GDSCalc: A Web-Based Application for Evaluating Discrete Graph Dynamical Systems
Elmeligy Abdelhamid, Sherif H.; Kuhlman, Chris J.; Marathe, Madhav V.; Mortveit, Henning S.; Ravi, S. S.
2015-01-01
Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools. PMID:26263006
NASA Astrophysics Data System (ADS)
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
Discreteness effects in population dynamics
NASA Astrophysics Data System (ADS)
Guevara Hidalgo, Esteban; Lecomte, Vivien
2016-05-01
We analyse numerically the effects of small population size in the initial transient regime of a simple example population dynamics. These effects play an important role for the numerical determination of large deviation functions of additive observables for stochastic processes. A method commonly used in order to determine such functions is the so-called cloning algorithm which in its non-constant population version essentially reduces to the determination of the growth rate of a population, averaged over many realizations of the dynamics. However, the averaging of populations is highly dependent not only on the number of realizations of the population dynamics, and on the initial population size but also on the cut-off time (or population) considered to stop their numerical evolution. This may result in an over-influence of discreteness effects at initial times, caused by small population size. We overcome these effects by introducing a (realization-dependent) time delay in the evolution of populations, additional to the discarding of the initial transient regime of the population growth where these discreteness effects are strong. We show that the improvement in the estimation of the large deviation function comes precisely from these two main contributions.
Web-Based Implementation of Discrete Mathematics
ERIC Educational Resources Information Center
Love, Tanzy; Keinert, Fritz; Shelley, Mack
2006-01-01
The Department of Mathematics at Iowa State University teaches a freshman-level Discrete Mathematics course with total enrollment of about 1,800 students per year. The traditional format includes large lectures, with about 150 students each, taught by faculty and temporary instructors in two class sessions per week and recitation sections, with…
Geometric phases in discrete dynamical systems
NASA Astrophysics Data System (ADS)
Cartwright, Julyan H. E.; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2016-10-01
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
Dynamic discretization method for solving Kepler's equation
NASA Astrophysics Data System (ADS)
Feinstein, Scott A.; McLaughlin, Craig A.
2006-09-01
Kepler’s equation needs to be solved many times for a variety of problems in Celestial Mechanics. Therefore, computing the solution to Kepler’s equation in an efficient manner is of great importance to that community. There are some historical and many modern methods that address this problem. Of the methods known to the authors, Fukushima’s discretization technique performs the best. By taking more of a system approach and combining the use of discretization with the standard computer science technique known as dynamic programming, we were able to achieve even better performance than Fukushima. We begin by defining Kepler’s equation for the elliptical case and describe existing solution methods. We then present our dynamic discretization method and show the results of a comparative analysis. This analysis will demonstrate that, for the conditions of our tests, dynamic discretization performs the best.
Dynamical properties of Discrete Reaction Networks.
Paulevé, Loïc; Craciun, Gheorghe; Koeppl, Heinz
2014-07-01
Reaction networks are commonly used to model the dynamics of populations subject to transformations that follow an imposed stoichiometry. This paper focuses on the efficient characterisation of dynamical properties of Discrete Reaction Networks (DRNs). DRNs can be seen as modeling the underlying discrete nondeterministic transitions of stochastic models of reaction networks. In that sense, a proof of non-reachability in a given DRN has immediate implications for any concrete stochastic model based on that DRN, independent of the choice of kinetic laws and constants. Moreover, if we assume that stochastic kinetic rates are given by the mass-action law (or any other kinetic law that gives non-vanishing probability to each reaction if the required number of interacting substrates is present), then reachability properties are equivalent in the two settings. The analysis of two types of global dynamical properties of DRNs is addressed: irreducibility, i.e., the ability to reach any discrete state from any other state; and recurrence, i.e., the ability to return to any initial state. Our results consider both the verification of such properties when species are present in a large copy number, and in the general case. The necessary and sufficient conditions obtained involve algebraic conditions on the network reactions which in most cases can be verified using linear programming. Finally, the relationship of DRN irreducibility and recurrence with dynamical properties of stochastic and continuous models of reaction networks is discussed.
Percolation analysis for cosmic web with discrete points
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung
2016-03-01
Percolation analysis has long been used to quantify the connectivity of the cosmic web. Unlike most of the previous works using density field on grids, we have studied percolation analysis based on discrete points. Using a Friends-of-Friends (FoF) algorithm, we generate the S-bb relation, between the fractional mass of the largest connected group (S) and the FoF linking length (bb). We propose a new model, the Probability Cloud Cluster Expansion Theory (PCCET) to relate the S-bb relation with correlation functions. We show that the S-bb relation reflects a combination of all orders of correlation functions. We have studied the S-bb relation with simulation and find that the S-bb relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with Halo Abundance Matching (HAM), we have generated a mock galaxy catalogue. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalogue with the latest galaxy catalogue from SDSS DR12, we have found significant differences in their S-bb relations. This indicates that the mock catalogue cannot accurately recover higher order correlation functions than the two-point correlation function, which reveals the limit of HAM method.
A Few Continuous and Discrete Dynamical Systems
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Rui, Wenjuan
2016-08-01
Starting from a 2-unimodular group, we construct its new Lie algebras for which the positive-order Lax pairs and the negative-order Lax pairs are introduced, respectively. With the help of the resulting structure equation of the group we generate some partial differential equations including the well-known MKdV equation, the sine-Gordon equation, the hyperbolic sine-Gordon equation and other new nonlinear evolution equations. With the aid of the Tu scheme combined with the given Lax pairs, we obtain the isospectral and nonisospectral hierarchies of evolution equations, from which we generate two sets of symmetries of a generalized nonlinear Schrödinger (gNLS) equation. Finally, we discretize the Lax pairs to obtain a set of coupled semi-discrete equations. As their reduction, we produce the semi-discrete MKdV equation and semi-discrete NLS equation.
Dynamics of discrete screw dislocations on glide directions
NASA Astrophysics Data System (ADS)
Alicandro, R.; De Luca, L.; Garroni, A.; Ponsiglione, M.
2016-07-01
We consider a simple discrete model for screw dislocations in crystals. Using a variational discrete scheme we study the motion of a configuration of dislocations toward low energy configurations. We deduce an effective fully overdamped dynamics that follows the maximal dissipation criterion introduced in Cermelli and Gurtin (1999) and predicts motion along the glide directions of the crystal.
The dynamics of assembling food webs.
Fahimipour, Ashkaan K; Hein, Andrew M
2014-05-01
Community assembly is central to ecology, yet ecologists have amassed little quantitative information about how food webs assemble. Theory holds that colonisation rate is a primary driver of community assembly. We present new data from a mesocosm experiment to test the hypothesis that colonisation rate also determines the assembly dynamics of food webs. By manipulating colonisation rate and measuring webs through time, we show how colonisation rate governs structural changes during assembly. Webs experiencing different colonisation rates had stable topologies despite significant species turnover, suggesting that some features of network architecture emerge early and change little through assembly. But webs experiencing low colonisation rates showed less variation in the magnitudes of trophic fluxes, and were less likely to develop coupled fast and slow resource channels--a common feature of published webs. Our results reveal that food web structure develops according to repeatable trajectories that are strongly influenced by colonisation rate.
Dispersal dynamics in food webs.
Melián, Carlos J; Křivan, Vlastimil; Altermatt, Florian; Starý, Petr; Pellissier, Loïc; De Laender, Frederik
2015-02-01
Studies of food webs suggest that limited nonrandom dispersal can play an important role in structuring food webs. It is not clear, however, whether density-dependent dispersal fits empirical patterns of food webs better than density-independent dispersal. Here, we study a spatially distributed food web, using a series of population-dispersal models that contrast density-independent and density-dependent dispersal in landscapes where sampled sites are either homogeneously or heterogeneously distributed. These models are fitted to empirical data, allowing us to infer mechanisms that are consistent with the data. Our results show that models with density-dependent dispersal fit the α, β, and γ tritrophic richness observed in empirical data best. Our results also show that density-dependent dispersal leads to a critical distance threshold beyond which site similarity (i.e., β tritrophic richness) starts to decrease much faster. Such a threshold can also be detected in the empirical data. In contrast, models with density-independent dispersal do not predict such a threshold. Moreover, preferential dispersal from more centrally located sites to peripheral sites does not provide a better fit to empirical data when compared with symmetric dispersal between sites. Our results suggest that nonrandom dispersal in heterogeneous landscapes is an important driver that shapes local and regional richness (i.e., α and γ tritrophic richness, respectively) as well as the distance-decay relationship (i.e., β tritrophic richness) in food webs.
Dynamics of a discrete auroral arc
NASA Astrophysics Data System (ADS)
Bruening, K.; Goertz, C. K.
1986-06-01
Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.
Dynamics of a discrete auroral arc
NASA Technical Reports Server (NTRS)
Bruening, K.; Goertz, C. K.
1986-01-01
Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.
On the Importance of the Dynamics of Discretizations
NASA Technical Reports Server (NTRS)
Sweby, Peter K.; Yee, H. C.; Rai, ManMohan (Technical Monitor)
1995-01-01
It has been realized recently that the discrete maps resulting from numerical discretizations of differential equations can possess asymptotic dynamical behavior quite different from that of the original systems. This is the case not only for systems of Ordinary Differential Equations (ODEs) but in a more complicated manner for Partial Differential Equations (PDEs) used to model complex physics. The impact of the modified dynamics may be mild and even not observed for some numerical methods. For other classes of discretizations the impact may be pronounced, but not always obvious depending on the nonlinear model equations, the time steps, the grid spacings and the initial conditions. Non-convergence or convergence to periodic solutions might be easily recognizable but convergence to incorrect but plausible solutions may not be so obvious - even for discretized parameters within the linearized stability constraint. Based on our past four years of research, we will illustrate some of the pathology of the dynamics of discretizations, its possible impact and the usage of these schemes for model nonlinear ODEs, convection-diffusion equations and grid adaptations.
Discrete neocortical dynamics predict behavioral categorization of sounds.
Bathellier, Brice; Ushakova, Lyubov; Rumpel, Simon
2012-10-18
The ability to group stimuli into perceptual categories is essential for efficient interaction with the environment. Discrete dynamics that emerge in brain networks are believed to be the neuronal correlate of category formation. Observations of such dynamics have recently been made; however, it is still unresolved if they actually match perceptual categories. Using in vivo two-photon calcium imaging in the auditory cortex of mice, we show that local network activity evoked by sounds is constrained to few response modes. Transitions between response modes are characterized by an abrupt switch, indicating attractor-like, discrete dynamics. Moreover, we show that local cortical responses quantitatively predict discrimination performance and spontaneous categorization of sounds in behaving mice. Our results therefore demonstrate that local nonlinear dynamics in the auditory cortex generate spontaneous sound categories which can be selected for behavioral or perceptual decisions.
Dynamic response and noise transmission of discretely stiffened composite panels
NASA Astrophysics Data System (ADS)
Lyrintzis, Constantinos S.; Vaicatis, Rimas
The surface protection systems of aerospace and aircraft structures are often constructed from discretely stiffened composite panels. This paper presents an analytical study of the dynamic response and structure-borne sound transmission of these structures due to random loading conditions. A generalized transfer matrix procedure is developed to obtain the required dynamic response solution. Modal decomposition is used to predict the interior noise transmission. Numerical results are presented for acousto-structural applications.
Gedeon, Tomas; Murphy, Patrick
2015-10-01
We consider a simple food web with commensal relationship, where organisms utilize both external resources and resources produced by other organisms. We show that in such a community with no competition, there is at most one possible equilibrium for each fixed set of surviving species, and develop a natural condition that determines which species survive based on available resource. Our main result shows that among all possible communities described by equilibria, the one which is stable has the largest number of surviving species and largest combined biomass and hence maximizes utilization of available resources.
Analyzing neuronal networks using discrete-time dynamics
NASA Astrophysics Data System (ADS)
Ahn, Sungwoo; Smith, Brian H.; Borisyuk, Alla; Terman, David
2010-05-01
We develop mathematical techniques for analyzing detailed Hodgkin-Huxley like models for excitatory-inhibitory neuronal networks. Our strategy for studying a given network is to first reduce it to a discrete-time dynamical system. The discrete model is considerably easier to analyze, both mathematically and computationally, and parameters in the discrete model correspond directly to parameters in the original system of differential equations. While these networks arise in many important applications, a primary focus of this paper is to better understand mechanisms that underlie temporally dynamic responses in early processing of olfactory sensory information. The models presented here exhibit several properties that have been described for olfactory codes in an insect’s Antennal Lobe. These include transient patterns of synchronization and decorrelation of sensory inputs. By reducing the model to a discrete system, we are able to systematically study how properties of the dynamics, including the complex structure of the transients and attractors, depend on factors related to connectivity and the intrinsic and synaptic properties of cells within the network.
Human dynamics revealed through Web analytics
NASA Astrophysics Data System (ADS)
Gonçalves, Bruno; Ramasco, José J.
2008-08-01
The increasing ubiquity of Internet access and the frequency with which people interact with it raise the possibility of using the Web to better observe, understand, and monitor several aspects of human social behavior. Web sites with large numbers of frequently returning users are ideal for this task. If these sites belong to companies or universities, their usage patterns can furnish information about the working habits of entire populations. In this work, we analyze the properly anonymized logs detailing the access history to Emory University’s Web site. Emory is a medium-sized university located in Atlanta, Georgia. We find interesting structure in the activity patterns of the domain and study in a systematic way the main forces behind the dynamics of the traffic. In particular, we find that linear preferential linking, priority-based queuing, and the decay of interest for the contents of the pages are the essential ingredients to understand the way users navigate the Web.
Nutrient dynamics and food-web stability
DeAngelis, D.L.; Mulholland, P.J.; Palumbo, A.V.; Steinman, A.D.; Huston, M.A.; Elwood, J.W. )
1989-01-01
The importance of nutrient limitation and recycling in ecosystems is widely recognized. Nutrients, defined in the broad sense as all material elements vital to biological functions, are in such small supply that they limit production in many ecosystems. Such limitation can affect ecosystem properties, including the structure and dynamics of the food webs that link species through their feeding relationships. What are the effects of limiting nutrients on the stability of ecosystem food webs Most of the literature on food web stability centers around the dynamics of population numbers and/or biomasses. Nevertheless, a growing body of theoretical and empirical research considers the role that both nutrient limitation and recycling can play in stability. In this paper, it is the authors objective to summarize the current understanding of several important types of stability. The theoretical and empirical evidence relating these types of stability and nutrient cycling is described. A central generalization is produced in each case.
Dynamic range in automated visual web inspection
NASA Astrophysics Data System (ADS)
Laitinen, Jyrki
1998-01-01
We analyze the factors affecting the dynamic range of an automated visual web inspection system and characterize the dependence of the image quality on the performance of the imaging unit. The objective is to form a basis for the systematic design and evaluation of imaging in web inspection. The major noise sources are reviewed and a simple method for the determination of the noise generated in the imaging unit of a web inspection system is proposed. In addition to this, the effects of the nonlinearity in the system response and of the optical characteristics to the attainable dynamic range are discussed. In the paper several measured characteristics of exemplary web inspection imaging units are presented. The results of these measurements sketch the order of the effect of various factors on the dynamic range in actual inspection applications. Finally, an analysis of the dynamic range in a paper inspection application is presented in order to illustrate the relationship between the properties of the imaging unit and the performance of the inspection system.
(Discrete kinetic theory, lattice gas dynamics and foundations of hydrodynamics)
Protopopescu, V.
1988-10-07
The traveler participated successively in the Workshop of Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, Villa Gualino-Torino, Italy, and in the Third International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, Salice Terme-Pavia, Italy, as a guest of the Italian CNR (National Council for Research, Mathematical Physics Group). At the first Workshop, there were approximately 65 participants among whom 35 were speakers. The topics discussed were discrete kinetic theory, cellular automata, and the relationship between microscopic/mesoscopic and macroscopic evolution equations. Cellular automata and lattice gas dynamics emerged as main areas of promising research and future applications. At the second Workshop, there were approximately 80 attendants, 20 contributed papers, and 15 invited papers. The main subjects of the papers were general methods to study nonlinear equations, advances in plasma theory, numerical methods, efficient computational schemes, and nonlinear transport problems. The Italian scientists expressed interest in strengthening the collaboration with ORNL in the areas of nonlinear partial differential equations, and discrete dynamics with applications to competitive systems.
Pinning synchronization of discrete dynamical networks with delay coupling
NASA Astrophysics Data System (ADS)
Cheng, Ranran; Peng, Mingshu; Zuo, Jun
2016-05-01
The purpose of this paper is to investigate the pinning synchronization analysis for nonlinear coupled delayed discrete dynamical networks with the identical or nonidentical topological structure. Based on the Lyapunov stability theory, pinning control method and linear matrix inequalities, several adaptive synchronization criteria via two kinds of pinning control method are obtained. Two examples based on Rulkov chaotic system are included to illustrate the effectiveness and verification of theoretical analysis.
Algebraic moment closure for population dynamics on discrete structures.
House, Thomas
2015-04-01
Moment closure on general discrete structures often requires one of the following: (i) an absence of short-closed loops (zero clustering); (ii) existence of a spatial scale; (iii) ad hoc assumptions. Algebraic methods are presented to avoid the use of such assumptions for populations based on clumps and are applied to both SIR and macroparasite disease dynamics. One approach involves a series of approximations that can be derived systematically, and another is exact and based on Lie algebraic methods.
Recursive multibody dynamics and discrete-time optimal control
NASA Technical Reports Server (NTRS)
Deleuterio, G. M. T.; Damaren, C. J.
1989-01-01
A recursive algorithm is developed for the solution of the simulation dynamics problem for a chain of rigid bodies. Arbitrary joint constraints are permitted, that is, joints may allow translational and/or rotational degrees of freedom. The recursive procedure is shown to be identical to that encountered in a discrete-time optimal control problem. For each relevant quantity in the multibody dynamics problem, there exists an analog in the context of optimal control. The performance index that is minimized in the control problem is identified as Gibbs' function for the chain of bodies.
Applications of Discrete Molecular Dynamics in biology and medicine.
Proctor, Elizabeth A; Dokholyan, Nikolay V
2016-04-01
Discrete Molecular Dynamics (DMD) is a physics-based simulation method using discrete energetic potentials rather than traditional continuous potentials, allowing microsecond time scale simulations of biomolecular systems to be performed on personal computers rather than supercomputers or specialized hardware. With the ongoing explosion in processing power even in personal computers, applications of DMD have similarly multiplied. In the past two years, researchers have used DMD to model structures of disease-implicated protein folding intermediates, study assembly of protein complexes, predict protein-protein binding conformations, engineer rescue mutations in disease-causative protein mutants, design a protein conformational switch to control cell signaling, and describe the behavior of polymeric dispersants for environmental cleanup of oil spills, among other innovative applications. PMID:26638022
Applications of Discrete Molecular Dynamics in biology and medicine.
Proctor, Elizabeth A; Dokholyan, Nikolay V
2016-04-01
Discrete Molecular Dynamics (DMD) is a physics-based simulation method using discrete energetic potentials rather than traditional continuous potentials, allowing microsecond time scale simulations of biomolecular systems to be performed on personal computers rather than supercomputers or specialized hardware. With the ongoing explosion in processing power even in personal computers, applications of DMD have similarly multiplied. In the past two years, researchers have used DMD to model structures of disease-implicated protein folding intermediates, study assembly of protein complexes, predict protein-protein binding conformations, engineer rescue mutations in disease-causative protein mutants, design a protein conformational switch to control cell signaling, and describe the behavior of polymeric dispersants for environmental cleanup of oil spills, among other innovative applications.
Dynamic modelling and analysis of space webs
NASA Astrophysics Data System (ADS)
Yu, Yang; Baoyin, HeXi; Li, JunFeng
2011-04-01
Future space missions demand operations on large flexible structures, for example, space webs, the lightweight cable nets deployable in space, which can serve as platforms for very large structures or be used to capture orbital objects. The interest in research on space webs is likely to increase in the future with the development of promising applications such as Furoshiki sat-ellite of JAXA, Robotic Geostationary Orbit Restorer (ROGER) of ESA and Grapple, Retrieve And Secure Payload (GRASP) of NASA. Unlike high-tensioned nets in civil engineering, space webs may be low-tensioned or tensionless, and extremely flexible, owing to the microgravity in the orbit and the lack of support components, which may cause computational difficulties. Mathematical models are necessary in the analysis of space webs, especially in the conceptual design and evaluation for prototypes. A full three-dimensional finite element (FE) model was developed in this work. Trivial truss elements were adopted to reduce the computational complexity. Considering cable is a compression-free material and its tensile stiffness is also variable, we introduced the cable material constitutive relationship to work out an accurate and feasible model for prototype analysis and design. In the static analysis, the stress distribution and global deformation of the webs were discussed to get access to the knowledge of strength of webs with different types of meshes. In the dynamic analysis, special attention was paid to the impact problem. The max stress and global deformation were investigated. The simulation results indicate the interesting phenomenon which may be worth further research.
Experiments of reconstructing discrete atmospheric dynamic models from data (I)
NASA Astrophysics Data System (ADS)
Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang
1995-03-01
In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.
Convergence Time towards Periodic Orbits in Discrete Dynamical Systems
San Martín, Jesús; Porter, Mason A.
2014-01-01
We investigate the convergence towards periodic orbits in discrete dynamical systems. We examine the probability that a randomly chosen point converges to a particular neighborhood of a periodic orbit in a fixed number of iterations, and we use linearized equations to examine the evolution near that neighborhood. The underlying idea is that points of stable periodic orbit are associated with intervals. We state and prove a theorem that details what regions of phase space are mapped into these intervals (once they are known) and how many iterations are required to get there. We also construct algorithms that allow our theoretical results to be implemented successfully in practice. PMID:24736594
Convergence time towards periodic orbits in discrete dynamical systems.
San Martín, Jesús; Porter, Mason A
2014-01-01
We investigate the convergence towards periodic orbits in discrete dynamical systems. We examine the probability that a randomly chosen point converges to a particular neighborhood of a periodic orbit in a fixed number of iterations, and we use linearized equations to examine the evolution near that neighborhood. The underlying idea is that points of stable periodic orbit are associated with intervals. We state and prove a theorem that details what regions of phase space are mapped into these intervals (once they are known) and how many iterations are required to get there. We also construct algorithms that allow our theoretical results to be implemented successfully in practice.
On control of continuous dynamical polysystems in discrete times
Khryashchev, S. M.
2015-03-10
This paper considers control systems with a finite number of control parameters, i.e. dynamical polysystems. It is assumed that control switchings can occur only at certain discrete times. Statistical methods in number theory are used to investigate the controllability of these systems. Existence of control switching times is established through analysis of Diophantine equations. The values of control switching times are found through suitable numerical methods. Certain assertions on the controllability of the polysystems of the class under consideration are proved. Some examples are considered.
Convergence time towards periodic orbits in discrete dynamical systems.
San Martín, Jesús; Porter, Mason A
2014-01-01
We investigate the convergence towards periodic orbits in discrete dynamical systems. We examine the probability that a randomly chosen point converges to a particular neighborhood of a periodic orbit in a fixed number of iterations, and we use linearized equations to examine the evolution near that neighborhood. The underlying idea is that points of stable periodic orbit are associated with intervals. We state and prove a theorem that details what regions of phase space are mapped into these intervals (once they are known) and how many iterations are required to get there. We also construct algorithms that allow our theoretical results to be implemented successfully in practice. PMID:24736594
Novel coupling scheme to control dynamics of coupled discrete systems
NASA Astrophysics Data System (ADS)
Shekatkar, Snehal M.; Ambika, G.
2015-08-01
We present a new coupling scheme to control spatio-temporal patterns and chimeras on 1-d and 2-d lattices and random networks of discrete dynamical systems. The scheme involves coupling with an external lattice or network of damped systems. When the system network and external network are set in a feedback loop, the system network can be controlled to a homogeneous steady state or synchronized periodic state with suppression of the chaotic dynamics of the individual units. The control scheme has the advantage that its design does not require any prior information about the system dynamics or its parameters and works effectively for a range of parameters of the control network. We analyze the stability of the controlled steady state or amplitude death state of lattices using the theory of circulant matrices and Routh-Hurwitz criterion for discrete systems and this helps to isolate regions of effective control in the relevant parameter planes. The conditions thus obtained are found to agree well with those obtained from direct numerical simulations in the specific context of lattices with logistic map and Henon map as on-site system dynamics. We show how chimera states developed in an experimentally realizable 2-d lattice can be controlled using this scheme. We propose this mechanism can provide a phenomenological model for the control of spatio-temporal patterns in coupled neurons due to non-synaptic coupling with the extra cellular medium. We extend the control scheme to regulate dynamics on random networks and adapt the master stability function method to analyze the stability of the controlled state for various topologies and coupling strengths.
The discrete dynamics of symmetric competition in the plane.
Jiang, H; Rogers, T D
1987-01-01
We consider the generalized Lotka-Volterra two-species system xn + 1 = xn exp(r1(1 - xn) - s1yn) yn + 1 = yn exp(r2(1 - yn) - s2xn) originally proposed by R. M. May as a model for competitive interaction. In the symmetric case that r1 = r2 and s1 = s2, a region of ultimate confinement is found and the dynamics therein are described in some detail. The bifurcations of periodic points of low period are studied, and a cascade of period-doubling bifurcations is indicated. Within the confinement region, a parameter region is determined for the stable Hopf bifurcation of a pair of symmetrically placed period-two points, which imposes a second component of oscillation near the stable cycles. It is suggested that the symmetric competitive model contains much of the dynamical complexity to be expected in any discrete two-dimensional competitive model. PMID:3437226
Dynamics of Sequence -Discrete Bacterial Populations Inferred Using Metagenomes
Stevens, Sarah; Bendall, Matthew; Kang, Dongwan; Froula, Jeff; Egan, Rob; Chan, Leong-Keat; Tringe, Susannah; McMahon, Katherine; Malmstrom, Rex
2014-03-14
From a multi-year metagenomic time series of two dissimilar Wisconsin lakes we have assembled dozens of genomes using a novel approach that bins contigs into distinct genome based on sequence composition, e.g. kmer frequencies, and contig coverage patterns at various times points. Next, we investigated how these genomes, which represent sequence-discrete bacterial populations, evolved over time and used the time series to discover the population dynamics. For example, we explored changes in single nucleotide polymorphism (SNP) frequencies as well as patterns of gene gain and loss in multiple populations. Interestingly, SNP diversity was purged at nearly every genome position in some populations during the course of this study, suggesting these populations may have experienced genome-wide selective sweeps. This represents the first direct, time-resolved observations of periodic selection in natural populations, a key process predicted by the ecotype model of bacterial diversification.
Constant pressure and temperature discrete-time Langevin molecular dynamics
Grønbech-Jensen, Niels; Farago, Oded
2014-11-21
We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.
Consequences of symbiosis for food web dynamics.
Kooi, B W; Kuijper, L D J; Kooijman, S A L M
2004-09-01
Basic Lotka-Volterra type models in which mutualism (a type of symbiosis where the two populations benefit both) is taken into account, may give unbounded solutions. We exclude such behaviour using explicit mass balances and study the consequences of symbiosis for the long-term dynamic behaviour of a three species system, two prey and one predator species in the chemostat. We compose a theoretical food web where a predator feeds on two prey species that have a symbiotic relationships. In addition to a species-specific resource, the two prey populations consume the products of the partner population as well. In turn, a common predator forages on these prey populations. The temporal change in the biomass and the nutrient densities in the reactor is described by ordinary differential equations (ODE). Since products are recycled, the dynamics of these abiotic materials must be taken into account as well, and they are described by odes in a similar way as the abiotic nutrients. We use numerical bifurcation analysis to assess the long-term dynamic behaviour for varying degrees of symbiosis. Attractors can be equilibria, limit cycles and chaotic attractors depending on the control parameters of the chemostat reactor. These control parameters that can be experimentally manipulated are the nutrient density of the inflow medium and the dilution rate. Bifurcation diagrams for the three species web with a facultative symbiotic association between the two prey populations, are similar to that of a bi-trophic food chain; nutrient enrichment leads to oscillatory behaviour. Predation combined with obligatory symbiotic prey-interactions has a stabilizing effect, that is, there is stable coexistence in a larger part of the parameter space than for a bi-trophic food chain. However, combined with a large growth rate of the predator, the food web can persist only in a relatively small region of the parameter space. Then, two zero-pair bifurcation points are the organizing centers. In
Discretized torsional dynamics and the folding of an RNA chain
NASA Astrophysics Data System (ADS)
Fernández, Ariel; Salthú, Rodolfo; Cendra, Hernán
1999-08-01
The aim of this work is to implement a discrete coarse codification of local torsional states of the RNA chain backbone in order to explore the long-time limit dynamics and ultimately obtain a coarse solution to the RNA folding problem. A discrete representation of the soft-mode dynamics is turned into an algorithm for a rough structure prediction. The algorithm itself is inherently parallel, as it evaluates concurrent folding possibilities by pattern recognition, but it may be implemented in a personal computer as a chain of perturbation-translation-renormalization cycles performed on a binary matrix of local topological constraints. This requires suitable representational tools and a periodic quenching of the dynamics for system renormalization. A binary coding of local topological constraints associated with each structural motif is introduced, with each local topological constraint corresponding to a local torsional state. This treatment enables us to adopt a computation time step far larger than hydrodynamic drag time scales. Accordingly, the solvent is no longer treated as a hydrodynamic drag medium. Instead we incorporate its capacity for forming local conformation-dependent dielectric domains. Each translation of the matrix of local topological constraints (LTM's) depends on the conformation-dependent local dielectric created by a confined solvent. Folding pathways are resolved as transitions between patterns of locally encoded structural signals which change within the 1 ns-100 ms time scale range. These coarse folding pathways are generated by a search at regular intervals for structural patterns in the LTM. Each pattern is recorded as a base-pairing pattern (BPP) matrix, a consensus-evaluation operation subject to a renormalization feedback loop. Since several mutually conflicting consensus evaluations might occur at a given time, the need arises for a probabilistic approach appropriate for an ensemble of RNA molecules. Thus, a statistical dynamics of
An implicit finite element method for discrete dynamic fracture
Jobie M. Gerken
1999-12-01
A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some
Folding a protein by discretizing its backbone torsional dynamics
NASA Astrophysics Data System (ADS)
Fernández, Ariel
1999-05-01
The aim of this work is to provide a coarse codification of local conformational constraints associated with each folding motif of a peptide chain in order to obtain a rough solution to the protein folding problem. This is accomplished by implementing a discretized version of the soft-mode dynamics on a personal computer (PC). Our algorithm mimics a parallel process as it evaluates concurrent folding possibilities by pattern recognition. It may be implemented in a PC as a sequence of perturbation-translation-renormalization (p-t-r) cycles performed on a matrix of local topological constraints (LTM). This requires suitable representational tools and a periodic quenching of the dynamics required for renormalization. We introduce a description of the peptide chain based on a local discrete variable the values of which label the basins of attraction of the Ramachandran map for each residue. Thus, the local variable indicates the basin in which the torsional coordinates of each residue lie at a given time. In addition, a coding of local topological constraints associated with each secondary and tertiary structural motif is introduced. Our treatment enables us to adopt a computation time step of 81 ps, a value far larger than hydrodynamic drag time scales. Folding pathways are resolved as transitions between patterns of locally encoded structural signals that change within the 10 μs-100 ms time scale range. These coarse folding pathways are generated by the periodic search for structural patterns in the time-evolving LTM. Each pattern is recorded as a contact matrix, an operation subject to a renormalization feedback loop. The validity of our approach is tested vis-a-vis experimentally-probed folding pathways eventually generating tertiary interactions in proteins which recover their active structure under in vitro renaturation conditions. As an illustration, we focus on determining significant folding intermediates and late kinetic bottlenecks that occur within the
Modelling machine ensembles with discrete event dynamical system theory
NASA Technical Reports Server (NTRS)
Hunter, Dan
1990-01-01
Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).
Signatures of discrete breathers in coherent state quantum dynamics
Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis
2013-02-07
In classical mechanics, discrete breathers (DBs) - a spatial time-periodic localization of energy - are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space - a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes - high order tunneling modes - that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments that
Signatures of discrete breathers in coherent state quantum dynamics.
Igumenshchev, Kirill; Ovchinnikov, Misha; Maniadis, Panagiotis; Prezhdo, Oleg
2013-02-01
In classical mechanics, discrete breathers (DBs) - a spatial time-periodic localization of energy - are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space - a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes - high order tunneling modes - that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments that
The GBT Dynamic Scheduling System: Powered by the Web
NASA Astrophysics Data System (ADS)
Marganian, P.; Clark, M.; McCarty, M.; Sessoms, E.; Shelton, A.
2009-09-01
The web technologies utilized for the Robert C. Byrd Green Bank Telescope's (GBT) new Dynamic Scheduling System are discussed, focusing on languages, frameworks, and tools. We use a popular Python web framework, TurboGears, to take advantage of the extensive web services the system provides. TurboGears is a model-view-controller framework, which aggregates SQLAlchemy, Genshi, and CherryPy respectively. On top of this framework, Javascript (Prototype, script.aculo.us, and JQuery) and cascading style sheets (Blueprint) are used for desktop-quality web pages.
DIVE in the cosmic web: voids with Delaunay triangulation from discrete matter tracer distributions
NASA Astrophysics Data System (ADS)
Zhao, Cheng; Tao, Charling; Liang, Yu; Kitaura, Francisco-Shu; Chuang, Chia-Hsun
2016-07-01
We present a novel parameter-free cosmological void finder (DIVE, Delaunay TrIangulation Void findEr) based on Delaunay Triangulation (DT), which efficiently computes the empty spheres constrained by a discrete set of tracers. We define the spheres as DT voids, and describe their properties, including a universal density profile together with an intrinsic scatter. We apply this technique on 100 halo catalogues with volumes of 2.5 h-1Gpc side each, with a bias and number density similar to the Baryon Oscillation Spectroscopic Survey CMASS luminous red galaxies, performed with the PATCHY code. Our results show that there are two main species of DT voids, which can be characterized by the radius: they have different responses to halo redshift space distortions, to number density of tracers, and reside in different dark matter environments. Based on dynamical arguments using the tidal field tensor, we demonstrate that large DT voids are hosted in expanding regions, whereas the haloes used to construct them reside in collapsing ones. Our approach is therefore able to efficiently determine the troughs of the density field from galaxy surveys, and can be used to study their clustering. We further study the power spectra of DT voids, and find that the bias of the two populations are different, demonstrating that the small DT voids are essentially tracers of groups of haloes.
Discrete Dynamical Systems Meet the Classic Monkey-and-the-Bananas Problem.
ERIC Educational Resources Information Center
Gannon, Gerald E.; Martelli, Mario U.
2001-01-01
Presents a solution of the three-sailors-and-the-bananas problem and attempts a generalization. Introduces an interesting way of looking at the mathematics with an idea drawn from discrete dynamical systems. (KHR)
Enabling a GeoWeb with Net-Centric Fusion on a Discrete Global Grid (Invited)
NASA Astrophysics Data System (ADS)
Peterson, P. R.
2010-12-01
There is a pressing expectation for general real-time access to multi-source geo-spatial content in support of evidence-based decision-making. Earth location promises to be a decentralized organizational structure for such net-centric decision support systems - the GeoWeb, Digital Earth, GEOINT2, and Planetary Skin are some terms in use. However, these platforms assume a critical provision for access and integration of multi-sources of geo-data on-demand and unassisted by the unanticipated unsophisticated end-use decision-maker. How can this occur when geo-data integration is a complex time-consuming problem? We present a solution. A discrete global grid system (DGGS) incorporates an Earth partitioning that acts as a unifying structure for encoding and integrating/fusing multi-source location-based information necessary for this class of location-based platforms. As a global reference model the DGGS is uniform over the entire planet at any resolution - from continents to bird baths. The DGGS provides fast, seamless assimilation of new, numerous, and disparate geo-data sources regardless of scale, origin, resolution, legacy formats, datum, or projection - allowing any content to reside at its own level of granularity at any location on the globe. The DGGS renders data fused, ubiquitous, searchable, and ready for analysis. Testbed development of a DGGS using the optimized Icosahedral Snyder Equal Area aperture 3 Hexagonal grid (ISEA3H) demonstrated solutions to challenging aspects of multi-source data exploitation and decision support within military geospatial-intelligence. The ISEA3H tessellation is optimized to use the fine increments and the close packed equal area partitioning properties of a square root three (hexagonal) subdivision. The investigations advanced the ISEA3H grid development to include cell indexing, quantization strategy and numeric functions required for a formal digital Earth reference model (DERM). Notably, the global index that was selected
Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization
NASA Astrophysics Data System (ADS)
Matouk, A. E.; Elsadany, A. A.; Ahmed, E.; Agiza, H. N.
2015-10-01
In this work, the dynamical behavior of fractional-order Hastings-Powell food chain model is investigated and a new discretization method of the fractional-order system is introduced. A sufficient condition for existence and uniqueness of the solution of the proposed system is obtained. Local stability of the equilibrium points of the fractional-order system is studied. Furthermore, the necessary and sufficient conditions of stability of the discretized system are also studied. It is shown that the system's fractional parameter has effect on the stability of the discretized system which shows rich variety of dynamical behaviors such as Hopf bifurcation, an attractor crisis and chaotic attractors. Numerical simulations show the tea-cup chaotic attractor of the fractional-order system and the richer dynamical behavior of the corresponding discretized system.
Discrete neural dynamic programming in wheeled mobile robot control
NASA Astrophysics Data System (ADS)
Hendzel, Zenon; Szuster, Marcin
2011-05-01
In this paper we propose a discrete algorithm for a tracking control of a two-wheeled mobile robot (WMR), using an advanced Adaptive Critic Design (ACD). We used Dual-Heuristic Programming (DHP) algorithm, that consists of two parametric structures implemented as Neural Networks (NNs): an actor and a critic, both realized in a form of Random Vector Functional Link (RVFL) NNs. In the proposed algorithm the control system consists of the DHP adaptive critic, a PD controller and a supervisory term, derived from the Lyapunov stability theorem. The supervisory term guaranties a stable realization of a tracking movement in a learning phase of the adaptive critic structure and robustness in face of disturbances. The discrete tracking control algorithm works online, uses the WMR model for a state prediction and does not require a preliminary learning. Verification has been conducted to illustrate the performance of the proposed control algorithm, by a series of experiments on the WMR Pioneer 2-DX.
Astronomy Education via The Dynamic Web
NASA Astrophysics Data System (ADS)
Flurchick, K. M.; Avery, W.; Griego, B. F.; Culver, R.
2011-05-01
The ability of web applications to provide students the ability to explore and investigate astronomical concepts presented in class in a way which can help student understanding. In this presentation we report on the results of students making use of the computational tools in webMathematicaTM to analyze and investigate a variety of astronomical phenomena, including topics such as the Runge-Lenz vector, descriptions of the orbits of the exo-planets and other topics related to celestial mechanics. Using the exercise described herein, students at the North Carolina A & T State University and Colorado State University investigated via computational simulations the creation and characteristics and the effects of various parameters on these systems being studied.
Simulating food web dynamics along a gradient: quantifying human influence.
Jordán, Ferenc; Gjata, Nerta; Mei, Shu; Yule, Catherine M
2012-01-01
Realistically parameterized and dynamically simulated food-webs are useful tool to explore the importance of the functional diversity of ecosystems, and in particular relations between the dynamics of species and the whole community. We present a stochastic dynamical food web simulation for the Kelian River (Borneo). The food web was constructed for six different locations, arrayed along a gradient of increasing human perturbation (mostly resulting from gold mining activities) along the river. Along the river, the relative importance of grazers, filterers and shredders decreases with increasing disturbance downstream, while predators become more dominant in governing eco-dynamics. Human activity led to increased turbidity and sedimentation which adversely impacts primary productivity. Since the main difference between the study sites was not the composition of the food webs (structure is quite similar) but the strengths of interactions and the abundance of the trophic groups, a dynamical simulation approach seemed to be useful to better explain human influence. In the pristine river (study site 1), when comparing a structural version of our model with the dynamical model we found that structurally central groups such as omnivores and carnivores were not the most important ones dynamically. Instead, primary consumers such as invertebrate grazers and shredders generated a greater dynamical response. Based on the dynamically most important groups, bottom-up control is replaced by the predominant top-down control regime as distance downstream and human disturbance increased. An important finding, potentially explaining the poor structure to dynamics relationship, is that indirect effects are at least as important as direct ones during the simulations. We suggest that our approach and this simulation framework could serve systems-based conservation efforts. Quantitative indicators on the relative importance of trophic groups and the mechanistic modeling of eco-dynamics
Simulating food web dynamics along a gradient: quantifying human influence.
Jordán, Ferenc; Gjata, Nerta; Mei, Shu; Yule, Catherine M
2012-01-01
Realistically parameterized and dynamically simulated food-webs are useful tool to explore the importance of the functional diversity of ecosystems, and in particular relations between the dynamics of species and the whole community. We present a stochastic dynamical food web simulation for the Kelian River (Borneo). The food web was constructed for six different locations, arrayed along a gradient of increasing human perturbation (mostly resulting from gold mining activities) along the river. Along the river, the relative importance of grazers, filterers and shredders decreases with increasing disturbance downstream, while predators become more dominant in governing eco-dynamics. Human activity led to increased turbidity and sedimentation which adversely impacts primary productivity. Since the main difference between the study sites was not the composition of the food webs (structure is quite similar) but the strengths of interactions and the abundance of the trophic groups, a dynamical simulation approach seemed to be useful to better explain human influence. In the pristine river (study site 1), when comparing a structural version of our model with the dynamical model we found that structurally central groups such as omnivores and carnivores were not the most important ones dynamically. Instead, primary consumers such as invertebrate grazers and shredders generated a greater dynamical response. Based on the dynamically most important groups, bottom-up control is replaced by the predominant top-down control regime as distance downstream and human disturbance increased. An important finding, potentially explaining the poor structure to dynamics relationship, is that indirect effects are at least as important as direct ones during the simulations. We suggest that our approach and this simulation framework could serve systems-based conservation efforts. Quantitative indicators on the relative importance of trophic groups and the mechanistic modeling of eco-dynamics
NASA Astrophysics Data System (ADS)
Wang, Tong; Ding, Yongsheng; Zhang, Lei; Hao, Kuangrong
2016-08-01
This paper considered the synchronisation of continuous complex dynamical networks with discrete-time communications and delayed nodes. The nodes in the dynamical networks act in the continuous manner, while the communications between nodes are discrete-time; that is, they communicate with others only at discrete time instants. The communication intervals in communication period can be uncertain and variable. By using a piecewise Lyapunov-Krasovskii function to govern the characteristics of the discrete communication instants, we investigate the adaptive feedback synchronisation and a criterion is derived to guarantee the existence of the desired controllers. The globally exponential synchronisation can be achieved by the controllers under the updating laws. Finally, two numerical examples including globally coupled network and nearest-neighbour coupled networks are presented to demonstrate the validity and effectiveness of the proposed control scheme.
Hamiltonian dynamics for complex food webs.
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity. PMID:27078396
Hamiltonian dynamics for complex food webs.
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.
Hamiltonian dynamics for complex food webs
NASA Astrophysics Data System (ADS)
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.
NASA Astrophysics Data System (ADS)
Zañudo, Jorge G. T.; Albert, Réka
2013-06-01
Discrete dynamic models are a powerful tool for the understanding and modeling of large biological networks. Although a lot of progress has been made in developing analysis tools for these models, there is still a need to find approaches that can directly relate the network structure to its dynamics. Of special interest is identifying the stable patterns of activity, i.e., the attractors of the system. This is a problem for large networks, because the state space of the system increases exponentially with network size. In this work, we present a novel network reduction approach that is based on finding network motifs that stabilize in a fixed state. Notably, we use a topological criterion to identify these motifs. Specifically, we find certain types of strongly connected components in a suitably expanded representation of the network. To test our method, we apply it to a dynamic network model for a type of cytotoxic T cell cancer and to an ensemble of random Boolean networks of size up to 200. Our results show that our method goes beyond reducing the network and in most cases can actually predict the dynamical repertoire of the nodes (fixed states or oscillations) in the attractors of the system.
Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J
2016-01-01
The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2〈111〉{110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms. PMID:26871192
Navier-Stokes Dynamics by a Discrete Boltzmann Model
NASA Technical Reports Server (NTRS)
Rubinstein, Robet
2010-01-01
This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.
Discrete-time pilot model. [human dynamics and digital simulation
NASA Technical Reports Server (NTRS)
Cavalli, D.
1978-01-01
Pilot behavior is considered as a discrete-time process where the decision making has a sequential nature. This model differs from both the quasilinear model which follows from classical control theory and from the optimal control model which considers the human operator as a Kalman estimator-predictor. An additional factor considered is that the pilot's objective may not be adequately formulated as a quadratic cost functional to be minimized, but rather as a more fuzzy measure of the closeness with which the aircraft follows a reference trajectory. All model parameters, in the digital program simulating the pilot's behavior, were successfully compared in terms of standard-deviation and performance with those of professional pilots in IFR configuration. The first practical application of the model was in the study of its performance degradation when the aircraft model static margin decreases.
Food-web dynamics in a large river discontinuum
Cross, Wyatt F.; Baxter, Colden V.; Rosi-Marshall, Emma J.; Hall, Robert O.; Kennedy, Theodore A.; Donner, Kevin C.; Kelly, Holly A. Wellard; Seegert, Sarah E.Z.; Behn, Kathrine E.; Yard, Michael D.
