoxides in the collisions of hydrated guanine ions (protonated or deprotonated) with singlet O2 at ambient temperature. Corroborated by results from potential energy surface exploration, kinetic modeling, and dynamics simulations, various aspects of endoperoxide formation and transformation (including its dependence on guanine ionization and hydration states, as well as on collision energy) were determined. This work has pieced together reaction mechanisms, kinetics, and dynamics data concerning the early stage of singlet O2 induced guanine oxidation, which is missing from conventional condensed-phase studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of the pion-nucleon potential in 197Au+197Au collisions at 1.5 GeV/nucleon
NASA Astrophysics Data System (ADS)
Xie, Wen-Jie; Su, Jun; Zhu, Long; Zhang, Feng-Shou
2018-06-01
The influence of the pion-nucleon potential on the pion dynamics in 197Au+197Au collisions at 1.5 GeV/nucleon for different centrality intervals is investigated in the framework of the isospin-dependent quantum molecular dynamics model. It is found that the observables related to pions, such as the rapidity distributions, the rapidity dependencies of the directed flow and the elliptic flow, the centrality dependencies of the directed flow and the elliptic flow, and the transverse momentum distribution of the strength function of the azimuthal anisotropy are sensitive to the pion-nucleon potential. The pion multiplicity and the polar-angle distributions of pions are less affected by the pion-nucleon potential. The comparisons to the experimental data, in particular to the rapidity distributions of the directed flow and the elliptic flow, favor the stronger pion-nucleon potential derived from the phenomenological ansatz proposed by Gale and Kapusta [C. Gale and J. Kapusta, Phys. Rev. C 35, 2107 (1987), 10.1103/PhysRevC.35.2107].
Collision-induced evaporation of water clusters and contribution of momentum transfer
NASA Astrophysics Data System (ADS)
Calvo, Florent; Berthias, Francis; Feketeová, Linda; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel
2017-05-01
The evaporation of water molecules from high-velocity argon atoms impinging on protonated water clusters has been computationally investigated using molecular dynamics simulations with the reactive OSS2 potential to model water clusters and the ZBL pair potential to represent their interaction with the projectile. Swarms of trajectories and an event-by-event analysis reveal the conditions under which a specific number of molecular evaporation events is found one nanosecond after impact, thereby excluding direct knockout events from the analysis. These simulations provide velocity distributions that exhibit two main features, with a major statistical component arising from a global redistribution of the collision energy into intermolecular degrees of freedom, and another minor but non-ergodic feature at high velocities. The latter feature is produced by direct impacts on the peripheral water molecules and reflects a more complete momentum transfer. These two components are consistent with recent experimental measurements and confirm that electronic processes are not explicitly needed to explain the observed non-ergodic behavior. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.
Volatiles Inventory to the Inner Planets Due to Small Bodies Migration
NASA Technical Reports Server (NTRS)
Marov, M. Y.; Ipatov, S. I.
2003-01-01
The concurrent processes of endogeneous and exogeneous origin are assumed to be responsible for the volatile reserves in the terrestrial planets. Volatiles inventory through collisions is rooted in orbital dynamics of small bodies including near-Earth objects (NEOs), short and long-period comets, and trans-Neptunian objects (TNOs), the latter probably supplying a large amount of Jupiter crossing objects (JCOs). Our model testifies that even a relatively small portion (approx. 0.001) of JCOs which transit to orbits with aphelia inside Jupiter's orbit (Q<4.7 AU) and reside such orbits during more than 1 Myr may contribute significantly in collisions with the terrestrial planets. The total mass of volatiles delivered to the Earth from the feeding zone of the giant planets could be greater than the mass of the Earth's oceans.
Counterpropagating Radiative Shock Experiments on the Orion Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki-Vidal, F.; Clayson, T.; Stehlé, C.
We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measuredmore » via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.« less
QCD phase-transition and chemical freezeout in nonzero magnetic field at NICA
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser
2017-01-01
Because of relativistic off-center motion of the charged spectators and the local momentum-imbalance experienced by the participants, a huge magnetic field is likely generated in high-energy collisions. The influence of such short-lived magnetic field on the QCD phase-transition(s) is analysed. From Polyakov linear-sigma model, we study the chiral phase-transition and the magnetic response and susceptibility in dependence on temperature, density and magnetic field strength. The systematic measurements of the phase-transition characterizing signals, such as the fluctuations, the dynamical correlations and the in-medium modifications of rho-meson, for instance, in different interacting systems and collision centralities are conjectured to reveal an almost complete description for the QCD phase-structure and the chemical freezeout. We limit the discussion to NICA energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Joshua; Tremaine, Scott; Chambers, John, E-mail: joshuajw@princeton.edu
Collisional fragmentation is shown to not be a barrier to rocky planet formation at small distances from the host star. Simple analytic arguments demonstrate that rocky planet formation via collisions of homogeneous gravity-dominated bodies is possible down to distances of order the Roche radius ( r {sub Roche}). Extensive N -body simulations with initial bodies ≳1700 km that include plausible models for fragmentation and merging of gravity-dominated bodies confirm this conclusion and demonstrate that rocky planet formation is possible down to ∼1.1 r {sub Roche}. At smaller distances, tidal effects cause collisions to be too fragmenting to allow mass buildupmore » to a final, dynamically stable planetary system. We argue that even differentiated bodies can accumulate to form planets at distances that are not much larger than r {sub Roche}.« less
Counterpropagating Radiative Shock Experiments on the Orion Laser.
Suzuki-Vidal, F; Clayson, T; Stehlé, C; Swadling, G F; Foster, J M; Skidmore, J; Graham, P; Burdiak, G C; Lebedev, S V; Chaulagain, U; Singh, R L; Gumbrell, E T; Patankar, S; Spindloe, C; Larour, J; Kozlova, M; Rodriguez, R; Gil, J M; Espinosa, G; Velarde, P; Danson, C
2017-08-04
We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measured via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.
Counterpropagating Radiative Shock Experiments on the Orion Laser
Suzuki-Vidal, F.; Clayson, T.; Stehlé, C.; ...
2017-08-02
We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measuredmore » via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.« less
Crossed beam (E--VRT) energy transfer experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertel, I.V.; Hofmann, H.; Rost, K.A.
A molecular crossed beam apparatus which has been developed to perform electronic-to-vibrational, rotational, translational (E--V,R,T) energy transfer studies is described. Its capabilities are illustrated on the basis of a number of energy transfer spectra obtained for collision systems of the type Na*+Mol(..nu..,j) ..-->..Na+Mol (..nu..',j') where Na* represents a laser excited sodium atom and Mol a diatomic or polyatomic molecule. Because of the lack of reliable dynamic theories on quenching processes, statistical approaches such as the ''linearly forced harmonic oscillator'' and ''prior distributions'' have been used to model the experimental spectra. The agreement is found to be satisfactory, so even suchmore » simple statistics may be useful to describe (E--V,R,T) energy transfer processes in collision systems with small molecules.« less