2013-01-01
Nearly all ecosystems have been altered by human activities, and most communities are now composed of interacting species that have not co-evolved. These changes may modify species interactions, energy and material flows, and food-web stability. Although structural changes to ecosystems have been widely reported, few studies have linked such changes to dynamic food-web attributes and patterns of energy flow. Moreover, there have been few tests of food-web stability theory in highly disturbed and intensely managed freshwater ecosystems. Such synthetic approaches are needed for predicting the future trajectory of ecosystems, including how they may respond to natural or anthropogenic perturbations. We constructed flow food webs at six locations along a 386-km segment of the Colorado River in Grand Canyon (Arizona, USA) for three years. We characterized food-web structure and production, trophic basis of production, energy efficiencies, and interaction-strength distributions across a spatial gradient of perturbation (i.e., distance from Glen Canyon Dam), as well as before and after an experimental flood. We found strong longitudinal patterns in food-web characteristics that strongly correlated with the spatial position of large tributaries. Above tributaries, food webs were dominated by nonnative New Zealand mudsnails (62% of production) and nonnative rainbow trout (100% of fish production). The simple structure of these food webs led to few dominant energy pathways (diatoms to few invertebrate taxa to rainbow trout), large energy inefficiencies (i.e., Below large tributaries, invertebrate production declined ∼18-fold, while fish production remained similar to upstream sites and comprised predominately native taxa (80–100% of production). Sites below large tributaries had increasingly reticulate and detritus-based food webs with a higher prevalence of omnivory, as well as interaction strength distributions more typical of theoretically stable food webs (i
Discrete and continuous dynamics modeling of a mass moving on a flexible structure
NASA Technical Reports Server (NTRS)
Herman, Deborah Ann
1992-01-01
A general discrete methodology for modeling the dynamics of a mass that moves on the surface of a flexible structure is developed. This problem was motivated by the Space Station/Mobile Transporter system. A model reduction approach is developed to make the methodology applicable to large structural systems. To validate the discrete methodology, continuous formulations are also developed. Three different systems are examined: (1) simply-supported beam, (2) free-free beam, and (3) free-free beam with two points of contact between the mass and the flexible beam. In addition to validating the methodology, parametric studies were performed to examine how the system's physical properties affect its dynamics.
Collisionless Dynamics and the Cosmic Web
NASA Astrophysics Data System (ADS)
Hahn, Oliver
2016-10-01
I review the nature of three-dimensional collapse in the Zeldovich approximation, how it relates to the underlying nature of the three-dimensional Lagrangian manifold and naturally gives rise to a hierarchical structure formation scenario that progresses through collapse from voids to pancakes, filaments and then halos. I then discuss how variations of the Zeldovich approximation (based on the gravitational or the velocity potential) have been used to define classifications of the cosmic large-scale structure into dynamically distinct parts. Finally, I turn to recent efforts to devise new approaches relying on tessellations of the Lagrangian manifold to follow the fine-grained dynamics of the dark matter fluid into the highly non-linear regime and both extract the maximum amount of information from existing simulations as well as devise new simulation techniques for cold collisionless dynamics.
Dynamics of a Barchan Dune Field: a Discrete Numerical Model
NASA Astrophysics Data System (ADS)
Littlewood, R. C.; Murray, A. B.; Andreotti, B.; Claudin, P.
2007-12-01
Barchans are crescent-shaped dunes that form on solid ground in areas with a relatively low sand supply and a unidirectional wind regime. Isolated barchans have been successfully modeled with regard to their shape and propagation velocity. However, emergent effects that arise for the case of a field of dunes have proven difficult to capture. These behaviors include selection of a preferred size and spacing within a patch of dunes and additionally the presence within a dune field of multiple patches, greatly extended in the downwind direction, each exhibiting a different dominant size. It is suspected that these sorting inhomogeneities in the dune field are self- organized and not the result of external forcing. Here, we present the results of modeling efforts using a discrete numerical model representing a field of barchan dunes. We use simplified equations for dune shape, mass balance, and propagation. Dunes interact by merging and by means of the downwind sand flux. Additionally, we include a simplified treatment of dune calving. Tentative conclusions can be drawn from the rich behavior of the model. In it, spatial inhomogeneities can arise due to feedbacks triggered by stochastic fluctuations about critical values of the input parameters. Isolated groups propagate at velocities independent of those of their constituent dunes. Size selection occurs to a limited extent due to the onset of calving at a critical size. In sum, the model displays some of the emergent dune field characteristics that have not previously been replicated.
Network Analysis of the State Space of Discrete Dynamical Systems
NASA Astrophysics Data System (ADS)
Shreim, Amer; Grassberger, Peter; Nadler, Walter; Samuelsson, Björn; Socolar, Joshua E. S.; Paczuski, Maya
2007-05-01
We study networks representing the dynamics of elementary 1D cellular automata (CA) on finite lattices. We analyze scaling behaviors of both local and global network properties as a function of system size. The scaling of the largest node in-degree is obtained analytically for a variety of CA including rules 22, 54, and 110. We further define the path diversity as a global network measure. The coappearance of nontrivial scaling in both the hub size and the path diversity separates simple dynamics from the more complex behaviors typically found in Wolfram’s class IV and some class III CA.
Studying Human Dynamics Through Web Analytics
NASA Astrophysics Data System (ADS)
Ramasco, Jose; Goncalves, Bruno
2008-03-01
When Tim Berners Lee, a physicist at the European Center for Nuclear Research (CERN) first conceived the World Wide Web (WWW) in 1990 as a way to facilitate the sharing of scientific information and results among the centers different researchers and groups, even the most ingenious of science fiction writers could not have imagined the role it would come to play in the following decades. The increasing ubiquitousness of Internet access and the frequency with which people interact with it raise the possibility of using it to better observe, understand, and even monitor several aspects of human social behavior. Websites with large numbers of frequently returning users, such as search engines, company or university websites, are ideal for this task. The properly anonymized logs detailing the access history to Emory University's website is studied. We find that a small number of users is responsible for a finite fraction of the total activity. A saturation phenomenon is observed where, certain connections age, becoming less attractive to new activity over time. Finally, by measuring the average activity as a function of the day of the week, we find that productivity seems to be higher on Tuesdays and Wednesdays, with Sundays being the least active day.
Liao, Bolin; Zhang, Yunong; Jin, Long
2016-02-01
In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.
Dynamics of The Tranquil Cosmic Web
NASA Astrophysics Data System (ADS)
Nusser, Adi
2016-10-01
The phase space distribution of matter out to ~ 100 \\rm Mpc is probed by two types of observational data: galaxy redshift surveys and peculiar motions of galaxies. Important information on the process of structure formation and deviations from standard gravity have been extracted from the accumulating data. The remarkably simple Zel'dovich approximation is the basis for much of our insight into the dynamics of structure formation and the development of data analyses methods. Progress in the methodology and some recent results is reviewed.
A Voice Web Application Based on Dynamic Navigation of VXML
NASA Astrophysics Data System (ADS)
Bhingarkar, Sukhada P.
2010-11-01
Voice Web, as the name suggests, accesses web resources via voice. VoiceXML is the markup language used to develop speech applications. VoiceXML is interactive and allows voice input to be received and processed by voice browser. Unfortunately, the navigation of VoiceXML document is completely controlled by application developer. Also, the user does not have flexibility to utter random word from currently executing dialog. The aim of the paper is to address the weakness of VoiceXML and develop an application, which dynamically detects recognition candidates in user content, in contrast with recognition candidates of the existing voice web, which depend on the application developer. In this application, a news service is implemented along with dictionary of IT-specific terms and dictionary of words from currently executing news.
Bifurcations and dynamics of a discrete predator–prey system
Asheghi, Rasoul
2014-01-01
In this paper, we study the dynamics behaviour of a stratum of plant–herbivore which is modelled through the following F(x, y)=(f(x, y), g(x, y)) two-dimensional map with four parameters defined by where x≥0, y≥0, and the real parameters a, b, r, k are all positive. We will focus on the case a≠b. We study the stability of fixed points and do the analysis of the period-doubling and the Neimark–Sacker bifurcations in a standard way. PMID:24963984
ERIC Educational Resources Information Center
Winkel, Brian
2012-01-01
We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)
A Nonlinear Discrete Dynamical Model for Transcriptional Regulation: Construction and Properties
Goutsias, John; Kim, Seungchan
2004-01-01
Transcriptional regulation is a fundamental mechanism of living cells, which allows them to determine their actions and properties, by selectively choosing which proteins to express and by dynamically controlling the amounts of those proteins. In this article, we revisit the problem of mathematically modeling transcriptional regulation. First, we adopt a biologically motivated continuous model for gene transcription and mRNA translation, based on first-order rate equations, coupled with a set of nonlinear equations that model cis-regulation. Then, we view the processes of transcription and translation as being discrete, which, together with the need to use computational techniques for large-scale analysis and simulation, motivates us to model transcriptional regulation by means of a nonlinear discrete dynamical system. Classical arguments from chemical kinetics allow us to specify the nonlinearities underlying cis-regulation and to include both activators and repressors as well as the notion of regulatory modules in our formulation. We show that the steady-state behavior of the proposed discrete dynamical system is identical to that of the continuous model. We discuss several aspects of our model, related to homeostatic and epigenetic regulation as well as to Boolean networks, and elaborate on their significance. Simulations of transcriptional regulation of a hypothetical metabolic pathway illustrate several properties of our model, and demonstrate that a nonlinear discrete dynamical system may be effectively used to model transcriptional regulation in a biologically relevant way. PMID:15041638
NASA Astrophysics Data System (ADS)
Winkel, Brian
2012-03-01
We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course.
Mesoscale symmetries explain dynamical equivalence of food webs
NASA Astrophysics Data System (ADS)
Aufderheide, Helge; Rudolf, Lars; Gross, Thilo
2012-10-01
A goal of complex system research is to identify the dynamical implications of network structure. While early results focused mainly on local or global structural properties, there is now growing interest in mesoscale structures that comprise more than one node but not the whole network. A central challenge is to discover under what conditions the occurrence of a specific mesoscale motif already allows conclusions on the dynamics of a network as a whole. In this paper, we investigate the dynamics of ecological food webs, complex heterogeneous networks of interacting populations. Generalizing the results of MacArthur and Sánchez-García (2009 Phys. Rev. E 80 26117), we show that certain mesoscale symmetries imply the existence of localized dynamical modes. If these modes are unstable the occurrence of the corresponding mesoscale motif implies dynamical instability regardless of the structure of the embedding network. In contrast, if the mode is stable it means that the symmetry can be exploited to reduce the number of nodes in the model, without changing the dynamics of the system. This result explains a previously observed dynamical equivalence between food webs containing a different number of species.
Emerging hierarchies in dynamically adapting webs
NASA Astrophysics Data System (ADS)
Katifori, Eleni; Graewer, Johannes; Magnasco, Marcelo; Modes, Carl
Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. We quantify the hierarchical organization of the networks by developing an algorithm that decomposes the architecture to multiple scales and analyzes how the organization in each scale relates to that of the scale above and below it. The methodologies developed in this work are applicable to a wide range of systems including the slime mold physarum polycephalum, human microvasculature, and force chains in granular media.
Evolution dynamics of discrete-continuous light bullets
Eilenberger, Falk; Minardi, Stefano; Nolte, Stefan; Tuennermann, Andreas; Pertsch, Thomas; Szameit, Alexander; Roepke, Ulrich; Kobelke, Jens; Schuster, Kay; Bartelt, Hartmut; Torner, Lluis; Lederer, Falk
2011-07-15
We experimentally and numerically investigate the propagation of light bullets (LBs) excited in two-dimensional fiber arrays. The combination of nonlinear self-frequency shift, wavelength dependence of the dispersion, and the interwaveguide coupling strength induce an adiabatic variation of the parameters of the LBs along their propagation paths, until they reach the limits of the regime of existence and decay. The relative strength of the various perturbative effects can partially be controlled by the array's geometry. The characterization of the LB dynamics is carried out by implementing a spatiotemporal, cross-correlating, and spectrally resolved imaging system with femtosecond resolution. The experimental results are in good agreement with the numerical data if higher-order nonlinear effects and the wavelength dependence of the dispersion and coupling are included. The observed wave packets are linked to the stationary solutions of the simplified nonlinear Schroedinger equation. Furthermore, the maximum possible range of existence of LBs in arrays of waveguides is discussed.
Dynamics in a three species food-web system
NASA Astrophysics Data System (ADS)
Gupta, K.; Gakkhar, S.
2016-04-01
In this paper, the dynamics of a three species food-web system is discussed. The food-web comprises of one predator and two logistically growing competing species. The predator species is taking food from one of the competitors with Holling type II functional response. Another competitor is the amensal species for the predator of first species. The system is shown to be positive and bounded. The stability of various axial points, boundary points and interior point has been investigated. The persistence of the system has been studied. Numerical simulation has been performed to show the occurrence of Hopf bifurcation and stable limit cycle about the interior point. The presence of second competitor and its interaction with predator gives more complex dynamics than the simple prey-predator system. The existence of transcritical bifurcation has been established about two axial points. The existence of periodic attractor having period-2 solution has been shown, when amensal coefficient is chosen as bifurcation parameter.
Dynamics of quantal heating in electron systems with discrete spectra
NASA Astrophysics Data System (ADS)
Dietrich, Scott; Mayer, William; Vitkalov, Sergey; Bykov, A. A.
2015-05-01
The temporal evolution of quantal Joule heating of two-dimensional (2D) electrons in a GaAs quantum well placed in quantizing magnetic fields is studied using a difference-frequency method. The method is based on measurements of the electron conductivity oscillating at the beat frequency f =f1-f2 between two microwaves applied to the 2D system at frequencies f1 and f2. The method provides direct access to the dynamical characteristics of the heating and yields the inelastic-scattering time τi n of 2D electrons. The obtained τi n is strongly temperature dependent, varying from 0.13 ns at 5.5 K to 1 ns at 2.4 K in magnetic field B =0.333 T . When the temperature T exceeds the Landau-level separation, the relaxation rate 1 /τi n is proportional to T2, indicating electron-electron interaction as the dominant mechanism limiting the quantal heating. At lower temperatures, the rate tends to be proportional to T3, indicating considerable contribution from electron-phonon scattering.
Dynamics of Quantal Heating in Electron Systems with Discrete Spectra
NASA Astrophysics Data System (ADS)
Mayer, William; Dietrich, Scott; Vitkalov, Sergey; Bykov, Alexey
2015-03-01
The temporal evolution of quantal Joule heating of 2D electrons in GaAs quantum well placed in quantizing magnetic fields is studied using a difference frequency method. The method is based on measurements of the electron conductivity oscillating at the beat frequency f =f1 -f2 between two microwaves applied to 2D system at frequencies f1 and f2. The method provides direct access to the dynamical characteristics of the heating and yields the inelastic scattering time τin of 2D electrons. The obtained τin is strongly temperature dependent, varying from 0.13 ns at 5.5K to 1 ns at 2.4K in magnetic field B=0.333T. When temperature T exceeds the Landau level separation the relaxation rate 1 /τin is proportional to T2, indicating the electron-electron interaction as the dominant mechanism limiting the quantal heating. At lower temperatures the rate tends to be proportional to T3, indicating considerable contribution from electron-phonon scattering. This work was supported by the National Science Foundation (DMR 1104503), the Russian Foundation for Basic Research (project no.14-02-01158) and the Ministry of Education and Science of the Russian Federation.
Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.
2009-01-01
An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.
A discrete geometric approach for simulating the dynamics of thin viscous threads
Audoly, B.; Clauvelin, N.; Brun, P.-T.; Bergou, M.; Grinspun, E.; Wardetzky, M.
2013-11-15
We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematic constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistency of the discrete model with the classical, smooth equations for thin threads is established formally. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous threads in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension.
NASA Astrophysics Data System (ADS)
Guo, Shu-Juan; Fu, Xin-Chu
2010-07-01
In this paper, by applying Lasalle's invariance principle and some results about the trace of a matrix, we propose a method for estimating the topological structure of a discrete dynamical network based on the dynamical evolution of the network. The network concerned can be directed or undirected, weighted or unweighted, and the local dynamics of each node can be nonidentical. The connections among the nodes can be all unknown or partially known. Finally, two examples, including a Hénon map and a central network, are illustrated to verify the theoretical results.
Mathematics of Web science: structure, dynamics and incentives.
Chayes, Jennifer
2013-03-28
Dr Chayes' talk described how, to a discrete mathematician, 'all the world's a graph, and all the people and domains merely vertices'. A graph is represented as a set of vertices V and a set of edges E, so that, for instance, in the World Wide Web, V is the set of pages and E the directed hyperlinks; in a social network, V is the people and E the set of relationships; and in the autonomous system Internet, V is the set of autonomous systems (such as AOL, Yahoo! and MSN) and E the set of connections. This means that mathematics can be used to study the Web (and other large graphs in the online world) in the following way: first, we can model online networks as large finite graphs; second, we can sample pieces of these graphs; third, we can understand and then control processes on these graphs; and fourth, we can develop algorithms for these graphs and apply them to improve the online experience. PMID:23419846
NASA Astrophysics Data System (ADS)
Rastogi, Vikas
2016-09-01
The main focus of the paper is touted as effects of discrete damping on the dynamic analysis of rotating shaft. The whole analysis is being carried out through extended Lagrangian formulation for a discrete - continuous system. The variation formulation for this system is possible, considering the continuous system as one-dimensional. The generalized formulation for one dimensional continuous rotary shaft with discrete external damper has been obtained through principle of variation. Using this extended formulation, the invariance of umbra-Lagrangian density through extended Noether's theorem is achieved. Rayleigh beam model is used to model the shaft. Amplitude equation of rotor is obtained theoretically and validated through simulation results. The simulation results reveal the important phenomena of limiting dynamics of the rotor shaft, which is due to an imbalance of material damping and stiffness of the rotor shaft. The regenerative energy in the rotor shaft, induced due to elasticity/stiffness of the rotor shaft, is dissipated partially through the in-span discrete damper and also through the dissipative coupling between drive and the rotor shaft. In such cases, the shaft speed will not increase with increase in excitation frequency of the rotor but the slip between the drive and the shaft increases due to loading of drive.
Non-deterministic modelling of food-web dynamics.
Planque, Benjamin; Lindstrøm, Ulf; Subbey, Sam
2014-01-01
A novel approach to model food-web dynamics, based on a combination of chance (randomness) and necessity (system constraints), was presented by Mullon et al. in 2009. Based on simulations for the Benguela ecosystem, they concluded that observed patterns of ecosystem variability may simply result from basic structural constraints within which the ecosystem functions. To date, and despite the importance of these conclusions, this work has received little attention. The objective of the present paper is to replicate this original model and evaluate the conclusions that were derived from its simulations. For this purpose, we revisit the equations and input parameters that form the structure of the original model and implement a comparable simulation model. We restate the model principles and provide a detailed account of the model structure, equations, and parameters. Our model can reproduce several ecosystem dynamic patterns: pseudo-cycles, variation and volatility, diet, stock-recruitment relationships, and correlations between species biomass series. The original conclusions are supported to a large extent by the current replication of the model. Model parameterisation and computational aspects remain difficult and these need to be investigated further. Hopefully, the present contribution will make this approach available to a larger research community and will promote the use of non-deterministic-network-dynamics models as 'null models of food-webs' as originally advocated. PMID:25299245
NASA Technical Reports Server (NTRS)
Dupnick, E.
1973-01-01
Description of the development and operation of a vehicle-scheduling algorithm which has applications to the NASA problem of assigning payloads to space delivery vehicles. The algorithm is based on a discrete, integer-valued, nonserial, dynamic-programming solution to the classical problem of developing resource utilization plans with limited resources. The algorithm places special emphasis on incorporating interpayload (precedence) relationships; maintaining optimal alternate schedule definitions (a unique feature of dynamic programming) in the event of contingencies (namely, resource inventory changes) without problem resolution; and, by using a special information storage technique, reducing the computational complexity of solving realistic problems.
Eisenhauer, Philipp; Heckman, James J.; Mosso, Stefano
2015-01-01
We compare the performance of maximum likelihood (ML) and simulated method of moments (SMM) estimation for dynamic discrete choice models. We construct and estimate a simplified dynamic structural model of education that captures some basic features of educational choices in the United States in the 1980s and early 1990s. We use estimates from our model to simulate a synthetic dataset and assess the ability of ML and SMM to recover the model parameters on this sample. We investigate the performance of alternative tuning parameters for SMM. PMID:26494926
Distributing flight dynamics products via the World Wide Web
NASA Technical Reports Server (NTRS)
Woodard, Mark; Matusow, David
1996-01-01
The NASA Flight Dynamics Products Center (FDPC), which make available selected operations products via the World Wide Web, is reported on. The FDPC can be accessed from any host machine connected to the Internet. It is a multi-mission service which provides Internet users with unrestricted access to the following standard products: antenna contact predictions; ground tracks; orbit ephemerides; mean and osculating orbital elements; earth sensor sun and moon interference predictions; space flight tracking data network summaries; and Shuttle transport system predictions. Several scientific data bases are available through the service.
A microcosm model with discrete time: an approach and dynamical regimes
NASA Astrophysics Data System (ADS)
Evdokimov, E. V.; Shapovalov, A. V.
A dynamical model of a closed 4-chain microcosm (with non-organic component, producers, consumers, and detritus) with discrete time is proposed. The model is based on a simple 3-chain integrable system of biological growth - eating away (non-organic component, producers, consumers) with continuous time. To construct the 4-chain model we integrate the 3-chain system and find the population numbers as explicit functions of time. By application of the time-shift operation for these functions we construct a map which describes the dynamics of the system with discrete time. This map is modified by introduction of additional terms responsible for producer and consumers death-rate, intra-species competition, and a relation describing detritus dynamics. Computer simulation of the map dynamics is performed. The model is shown to have stable regimes for correspondent values of the model parameters and initial data. The following types of dynamical regimes are also revealed: stable stationary states, decaying oscillations, limit cycles, and quasiharmonic oscillations. The detritus chain plays the role of a "friction" factor of the system oscillations. The work is supported by Russian Foundation for the Humanities.
Dynamics of pairwise motions in the Cosmic Web
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech A.
2016-10-01
We present results of analysis of the dark matter (DM) pairwise velocity statistics in different Cosmic Web environments. We use the DM velocity and density field from the Millennium 2 simulation together with the NEXUS+ algorithm to segment the simulation volume into voxels uniquely identifying one of the four possible environments: nodes, filaments, walls or cosmic voids. We show that the PDFs of the mean infall velocities v 12 as well as its spatial dependence together with the perpendicular and parallel velocity dispersions bear a significant signal of the large-scale structure environment in which DM particle pairs are embedded. The pairwise flows are notably colder and have smaller mean magnitude in wall and voids, when compared to much denser environments of filaments and nodes. We discuss on our results, indicating that they are consistent with a simple theoretical predictions for pairwise motions as induced by gravitational instability mechanism. Our results indicate that the Cosmic Web elements are coherent dynamical entities rather than just temporal geometrical associations. In addition it should be possible to observationally test various Cosmic Web finding algorithms by segmenting available peculiar velocity data and studying resulting pairwise velocity statistics.
Stochastic dynamics of time correlation in complex systems with discrete time
Yulmetyev; Hanggi; Gafarov
2000-11-01
In this paper we present the concept of description of random processes in complex systems with discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time correlation functions (TCFs). We have introduced the dynamic (time dependent) information Shannon entropy S(i)(t) where i=0,1,2,3,ellipsis, as an information measure of stochastic dynamics of time correlation (i=0) and time memory (i=1,2,3,ellipsis). The set of functions S(i)(t) constitute the quantitative measure of time correlation disorder (i=0) and time memory disorder (i=1,2,3,ellipsis) in complex system. The theory developed started from the careful analysis of time correlation involving dynamics of vectors set of various chaotic states. We examine two stochastic processes involving the creation and annihilation of time correlation (or time memory) in details. We carry out the analysis of vectors' dynamics employing finite-difference equations for random variables and the evolution operator describing their natural motion. The existence of TCF results in the construction of the set of projection operators by the usage of scalar product operation. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic equations for discrete TCFs and memory functions (MFs). The solution of the equations above thereof brings to the recurrence relations between the TCF and MF of senior and junior orders. This offers new opportunities for detecting the frequency spectra of power of entropy function S(i)(t) for time correlation (i=0) and time memory (i=1,2,3,ellipsis). The results obtained offer considerable scope for attack on stochastic dynamics of discrete random processes in a complex systems. Application of this technique on the analysis of stochastic dynamics of RR intervals from human ECG
Stochastic dynamics of time correlation in complex systems with discrete time
Yulmetyev; Hanggi; Gafarov
2000-11-01
In this paper we present the concept of description of random processes in complex systems with discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time correlation functions (TCFs). We have introduced the dynamic (time dependent) information Shannon entropy S(i)(t) where i=0,1,2,3,ellipsis, as an information measure of stochastic dynamics of time correlation (i=0) and time memory (i=1,2,3,ellipsis). The set of functions S(i)(t) constitute the quantitative measure of time correlation disorder (i=0) and time memory disorder (i=1,2,3,ellipsis) in complex system. The theory developed started from the careful analysis of time correlation involving dynamics of vectors set of various chaotic states. We examine two stochastic processes involving the creation and annihilation of time correlation (or time memory) in details. We carry out the analysis of vectors' dynamics employing finite-difference equations for random variables and the evolution operator describing their natural motion. The existence of TCF results in the construction of the set of projection operators by the usage of scalar product operation. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic equations for discrete TCFs and memory functions (MFs). The solution of the equations above thereof brings to the recurrence relations between the TCF and MF of senior and junior orders. This offers new opportunities for detecting the frequency spectra of power of entropy function S(i)(t) for time correlation (i=0) and time memory (i=1,2,3,ellipsis). The results obtained offer considerable scope for attack on stochastic dynamics of discrete random processes in a complex systems. Application of this technique on the analysis of stochastic dynamics of RR intervals from human ECG
Stochastic dynamics of time correlation in complex systems with discrete time
NASA Astrophysics Data System (ADS)
Yulmetyev, Renat; Hänggi, Peter; Gafarov, Fail
2000-11-01
In this paper we present the concept of description of random processes in complex systems with discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time correlation functions (TCFs). We have introduced the dynamic (time dependent) information Shannon entropy Si(t) where i=0,1,2,3,..., as an information measure of stochastic dynamics of time correlation (i=0) and time memory (i=1,2,3,...). The set of functions Si(t) constitute the quantitative measure of time correlation disorder (i=0) and time memory disorder (i=1,2,3,...) in complex system. The theory developed started from the careful analysis of time correlation involving dynamics of vectors set of various chaotic states. We examine two stochastic processes involving the creation and annihilation of time correlation (or time memory) in details. We carry out the analysis of vectors' dynamics employing finite-difference equations for random variables and the evolution operator describing their natural motion. The existence of TCF results in the construction of the set of projection operators by the usage of scalar product operation. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic equations for discrete TCFs and memory functions (MFs). The solution of the equations above thereof brings to the recurrence relations between the TCF and MF of senior and junior orders. This offers new opportunities for detecting the frequency spectra of power of entropy function Si(t) for time correlation (i=0) and time memory (i=1,2,3,...). The results obtained offer considerable scope for attack on stochastic dynamics of discrete random processes in a complex systems. Application of this technique on the analysis of stochastic dynamics of RR intervals from human ECG's shows convincing evidence for
NASA Astrophysics Data System (ADS)
Rui, Xiao-Ting; Kreuzer, Edwin; Rong, Bao; He, Bin
2012-04-01
In this paper, by defining new state vectors and developing new transfer matrices of various elements moving in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid-flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system moving in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespective of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.
Dynamical systems model and discrete element simulations of a tapped granular column
NASA Astrophysics Data System (ADS)
Rosato, A. D.; Blackmore, D.; Tricoche, X. M.; Urban, K.; Zuo, L.
2013-06-01
We present an approximate dynamical systems model for the mass center trajectory of a tapped column of N uniform, inelastic, spheres (diameter d), in which collisional energy loss is governed by the Walton-Braun linear loading-unloading soft interaction. Rigorous analysis of the model, akin to the equations for the motion of a single bouncing ball on a vibrating plate, reveals a parameter γ≔2aω2(1+e)/g that gauges the dynamical regimes and their transitions. In particular, we find bifurcations from periodic to chaotic dynamics that depend on frequency ω, amplitude a/d of the tap. Dynamics predicted by the model are also qualitatively observed in discrete element simulations carried out over a broad range of the tap parameters.
NASA Astrophysics Data System (ADS)
Tancock, M. J.; Lane, S. N.; Hardy, R. J.
2012-12-01
There has been a significant amount of research conducted in order to understand the flow fields at natural river confluences. Much of this has been made possible due to advances in the use of Computational Fluid Dynamics (CFD). However, much of this research has been conducted on river confluences with negligible water surface slopes and any understanding of the sediment dynamics is largely implied from the flow fields. Therefore, a key challenge is to understand the flow and sediment dynamics of steep river confluences with dynamic boundaries. Two numerical modelling developments are presented which together are capable of increasing our understanding of the sediment dynamics of steep river confluences. The first is the application of a Height-of-Liquid (HOL) model within a CFD framework to explicitly solve the water surface elevation. This is a time-dependent, multiphase treatment of the fluid dynamics which solves for the change in volume of water and air in each vertical column of the mesh. The second is the development of a reduced complexity discrete particle transport model which uses the change in momentum on a spherical particle to predict the transport paths through the flow field determined from CFD simulations. The performance of the two models is tested using field data from a series of highly dynamic, steep gravel-bed confluences on a braidplain of the Borgne d'Arolla, Switzerland. The HOL model is validated against the water surface elevation and flow velocity data and is demonstrated to provide a reliable representation of the flow field in fast-flowing, supercritical flows. In order to validate the discrete particle model, individual particles were tracked using electronic tacheometry. The model is demonstrated to accurately represent the particle tracks obtained in the field and provides a new methodology to understand the dynamic morphology of braid plains.
Lin, Shih-Wei; Ying, Kuo-Ching; Wan, Shu-Yen
2014-01-01
Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set.
2014-01-01
Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295
Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Diskin, Boris
2012-01-01
A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.
Modelling crowd-bridge dynamic interaction with a discretely defined crowd
NASA Astrophysics Data System (ADS)
Carroll, S. P.; Owen, J. S.; Hussein, M. F. M.
2012-05-01
This paper presents a novel method of modelling crowd-bridge interaction using discrete element theory (DET) to model the pedestrian crowd. DET, also known as agent-based modelling, is commonly used in the simulation of pedestrian movement, particularly in cases where building evacuation is critical or potentially problematic. Pedestrians are modelled as individual elements subject to global behavioural rules. In this paper a discrete element crowd model is coupled with a dynamic bridge model in a time-stepping framework. Feedback takes place between both models at each time-step. An additional pedestrian stimulus is introduced that is a function of bridge lateral dynamic behaviour. The pedestrians' relationship with the vibrating bridge as well as the pedestrians around them is thus simulated. The lateral dynamic behaviour of the bridge is modelled as a damped single degree of freedom (SDoF) oscillator. The excitation and mass enhancement of the dynamic system is determined as the sum of individual pedestrian contributions at each time-step. Previous crowd-structure interaction modelling has utilised a continuous hydrodynamic crowd model. Limitations inherent in this modelling approach are identified and results presented that demonstrate the ability of DET to address these limitations. Simulation results demonstrate the model's ability to consider low density traffic flows and inter-subject variability. The emergence of the crowd's velocity-density relationship is also discussed.
Dynamic quantised feedback stabilisation of discrete-time linear system with white noise input
NASA Astrophysics Data System (ADS)
Ji, Mingming; He, Xing; Zhang, Weidong
2015-09-01
In this paper, we mainly focus on the problem of quantised feedback stabilisation of a stochastic discrete-time linear system with white noise input. The dynamic quantiser is used here. The stability of the system under state quantisation and input quantisation is analysed in detail, respectively. Both the convergence of the state's mean and the boundedness of the state's covariance matrix norm should be considered when analysing its stability. It is shown that for the two situations of the state quantisation and the input quantisation, if the system without noise input can be stabilised by a linear feedback law, it must be stabilised by the dynamic quantised feedback control policy. The sufficient conditions that the dynamic quantiser should satisfy are given. Using the results obtained in this paper, one can test whether the stochastic system is stabilisable or not. Numerical examples are given to show the effectiveness of the results.
Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.
Srivastava, S; Yazdchi, K; Luding, S
2014-08-01
A new method for two-way fluid-particle coupling on an unstructured mesoscopically coarse mesh is presented. In this approach, we combine a (higher order) finite-element method (FEM) on the moving mesh for the fluid with a soft sphere discrete-element method for the particles. The novel feature of the proposed scheme is that the FEM mesh is a dynamic Delaunay triangulation based on the positions of the moving particles. Thus, the mesh can be multi-purpose: it provides (i) a framework for the discretization of the Navier-Stokes equations, (ii) a simple tool for detecting contacts between moving particles, (iii) a basis for coarse-graining or upscaling, and (iv) coupling with other physical fields (temperature, electromagnetic, etc.). This approach is suitable for a wide range of dilute and dense particulate flows, because the mesh resolution adapts with particle density in a given region. Two-way momentum exchange is implemented using semi-empirical drag laws akin to other popular approaches; for example, the discrete particle method, where a finite-volume solver on a coarser, fixed grid is used. We validate the methodology with several basic test cases, including single- and double-particle settling with analytical and empirical expectations, and flow through ordered and random porous media, when compared against finely resolved FEM simulations of flow through fixed arrays of particles. PMID:24982251
Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity
NASA Astrophysics Data System (ADS)
Po, Giacomo; Mohamed, Mamdouh S.; Crosby, Tamer; Erel, Can; El-Azab, Anter; Ghoniem, Nasr
2014-09-01
We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.
Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity
NASA Astrophysics Data System (ADS)
Po, Giacomo; Mohamed, Mamdouh S.; Crosby, Tamer; Erel, Can; El-Azab, Anter; Ghoniem, Nasr
2014-10-01
We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.
Dissipative soliton dynamics in a discrete magnetic nano-dot chain
Lee, Kyeong-Dong; You, Chun-Yeol; Song, Hyon-Seok; Shin, Sung-Chul; Park, Byong-Guk
2014-02-03
Soliton dynamics is studied in a discrete magnetic nano-dot chain by means of micromagnetic simulations together with an analytic model equation. A soliton under a dissipative system is driven by an applied field. The field-driven dissipative soliton enhances its mobility nonlinearly, as the characteristic frequency and the intrinsic Gilbert damping decrease. During the propagation, the soliton emits spin waves which act as an extrinsic damping channel. The characteristic frequency, the maximum velocity, and the localization length of the soliton are found to be proportional to the threshold field, the threshold velocity, and the initial mobility, respectively.
Davidchack, Ruslan L.
2010-12-10
We investigate the influence of numerical discretization errors on computed averages in a molecular dynamics simulation of TIP4P liquid water at 300 K coupled to different deterministic (Nose-Hoover and Nose-Poincare) and stochastic (Langevin) thermostats. We propose a couple of simple practical approaches to estimating such errors and taking them into account when computing the averages. We show that it is possible to obtain accurate measurements of various system quantities using step sizes of up to 70% of the stability threshold of the integrator, which for the system of TIP4P liquid water at 300 K corresponds to the step size of about 7 fs.
NASA Astrophysics Data System (ADS)
Sawada, Kenji; Shin, Seiichi
This paper proposes analysis and synthesis methods of dynamic quantizers for linear feedback single input single output (SISO) systems with discrete-valued input in terms of invariant set analysis. First, this paper derives the quantizer analysis and synthesis conditions that clarify an optimal quantizer within the ellipsoidal invariant set analysis framework. In the case of minimum phase feedback systems, next, this paper presents that the structure of the proposed quantizer is also optimal in the sense that the quantizer gives an optimal output approximation property. Finally, this paper points out that the proposed design method can design a stable quantizer for non-minimum phase feedback systems through a numerical example.
Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.
Aftab, Muhammad Saleheen; Shafiq, Muhammad
2015-11-01
This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance.
Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.
Aftab, Muhammad Saleheen; Shafiq, Muhammad
2015-11-01
This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. PMID:26456201
World-trade web: Topological properties, dynamics, and evolution
NASA Astrophysics Data System (ADS)
Fagiolo, Giorgio; Reyes, Javier; Schiavo, Stefano
2009-03-01
This paper studies the statistical properties of the web of import-export relationships among world countries using a weighted-network approach. We analyze how the distributions of the most important network statistics measuring connectivity, assortativity, clustering, and centrality have coevolved over time. We show that all node-statistic distributions and their correlation structure have remained surprisingly stable in the last 20years —and are likely to do so in the future. Conversely, the distribution of (positive) link weights is slowly moving from a log-normal density towards a power law. We also characterize the autoregressive properties of network-statistics dynamics. We find that network-statistics growth rates are well-proxied by fat-tailed densities like the Laplace or the asymmetric exponential power. Finally, we find that all our results are reasonably robust to a few alternative, economically meaningful, weighting schemes.
World-trade web: topological properties, dynamics, and evolution.
Fagiolo, Giorgio; Reyes, Javier; Schiavo, Stefano
2009-03-01
This paper studies the statistical properties of the web of import-export relationships among world countries using a weighted-network approach. We analyze how the distributions of the most important network statistics measuring connectivity, assortativity, clustering, and centrality have coevolved over time. We show that all node-statistic distributions and their correlation structure have remained surprisingly stable in the last 20 years -and are likely to do so in the future. Conversely, the distribution of (positive) link weights is slowly moving from a log-normal density towards a power law. We also characterize the autoregressive properties of network-statistics dynamics. We find that network-statistics growth rates are well-proxied by fat-tailed densities like the Laplace or the asymmetric exponential power. Finally, we find that all our results are reasonably robust to a few alternative, economically meaningful, weighting schemes.
NASA Astrophysics Data System (ADS)
Martin, Hugo; Mangeney, Anne; Farin, Maxime; Richard, Patrick
2016-04-01
The mechanical behavior of granular flows is still an open issue. In particular, quantitative agreement between the detailed dynamics of the flow and laboratory experiments is necessary to better constrain the performance and limits of the models. We propose here to compare quantitatively the flow profiles and the force during granular column collapse simulated using Discrete Element Models and laboratory experiments. These small scale experiments are performed with dry granular material released initially from a cylinder on a sloping plane. The flow profiles and the acoustic signal generated by the granular impacts and stresses on the plane are recorded systematically [Farin et al., 2015]. These experiments are simulated using the Discrete Element Method Modys [Richard et al., 2000]. We show that the effect of the removing gate should be taken into account in the model in order to quantatively reproduce the flow dynamics. Furthermore we compare the simulated and observed acoustic signals that are generated by the fluctuating stresses exerted by the grains on the substrate in different frequency bands. [1] P. Richard et Luc Oger. 2000 Etude de la géométrie de milieux granulaires modèles tridimensionnels par simulation numérique. [2] Farin, M., Mangeney, A., Toussaint, R., De Rosny, J., Shapiro, N., Dewez, T., Hibert, C., Mathon, C., Sedan, O., Berger. 2015, Characterization of rockfalls from seismic signal: insights from laboratory experiments
Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan
2014-12-01
In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method.
Complex dynamics of a delayed discrete neural network of two nonidentical neurons
Chen, Yuanlong; Huang, Tingwen; Huang, Yu
2014-03-15
In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results.
Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan
2014-12-01
In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method. PMID:25420238
Dynamic Space for Rent: Using Commercial Web Hosting to Develop a Web 2.0 Intranet
ERIC Educational Resources Information Center
Hodgins, Dave
2010-01-01
The explosion of Web 2.0 into libraries has left many smaller academic libraries (and other libraries with limited computing resources or support) to work in the cloud using free Web applications. The use of commercial Web hosting is an innovative approach to the problem of inadequate local resources. While the idea of insourcing IT will seem…
NASA Astrophysics Data System (ADS)
Damiani, Sarah; Griffin, Christopher; Phoha, Shashi
2003-12-01
Autonomous Sensor Networks have the potential for broad applicability to national security, intelligent transportation, industrial production and environmental and hazardous process control. Distributed sensors may be used for detecting bio-terrorist attacks, for contraband interdiction, border patrol, monitoring building safety and security, battlefield surveillance, or may be embedded in complex dynamic systems for enabling fault tolerant operations. In this paper we present algorithms and automation tools for constructing discrete event controllers for complex networked systems that restrict the dynamic behavior of the system according to given specifications. In our previous work we have modeled dynamic system as a discrete event automation whose open loop behavior is represented as a language L of strings generated with the alphabet 'Elipson' of all possible atomic events that cause state transitions in the network. The controlled behavior is represented by a sublanguage K, contained in L, that restricts the behavior of the system according to the specifications of the controller. We have developed the algebraic structure of controllable sublanguages as perfect right partial ideals that satisfy a precontrollability condition. In this paper we develop an iterative algorithm to take an ad hoc specification described using a natural language, and to formulate a complete specification that results in a controllable sublanguage. A supervisory controller modeled as an automaton that runs synchronously with the open loop system in the sense of Ramadge and Wonham is automatically generated to restrict the behavior of the open loop system to the controllable sublanguage. A battlefield surveillance scenario illustrates the iterative evolution of ad hoc specifications for controlling an autonomous sensor network and the generation of a controller that reconfigures the sensor network to dynamically adapt to environmental perturbations.
Discrete time transfer matrix method for dynamics of multibody system with real-time control
NASA Astrophysics Data System (ADS)
Rong, Bao; Rui, Xiaoting; Wang, Guoping; Yang, Fufeng
2010-03-01
By taking the control and feedback parameters into account in state vectors, defining new state vectors and deducing new transfer equations and transfer matrices for actuator, controlled element and feedback element, a new method named as the discrete time transfer matrix method for controlled multibody system (CMS) is developed to study dynamics of CMS with real-time control in this paper. This method does not need the global dynamics equations of system. It has the modeling flexibility, low order of system matrix, high computational efficiency, and is efficient for general CMS. Compared with the ordinary dynamics methods, the proposed method has more advantages for dynamics design and real-time control of a complex CMS. Adopting the PID adaptive controller and modal velocity feedback control on PZT actuators, and applying the proposed method and ordinary dynamics method, respectively, the tip trajectory tracking for a flexible manipulator is carried out. Formulations of the method as well as numerical simulation are given to validate the proposed method.
Interplay between topology and dynamics in the World Trade Web
NASA Astrophysics Data System (ADS)
Garlaschelli, D.; di Matteo, T.; Aste, T.; Caldarelli, G.; Loffredo, M. I.
2007-05-01
We present an empirical analysis of the network formed by the trade relationships between all world countries, or World Trade Web (WTW). Each (directed) link is weighted by the amount of wealth flowing between two countries, and each country is characterized by the value of its Gross Domestic Product (GDP). By analysing a set of year-by-year data covering the time interval 1950 2000, we show that the dynamics of all GDP values and the evolution of the WTW (trade flow and topology) are tightly coupled. The probability that two countries are connected depends on their GDP values, supporting recent theoretical models relating network topology to the presence of a `hidden' variable (or fitness). On the other hand, the topology is shown to determine the GDP values due to the exchange between countries. This leads us to a new framework where the fitness value is a dynamical variable determining, and at the same time depending on, network topology in a continuous feedback.
Discrete Dynamics Model for the Speract-Activated Ca2+ Signaling Network Relevant to Sperm Motility
Espinal, Jesús; Aldana, Maximino; Guerrero, Adán; Wood, Christopher
2011-01-01
Understanding how spermatozoa approach the egg is a central biological issue. Recently a considerable amount of experimental evidence has accumulated on the relation between oscillations in intracellular calcium ion concentration ([Ca]) in the sea urchin sperm flagellum, triggered by peptides secreted from the egg, and sperm motility. Determination of the structure and dynamics of the signaling pathway leading to these oscillations is a fundamental problem. However, a biochemically based formulation for the comprehension of the molecular mechanisms operating in the axoneme as a response to external stimulus is still lacking. Based on experiments on the S. purpuratus sea urchin spermatozoa, we propose a signaling network model where nodes are discrete variables corresponding to the pathway elements and the signal transmission takes place at discrete time intervals according to logical rules. The validity of this model is corroborated by reproducing previous empirically determined signaling features. Prompted by the model predictions we performed experiments which identified novel characteristics of the signaling pathway. We uncovered the role of a high voltage-activated channel as a regulator of the delay in the onset of fluctuations after activation of the signaling cascade. This delay time has recently been shown to be an important regulatory factor for sea urchin sperm reorientation. Another finding is the participation of a voltage-dependent calcium-activated channel in the determination of the period of the fluctuations. Furthermore, by analyzing the spread of network perturbations we find that it operates in a dynamically critical regime. Our work demonstrates that a coarse-grained approach to the dynamics of the signaling pathway is capable of revealing regulatory sperm navigation elements and provides insight, in terms of criticality, on the concurrence of the high robustness and adaptability that the reproduction processes are predicted to have developed
Discrete dynamics model for the speract-activated Ca2+ signaling network relevant to sperm motility.
Espinal, Jesús; Aldana, Maximino; Guerrero, Adán; Wood, Christopher; Darszon, Alberto; Martínez-Mekler, Gustavo
2011-01-01
Understanding how spermatozoa approach the egg is a central biological issue. Recently a considerable amount of experimental evidence has accumulated on the relation between oscillations in intracellular calcium ion concentration ([Ca2+]i) in the sea urchin sperm flagellum, triggered by peptides secreted from the egg, and sperm motility. Determination of the structure and dynamics of the signaling pathway leading to these oscillations is a fundamental problem. However, a biochemically based formulation for the comprehension of the molecular mechanisms operating in the axoneme as a response to external stimulus is still lacking. Based on experiments on the S. purpuratus sea urchin spermatozoa, we propose a signaling network model where nodes are discrete variables corresponding to the pathway elements and the signal transmission takes place at discrete time intervals according to logical rules. The validity of this model is corroborated by reproducing previous empirically determined signaling features. Prompted by the model predictions we performed experiments which identified novel characteristics of the signaling pathway. We uncovered the role of a high voltage-activated Ca2+ channel as a regulator of the delay in the onset of fluctuations after activation of the signaling cascade. This delay time has recently been shown to be an important regulatory factor for sea urchin sperm reorientation. Another finding is the participation of a voltage-dependent calcium-activated K+ channel in the determination of the period of the [Ca2+]i fluctuations. Furthermore, by analyzing the spread of network perturbations we find that it operates in a dynamically critical regime. Our work demonstrates that a coarse-grained approach to the dynamics of the signaling pathway is capable of revealing regulatory sperm navigation elements and provides insight, in terms of criticality, on the concurrence of the high robustness and adaptability that the reproduction processes are predicted
The discrete-continuum connection in dislocation dynamics: I. Time coarse graining of cross slip
NASA Astrophysics Data System (ADS)
Xia, Shengxu; Belak, James; El-Azab, Anter
2016-10-01
A recent continuum dislocation dynamics formalism (Xia and El-Azab 2015 Model. Simul. Mater. Sci. Eng. 23 055009) has been enriched by incorporating an improved cross slip model. 3D discrete dislocation dynamics simulations were used to collect cross slip rate data in the form of time series that were analysed to estimate the correlation time for cross slip, which was subsequently used as a time scale for local window averaging of the collected cross slip rate data. This time averaging filters out the cross slip rate fluctuations over time intervals less than the correlation time, thus resulting in relatively smoother time series for the cross slip rates. The coarse grained series were further cast in the form of smooth trends with superposed fluctuations and implemented in continuum dislocation dynamics simulations using a Monte Carlo scheme. This approach resulted in a significant improvement of the predicted stress–strain response and a more realistic dislocation cell structure evolution. The similitude law for the average cell size evolution with inverse of stress, however, remains unaffected by the cross slip rates used in continuum dislocation dynamics.
Sparsified-dynamics modeling of discrete point vortices with graph theory
NASA Astrophysics Data System (ADS)
Taira, Kunihiko; Nair, Aditya
2014-11-01
We utilize graph theory to derive a sparsified interaction-based model that captures unsteady point vortex dynamics. The present model builds upon the Biot-Savart law and keeps the number of vortices (graph nodes) intact and reduces the number of inter-vortex interactions (graph edges). We achieve this reduction in vortex interactions by spectral sparsification of graphs. This approach drastically reduces the computational cost to predict the dynamical behavior, sharing characteristics of reduced-order models. Sparse vortex dynamics are illustrated through an example of point vortex clusters interacting amongst themselves. We track the centroids of the individual vortex clusters to evaluate the error in bulk motion of the point vortices in the sparsified setup. To further improve the accuracy in predicting the nonlinear behavior of the vortices, resparsification strategies are employed for the sparsified interaction-based models. The model retains the nonlinearity of the interaction and also conserves the invariants of discrete vortex dynamics; namely the Hamiltonian, linear impulse, and angular impulse as well as circulation. Work supported by US Army Research Office (W911NF-14-1-0386) and US Air Force Office of Scientific Research (YIP: FA9550-13-1-0183).
Event-driven Monte Carlo: Exact dynamics at all time scales for discrete-variable models
NASA Astrophysics Data System (ADS)
Mendoza-Coto, Alejandro; Díaz-Méndez, Rogelio; Pupillo, Guido
2016-06-01
We present an algorithm for the simulation of the exact real-time dynamics of classical many-body systems with discrete energy levels. In the same spirit of kinetic Monte Carlo methods, a stochastic solution of the master equation is found, with no need to define any other phase-space construction. However, unlike existing methods, the present algorithm does not assume any particular statistical distribution to perform moves or to advance the time, and thus is a unique tool for the numerical exploration of fast and ultra-fast dynamical regimes. By decomposing the problem in a set of two-level subsystems, we find a natural variable step size, that is well defined from the normalization condition of the transition probabilities between the levels. We successfully test the algorithm with known exact solutions for non-equilibrium dynamics and equilibrium thermodynamical properties of Ising-spin models in one and two dimensions, and compare to standard implementations of kinetic Monte Carlo methods. The present algorithm is directly applicable to the study of the real-time dynamics of a large class of classical Markovian chains, and particularly to short-time situations where the exact evolution is relevant.
Modern tools for the time-discrete dynamics and optimization of gene-environment networks
NASA Astrophysics Data System (ADS)
Defterli, Ozlem; Fügenschuh, Armin; Weber, Gerhard Wilhelm
2011-12-01
In this study, we discuss the models of genetic regulatory systems, so-called gene-environment networks. The dynamics of such kind of systems are described by a class of time-continuous ordinary differential equations having a general form E˙=M(E)E, where E is a vector of gene-expression levels and environmental factors and M(E) is the matrix having functional entries containing unknown parameters to be optimized. Accordingly, time-discrete versions of that model class are studied and improved by introducing 3rd-order Heun's method and 4th-order classical Runge-Kutta method. The corresponding iteration formulas are derived and their matrix algebras are obtained. After that, we use nonlinear mixed-integer programming for the parameter estimation in the considered model and present the solution of a constrained and regularized given mixed-integer problem as an example. By using this solution and applying both the new and existing discretization schemes, we generate corresponding time-series of gene-expressions for each method. The comparison of the experimental data and the calculated approximate results is additionally done with the help of the figures to exercise the performance of the numerical schemes on this example.
NASA Astrophysics Data System (ADS)
Gurrutxaga-Lerma, Benat; Sutton, Adrian; Eakins, Daniel; Balint, Daniel; Dini, Daniele
2013-06-01
This talk intends to offer some insight as to how Discrete Dislocation Plasticity (DDP) can be adapted to simulate plastic relaxation processes under weak shock loading and high strain rates. In those circumstances, dislocations are believed to be the main cause of plastic relaxation in crystalline solids. Direct simulation of dislocations as the dynamic agents of plastic relaxation in those cases remains a challenge. DDP, where dislocations are modelled as discrete discontinuities in elastic continuum media, is often unable to adequately simulate plastic relaxation because it treats dislocation motion quasi-statically, thus neglecting the time-dependent nature of the elastic fields and assuming that they instantaneously acquire the shape and magnitude predicted by elastostatics. Under shock loading, this assumption leads to several artefacts that can only be overcome with a fully time-dependent formulation of the elastic fields. In this talk one of such formulations for the creation, annihilation and arbitrary motion of straight edge dislocations will be presented. These solutions are applied in a two-dimensional model of time-dependent plastic relaxation under shock loading, and some relevant results will be presented. EPSRC CDT in Theory and Simulation of Materials
Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems.
Liu, Derong; Wei, Qinglai
2014-03-01
This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterative ADP technique to obtain the iterative control law, which optimizes the iterative performance index function. The main contribution of this paper is to analyze the convergence and stability properties of policy iteration method for discrete-time nonlinear systems for the first time. It shows that the iterative performance index function is nonincreasingly convergent to the optimal solution of the Hamilton-Jacobi-Bellman equation. It is also proven that any of the iterative control laws can stabilize the nonlinear systems. Neural networks are used to approximate the performance index function and compute the optimal control law, respectively, for facilitating the implementation of the iterative ADP algorithm, where the convergence of the weight matrices is analyzed. Finally, the numerical results and analysis are presented to illustrate the performance of the developed method. PMID:24807455
Dynamics of discrete bubble in nucleate pool boiling on thin wires in microgravity
NASA Astrophysics Data System (ADS)
Wan, Shixin; Zhao, Jianfu; Liu, Gang
2009-03-01
A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been performed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22nd Chinese recoverable satellite. The fluid is degassed R113 at 0.1 MPa and subcooled by 26°C nominally. A thin platinum wire of 60 μm in diameter and 30 mm in length is simultaneously used as heater and thermometer. Only the dynamics of the vapor bubbles, particularly the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. It’s found that these distinct behaviors can be explained by the Marangoni convection in the liquid surrounding vapor bubbles. The origin of the Marangoni effect is also discussed.
Margolin, L.; Shashkov, M.
1999-03-01
The goal of this paper is to construct discretizations for the equations of Lagrangian gas dynamics that preserve plane, cylindrical, and spherical symmetry in the solution of the original differential equations. The new method uses a curvilinear grid that is reconstructed from a given logically rectangular distribution of nodes. The sides of the cells of the reconstructed grid can be segments of straight lines or arcs of local circles. The procedure is exact for straight lines and circles; that is, it reproduces rectangular and polar grids exactly. The authors use the method of support operators to construct a conservative finite-difference method that they demonstrate will preserve spatial symmetries for certain choices of the initial grid. They also introduce a curvilinear version of artificial edge viscosity that also preserves symmetry. They present numerical examples to demonstrate their theoretical considerations and the robustness of the new method.
Dynamical Localization for Discrete and Continuous Random Schrödinger Operators
NASA Astrophysics Data System (ADS)
Germinet, F.; De Bièvre, S.
We show for a large class of random Schrödinger operators Ho on and on that dynamical localization holds, i.e. that, with probability one, for a suitable energy interval I and for q a positive real,
Pierce, Clay; Colvin, Michael E.; Stewart, Timothy W.
2012-01-01
Continuous harvest over an annual period is a common assumption of continuous biomass dynamics models (CBDMs); however, fish are frequently harvested in a discrete manner. We developed semidiscrete biomass dynamics models (SDBDMs) that allow discrete harvest events and evaluated differences between CBDMs and SDBDMs using an equilibrium yield analysis with varying levels of fishing mortality (F). Equilibrium fishery yields for CBDMs and SDBDMS were similar at low fishing mortalities and diverged as F approached and exceeded maximum sustained yield (FMSY). Discrete harvest resulted in lower equilibrium yields at high levels of Frelative to continuous harvest. The effect of applying harvest continuously when it was in fact discrete was evaluated by fitting CBDMs and SDBDMs to time series data generated from a hypothetical fish stock undergoing discrete harvest and evaluating parameter estimates bias. Violating the assumption of continuous harvest resulted in biased parameter estimates for CBDM while SDBDM parameter estimates were unbiased. Biased parameter estimates resulted in biased biological reference points derived from CBDMs. Semidiscrete BDMs outperformed continuous BDMs and should be used when harvest is discrete, when the time and magnitude of harvest are known, and when F is greater than FMSY.
Neimark-Sacker bifurcations and evidence of chaos in a discrete dynamical model of walkers
NASA Astrophysics Data System (ADS)
Rahman, Aminur; Blackmore, Denis
2016-10-01
Bouncing droplets on a vibrating fluid bath can exhibit wave-particle behavior, such as being propelled by interacting with its own wave field. These droplets seem to walk across the bath, and thus are dubbed walkers. Experiments have shown that walkers can exhibit exotic dynamical behavior indicative of chaos. While the integro-differential models developed for these systems agree well with the experiments, they are difficult to analyze mathematically. In recent years, simpler discrete dynamical models have been derived and studied numerically. The numerical simulations of these models show evidence of exotic dynamics such as period doubling bifurcations, Neimark--Sacker (N--S) bifurcations, and even chaos. For example, in [Gilet, PRE 2014], based on simulations Gilet conjectured the existence of a supercritical N-S bifurcation as the damping factor in his one-dimensional path model. We prove Gilet's conjecture and more; in fact, both supercritical and subcritical (N-S) bifurcations are produced by separately varying the damping factor and wave-particle coupling for all eigenmode shapes. Then we compare our theoretical results with some previous and new numerical simulations, and find complete qualitative agreement. Furthermore, evidence of chaos is shown by numerically studying a global bifurcation.
Animal diversity and ecosystem functioning in dynamic food webs
NASA Astrophysics Data System (ADS)
Schneider, Florian D.; Brose, Ulrich; Rall, Björn C.; Guill, Christian
2016-10-01
Species diversity is changing globally and locally, but the complexity of ecological communities hampers a general understanding of the consequences of animal species loss on ecosystem functioning. High animal diversity increases complementarity of herbivores but also increases feeding rates within the consumer guild. Depending on the balance of these counteracting mechanisms, species-rich animal communities may put plants under top-down control or may release them from grazing pressure. Using a dynamic food-web model with body-mass constraints, we simulate ecosystem functions of 20,000 communities of varying animal diversity. We show that diverse animal communities accumulate more biomass and are more exploitative on plants, despite their higher rates of intra-guild predation. However, they do not reduce plant biomass because the communities are composed of larger, and thus energetically more efficient, plant and animal species. This plasticity of community body-size structure reconciles the debate on the consequences of animal species loss for primary productivity.
Animal diversity and ecosystem functioning in dynamic food webs
Schneider, Florian D.; Brose, Ulrich; Rall, Björn C.; Guill, Christian
2016-01-01
Species diversity is changing globally and locally, but the complexity of ecological communities hampers a general understanding of the consequences of animal species loss on ecosystem functioning. High animal diversity increases complementarity of herbivores but also increases feeding rates within the consumer guild. Depending on the balance of these counteracting mechanisms, species-rich animal communities may put plants under top-down control or may release them from grazing pressure. Using a dynamic food-web model with body-mass constraints, we simulate ecosystem functions of 20,000 communities of varying animal diversity. We show that diverse animal communities accumulate more biomass and are more exploitative on plants, despite their higher rates of intra-guild predation. However, they do not reduce plant biomass because the communities are composed of larger, and thus energetically more efficient, plant and animal species. This plasticity of community body-size structure reconciles the debate on the consequences of animal species loss for primary productivity. PMID:27703157
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1995-01-01
The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES.
Dynamics of Investor Attention on the Social Web
ERIC Educational Resources Information Center
Li, Xian
2013-01-01
The World Wide Web has been revolutionizing how investors produce and consume information while participating in financial markets. Both the amount of information and the speed it flows around have achieved unprecedented magnitudes. The preeminent change is the growth of investor communities on the social web, which give rise to multidimensional…
Dynamics of exciton-polaritons in discrete lattices under incoherent localized pumping
NASA Astrophysics Data System (ADS)
Yulin, A. V.; Chestnov, I. Yu.; Ma, X.; Schumacher, S.; Peschel, U.; Egorov, O. A.
2016-08-01
The paper deals with the spontaneous coherence building up between exciton-polaritons trapped in an array of deep potential wells in the presence of an incoherent pump. A theoretical approach based on a standard tight-binding mean-field approximation is used to reduce the continuous periodic problem to a discrete model. The typical dynamics of the nonlinear exciton-polariton system for the cases of spatially uniform and for localized pumps are discussed. Special attention is paid to the "staggered" coherent steady states with π jumps in the phases between neighboring sites and to "uniform" states with a smooth phase distribution. It is shown that, apart from the states with a single frequency, mixed states with spectra with several harmonics can form in the system. The selection mechanism that controls the type of steady state growing from a weak noise is studied. It is found that in the case of localized pumps the decaying tails of the solutions play a crucial role in the dynamics of the polaritons. The applicability of the obtained theoretical results for a qualitative explanation of the complex phenomena observed in recent experiments is discussed.
Dorn, Martin; Hekmat, Dariusch
2016-03-01
Preparative packed-bed chromatography using polymer-based, compressible, porous resins is a powerful method for purification of macromolecular bioproducts. During operation, a complex, hysteretic, thus, history-dependent packed bed behavior is often observed but theoretical understanding of the causes is limited. Therefore, a rigorous modeling approach of the chromatography column on the particle scale has been made which takes into account interparticle micromechanics and fluid-particle interactions for the first time. A three-dimensional deterministic model was created by applying Computational Fluid Dynamics (CFD) coupled with the Discrete Element Method (DEM). The column packing behavior during either flow or mechanical compression was investigated in-silico and in laboratory experiments. A pronounced axial compression-relaxation profile was identified that differed for both compression strategies. Void spaces were clearly visible in the packed bed after compression. It was assumed that the observed bed inhomogeneity was because of a force-chain network at the particle scale. The simulation satisfactorily reproduced the measured behavior regarding packing compression as well as pressure-flow dependency. Furthermore, the particle Young's modulus and particle-wall friction as well as interparticle friction were identified as crucial parameters affecting packing dynamics. It was concluded that compaction of the chromatographic bed is rather because of particle rearrangement than particle deformation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:363-371, 2016.
Strain hardening in 2D discrete dislocation dynamics simulations: A new '2.5D' algorithm
NASA Astrophysics Data System (ADS)
Keralavarma, S. M.; Curtin, W. A.
2016-10-01
The two-dimensional discrete dislocation dynamics (2D DD) method, consisting of parallel straight edge dislocations gliding on independent slip systems in a plane strain model of a crystal, is often used to study complicated boundary value problems in crystal plasticity. However, the absence of truly three dimensional mechanisms such as junction formation means that forest hardening cannot be modeled, unless additional so-called '2.5D' constitutive rules are prescribed for short-range dislocation interactions. Here, results from three dimensional dislocation dynamics (3D DD) simulations in an FCC material are used to define new constitutive rules for short-range interactions and junction formation between dislocations on intersecting slip systems in 2D. The mutual strengthening effect of junctions on preexisting obstacles, such as precipitates or grain boundaries, is also accounted for in the model. The new '2.5D' DD model, with no arbitrary adjustable parameters beyond those obtained from lower scale simulation methods, is shown to predict athermal hardening rates, differences in flow behavior for single and multiple slip, and latent hardening ratios. All these phenomena are well-established in the plasticity of crystals and quantitative results predicted by the model are in good agreement with experimental observations.
Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof.
Al-Tamimi, Asma; Lewis, Frank L; Abu-Khalaf, Murad
2008-08-01
Convergence of the value-iteration-based heuristic dynamic programming (HDP) algorithm is proven in the case of general nonlinear systems. That is, it is shown that HDP converges to the optimal control and the optimal value function that solves the Hamilton-Jacobi-Bellman equation appearing in infinite-horizon discrete-time (DT) nonlinear optimal control. It is assumed that, at each iteration, the value and action update equations can be exactly solved. The following two standard neural networks (NN) are used: a critic NN is used to approximate the value function, whereas an action network is used to approximate the optimal control policy. It is stressed that this approach allows the implementation of HDP without knowing the internal dynamics of the system. The exact solution assumption holds for some classes of nonlinear systems and, specifically, in the specific case of the DT linear quadratic regulator (LQR), where the action is linear and the value quadratic in the states and NNs have zero approximation error. It is stressed that, for the LQR, HDP may be implemented without knowing the system A matrix by using two NNs. This fact is not generally appreciated in the folklore of HDP for the DT LQR, where only one critic NN is generally used. PMID:18632382
Zholtkevych, G N; Bespalov, G Yu; Nosov, K V; Abhishek, Mahalakshmi
2013-12-01
Mathematical modeling is a convenient way for characterization of complex ecosystems. This approach was applied to study the dynamics of zooplankton in Lake Sevan (Armenia) at different stages of anthropogenic eutrophication with the use of a novel method called discrete modeling of dynamical systems with feedback (DMDS). Simulation demonstrated that the application of this method helps in characterization of inter- and intra-component relationships in a natural ecosystem. This method describes all possible pairwise inter-component relationships like "plus-plus," "minus-minus," "plus-minus," "plus-zero," "minus-zero," and "zero-zero" that occur in most ecosystems. Based on the results, a working hypothesis was formulated. It was found that the sensitivity to weak external influence in zooplanktons was the greatest during the mid period of eutrophication in Lake Sevan, whereas in the final stages of eutrophication, an outbreak in the biomass production of cyanobacteria was evident. To support this approach, a weak external disturbance in the form of magnetic storm was used to see its effect on species Daphnia longispina sevanica. A statistically significant correlation between the frequency of magnetic storms and the number of this species was revealed and an increase in the number of toxic cyanobacteria species as a consequence of eutrophication. This paper, for the first time, suggests a DMDS method, to diagnose impact of anthropogenic eutrophication on environment.
A Dynamic Recommender System for Improved Web Usage Mining and CRM Using Swarm Intelligence
Alphy, Anna; Prabakaran, S.
2015-01-01
In modern days, to enrich e-business, the websites are personalized for each user by understanding their interests and behavior. The main challenges of online usage data are information overload and their dynamic nature. In this paper, to address these issues, a WebBluegillRecom-annealing dynamic recommender system that uses web usage mining techniques in tandem with software agents developed for providing dynamic recommendations to users that can be used for customizing a website is proposed. The proposed WebBluegillRecom-annealing dynamic recommender uses swarm intelligence from the foraging behavior of a bluegill fish. It overcomes the information overload by handling dynamic behaviors of users. Our dynamic recommender system was compared against traditional collaborative filtering systems. The results show that the proposed system has higher precision, coverage, F1 measure, and scalability than the traditional collaborative filtering systems. Moreover, the recommendations given by our system overcome the overspecialization problem by including variety in recommendations. PMID:26229978
A Dynamic Recommender System for Improved Web Usage Mining and CRM Using Swarm Intelligence.
Alphy, Anna; Prabakaran, S
2015-01-01
In modern days, to enrich e-business, the websites are personalized for each user by understanding their interests and behavior. The main challenges of online usage data are information overload and their dynamic nature. In this paper, to address these issues, a WebBluegillRecom-annealing dynamic recommender system that uses web usage mining techniques in tandem with software agents developed for providing dynamic recommendations to users that can be used for customizing a website is proposed. The proposed WebBluegillRecom-annealing dynamic recommender uses swarm intelligence from the foraging behavior of a bluegill fish. It overcomes the information overload by handling dynamic behaviors of users. Our dynamic recommender system was compared against traditional collaborative filtering systems. The results show that the proposed system has higher precision, coverage, F1 measure, and scalability than the traditional collaborative filtering systems. Moreover, the recommendations given by our system overcome the overspecialization problem by including variety in recommendations.
A Dynamic Recommender System for Improved Web Usage Mining and CRM Using Swarm Intelligence.
Alphy, Anna; Prabakaran, S
2015-01-01
In modern days, to enrich e-business, the websites are personalized for each user by understanding their interests and behavior. The main challenges of online usage data are information overload and their dynamic nature. In this paper, to address these issues, a WebBluegillRecom-annealing dynamic recommender system that uses web usage mining techniques in tandem with software agents developed for providing dynamic recommendations to users that can be used for customizing a website is proposed. The proposed WebBluegillRecom-annealing dynamic recommender uses swarm intelligence from the foraging behavior of a bluegill fish. It overcomes the information overload by handling dynamic behaviors of users. Our dynamic recommender system was compared against traditional collaborative filtering systems. The results show that the proposed system has higher precision, coverage, F1 measure, and scalability than the traditional collaborative filtering systems. Moreover, the recommendations given by our system overcome the overspecialization problem by including variety in recommendations. PMID:26229978
Discrete two-sex models of population dynamics: On modelling the mating function
NASA Astrophysics Data System (ADS)
Bessa-Gomes, Carmen; Legendre, Stéphane; Clobert, Jean
2010-09-01
Although sexual reproduction has long been a central subject of theoretical ecology, until recently its consequences for population dynamics were largely overlooked. This is now changing, and many studies have addressed this issue, showing that when the mating system is taken into account, the population dynamics depends on the relative abundance of males and females, and is non-linear. Moreover, sexual reproduction increases the extinction risk, namely due to the Allee effect. Nevertheless, different studies have identified diverse potential consequences, depending on the choice of mating function. In this study, we investigate the consequences of three alternative mating functions that are frequently used in discrete population models: the minimum; the harmonic mean; and the modified harmonic mean. We consider their consequences at three levels: on the probability that females will breed; on the presence and intensity of the Allee effect; and on the extinction risk. When we consider the harmonic mean, the number of times the individuals of the least abundant sex mate exceeds their mating potential, which implies that with variable sex-ratios the potential reproductive rate is no longer under the modeller's control. Consequently, the female breeding probability exceeds 1 whenever the sex-ratio is male-biased, which constitutes an obvious problem. The use of the harmonic mean is thus only justified if we think that this parameter should be re-defined in order to represent the females' breeding rate and the fact that females may reproduce more than once per breeding season. This phenomenon buffers the Allee effect, and reduces the extinction risk. However, when we consider birth-pulse populations, such a phenomenon is implausible because the number of times females can reproduce per birth season is limited. In general, the minimum or modified harmonic mean mating functions seem to be more suitable for assessing the impact of mating systems on population dynamics.
TADSim: Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics
Mniszewski, Susan M.; Junghans, Christoph; Voter, Arthur F.; Perez, Danny; Eidenbenz, Stephan J.
2015-04-16
Next-generation high-performance computing will require more scalable and flexible performance prediction tools to evaluate software--hardware co-design choices relevant to scientific applications and hardware architectures. Here, we present a new class of tools called application simulators—parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation. Parameterized choices for the algorithmic method and hardware options provide a rich space for design exploration and allow us to quickly find well-performing software--hardware combinations. We demonstrate our approach with a TADSim simulator that models the temperature-accelerated dynamics (TAD) method, an algorithmically complex and parameter-rich member of the accelerated molecular dynamics (AMD) family of molecular dynamics methods. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We accomplish this by identifying the time-intensive elements, quantifying algorithm steps in terms of those elements, abstracting them out, and replacing them by the passage of time. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We extend TADSim to model algorithm extensions, such as speculative spawning of the compute-bound stages, and predict performance improvements without having to implement such a method. Validation against the actual TAD code shows close agreement for the evolution of an example physical system, a silver surface. Finally, focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights and suggested extensions.
TADSim: Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics
Mniszewski, Susan M.; Junghans, Christoph; Voter, Arthur F.; Perez, Danny; Eidenbenz, Stephan J.
2015-04-16
Next-generation high-performance computing will require more scalable and flexible performance prediction tools to evaluate software--hardware co-design choices relevant to scientific applications and hardware architectures. Here, we present a new class of tools called application simulators—parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation. Parameterized choices for the algorithmic method and hardware options provide a rich space for design exploration and allow us to quickly find well-performing software--hardware combinations. We demonstrate our approach with a TADSim simulator that models the temperature-accelerated dynamics (TAD) method, an algorithmically complex and parameter-rich member of the accelerated molecular dynamics (AMD) family ofmore » molecular dynamics methods. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We accomplish this by identifying the time-intensive elements, quantifying algorithm steps in terms of those elements, abstracting them out, and replacing them by the passage of time. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We extend TADSim to model algorithm extensions, such as speculative spawning of the compute-bound stages, and predict performance improvements without having to implement such a method. Validation against the actual TAD code shows close agreement for the evolution of an example physical system, a silver surface. Finally, focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights and suggested extensions.« less
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri
2014-01-01
A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.
Principles of Discrete Time Mechanics
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2014-04-01
1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.
Dynamics of sustained reentry in a loop model with discrete gap junction resistances
NASA Astrophysics Data System (ADS)
Chen, Wei; Potse, Mark; Vinet, Alain
2007-08-01
The dynamics of reentry is studied in a one-dimensional loop of model cardiac cells with discrete intercellular gap junction resistance (R) . Each cell is represented by a continuous cable with ionic current given by a modified Beeler-Reuter formulation. For R below a limiting value, propagation is found to change from period-1 to quasiperiodic (QP) at a critical loop length (Lcrit) that decreases with R . Quasiperiodic reentry exists from Lcrit to a minimum length (Lmin) , which also shortens with R . The decrease of Lcrit(R) is not a simple scaling, but the bifurcation can still be predicted from the slope of the restitution curve giving the duration of the action potential as a function of the diastolic interval. However, the shape of the restitution curve changes with R . An increase of R does not seem to increase the number of possible QP solutions since, as in the continuous cable, only two QP modes of propagation were found despite an extensive search through alternative initial conditions.
Munsky, Brian; Fox, Zachary; Neuert, Gregor
2015-01-01
The production and degradation of RNA transcripts is inherently subject to biological noise that arises from small gene copy numbers in individual cells. As a result, cellular RNA levels can exhibit large fluctuations over time and from one cell to the next. This article presents a range of precise single-molecule experimental techniques, based upon RNA fluorescence in situ hybridization, which can be used to measure the fluctuations of RNA at the single-cell level. A class of models for gene activation and deactivation is postulated in order to capture complex stochastic effects of chromatin modifications or transcription factor interactions. A computational tool, known the Finite State Projection approach, is introduced to accurately and efficiently analyze these models in order to predict how probability distributions of RNA change over time in response to changing environmental conditions. These single-molecule experiments, discrete stochastic models, and computational analyses are systematically integrated to identify models of gene regulation dynamics. To illustrate the power and generality of our integrated experimental and computational approach, we explore cases that include different models for three different RNA types (sRNA, mRNA and nascent RNA), three different experimental techniques and three different biological species (bacteria, yeast and human cells). PMID:26079925
Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.
Wei, Qinglai; Liu, Derong; Lin, Hanquan
2016-03-01
In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.
Discrete kink dynamics in hydrogen-bonded chains: the one-component model.
Karpan, V M; Zolotaryuk, Y; Christiansen, P L; Zolotaryuk, A V
2002-12-01
We study topological solitary waves (kinks and antikinks) in a nonlinear one-dimensional Klein-Gordon chain with the on-site potential of a double-Morse type. This chain is used to describe the collective proton dynamics in quasi-one-dimensional networks of hydrogen bonds, where the on-site potential plays the role of the proton potential in the hydrogen bond. The system supports a rich variety of stationary kink solutions with different symmetry properties. We study the stability and bifurcation structure of all these stationary kink states. An exactly solvable model with a piecewise "parabola-constant" approximation of the double-Morse potential is suggested and studied analytically. The dependence of the Peierls-Nabarro potential on the system parameters is studied. Discrete traveling-wave solutions of a narrow permanent profile are shown to exist, depending on the anharmonicity of the Morse potential and the cooperativity of the hydrogen bond (the coupling constant of the interaction between nearest-neighbor protons).
Finite-approximation-error-based discrete-time iterative adaptive dynamic programming.
Wei, Qinglai; Wang, Fei-Yue; Liu, Derong; Yang, Xiong
2014-12-01
In this paper, a new iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for infinite horizon discrete-time nonlinear systems with finite approximation errors. First, a new generalized value iteration algorithm of ADP is developed to make the iterative performance index function converge to the solution of the Hamilton-Jacobi-Bellman equation. The generalized value iteration algorithm permits an arbitrary positive semi-definite function to initialize it, which overcomes the disadvantage of traditional value iteration algorithms. When the iterative control law and iterative performance index function in each iteration cannot accurately be obtained, for the first time a new "design method of the convergence criteria" for the finite-approximation-error-based generalized value iteration algorithm is established. A suitable approximation error can be designed adaptively to make the iterative performance index function converge to a finite neighborhood of the optimal performance index function. Neural networks are used to implement the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the developed method. PMID:25265640
Dynamical and statistical behavior of discrete combustion waves: A theoretical and numerical study
NASA Astrophysics Data System (ADS)
Bharath, Naine Tarun; Rashkovskiy, Sergey A.; Tewari, Surya P.; Gundawar, Manoj Kumar
2013-04-01
We present a detailed theoretical and numerical study of combustion waves in a discrete one-dimensional disordered system. The distances between neighboring reaction cells were modeled with a gamma distribution. The results show that the random structure of the microheterogeneous system plays a crucial role in the dynamical and statistical behavior of the system. This is a consequence of the nonlinear interaction of the random structure of the system with the thermal wave. An analysis of the experimental data on the combustion of a gasless system (Ti + xSi) and a wide range of thermite systems was performed in view of the developed model. We have shown that the burning rate of the powder system sensitively depends on its internal structure. The present model allows for reproducing theoretically the experimental data for a wide range of pyrotechnic mixtures. We show that Arrhenius’ macrokinetics at combustion of disperse systems can take place even in the absence of Arrhenius’ microkinetics; it can have a purely thermal nature and be related to their heterogeneity and to the existence of threshold temperature. It is also observed that the combustion of disperse systems always occurs in the microheterogeneous mode according to the relay-race mechanism.
NASA Astrophysics Data System (ADS)
Liang, X. San; Kleeman, Richard
2007-07-01
We put the concept of information transfer on a rigorous footing and establish for it a formalism within the framework of discrete maps. The resulting transfer measure possesses a property of directionality or transfer asymmetry as emphasized by Schreiber [T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85 (2) (2000) 461]; it also verifies the transfer measure for two-dimensional systems, which was obtained by Liang and Kleeman [X.S. Liang, R. Kleeman, Information transfer between dynamical system components, Phys. Rev. Lett. 95 (24) (2005) 244101] through a different avenue. Connections to classical formalisms are explored and applications presented. We find that, in the context of the baker transformation, there is always information flowing from the stretching direction to the folding direction, while no transfer occurs in the opposite direction; we also find that, within the Hénon map system, the transfer from the quadratic component to the linear component is of a simple form as expected on physical grounds. This latter result is unique to our formalism.
Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy
2014-01-01
In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.
Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy
2014-01-01
In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions
Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M.; Dan, Bernard; McIntyre, Joseph; Cheron, Guy
2014-01-01
In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions
Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies
NASA Technical Reports Server (NTRS)
Talabac, Stephen J.
2004-01-01
Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.
Food web dynamics in a seasonally varying wetland
DeAngelis, D.L.; Trexler, J.C.; Donalson, D.D.
2008-01-01
A spatially explicit model is developed to simulate the small fish community and its underlying food web, in the freshwater marshes of the Everglades. The community is simplified to a few small fish species feeding on periphyton and invertebrates. Other compartments are detritus, crayfish, and a piscivorous fish species. This unit food web model is applied to each of the 10,000 spatial cells on a 100 x 100 pixel landscape. Seasonal variation in water level is assumed and rules are assigned for fish movement in response to rising and falling water levels, which can cause many spatial cells to alternate between flooded and dry conditions. It is shown that temporal variations of water level on a spatially heterogeneous landscape can maintain at least three competing fish species. In addition, these environmental factors can strongly affect the temporal variation of the food web caused by top-down control from the piscivorous fish.
Dynamic "inline" images: context-sensitive retrieval and integration of images into Web documents.
Kahn, Charles E
2008-09-01
Integrating relevant images into web-based information resources adds value for research and education. This work sought to evaluate the feasibility of using "Web 2.0" technologies to dynamically retrieve and integrate pertinent images into a radiology web site. An online radiology reference of 1,178 textual web documents was selected as the set of target documents. The ARRS GoldMiner image search engine, which incorporated 176,386 images from 228 peer-reviewed journals, retrieved images on demand and integrated them into the documents. At least one image was retrieved in real-time for display as an "inline" image gallery for 87% of the web documents. Each thumbnail image was linked to the full-size image at its original web site. Review of 20 randomly selected Collaborative Hypertext of Radiology documents found that 69 of 72 displayed images (96%) were relevant to the target document. Users could click on the "More" link to search the image collection more comprehensively and, from there, link to the full text of the article. A gallery of relevant radiology images can be inserted easily into web pages on any web server. Indexing by concepts and keywords allows context-aware image retrieval, and searching by document title and subject metadata yields excellent results. These techniques allow web developers to incorporate easily a context-sensitive image gallery into their documents.
Using a Simulation To Teach Food Web Dynamics.
ERIC Educational Resources Information Center
Rueter, John G.; Perrin, Nancy A.
1999-01-01
Reports on research that tested the effect of using a computer simulation to teach the concept of a food web to nonbiology majors in a large introductory course. Concludes that the use of the simulation resulted in significantly better performance on an open-ended essay question for those students who used the software, particularly for average…
The Spider's Web: Creativity and Survival in Dynamic Balance.
ERIC Educational Resources Information Center
Cohen, Bill
2001-01-01
The spider's web is presented as a model for Indigenous education and community transformation, grounded in Okanagan philosophy. Children are at the center and benefit from the influence of extended family and community. The model's relevance for language revitalization, cultural maintenance, and educational planning and assessment is discussed.…
Martinez-Pedrero, Fernando; Tierno, Pietro; Johansen, Tom H; Straube, Arthur V
2016-02-03
The emergence of wave fronts in dissipative driven systems is a fascinating phenomenon which can be found in a broad range of physical and biological disciplines. Here we report the direct experimental observation of discrete fronts propagating along chains of paramagnetic colloidal particles, the latter propelled above a traveling wave potential generated by a structured magnetic substrate. We develop a rigorously reduced theoretical framework and describe the dynamics of the system in terms of a generalized one-dimensional dissipative Frenkel-Kontorova model. The front dynamics is explored in a wide range of field parameters close to and far from depinning, where the discrete and continuum limits apply. We show how symmetry breaking and finite size of chains are used to control the direction of front propagation, a universal feature relevant to different systems and important for real applications.
Martinez-Pedrero, Fernando; Tierno, Pietro; Johansen, Tom H.; Straube, Arthur V.
2016-01-01
The emergence of wave fronts in dissipative driven systems is a fascinating phenomenon which can be found in a broad range of physical and biological disciplines. Here we report the direct experimental observation of discrete fronts propagating along chains of paramagnetic colloidal particles, the latter propelled above a traveling wave potential generated by a structured magnetic substrate. We develop a rigorously reduced theoretical framework and describe the dynamics of the system in terms of a generalized one-dimensional dissipative Frenkel-Kontorova model. The front dynamics is explored in a wide range of field parameters close to and far from depinning, where the discrete and continuum limits apply. We show how symmetry breaking and finite size of chains are used to control the direction of front propagation, a universal feature relevant to different systems and important for real applications. PMID:26837286
Shorikov, A. F.
2014-11-18
We consider a discrete-time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector linear or convex discrete-time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solution.
Food web architecture and population dynamics in laboratory microcosms of protists.
Lawler, S P; Morin, P J
1993-05-01
In theory, food chain length and omnivory are pivotal elements of food web structure that can affect the population dynamics of species within the web. Long food chains are thought to be less stable than shorter food chains, and omnivores are thought to destabilize food webs, although populations of omnivores may be more stable than populations of nonomnivores. In three of four simple food webs assembled from bacteria and protists in laboratory microcosms, the abundance of bacterivorous protists varied more over time when the species occurred in longer versus shorter food chains. The abundance of protists attacked by omnivorous top predators was either more or less temporally variable than in webs where top predators fed only at one adjacent trophic level, depending on the particular combination of interacting species. The abundance of omnivorous top predators varied less over time than the abundance of top predators restricted to feeding only at an adjacent trophic level. Observations of increased temporal variation in prey abundance in longer food chains and low temporal variation in omnivore abundance agree broadly with several predictions of food web theory. The observation that different species in similar trophic positions can exhibit very different dynamics suggests that stability may depend on complex interactions between species-specific life-history traits and general patterns of food web architecture.
NASA Astrophysics Data System (ADS)
Zhu, Ling; van de Ven, Glenn; Watkins, Laura L.; Posti, Lorenzo
2016-11-01
We present a new discrete chemo-dynamical axisymmetric modelling technique, which we apply to the dwarf spheroidal galaxy Sculptor. The major improvement over previous Jeans models is that realistic chemical distributions are included directly in the dynamical modelling of the discrete data. This avoids loss of information due to spatial binning and eliminates the need for hard cuts to remove contaminants and to separate stars based on their chemical properties. Using a combined likelihood in position, metallicity and kinematics, we find that our models naturally separate Sculptor stars into a metal-rich and a metal-poor population. Allowing for non-spherical symmetry, our approach provides a central slope of the dark matter density of γ = 0.5 ± 0.3. The metal-rich population is nearly isotropic (with β _r^{red} = 0.0± 0.1), while the metal-poor population is tangentially anisotropic (with β _r^{blue} = -0.2± 0.1) around the half-light radius of 0.26 kpc. A weak internal rotation of the metal-rich population is revealed with vmax/σ0 = 0.15 ± 0.15. We run tests using mock data to show that a discrete data set with ˜6000 stars is required to distinguish between a core (γ = 0) and cusp (γ = 1), and to constrain the possible internal rotation to better than 1σ confidence with our model. We conclude that our discrete chemo-dynamical modelling technique provides a flexible and powerful tool to robustly constrain the internal dynamics of multiple populations, and the total mass distribution in a stellar system.
NASA Astrophysics Data System (ADS)
Zhu, Ling; van de Ven, Glenn; Watkins, Laura L.; Posti, Lorenzo
2016-08-01
We present a new discrete chemo-dynamical axisymmetric modeling technique, which we apply to the dwarf spheroidal galaxy Sculptor. The major improvement over previous Jeans models is that realistic chemical distributions are included directly in the dynamical modelling of the discrete data. This avoids loss of information due to spatial binning and eliminates the need for hard cuts to remove contaminants and to separate stars based on their chemical properties. Using a combined likelihood in position, metallicity and kinematics, we find that our models naturally separate Sculptor stars into a metal-rich and a metal-poor population. Allowing for non-spherical symmetry, our approach provides a central slope of the dark matter density of γ = 0.5 ± 0.3. The metal-rich population is nearly isotropic (with β _r^{red} = 0.0± 0.1) while the metal-poor population is tangentially anisotropic (with β _r^{blue} = -0.2± 0.1) around the half light radius of 0.26 kpc. A weak internal rotation of the metal-rich population is revealed with vmax/σ0 = 0.15 ± 0.15. We run tests using mock data to show that a discrete dataset with ˜6000 stars is required to distinguish between a core (γ = 0) and cusp (γ = 1), and to constrain the possible internal rotation to better than 1 σ confidence with our model. We conclude that our discrete chemo-dynamical modelling technique provides a flexible and powerful tool to robustly constrain the internal dynamics of multiple populations, and the total mass distribution in a stellar system.
2015-01-01
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts. PMID:24555448
Bech, Mickael; Kjaer, Trine; Lauridsen, Jørgen
2011-03-01
Optimising the design of discrete choice experiments (DCE) involves maximising not only the statistical efficiency, but also how the nature and complexity of the experiment itself affects model parameters and variance. The present paper contributes by investigating the impact of the number of DCE choice sets presented to each respondent on response rate, self-reported choice certainty, perceived choice difficulty, willingness-to-pay (WTP) estimates, and response variance. A sample of 1053 respondents was exposed to 5, 9 or 17 choice sets in a DCE eliciting preferences for dental services. Our results showed no differences in response rates and no systematic differences in the respondents' self-reported perception of the uncertainty of their DCE answers. There were some differences in WTP estimates suggesting that estimated preferences are to some extent context-dependent, but no differences in standard deviations for WTP estimates or goodness-of-fit statistics. Respondents exposed to 17 choice sets had somewhat higher response variance compared to those exposed to 5 choice sets, indicating that cognitive burden may increase with the number of choice sets beyond a certain threshold. Overall, our results suggest that respondents are capable of managing multiple choice sets - in this case 17 choice sets - without problems.
Cheng, Cheng; Zhang, Xiaobing
2013-05-01
In conventional models for two-phase reactive flow of interior ballistic, the dynamic collision phenomenon of particles is neglected or empirically simplified. However, the particle collision between particles may play an important role in dilute two-phase flow because the distribution of particles is extremely nonuniform. The collision force may be one of the key factors to influence the particle movement. This paper presents the CFD-DEM approach for simulation of interior ballistic two-phase flow considering the dynamic collision process. The gas phase is treated as a Eulerian continuum and described by a computational fluid dynamic method (CFD). The solid phase is modeled by discrete element method (DEM) using a soft sphere approach for the particle collision dynamic. The model takes into account grain combustion, particle-particle collisions, particle-wall collisions, interphase drag and heat transfer between gas and solid phases. The continuous gas phase equations are discretized in finite volume form and solved by the AUSM+-up scheme with the higher order accurate reconstruction method. Translational and rotational motions of discrete particles are solved by explicit time integrations. The direct mapping contact detection algorithm is used. The multigrid method is applied in the void fraction calculation, the contact detection procedure, and CFD solving procedure. Several verification tests demonstrate the accuracy and reliability of this approach. The simulation of an experimental igniter device in open air shows good agreement between the model and experimental measurements. This paper has implications for improving the ability to capture the complex physics phenomena of two-phase flow during the interior ballistic cycle and to predict dynamic collision phenomena at the individual particle scale.
Systematic generation of nonlinear discretized dynamic equilibrium equations of spinning cantilevers
NASA Technical Reports Server (NTRS)
El-Essawi, M.; Utku, S.; Salama, M.
1982-01-01
General nonlinear discretized governing equations of motion of spinning elastic solids and structures are adjusted for the case of a spinning cantilever with initial geometric imperfections. Consideration is given to second degree nonlinearities in the strain-displacement and velocity-displacement relationships. Parameters of the discretization are developed to include the type and number of the coordinate functions used in the admissible trial solution in order to unify the discretization approaches associated with stationarity principles. The coordinate functions comprise both sets of continuous and piecewise continuous functions employed in the Rayleigh-Ritz and the finite element methods, respectively. Coefficient matrices are provided which contain the energy density expressions and which are adaptable to computer programming.
From a discrete to a continuum model of cell dynamics in one dimension.
Murray, Philip J; Edwards, Carina M; Tindall, Marcus J; Maini, Philip K
2009-09-01
Multiscale modeling is emerging as one of the key challenges in mathematical biology. However, the recent rapid increase in the number of modeling methodologies being used to describe cell populations has raised a number of interesting questions. For example, at the cellular scale, how can the appropriate discrete cell-level model be identified in a given context? Additionally, how can the many phenomenological assumptions used in the derivation of models at the continuum scale be related to individual cell behavior? In order to begin to address such questions, we consider a discrete one-dimensional cell-based model in which cells are assumed to interact via linear springs. From the discrete equations of motion, the continuous Rouse [P. E. Rouse, J. Chem. Phys. 21, 1272 (1953)] model is obtained. This formalism readily allows the definition of a cell number density for which a nonlinear "fast" diffusion equation is derived. Excellent agreement is demonstrated between the continuum and discrete models. Subsequently, via the incorporation of cell division, we demonstrate that the derived nonlinear diffusion model is robust to the inclusion of more realistic biological detail. In the limit of stiff springs, where cells can be considered to be incompressible, we show that cell velocity can be directly related to cell production. This assumption is frequently made in the literature but our derivation places limits on its validity. Finally, the model is compared with a model of a similar form recently derived for a different discrete cell-based model and it is shown how the different diffusion coefficients can be understood in terms of the underlying assumptions about cell behavior in the respective discrete models.
Technology Transfer Automated Retrieval System (TEKTRAN)
A linear discrete dynamic system model is constructed to represent the temporal interactions among significantly expressed genes in response to bioethanol conversion inhibitor 5-hydroxymethylfurfural for ethanologenic yeast Saccharomyces cerevisiae. This study identifies the most significant linear...
Dynamics of the Lake Michigan food web, 1970-2000
Madenjian, Charles P.; Fahnenstiel, Gary L.; Johengen, Thomas H.; Nalepa, Thomas F.; Vanderploeg, Henry A.; Fleischer, Guy W.; Schneeberger, Philip J.; Benjamin, Darren M.; Smith, Emily B.; Bence, James R.; Rutherford, Edward S.; Lavis, Dennis S.; Robertson, Dale M.; Jude, David J.; Ebener, Mark P.
2002-01-01
Herein, we document changes in the Lake Michigan food web between 1970 and 2000 and identify the factors responsible for these changes. Control of sea lamprey (Petromyzon marinus) and alewife (Alosa pseudoharengus) populations in Lake Michigan, beginning in the 1950s and 1960s, had profound effects on the food web. Recoveries of lake whitefish (Coregonus clupeaformis) and burbot (Lota lota) populations, as well as the buildup of salmonine populations, were attributable, at least in part, to sea lamprey control. Based on our analyses, predation by salmonines was primarily responsible for the reduction in alewife abundance during the 1970s and early 1980s. In turn, the decrease in alewife abundance likely contributed to recoveries of deepwater sculpin (Myoxocephalus thompsoni), yellow perch (Perca flavescens), and burbot populations during the 1970s and 1980s. Decrease in the abundance of all three dominant benthic macroinvertebrate groups, including Diporeia, oligochaetes, and sphaeriids, during the 1980s in nearshore waters (50 m deep) of Lake Michigan, was attributable to a decrease in primary production linked to a decline in phosphorus loadings. Continued decrease in Diporeia abundance during the 1990s was associated with the zebra mussel (Dreissena polymorpha) invasion, but specific mechanisms for zebra mussels affecting Diporeia abundance remain unidentified.
Dynamic Equations for a Free Particle Motion in a Discrete Space-Time Geometry
NASA Astrophysics Data System (ADS)
Rylov, Yuri A.
2016-08-01
One considers the discrete space-time geometry Gd, which is given on the set of points (events), where the geometry of Minkowski is given. This discrete geometry is not a geometry on lattice. Motion of a free particle is considered in Gd. Free motion in Gd can be reduced to a motion in geometry of Minkowski GM in some force field. Primordial free motion in Gd appears to be stochastic. In GM it is difficult to describe the force field responsible for stochastic motion of a particle. The nature of this force field appears to be geometrical.
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.
1989-01-01
It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.
NASA Astrophysics Data System (ADS)
Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.
2012-04-01
The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more
A simple method for serving Web hypermaps with dynamic database drill-down
Boulos, Maged N Kamel; Roudsari, Abdul V; Carson, Ewart R
2002-01-01
Background HealthCyberMap aims at mapping parts of health information cyberspace in novel ways to deliver a semantically superior user experience. This is achieved through "intelligent" categorisation and interactive hypermedia visualisation of health resources using metadata, clinical codes and GIS. HealthCyberMap is an ArcView 3.1 project. WebView, the Internet extension to ArcView, publishes HealthCyberMap ArcView Views as Web client-side imagemaps. The basic WebView set-up does not support any GIS database connection, and published Web maps become disconnected from the original project. A dedicated Internet map server would be the best way to serve HealthCyberMap database-driven interactive Web maps, but is an expensive and complex solution to acquire, run and maintain. This paper describes HealthCyberMap simple, low-cost method for "patching" WebView to serve hypermaps with dynamic database drill-down functionality on the Web. Results The proposed solution is currently used for publishing HealthCyberMap GIS-generated navigational information maps on the Web while maintaining their links with the underlying resource metadata base. Conclusion The authors believe their map serving approach as adopted in HealthCyberMap has been very successful, especially in cases when only map attribute data change without a corresponding effect on map appearance. It should be also possible to use the same solution to publish other interactive GIS-driven maps on the Web, e.g., maps of real world health problems. PMID:12437788
Rapid contemporary evolution and clonal food web dynamics.
Jones, Laura E; Becks, Lutz; Ellner, Stephen P; Hairston, Nelson G; Yoshida, Takehito; Fussmann, Gregor F
2009-06-12
Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator-prey system with two prey genotypes, parametrized with data from a well-studied experimental system, and explore how the extent of differences in defence against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary 'details' that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species.
The Bering Sea—A dynamic food web perspective
NASA Astrophysics Data System (ADS)
Aydin, Kerim; Mueter, Franz
2007-11-01
The Bering Sea is a high-latitude, semi-enclosed sea that supports extensive fish, seabird, marine mammal, and invertebrate populations and some of the world's most productive fisheries. The region consists of several distinct biomes that have undergone wide-scale population variation, in part due to fisheries, but also in part due to the effects of interannual and decadal-scale climatic variation. While recent decades of ocean observation have highlighted possible links between climate and species fluctuations, mechanisms linking climate and population fluctuations are only beginning to be understood. Here, we examine the food webs of Bering Sea ecosystems with particular reference to some key shifts in widely distributed, abundant fish populations and their links with climate variation. Both climate variability and fisheries have substantially altered the Bering Sea ecosystem in the past, but their relative importance in shaping the current ecosystem state remains uncertain.
NASA Astrophysics Data System (ADS)
Feldstein, Y. I.; Vorobjev, V. G.; Zverev, V. L.; Förster, M.
2014-05-01
Research results about planetary-scale auroral distributions are presented in a historical retrospective, beginning with the first "maps of isochasms" - lines of equal visibility of auroras in the firmament (Fig. 2) - up to "isoaurora maps" - lines of equal occurrence frequency of auroras in the zenith (Fig. 4). The exploration of auroras in Russia from Lomonosov in the 18th century (Fig. 1) until the start of the International Geophysical Year (IGY) in 1957 is shortly summed up. A generalised pattern of discrete auroral forms along the auroral oval during geomagnetically very quiet intervals is presented in Fig. 5. The changes of discrete auroral forms versus local time exhibit a fixed pattern with respect to the sun. The auroral forms comprise rays near noon, homogeneous arcs during the evening, and rayed arcs and bands during the night and in the morning. This fixed auroral pattern is unsettled during disturbances, which occur sometimes even during very quiet intervals. The azimuths of extended auroral forms vary with local time. Such variations in the orientation of extended forms above stations in the auroral zone have been used by various investigators to determine the position of the auroral oval (Fig. 9). Auroral luminosity of the daytime and nighttime sectors differ owing to different luminosity forms, directions of motion of the discrete forms, the height of the luminescent layers, and the spectral composition (predominant red emissions during daytime and green emissions during the night). Schemes that summarise principal peculiarities of daytime luminosity, its structure in MLT (magnetic local time) and MLat (magnetic latitude) coordinates, and the spectral composition of the luminosity are presented in Figs. 15 and 19. We discuss in detail the daytime sector dynamics of individual discrete forms for both quiet conditions and auroral substorms. The most important auroral changes during substorms occur in the nighttime sector. We present the evolution of
Prototype of a Mobile Social Network for Education Using Dynamic Web Service
ERIC Educational Resources Information Center
Hoentsch, Sandra Costa Pinto; Carvalho, Felipe Oliveira; Santos, Luiz Marcus Monteiro de Almeida; Ribeiro, Admilson de Ribamar Lima
2012-01-01
This article presents the proposal of a social network site SocialNetLab that belongs to the Department of Computing-Federal University of Sergipe and which aims to locate and notify users of a nearby friend independently of the location technology available in the equipment through dynamic Web Service; to serve as a laboratory for research in…
NASA Astrophysics Data System (ADS)
Sato, Masaki; Yin, Xiang; Kuroda, Ryota; Kasai, Seiya
2016-02-01
We investigated the detection of discrete charge dynamics of an electron trap in a GaAs-based nanowire surface through current fluctuation induced by a metallic scanning probe tip. An equivalent circuit model indicated that the charge state in the surface strongly reflects the channel potential when the local surface potential is fixed by the metal tip, which suggests that random charging and discharging dynamics of the trap appears as random telegraph signal (RTS) noise in the nanowire current. Experimental demonstration of the concept was carried out using a GaAs-based nanowire and an atomic force microscope (AFM) system with a conductive tip. We observed the RTS noise in the drain current and superposition of the Lorentzian component in the noise spectrum when the metal tip was in contact with the nanowire surface at specific positions. The obtained results indicate the possibility of detecting charge dynamics of the individual surface trap in semiconductor devices.
NASA Astrophysics Data System (ADS)
Rey, Sergio J.; Kang, Wei; Wolf, Levi
2016-10-01
Discrete Markov chain models (DMCs) have been widely applied to the study of regional income distribution dynamics and convergence. This popularity reflects the rich body of DMC theory on the one hand and the ability of this framework to provide insights on the internal and external properties of regional income distribution dynamics on the other. In this paper we examine the properties of tests for spatial effects in DMC models of regional distribution dynamics. We do so through a series of Monte Carlo simulations designed to examine the size, power and robustness of tests for spatial heterogeneity and spatial dependence in transitional dynamics. This requires that we specify a data generating process for not only the null, but also alternatives when spatial heterogeneity or spatial dependence is present in the transitional dynamics. We are not aware of any work which has examined these types of data generating processes in the spatial distribution dynamics literature. Results indicate that tests for spatial heterogeneity and spatial dependence display good power for the presence of spatial effects. However, tests for spatial heterogeneity are not robust to the presence of strong spatial dependence, while tests for spatial dependence are sensitive to the spatial configuration of heterogeneity. When the spatial configuration can be considered random, dependence tests are robust to the dynamic spatial heterogeneity, but not so to the process mean heterogeneity when the difference in process means is large relative to the variance of the time series.
Post-launch analysis of the deployment dynamics of a space web sounding rocket experiment
NASA Astrophysics Data System (ADS)
Mao, Huina; Sinn, Thomas; Vasile, Massimiliano; Tibert, Gunnar
2016-10-01
Lightweight deployable space webs have been proposed as platforms or frames for a construction of structures in space where centrifugal forces enable deployment and stabilization. The Suaineadh project was aimed to deploy a 2 × 2m2 space web by centrifugal forces in milli-gravity conditions and act as a test bed for the space web technology. Data from former sounding rocket experiments, ground tests and simulations were used to design the structure, the folding pattern and control parameters. A developed control law and a reaction wheel were used to control the deployment. After ejection from the rocket, the web was deployed but entanglements occurred since the web did not start to deploy at the specified angular velocity. The deployment dynamics was reconstructed from the information recorded in inertial measurement units and cameras. The nonlinear torque of the motor used to drive the reaction wheel was calculated from the results. Simulations show that if the Suaineadh started to deploy at the specified angular velocity, the web would most likely have been deployed and stabilized in space by the motor, reaction wheel and controller used in the experiment.
Regime shifts in marine communities: a complex systems perspective on food web dynamics
Yletyinen, Johanna; Bodin, Örjan; Weigel, Benjamin; Nordström, Marie C.; Bonsdorff, Erik; Blenckner, Thorsten
2016-01-01
Species composition and habitats are changing at unprecedented rates in the world's oceans, potentially causing entire food webs to shift to structurally and functionally different regimes. Despite the severity of these regime shifts, elucidating the precise nature of their underlying processes has remained difficult. We address this challenge with a new analytic approach to detect and assess the relative strength of different driving processes in food webs. Our study draws on complexity theory, and integrates the network-centric exponential random graph modelling (ERGM) framework developed within the social sciences with community ecology. In contrast to previous research, this approach makes clear assumptions of direction of causality and accommodates a dynamic perspective on the emergence of food webs. We apply our approach to analysing food webs of the Baltic Sea before and after a previously reported regime shift. Our results show that the dominant food web processes have remained largely the same, although we detect changes in their magnitudes. The results indicate that the reported regime shift may not be a system-wide shift, but instead involve a limited number of species. Our study emphasizes the importance of community-wide analysis on marine regime shifts and introduces a novel approach to examine food webs. PMID:26888032
The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.
Emerick, Brooks; Singh, Abhyudai
2016-02-01
Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. PMID:26686008
The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.
Emerick, Brooks; Singh, Abhyudai
2016-02-01
Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications.
Discrete simulation of the dynamics of spread of extreme opinions in a society
NASA Astrophysics Data System (ADS)
Stauffer, Dietrich; Sahimi, Muhammad
2006-05-01
We propose a discrete model for how opinions about a given “extreme” subject, about which various groups of a population have different degrees of enthusiasm for or susceptibility to, such as fanaticism, extreme social and political positions, and terrorism, may spread. The model, in a certain limit, is the discrete analogue of a deterministic continuum model suggested by others. We carry out extensive computer simulation of the model by utilizing it on lattices with infinite- or short-range interactions, and on symmetric and hierarchical (or directed) Barabási-Albert scale-free networks. Several interesting features of the model are demonstrated, and comparison is made with the deterministic continuum model.
Biological vs. physical mixing effects on benthic food web dynamics.
Braeckman, Ulrike; Provoost, Pieter; Moens, Tom; Soetaert, Karline; Middelburg, Jack J; Vincx, Magda; Vanaverbeke, Jan
2011-01-01
Biological particle mixing (bioturbation) and solute transfer (bio-irrigation) contribute extensively to ecosystem functioning in sediments where physical mixing is low. Macrobenthos transports oxygen and organic matter deeper into the sediment, thereby likely providing favourable niches to lower trophic levels (i.e., smaller benthic animals such as meiofauna and bacteria) and thus stimulating mineralisation. Whether this biological transport facilitates fresh organic matter assimilation by the metazoan lower part of the food web through niche establishment (i.e., ecosystem engineering) or rather deprives them from food sources, is so far unclear. We investigated the effects of the ecosystem engineers Lanice conchilega (bio-irrigator) and Abra alba (bioturbator) compared to abiotic physical mixing events on survival and food uptake of nematodes after a simulated phytoplankton bloom. The (13)C labelled diatom Skeletonema costatum was added to 4 treatments: (1) microcosms containing the bioturbator, (2) microcosms containing the bio-irrigator, (3) control microcosms and (4) microcosms with abiotic manual surface mixing. Nematode survival and subsurface peaks in nematode density profiles were most pronounced in the bio-irrigator treatment. However, nematode specific uptake (Δδ(13)C) of the added diatoms was highest in the physical mixing treatment, where macrobenthos was absent and the diatom (13)C was homogenised. Overall, nematodes fed preferentially on bulk sedimentary organic material rather than the added diatoms. The total C budget (µg C m(-2)), which included TO(13)C remaining in the sediment, respiration, nematode and macrobenthic uptake, highlighted the limited assimilation by the metazoan benthos and the major role of bacterial respiration. In summary, bioturbation and especially bio-irrigation facilitated the lower trophic levels mainly over the long-term through niche establishment. Since the freshly added diatoms represented only a limited food source
Biological vs. physical mixing effects on benthic food web dynamics.
Braeckman, Ulrike; Provoost, Pieter; Moens, Tom; Soetaert, Karline; Middelburg, Jack J; Vincx, Magda; Vanaverbeke, Jan
2011-01-01
Biological particle mixing (bioturbation) and solute transfer (bio-irrigation) contribute extensively to ecosystem functioning in sediments where physical mixing is low. Macrobenthos transports oxygen and organic matter deeper into the sediment, thereby likely providing favourable niches to lower trophic levels (i.e., smaller benthic animals such as meiofauna and bacteria) and thus stimulating mineralisation. Whether this biological transport facilitates fresh organic matter assimilation by the metazoan lower part of the food web through niche establishment (i.e., ecosystem engineering) or rather deprives them from food sources, is so far unclear. We investigated the effects of the ecosystem engineers Lanice conchilega (bio-irrigator) and Abra alba (bioturbator) compared to abiotic physical mixing events on survival and food uptake of nematodes after a simulated phytoplankton bloom. The (13)C labelled diatom Skeletonema costatum was added to 4 treatments: (1) microcosms containing the bioturbator, (2) microcosms containing the bio-irrigator, (3) control microcosms and (4) microcosms with abiotic manual surface mixing. Nematode survival and subsurface peaks in nematode density profiles were most pronounced in the bio-irrigator treatment. However, nematode specific uptake (Δδ(13)C) of the added diatoms was highest in the physical mixing treatment, where macrobenthos was absent and the diatom (13)C was homogenised. Overall, nematodes fed preferentially on bulk sedimentary organic material rather than the added diatoms. The total C budget (µg C m(-2)), which included TO(13)C remaining in the sediment, respiration, nematode and macrobenthic uptake, highlighted the limited assimilation by the metazoan benthos and the major role of bacterial respiration. In summary, bioturbation and especially bio-irrigation facilitated the lower trophic levels mainly over the long-term through niche establishment. Since the freshly added diatoms represented only a limited food source
Networked Physics Curriculum:. From Static Web to Dynamic Java
NASA Astrophysics Data System (ADS)
Bothun, G. D.; Kevan, S. D.; Micklavzina, S.; Mason, D.
We describe our efforts at the University of Oregon to use Web-based Instructional Technology (IT) supplemented with interactive Java virtual experiments to change the standard pedagogy associated with large, introductory undergraduate classes in physics and astronomy. We begin by examining some of the problems associated with the standard pedagogy in these classes and how these problems motivated our development of networked courseware. Although we identify and describe five empirical positive outcomes associated with IT, we conclude that the use of HTML-based course material and assignments does not substantially alter the standard pedagogy as this medium alone is not conducive to interactive exercises. To build interactivity into our courseware, we have undertaken a vigorous effort of creating Java-based experiments which are grounded in physical reality and duplicate the kinds of experiments that are done in the physical lab. In so doing, we build experimentation into a curriculum for large lecture-based classes in which the standard pedagogy and resource constraints normally preclude lab sections. The main goal is to create a networked environment where the student can easily retrieve the notes and the demonstrations that were done in class as well as to engage in experiments that are designed to illustrate basic principles. In so doing, we hope to move to a more learner-centered environment which is driven by student inquiry. Five specific Java experiments are described here and each is accompanied by a snapshot of the experimental apparatus and controls. An appendix contains the relevant URLs of the experiments, courseware, and animation described herein.
Biological vs. Physical Mixing Effects on Benthic Food Web Dynamics
Braeckman, Ulrike; Provoost, Pieter; Moens, Tom; Soetaert, Karline; Middelburg, Jack J.; Vincx, Magda; Vanaverbeke, Jan
2011-01-01
Biological particle mixing (bioturbation) and solute transfer (bio-irrigation) contribute extensively to ecosystem functioning in sediments where physical mixing is low. Macrobenthos transports oxygen and organic matter deeper into the sediment, thereby likely providing favourable niches to lower trophic levels (i.e., smaller benthic animals such as meiofauna and bacteria) and thus stimulating mineralisation. Whether this biological transport facilitates fresh organic matter assimilation by the metazoan lower part of the food web through niche establishment (i.e., ecosystem engineering) or rather deprives them from food sources, is so far unclear. We investigated the effects of the ecosystem engineers Lanice conchilega (bio-irrigator) and Abra alba (bioturbator) compared to abiotic physical mixing events on survival and food uptake of nematodes after a simulated phytoplankton bloom. The 13C labelled diatom Skeletonema costatum was added to 4 treatments: (1) microcosms containing the bioturbator, (2) microcosms containing the bio-irrigator, (3) control microcosms and (4) microcosms with abiotic manual surface mixing. Nematode survival and subsurface peaks in nematode density profiles were most pronounced in the bio-irrigator treatment. However, nematode specific uptake (Δδ13C) of the added diatoms was highest in the physical mixing treatment, where macrobenthos was absent and the diatom 13C was homogenised. Overall, nematodes fed preferentially on bulk sedimentary organic material rather than the added diatoms. The total C budget (µg C m−2), which included TO13C remaining in the sediment, respiration, nematode and macrobenthic uptake, highlighted the limited assimilation by the metazoan benthos and the major role of bacterial respiration. In summary, bioturbation and especially bio-irrigation facilitated the lower trophic levels mainly over the long-term through niche establishment. Since the freshly added diatoms represented only a limited food source for
Wikan, Arild
2012-06-01
Discrete stage-structured density-dependent and discrete age-structured density-dependent population models are considered. Regarding the former, we prove that the model at hand is permanent (i.e., that the population will neither go extinct nor exhibit explosive oscillations) and given density dependent fecundity terms we also show that species with delayed semelparous life histories tend to be more stable than species which possess precocious semelparous life histories. Moreover, our findings together with results obtained from other stage-structured models seem to illustrate a fairly general ecological principle, namely that iteroparous species are more stable than semelparous species. Our analysis of various age-structured models does not necessarily support the conclusions above. In fact, species with precocious life histories now appear to possess better stability properties than species with delayed life histories, especially in the iteroparous case. We also show that there are dynamical outcomes from semelparous age-structured models which we are not able to capture in corresponding stage-structured cases. Finally, both age- and stage-structured population models may generate periodic dynamics of low period (either exact or approximate). The important prerequisite is to assume density-dependent survival probabilities. PMID:22297621
Basins of attraction for a discrete dynamical system derived from the 2-D Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Bible, Stewart A.; McDonough, J. M.
2000-11-01
It has previously been shown that a system of coupled logistic maps can be derived via Fourier analysis of the 2-D incompressible Navier-Stokes equations. Numerical studies of this 2-D discrete dynamical system (DDS) have demonstrated that uniqueness of solutions found for the usual 1-D logistic map no longer holds in 2-D, in accord with analytical results. If such DDSs are to be used as components of LES subgrid-scale models (as proposed in Hylin & McDonough, Int. J. Fluid Mech. Res. 26, 539, 1999), it is necessary to obtain an accurate delineation of the basins of attraction for each of their regimes. This presentation reports results of a preliminary study aimed at providing such information. In the current work we will present results for a restricted set of bifurcation parameter values selected from ``interesting'' regions of the overall regime map constructed by McDonough & Huang (submitted to Phys. Fluids, 2000). A not unexpected result has been the identification of ``holes'' and ``islands'' (see Abraham et al., Chaos in Discrete Dynamical Systems, 1997) for this regime map associated with sets of initial data having (apparently) nonzero measure. Implications of this in the context of model construction will be discussed.
Kengne, E; Lakhssassi, A
2015-03-01
We consider a lossless one-dimensional nonlinear discrete bi-inductance electrical transmission line made of N identical unit cells. When lattice effects are considered, we use the reductive perturbation method in the semidiscrete limit to show that the dynamics of modulated waves can be modeled by the classical nonlinear Schrödinger (CNLS) equation, which describes the modulational instability and the propagation of bright and dark solitons on a continuous-wave background. Our theoretical analysis based on the CNLS equation predicts either two or four frequency regions with different behavior concerning the modulational instability of a plane wave. With the help of the analytical solutions of the CNLS equation, we investigate analytically the effects of the linear capacitance CS on the dynamics of matter-wave solitons in the network. Our results reveal that the linear parameter CS can be used to manipulate the motion of bright, dark, and kink soliton in the network.
The web of connections between tourism companies: Structure and dynamics
NASA Astrophysics Data System (ADS)
da Fontoura Costa, Luciano; Baggio, Rodolfo
2009-10-01
Tourism destination networks are amongst the most complex dynamical systems, involving a myriad of human-made and natural resources. In this work we report a complex network-based systematic analysis of the Elba (Italy) tourism destination network, including the characterization of its structure in terms of several traditional measurements, the investigation of its modularity, as well as its comprehensive study in terms of the recently reported superedges approach. In particular, structural (the number of paths of distinct lengths between pairs of nodes, as well as the number of reachable companies) and dynamical features (transition probabilities and the inward/outward activations and accessibilities) are measured and analyzed, leading to a series of important findings related to the interactions between tourism companies. Among the several reported results, it is shown that the type and size of the companies influence strongly their respective activations and accessibilities, while their geographical position does not seem to matter. It is also shown that the Elba tourism network is largely fragmented and heterogeneous, so that it could benefit from increased integration.
Avalanche dynamics of magnetic flux in a two-dimensional discrete superconductor
Ginzburg, S. L.; Nakin, A. V.; Savitskaya, N. E.
2006-11-15
The critical state of a two-dimensional discrete superconductor in an external magnetic field is studied. This state is found to be self-organized in the generalized sense, i.e., is a set of metastable states that transform to each other by means of avalanches. An avalanche is characterized by the penetration of a magnetic flux to the system. The sizes of the occurring avalanches, i.e., changes in the magnetic flux, exhibit the power-law distribution. It is also shown that the size of the avalanche occurring in the critical state and the external magnetic field causing its change are statistically independent quantities.
Business Models of E-Government: Research on Dynamic E-Government Based on Web Services
NASA Astrophysics Data System (ADS)
Li, Yan; Yang, Jiumin
Government transcends all sectors in a society. It provides not only the legal, political and economic infrastructure to support other sectors, but also exerts significant influence on the social factors that contribute to their development. With its maturity of technologies and management, e-government will eventually enter into the time of 'one-stop' services. Among others, the technology of Web services is the major contributor to this achievement. Web services provides a new way of standard-based software technology, letting programmers combine existing computer system in new ways over the Internet within one business or across many, and would thereby bring about profound and far-reaching impacts on e-government. This paper introduced the business modes of e-government, architecture of dynamic e-government and its key technologies. Finally future prospect of dynamic e-government was also briefly discussed.
Swails, Jason M; York, Darrin M; Roitberg, Adrian E
2014-03-11
By utilizing Graphics Processing Units, we show that constant pH molecular dynamics simulations (CpHMD) run in Generalized Born (GB) implicit solvent for long time scales can yield poor pKa predictions as a result of sampling unrealistic conformations. To address this shortcoming, we present a method for performing constant pH molecular dynamics simulations (CpHMD) in explicit solvent using a discrete protonation state model. The method involves standard molecular dynamics (MD) being propagated in explicit solvent followed by protonation state changes being attempted in GB implicit solvent at fixed intervals. Replica exchange along the pH-dimension (pH-REMD) helps to obtain acceptable titration behavior with the proposed method. We analyzed the effects of various parameters and settings on the titration behavior of CpHMD and pH-REMD in explicit solvent, including the size of the simulation unit cell and the length of the relaxation dynamics following protonation state changes. We tested the method with the amino acid model compounds, a small pentapeptide with two titratable sites, and hen egg white lysozyme (HEWL). The proposed method yields superior predicted pKa values for HEWL over hundreds of nanoseconds of simulation relative to corresponding predicted values from simulations run in implicit solvent.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.
Maslennikov, Oleg V; Nekorkin, Vladimir I
2016-07-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics.
Chorin, Alexandre J; Lu, Fei
2015-08-11
Many physical systems are described by nonlinear differential equations that are too complicated to solve in full. A natural way to proceed is to divide the variables into those that are of direct interest and those that are not, formulate solvable approximate equations for the variables of greater interest, and use data and statistical methods to account for the impact of the other variables. In the present paper we consider time-dependent problems and introduce a fully discrete solution method, which simplifies both the analysis of the data and the numerical algorithms. The resulting time series are identified by a NARMAX (nonlinear autoregression moving average with exogenous input) representation familiar from engineering practice. The connections with the Mori-Zwanzig formalism of statistical physics are discussed, as well as an application to the Lorenz 96 system.
Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics
Chorin, Alexandre J.; Lu, Fei
2015-01-01
Many physical systems are described by nonlinear differential equations that are too complicated to solve in full. A natural way to proceed is to divide the variables into those that are of direct interest and those that are not, formulate solvable approximate equations for the variables of greater interest, and use data and statistical methods to account for the impact of the other variables. In the present paper we consider time-dependent problems and introduce a fully discrete solution method, which simplifies both the analysis of the data and the numerical algorithms. The resulting time series are identified by a NARMAX (nonlinear autoregression moving average with exogenous input) representation familiar from engineering practice. The connections with the Mori–Zwanzig formalism of statistical physics are discussed, as well as an application to the Lorenz 96 system. PMID:26216975
Kooistra, Lammert; Bergsma, Aldo; Chuma, Beatus; de Bruin, Sytze
2009-01-01
This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources.
Kooistra, Lammert; Bergsma, Aldo; Chuma, Beatus; de Bruin, Sytze
2009-01-01
This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources. PMID:22574019
Dynamic web cache publishing for IaaS clouds using Shoal
NASA Astrophysics Data System (ADS)
Gable, Ian; Chester, Michael; Armstrong, Patrick; Berghaus, Frank; Charbonneau, Andre; Leavett-Brown, Colin; Paterson, Michael; Prior, Robert; Sobie, Randall; Taylor, Ryan
2014-06-01
We have developed a highly scalable application, called Shoal, for tracking and utilizing a distributed set of HTTP web caches. Our application uses the Squid HTTP cache. Squid servers advertise their existence to the Shoal server via AMQP messaging by running Shoal Agent. The Shoal server provides a simple REST interface that allows clients to determine their closest Squid cache. Our goal is to dynamically instantiate Squid caches on IaaS clouds in response to client demand. Shoal provides the VMs on IaaS clouds with the location of the nearest dynamically instantiated Squid Cache.
Fam, Justine; Westbrook, Fred; Arabzadeh, Ehsan
2015-03-22
We simulate two types of environments to investigate how closely rats approximate optimal foraging. Rats initiated a trial where they chose between two spouts for sucrose, which was delivered at distinct probabilities. The discrete trial procedure used allowed us to observe the relationship between choice proportions, response latencies and obtained rewards. Our results show that rats approximate the optimal strategy across a range of environments that differ in the average probability of reward as well as the dynamics of the depletion-renewal cycle. We found that the constituent components of a single choice differentially reflect environmental contingencies. Post-choice behaviour, measured as the duration of time rats spent licking at the spouts on unrewarded trials, was the most sensitive index of environmental variables, adjusting most rapidly to changes in the environment. These findings have implications for the role of confidence in choice outcomes for guiding future choices. PMID:25694623
Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai
2011-01-01
In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method. PMID:20876014
A new dimension: Evolutionary food web dynamics in two dimensional trait space.
Ritterskamp, Daniel; Bearup, Daniel; Blasius, Bernd
2016-09-21
Species within a habitat are not uniformly distributed. However this aspect of community structure, which is fundamental to many conservation activities, is neglected in the majority of models of food web assembly. To address this issue, we introduce a model which incorporates a second dimension, which can be interpreted as space, into the trait space used in evolutionary food web models. Our results show that the additional trait axis allows the emergence of communities with a much greater range of network structures, similar to the diversity observed in real ecological communities. Moreover, the network properties of the food webs obtained are in good agreement with those of empirical food webs. Community emergence follows a consistent pattern with spread along the second trait axis occurring before the assembly of higher trophic levels. Communities can reach either a static final structure, or constantly evolve. We observe that the relative importance of competition and predation is a key determinant of the network structure and the evolutionary dynamics. The latter are driven by the interaction-competition and predation-between small groups of species. The model remains sufficiently simple that we are able to identify the factors, and mechanisms, which determine the final community state. PMID:27060671
A new dimension: Evolutionary food web dynamics in two dimensional trait space.
Ritterskamp, Daniel; Bearup, Daniel; Blasius, Bernd
2016-09-21
Species within a habitat are not uniformly distributed. However this aspect of community structure, which is fundamental to many conservation activities, is neglected in the majority of models of food web assembly. To address this issue, we introduce a model which incorporates a second dimension, which can be interpreted as space, into the trait space used in evolutionary food web models. Our results show that the additional trait axis allows the emergence of communities with a much greater range of network structures, similar to the diversity observed in real ecological communities. Moreover, the network properties of the food webs obtained are in good agreement with those of empirical food webs. Community emergence follows a consistent pattern with spread along the second trait axis occurring before the assembly of higher trophic levels. Communities can reach either a static final structure, or constantly evolve. We observe that the relative importance of competition and predation is a key determinant of the network structure and the evolutionary dynamics. The latter are driven by the interaction-competition and predation-between small groups of species. The model remains sufficiently simple that we are able to identify the factors, and mechanisms, which determine the final community state.
Existence, stability and dynamics of discrete solitary waves in a binary waveguide array
NASA Astrophysics Data System (ADS)
Shen, Y.; Kevrekidis, P. G.; Srinivasan, G.; Aceves, A. B.
2016-07-01
Recent work has explored binary waveguide arrays in the long-wavelength, near-continuum limit, here we examine the opposite limit, namely the vicinity of the so-called anti-continuum limit. We provide a systematic discussion of states involving one, two and three excited waveguides, and provide comparisons that illustrate how the stability of these states differ from the monoatomic limit of a single type of waveguide. We do so by developing a general theory which systematically tracks down the key eigenvalues of the linearized system. When we find the states to be unstable, we explore their dynamical evolution through direct numerical simulations. The latter typically illustrate, for the parameter values considered herein, the persistence of localized dynamics and the emergence for the duration of our simulations of robust quasi-periodic states for two excited sites. As the number of excited nodes increases, the unstable dynamics feature less regular oscillations of the solution’s amplitude.
Markov state modeling and dynamical coarse-graining via discrete relaxation path sampling
NASA Astrophysics Data System (ADS)
Fačkovec, B.; Vanden-Eijnden, E.; Wales, D. J.
2015-07-01
A method is derived to coarse-grain the dynamics of complex molecular systems to a Markov jump process (MJP) describing how the system jumps between cells that fully partition its state space. The main inputs are relaxation times for each pair of cells, which are shown to be robust with respect to positioning of the cell boundaries. These relaxation times can be calculated via molecular dynamics simulations performed in each cell separately and are used in an efficient estimator for the rate matrix of the MJP. The method is illustrated through applications to Sinai billiards and a cluster of Lennard-Jones discs.
Markov state modeling and dynamical coarse-graining via discrete relaxation path sampling.
Fačkovec, B; Vanden-Eijnden, E; Wales, D J
2015-07-28
A method is derived to coarse-grain the dynamics of complex molecular systems to a Markov jump process (MJP) describing how the system jumps between cells that fully partition its state space. The main inputs are relaxation times for each pair of cells, which are shown to be robust with respect to positioning of the cell boundaries. These relaxation times can be calculated via molecular dynamics simulations performed in each cell separately and are used in an efficient estimator for the rate matrix of the MJP. The method is illustrated through applications to Sinai billiards and a cluster of Lennard-Jones discs. PMID:26233119
Data compression of discrete sequence: A tree based approach using dynamic programming
NASA Technical Reports Server (NTRS)
Shivaram, Gurusrasad; Seetharaman, Guna; Rao, T. R. N.
1994-01-01
A dynamic programming based approach for data compression of a ID sequence is presented. The compression of an input sequence of size N to that of a smaller size k is achieved by dividing the input sequence into k subsequences and replacing the subsequences by their respective average values. The partitioning of the input sequence is carried with the intention of reducing the mean squared error in the reconstructed sequence. The complexity involved in finding the partitions which would result in such an optimal compressed sequence is reduced by using the dynamic programming approach, which is presented.
A discrete mathematical model of the dynamic evolution of a transportation network
NASA Astrophysics Data System (ADS)
Malinetskii, G. G.; Stepantsov, M. E.
2009-09-01
A dynamic model of the evolution of a transportation network is proposed. The main feature of this model is that the evolution of the transportation network is not a process of centralized transportation optimization. Rather, its dynamic behavior is a result of the system self-organization that occurs in the course of the satisfaction of needs in goods transportation and the evolution of the infrastructure of the network nodes. Nonetheless, the possibility of soft control of the network evolution direction is taken into account.
Polyakov, Pavel D; Duval, Jérôme F L
2014-02-01
We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions. PMID:24336523
Stratification of discharge in noble gases from the viewpoint of the discrete dynamics
Golubovskii, Yu. Pelyukhova, E.; Sigeneger, F.; Nekuchaev, V.
2015-03-15
Based on the analysis of electron phase trajectories in sinusoidal electric fields, a new point of view on discharge stratification is proposed. It is shown that the positive column can be considered as a spatial resonator in which electric fields with a fundamental period length L{sub S} or higher mode length q/p L{sub S} establish, where p and q are integers and p > q. The fundamental mode length L{sub S} is equivalent to the distance on which electrons gain energy equal to the lowest excitation threshold. This distance determines a length of the S-striation. Unlike kinetic theory, in the presented model resonance properties of the discharge column are not connected with elastic collision energy losses. A point map is used to obtain the resonance trajectories of electrons in the phase plane. Stable points for the positions of inelastic collisions in the resonance trajectories have been found at the positions of field maxima in the case of integer ratios p/q . For non-integer ratios p/q , multiple resonance trajectories arise according to a more complex stability criterion. From this point of view, S-, P-, and R-striations in noble gas discharges can be explained. Due to energy losses in elastic collisions, initial electron energy distribution functions converge to the resonance trajectories (the so-called “bunch effect”). The findings of the discrete model agree with results of kinetic theory and experiment. The new approach avoids difficulties of the kinetic theory in the case of exceptionally large relaxation lengths which can even exceed the positive column length.
Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system
Shorikov, A. F.
2015-11-30
We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solving.
Transport dynamics in quantum lattice models and the discrete truncated Wigner approximation
NASA Astrophysics Data System (ADS)
Schachenmayer, Johannes; Pupillo, Guido; Tignone, Edoardo; Genes, Claudiu; Pikovski, Alexander; Rey, Ana Maria
2015-05-01
Transport of physical quantities such as energy, charge, or information plays a crucial role in a vast variety of scientific fields ranging from materials science/solid-state physics, to photonics/quantum information, to biological systems. The robustness of quantum coherences in the presence of de-coherent sources, and how those affect transport efficiency are important open questions. Addressing them can not only impact our fundamental understanding of quantum science but at the same time can lead to important technological applications. Here, we present a scheme of how to dramatically enhance the energy transport efficiency of a material by coupling it to a cavity mode, an idea with profound implications for organic semi-conductor materials. In addition we report on progress of how to numerically tackle the problem of quantum transport dynamics with a newly developed method, the dTWA, which allows to simulate quantum-dynamics even in large systems and high dimensions.
Zhang, Hao; Douglas, Jack F.
2012-01-01
Recent studies of the dynamics of diverse condensed amorphous materials have indicated significant heterogeneity in the local mobility and a progressive increase in collective particle motion upon cooling that takes the form of string-like particle rearrangements. In a previous paper (Part I), we examined the possibility that fluctuations in potential energy E and particle mobility μ associated with this ‘dynamic heterogeneity’ might offer information about the scale of collective motion in glassy materials based on molecular dynamics simulations of the glassy interfacial region of Ni nanoparticles (NPs) at elevated temperatures. We found that the noise exponent associated with fluctuations in the Debye-Waller factor, a mobility related quantity, was directly proportional to the scale of collective motion L under a broad range of conditions, but the noise exponent associated with E(t) fluctuations was seemingly unrelated to L. In the present work, we focus on this unanticipated difference between potential energy and mobility fluctuations by examining these quantities at an atomic scale. We find that the string atoms exhibit a jump-like motion between two well-separated bands of energy states and the rate at which these jumps occur seems to be consistent with the phenomenology of the ‘slow-beta’ relaxation process of glass-forming liquids. Concurrently with these local E(t) jumps, we also find ‘quake-like’ particle displacements having a power-law distribution in magnitude so that particle displacement fluctuations within the strings are strikingly different from local E(t) fluctuations. An analysis of these E(t) fluctuations suggests that we are dealing with ‘discrete breather’ excitations in which large energy fluctuations develop in arrays of non-linear oscillators by virtue of large anharmonicity in the interparticle interactions and discreteness effects associated with particle packing. We quantify string collective motions on a fast caging
Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; Mandadapu, Kranthi
2016-02-01
Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CPmore » models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.« less
Dynamics of two discrete vortices with different circulations composed of pure electron plasmas
Soga, Yukihiro; Mihara, Yasuhiro; Park, Youngsoo
2015-06-29
Two-dimensional dynamics of two vortex strings with different circulations were experimentally observed. The strings were composed of pure electron plasmas and were confined in a Malmberg–Penning trap. When one of the two vortices trapped in a conventional potential well had weak circulation, the orbits of the two vortices contradicted the point vortex theory. This disagreement stems from an unavoidable external electric field that exerts a different additional E × B drift velocity on each vortex. We resolved the discrepancy between observation and theory by applying a stepwise potential to the end electrodes, which produced a less non-ideal electric field.
Web-based experiments for the study of collective social dynamics in cultural markets
Salganik, Matthew J.; Watts, Duncan J.
2013-01-01
Social scientists are often interested in understanding how the dynamics of social systems are driven by the behavior of individuals that make up those systems. However, this process is hindered by the difficulty of experimentally studying how individual behavioral tendencies lead to collective social dynamics in large groups of people interacting over time. In this paper we investigate the role of social influence, a process well studied at the individual level, on the puzzling nature of success for cultural products such as books, movies, and music. Using a “multiple-worlds” experimental design we are able to isolate the causal effect of an individual level mechanism on collective social outcomes. We employ this design in a web-based experiment in which 2,930 participants listened to, rated, and download 48 songs by up-and-coming bands. Surprisingly, despite relatively large differences in the demographics, behavior, and preferences of participants, the experimental results at both the individual and collective level were similar to those found in Salganik, Dodds, and Watts (2006). Further, by comparing results from two distinct pools of participants we are able to gain new insights into the role of individual behavior on collective outcomes. We conclude with a discussion of the strengths and weaknesses of web-based experiments to address questions of collective social dynamics. PMID:25164996
Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM
NASA Astrophysics Data System (ADS)
Piercy, C.; Swannack, T. M.
2012-12-01
Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.
Harvest timing and its population dynamic consequences in a discrete single-species model.
Cid, Begoña; Hilker, Frank M; Liz, Eduardo
2014-02-01
The timing of harvesting is a key instrument in managing and exploiting biological populations and renewable resources. Yet, there is little theory on harvest timing, and even less is known about the impact of different harvest times on the stability of population dynamics, even though this may drive population variability and risk of extinction. Here, we employ the framework proposed by Seno to study how harvesting at specific moments in the reproductive season affects not only population size but also stability. For populations with overcompensation, intermediate harvest times tend to be stabilizing (by simplifying dynamics in the case of unimodal maps and by preventing bubbling in the case of bimodal maps). For populations with a strong Allee effect, however, intermediate harvest times can have a twofold effect. On the one hand, they facilitate population persistence (if harvesting effort is low). On the other hand, they provoke population extinction (if harvesting effort is high). Early harvesting, currently considered common sense to take advantage of compensatory effects, may cut into the breeding stock when the population has not yet surpassed the critical Allee threshold. The results in this paper highlight, for the first time, the crucial interplay between harvest timing and Allee effects. Moreover, they demonstrate that harvesting with the same effort but at different moments in time can dramatically alter the impact on the population.
Poblete, Simón; Wysocki, Adam; Gompper, Gerhard; Winkler, Roland G
2014-09-01
We investigate the hydrodynamic properties of a spherical colloid model, which is composed of a shell of point particles by hybrid mesoscale simulations, which combine molecular dynamics simulations for the sphere with the multiparticle collision dynamics approach for the fluid. Results are presented for the center-of-mass and angular velocity correlation functions. The simulation results are compared with theoretical results for a rigid colloid obtained as a solution of the Stokes equation with no-slip boundary conditions. Similarly, analytical results of a point-particle model are presented, which account for the finite size of the simulated system. The simulation results agree well with both approaches on appropriative time scales; specifically, the long-time correlations are quantitatively reproduced. Moreover, a procedure is proposed to obtain the infinite-system-size diffusion coefficient based on a combination of simulation results and analytical predictions. In addition, we present the velocity field in the vicinity of the colloid and demonstrate its close agreement with the theoretical prediction. Our studies show that a point-particle model of a sphere is very well suited to describe the hydrodynamic properties of spherical colloids, with a significantly reduced numerical effort.
Quantized Hamilton dynamics describes quantum discrete breathers in a simple way
Igumenshchev, Kirill; Prezhdo, Oleg
2011-08-15
We study the localization of energy in a nonlinear coupled system, exhibiting so-called breather modes, using quantized Hamilton dynamics (QHD). Already at the lowest order, which is only twice as complex as classical mechanics, this simple semiclassical method incorporates quantum-mechanical effects. The transition between the localized and delocalized regimes is instantaneous in classical mechanics, while it is gradual due to tunneling in both quantum mechanics and QHD. In contrast to classical mechanics, which predicts an abrupt appearance of breathers, quantum mechanics and QHD show an alternation of localized and delocalized behavior in the transient region. QHD includes zero-point energy that is reflected in a shifted energy asymptote for the localized states, providing another improvement on the classical perspective. By detailed analysis of the distribution and transfer of energy within classical mechanics, QHD, and quantum dynamics, we conclude that QHD is an efficient approach that accounts for moderate quantum effects and can be used to identify quantum breathers in large nonlinear systems.
Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.
Bendahmane, Mostafa; Ruiz-Baier, Ricardo; Tian, Canrong
2016-05-01
In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis.
Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.
Bendahmane, Mostafa; Ruiz-Baier, Ricardo; Tian, Canrong
2016-05-01
In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis. PMID:26219250
Transient dynamics and food-web complexity in the Lotka-Volterra cascade model.
Chen, X; Cohen, J E
2001-04-22
How does the long-term behaviour near equilibrium of model food webs correlate with their short-term transient dynamics? Here, simulations of the Lotka -Volterra cascade model of food webs provide the first evidence to answer this question. Transient behaviour is measured by resilience, reactivity, the maximum amplification of a perturbation and the time at which the maximum amplification occurs. Model food webs with a higher probability of local asymptotic stability may be less resilient and may have a larger transient growth of perturbations. Given a fixed connectance, the sizes and durations of transient responses to perturbations increase with the number of species. Given a fixed number of species, as connectance increases, the sizes and durations of transient responses to perturbations may increase or decrease depending on the type of link that is varied. Reactivity is more sensitive to changes in the number of donor-controlled links than to changes in the number of recipient-controlled links, while resilience is more sensitive to changes in the number of recipient-controlled links than to changes in the number of donor-controlled links. Transient behaviour is likely to be one of the important factors affecting the persistence of ecological communities.
PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems.
McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas
2015-11-01
Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes.
Alteration of island food-web dynamics following major disturbance by hurricanes.
Spiller, David A; Schoener, Thomas W
2007-01-01
Major abiotic disturbance can be an important factor influencing food-web dynamics, particularly in areas impacted by the recent increase in hurricane activity. We present a unique set of data on key food-web processes occurring on 10 small islands for three relatively calm years and then four subsequent years during which two hurricanes passed directly over the study site. Herbivory, as measured by leaf damage, was 3.2 times higher in the year after the first hurricane (2000) than in the previous year and was 1.7 times higher in the year after the second hurricane (2002) than in 2001. The effect of a top predator (the lizard, Anolis sagrei) on herbivory strengthened continuously after the first hurricane and overall was 2.4 times stronger during the disturbance period than before. Overall abundance of lizards was 30% lower during the disturbance period than before, and abundances of web spiders and hymenopteran parasitoids were 66% and 59% lower, respectively. We suggest that increased herbivory observed on all islands was caused, at least in part, by the overall reduction in predation by both lizards and arthropods, whereas magnification of the lizard effect on herbivory was caused by reduced compensatory predation by arthropods.
ERIC Educational Resources Information Center
Wang, Tzu-Hua
2010-01-01
This research combines the idea of cake format dynamic assessment defined by Sternberg and Grigorenko (2001) and the "graduated prompt approach" proposed by (Campione and Brown, 1985) and (Campione and Brown, 1987) to develop a multiple-choice Web-based dynamic assessment system. This research adopts a quasi-experimental design to investigate the…
Identification of continuous-time models for nonlinear dynamic systems from discrete data
NASA Astrophysics Data System (ADS)
Guo, Yuzhu; Guo, Ling Zhong; Billings, Stephen A.; Wei, Hua-Liang
2016-09-01
A new iOFR-MF (iterative orthogonal forward regression--modulating function) algorithm is proposed to identify continuous-time models from noisy data by combining the MF method and the iOFR algorithm. In the new method, a set of candidate terms, which describe different dynamic relationships among the system states or between the input and output, are first constructed. These terms are then modulated using the MF method to generate the data matrix. The iOFR algorithm is next applied to build the relationships between these modulated terms, which include detecting the model structure and estimating the associated parameters. The relationships between the original variables are finally recovered from the model of the modulated terms. Both nonlinear state-space models and a class of higher order nonlinear input-output models are considered. The new direct method is compared with the traditional finite difference method and results show that the new method performs much better than the finite difference method. The new method works well even when the measurements are severely corrupted by noise. The selection of appropriate MFs is also discussed.
The effects of mixotrophy on the stability and dynamics of a simple planktonic food web
Jost, Christian; Lawrence, Cathryn A.; Campolongo, Francesca; Wouter, van de Bund; Hill, Sheryl; DeAngelis, Donald L.
2004-01-01
Recognition of the microbial loop as an important part of aquatic ecosystems disrupted the notion of simple linear food chains. However, current research suggests that even the microbial loop paradigm is a gross simplification of microbial interactions due to the presence of mixotrophs—organisms that both photosynthesize and graze. We present a simple food web model with four trophic species, three of them arranged in a food chain (nutrients–autotrophs–herbivores) and the fourth as a mixotroph with links to both the nutrients and the autotrophs. This model is used to study the general implications of inclusion of the mixotrophic link in microbial food webs and the specific predictions for a parameterization that describes open ocean mixed layer plankton dynamics. The analysis indicates that the system parameters reside in a region of the parameter space where the dynamics converge to a stable equilibrium rather than displaying periodic or chaotic solutions. However, convergence requires weeks to months, suggesting that the system would never reach equilibrium in the ocean due to alteration of the physical forcing regime. Most importantly, the mixotrophic grazing link seems to stabilize the system in this region of the parameter space, particularly when nutrient recycling feedback loops are included.
Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; El-Awady, Jaafar A.
2015-04-13
The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mgmore » stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.« less
Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; El-Awady, Jaafar A.
2015-04-13
The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mg stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.
Longstaff, M; Mahant, P; Stacy, M; Van Gemmert, A W A; Leis, B; Stelmach, G
2003-01-01
Objectives: To systematically investigate the ability of Parkinson's disease patients to discretely and dynamically scale the size of continuous movements and to assess the impact of movement size on outcome variability. Methods: Ten patients with Parkinson's disease (mean age 72 years) were compared with 12 healthy elderly controls (mean age 70 years). The subjects wrote with a stylus on a graphics tablet. In experiment 1 they drew circles, matching the size of five target circles ranging in magnitude from a radius of 0.5 cm up to 2.5 cm. In experiment 2 they drew spirals with a radius of at least 2 cm. In both experiments the drawings were initially performed as accurately as possible then as fast and accurately as possible. Results: In both experiments the patients and controls drew at a similar speed. The within trial variability of the pen trajectory was greater for patients than controls, and increased disproportionately with the size of the movement. When the emphasis was on size rather than variability (circles), the patients' drawing movements were the same size as controls. When the emphasis was on accuracy of pen trajectory (that is, minimum variability) rather than size (spirals), the patients' drawing movements were smaller than controls. Conclusions: The movements made by Parkinson's disease patients are hypometric partly as an adaptive strategy used to reduce movement variability. This strategy is used primarily when the requirement to make accurate movements outweighs the need to make large movements. PMID:12588912
NASA Astrophysics Data System (ADS)
Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander
2015-03-01
In the characteristic γ / γ ‧ microstructure of single crystal superalloys, misfit stresses occur due to a significant lattice mismatch of those two phases. The magnitude of this lattice mismatch depends on the chemical composition of both phases as well as on temperature. Furthermore, the lattice mismatch of γ and γ ‧ phases can be either positive or negative in sign. The internal stresses caused by such lattice mismatch play a decisive role for the micromechanical processes that lead to the observed macroscopic athermal deformation behavior of these high-temperature alloys. Three-dimensional discrete dislocation dynamics (DDD) simulations are applied to investigate dislocation glide in γ matrix channels and shearing of γ ‧ precipitates by superdislocations under externally applied uniaxial stresses, by fully taking into account internal misfit stresses. Misfit stress fields are calculated by the fast Fourier transformation (FFT) method and hybridized with DDD simulations. For external loading along the crystallographic [001] direction of the single crystal, it was found that the different internal stress states for negative and positive lattice mismatch result in non-uniform dislocation movement and different dislocation patterns in horizontal and vertical γ matrix channels. Furthermore, positive lattice mismatch produces a lower deformation rate than negative lattice mismatch under the same tensile loading, but for an increasing magnitude of lattice mismatch, the deformation resistance always diminishes. Hence, the best deformation performance is expected to result from alloys with either small positive, or even better, vanishing lattice mismatch between γ and γ ‧ phase.
NASA Astrophysics Data System (ADS)
Liang, Xing; Jiang, Jifa
The asymptotic behavior of discrete type-K monotone dynamical systems and reaction-diffusion equations is investigated. The studying content includes the index theory for fixed points, permanence, global stability, convergence everywhere and coexistence. It is shown that the system has a globally asymptotically stable fixed point if every fixed point is locally asymptotically stable with respect to the face it belongs to and at this point the principal eigenvalue of the diagonal partial derivative about any component not belonging to the face is not one. A nice result presented is the sufficient and necessary conditions for the system to have a globally asymptotically stable positive fixed point. It can be used to establish the sufficient conditions for the system to persist uniformly and the convergent result for all orbits. Applications are made to time-periodic Lotka-Volterra systems with diffusion, and sufficient conditions for such systems to have a unique positive periodic solution attracting all positive initial value functions are given. For more general time-periodic type-K monotone reaction-diffusion systems with spatial homogeneity, a simple condition is given to guarantee the convergence of all positive solutions.
Synchronous Discrete Harmonic Oscillator
Antippa, Adel F.; Dubois, Daniel M.
2008-10-17
We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.
Consequences of adaptive behaviour for the structure and dynamics of food webs.
Valdovinos, Fernanda S; Ramos-Jiliberto, Rodrigo; Garay-Narváez, Leslie; Urbani, Pasquinell; Dunne, Jennifer A
2010-12-01
Species coexistence within ecosystems and the stability of patterns of temporal changes in population sizes are central topics in ecological theory. In the last decade, adaptive behaviour has been proposed as a mechanism of population stabilization. In particular, widely distributed adaptive trophic behaviour (ATB), the fitness-enhancing changes in individuals' feeding-related traits due to variation in their trophic environment, may play a key role in modulating the dynamics of feeding relationships within natural communities. In this article, we review and synthesize models and results from theoretical research dealing with the consequences of ATB on the structure and dynamics of complex food webs. We discuss current approaches, point out limitations, and consider questions ripe for future research. In spite of some differences in the modelling and analytic approaches, there are points of convergence: (1) ATB promotes the complex structure of ecological networks, (2) ATB increases the stability of their dynamics, (3) ATB reverses May's negative complexity-stability relationship, and (4) ATB provides resilience and resistance of networks against perturbations. Current knowledge supports ATB as an essential ingredient for models of community dynamics, and future research that incorporates ATB will be well positioned to address questions important for basic ecological research and its applications.
Microbial food web dynamics along a soil chronosequence of a glacier forefield
NASA Astrophysics Data System (ADS)
Esperschütz, J.; Pérez-de-Mora, A.; Schreiner, K.; Welzl, G.; Buegger, F.; Zeyer, J.; Hagedorn, F.; Munch, J. C.; Schloter, M.
2011-11-01
Microbial food webs are critical for efficient nutrient turnover providing the basis for functional and stable ecosystems. However, the successional development of such microbial food webs and their role in "young" ecosystems is unclear. Due to a continuous glacier retreat since the middle of the 19th century, glacier forefields have expanded offering an excellent opportunity to study food web dynamics in soils at different developmental stages. In the present study, litter degradation and the corresponding C fluxes into microbial communities were investigated along the forefield of the Damma glacier (Switzerland). 13C-enriched litter of the pioneering plant Leucanthemopsis alpina (L.) Heywood was incorporated into the soil at sites that have been free from ice for approximately 10, 60, 100 and more than 700 years. The structure and function of microbial communities were identified by 13C analysis of phospholipid fatty acids (PLFA) and phospholipid ether lipids (PLEL). Results showed increasing microbial diversity and biomass, and enhanced proliferation of bacterial groups as ecosystem development progressed. Initially, litter decomposition proceeded faster at the more developed sites, but at the end of the experiment loss of litter mass was similar at all sites, once the more easily-degradable litter fraction was processed. As a result incorporation of 13C into microbial biomass was more evident during the first weeks of litter decomposition. 13C enrichments of both PLEL and PLFA biomarkers following litter incorporation were observed at all sites, suggesting similar microbial foodwebs at all stages of soil development. Nonetheless, the contribution of bacteria, especially actinomycetes to litter turnover became more pronounced as soil age increased in detriment of archaea, fungi and protozoa, more prominent in recently deglaciated terrain.
The impact of 850,000 years of climate changes on the structure and dynamics of mammal food webs.
Nenzén, Hedvig K; Montoya, Daniel; Varela, Sara
2014-01-01
Most evidence of climate change impacts on food webs comes from modern studies and little is known about how ancient food webs have responded to climate changes in the past. Here, we integrate fossil evidence from 71 fossil sites, body-size relationships and actualism to reconstruct food webs for six large mammal communities that inhabited the Iberian Peninsula at different times during the Quaternary. We quantify the long-term dynamics of these food webs and study how their structure changed across the Quaternary, a period for which fossil data and climate changes are well known. Extinction, immigration and turnover rates were correlated with climate changes in the last 850 kyr. Yet, we find differences in the dynamics and structural properties of Pleistocene versus Holocene mammal communities that are not associated with glacial-interglacial cycles. Although all Quaternary mammal food webs were highly nested and robust to secondary extinctions, general food web properties changed in the Holocene. These results highlight the ability of communities to re-organize with the arrival of phylogenetically similar species without major structural changes, and the impact of climate change and super-generalist species (humans) on Iberian Holocene mammal communities.
The Impact of 850,000 Years of Climate Changes on the Structure and Dynamics of Mammal Food Webs
Nenzén, Hedvig K.; Montoya, Daniel; Varela, Sara
2014-01-01
Most evidence of climate change impacts on food webs comes from modern studies and little is known about how ancient food webs have responded to climate changes in the past. Here, we integrate fossil evidence from 71 fossil sites, body-size relationships and actualism to reconstruct food webs for six large mammal communities that inhabited the Iberian Peninsula at different times during the Quaternary. We quantify the long-term dynamics of these food webs and study how their structure changed across the Quaternary, a period for which fossil data and climate changes are well known. Extinction, immigration and turnover rates were correlated with climate changes in the last 850 kyr. Yet, we find differences in the dynamics and structural properties of Pleistocene versus Holocene mammal communities that are not associated with glacial-interglacial cycles. Although all Quaternary mammal food webs were highly nested and robust to secondary extinctions, general food web properties changed in the Holocene. These results highlight the ability of communities to re-organize with the arrival of phylogenetically similar species without major structural changes, and the impact of climate change and super-generalist species (humans) on Iberian Holocene mammal communities. PMID:25207754
Ims, Rolf A; Henden, John-André; Thingnes, Anders V; Killengreen, Siw T
2013-01-01
Production cycles in birds are proposed as prime cases of indirect interactions in food webs. They are thought to be driven by predators switching from rodents to bird nests in the crash phase of rodent population cycles. Although rodent cycles are geographically widespread and found in different rodent taxa, bird production cycles appear to be most profound in the high Arctic where lemmings dominate. We hypothesized that this may be due to arctic lemmings inducing stronger predator responses than boreal voles. We tested this hypothesis by estimating predation rates in dummy bird nests during a rodent cycle in low-Arctic tundra. Here, the rodent community consists of a spatially variable mix of one lemming (Lemmus lemmus) and two vole species (Myodes rufocanus and Microtus oeconomus) with similar abundances. In consistence with our hypothesis, lemming peak abundances predicted well crash-phase nest predation rates, whereas the vole abundances had no predictive ability. Corvids were found to be the most important nest predators. Lemmings appear to be accessible to the whole predator community which makes them particularly powerful drivers of food web dynamics.
Bioaccumulation Dynamics of Arsenate at the Base of Aquatic Food Webs.
Lopez, Adeline R; Hesterberg, Dean R; Funk, David H; Buchwalter, David B
2016-06-21
Periphyton is an important food source at the base of freshwater ecosystems that tends to bioconcentrate trace elements making them trophically available. The potential for arsenic-a trace element of particular concern due to its widespread occurrence, toxicity, and carcinogenicity-to bioconcentrate in periphyton and thus be available to benthic grazers is less well characterized. To better understand arsenate bioaccumulation dynamics in lotic food webs, we used a radiotracer approach to characterize accumulation in periphyton and subsequent trophic transfer to benthic grazers. Periphyton bioconcentrated As between 3,200-9,700-fold (dry weight) over 8 days without reaching steady state, suggesting that periphyton is a major sink for arsenate. However, As-enriched periphyton as a food source for the mayfly Neocloeon triangulifer resulted in negligible As accumulation in a full lifecycle exposure. Additional studies estimate dietary assimilation efficiency in several primary consumers ranging from 22% in the mayfly N. triangulifer to 75% in the mayfly Isonychia sp. X-ray fluorescence mapping revealed that As was predominantly associated with iron oxides in periphyton. We speculate that As adsorption to Fe in periphyton may play a role in reducing dietary bioavailability. Together, these results suggest that trophic movement of As in lotic food webs is relatively low, though species differences in bioaccumulation patterns are important.
Effects of picture amount on preference, balance, and dynamic feel of Web pages.
Chiang, Shu-Ying; Chen, Chien-Hsiung
2012-04-01
This study investigates the effects of picture amount on subjective evaluation. The experiment herein adopted two variables to define picture amount: column ratio and picture size. Six column ratios were employed: 7:93,15:85, 24:76, 33:67, 41:59, and 50:50. Five picture sizes were examined: 140 x 81, 220 x 127, 300 x 173, 380 x 219, and 460 x 266 pixels. The experiment implemented a within-subject design; 104 participants were asked to evaluate 30 web page layouts. Repeated measurements revealed that the column ratio and picture size have significant effects on preference, balance, and dynamic feel. The results indicated the most appropriate picture amount for display: column ratios of 15:85 and 24:76, and picture sizes of 220 x 127, 300 x 173, and 380 x 219. The research findings can serve as the basis for the application of design guidelines for future web page interface design. PMID:22755442
THE STELLAR SPHEROID, THE DISK, AND THE DYNAMICS OF THE COSMIC WEB
Domínguez-Tenreiro, R.; Obreja, A.; Brook, C. B.; Martínez-Serrano, F. J.; Serna, A.; Stinson, G.
2015-02-20
Models of the advanced stages of gravitational instability predict that baryons that form the stellar populations of current galaxies at z = 0 displayed a web-like structure at high z, as part of the cosmic web (CW). We explore details of these predictions using cosmological hydrodynamical simulations. When the stellar populations of the spheroid and disk components of simulated late-type galaxies are traced back separately to high zs we found CW-like structures where spheroid progenitors are more evolved than disk progenitors. The distinction between the corresponding stellar populations, as driven by their specific angular momentum content j, can be explained in terms of the CW evolution, extended to two processes occurring at lower z. First, the spheroid progenitors strongly lose j at collapse, which contrasts with the insignificant j loss of the disk progenitors. The second is related to the lack of alignment, at assembly, between the spheroid-to-be material and the already settled proto-disk, in contrast to the alignment of disk-to-be material, in some cases resulting from circumgalactic, disk-induced gravitational torques. The different final outcomes of these low-z processes have their origins in the different initial conditions driven by the CW dynamics.
MDN: A Web Portal for Network Analysis of Molecular Dynamics Simulations
Ribeiro, Andre A.S.T.; Ortiz, Vanessa
2015-01-01
We introduce a web portal that employs network theory for the analysis of trajectories from molecular dynamics simulations. Users can create protein energy networks following methodology previously introduced by our group, and can identify residues that are important for signal propagation, as well as measure the efficiency of signal propagation by calculating the network coupling. This tool, called MDN, was used to characterize signal propagation in Escherichia coli heat-shock protein 70-kDa. Two variants of this protein experimentally shown to be allosterically active exhibit higher network coupling relative to that of two inactive variants. In addition, calculations of partial coupling suggest that this quantity could be used as part of the criteria to determine pocket druggability in drug discovery studies. PMID:26143656
Nfon, Erick; Armitage, James M; Cousins, Ian T
2011-11-15
A dynamic combined fate and food web model was developed to estimate the food web transfer of chemicals in small aquatic ecosystems (i.e. ponds). A novel feature of the modeling approach is that aquatic macrophytes (submerged aquatic vegetation) were included in the fate model and were also a food item in the food web model. The paper aims to investigate whether macrophytes are effective at mitigating chemical exposure and to compare the modeling approach developed here with previous modeling approaches recommended in the European Union (EU) guideline for risk assessment of pesticides. The model was used to estimate bioaccumulation of three hypothetical chemicals of varying hydrophobicity in a pond food web comprising 11 species. Three different macrophyte biomass densities were simulated in the model experiments to determine the influence of macrophytes on fate and bioaccumulation. Macrophytes were shown to have a significant effect on the fate and food web transfer of highly hydrophobic compounds with log KOW>=5. Modeled peak concentrations in biota were highest for the scenarios with the lowest macrophyte biomass density. The distribution and food web transfer of the hypothetical compound with the lowest hydrophobicity (log KOW=3) was not affected by the inclusion of aquatic macrophytes in the pond environment. For the three different hypothetical chemicals and at all macrophyte biomass densities, the maximum predicted concentrations in the top predator in the food web model were at least one order of magnitude lower than the values estimated using methods suggested in EU guidelines. The EU guideline thus provides a highly conservative estimate of risk. In our opinion, and subject to further model evaluation, a realistic assessment of dynamic food web transfer and risk can be obtained using the model presented here. PMID:21962596
ERIC Educational Resources Information Center
O'Connor, Eileen
2013-01-01
With the advent of web 2.0 and virtual technologies and new understandings about learning within a global, networked environment, online course design has moved beyond the constraints of text readings, papers, and discussion boards. This next generation of online courses needs to dynamically and actively integrate the wide-ranging distribution of…
NASA Technical Reports Server (NTRS)
Steeman, Gerald; Connell, Christopher
2000-01-01
Many librarians may feel that dynamic Web pages are out of their reach, financially and technically. Yet we are reminded in library and Web design literature that static home pages are a thing of the past. This paper describes how librarians at the Institute for Defense Analyses (IDA) library developed a database-driven, dynamic intranet site using commercial off-the-shelf applications. Administrative issues include surveying a library users group for interest and needs evaluation; outlining metadata elements; and, committing resources from managing time to populate the database and training in Microsoft FrontPage and Web-to-database design. Technical issues covered include Microsoft Access database fundamentals, lessons learned in the Web-to-database process (including setting up Database Source Names (DSNs), redesigning queries to accommodate the Web interface, and understanding Access 97 query language vs. Standard Query Language (SQL)). This paper also offers tips on editing Active Server Pages (ASP) scripting to create desired results. A how-to annotated resource list closes out the paper.
NASA Astrophysics Data System (ADS)
Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove
2016-04-01
Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR
NASA Astrophysics Data System (ADS)
Fontaine, Thomas D.; Stewart, Donald J.
1992-03-01
A simulation model was developed to describe linkages among fish food web, nutrient cycling, and contaminant processes in the southern basin of Lake Michigan. The model was used to examine possible effects of management actions and an exotic zooplankter ( Bythotrephes) on Lake Michigan food web and contaminant dynamics. The model predicts that contaminant concentrations in salmonines will decrease by nearly 20% if Bythotrephes successfully establishes itself in the lake. The model suggests that this decrease will result from lowered transfer efficiencies within the food web and increased flux of contaminants to the hypolimnion. The model also indicates that phosphorus management will have little effect on contaminant concentrations in salmonines. The modeling exercise helped identify weaknesses in the data base (e.g., incomplete information on contaminant loadings and on the biomass, production, and ecological efficiencies of dominant organisms) that should be corrected in order to make reliable management decisions.
Visinets: a web-based pathway modeling and dynamic visualization tool.
Spychala, Jozef; Spychala, Pawel; Gomez, Shawn; Weinreb, Gabriel E
2015-01-01
In this report we describe a novel graphically oriented method for pathway modeling and a software package that allows for both modeling and visualization of biological networks in a user-friendly format. The Visinets mathematical approach is based on causal mapping (CMAP) that has been fully integrated with graphical interface. Such integration allows for fully graphical and interactive process of modeling, from building the network to simulation of the finished model. To test the performance of Visinets software we have applied it to: a) create executable EGFR-MAPK pathway model using an intuitive graphical way of modeling based on biological data, and b) translate existing ordinary differential equation (ODE) based insulin signaling model into CMAP formalism and compare the results. Our testing fully confirmed the potential of the CMAP method for broad application for pathway modeling and visualization and, additionally, showed significant advantage in computational efficiency. Furthermore, we showed that Visinets web-based graphical platform, along with standardized method of pathway analysis, may offer a novel and attractive alternative for dynamic simulation in real time for broader use in biomedical research. Since Visinets uses graphical elements with mathematical formulas hidden from the users, we believe that this tool may be particularly suited for those who are new to pathway modeling and without the in-depth modeling skills often required when using other software packages. PMID:26020230
Visinets: A Web-Based Pathway Modeling and Dynamic Visualization Tool
Spychala, Pawel; Gomez, Shawn
2015-01-01
In this report we describe a novel graphically oriented method for pathway modeling and a software package that allows for both modeling and visualization of biological networks in a user-friendly format. The Visinets mathematical approach is based on causal mapping (CMAP) that has been fully integrated with graphical interface. Such integration allows for fully graphical and interactive process of modeling, from building the network to simulation of the finished model. To test the performance of Visinets software we have applied it to: a) create executable EGFR-MAPK pathway model using an intuitive graphical way of modeling based on biological data, and b) translate existing ordinary differential equation (ODE) based insulin signaling model into CMAP formalism and compare the results. Our testing fully confirmed the potential of the CMAP method for broad application for pathway modeling and visualization and, additionally, showed significant advantage in computational efficiency. Furthermore, we showed that Visinets web-based graphical platform, along with standardized method of pathway analysis, may offer a novel and attractive alternative for dynamic simulation in real time for broader use in biomedical research. Since Visinets uses graphical elements with mathematical formulas hidden from the users, we believe that this tool may be particularly suited for those who are new to pathway modeling and without the in-depth modeling skills often required when using other software packages. PMID:26020230
NASA Technical Reports Server (NTRS)
Mizell, Carolyn Barrett; Malone, Linda
2007-01-01
The development process for a large software development project is very complex and dependent on many variables that are dynamic and interrelated. Factors such as size, productivity and defect injection rates will have substantial impact on the project in terms of cost and schedule. These factors can be affected by the intricacies of the process itself as well as human behavior because the process is very labor intensive. The complex nature of the development process can be investigated with software development process models that utilize discrete event simulation to analyze the effects of process changes. The organizational environment and its effects on the workforce can be analyzed with system dynamics that utilizes continuous simulation. Each has unique strengths and the benefits of both types can be exploited by combining a system dynamics model and a discrete event process model. This paper will demonstrate how the two types of models can be combined to investigate the impacts of human resource interactions on productivity and ultimately on cost and schedule.
GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality
NASA Astrophysics Data System (ADS)
Lush, Victoria; Nüst, Daniel; Bastin, Lucy; Masó, Joan; Lumsden, Jo
2014-05-01
We present demonstrations of the GEO label Web services and their integration into a prototype extension of the GEOSS portal (http://scgeoviqua.sapienzaconsulting.com/web/guest/geo_home), the GMU portal (http://gis.csiss.gmu.edu/GADMFS/) and a GeoNetwork catalog application (http://uncertdata.aston.ac.uk:8080/geonetwork/srv/eng/main.home). The GEO label is designed to communicate, and facilitate interrogation of, geospatial quality information with a view to supporting efficient and effective dataset selection on the basis of quality, trustworthiness and fitness for use. The GEO label which we propose was developed and evaluated according to a user-centred design (UCD) approach in order to maximise the likelihood of user acceptance once deployed. The resulting label is dynamically generated from producer metadata in ISO or FDGC format, and incorporates user feedback on dataset usage, ratings and discovered issues, in order to supply a highly informative summary of metadata completeness and quality. The label was easily incorporated into a community portal as part of the GEO Architecture Implementation Programme (AIP-6) and has been successfully integrated into a prototype extension of the GEOSS portal, as well as the popular metadata catalog and editor, GeoNetwork. The design of the GEO label was based on 4 user studies conducted to: (1) elicit initial user requirements; (2) investigate initial user views on the concept of a GEO label and its potential role; (3) evaluate prototype label visualizations; and (4) evaluate and validate physical GEO label prototypes. The results of these studies indicated that users and producers support the concept of a label with drill-down interrogation facility, combining eight geospatial data informational aspects, namely: producer profile, producer comments, lineage information, standards compliance, quality information, user feedback, expert reviews, and citations information. These are delivered as eight facets of a wheel
Sooria, P M; Jyothibabu, R; Anjusha, A; Vineetha, G; Vinita, J; Lallu, K R; Paul, M; Jagadeesan, L
2015-07-01
The paper presents the ecology and dynamics of plankton food web in the Cochin backwaters (CBW), the largest monsoonal estuary along the west coast of India. The data source is a time series measurement carried out in the CBW during the Spring Intermonsoon (March-May) and the Southwest Monsoon (June-September). The plankton food web consisting of autotrophic/heterotrophic picoplankton, autotrophic/heterotrophic nanoplankton, microzooplankton, and mesozooplankton was quantified in relation to the seasonal hydrographical settings in the CBW. The study showed that significant changes in the abundance and dynamics of plankton food web components were governed mostly by the spatial and seasonal changes in hydrography rather than short-term changes induced by tide. During the Spring Intermonsoon, all plankton consumers in the CBW was higher than the Southwest Monsoon, and the trophic interaction was more effective in upstream where there was a close coupling between all prey components and their consumers. During the Southwest Monsoon, on the other hand, the trophic interaction was more effective downstream where the abundance of all plankton consumers was significantly higher than the upstream. Based on statistical analyses NMDS/SIMPROF and RDA, we demarcated the spatial difference/mismatch in the prey and consumer distribution in the CBW and showed that a more efficient plankton food web exists in the mesohaline regions during both seasons. This suggests that a noticeable spatial shift occurs seasonally in the active plankton food web zone in the CBW; it is upstream during the Spring Intermonsoon and downstream during the Southwest Monsoon.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1995-01-01
The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDEs.
Drossel, B; Higgs, P G; McKane, A J
2001-01-01
We develop a set of equations to describe the population dynamics of many interacting species in food webs. Predator-prey interactions are nonlinear, and are based on ratio-dependent functional responses. The equations account for competition for resources between members of the same species, and between members of different species. Predators divide their total hunting/foraging effort between the available prey species according to an evolutionarily stable strategy (ESS). The ESS foraging behaviour does not correspond to the predictions of optimal foraging theory. We use the population dynamics equations in simulations of the Webworld model of evolving ecosystems. New species are added to an existing food web due to speciation events, whilst species become extinct due to coevolution and competition. We study the dynamics of species-diversity in Webworld on a macro-evolutionary time-scale. Coevolutionary interactions are strong enough to cause continuous overturn of species, in contrast to our previous Webworld simulations with simpler population dynamics. Although there are significant fluctuations in species diversity because of speciation and extinction, very large-scale extinction avalanches appear to be absent from the dynamics, and we find no evidence for self-organized criticality.
Sørensen, V; Ingvaldsen, R P; Whiting, H T
2001-07-01
The purpose of this experiment was to explore the application of co-ordination dynamics to the analysis of discrete rather than cyclical movements. Subjects, standing in a fixed position, were required to return table-tennis balls delivered to different spatial locations in the direction of a fixed target. This was achieved in condition 1 by systematically scaling, from left to right and vice versa, the 'spatial location' of the ball-identified as a control parameter. In condition 2, the control condition, the spatial location was varied randomly over the same range. The changes between regimes of the stroke co-ordination pattern, defined at two different levels, (1) organisational--forehand or backhand drive. and (2) kinematic-the distance of the bat at ball-bat contact relative to the leading edge of the table, were identified as collective variables, the values of which changed spontaneously at the transition points exposed by the control parameter. The switch between regimes was shown to be dependent upon the direction of scaling, i.e. a hysteresis effect was identified in both conditions. These findings confirm that the conceptual and methodological frameworks of co-ordination dynamics can be applied, appropriately, to the analysis of discrete movements. Moreover, it would seem that control parameter values (spatial location of the ball) do not necessarily have to be scaled in a systematic way in order to produce the required effects. PMID:11471838
Dierks, Travis; Jagannathan, Sarangapani
2012-07-01
In this paper, the Hamilton-Jacobi-Bellman equation is solved forward-in-time for the optimal control of a class of general affine nonlinear discrete-time systems without using value and policy iterations. The proposed approach, referred to as adaptive dynamic programming, uses two neural networks (NNs), to solve the infinite horizon optimal regulation control of affine nonlinear discrete-time systems in the presence of unknown internal dynamics and a known control coefficient matrix. One NN approximates the cost function and is referred to as the critic NN, while the second NN generates the control input and is referred to as the action NN. The cost function and policy are updated once at the sampling instant and thus the proposed approach can be referred to as time-based ADP. Novel update laws for tuning the unknown weights of the NNs online are derived. Lyapunov techniques are used to show that all signals are uniformly ultimately bounded and that the approximated control signal approaches the optimal control input with small bounded error over time. In the absence of disturbances, an optimal control is demonstrated. Simulation results are included to show the effectiveness of the approach. The end result is the systematic design of an optimal controller with guaranteed convergence that is suitable for hardware implementation. PMID:24807137
NASA Astrophysics Data System (ADS)
Peng, Shouyong; Urbanc, Brigita; Ding, Feng; Cruz, Luis; Buldyrev, Sergey; Dokholyan, Nikolay; Stanley, H. E.
2003-03-01
New evidence shows that oligomeric forms of Amyloid-Beta are potent neurotoxins that play a major role in neurodegeneration of Alzheimer's disease. Detailed knowledge of the structure and assembly dynamics of Amyloid-Beta is important for the development of new therapeutic strategies. Here we apply a two-atom model with Go interactions to model aggregation of Amyloid-Beta (1-40) peptides using the discrete molecular dynamics simulation. At temperatures above the transition temperature from an alpha-helical to random coil, we obtain two types of parallel beta-sheet structures, (a) a helical beta-sheet structure at a lower temperature and (b) a parallel beta-sheet structure at a higher temperature, both with inter-sheet distance of 10 A and with free edges which possibly enable further fibrillar elongation.
YouGenMap: a web platform for dynamic multi-comparative mapping and visualization of genetic maps.
Batesole, Keith; Wimalanathan, Kokulapalan; Liu, Lin; Zhang, Fan; Echt, Craig S; Liang, Chun
2014-01-01
Comparative genetic maps are used in examination of genome organization, detection of conserved gene order, and exploration of marker order variations. YouGenMap is an open-source web tool that offers dynamic comparative mapping capability of users' own genetic mapping between 2 or more map sets. Users' genetic map data and optional gene annotations are uploaded, either publically or privately, as long as they follow our template which is available in several standard file formats. Data is parsed and loaded into MySQL relational database to be displayed and compared against users' genetic maps or other public data available on YouGenMap. With the highly interactive GUIs, all public data on YouGenMap are maps available for visualization, comparison, search, filtration and download. YouGenMap web tool is available on the website (http://conifergdb.miamioh.edu/yougenmap) with the source-code repository at (http://sourceforge.net/projects/yougenmap/?source=directory).
NASA Astrophysics Data System (ADS)
Dahlke, H. E.; Easton, Z. M.; Fuka, D. R.; Rao, N. S.; Steenhuis, T. S.
2008-12-01
To optimize NPS pollution reduction efficiency of Best Management Practices (BMPs) in NY State, various models have been developed that can effectively delineate runoff and contaminant source areas in the landscape. In the Finger Lakes region with shallow, permeable soils, underlain by a restricting layer, saturation excess runoff is the dominant mechanism of nutrient transport. In watersheds characterized by these conditions, runoff originates from areas in the landscape that expand and contract seasonally and are therefore often termed as variable source areas (VSAs). Hence, consideration should be given to the spatial distribution of VSA in the watershed during the planning process of BMPs. However, in practice the applied hydrological models often require extensive expertise and effort to be used on a routine basis for BMP planning. In order to simplify the BMP planning process, we developed an interactive web-based tool for Salmon Creek watershed, NY that locates VSA and calculates their probability of saturation. The interactive web tool incorporates hydrologic, geographic and land management information in an ESRI ArcIMS framework and presents the resulting VSA maps online. For the web tool we developed a Python-based application that calculates the surface runoff potential of the 230 km2 Salmon Creek watershed on the basis of a water balance model and free precipitation and temperature data from the National Climatic Data Center. Areas of high surface runoff potential are distributed via a soil topographic index to capture VSA dynamics. Further, the application is used to calculate a one to two day prediction of the spatial extent of VSA using free web- provided weather forecasts. The web tool is designed to interactively assist planners and especially farmers in the BMP planning process on a simplified expertise level. It can be used on a daily basis to locate fields with low runoff risk that could, potentially receive more liberal nutrient applications
NASA Astrophysics Data System (ADS)
Alber, Mark; Chen, Nan; Glimm, Tilmann; Lushnikov, Pavel M.
2006-05-01
The cellular Potts model (CPM) has been used for simulating various biological phenomena such as differential adhesion, fruiting body formation of the slime mold Dictyostelium discoideum, angiogenesis, cancer invasion, chondrogenesis in embryonic vertebrate limbs, and many others. We derive a continuous limit of a discrete one-dimensional CPM with the chemotactic interactions between cells in the form of a Fokker-Planck equation for the evolution of the cell probability density function. This equation is then reduced to the classical macroscopic Keller-Segel model. In particular, all coefficients of the Keller-Segel model are obtained from parameters of the CPM. Theoretical results are verified numerically by comparing Monte Carlo simulations for the CPM with numerics for the Keller-Segel model.
NASA Astrophysics Data System (ADS)
Xin, Youming; Li, Yuxia
2016-09-01
This paper considers the consensus problem of discrete-time switched linear multi-agent systems under a fixed communication topology. An observer-based protocol with sampled data is proposed for solving such a problem. Assume that the digraph has a directed spanning tree and that all switched subsystem of each agent are stabilisable and detectable. It is shown that the proposed protocol solves the consensus problem when the sampling period is sufficiently small and the average dwell time of the switching signal is sufficiently large. Moreover, to reduce the conservatism, a sufficient condition for consensus is obtained to design the feedback gain matrices and the observer gain matrices by linear matrix inequalities, which guarantee that consensus can be achieved when the sampling period and the average dwell time are in the general case. Finally, the effectiveness of the theoretical results is demonstrated through an example.
NASA Astrophysics Data System (ADS)
Zhao, Jian-Fu
2012-07-01
Boiling in microgravity is an increasing significant subject of investigation. Motivation for the study comes not only from many potential space applications due to its high efficiency to transfer high heat flux with liquid-vapor phase change, but also from powerful platform of microgravity to reveal the mechanism of heat transfer underneath the phenomenon of boiling. In the present paper, the growth of a discrete bubble during nucleate pool boiling and heat transfer in short-term microgravity is studied experimentally utilizing the drop tower Beijing. A P-doped N-type square silicon chip with the dimensions of 10x10x0.5 mm ^{3} was used as the heater. Two 0.25-mm diameters copper wires for power supply was soldered to the side surfaces of the chip at the opposite ends. The normal resistant of the chip is 75 Ω. The chip was heated by using Joule effect. A D.C. power supply of constant current was used to input energy to the heater element. A 0.12-mm diameter, T-type thermocouple adhered on the centre of the backside of the chip was used for the measurement of wall temperature, while two other T-type thermocouples were used for the bulk liquid temperature. FC-72 was used as working fluid. The concentration of air was determined by using Henry law as 0.0046 moles gas/mole liquid. The pressure and the bulk liquid temperature in the boiling chamber were nominally 102.0 kPa and 12.0 °C, respectively. The shapes of the bubbles were recorded using a high speed camera at a speed of 250 fps with a shutter speed of 1/2000 s. Based on the image manipulation, the effective diameter of the discrete bubble is obtained. The experiments were conducted utilizing the drop tower Beijing, which can provide a short-term microgravity condition. The residual gravity of 10 ^{-2 ... -3} g _{0} can be maintained throughout the short duration of 3.6 s. To avoid the influence of natural convection in normal gravity environment, the heating switched on at the release of the drop capsule
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
2016-04-08
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
NASA Astrophysics Data System (ADS)
Wang, Anna; Dimiduk, Thomas G.; Fung, Jerome; Razavi, Sepideh; Kretzschmar, Ilona; Chaudhary, Kundan; Manoharan, Vinothan N.
2014-10-01
We present a new, high-speed technique to track the three-dimensional translation and rotation of non-spherical colloidal particles. We capture digital holograms of micrometer-scale silica rods and sub-micrometer-scale Janus particles freely diffusing in water, and then fit numerical scattering models based on the discrete dipole approximation to the measured holograms. This inverse-scattering approach allows us to extract the position and orientation of the particles as a function of time, along with static parameters including the size, shape, and refractive index. The best-fit sizes and refractive indices of both particles agree well with expected values. The technique is able to track the center of mass of the rod to a precision of 35 nm and its orientation to a precision of 1.5°, comparable to or better than the precision of other 3D diffusion measurements on non-spherical particles. Furthermore, the measured translational and rotational diffusion coefficients for the silica rods agree with hydrodynamic predictions for a spherocylinder to within 0.3%. We also show that although the Janus particles have only weak optical asymmetry, the technique can track their 2D translation and azimuthal rotation over a depth of field of several micrometers, yielding independent measurements of the effective hydrodynamic radius that agree to within 0.2%. The internal and external consistency of these measurements validate the technique. Because the discrete dipole approximation can model scattering from arbitrarily shaped particles, our technique could be used in a range of applications, including particle tracking, microrheology, and fundamental studies of colloidal self-assembly or microbial motion.
Observability of discretized partial differential equations
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
NASA Astrophysics Data System (ADS)
Calogero, Francesco
2011-08-01
The original continuous-time ''goldfish'' dynamical system is characterized by two neat formulas, the first of which provides the N Newtonian equations of motion of this dynamical system, while the second provides the solution of the corresponding initial-value problem. Several other, more general, solvable dynamical systems ''of goldfish type'' have been identified over time, featuring, in the right-hand (''forces'') side of their Newtonian equations of motion, in addition to other contributions, a velocity-dependent term such as that appearing in the right-hand side of the first formula mentioned above. The solvable character of these models allows detailed analyses of their behavior, which in some cases is quite remarkable (for instance isochronous or asymptotically isochronous). In this paper we introduce and discuss various discrete-time dynamical systems, which are as well solvable, which also display interesting behaviors (including isochrony and asymptotic isochrony) and which reduce to dynamical systems of goldfish type in the limit when the discrete-time independent variable l=0,1,2,... becomes the standard continuous-time independent variable t, 0≤t<∞.
NASA Astrophysics Data System (ADS)
Munsky, Brian
2015-03-01
MAPK signal-activated transcription plays central roles in myriad biological processes including stress adaptation responses and cell fate decisions. Recent single-cell and single-molecule experiments have advanced our ability to quantify the spatial, temporal, and stochastic fluctuations for such signals and their downstream effects on transcription regulation. This talk explores how integrating such experiments with discrete stochastic computational analyses can yield quantitative and predictive understanding of transcription regulation in both space and time. We use single-molecule mRNA fluorescence in situ hybridization (smFISH) experiments to reveal locations and numbers of multiple endogenous mRNA species in 100,000's of individual cells, at different times and under different genetic and environmental perturbations. We use finite state projection methods to precisely and efficiently compute the full joint probability distributions of these mRNA, which capture measured spatial, temporal and correlative fluctuations. By combining these experimental and computational tools with uncertainty quantification, we systematically compare models of varying complexity and select those which give optimally precise and accurate predictions in new situations. We use these tools to explore two MAPK-activated gene regulation pathways. In yeast adaptation to osmotic shock, we analyze Hog1 kinase activation of transcription for three different genes STL1 (osmotic stress), CTT1 (oxidative stress) and HSP12 (heat shock). In human osteosarcoma cells under serum induction, we analyze ERK activation of c-Fos transcription.
Liu, Nian; Marenco, Luis; Miller, Perry L.
2006-01-01
The present study described an open source application, ResourceLog, that allows website administrators to record and analyze the usage of online resources. The application includes four components: logging, data mining, administrative interface, and back-end database. The logging component is embedded in the host website. It extracts and streamlines information about the Web visitors, the scripts, and dynamic parameters from each page request. The data mining component runs as a set of scheduled tasks that identify visitors of interest, such as those who have heavily used the resources. The identified visitors will be automatically subjected to a voluntary user survey. The usage of the website content can be monitored through the administrative interface and subjected to statistical analyses. As a pilot project, ResourceLog has been implemented in SenseLab, a Web-based neuroscience database system. ResourceLog provides a robust and useful tool to aid system evaluation of a resource-driven Web application, with a focus on determining the effectiveness of data sharing in the field and with the general public. PMID:16622167
NASA Astrophysics Data System (ADS)
Charles, Alexandre; Ballard, Patrick
2016-08-01
The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this
Takada, Mayura B; Miyashita, Tadashi
2014-09-01
Landscapes in nature can be viewed as a continuum of small total habitable area with high fragmentation to widely spreading habitats. The dispersal-mediated rescue effect predominates in the former landscapes, while classical density-dependent processes generally prevail in widely spread habitats. A similar principle should be applied to populations of organisms utilizing microhabitats in limited supply. To test this hypothesis, we examined the population dynamics of a web spider, Neriene brongersmai, in 16 populations with varying degrees of microhabitat availability, and we explored whether: (i) high microhabitat availability improves survival rate during density-independent movement, while the resultant high density reduces survival rate in a density-dependent manner; and (ii) temporal population stability increases with microhabitat availability at the population level. Furthermore, we conducted two types of field experiments to verify whether high microhabitat availability actually reduces mortality associated with web-site movement. Field observations revealed that demographic change in N. brongersmai populations was affected by three factors at different stages, namely the microhabitat limitation from the early to late juvenile stages, the density dependence from the late juvenile to adult stages and the food limitation from the adult to the next early juvenile stages. In addition, there was a tendency for a positive association between population stability and microhabitat availability at the population level. A small-scale experiment, where the frequency of spider web relocation was equalized artificially, revealed that high microhabitat availability elevated the survival rate during a movement event between web-sites. The larger spatiotemporal scale experiment also revealed an improved spider survival rate following treatment with high microhabitat availability, even though spider density was kept at a relatively low level. The population dynamics of N
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
2011-01-01
Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on
SEASONAL DYNAMICS OF PCB ACCUMULATION IN A GREAT LAKES FOOD WEB. (R825151)
Seston, sediment, settling organic matter, and food web members were
collected from Grand Traverse Bay, Lake Michigan, between April 1997 and
September 1998 to examine PCB and toxaphene biomagnification. Stable isotopes of
nitrogen and carbon were analyzed in sampl...
ERIC Educational Resources Information Center
McElvaney, Jessica; Berge, Zane
2009-01-01
This paper explores how "personal web technologies" (PWTs) can be used by learners and the relationship between PWTs and connectivist learning principles. Descriptions and applications of several technologies including social bookmarking tools, personal publishing platforms, and aggregators are also included. With these tools, individuals can…
Fitting dynamical x-ray diffraction data over the World Wide Web.
Stepanov, S.; Forrest, R.; Biosciences Division; Univ. of Houston
2008-01-01
The first implementation of fitting X-ray Bragg diffraction profiles from strained multilayer crystals at a remote web-based X-ray software server is presented. The algorithms and the software solutions involved in the process are described. The suggested technology can be applied to a wide range of scientific research and has the potential to promote remote collaborations across scientific communities.
From Static to Dynamic: Choosing and Implementing a Web-Based CMS
ERIC Educational Resources Information Center
Kneale, Ruth
2008-01-01
Working as systems librarian for the Advanced Technology Solar Telescope (ATST), a project for the National Solar Observatory (NSO) based in Tucson, Arizona, a large part of the author's responsibilities involve running the web site. She began looking into content management systems (CMSs), specifically ones for website control. A CMS is generally…
Selosse, Marc-André; Martin, Francis; Bouchard, Daniel; le Tacon, François
1999-01-01
Ectomycorrhizal fungi have been introduced in forest nurseries to improve seedling growth. Outplanting of inoculated seedlings to forest plantations raises the questions about inoculant persistence and its effects on indigenous fungal populations. We previously showed (M.-A. Selosse et al. Mol. Ecol. 7:561–573, 1998) that the American strain Laccaria bicolor S238N persisted 10 years after outplanting in a French Douglas fir plantation, without introgression or selfing and without fruiting on uninoculated adjacent plots. In the present study, the relevance of those results to sympatric strains was assessed for another part of the plantation, planted in 1985 with seedlings inoculated with the French strain L. bicolor 81306 or left uninoculated. About 720 Laccaria sp. sporophores, collected from 1994 to 1997, were typed by using randomly amplified polymorphic DNA markers and PCR amplification of the mitochondrial and nuclear ribosomal DNAs. All plots were colonized by small spontaneous discrete genotypes (genets). The inoculant strain 81306 abundantly fruited beneath inoculated trees, with possible introgression in indigenous Laccaria populations but without selfing. In contrast to our previous survey of L. bicolor S238N, L. bicolor 81306 colonized a plot of uninoculated trees. Meiotic segregation analysis verified that the invading genet was strain 81306 (P < 0.00058), implying a vegetative growth of 1.1 m · year−1. This plot was also invaded in 1998 by strain S238N used to inoculate other trees of the plantation. Five other uninoculated plots were free of these inoculant strains. The fate of inoculant strains thus depends less on their geographic origin than on unknown local factors. PMID:10223992
NASA Technical Reports Server (NTRS)
Gottlieb, D.; Turkel, E.
1980-01-01
New methods are introduced for the time integration of the Fourier and Chebyshev methods of solution for dynamic differential equations. These methods are unconditionally stable, even though no matrix inversions are required. Time steps are chosen by accuracy requirements alone. For the Fourier method both leapfrog and Runge-Kutta methods are considered. For the Chebyshev method only Runge-Kutta schemes are tested. Numerical calculations are presented to verify the analytic results. Applications to the shallow water equations are presented.
Update on Small Modular Reactors Dynamic System Modeling Tool: Web Application
Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Batteh, John J; Tiller, Michael M.
2015-01-01
Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individual component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.
NASA Astrophysics Data System (ADS)
Zhu, Ling; Romanowsky, Aaron J.; van de Ven, Glenn; Long, R. J.; Watkins, Laura L.; Pota, Vincenzo; Napolitano, Nicola R.; Forbes, Duncan A.; Brodie, Jean; Foster, Caroline
2016-08-01
We construct a suite of discrete chemo-dynamical models of the giant elliptical galaxy NGC 5846. These models are a powerful tool to constrain both the mass distribution and internal dynamics of multiple tracer populations. We use Jeans models to simultaneously fit stellar kinematics within the effective radius Re, planetary nebula (PN) radial velocities out to 3 Re, and globular cluster (GC) radial velocities and colours out to 6 Re. The best-fitting model is a cored DM halo which contributes ˜10% of the total mass within 1 Re, and 67% ± 10% within 6 Re, although a cusped DM halo is also acceptable. The red GCs exhibit mild rotation with vmax/σ0 ˜ 0.3 in the region R > Re, aligned with but counter-rotating to the stars in the inner parts, while the blue GCs and PNe kinematics are consistent with no rotation. The red GCs are tangentially anisotropic, the blue GCs are mildly radially anisotropic, and the PNe vary from radially to tangentially anisotropic from the inner to the outer region. This is confirmed by general made-to-measure models. The tangential anisotropy of the red GCs in the inner regions could stem from the preferential destruction of red GCs on more radial orbits, while their outer tangential anisotropy - similar to the PNe in this region - has no good explanation. The mild radial anisotropy of the blue GCs is consistent with an accretion scenario.
NASA Astrophysics Data System (ADS)
Zhu, Ling; Romanowsky, Aaron J.; van de Ven, Glenn; Long, R. J.; Watkins, Laura L.; Pota, Vincenzo; Napolitano, Nicola R.; Forbes, Duncan A.; Brodie, Jean; Foster, Caroline
2016-11-01
We construct a suite of discrete chemo-dynamical models of the giant elliptical galaxy NGC 5846. These models are a powerful tool to constrain both the mass distribution and internal dynamics of multiple tracer populations. We use Jeans models to simultaneously fit stellar kinematics within the effective radius Re, planetary nebula (PN) radial velocities out to 3 Re, and globular cluster (GC) radial velocities and colours out to 6 Re. The best-fitting model is a cored dark matter halo which contributes ˜10 per cent of the total mass within 1 Re, and 67 per cent ± 10 per cent within 6 Re, although a cusped dark matter halo is also acceptable. The red GCs exhibit mild rotation with vmax/σ0 ˜ 0.3 in the region R > Re, aligned with but counter-rotating to the stars in the inner parts, while the blue GCs and PNe kinematics are consistent with no rotation. The red GCs are tangentially anisotropic, the blue GCs are mildly radially anisotropic, and the PNe vary from radially to tangentially anisotropic from the inner to the outer region. This is confirmed by general made-to-measure models. The tangential anisotropy of the red GCs in the inner regions could stem from the preferential destruction of red GCs on more radial orbits, while their outer tangential anisotropy - similar to the PNe in this region - has no good explanation. The mild radial anisotropy of the blue GCs is consistent with an accretion scenario.
Composition of Web Services Using Markov Decision Processes and Dynamic Programming
Uc-Cetina, Víctor; Moo-Mena, Francisco; Hernandez-Ucan, Rafael
2015-01-01
We propose a Markov decision process model for solving the Web service composition (WSC) problem. Iterative policy evaluation, value iteration, and policy iteration algorithms are used to experimentally validate our approach, with artificial and real data. The experimental results show the reliability of the model and the methods employed, with policy iteration being the best one in terms of the minimum number of iterations needed to estimate an optimal policy, with the highest Quality of Service attributes. Our experimental work shows how the solution of a WSC problem involving a set of 100,000 individual Web services and where a valid composition requiring the selection of 1,000 services from the available set can be computed in the worst case in less than 200 seconds, using an Intel Core i5 computer with 6 GB RAM. Moreover, a real WSC problem involving only 7 individual Web services requires less than 0.08 seconds, using the same computational power. Finally, a comparison with two popular reinforcement learning algorithms, sarsa and Q-learning, shows that these algorithms require one or two orders of magnitude and more time than policy iteration, iterative policy evaluation, and value iteration to handle WSC problems of the same complexity. PMID:25874247
Time-Symmetric Discretization of The Harmonic Oscillator
Antippa, Adel F.; Dubois, Daniel M.
2010-11-24
We explicitly and analytically demonstrate that simple time-symmetric discretization of the harmonic oscillator (used as a simple model of a discrete dynamical system), leads to discrete equations of motion whose solutions are perfectly stable at all time scales, and whose energy is exactly conserved. This result is important for both fundamental discrete physics, as well as for numerical analysis and simulation.
NASA Astrophysics Data System (ADS)
di, L.; Yu, G.; Chen, N.
2007-12-01
The self-adaptation concept is the central piece of the control theory widely and successfully used in engineering and military systems. Such a system contains a predictor and a measurer. The predictor takes initial condition and makes an initial prediction and the measurer then measures the state of a real world phenomenon. A feedback mechanism is built in that automatically feeds the measurement back to the predictor. The predictor takes the measurement against the prediction to calculate the prediction error and adjust its internal state based on the error. Thus, the predictor learns from the error and makes a more accurate prediction in the next step. By adopting the self-adaptation concept, we proposed the Self-adaptive Earth Predictive System (SEPS) concept for enabling the dynamic coupling between the sensor web and the Earth system models. The concept treats Earth System Models (ESM) and Earth Observations (EO) as integral components of the SEPS coupled by the SEPS framework. EO measures the Earth system state while ESM predicts the evolution of the state. A feedback mechanism processes EO measurements and feeds them into ESM during model runs or as initial conditions. A feed-forward mechanism analyzes the ESM predictions against science goals for scheduling optimized/targeted observations. The SEPS framework automates the Feedback and Feed-forward mechanisms (the FF-loop). Based on open consensus-based standards, a general SEPS framework can be developed for supporting the dynamic, interoperable coupling between ESMs and EO. Such a framework can support the plug-in-and-play capability of both ESMs and diverse sensors and data systems as long as they support the standard interfaces. This presentation discusses the SEPS concept, the service-oriented architecture (SOA) of SEPS framework, standards of choices for the framework, and the implementation. The presentation also presents examples of SEPS to demonstrate dynamic, interoperable, and live coupling of
Microbial food web dynamics along a soil chronosequence of a glacier forefield
NASA Astrophysics Data System (ADS)
Esperschütz, J.; Pérez-de-Mora, A.; Schreiner, K.; Welzl, G.; Buegger, F.; Zeyer, J.; Hagedorn, F.; Munch, J. C.; Schloter, M.
2011-02-01
Microbial food webs are critical for efficient nutrient turnover providing the basis for functional and stable ecosystems. However, the successional development of such microbial food webs and their role in "young" ecosystems is unclear. Due to a continuous glacier retreat since the middle of the 19th century, glacier forefields have expanded offering an excellent opportunity to study food web development at differently developed soils. In the present study, litter degradation and the corresponding C fluxes into microbial communities were investigated along the forefield of the Damma glacier (Switzerland). 13C-enriched litter of the pioneering plant Leucanthemopsis alpina (L.) Heywood was incorporated into the soil at sites that have been free from ice for approximately 10, 60, 100 and more than 700 years. The structure and function of microbial communities were identified by 13C analysis of phospholipid fatty acids (PLFA) and phospholipid ether lipids (PLEL). Results showed increasing microbial diversity and biomass, and enhanced proliferation of bacterial groups as ecosystem development progressed. Initially, litter decomposition proceeded faster at the more developed sites, but at the end of the experiment loss of litter mass was similar at all sites, once the more easily-degradable litter fraction was processed. As a result incorporation of 13C into microbial biomass was more evident during the first weeks of litter decomposition. 13C enrichments of both PLEL and PUFA biomarkers following litter incorporation were observed at all sites, suggesting similar microbial foodwebs at all stages of soil development. Nonetheless, the contribution of bacteria and actinomycetes to litter turnover became more pronounced as soil age increased in detriment of archaea, fungi and protozoa, more prominent in recently deglaciated terrain.
NASA Astrophysics Data System (ADS)
Christaki, U.; Lefèvre, D.; Georges, C.; Colombet, J.; Catala, P.; Courties, C.; Sime-Ngando, T.; Blain, S.; Obernosterer, I.
2014-12-01
Microbial food web dynamics were determined during the onset of several spring phytoplankton blooms induced by natural iron fertilization off Kerguelen Island in the Southern Ocean (KEOPS2). The abundances of heterotrophic bacteria and heterotrophic nanoflagellates, bacterial heterotrophic production, bacterial respiration, and bacterial growth efficiency, were consistently higher in surface waters of the iron-fertilized sites than at the reference site in HNLC (high nutrient low chlorophyll) waters. The abundance of virus-like particles remained unchanged, but viral production increased by a factor of 6 in iron-fertilized waters. Bacterial heterotrophic production was significantly related to heterotrophic nanoflagellate abundance and viral production across all sites, with bacterial production explaining about 70 and 85%, respectively, of the variance of each in the mixed layer (ML). Estimated rates of grazing and viral lysis, however, indicated that heterotrophic nanoflagellates accounted for a substantially higher loss of bacterial production (50%) than viruses (11%). Combining these results with rates of primary production and export determined for the study area, a budget for the flow of carbon through the microbial food web and higher trophic levels during the early (KEOPS2) and the late phase (KEOPS1) of the Kerguelen bloom is provided.
NASA Astrophysics Data System (ADS)
Christaki, U.; Lefèvre, D.; Georges, C.; Colombet, J.; Catala, P.; Courties, C.; Sime-Ngando, T.; Blain, S.; Obernosterer, I.
2014-05-01
Microbial food web dynamics were determined during the onset of several spring phytoplankton blooms induced by natural iron fertilization off Kerguelen Island in the Southern Ocean (KEOPS2). The abundances of heterotrophic bacteria and heterotrophic nanoflagellates, bacterial heterotrophic production, bacterial respiration, and bacterial growth efficiency, were consistently higher in surface waters of the iron-fertilized sites than at the reference site in HNLC (high nutrient low chlorophyll) waters. The abundance of viral like particles remained unchanged, but viral production increased by a factor of 6 in iron-fertilized waters. Bacterial heterotrophic production was significantly related to heterotrophic nanoflagellate abundance and viral production across all sites, with bacterial production explaining about 70 and 85%, respectively, of the variance of each in the mixed layer (ML). Estimated rates of grazing and viral lysis, however, indicated that heterotrophic nanoflagellates accounted for a substantially higher loss of bacterial production (50%) than viruses (11%). Combining these results with rates of primary production and export determined for the study area, a budget for the flow of carbon through the microbial food web and higher levels during the early (KEOPS2) and the late phase (KEOPS1) of the Kerguelen bloom is provided.
YouGenMap: a web platform for dynamic multi-comparative mapping and visualization of genetic maps.
Batesole, Keith; Wimalanathan, Kokulapalan; Liu, Lin; Zhang, Fan; Echt, Craig S; Liang, Chun
2014-01-01
Comparative genetic maps are used in examination of genome organization, detection of conserved gene order, and exploration of marker order variations. YouGenMap is an open-source web tool that offers dynamic comparative mapping capability of users' own genetic mapping between 2 or more map sets. Users' genetic map data and optional gene annotations are uploaded, either publically or privately, as long as they follow our template which is available in several standard file formats. Data is parsed and loaded into MySQL relational database to be displayed and compared against users' genetic maps or other public data available on YouGenMap. With the highly interactive GUIs, all public data on YouGenMap are maps available for visualization, comparison, search, filtration and download. YouGenMap web tool is available on the website (http://conifergdb.miamioh.edu/yougenmap) with the source-code repository at (http://sourceforge.net/projects/yougenmap/?source=directory). PMID:25009553
Using qualitative eye-tracking data to inform audio presentation of dynamic Web content
NASA Astrophysics Data System (ADS)
Brown, Andy; Jay, Caroline; Harper, Simon
2010-12-01
Presenting Web content through screen readers can be a challenging task, but this is the only means of access for many blind and visually impaired users. The difficulties are more acute when the information forms part of an interactive process, such as the increasingly common "Web 2.0 applications". If the process is to be completed correctly and efficiently it is vital that appropriate information is given to the user at an appropriate time. Designing a non-visual interface that achieves these aims is a non-trivial task, for which several approaches are possible. The one taken here is to use eye-tracking to understand how sighted users interact with the content, and to gain insight into how they benefit from the information, then apply this understanding to design a non-visual user interface. This paper describes how this technique was applied to develop audio interfaces for two common types of interaction-auto-suggest lists and pop-up calendars. Although the resulting interfaces were quite different, one largely mirroring the visual representation and the other not, evaluations showed that the approach was effective, with both audio implementations effective and popular with participants.
medplot: a web application for dynamic summary and analysis of longitudinal medical data based on R.
Ahlin, Črt; Stupica, Daša; Strle, Franc; Lusa, Lara
2015-01-01
In biomedical studies the patients are often evaluated numerous times and a large number of variables are recorded at each time-point. Data entry and manipulation of longitudinal data can be performed using spreadsheet programs, which usually include some data plotting and analysis capabilities and are straightforward to use, but are not designed for the analyses of complex longitudinal data. Specialized statistical software offers more flexibility and capabilities, but first time users with biomedical background often find its use difficult. We developed medplot, an interactive web application that simplifies the exploration and analysis of longitudinal data. The application can be used to summarize, visualize and analyze data by researchers that are not familiar with statistical programs and whose knowledge of statistics is limited. The summary tools produce publication-ready tables and graphs. The analysis tools include features that are seldom available in spreadsheet software, such as correction for multiple testing, repeated measurement analyses and flexible non-linear modeling of the association of the numerical variables with the outcome. medplot is freely available and open source, it has an intuitive graphical user interface (GUI), it is accessible via the Internet and can be used within a web browser, without the need for installing and maintaining programs locally on the user's computer. This paper describes the application and gives detailed examples describing how to use the application on real data from a clinical study including patients with early Lyme borreliosis.
Using web-based training to enhance perceptual-cognitive skills in complex dynamic offside events.
Put, Koen; Wagemans, Johan; Spitz, Jochim; Williams, A Mark; Helsen, Werner F
2016-01-01
In association football, the difficulty in making offside decisions depends on both perceptual and cognitive processes. Therefore, the objectives of the present study were to enhance the decision-making skills of assistant referees by further developing their ability to (1) time slice the incoming information flow into series of isolated time frames during an ongoing offside situation and (2) use this information to mentally read off the spatial positions of the key-role players. Training (n = 10) and control groups (n = 10) were exposed to a pre- and post-test, consisting of an offside decision-making and frame recognition test. In the latter, assistant referees were asked to indicate which of five photos best represented the spatial position of the defender and attacker at the moment of the pass. Only the training group received 12 web-based offside training sessions. First, the training group improved in mentally freezing, holding and scanning the mental picture of the offside situation in short-term memory from pre- to post-test, as evidenced by an increased recognition accuracy. Second, the improvement in recognition accuracy resulted in enhanced performance on the offside decision-making task. The benefits of web-based training are highlighted.
An indicator-based evaluation of Black Sea food web dynamics during 1960-2000
NASA Astrophysics Data System (ADS)
Akoglu, Ekin; Salihoglu, Baris; Libralato, Simone; Oguz, Temel; Solidoro, Cosimo
2014-06-01
Four Ecopath mass-balance models were implemented for evaluating the structure and function of the Black Sea ecosystem using several ecological indicators during four distinctive periods (1960s, 1980-1987, 1988-1994 and 1995-2000). The results exemplify how the Black Sea ecosystem structure started to change after the 1960s as a result of a series of trophic transformations, i.e., shifts in the energy flow pathways through the food web. These transformations were initiated by anthropogenic factors, such as eutrophication and overfishing, that led to the transfer of large quantities of energy to the trophic dead-end species, which had no natural predators in the ecosystem, i.e., jellyfish whose biomass increased from 0.03 g C m- 2 in 1960-1969 to 0.933 g C m- 2 in 1988-1994. Concurrently, an alternative short pathway for energy transfer was formed that converted significant amounts of system production back to detritus. This decreased the transfer efficiency of energy flow from the primary producers to the higher trophic levels from 9% in the 1960s to 3% between 1980 and 1987. We conclude that the anchovy stock collapse and successful establishment of the alien comb-jelly Mnemiopsis in 1989 were rooted in the trophic interactions in the food web, all of which were exacerbated because of the long-term establishment of a combination of anthropogenic stressors.
NASA Astrophysics Data System (ADS)
Consoli, Antonio; Sanchez, Jorge R.; Horche, Paloma R.; Esquivias, Ignacio
2014-07-01
presented. The proposed tool is addressed to the students of optical communication courses, encouraging self consolidation of the subjects learned in lectures. The semiconductor laser model is based on the well known rate equations for the carrier density, photon density and optical phase. The direct modulation of the laser is considered with input parameters which can be selected by the user. Different options for the waveform, amplitude and frequency of the injected current are available, together with the bias point. Simulation results are plotted for carrier density and output power versus time. Instantaneous frequency variations of the laser output are numerically shifted to the audible frequency range and sent to the computer loudspeakers. This results in an intuitive description of the "chirp" phenomenon due to amplitude-phase coupling, typical of directly modulated semiconductor lasers. In this way, the student can actually listen to the time resolved spectral content of the laser output. By changing the laser parameters and/or the modulation parameters, consequent variation of the laser output can be appreciated in intuitive manner. The proposed educational tool has been previously implemented by the same authors with locally executable software. In the present manuscript, we extend our previous work to a web based platform, offering improved distribution and allowing its use to the wide audience of the web.
Using web-based training to enhance perceptual-cognitive skills in complex dynamic offside events.
Put, Koen; Wagemans, Johan; Spitz, Jochim; Williams, A Mark; Helsen, Werner F
2016-01-01
In association football, the difficulty in making offside decisions depends on both perceptual and cognitive processes. Therefore, the objectives of the present study were to enhance the decision-making skills of assistant referees by further developing their ability to (1) time slice the incoming information flow into series of isolated time frames during an ongoing offside situation and (2) use this information to mentally read off the spatial positions of the key-role players. Training (n = 10) and control groups (n = 10) were exposed to a pre- and post-test, consisting of an offside decision-making and frame recognition test. In the latter, assistant referees were asked to indicate which of five photos best represented the spatial position of the defender and attacker at the moment of the pass. Only the training group received 12 web-based offside training sessions. First, the training group improved in mentally freezing, holding and scanning the mental picture of the offside situation in short-term memory from pre- to post-test, as evidenced by an increased recognition accuracy. Second, the improvement in recognition accuracy resulted in enhanced performance on the offside decision-making task. The benefits of web-based training are highlighted. PMID:25972094
A Dynamic Bridge for Data Sharing on e-Science Grid Implementing Web 2.0 Service
NASA Astrophysics Data System (ADS)
Jung, Im Y.; Yeom, Heon Y.
This paper proposes a dynamic bridge for e-Science Grid, implementing Web 2.0 service in order to share experimental data effectively.An e-Science Grid has been established as a cyber laboratory for the users with a special research purpose on science. As an open space, e-Science Grid is expected to stimulate the collaborative researches and the cross domain ones. These research trends need a more efficient and convenient data service satisfying the science researchers. A dynamic bridge designed based on HVEM DataGrid, satisfies the users' requirements for the data sharing on e-Science Grid effectively. It supports a data tagging service in order for HVEM DataGrid to be utilized more extensively without any modification of the existing Grid architecture or services. Moreover, it can be adopted and deleted easily without any effect to the legacy Grid. With the legacyinterface to access data in e-Science Grid, the data tags endow the Grid with the flexibility for data access. This paper evaluates the usefulness of the dynamic bridge by analyzing its overhead and performance.
Coolbaugh, Crystal L; Raymond Jr, Stephen C
2015-01-01
Background Computer tailored, Web-based interventions have emerged as an effective approach to promote physical activity. Existing programs, however, do not adjust activities according to the participant’s compliance or physiologic adaptations, which may increase risk of injury and program attrition in sedentary adults. To address this limitation, objective activity monitor (AM) and heart rate data could be used to guide personalization of physical activity, but improved Web-based frameworks are needed to test such interventions. Objective The objective of this study is to (1) develop a personalized physical activity prescription (PPAP) app that combines dynamic Web-based guidance with multi-sensor AM data to promote physical activity and (2) to assess the feasibility of using this system in the field. Methods The PPAP app was constructed using an open-source software platform and a custom, multi-sensor AM capable of accurately measuring heart rate and physical activity. A novel algorithm was written to use a participant’s compliance and physiologic response to aerobic training (ie, changes in daily resting heart rate) recorded by the AM to create daily, personalized physical activity prescriptions. In addition, the PPAP app was designed to (1) manage the transfer of files from the AM to data processing software and a relational database, (2) provide interactive visualization features such as calendars and training tables to encourage physical activity, and (3) enable remote administrative monitoring of data quality and participant compliance. A 12-week feasibility study was performed to assess the utility and limitations of the PPAP app used by sedentary adults in the field. Changes in physical activity level and resting heart rate were monitored throughout the intervention. Results The PPAP app successfully created daily, personalized physical activity prescriptions and an interactive Web environment to guide and promote physical activity by the participants
Christobel, M; Tamil Selvi, S; Benedict, Shajulin
2015-01-01
One of the most significant and the topmost parameters in the real world computing environment is energy. Minimizing energy imposes benefits like reduction in power consumption, decrease in cooling rates of the computing processors, provision of a green environment, and so forth. In fact, computation time and energy are directly proportional to each other and the minimization of computation time may yield a cost effective energy consumption. Proficient scheduling of Bag-of-Tasks in the grid environment ravages in minimum computation time. In this paper, a novel discrete particle swarm optimization (DPSO) algorithm based on the particle's best position (pbDPSO) and global best position (gbDPSO) is adopted to find the global optimal solution for higher dimensions. This novel DPSO yields better schedule with minimum computation time compared to Earliest Deadline First (EDF) and First Come First Serve (FCFS) algorithms which comparably reduces energy. Other scheduling parameters, such as job completion ratio and lateness, are also calculated and compared with EDF and FCFS. An energy improvement of up to 28% was obtained when Makespan Conservative Energy Reduction (MCER) and Dynamic Voltage Scaling (DVS) were used in the proposed DPSO algorithm. PMID:26075296
Christobel, M.; Tamil Selvi, S.; Benedict, Shajulin
2015-01-01
One of the most significant and the topmost parameters in the real world computing environment is energy. Minimizing energy imposes benefits like reduction in power consumption, decrease in cooling rates of the computing processors, provision of a green environment, and so forth. In fact, computation time and energy are directly proportional to each other and the minimization of computation time may yield a cost effective energy consumption. Proficient scheduling of Bag-of-Tasks in the grid environment ravages in minimum computation time. In this paper, a novel discrete particle swarm optimization (DPSO) algorithm based on the particle's best position (pbDPSO) and global best position (gbDPSO) is adopted to find the global optimal solution for higher dimensions. This novel DPSO yields better schedule with minimum computation time compared to Earliest Deadline First (EDF) and First Come First Serve (FCFS) algorithms which comparably reduces energy. Other scheduling parameters, such as job completion ratio and lateness, are also calculated and compared with EDF and FCFS. An energy improvement of up to 28% was obtained when Makespan Conservative Energy Reduction (MCER) and Dynamic Voltage Scaling (DVS) were used in the proposed DPSO algorithm. PMID:26075296
NASA Astrophysics Data System (ADS)
Ouyanga, Chaojun; Lia, Zhenhuan; Huanga, Minsheng; Hua, Lili; Houa, Chuantao
2009-11-01
2D discrete dislocation dynamic modeling of compressed micro-pillars attached on a huge base is executed to study the size-dependent microplastic behavior of micro-pillars and the corresponding size effect. In addition to the conventional dimensional parameters of the micro-pillar such as the micro-pillar size and the height-to-width ratio, the micro-pillar taper angle and the dislocation slip plane orientation angle in the micro-pillar are also considered to address the size effect and its rich underlying mechanism. Computational results show that there are at least two operating mechanisms responsible for the plastic behavior of micro-pillars. One is associated with the dislocation free slip-out from the micro-pillar sidewall; the other is related to the dislocation pile-up at the base and the top end of the pillar. The overall mechanism governing the size effect of the micro-pillar rests with multi-factors, including the micro-pillar size, the height-to-width ratio, the micro-pillar taper and the slip plane orientation angle; however, whether the "free slip band" exists or not is the most important denotation. The well-known Schmid law still validates in the slender micro-pillars due to existence of the free slip band, whereas it may fail in the podgier micro-pillars due to absence of the free slip band; as a result, a complicated even "reverse" size effect appears.
Dynamic taxonomies applied to a web-based relational database for geo-hydrological risk mitigation
NASA Astrophysics Data System (ADS)
Sacco, G. M.; Nigrelli, G.; Bosio, A.; Chiarle, M.; Luino, F.
2012-02-01
In its 40 years of activity, the Research Institute for Geo-hydrological Protection of the Italian National Research Council has amassed a vast and varied collection of historical documentation on landslides, muddy-debris flows, and floods in northern Italy from 1600 to the present. Since 2008, the archive resources have been maintained through a relational database management system. The database is used for routine study and research purposes as well as for providing support during geo-hydrological emergencies, when data need to be quickly and accurately retrieved. Retrieval speed and accuracy are the main objectives of an implementation based on a dynamic taxonomies model. Dynamic taxonomies are a general knowledge management model for configuring complex, heterogeneous information bases that support exploratory searching. At each stage of the process, the user can explore or browse the database in a guided yet unconstrained way by selecting the alternatives suggested for further refining the search. Dynamic taxonomies have been successfully applied to such diverse and apparently unrelated domains as e-commerce and medical diagnosis. Here, we describe the application of dynamic taxonomies to our database and compare it to traditional relational database query methods. The dynamic taxonomy interface, essentially a point-and-click interface, is considerably faster and less error-prone than traditional form-based query interfaces that require the user to remember and type in the "right" search keywords. Finally, dynamic taxonomy users have confirmed that one of the principal benefits of this approach is the confidence of having considered all the relevant information. Dynamic taxonomies and relational databases work in synergy to provide fast and precise searching: one of the most important factors in timely response to emergencies.
Food web dynamics in the Scotia Sea in summer: A stable isotope study
NASA Astrophysics Data System (ADS)
Stowasser, G.; Atkinson, A.; McGill, R. A. R.; Phillips, R. A.; Collins, M. A.; Pond, D. W.
2012-01-01
The pelagic food web of the Scotia Sea was studied by analysing natural abundances of nitrogen and carbon stable isotopes of primary producers and pelagic consumers, sampled from the seasonal ice edge in the south to the Antarctic Polar Front in the north. The analysis covered, within a single mid-summer period, particulate organic matter (POM) and 38 taxa, ranging from suspension feeding copepods and salps to omnivorous euphausiids, pelagic fish and higher, land-based predators including fur seals, penguins and flying birds. Spatial variation in δ 15N of POM correlated well with nutrient availability and primary productivity. Latitudinal differences in δ 13C of POM were closely linked to variations in temperature, nutrients and productivity depending on the frontal region sampled. This translated to equivalent (although smaller) regional δ 13C differences among higher trophic levels. The trophic positions of species based on isotope values broadly agreed with previously published dietary data with three important exceptions. First, the carnivorous amphipod Themisto gaudichaudii had anomalously low δ 15N values. Second, Euphausia superba had δ 15N values that were also surprisingly low, considering the abundant literature suggesting its omnivory. Third, the copepod Rhincalanus gigas, considered a suspension feeder, had unexpectedly high δ 15N values rather more in keeping with omnivorous feeding. The consumer δ 15N values ranged from 1.2‰ (min.) measured in Salpa thompsoni (designated here as trophic level (TL) 2 across all regions) to 15.2‰ (max.) measured in white-chinned petrels ( Procellaria aequinoctialis, calculated as TL5 relative to the TL2 of salps). Excluding seabirds, the resulting food chain length of 3.7 TL (above POM at TL1) was lower than in most other Southern Ocean and temperate marine pelagic ecosystems. The majority (60%) of vertebrate predators occupied only 1-1.5 trophic levels above the herbivorous suspension feeders such as krill
Toxaphene congeners in the Canadian Great Lakes basin: temporal and spatial food web dynamics.
Whittle, D M; Kiriluk, R M; Carswell, A A; Keir, M J; MacEachen, D C
2000-01-01
Samples of a top predator fish species, lake trout (Salvelinus namaycush) and predominant forage species including smelt (Osmerus mordax), alewife (Alosa pseudoharengus), slimy sculpin (Cottus cognatus), deepwater sculpin (Myoxocephalus quadricornis) and lake herring (Coregonus artedii) were, collected from throughout 4 of the 5 Great Lakes (Superior, Huron, Erie and Ontario) (Fig. 1). Lake trout were also collected from three isolated lake systems (Lakes Nipigon, Simcoe and Opeongo), all located within the basin. All the samples were analysed for body burdens of total toxaphene and 22 toxaphene congeners. In addition, from each of the Great Lakes sites samples of major invertebrate dietary items, which included Mysis relicta, Diporeia hoyi and plankton, were similarly analysed. Whole lake trout samples, archived at -80 degrees C, were reanalysed to determine historical trends of toxaphene congeners plus carbon and nitrogen stable isotope signatures. The Lake Superior food web consistently had the highest levels of total toxaphene of all the Great Lakes monitored. The primary source of toxaphene to Lake Superior has been identified as atmospheric transport and deposition from sites in the southern US, Mexico and Central America (Hoff, R.M., Strachan, W.M.J., Sweet, C.W., Chan, C.H., Shackelton, M., Bidleman, T.F., Brice, K.A., Burnison, D.A., Cussion, S., Gatz, D.F., Harlin, K., Schroeder, W.H., 1996. Atmospheric deposition of toxic chemicals to the Great Lakes: A review of data through 1994. Atmospheric Environ. 30, 3505-3527). Of the offsystem lakes surveyed. Lake Nipigon, situated due north of Lake Superior and with a Lake Basin area of about 6% of Lake Superior (Hendendorf, C.E., 1982. J. Great Lakes Res. 8(3), 379-412) had total toxaphene levels in lake trout equivalent to about 50% of those found in lake trout from Lake Superior. Temporal trend toxaphene congener analysis was conducted on archived whole fish samples collected over the period 1980 through to
Coupling News Sentiment with Web Browsing Data Improves Prediction of Intra-Day Price Dynamics.
Ranco, Gabriele; Bordino, Ilaria; Bormetti, Giacomo; Caldarelli, Guido; Lillo, Fabrizio; Treccani, Michele
2016-01-01
The new digital revolution of big data is deeply changing our capability of understanding society and forecasting the outcome of many social and economic systems. Unfortunately, information can be very heterogeneous in the importance, relevance, and surprise it conveys, affecting severely the predictive power of semantic and statistical methods. Here we show that the aggregation of web users' behavior can be elicited to overcome this problem in a hard to predict complex system, namely the financial market. Specifically, our in-sample analysis shows that the combined use of sentiment analysis of news and browsing activity of users of Yahoo! Finance greatly helps forecasting intra-day and daily price changes of a set of 100 highly capitalized US stocks traded in the period 2012-2013. Sentiment analysis or browsing activity when taken alone have very small or no predictive power. Conversely, when considering a news signal where in a given time interval we compute the average sentiment of the clicked news, weighted by the number of clicks, we show that for nearly 50% of the companies such signal Granger-causes hourly price returns. Our result indicates a "wisdom-of-the-crowd" effect that allows to exploit users' activity to identify and weigh properly the relevant and surprising news, enhancing considerably the forecasting power of the news sentiment.
Coupling News Sentiment with Web Browsing Data Improves Prediction of Intra-Day Price Dynamics
Ranco, Gabriele; Bordino, Ilaria; Bormetti, Giacomo; Caldarelli, Guido; Lillo, Fabrizio; Treccani, Michele
2016-01-01
The new digital revolution of big data is deeply changing our capability of understanding society and forecasting the outcome of many social and economic systems. Unfortunately, information can be very heterogeneous in the importance, relevance, and surprise it conveys, affecting severely the predictive power of semantic and statistical methods. Here we show that the aggregation of web users’ behavior can be elicited to overcome this problem in a hard to predict complex system, namely the financial market. Specifically, our in-sample analysis shows that the combined use of sentiment analysis of news and browsing activity of users of Yahoo! Finance greatly helps forecasting intra-day and daily price changes of a set of 100 highly capitalized US stocks traded in the period 2012–2013. Sentiment analysis or browsing activity when taken alone have very small or no predictive power. Conversely, when considering a news signal where in a given time interval we compute the average sentiment of the clicked news, weighted by the number of clicks, we show that for nearly 50% of the companies such signal Granger-causes hourly price returns. Our result indicates a “wisdom-of-the-crowd” effect that allows to exploit users’ activity to identify and weigh properly the relevant and surprising news, enhancing considerably the forecasting power of the news sentiment. PMID:26808833
Coupling News Sentiment with Web Browsing Data Improves Prediction of Intra-Day Price Dynamics.
Ranco, Gabriele; Bordino, Ilaria; Bormetti, Giacomo; Caldarelli, Guido; Lillo, Fabrizio; Treccani, Michele
2016-01-01
The new digital revolution of big data is deeply changing our capability of understanding society and forecasting the outcome of many social and economic systems. Unfortunately, information can be very heterogeneous in the importance, relevance, and surprise it conveys, affecting severely the predictive power of semantic and statistical methods. Here we show that the aggregation of web users' behavior can be elicited to overcome this problem in a hard to predict complex system, namely the financial market. Specifically, our in-sample analysis shows that the combined use of sentiment analysis of news and browsing activity of users of Yahoo! Finance greatly helps forecasting intra-day and daily price changes of a set of 100 highly capitalized US stocks traded in the period 2012-2013. Sentiment analysis or browsing activity when taken alone have very small or no predictive power. Conversely, when considering a news signal where in a given time interval we compute the average sentiment of the clicked news, weighted by the number of clicks, we show that for nearly 50% of the companies such signal Granger-causes hourly price returns. Our result indicates a "wisdom-of-the-crowd" effect that allows to exploit users' activity to identify and weigh properly the relevant and surprising news, enhancing considerably the forecasting power of the news sentiment. PMID:26808833
Food-web dynamics and trophic-level interactions in a multispecies community of freshwater unionids
Nichols, S.J.; Garling, D.
2000-01-01
We compared feeding habits and trophic-level relationships of unionid species in a detritus-dominated river and an alga-dominated lake using biochemical analyses, gut contents, and stable-isotope ratios. The δ13C ratios for algae and other food-web components show that all unionids from both the river and the lake used bacterial carbons, not algal carbons, as their main dietary source, in spite of positive selection and concentration of diatoms and green algae from the water column in the gut and mantle cavity. Algae did provide key nutrients such as vitamins A and D and phytosterols that were bioaccumulated in the tissues of all species. The δ15N ratios for the multispecies unionid community in the Huron River indicated some differences in nitrogen enrichment between species, the greatest enrichment being found in Pyganadon grandis. These δ15N ratios indicate that unionids may not always feed as primary consumers or omnivores. Stable-isotope data were critical for delineating diets and trophic-level interactions of this group of filter-feeders. Further refinements in identifying bacterial and picoplankton components of the fine particulate organic matter are needed to complete our understanding of resource partitioning between multispecies unionid populations.
Meshkat, Nicolette; Kuo, Christine Er-zhen; DiStefano, Joseph
2014-01-01
Parameter identifiability problems can plague biomodelers when they reach the quantification stage of development, even for relatively simple models. Structural identifiability (SI) is the primary question, usually understood as knowing which of P unknown biomodel parameters p1,…, pi,…, pP are-and which are not-quantifiable in principle from particular input-output (I-O) biodata. It is not widely appreciated that the same database also can provide quantitative information about the structurally unidentifiable (not quantifiable) subset, in the form of explicit algebraic relationships among unidentifiable pi. Importantly, this is a first step toward finding what else is needed to quantify particular unidentifiable parameters of interest from new I-O experiments. We further develop, implement and exemplify novel algorithms that address and solve the SI problem for a practical class of ordinary differential equation (ODE) systems biology models, as a user-friendly and universally-accessible web application (app)-COMBOS. Users provide the structural ODE and output measurement models in one of two standard forms to a remote server via their web browser. COMBOS provides a list of uniquely and non-uniquely SI model parameters, and-importantly-the combinations of parameters not individually SI. If non-uniquely SI, it also provides the maximum number of different solutions, with important practical implications. The behind-the-scenes symbolic differential algebra algorithms are based on computing Gröbner bases of model attributes established after some algebraic transformations, using the computer-algebra system Maxima. COMBOS was developed for facile instructional and research use as well as modeling. We use it in the classroom to illustrate SI analysis; and have simplified complex models of tumor suppressor p53 and hormone regulation, based on explicit computation of parameter combinations. It's illustrated and validated here for models of moderate complexity, with
Yifat, Jonathan; Gannot, Israel
2015-03-01
Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method.
Yifat, Jonathan; Gannot, Israel
2015-03-01
Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method. PMID:24462603
Lewis, Paul A.; Cunningham, Joan E.
2016-01-01
Background In the context of breast cancer, axillary web syndrome (AWS), also called lymphatic cording, typically presents in the weeks after axillary surgery. This painful condition, likely lymphofibrotic in origin, restricts upper extremity range of motion (ROM). There is no established treatment, although physical therapy and other approaches have been used to variable effect. This report describes treatment of a female client with AWS, who had recently undergone a unilateral simple mastectomy with sentinel node biopsy plus axillary dissection. Methods The client presented with pain upon movement (self-reported as 5 on the 0–10 Oxford Pain Scale), visible cording and restricted use of the ipsilateral upper extremity. Clinical assessment included determining the extent of AWS cording (taut, from axilla to wrist) and measuring glenohumeral joint ROM (140° flexion by goniometer). A therapeutic massage with movement protocol, termed dynamic angular petrissage, was administered over two sessions: Swedish massage combined with dynamically taking the limb through all possible angles of movement (passive ROM), controlling stretch and tension while simultaneously and segmentally applying petrissage and non-petrissage techniques to the underlying soft tissue. Careful attention was taken to not break the cord. Home care consisted of prescribed exercises performed by the patient. Results After Session One, pain was reduced (to 0/10), ROM improved (to 170° flexion), and cording was visibly reduced. After Session Two the cord was residually apparent only on hyperextension, with no ROM restrictions in glenohumeral joint flexion. Follow-up at three months revealed absence of visual or palpable evidence of cording, unrestricted glenohumeral joint ROM, and absence of movement-associated pain. Conclusion The signs and symptoms of AWS were quickly and effectively eliminated, without causing any pain or discomfort to the client. We propose that dynamic angular petrissage may be
Comparing the Discrete and Continuous Logistic Models
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2008-01-01
The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)
NASA Astrophysics Data System (ADS)
Reitz, Meredith; Stark, Colin; Hung, Chi-Yao; Smith, Breannan; Grinspin, Eitan; Capart, Herve; Li, Liming; Crone, Timothy; Hsu, Leslie; Ling, Hoe
2014-05-01
A complete theoretical understanding of geophysical granular flow is essential to the reliable assessment of landslide and debris flow hazard and for the design of mitigation strategies, but several key challenges remain. Perhaps the most basic is a general treatment of the processes of internal energy dissipation, which dictate the runout velocity and the shape and scale of the affected area. Currently, dissipation is best described by macroscopic, empirical friction coefficients only indirectly related to the grain-scale physics. Another challenge is describing the forces exerted at the boundaries of the flow, which dictate the entrainment of further debris and the erosion of cohesive surfaces. While the granular effects on these boundary forces have been shown to be large compared to predictions from continuum approximations, the link between granular effects and erosion or entrainment rates has not been settled. Here we present preliminary results of a multi-disciplinary study aimed at improving our understanding of granular flow energy dissipation and boundary forces, through an effort to connect grain-scale physics to macroscopic behaviors. Insights into grain-scale force distributions and energy dissipation mechanisms are derived from discrete contact-dynamics simulations. Macroscopic erosion and flow behaviors are documented from a series of granular flow experiments, in which a rotating drum half-filled with grains is placed within a centrifuge payload, in order to drive effective gravity levels up to ~100g and approach the forces present in natural systems. A continuum equation is used to characterize the flowing layer depth and velocity resulting from the force balance between the down-slope pull of gravity and the friction at the walls. In this presentation we will focus on the effect of granular-specific physics such as force chain networks and grain-grain collisions, derived from the contact dynamics simulations. We will describe our efforts to
Coalson, Rob D; Cheng, Mary Hongying
2010-01-28
A discrete-state model of chloride ion motion in a ClC chloride channel is constructed, following a previously developed multi-ion continuous space model of the same system (Cheng, M. H.; Mamonov, A. B.; Dukes, J. W.; Coalson, R. D. J. Phys. Chem. B 2007, 111, 5956) that included a simplistic representation of the fast gate in this channel. The reducibility of the many-body continuous space to the eight discrete-state model considered in the present work is examined in detail by performing three-dimensional Brownian dynamics simulations of each allowed state-to-state transition in order to extract the appropriate rate constant for this process, and then inserting the pairwise rate constants thereby obtained into an appropriate set of kinetic master equations. Experimental properties of interest, including the rate of Cl(-) ion permeation through the open channel and the average rate of closing of the fast gate as a function of bulk Cl(-) ion concentrations in the intracellular and extracellular electrolyte reservoirs are computed. Good agreement is found between the results obtained via the eight discrete-state model versus the multi-ion continuous space model, thereby encouraging continued development of the discrete-state model to include more complex behaviors observed experimentally in these channels.
Dynamical integration of a Markovian web: a first passage time approach.
Boulougouris, Georgios C; Theodorou, Doros N
2007-08-28
In this work we address the dynamics of Markovian systems by tracking the evolution of the probability distribution, utilizing mean first passage time theory to augment the set of states considered. The method is validated on a lattice system and is applied, in conjunction with landscape analysis (saddle point searches) and multidimensional transition-state theory, to an atomistic model of glassy atactic polystyrene, in order to follow its time evolution over more than ten orders of magnitude on the time scale, from less than 10(-15) up to 10(-5) s. Frequencies extracted from the eigenvalues of the rate constant matrix are in favorable agreement with experimental measurements of subglass relaxation transitions at 250 K.
NASA Astrophysics Data System (ADS)
Pulido-Villena, E.; Baudoux, A.-C.; Obernosterer, I.; Landa, M.; Caparros, J.; Catala, P.; Georges, C.; Harmand, J.; Guieu, C.
2014-10-01
The significant impact of dust deposition on heterotrophic bacterial dynamics in the surface oligotrophic ocean has recently been evidenced. Considering the central role of bacteria in the microbial loop, it is likely that dust deposition also affects the structure and the functioning of the whole microbial food web. In the frame of the DUNE project, aiming to estimate the impact of dust deposition on the oligotrophic Mediterranean Sea through mesocosm experiments, the main goal of the present paper was to assess how two successive dust deposition events affect the dynamics of the microbial food web. The first dust seeding delivered new P and N to the amended mesocosms and resulted in a pronounced stimulation of bacterial respiration. It also induced pronounced, but transient, changes in the bacterial community composition. No significant effects were observed on the abundances of viruses and heterotrophic nanoflagellates. The second dust seeding also delivered new P and N to the amended mesocosms, but the effect on the microbial food web was very different. Bacterial respiration remained constant and bacterial abundance decreased. Compositional changes following the second seeding were minor compared to the first one. The decrease in bacterial abundance coincided with an increase in virus abundance, resulting in higher virus:bacteria ratios throughout the second seeding period. Our study shows that dust deposition to the surface oligotrophic ocean may involve important modifications of the trophic links among the components of the microbial food web with presumed consequences on C and nutrient cycling.
NASA Astrophysics Data System (ADS)
Pulido-Villena, E.; Baudoux, A.-C.; Obernosterer, I.; Landa, M.; Caparros, J.; Catala, P.; Georges, C.; Harmand, J.; Guieu, C.
2014-01-01
The significant impact of dust deposition on heterotrophic bacterial dynamics in the surface oligotrophic ocean has recently been evidenced. Considering the central role of bacteria in the microbial loop, it is likely that dust deposition also affects the structure and the functioning of the whole microbial food web. In the frame of the DUNE project, aiming to estimate the impact of dust deposition on the oligotrophic Mediterranean Sea through mesocosm experiments, the main goal of the present paper was to assess how two successive dust deposition events affect the dynamics of the microbial food web. The first dust seeding delivered new P and N to the amended mesocosms and resulted in a pronounced stimulation of bacterial respiration. It also induced pronounced, but transient, changes in the bacterial community composition. No significant effects were observed on the abundances of viruses and heterotrophic nanoflagellates. The second dust seeding also delivered new P and N to the amended mesocosms but the effect on the microbial food web was very different. Bacterial respiration remained constant and bacterial abundance decreased. Compositional changes following the second seeding were minor compared to the first one. The decrease in bacterial abundance coincided with an increase in virus abundance, resulting in higher virus: bacteria ratios throughout the second seeding period. Our study shows that dust deposition to the surface oligotrophic ocean may involve important modifications of the trophic links among the components of the microbial food web with presumed consequences on C and nutrient cycling.
NASA Astrophysics Data System (ADS)
Schipper, C. Ian; Le Voyer, Marion; Moussallam, Yves; White, James D. L.; Thordarson, Thor; Kimura, Jun-Ichi; Chang, Qing
2016-04-01
/1965 gases extremely well, but cannot account for the oxidized gases emitted in 1967, which may have been contaminated by ambient air in a system that was opening as the eruption waned. Surtsey's pyroclastic resurgence can be explained by recharge from ephemeral and compositionally heterogeneous magma bodies, tapped from possibly as deep as the mantle-crust boundary, in a process consistent with the progressively increasing interconnection between magma bodies that is typical at propagating rift tips. The eruption of Surtsey therefore shows that magma system evolution at rift tips can occur in dynamic and discrete events, with influx of new magma having explosive consequences.
ERIC Educational Resources Information Center
Church, Jennifer; Felker, Kyle
2005-01-01
The dynamic world of the Web has provided libraries with a wealth of opportunities, including new approaches to the provision of information and varied internal staffing structures. The development of self-managed Web teams, endowed with authority and resources, can create an adaptable and responsive culture within libraries. This new working team…
DiStefano, Joseph
2014-01-01
Parameter identifiability problems can plague biomodelers when they reach the quantification stage of development, even for relatively simple models. Structural identifiability (SI) is the primary question, usually understood as knowing which of P unknown biomodel parameters p1,…, pi,…, pP are-and which are not-quantifiable in principle from particular input-output (I-O) biodata. It is not widely appreciated that the same database also can provide quantitative information about the structurally unidentifiable (not quantifiable) subset, in the form of explicit algebraic relationships among unidentifiable pi. Importantly, this is a first step toward finding what else is needed to quantify particular unidentifiable parameters of interest from new I–O experiments. We further develop, implement and exemplify novel algorithms that address and solve the SI problem for a practical class of ordinary differential equation (ODE) systems biology models, as a user-friendly and universally-accessible web application (app)–COMBOS. Users provide the structural ODE and output measurement models in one of two standard forms to a remote server via their web browser. COMBOS provides a list of uniquely and non-uniquely SI model parameters, and–importantly-the combinations of parameters not individually SI. If non-uniquely SI, it also provides the maximum number of different solutions, with important practical implications. The behind-the-scenes symbolic differential algebra algorithms are based on computing Gröbner bases of model attributes established after some algebraic transformations, using the computer-algebra system Maxima. COMBOS was developed for facile instructional and research use as well as modeling. We use it in the classroom to illustrate SI analysis; and have simplified complex models of tumor suppressor p53 and hormone regulation, based on explicit computation of parameter combinations. It’s illustrated and validated here for models of moderate complexity
Vali, Faisal; Hong, Robert
2007-01-01
With the evolution of AJAX, ruby on rails, advanced dynamic XHTML technologies and the advent of powerful user interface libraries for javascript (EXT, Yahoo User Interface Library), developers now have the ability to provide truly rich interfaces within web browsers, with reasonable effort and without third-party plugins. We designed and developed an example of such a solution. The User Interface allows radiation oncology practices to intuitively manage different dose fractionation schemes by helping estimate total dose to irradiated organs. PMID:18694240
Vali, Faisal; Hong, Robert
2007-01-01
With the evolution of AJAX, ruby on rails, advanced dynamic XHTML technologies and the advent of powerful user interface libraries for javascript (EXT, Yahoo User Interface Library), developers now have the ability to provide truly rich interfaces within web browsers, with reasonable effort and without third-party plugins. We designed and developed an example of such a solution. The User Interface allows radiation oncology practices to intuitively manage different dose fractionation schemes by helping estimate total dose to irradiated organs.
The Need for a Dynamic Rural Web Presence. Rural Research Report. Volume 18, Issue 6, Spring 2007
ERIC Educational Resources Information Center
Schuytema, Paul
2007-01-01
This paper explores how rural communities with limited financial resources and technical expertise can have a useful Web page along with the ability for community and business leaders to maintain this presence. The tools to be employed are not new to the Web, but they may be considered "cutting edge" when it comes to a rural community's Web…
Generalized exponential function and discrete growth models
NASA Astrophysics Data System (ADS)
Souto Martinez, Alexandre; Silva González, Rodrigo; Lauri Espíndola, Aquino
2009-07-01
Here we show that a particular one-parameter generalization of the exponential function is suitable to unify most of the popular one-species discrete population dynamic models into a simple formula. A physical interpretation is given to this new introduced parameter in the context of the continuous Richards model, which remains valid for the discrete case. From the discretization of the continuous Richards’ model (generalization of the Gompertz and Verhulst models), one obtains a generalized logistic map and we briefly study its properties. Notice, however that the physical interpretation for the introduced parameter persists valid for the discrete case. Next, we generalize the (scramble competition) θ-Ricker discrete model and analytically calculate the fixed points as well as their stabilities. In contrast to previous generalizations, from the generalized θ-Ricker model one is able to retrieve either scramble or contest models.
DeAngelis, Donald L.; El-Shaarawi, Abdel H.; Piegorsch, Walter W.
2002-01-01
Community food webs describe the feeding relationships, or trophic interactions, between the species of an ecological community. Both the structure and dynamics of such webs are the focus of food web research. The topological structures of empirical food webs from many ecosystems have been published on the basis of field studies and they form the foundation for theory concerning the mean number of trophic levels, the mean number of trophic connections versus number of species, and other food web measures, which show consistency across different ecosystems. The dynamics of food webs are influenced by indirect interactions, in which changes in the level of a population in one part of the food web may have indirect effects throughout the web. The mechanisms of these interactions are typically studied microcosm experiments, or sometimes in-field experiments. The use of mathematical models is also a major approach to understanding the effects of indirect interactions. Both empirical and mathematical studies have revealed important properties of food webs, such as keystone predators and trophic cascades.
The ultimatum game: Discrete vs. continuous offers
NASA Astrophysics Data System (ADS)
Dishon-Berkovits, Miriam; Berkovits, Richard
2014-09-01
In many experimental setups in social-sciences, psychology and economy the subjects are requested to accept or dispense monetary compensation which is usually given in discrete units. Using computer and mathematical modeling we show that in the framework of studying the dynamics of acceptance of proposals in the ultimatum game, the long time dynamics of acceptance of offers in the game are completely different for discrete vs. continuous offers. For discrete values the dynamics follow an exponential behavior. However, for continuous offers the dynamics are described by a power-law. This is shown using an agent based computer simulation as well as by utilizing an analytical solution of a mean-field equation describing the model. These findings have implications to the design and interpretation of socio-economical experiments beyond the ultimatum game.
Bouzguenda, Lotfi; Turki, Manel
2014-04-01
This paper shows how the combined use of agent and web services technologies can help to design an architectural style for dynamic medical Cross-Organizational Workflow (COW) management system. Medical COW aims at supporting the collaboration between several autonomous and possibly heterogeneous medical processes, distributed over different organizations (Hospitals, Clinic or laboratories). Dynamic medical COW refers to occasional cooperation between these health organizations, free of structural constraints, where the medical partners involved and their number are not pre-defined. More precisely, this paper proposes a new architecture style based on agents and web services technologies to deal with two key coordination issues of dynamic COW: medical partners finding and negotiation between them. It also proposes how the proposed architecture for dynamic medical COW management system can connect to a multi-agent system coupling the Clinical Decision Support System (CDSS) with Computerized Prescriber Order Entry (CPOE). The idea is to assist the health professionals such as doctors, nurses and pharmacists with decision making tasks, as determining diagnosis or patient data analysis without stopping their clinical processes in order to act in a coherent way and to give care to the patient.
ERIC Educational Resources Information Center
Kinsler, John L.
1997-01-01
Focuses on a method for teaching cascading natural selection that engages students in reading selections from popular and scientific literature aloud in class. An example is given of the use of one such selection about the Machupo virus. (DDR)
Dark Energy from Discrete Spacetime
Trout, Aaron D.
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
Discrete Mathematics Re "Tooled."
ERIC Educational Resources Information Center
Grassl, Richard M.; Mingus, Tabitha T. Y.
1999-01-01
Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)
Morris, J; Johnson, S
2007-12-03
The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.
Modelling and real-time simulation of continuous-discrete systems in mechatronics
Lindow, H.
1996-12-31
This work presents a methodology for simulation and modelling of systems with continuous - discrete dynamics. It derives hybrid discrete event models from Lagrange`s equations of motion. This method combines continuous mechanical, electrical and thermodynamical submodels on one hand with discrete event models an the other hand into a hybrid discrete event model. This straight forward software development avoids numeric overhead.
Monterroso, Pedro; Garrote, Germán; Serronha, Ana; Santos, Emídio; Delibes-Mateos, Miguel; Abrantes, Joana; Perez de Ayala, Ramón; Silvestre, Fernando; Carvalho, João; Vasco, Inês; Lopes, Ana M.; Maio, Elisa; Magalhães, Maria J.; Mills, L. Scott; Esteves, Pedro J.; Simón, Miguel Ángel; Alves, Paulo C.
2016-01-01
Emergent diseases may alter the structure and functioning of ecosystems by creating new biotic interactions and modifying existing ones, producing cascading processes along trophic webs. Recently, a new variant of the rabbit haemorrhagic disease virus (RHDV2 or RHDVb) arguably caused widespread declines in a keystone prey in Mediterranean ecosystems - the European rabbit (Oryctolagus cuniculus). We quantitatively assess the impact of RHDV2 on natural rabbit populations and in two endangered apex predator populations: the Iberian lynx (Lynx pardinus) and the Spanish Imperial eagle (Aquila adalberti). We found 60–70% declines in rabbit populations, followed by decreases of 65.7% in Iberian lynx and 45.5% in Spanish Imperial eagle fecundities. A revision of the web of trophic interactions among rabbits and their dependent predators suggests that RHDV2 acts as a keystone species, and may steer Mediterranean ecosystems to management-dependent alternative states, dominated by simplified mesopredator communities. This model system stresses the importance of diseases as functional players in the dynamics of trophic webs. PMID:27796353
On the definition of discrete hydrodynamic variables.
Español, Pep; Zúñiga, Ignacio
2009-10-28
The Green-Kubo formula for discrete hydrodynamic variables involves information about not only the fluid transport coefficients but also about discrete versions of the differential operators that govern the evolution of the discrete variables. This gives an intimate connection between discretization procedures in fluid dynamics and coarse-graining procedures used to obtain hydrodynamic behavior of molecular fluids. We observed that a natural definition of discrete hydrodynamic variables in terms of Voronoi cells leads to a Green-Kubo formula which is divergent, rendering the full coarse-graining strategy useless. In order to understand this subtle issue, in the present paper we consider the coarse graining of noninteracting Brownian particles. The discrete hydrodynamic variable for this problem is the number of particles within Voronoi cells. Thanks to the simplicity of the model we spot the origin of the singular behavior of the correlation functions. We offer an alternative definition, based on the concept of a Delaunay cell that behaves properly, suggesting the use of the Delaunay construction for the coarse graining of molecular fluids at the discrete hydrodynamic level.
Lehmann, Eldon D.; DeWolf, Dennis K.; Novotny, Christopher A.; Reed, Karen; Gotwals, Robert R.
2014-01-01
Background. AIDA is a widely available downloadable educational simulator of glucose-insulin interaction in diabetes. Methods. A web-based version of AIDA was developed that utilises a server-based architecture with HTML FORM commands to submit numerical data from a web-browser client to a remote web server. AIDA online, located on a remote server, passes the received data through Perl scripts which interactively produce 24 hr insulin and glucose simulations. Results. AIDA online allows users to modify the insulin regimen and diet of 40 different prestored “virtual diabetic patients” on the internet or create new “patients” with user-generated regimens. Multiple simulations can be run, with graphical results viewed via a standard web-browser window. To date, over 637,500 diabetes simulations have been run at AIDA online, from all over the world. Conclusions. AIDA online's functionality is similar to the downloadable AIDA program, but the mode of implementation and usage is different. An advantage to utilising a server-based application is the flexibility that can be offered. New modules can be added quickly to the online simulator. This has facilitated the development of refinements to AIDA online, which have instantaneously become available around the world, with no further local downloads or installations being required. PMID:24511312
Lehmann, Eldon D; Dewolf, Dennis K; Novotny, Christopher A; Reed, Karen; Gotwals, Robert R
2014-01-01
Background. AIDA is a widely available downloadable educational simulator of glucose-insulin interaction in diabetes. Methods. A web-based version of AIDA was developed that utilises a server-based architecture with HTML FORM commands to submit numerical data from a web-browser client to a remote web server. AIDA online, located on a remote server, passes the received data through Perl scripts which interactively produce 24 hr insulin and glucose simulations. Results. AIDA online allows users to modify the insulin regimen and diet of 40 different prestored "virtual diabetic patients" on the internet or create new "patients" with user-generated regimens. Multiple simulations can be run, with graphical results viewed via a standard web-browser window. To date, over 637,500 diabetes simulations have been run at AIDA online, from all over the world. Conclusions. AIDA online's functionality is similar to the downloadable AIDA program, but the mode of implementation and usage is different. An advantage to utilising a server-based application is the flexibility that can be offered. New modules can be added quickly to the online simulator. This has facilitated the development of refinements to AIDA online, which have instantaneously become available around the world, with no further local downloads or installations being required.
Carlsten, B.E.; Haynes, W.B.
1996-08-01
The authors theoretically and numerically investigate the operation and behavior of the discrete monotron oscillator, a novel high-power microwave source. The discrete monotron differs from conventional monotrons and transit time oscillators by shielding the electron beam from the monotron cavity`s RF fields except at two distinct locations. This makes the discrete monotron act more like a klystron than a distributed traveling wave device. As a result, the oscillator has higher efficiency and can operate with higher beam powers than other single cavity oscillators and has more stable operation without requiring a seed input signal than mildly relativistic, intense-beam klystron oscillators.
A discrete control model of PLANT
NASA Technical Reports Server (NTRS)
Mitchell, C. M.
1985-01-01
A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.
NASA Astrophysics Data System (ADS)
Robinson, P. A.
2013-11-01
The efficacy of the common practice of tracking brain dynamics using a few key regions of interest is explained via the fact that these regions are sensitive to underlying extended modes of activity, not just local dynamics. This underlines the inseparable interplay between modes and regions and reflects the reality that brain functions range from highly localized to highly extended.
NASA Astrophysics Data System (ADS)
Bertrand, D.; Trad, A.; Limam, A.; Silvani, C.
2012-09-01
In order to protect infrastructures against rockfalls, civil-engineered mitigation measures are widely used. Flexible metallic fences are particularly well suited to stop the propagation of blocks of rock whose kinetic energy can reach 5000 kJ before impact. This paper focuses on the design of highly flexible rockfall fences under the new European guideline ETAG027. The experimental testing and the numerical modeling using the discrete element method (DEM) of a new metallic rockfall fence are presented. Several scales of study were considered; the mesh, the net and the entire structure. The calibration of the DEM models is described and a parametrical study is proposed. The latter aims to underline the type of information that can be obtained from numerical simulations of such a system to enhance its design.
ERIC Educational Resources Information Center
Peters, James V.
2004-01-01
Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.
Smith, Jovanca J.; Bishop, Joseph E.
2013-11-01
This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed at Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.
Discrete Events as Units of Perceived Time
ERIC Educational Resources Information Center
Liverence, Brandon M.; Scholl, Brian J.
2012-01-01
In visual images, we perceive both space (as a continuous visual medium) and objects (that inhabit space). Similarly, in dynamic visual experience, we perceive both continuous time and discrete events. What is the relationship between these units of experience? The most intuitive answer may be similar to the spatial case: time is perceived as an…
Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats
2014-05-01
In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods.
Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats
2014-05-01
In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. PMID:24631177
Depression: discrete or continuous?
Bowins, Brad
2015-01-01
Elucidating the true structure of depression is necessary if we are to advance our understanding and treatment options. Central to the issue of structure is whether depression represents discrete types or occurs on a continuum. Nature almost universally operates on the basis of continuums, whereas human perception favors discrete categories. This reality might be formalized into a 'continuum principle': natural phenomena tend to occur on a continuum, and any instance of hypothesized discreteness requires unassailable proof. Research evidence for discrete types falls far short of this standard, with most evidence supporting a continuum. However, quantitative variation can yield qualitative differences as an emergent property, fostering the appearance of discreteness. Depression as a continuum is best characterized by duration and severity dimensions, with the latter understood in terms of depressive inhibition. In the absence of some degree of cognitive, emotional, social, and physical inhibition, depression should not be diagnosed. Combining the dimensions of duration and severity provides an optimal way to characterize the quantitative and related qualitative aspects of depression and to describe the overall degree of dysfunction. The presence of other symptom types occurs when anxiety, hypomanic/manic, psychotic, and personality continuums interface with the depression continuum. PMID:25531962
The discrete-time compensated Kalman filter
NASA Technical Reports Server (NTRS)
Lee, W.-H.; Athans, M.
1979-01-01
A suboptimal dynamic compensator to be used in conjunction with the ordinary discrete-time Kalman filter is derived. The resultant compensated Kalman filter has the property that steady-state bias estimation errors, resulting from modelling errors, are eliminated. The implementation of the compensated Kalman filter involves the use of accumulators in the residual channels in addition to the nominal dynamic model of the stochastic system.
Lou, Yuting; Chen, Yu
2016-09-01
The purpose of the study is to investigate the multicellular homeostasis in epithelial tissues over very large timescales. Inspired by the receptor dynamics of IBCell model proposed by Rejniak et al. an on-grid agent-based model for multicellular system is constructed. Instead of observing the multicellular architectural morphologies, the diversity of homeostatic states is quantitatively analyzed through a substantial number of simulations by measuring three new order parameters, the phenotypic population structure, the average proliferation age and the relaxation time to stable homeostasis. Nearby the interfaces of distinct homeostatic phases in 3D phase diagrams of the three order parameters, intermediate quasi-stable phases of slow dynamics that features quasi-stability with a large spectrum of relaxation timescales are found. A further exploration on the static and dynamic correlations among the three order parameters reveals that the quasi-stable phases evolve towards two terminations, tumorigenesis and degeneration, which are respectively accompanied by rejuvenation and aging. With the exclusion of the environmental impact and the mutational strategies, the results imply that cancer and aging may share the non-mutational origin in the intrinsic slow dynamics of the multicellular systems. PMID:27196967
2004-04-16
Web Operational Status Boards (WebOSB)is a web-based application designed to acquire, display, and update highly dynamic status information between multiple users and jurisdictions. WebOSB is able to disseminate real-time status informationsupport the timely sharing of informationwith constant, dynamic updates via personal computers and the Internet between emergency operations centers (EOCs), incident command centers, and to users outside the EOC who need to know the information (hospitals, shelters, schools). The WebOSB application far exceeds outdated information-sharingmore » methods used by emergency workers: whiteboards, Word and Excel documents, or even locality-specific Web sites. WebOSBs capabilities include the following elements: - Secure access. Multiple users can access information on WebOSB from any personal computer with Internet access and a secure ID. Privileges are use to control access and distribution of status information and to identify users who are authorized to add or edit information. - Simultaneous update. WebOSB provides options for users to add, display, and update dynamic information simultaneously at all locations involved in the emergency management effort, A single status board can be updated from multiple locations enabling shelters and hospitals to post bed availability or list decontamination capability. - On-the-fly modification. Allowing the definition of an existing status board to be modified on-the-fly can be an asset during an emergency, where information requirements can change quickly. The status board designer feature allows an administrator to quickly define, modi,, add to, and implement new status boards in minutes without needing the help of Web designers and computer programmers. - Publisher/subscriber notification. As a subscriber, each user automatically receives notification of any new information relating to specific status boards. The publisher/subscriber feature automatically notified each user of any
NASA Astrophysics Data System (ADS)
Arzano, Michele; Kowalski-Glikman, Jerzy
2016-09-01
We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.
Discrete breathers in crystals
NASA Astrophysics Data System (ADS)
Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.
2016-05-01
It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite
Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.
2007-01-01
The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.; Griffiths, D. F.
1991-01-01
Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.
Bdzil, J.B.; Jackson, T.L.; Stewart, D.S.
1999-02-02
In the design of explosive systems the generic problem that one must consider is the propagation of a well-developed detonation wave sweeping through an explosive charge with a complex shape. At a given instant of time the lead detonation shock is a surface that occupies a region of the explosive and has a dimension that is characteristic of the explosive device, typically on the scale of meters. The detonation shock is powered by a detonation reaction zone, sitting immediately behind the shock, which is on the scale of 1 millimeter or less. Thus, the ratio of the reaction zone thickness to the device dimension is of the order of 1/1,000 or less. This scale disparity can lead to great difficulties in computing three-dimensional detonation dynamics. An attack on the dilemma for the computation of detonation systems has lead to the invention of sub-scale models for a propagating detonation front that they refer to herein as program burn models. The program burn model seeks not to resolve the fine scale of the reaction zone in the sense of a DNS simulation. The goal of a program burn simulation is to resolve the hydrodynamics in the inert product gases on a grid much coarser than that required to resolve a physical reaction zone. The authors first show that traditional program burn algorithms for detonation hydrocodes used for explosive design are inconsistent and yield incorrect shock dynamic behavior. To overcome these inconsistencies, they are developing a new class of program burn models based on detonation shock dynamic (DSD) theory. It is hoped that this new class will yield a consistent and robust algorithm which reflects the correct shock dynamic behavior.
Quenet, B; Horcholle-Bossavit, G
2007-11-01
Both chaotic and periodic activities are observed in networks of the central nervous systems. We choose the locust olfactory system as a good case study to analyze the relationships between networks' structure and the types of dynamics involved in coding mechanisms. In our modeling approach, we first build a fully connected recurrent network of synchronously updated McCulloch and Pitts neurons (MC-P type). In order to measure the use of the temporal dimension in the complex spatio-temporal patterns produced by the networks, we have defined an index the Normalized Euclidian Distance NED. We find that for appropriate parameters of input and connectivity, when adding some strong connections to the initial random synaptic matrices, it was easy to get the emergence of both robust oscillations and distributed synchrony in the spatiotemporal patterns. Then, in order to validate the MC-P model as a tool for analysis for network properties, we examine the dynamic behavior of networks of continuous time model neuron (Izhikevitch Integrate and Fire model -IFI-), implementing the same network characteristics. In both models, similarly to biological PN, the activity of excitatory neurons are phase-locked to different cycles of oscillations which remind the ones of the local field potential (LFP), and nevertheless exhibit dynamic behavior complex enough to be the basis of spatio-temporal codes. PMID:18075120
ERIC Educational Resources Information Center
Sharp, Karen Tobey
This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…
Peschel, U; Egorov, O; Lederer, F
2004-08-15
We derive evolution equations describing light propagation in an array of coupled-waveguide resonators and predict the existence of discrete cavity solitons. We identify stable, unstable, and oscillating solitons by varying the coupling strength between the anticontinuous and the continuous limit. PMID:15357356
Asynchronous OGC web services mechanisms
NASA Astrophysics Data System (ADS)
Min, Min; Di, Liping; Yu, Genong; Chen, Nengcheng; Gong, Jianya
2008-12-01
The Open Geospatial Consortium, Inc (OGC) Web Services (OWS) were initially primarily simple synchronous Web services based on the HTTP transport protocol, which is perfectly valid in the case of simple geoprocessing of simple data available from local sources. However, with the development of Web-based geospatial technologies, especially the development of the Sensor Web, a number of limitations have been identified with using HTTP-GET/POST binding in OGC OWS, which cannot meet the needs of asynchronous communication and operations between clients and services or in OGC services chain. Asynchronicity in Web services could be achieved in different ways. Callback pattern is widely supported in client asynchronous invocation. Message-based middleware often can be used together with the asynchronous invocation alternatives. Web Notification Service (WNS) is designed to provide asynchronous messagebased communication in OGC. This paper describes a mechanism for an asynchronous, message-based, event-driven, dynamic geospatial Web system based on OGC Web services. The addition of asynchronicity in OGC Web services has two components. One is the augmentation of OGC Web services with asynchronous message-based notification. The other is asynchronous OGC Web service orchestration based on BPEL.
NASA Astrophysics Data System (ADS)
Valls, M.; Sweeting, C. J.; Olivar, M. P.; Fernández de Puelles, M. L.; Pasqual, C.; Polunin, N. V. C.; Quetglas, A.
2014-10-01
Benthic-pelagic coupling is an important process connecting species throughout the water column, particularly, in deep-sea systems where faunal assemblages can be dense if indirectly sustained by production from the above. Through stable isotope analyses, this study explored the sources of production, trophic structure, and bentho-pelagic coupling in two locations with contrasting oceanographic conditions from the western Mediterranean, in the Balearic (BsB) and the Algerian (AsB) sub-basins. The samples of 89 dominant species (23 decapods, 19 cephalopods, 33 fishes, among the other taxa), inhabiting the hyperbenthic and pelagic domains, from the shelf break (250 m), upper slope (650 m), and middle slope (850 m) were analyzed. Results suggested long food webs of approximately four trophic levels (TrLs) that were sustained by planktonic source material in shallower waters and degraded particulate organic matter of planktonic origin in deeper waters. Most of the collected species (70%) occupied intermediate trophic positions between the 3rd and 4th TrLs. The species δ15N and δ13C values exhibited a broad range, consistent with the high diversity that might be attributed to the oligotrophic conditions. As the depth increased, stronger segregation occurred between the trophic groups, and spatial differences were found among consumers of the two locations. Species in the AsB always had consistently higher δ15N values than in the BsB, which could possibly be attributed to the basal δ15N that was present through the food web. Despite the contrasting basin characteristics, a similarly close bentho-pelagic coupling pattern was observed at both locations, except at the deepest ground, especially at the AsB, where the mean δ13C values from the hyperbenthic and pelagic compartments were more distant. This could be related to the higher degree of reworking of organic matter in the AsB. Overall, these findings suggested the need for a depth-stratified approach to analyze
NASA Astrophysics Data System (ADS)
Halem, M.; Yesha, Y.; Tilmes, C.; Chapman, D.; Goldberg, M.; Zhou, L.
2007-05-01
Three decades of Earth remote sensing from NASA, NOAA and DOD operational and research satellites carrying successive generations of improved atmospheric sounder instruments have resulted in petabytes of radiance data with varying spatial and spectral resolutions being stored at different data archives in various data formats by the respective agencies. This evolution of sounders and the diversities of these archived data sets have led to data processing obstacles limiting the science community from readily accessing and analyzing such long-term climate data records. We address this problem by the development of a web based Service Oriented Atmospheric Radiance (SOAR) system built on the SOA paradigm that makes it practical for the science community to dynamically access, manipulate and generate long term records of L1 pre-gridded sounding radiances of coincident multi-sensor data for regions specified according to user chosen criteria. SOAR employs a modification of the standard Client Server interactions that allows users to represent themselves directly to the Process Server through their own web browsers. The browser uses AJAX to request Javascript libraries and DHTML interfaces that define the possible client interactions and communicates the SOAP messages to the Process server allowing for dynamic web dialogs with the user to take place on the fly. The Process Server is also connected to an underlying high performance compute cluster and storage system which provides much of the data processing capabilities required to service the client requests. The compute cluster employs optical communications to NOAA and NASA for accessing the data and under the governance of the Process Server invokes algorithms for on-demand spatial, temporal, and spectral gridding. Scientists can choose from a variety of statistical averaging techniques for compositing satellite observed sounder radiances from the AIRS, AMSU or MODIS instruments to form spatial-temporal grids for
Experiments in Web Storytelling
ERIC Educational Resources Information Center
Levine, Alan
2011-01-01
Recognized as one of our oldest yet still vital forms of communication, storytelling offers new opportunity when it takes place on the web. Even our every day activities of writing email, creating presentations, or participating in social media can become more dynamic when considered stories. A digital storyteller from outside the museum field…
White, Bebo
2003-06-23
Web Engineering is the application of systematic, disciplined and quantifiable approaches to development, operation, and maintenance of Web-based applications. It is both a pro-active approach and a growing collection of theoretical and empirical research in Web application development. This paper gives an overview of Web Engineering by addressing the questions: (a) why is it needed? (b) what is its domain of operation? (c) how does it help and what should it do to improve Web application development? and (d) how should it be incorporated in education and training? The paper discusses the significant differences that exist between Web applications and conventional software, the taxonomy of Web applications, the progress made so far and the research issues and experience of creating a specialization at the master's level. The paper reaches a conclusion that Web Engineering at this stage is a moving target since Web technologies are constantly evolving, making new types of applications possible, which in turn may require innovations in how they are built, deployed and maintained.
On embedded bifurcation structure in some discretized vector fields
NASA Astrophysics Data System (ADS)
Kang, Hunseok; Tsuda, Ichiro
2009-09-01
In this paper, we study a dynamic structure of discretized vector fields obtained from the Brusselator, which is described by two-dimensional ordinary differential equations (ODEs). We found that a bifurcation structure of the logistic map is embedded in the discretized vector field. The embedded bifurcation structure was unraveled by the dynamical orbits that eventually converge to a fixed point. We provide a detailed mathematical analysis to explain this phenomenon and relate it to the solution of the original ODEs.
On embedded bifurcation structure in some discretized vector fields.
Kang, Hunseok; Tsuda, Ichiro
2009-09-01
In this paper, we study a dynamic structure of discretized vector fields obtained from the Brusselator, which is described by two-dimensional ordinary differential equations (ODEs). We found that a bifurcation structure of the logistic map is embedded in the discretized vector field. The embedded bifurcation structure was unraveled by the dynamical orbits that eventually converge to a fixed point. We provide a detailed mathematical analysis to explain this phenomenon and relate it to the solution of the original ODEs. PMID:19792012
A Two-Timescale Discretization Scheme for Collocation
NASA Technical Reports Server (NTRS)
Desai, Prasun; Conway, Bruce A.
2004-01-01
The development of a two-timescale discretization scheme for collocation is presented. This scheme allows a larger discretization to be utilized for smoothly varying state variables and a second finer discretization to be utilized for state variables having higher frequency dynamics. As such. the discretization scheme can be tailored to the dynamics of the particular state variables. In so doing. the size of the overall Nonlinear Programming (NLP) problem can be reduced significantly. Two two-timescale discretization architecture schemes are described. Comparison of results between the two-timescale method and conventional collocation show very good agreement. Differences of less than 0.5 percent are observed. Consequently. a significant reduction (by two-thirds) in the number of NLP parameters and iterations required for convergence can be achieved without sacrificing solution accuracy.
Cortical Neural Computation by Discrete Results Hypothesis
Castejon, Carlos; Nuñez, Angel
2016-01-01
One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast
The Geospatial Web and Local Geographical Education
ERIC Educational Resources Information Center
Harris, Trevor M.; Rouse, L. Jesse; Bergeron, Susan J.
2010-01-01
Recent innovations in the Geospatial Web represent a paradigm shift in Web mapping by enabling educators to explore geography in the classroom by dynamically using a rapidly growing suite of impressive online geospatial tools. Coupled with access to spatial data repositories and User-Generated Content, the Geospatial Web provides a powerful…
Discretization chaos - Feedback control and transition to chaos
NASA Technical Reports Server (NTRS)
Grantham, Walter J.; Athalye, Amit M.
1990-01-01
Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.
NASA Astrophysics Data System (ADS)
Gao, Jerry Z.; Zhu, Eugene; Shim, Simon
2003-01-01
With the increasing applications of the Web in e-commerce, advertising, and publication, new technologies are needed to improve Web graphics technology due to the current limitation of technology. The SVG (Scalable Vector Graphics) technology is a new revolutionary solution to overcome the existing problems in the current web technology. It provides precise and high-resolution web graphics using plain text format commands. It sets a new standard for web graphic format to allow us to present complicated graphics with rich test fonts and colors, high printing quality, and dynamic layout capabilities. This paper provides a tutorial overview about SVG technology and its essential features, capability, and advantages. The reports a comparison studies between SVG and other web graphics technologies.
Discreteness induced extinction
NASA Astrophysics Data System (ADS)
dos Santos, Renato Vieira; da Silva, Linaena Méricy
2015-11-01
Two simple models based on ecological problems are discussed from the point of view of non-equilibrium statistical mechanics. It is shown how discrepant may be the results of the models that include spatial distribution with discrete interactions when compared with the continuous analogous models. In the continuous case we have, under certain circumstances, the population explosion. When we take into account the finiteness of the population, we get the opposite result, extinction. We will analyze how these results depend on the dimension d of the space and describe the phenomenon of the "Discreteness Inducing Extinction" (DIE). The results are interpreted in the context of the "paradox of sex", an old problem of evolutionary biology.
ERIC Educational Resources Information Center
Beemer, Brandon Alan
2010-01-01
The research presented in this dissertation focuses on the organizational and consumer need for knowledge based support in unstructured domains, by developing a measurement scale for dynamic interaction. Addressing this need is approached and evaluated from two different perspectives. The first approach is the development of Knowledge Based…
A paradigm for discrete physics
Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.
1987-01-01
An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity.
Recognition of pornographic web pages by classifying texts and images.
Hu, Weiming; Wu, Ou; Chen, Zhouyao; Fu, Zhouyu; Maybank, Steve
2007-06-01
With the rapid development of the World Wide Web, people benefit more and more from the sharing of information. However, Web pages with obscene, harmful, or illegal content can be easily accessed. It is important to recognize such unsuitable, offensive, or pornographic Web pages. In this paper, a novel framework for recognizing pornographic Web pages is described. A C4.5 decision tree is used to divide Web pages, according to content representations, into continuous text pages, discrete text pages, and image pages. These three categories of Web pages are handled, respectively, by a continuous text classifier, a discrete text classifier, and an algorithm that fuses the results from the image classifier and the discrete text classifier. In the continuous text classifier, statistical and semantic features are used to recognize pornographic texts. In the discrete text classifier, the naive Bayes rule is used to calculate the probability that a discrete text is pornographic. In the image classifier, the object's contour-based features are extracted to recognize pornographic images. In the text and image fusion algorithm, the Bayes theory is used to combine the recognition results from images and texts. Experimental results demonstrate that the continuous text classifier outperforms the traditional keyword-statistics-based classifier, the contour-based image classifier outperforms the traditional skin-region-based image classifier, the results obtained by our fusion algorithm outperform those by either of the individual classifiers, and our framework can be adapted to different categories of Web pages. PMID:17431300
Drought rewires the cores of food webs
NASA Astrophysics Data System (ADS)
Lu, Xueke; Gray, Clare; Brown, Lee E.; Ledger, Mark E.; Milner, Alexander M.; Mondragón, Raúl J.; Woodward, Guy; Ma, Athen
2016-09-01
Droughts are intensifying across the globe, with potentially devastating implications for freshwater ecosystems. We used new network science approaches to investigate drought impacts on stream food webs and explored potential consequences for web robustness to future perturbations. The substructure of the webs was characterized by a core of richly connected species surrounded by poorly connected peripheral species. Although drought caused the partial collapse of the food webs, the loss of the most extinction-prone peripheral species triggered a substantial rewiring of interactions within the networks’ cores. These shifts in species interactions in the core conserved the underlying core/periphery substructure and stability of the drought-impacted webs. When we subsequently perturbed the webs by simulating species loss in silico, the rewired drought webs were as robust as the larger, undisturbed webs. Our research unearths previously unknown compensatory dynamics arising from within the core that could underpin food web stability in the face of environmental perturbations.
NASA Technical Reports Server (NTRS)
Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)
2011-01-01
A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.
Discrete sequence prediction and its applications
NASA Technical Reports Server (NTRS)
Laird, Philip
1992-01-01
Learning from experience to predict sequences of discrete symbols is a fundamental problem in machine learning with many applications. We apply sequence prediction using a simple and practical sequence-prediction algorithm, called TDAG. The TDAG algorithm is first tested by comparing its performance with some common data compression algorithms. Then it is adapted to the detailed requirements of dynamic program optimization, with excellent results.
NASA Astrophysics Data System (ADS)
Seslija, Marko; van der Schaft, Arjan; Scherpen, Jacquelien M. A.
2012-06-01
This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce a simplicial Dirac structure as a discrete analogue of the Stokes-Dirac structure and demonstrate that it provides a natural framework for deriving finite-dimensional port-Hamiltonian systems that emulate their infinite-dimensional counterparts. The spatial domain, in the continuous theory represented by a finite-dimensional smooth manifold with boundary, is replaced by a homological manifold-like simplicial complex and its augmented circumcentric dual. The smooth differential forms, in discrete setting, are mirrored by cochains on the primal and dual complexes, while the discrete exterior derivative is defined to be the coboundary operator. This approach of discrete differential geometry, rather than discretizing the partial differential equations, allows to first discretize the underlying Stokes-Dirac structure and then to impose the corresponding finite-dimensional port-Hamiltonian dynamics. In this manner, a number of important intrinsically topological and geometrical properties of the system are preserved.
VIGIL,FRANK; REEDER,ROXANA G.
2000-10-30
The Factsheets web application was conceived out of the requirement to create, update, publish, and maintain a web site with dynamic research and development (R and D) content. Before creating the site, a requirements discovery process was done in order to accurately capture the purpose and functionality of the site. One of the high priority requirements for the site would be that no specialized training in web page authoring would be necessary. All functions of uploading, creation, and editing of factsheets needed to be accomplished by entering data directly into web form screens generated by the application. Another important requirement of the site was to allow for access to the factsheet web pages and data via the internal Sandia Restricted Network and Sandia Open Network based on the status of the input data. Important to the owners of the web site would be to allow the published factsheets to be accessible to all personnel within the department whether or not the sheets had completed the formal Review and Approval (R and A) process. Once the factsheets had gone through the formal review and approval process, they could then be published both internally and externally based on their individual publication status. An extended requirement and feature of the site would be to provide a keyword search capability to search through the factsheets. Also, since the site currently resides on both the internal and external networks, it would need to be registered with the Sandia search engines in order to allow access to the content of the site by the search engines. To date, all of the above requirements and features have been created and implemented in the Factsheet web application. These have been accomplished by the use of flat text databases, which are discussed in greater detail later in this paper.
The Use of Web Search Engines in Information Science Research.
ERIC Educational Resources Information Center
Bar-Ilan, Judit
2004-01-01
Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…
Tadonléké, R D; Planas, D; Lucotte, M
2005-02-01
In order to assess the factors that determine the dynamics of bacteria with high nucleic acid content in aquatic systems, we (i) conducted 24-h in situ dialysis experiments, involving different fractions of plankton and unfiltered water and (ii) examined empirical relationships between bacteria and both abiotic factors and protists, in boreal humic freshwaters (reservoir and lakes) in the James Bay region (Québec, Canada). Bacteria were subdivided into two subgroups on the basis of their nucleic acid content assessed by flow cytometry. The abundance of bacteria with the highest nucleic acid content and high light scatter (HNA-hs) was significantly correlated, across sites, to bacterial production, whereas bacteria with lower nucleic acid content (LNA) and total bacteria were not. In addition, HNA-hs growth was higher and more variable than LNA growth, indicating that HNA-hs were the most dynamic bacteria. Heterotrophic nanoflagellate and ciliate biomass represented, on average, 5 and 13% of bacterial biomass, respectively. Both in ambient waters and in experiments, ciliates were significantly and negatively correlated with bacteria, whereas heterotrophic nanoflagellates, likely under the grazing pressure from ciliates and metazooplankton, were not. Among ciliates, Cyclidium glaucoma appeared to play an important role. Its growth was significantly and negatively correlated to that of HNA-hs but not to that of LNA. In ambient waters, the abundance of this species explained 56% of the variations in HNA-hs abundance and only 27% of those for LNA. The abundances of total bacteria and LNA significantly increased with chlorophyll a, whereas those of HNA-hs did not. In addition, during the experiments, the estimated potential losses of HNA-hs significantly increased with the initial abundance of C. glaucoma. These results suggest selective removal of the most dynamic bacteria by C. glaucoma and indicate that ciliates may play an important role in the dynamics of active
Karakülah, G; Karakuş, M; Suner, A; Demir, S; Arserim, S K; Töz, S; Özbel, Y
2016-09-01
Species identification of sandflies is mainly performed according to morphological characters using classical written identification keys. This study introduces a new web-based decision support tool (sandflyDST) for guiding the morphological identification of sandfly species present in Anatolia and mainland Europe and classified in the Phlebotomus and Sergentomyia genera (both: Diptera: Psychodidae). The current version of the tool consists of 111 questions and 36 drawings obtained from classical written keys, and 107 photographs for the quick and easy identification of 26 species of the genus Phlebotomus and four species of the genus Sergentomyia. The tool guides users through a decision tree using yes/no questions about the morphological characters of the specimen. The tool was applied by 30 individuals, who then completed study questionnaires. The results of subsequent analyses indicated that the usability (x‾SUSScore=75.4) and users' level of appreciation (86.6%) of the tool were quite high; almost all of the participants considered recommending the tool to others. The tool may also be useful in training new entomologists and maintaining their level of expertise. This is a dynamic tool and can be improved or upgraded according to feedback. The tool is now available online at http://parasitology.ege.edu.tr/sandflyDST/index.php. PMID:27339389
NASA Astrophysics Data System (ADS)
Ji, Rubao; Chen, Changsheng; Franks, Peter J. S.; Townsend, David W.; Durbin, Edward G.; Beardsley, Robert C.; Gregory Lough, R.; Houghton, Robert W.
2006-11-01
A coupled biological-physical model was developed and tested in one-dimensional (1-D, vertical) and two-dimensional (2-D, cross-sectional) domains to examine the spring phytoplankton bloom and associated lower trophic level food web dynamics on Georges Bank (GB). The biological model consists of nine compartments: dissolved inorganic nutrients (nitrate, ammonium and silicate), phytoplankton (large and small size classes), zooplankton (large and small size classes), and detrital organic nitrogen and biogenic silica. The 1-D model results showed that in the shallow central bank, the timing and duration of spring blooms are closely linked to the light intensity and its downward penetration, while the intensity of blooms is regulated by initial nutrient concentrations and zooplankton grazing pressure. In the deeper flank area, the bloom dynamics is directly controlled by the seasonal development of stratification. The interactions between the shallow and deep regions of the bank were examined by a 2-D model, which showed that the cross-sectional gradients of biological quantities were caused mainly by the shallow-deep topographic transition and tidal mixing. Between the shallow and deep regions, a possible phytoplankton maximum concentration area was seen in the model at the time before the formation of the tidal-mixing front. Once the tidal-mixing front was established during late spring, the model showed a relatively high concentration of phytoplankton near the front as the result of the tidally driven up-front nutrient flux. Both the 1-D and 2-D models captured the basic seasonal cycles of the nutrients and phytoplankton in the central bank, but failed to reproduce those patterns in the deep flank regions, where horizontal advection might play a significant role.
Geometry of Discrete-Time Spin Systems
NASA Astrophysics Data System (ADS)
McLachlan, Robert I.; Modin, Klas; Verdier, Olivier
2016-10-01
Classical Hamiltonian spin systems are continuous dynamical systems on the symplectic phase space (S^2)^n. In this paper, we investigate the underlying geometry of a time discretization scheme for classical Hamiltonian spin systems called the spherical midpoint method. As it turns out, this method displays a range of interesting geometrical features that yield insights and sets out general strategies for geometric time discretizations of Hamiltonian systems on non-canonical symplectic manifolds. In particular, our study provides two new, completely geometric proofs that the discrete-time spin systems obtained by the spherical midpoint method preserve symplecticity. The study follows two paths. First, we introduce an extended version of the Hopf fibration to show that the spherical midpoint method can be seen as originating from the classical midpoint method on T^*{R}^{2n} for a collective Hamiltonian. Symplecticity is then a direct, geometric consequence. Second, we propose a new discretization scheme on Riemannian manifolds called the Riemannian midpoint method. We determine its properties with respect to isometries and Riemannian submersions, and, as a special case, we show that the spherical midpoint method is of this type for a non-Euclidean metric. In combination with Kähler geometry, this provides another geometric proof of symplecticity.
Fluctuations and discreteness in diffusion limited growth
NASA Astrophysics Data System (ADS)
Devita, Jason P.
This thesis explores the effects of fluctuations and discreteness on the growth of physical systems where diffusion plays an important role. It focuses on three related problems, all dependent on diffusion in a fundamental way, but each with its own unique challenges. With diffusion-limited aggregation (DLA), the relationship between noisy and noise-free Laplacian growth is probed by averaging the results of noisy growth. By doing so in a channel geometry, we are able to compare to known solutions of the noise-free problem. We see that while the two are comparable, there are discrepancies which are not well understood. In molecular beam epitaxy (MBE), we create efficient computational algorithms, by replacing random walkers (diffusing atoms) with approximately equivalent processes. In one case, the atoms are replaced by a continuum field. Solving for the dynamics of the field yields---in an average sense---the dynamics of the atoms. In the other case, the atoms are treated as individual random-walking particles, but the details of the dynamics are changed to an (approximately) equivalent set of dynamics. This approach involves allowing adatoms to take long hops. We see approximately an order of magnitude speed up for simulating island dynamics, mound growth, and Ostwald ripening. Some ideas from the study of MBE are carried over to the study of front propagation in reaction-diffusion systems. Many of the analytic results about front propagation are derived from continuum models. It is unclear, however, that these results accurately describe the properties of a discrete system. It is reasonable to think that discrete systems will converge to the continuum results when sufficiently many particles are included. However, computational evidence of this is difficult to obtain, since the interesting properties tend to depend on a power law of the logarithm of the number of particles. Thus, the number of particles included in simulations must be exceedingly large. By
Schmoker, Claire; Russo, Francesca; Drillet, Guillaume; Trottet, Aurore; Mahjoub, Mohamed-Sofiane; Hsiao, Shih-Hui; Larsen, Ole; Tun, Karenne; Calbet, Albert
2016-08-01
We studied the plankton dynamics of two semi-enclosed marine coastal inlets of the north of Jurong Island separated by a causeway (SW Singapore; May 2012-April 2013). The west side of the causeway (west station) has residence times of ca. one year and is markedly eutrophic. The east side (east station) has residence times of one month and presents lower nutrient concentrations throughout the year. The higher nutrient concentrations at the west station did not translate into significantly higher concentrations of chlorophyll a, with the exception of some peaks at the end of the South West Monsoon. Microzooplankton were more abundant at the west station. The west station exhibited more variable abundances of copepods during the year than did the east station, which showed a more stable pattern and higher diversity. Despite the higher nutrient concentrations at the west station (never limiting phytoplankton growth), the instantaneous phytoplankton growth rates there were generally lower than at the east station. The phytoplankton communities at the west station were top-down controlled, largely by microzooplankton grazing, whereas those of the east station alternated between top-down and bottom-up control, with mesozooplankton being the major grazers. Overall, the trophic transfer efficiency from nutrients to mesozooplankton in the eutrophic west station was less efficient than in the east station, but this was mostly because a poor use of inorganic nutrients by phytoplankton rather than an inefficient trophic transfer of carbon. Some hypotheses explaining this result are discussed.
Gårdmark, Anna; Casini, Michele; Huss, Magnus; van Leeuwen, Anieke; Hjelm, Joakim; Persson, Lennart; de Roos, André M.
2015-01-01
Many marine ecosystems have undergone ‘regime shifts’, i.e. abrupt reorganizations across trophic levels. Establishing whether these constitute shifts between alternative stable states is of key importance for the prospects of ecosystem recovery and for management. We show how mechanisms underlying alternative stable states caused by predator–prey interactions can be revealed in field data, using analyses guided by theory on size-structured community dynamics. This is done by combining data on individual performance (such as growth and fecundity) with information on population size and prey availability. We use Atlantic cod (Gadus morhua) and their prey in the Baltic Sea as an example to discuss and distinguish two types of mechanisms, ‘cultivation-depensation’ and ‘overcompensation’, that can cause alternative stable states preventing the recovery of overexploited piscivorous fish populations. Importantly, the type of mechanism can be inferred already from changes in the predators' body growth in different life stages. Our approach can thus be readily applied to monitored stocks of piscivorous fish species, for which this information often can be assembled. Using this tool can help resolve the causes of catastrophic collapses in marine predatory–prey systems and guide fisheries managers on how to successfully restore collapsed piscivorous fish stocks.
Food webs for parasitologists: a review.
Sukhdeo, Michael V K
2010-04-01
This review examines the historical origins of food web theory and explores the reasons why parasites have traditionally been left out of food web studies. Current paradigms may still be an impediment because, despite several attempts, it remains virtually impossible to retrofit parasites into food web theory in any satisfactory manner. It seems clear that parasitologists must return to first principles to solve how best to incorporate parasites into ecological food webs, and a first step in changing paradigms will be to include parasites in the classic ecological patterns that inform food web theory. The limitations of current food web models are discussed with respect to their logistic exclusion of parasites, and the traditional matrix approach in food web studies is critically examined. The well-known energetic perspective on ecosystem organization is presented as a viable alternative to the matrix approach because it provides an intellectually powerful theoretical paradigm for generating testable hypotheses on true food web structure. This review proposes that to make significant contributions to the food web debate, parasitologists must work from the standpoint of natural history to elucidate patterns of biomass, species abundance, and interaction strengths in real food webs, and these will provide the basis for more realistic models that incorporate parasite dynamics into the overall functional dynamics of the whole web. A general conclusion is that only by quantifying the effects of parasites in terms of energy flows (or biomass) will we be able to correctly place parasites into food webs.
Integrable discrete PT symmetric model.
Ablowitz, Mark J; Musslimani, Ziad H
2014-09-01
An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.
Nonintegrable Schrodinger discrete breathers.
Gómez-Gardeñes, J; Floría, L M; Peyrard, M; Bishop, A R
2004-12-01
In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schrödinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.
Discrete bisoliton fiber laser
Liu, X. M.; Han, X. X.; Yao, X. K.
2016-01-01
Dissipative solitons, which result from the intricate balance between dispersion and nonlinearity as well as gain and loss, are of the fundamental scientific interest and numerous important applications. Here, we report a fiber laser that generates bisoliton – two consecutive dissipative solitons that preserve a fixed separation between them. Deviations from this separation result in its restoration. It is also found that these bisolitons have multiple discrete equilibrium distances with the quantized separations, as is confirmed by the theoretical analysis and the experimental observations. The main feature of our laser is the anomalous dispersion that is increased by an order of magnitude in comparison to previous studies. Then the spectral filtering effect plays a significant role in pulse-shaping. The proposed laser has the potential applications in optical communications and high-resolution optics for coding and transmission of information in higher-level modulation formats. PMID:27767075
Discrete Minimal Surface Algebras
NASA Astrophysics Data System (ADS)
Arnlind, Joakim; Hoppe, Jens
2010-05-01
We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.
Discrete Pearson distributions
Bowman, K.O. ); Shenton, L.R. ); Kastenbaum, M.A. , Basye, VA )
1991-11-01
These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.
Noyes, H.P. ); Starson, S. )
1991-03-01
Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces fields'' with the relativistic Wheeler-Feynman action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs.
NASA Astrophysics Data System (ADS)
Chiang, K.-P.; Tsai, A.-Y.; Tsai, P.-J.; Gong, G.-C.; Tsai, S.-F.
2013-01-01
In order to investigate the mechanism of spatial dynamics of picoplankton community (bacteria and Synechococcus spp.) and estimate the carbon flux of the microbial food web in the oligotrophic Taiwan Warm Current Water of subtropical marine pelagic ecosystem, we conducted size-fractionation experiments in five cruises by the R/V Ocean Research II during the summers of 2010 and 2011 in the southern East China Sea. We carried out culture experiments using surface water which, according to a temperature-salinity (T-S) diagram, is characterized as oligotrophic Taiwan Current Warm Water. We found a negative correlation bettween bacteria growth rate and temperature, indicating that the active growth of heterotrophic bacteria might be induced by nutrients lifted from deep layer by cold upwelling water. This finding suggests that the area we studied was a bottom-up control pelagic ecosystem. We suggest that the microbial food web of an oligotrophic ecosystem may be changed from top-down control to resource supply (bottom-up control) when a physical force brings nutrient into the oligotrophic ecosystem. Upwelling brings nutrient-rich water to euphotic zone and promotes bacteria growth, increasing the picoplankton biomass which increased the consumption rate of nanoflagellate. The net growth rate (growth rate-grazing rate) becomes negative when the densities of bacteria and Synechococcus spp. are lower than the threshold values. The interaction between growth and grazing will limit the abundances of bacteria (105-106 cells mL-1 and Synechococcus spp. (104-105 cells mL-1) within a narrow range, forming a predator-prey eddy. Meanwhile, 62% of bacteria production and 55% of Synechococcus spp. production are transported to higher trophic level (nanoflagellate), though the cascade effect might cause an underestimation of both percentages of transported carbon. Based on the increasing number of sizes we found in the size-fractionation experiments, we estimated that the predation
NASA Astrophysics Data System (ADS)
Huang, Minsheng; Li, Zhenhuan
2013-12-01
To model the deformation of single crystal nickel based superalloys (SCNBS) with low stacking fault energy (SFE), three-dimensional discrete dislocation dynamics (3D-DDD) is extended by incorporating dislocation dissociation mechanism. The present 3D-DDD simulations show that, consistent with the existing TEM observation, the leading partial can enter the matrix channel efficiently while the trailing partial can hardly glide into it when the dislocation dissociation is taken into account. To determine whether the dislocation dissociation can occur or not, a critical percolation stress (CPS) based criterion is suggested. According to this CPS criterion, for SCNBS there exists a critical matrix channel width. When the channel width is lower than this critical value, the dislocation tends to dissociate into an extended configuration and vice versa. To clarify the influence of dislocation dissociation on CPS, the classical Orowan formula is improved by incorporating the SFE. Moreover, the present 3D-DDD simulations also show that the yielding stress of SCNBSs with low SFE may be overestimated up to 30% if the dislocation dissociation is ignored. With dislocation dissociation being considered, the size effect due to the width of γ matrix channel and the length of γ‧ precipitates on the stress-strain responses of SCNBS can be enhanced remarkably. In addition, due to the strong constraint effect by the two-phase microstructure in SCNBS, the configuration of formed junctions is quite different from that in single phase crystals such as Cu. The present results not only provide clear understanding of the two-phase microstructure levelled microplastic mechanisms in SCNBSs with low SFE, but also help to develop new continuum-levelled constitutive laws for SCNBSs.
Focused Crawling of the Deep Web Using Service Class Descriptions
Rocco, D; Liu, L; Critchlow, T
2004-06-21
Dynamic Web data sources--sometimes known collectively as the Deep Web--increase the utility of the Web by providing intuitive access to data repositories anywhere that Web access is available. Deep Web services provide access to real-time information, like entertainment event listings, or present a Web interface to large databases or other data repositories. Recent studies suggest that the size and growth rate of the dynamic Web greatly exceed that of the static Web, yet dynamic content is often ignored by existing search engine indexers owing to the technical challenges that arise when attempting to search the Deep Web. To address these challenges, we present DynaBot, a service-centric crawler for discovering and clustering Deep Web sources offering dynamic content. DynaBot has three unique characteristics. First, DynaBot utilizes a service class model of the Web implemented through the construction of service class descriptions (SCDs). Second, DynaBot employs a modular, self-tuning system architecture for focused crawling of the DeepWeb using service class descriptions. Third, DynaBot incorporates methods and algorithms for efficient probing of the Deep Web and for discovering and clustering Deep Web sources and services through SCD-based service matching analysis. Our experimental results demonstrate the effectiveness of the service class discovery, probing, and matching algorithms and suggest techniques for efficiently managing service discovery in the face of the immense scale of the Deep Web.
Fluid Coupling in a Discrete Cochlear Model
NASA Astrophysics Data System (ADS)
Elliott, S. J.; Lineton, B.; Ni, G.
2011-11-01
The interaction between the basilar membrane, BM, dynamics and the fluid coupling in the cochlea can be formulated using a discrete model by assuming that the BM is divided into a number of longitudinal elements. The form of the fluid coupling can then be understood by dividing it into a far field component, due to plane wave acoustic coupling, and a near field component, due to higher order evanescent acoustic modes. The effects of non-uniformity and asymmetry in the cross-sectional areas of the fluid chambers can also be accounted for within this formulation. The discrete model is used to calculate the effect on the coupled BM response of a short cochlear implant, which reduces the volume of one of the fluid chambers over about half its length. The passive response of the coupled cochlea at lower frequencies is shown to be almost unaffected by this change in volume.
On Discrete Lotka-Volterra Type Models
NASA Astrophysics Data System (ADS)
Mukhamedov, Farrukh; Saburov, Mansoor
The Lotka-Volterra (in short LV) model is a second order nonlinear differential equation frequently used to describe the dynamics of biological systems in which two groups of species, predators and their preys interact. One of the basic results of the LV model is that under suitable conditions the LV model can exhibit any asymptotical behavior such as equilibrium states, periodic cycles, and attractors. The discrete analogy of LV model has been considered by many researchers and has been called a quadratic LV model. In a discrete case, one of the unexpected results is that a quadratic LV model cannot exhibit a periodic cycle. In this paper we study nonlinear LV type models which include quadratic LV as a particular case. Unlike quadratic LV models, LV type models can exhibit any asymptotical behavior such as equilibrium states, periodic cycles, and attractors.
Discrete Bubble Modeling for Cavitation Bubbles
NASA Astrophysics Data System (ADS)
Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung
2007-03-01
Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.
Discrete Mathematics and Its Applications
ERIC Educational Resources Information Center
Oxley, Alan
2010-01-01
The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…
ERIC Educational Resources Information Center
Brandsberg, Jennifer
1996-01-01
Provides a quick look at some World Wide Web sites that contain current election year information. Recommends Project Vote Smart, a site with links to online news organizations, the home pages of all presidential candidates, and other political sites. Briefly notes several interactive CD-ROM resources. (MJP)
ERIC Educational Resources Information Center
Lo, Erika
2001-01-01
Presents seven mathematics games, located on the World Wide Web, for elementary students, including: Absurd Math: Pre-Algebra from Another Dimension; The Little Animals Activity Centre; MathDork Game Room (classic video games focusing on algebra); Lemonade Stand (students practice math and business skills); Math Cats (teaches the artistic beauty…
Khan, M M; Varma, M P; Cleland, J; O'Kane, H O; Webb, S W; Mulholland, H C; Adgey, A A
1981-01-01
Data concerning 17 consecutive patients with discrete subaortic stenosis are recorded. Twelve patients underwent operative resection of the obstructing lesion. Of these all except one were symptomatic and all had electrocardiographic evidence of left ventricular hypertrophy or left ventricular hypertrophy with strain. They had a peak resting systolic left ventricular outflow tract gradient of greater than 50 mmHg as predicted from the combined cuff measurement of systolic blood pressure and the echocardiographically estimated left ventricular systolic pressure and/or as determined by cardiac catheterisation. The outflow tract gradient as predicted from M-mode echocardiography and peak systolic pressure showed close correlation with that measured at cardiac catheterisation or operation. During the postoperative follow-up from one month to 11 years, of 11 patients, one patient required a further operation for recurrence of the obstruction four years after the initial operation. All patients are now asymptomatic. Five patients have not had an operation. The left ventricular outflow tract gradient as assessed at the time of cardiac catheterisation was greater than 50 mmHg. One patient has been lost to follow-up. The remaining four have been followed from four to eight years and have remained asymptomatic and the electrocardiograms have remained unchanged. Careful follow-up of all patients is essential with continuing clinical assessment, electrocardiograms, M-mode and two-dimensional echocardiograms, and if necessary cardiac catheterisation. Prophylaxis against bacterial endocarditis is also essential. Images PMID:6457617
Discreteness inducing coexistence
NASA Astrophysics Data System (ADS)
dos Santos, Renato Vieira
2013-12-01
Consider two species that diffuse through space. Consider further that they differ only in initial densities and, possibly, in diffusion constants. Otherwise they are identical. What happens if they compete with each other in the same environment? What is the influence of the discrete nature of the interactions on the final destination? And what are the influence of diffusion and additive fluctuations corresponding to random migration and immigration of individuals? This paper aims to answer these questions for a particular competition model that incorporates intra and interspecific competition between the species. Based on mean field theory, the model has a stationary state dependent on the initial density conditions. We investigate how this initial density dependence is affected by the presence of demographic multiplicative noise and additive noise in space and time. There are three main conclusions: (1) Additive noise favors denser populations at the expense of the less dense, ratifying the competitive exclusion principle. (2) Demographic noise, on the other hand, favors less dense populations at the expense of the denser ones, inducing equal densities at the quasi-stationary state, violating the aforementioned principle. (3) The slower species always suffers the more deleterious effects of statistical fluctuations in a homogeneous medium.
NASA Astrophysics Data System (ADS)
Wang, Jiang; Ghosh, Anup; Huang, Yih
Malicious Web content poses a serious threat to the Internet, organizations and users. Current approaches to detecting malicious Web content employ high-powered honey clients to scan the Web for potentially malicious pages. These approaches, while effective at detecting malicious content, have the drawbacks of being few and far between, presenting a single snapshot in time of very dynamic phenomena, and having artificial test data. To address these problems, we developed a virtualized Web browser that uses large-scale collaboration to identify URLs that host malicious content on a continuing basis by building in an elective reporting system. The system, which we call a Web canary, runs a standard Web browser in a known, pristine OS every time the browser starts. Users not only report malicious URLs but also benefit from protection against malicious content. Experimental results show that it can detect the malicious Web pages effectively with acceptable overhead.
Four-dimensional characterization of a sheet-forming web
Sari-Sarraf, Hamed; Goddard, James S.
2003-04-22
A method and apparatus are provided by which a sheet-forming web may be characterized in four dimensions. Light images of the web are recorded at a point adjacent the initial stage of the web, for example, near the headbox in a paperforming operation. The images are digitized, and the resulting data is processed by novel algorithms to provide a four-dimensional measurement of the web. The measurements include two-dimensional spatial information, the intensity profile of the web, and the depth profile of the web. These measurements can be used to characterize the web, predict its properties and monitor production events, and to analyze and quantify headbox flow dynamics.
On discrete control of nonlinear systems with applications to robotics
NASA Technical Reports Server (NTRS)
Eslami, Mansour
1989-01-01
Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.
Discrete Darboux transformation for discrete polynomials of hypergeometric type
NASA Astrophysics Data System (ADS)
Bangerezako, Gaspard
1998-03-01
The Darboux transformation, well known in second-order differential operator theory, is applied to the difference equations satisfied by the discrete hypergeometric polynomials (Charlier, Meixner-Kravchuk, Hahn).
Discrete Dirac Structures and Implicit Discrete Lagrangian and Hamiltonian Systems
NASA Astrophysics Data System (ADS)
Leok, Melvin; Ohsawa, Tomoki
2010-07-01
We present discrete analogues of Dirac structures and the Tulczyjew's triple by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete analogues of implicit Lagrangian and Hamiltonian systems. In particular, this yields implicit nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange-d'Alembert-Pontryagin and Hamilton-d'Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. In addition to providing a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of Dirac mechanics, it provides a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.
An Architecture to Enable Future Sensor Webs
NASA Technical Reports Server (NTRS)
Mandl, Dan; Caffrey, Robert; Frye, Stu; Grosvenor, Sandra; Hess, Melissa; Chien, Steve; Sherwood, Rob; Davies, Ashley; Hayden, Sandra; Sweet, Adam
2004-01-01
A sensor web is a coherent set of distributed 'nodes', interconnected by a communications fabric, that collectively behave as a single dynamic observing system. A 'plug and play' mission architecture enables progressive mission autonomy and rapid assembly and thereby enables sensor webs. This viewgraph presentation addresses: Target mission messaging architecture; Strategy to establish architecture; Progressive autonomy with onboard sensor web; EO-1; Adaptive array antennas (smart antennas) for satellite ground stations.
Distinguishing between discreteness effects in stochastic reaction processes
NASA Astrophysics Data System (ADS)
Haruna, Taichi
2015-05-01
The effect of discreteness on stochastic dynamics of chemically reacting systems is studied analytically. We apply the scheme bridging the chemical master equation and the chemical Fokker-Planck equation by a parameter representing the degree of discreteness previously proposed by the author for two concrete systems. One is an autocatalytic reaction system, and the other is a branching-annihilation reaction system. It is revealed that the change in characteristic time scales when discreteness is decreased is yielded between the two systems for different reasons. In the former system, it originates from the boundaries where one of the chemical species is zero, whereas in the latter system, it is due to modification of the most probable extinction path caused by discreteness loss.
Smooth halos in the cosmic web
NASA Astrophysics Data System (ADS)
Gaite, José
2015-04-01
Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ``smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.
Smooth halos in the cosmic web
Gaite, José
2015-04-01
Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.
Novel approach to data discretization
NASA Astrophysics Data System (ADS)
Borowik, Grzegorz; Kowalski, Karol; Jankowski, Cezary
2015-09-01
Discretization is an important preprocessing step in data mining. The data discretization method involves determining the ranges of values for numeric attributes, which ultimately represent discrete intervals for new attributes. The ranges for the proposed set of cuts are analyzed, in order to obtain a minimal set of ranges while retaining the possibility of classification. For this purpose, a special discernibility function can be constructed as a conjunction of alternative cuts set for each pair of different objects of different decisions- cuts discern these objects. However, the data mining methods based on discernibility matrix are insufficient for large databases. The purpose of this paper is the idea of implementation of a new data discretization algorithm that is based on statistics of attribute values and that avoids building the discernibility matrix explicitly. Evaluation of time complexity has shown that the proposed method is much more efficient than currently available solutions for large data sets.
Web-Assisted and Online Learning.
ERIC Educational Resources Information Center
McEwen, Beryl C.
2001-01-01
Argues that distance learning technologies are tools. Offers the author's experiences of teaching web-assisted as well as online courses as examples of different approaches to distance learning, each with totally different dynamics. Concludes that meaningful learning took place in both classes, whether web-assisted traditional instruction or…
Concurrency and discrete event control
NASA Technical Reports Server (NTRS)
Heymann, Michael
1990-01-01
Much of discrete event control theory has been developed within the framework of automata and formal languages. An alternative approach inspired by the theories of process-algebra as developed in the computer science literature is presented. The framework, which rests on a new formalism of concurrency, can adequately handle nondeterminism and can be used for analysis of a wide range of discrete event phenomena.
Discrete photonics in waveguide arrays.
Moison, J M; Belabas, N; Minot, C; Levenson, J A
2009-08-15
In homogeneous arrays of coupled waveguides, Floquet-Bloch waves are known to travel freely across the waveguides. We introduce a systematic discussion of the built-in patterning of the coupling constant between neighboring waveguides. Key patterns provide functions such as redirecting, guiding, and focusing these waves, up to nonlinear all-optical routing. This opens the way to light control in a functionalized discrete space, i.e., discrete photonics.
Stability analysis of the Euler discretization for SIR epidemic model
Suryanto, Agus
2014-06-19
In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaos phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.
ACCELERATION PHYSICS CODE WEB REPOSITORY.
WEI, J.
2006-06-26
In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.
Accelerator Physics Code Web Repository
Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven
2006-10-24
In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.
Pattern Formation in Spatially Discrete Systems
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Fedotov, Sergei; Horsthemke, Werner
The preceding chapters have dealt with the spatiotemporal behavior of spatially continuous systems. We now turn our attention to the dynamical behavior and stability properties of spatially discrete systems. A wide variety of phenomena in chemistry, biology, physics, and other fields involve the coupling between nonlinear, discrete units. Examples include arrays of Josephson junctions, chains of coupled diode resonators, coupled chemical or biochemical reactors, myelinated nerve fibers, neuronal networks, and patchy ecosystems. Such networks of coupled nonlinear units often combine dynamical and structural complexity [422]. Cells in living tissues, for example, are arranged in a variety of geometries. One-dimensional rings of cells were already considered by Turing [440]. Other types of lattices, such as open-ended linear arrays, tubes, rectangular and hexagonal arrays, and irregular arrangements in two or three dimensions are also found, see for example [5]. Cells interact with adjacent cells in various distinct ways. For example, signaling between cells may occur via diffusion through gap junctions [352, 230] or by membrane-bound proteins, juxtacrine signaling [339, 340, 471].
None Available
2016-07-12
To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.
None Available
2009-06-01
To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.
Distributed Relaxation for Conservative Discretizations
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2001-01-01
A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.
NASA Astrophysics Data System (ADS)
Ellis, George F. R.; Gibbons, Gary W.
2014-01-01
In this paper we lay down the foundations for a purely Newtonian theory of cosmology, valid at scales small compared with the Hubble radius, using only Newtonian point particles acted on by gravity and a possible cosmological term. We describe the cosmological background which is given by an exact solution of the equations of motion in which the particles expand homothetically with their comoving positions constituting a central configuration. We point out, using previous work, that an important class of central configurations are homogeneous and isotropic, thus justifying the usual assumptions of elementary treatments. The scale factor is shown to satisfy the standard Raychaudhuri and Friedmann equations without making any fluid dynamic or continuum approximations. Since we make no commitment as to the identity of the point particles, our results are valid for cold dark matter, galaxies, or clusters of galaxies. In future publications we plan to discuss perturbations of our cosmological background from the point particle viewpoint laid down in this paper and show consistency with much standard theory usually obtained by more complicated and conceptually less clear continuum methods. Apart from its potential use in large scale structure studies, we believe that our approach has great pedagogic advantages over existing elementary treatments of the expanding universe, since it requires no use of general relativity or continuum mechanics but concentrates on the basic physics: Newton’s laws for gravitationally interacting particles.
Flow Webs: Mechanism and Architecture for the Implementation of Sensor Webs
NASA Astrophysics Data System (ADS)
Gorlick, M. M.; Peng, G. S.; Gasster, S. D.; McAtee, M. D.
2006-12-01
The sensor web is a distributed, federated infrastructure much like its predecessors, the internet and the world wide web. It will be a federation of many sensor webs, large and small, under many distinct spans of control, that loosely cooperates and share information for many purposes. Realistically, it will grow piecemeal as distinct, individual systems are developed and deployed, some expressly built for a sensor web while many others were created for other purposes. Therefore, the architecture of the sensor web is of fundamental import and architectural strictures that inhibit innovation, experimentation, sharing or scaling may prove fatal. Drawing upon the architectural lessons of the world wide web, we offer a novel system architecture, the flow web, that elevates flows, sequences of messages over a domain of interest and constrained in both time and space, to a position of primacy as a dynamic, real-time, medium of information exchange for computational services. The flow web captures; in a single, uniform architectural style; the conflicting demands of the sensor web including dynamic adaptations to changing conditions, ease of experimentation, rapid recovery from the failures of sensors and models, automated command and control, incremental development and deployment, and integration at multiple levels—in many cases, at different times. Our conception of sensor webs—dynamic amalgamations of sensor webs each constructed within a flow web infrastructure—holds substantial promise for earth science missions in general, and of weather, air quality, and disaster management in particular. Flow webs, are by philosophy, design and implementation a dynamic infrastructure that permits massive adaptation in real-time. Flows may be attached to and detached from services at will, even while information is in transit through the flow. This concept, flow mobility, permits dynamic integration of earth science products and modeling resources in response to real
Discovery and Classification of Bioinformatics Web Services
Rocco, D; Critchlow, T
2002-09-02
The transition of the World Wide Web from a paradigm of static Web pages to one of dynamic Web services provides new and exciting opportunities for bioinformatics with respect to data dissemination, transformation, and integration. However, the rapid growth of bioinformatics services, coupled with non-standardized interfaces, diminish the potential that these Web services offer. To face this challenge, we examine the notion of a Web service class that defines the functionality provided by a collection of interfaces. These descriptions are an integral part of a larger framework that can be used to discover, classify, and wrapWeb services automatically. We discuss how this framework can be used in the context of the proliferation of sites offering BLAST sequence alignment services for specialized data sets.
Discrete event simulation of continuous systems
Nutaro, James J
2007-01-01
Computer simulation of a system described by differential equations requires that some element of the system be approximated by discrete quantities. There are two system aspects that can be made discrete; time and state. When time is discrete, the differential equation is approximated by a difference equation (i.e., a discrete time system), and the solution is calculated at fixed points in time. When the state is discrete, the differential equation is approximated by a discrete event system. Events correspond to jumps through the discrete state space of the approximation.
Quantum algorithm for solving some discrete mathematical problems by probing their energy spectra
NASA Astrophysics Data System (ADS)
Wang, Hefeng; Fan, Heng; Li, Fuli
2014-01-01
When a probe qubit is coupled to a quantum register that represents a physical system, the probe qubit will exhibit a dynamical response only when it is resonant with a transition in the system. Using this principle, we propose a quantum algorithm for solving discrete mathematical problems based on the circuit model. Our algorithm has favorable scaling properties in solving some discrete mathematical problems.
Where are the parasites in food webs?
2012-01-01
This review explores some of the reasons why food webs seem to contain relatively few parasite species when compared to the full diversity of free living species in the system. At present, there are few coherent food web theories to guide scientific studies on parasites, and this review posits that the methods, directions and questions in the field of food web ecology are not always congruent with parasitological inquiry. For example, topological analysis (the primary tool in food web studies) focuses on only one of six important steps in trematode life cycles, each of which requires a stable community dynamic to evolve. In addition, these transmission strategies may also utilize pathways within the food web that are not considered in traditional food web investigations. It is asserted that more effort must be focused on parasite-centric models, and a central theme is that many different approaches will be required. One promising approach is the old energetic perspective, which considers energy as the critical resource for all organisms, and the currency of all food web interactions. From the parasitological point of view, energy can be used to characterize the roles of parasites at all levels in the food web, from individuals to populations to community. The literature on parasite energetics in food webs is very sparse, but the evidence suggests that parasite species richness is low in food webs because parasites are limited by the quantity of energy available to their unique lifestyles. PMID:23092160
Where are the parasites in food webs?
Sukhdeo, Michael V K
2012-01-01
This review explores some of the reasons why food webs seem to contain relatively few parasite species when compared to the full diversity of free living species in the system. At present, there are few coherent food web theories to guide scientific studies on parasites, and this review posits that the methods, directions and questions in the field of food web ecology are not always congruent with parasitological inquiry. For example, topological analysis (the primary tool in food web studies) focuses on only one of six important steps in trematode life cycles, each of which requires a stable community dynamic to evolve. In addition, these transmission strategies may also utilize pathways within the food web that are not considered in traditional food web investigations. It is asserted that more effort must be focused on parasite-centric models, and a central theme is that many different approaches will be required. One promising approach is the old energetic perspective, which considers energy as the critical resource for all organisms, and the currency of all food web interactions. From the parasitological point of view, energy can be used to characterize the roles of parasites at all levels in the food web, from individuals to populations to community. The literature on parasite energetics in food webs is very sparse, but the evidence suggests that parasite species richness is low in food webs because parasites are limited by the quantity of energy available to their unique lifestyles.
Geometry of discrete quantum computing
NASA Astrophysics Data System (ADS)
Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung
2013-05-01
Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.
Web Mining for Web Image Retrieval.
ERIC Educational Resources Information Center
Chen, Zheng; Wenyin, Liu; Zhang, Feng; Li, Mingjing; Zhang, Hongjiang
2001-01-01
Presents a prototype system for image retrieval from the Internet using Web mining. Discusses the architecture of the Web image retrieval prototype; document space modeling; user log mining; and image retrieval experiments to evaluate the proposed system. (AEF)
Discrete cloud structure on Neptune
NASA Astrophysics Data System (ADS)
Hammel, H. B.
1989-07-01
Recent CCD imaging data for the discrete cloud structure of Neptune shows that while cloud features at CH4-band wavelengths are manifest in the southern hemisphere, they have not been encountered in the northern hemisphere since 1986. A literature search has shown the reflected CH4-band light from the planet to have come from a single discrete feature at least twice in the last 10 years. Disk-integrated photometry derived from the imaging has demonstrated that a bright cloud feature was responsible for the observed 8900 A diurnal variation in 1986 and 1987.
Thompson, John N
2009-02-01
Coevolution--reciprocal evolutionary change in interacting species--is one of the central biological processes organizing the web of life, and most species are involved in one or more coevolved interactions. We have learned in recent years that coevolution is a highly dynamic process that continually reshapes interactions among species across ecosystems, creating geographic mosaics over timescales sometimes as short as thousands or even hundreds of years. If we take that as our starting point, what should we now be asking about the coevolutionary process? Here I suggest five major questions that we need to answer if we are to understand how coevolution shapes the web of life. How evolutionarily dynamic is specialization to other species, and what is the role of coevolutionary alternation in driving those dynamics? Does the geographic mosaic of coevolution shape adaptation in fundamentally different ways in different forms of interaction? How does the geographic mosaic of coevolution shape speciation? How does the structure of reciprocal selection change during the assembly of large webs of interacting species? How important are genomic events such as whole-genome duplication (i.e., polyploidy) and whole-genome capture (i.e., hybridization) in generating novel webs of interacting species? I end by suggesting four points about coevolution that we should tell every new student or researcher in biology.
Web Mining: Machine Learning for Web Applications.
ERIC Educational Resources Information Center
Chen, Hsinchun; Chau, Michael
2004-01-01
Presents an overview of machine learning research and reviews methods used for evaluating machine learning systems. Ways that machine-learning algorithms were used in traditional information retrieval systems in the "pre-Web" era are described, and the field of Web mining and how machine learning has been used in different Web mining applications…
Designing of discrete mechatronic vibrating systems with negative value parameters
NASA Astrophysics Data System (ADS)
Buchacz, Andrzej; Gałęziowski, Damian
2016-10-01
In the paper, the known problem of vibration control, authors expanded for designing of mechatronic discrete systems that contains single or multiply piezoelectric elements connected to external electric networks. Main focus has been given for investigations in relation to damping performance and parameters study, in case of potential practical application. By different configurations of considered mechatronic discrete branched structures with two degrees of freedom, key negative parameters have been identified and investigated in case of vibration control effectiveness. Results have been presented in graphical form of amplitudes and dynamical flexibility functions.
A note on a Discrete Boltzmann Equation with multiple collisions
NASA Astrophysics Data System (ADS)
Oliveira, Filipe; Soares, Ana Jacinta
2008-05-01
We compute a non-trivial explicit solution for the one-dimensional plane 6-velocity discrete Boltzmann model with multiple collisions introduced in [E. Longo, R. Monaco, On the discrete kinetic theory with multiple collisions: Plane six-velocity and unsteady Couette flow, in: Muntz, et al. (Eds.), The Proceedings of Rarefied Gas Dynamics, in: AIAA Publ., vol. 118, 1989, pp. 118-130] which asymptotically connects two particular equilibrium states. We prove that such a solution exists provided that a suitable condition on the differential elastic cross sections holds.
Effects of reduced discrete coupling on filament tension in excitable media.
Alonso, Sergio; Bär, Markus; Panfilov, Alexander V
2011-03-01
Wave propagation in the heart has a discrete nature, because it is mediated by discrete intercellular connections via gap junctions. Although effects of discreteness on wave propagation have been studied for planar traveling waves and vortexes (spiral waves) in two dimensions, its possible effects on vortexes (scroll waves) in three dimensions are not yet explored. In this article, we study the effect of discrete cell coupling on the filament dynamics in a generic model of an excitable medium. We find that reduced cell coupling decreases the line tension of scroll wave filaments and may induce negative filament tension instability in three-dimensional excitable lattices. PMID:21456832
Discrete virus infection model of hepatitis B virus.
Zhang, Pengfei; Min, Lequan; Pian, Jianwei
2015-01-01
In 1996 Nowak and his colleagues proposed a differential equation virus infection model, which has been widely applied in the study for the dynamics of hepatitis B virus (HBV) infection. Biological dynamics may be described more practically by discrete events rather than continuous ones. Using discrete systems to describe biological dynamics should be reasonable. Based on one revised Nowak et al's virus infection model, this study introduces a discrete virus infection model (DVIM). Two equilibriums of this model, E1 and E2, represents infection free and infection persistent, respectively. Similar to the case of the basic virus infection model, this study deduces a basic virus reproductive number R0 independing on the number of total cells of an infected target organ. A proposed theorem proves that if the basic virus reproductive number R0<1 then the virus free equilibrium E1 is locally stable. The DVIM is more reasonable than an abstract discrete susceptible-infected-recovered model (SIRS) whose basic virus reproductive number R0 is relevant to the number of total cells of the infected target organ. As an application, this study models the clinic HBV DNA data of a patient who was accepted via anti-HBV infection therapy with drug lamivudine. The results show that the numerical simulation is good in agreement with the clinic data.
Wang, Yang; Gu, Binhe; Lee, Ming-Kuo; Jiang, Shijun; Xu, Yingfeng
2014-07-15
Quantifying and predicting the food web consequences of anthropogenic changes is difficult using traditional methods (based on gut content analysis) because natural food webs are variable and complex. Here, stable and radioactive carbon isotopes are used, in conjunction with nitrogen isotopes and mercury (Hg) concentration data, to document the effects of land-use change on food webs and Hg bioaccumulation in the Everglades - a subtropical wetland ecosystem in the US. Isotopic signatures of largemouth bass and sunfish in reference (relatively pristine) wetlands indicate reliance on the food supply of modern primary production within the wetland. In contrast, both fish in areas impacted by agricultural runoff had radiocarbon ages as old as 540 years B.P., and larger isotopic variability than counterparts in reference wetlands, reflecting differences in the food web between impacted and reference wetlands. Consistent with this difference, particulate and dissolved organic matter in impacted areas had old radiocarbon ages (>600 years B.P.), indicating that old carbon derived from historic peat deposits in the Everglades Agricultural Area was passed along the food chain to consumers. Significant radiocarbon deficiencies in largemouth bass and sunfish, relative to mosquitofish, in impacted areas most likely indicate a reduced dependence on small fish. Furthermore, largemouth bass and sunfish from impacted areas had much lower Hg contents than those from reference wetlands. Taken together, these data suggest a shift toward lower trophic levels and a possible reduction in mercury methylation in impacted wetlands. Our study provides clear evidence that hydrological modification and land-use change in the Everglades have changed the system from one driven primarily by in-situ productivity to one that is partially dependent on allochthonous carbon input from peat soils in the agricultural area and altered the Hg biogeochemical cycle in the wetlands. The results have
Wang, Yang; Gu, Binhe; Lee, Ming-Kuo; Jiang, Shijun; Xu, Yingfeng
2014-07-15
Quantifying and predicting the food web consequences of anthropogenic changes is difficult using traditional methods (based on gut content analysis) because natural food webs are variable and complex. Here, stable and radioactive carbon isotopes are used, in conjunction with nitrogen isotopes and mercury (Hg) concentration data, to document the effects of land-use change on food webs and Hg bioaccumulation in the Everglades - a subtropical wetland ecosystem in the US. Isotopic signatures of largemouth bass and sunfish in reference (relatively pristine) wetlands indicate reliance on the food supply of modern primary production within the wetland. In contrast, both fish in areas impacted by agricultural runoff had radiocarbon ages as old as 540 years B.P., and larger isotopic variability than counterparts in reference wetlands, reflecting differences in the food web between impacted and reference wetlands. Consistent with this difference, particulate and dissolved organic matter in impacted areas had old radiocarbon ages (>600 years B.P.), indicating that old carbon derived from historic peat deposits in the Everglades Agricultural Area was passed along the food chain to consumers. Significant radiocarbon deficiencies in largemouth bass and sunfish, relative to mosquitofish, in impacted areas most likely indicate a reduced dependence on small fish. Furthermore, largemouth bass and sunfish from impacted areas had much lower Hg contents than those from reference wetlands. Taken together, these data suggest a shift toward lower trophic levels and a possible reduction in mercury methylation in impacted wetlands. Our study provides clear evidence that hydrological modification and land-use change in the Everglades have changed the system from one driven primarily by in-situ productivity to one that is partially dependent on allochthonous carbon input from peat soils in the agricultural area and altered the Hg biogeochemical cycle in the wetlands. The results have
Some discrete multiple orthogonal polynomials
NASA Astrophysics Data System (ADS)
Arvesú, J.; Coussement, J.; van Assche, W.
2003-04-01
In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw, Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have a lowering and raising operator, which give rise to a Rodrigues formula, a second order difference equation, and an explicit expression from which the coefficients of the three-term recurrence relation can be obtained. Then we consider r positive discrete measures and define two types of multiple orthogonal polynomials. The continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput. Appl. Math. 127 (2001) 317-347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights, manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally, there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We compute the coefficients of the recurrence relation explicitly when r=2.
Reduced discretization error in HZETRN
NASA Astrophysics Data System (ADS)
Slaba, Tony C.; Blattnig, Steve R.; Tweed, John
2013-02-01
The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm2 exposed to both solar particle event and galactic cosmic ray environments.
Reduced discretization error in HZETRN
Slaba, Tony C.; Blattnig, Steve R.; Tweed, John
2013-02-01
The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm{sup 2} exposed to both solar particle event and galactic cosmic ray environments.
Ecological food web analysis for chemical risk assessment.
Preziosi, Damian V; Pastorok, Robert A
2008-12-01
Food web analysis can be a critical component of ecological risk assessment, yet it has received relatively little attention among risk assessors. Food web data are currently used in modeling bioaccumulation of toxic chemicals and, to a limited extent, in the determination of the ecological significance of risks. Achieving more realism in ecological risk assessments requires new analysis tools and models that incorporate accurate information on key receptors in a food web paradigm. Application of food web analysis in risk assessments demands consideration of: 1) different kinds of food webs; 2) definition of trophic guilds; 3) variation in food webs with habitat, space, and time; and 4) issues for basic sampling design and collection of dietary data. The different kinds of food webs include connectance webs, materials flow webs, and functional (or interaction) webs. These three kinds of webs play different roles throughout various phases of an ecological risk assessment, but risk assessors have failed to distinguish among web types. When modeling food webs, choices must be made regarding the level of complexity for the web, assignment of species to trophic guilds, selection of representative species for guilds, use of average diets, the characterization of variation among individuals or guild members within a web, and the spatial and temporal scales/dynamics of webs. Integrating exposure and effects data in ecological models for risk assessment of toxic chemicals relies on coupling food web analysis with bioaccumulation models (e.g., Gobas-type models for fish and their food webs), wildlife exposure models, dose-response models, and population dynamics models. PMID:18703218
Nonlinear wave propagation in discrete and continuous systems
NASA Astrophysics Data System (ADS)
Rothos, V. M.
2016-09-01
In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.
MendelWeb: An Electronic Science/Math/History Resource for the WWW.
ERIC Educational Resources Information Center
Blumberg, Roger B.
This paper describes a hypermedia resource, called MendelWeb that integrates elementary biology, discrete mathematics, and the history of science. MendelWeb is constructed from Gregor Menders 1865 paper, "Experiments in Plant Hybridization". An English translation of Mendel's paper, which is considered to mark the birth of classical and…
Yu, Fajun
2015-03-01
We present the nonautonomous discrete bright soliton solutions and their interactions in the discrete Ablowitz-Ladik (DAL) equation with variable coefficients, which possesses complicated wave propagation in time and differs from the usual bright soliton waves. The differential-difference similarity transformation allows us to relate the discrete bright soliton solutions of the inhomogeneous DAL equation to the solutions of the homogeneous DAL equation. Propagation and interaction behaviors of the nonautonomous discrete solitons are analyzed through the one- and two-soliton solutions. We study the discrete snaking behaviors, parabolic behaviors, and interaction behaviors of the discrete solitons. In addition, the interaction management with free functions and dynamic behaviors of these solutions is investigated analytically, which have certain applications in electrical and optical systems.
Dissipative discrete breathers: periodic, quasiperiodic, chaotic, and mobile.
Martínez, P J; Meister, M; Floría, L M; Falo, F
2003-06-01
The properties of discrete breathers in dissipative one-dimensional lattices of nonlinear oscillators subject to periodic driving forces are reviewed. We focus on oscillobreathers in the Frenkel-Kontorova chain and rotobreathers in a ladder of Josephson junctions. Both types of exponentially localized solutions are easily obtained numerically using adiabatic continuation from the anticontinuous limit. Linear stability (Floquet) analysis allows the characterization of different types of bifurcations experienced by periodic discrete breathers. Some of these bifurcations produce nonperiodic localized solutions, namely, quasiperiodic and chaotic discrete breathers, which are generally impossible as exact solutions in Hamiltonian systems. Within a certain range of parameters, propagating breathers occur as attractors of the dissipative dynamics. General features of these excitations are discussed and the Peierls-Nabarro barrier is addressed. Numerical scattering experiments with mobile breathers reveal the existence of two-breather bound states and allow a first glimpse at the intricate phenomenology of these special multibreather configurations.
Lessons Learned from a Collaborative Sensor Web Prototype
NASA Technical Reports Server (NTRS)
Ames, Troy; Case, Lynne; Krahe, Chris; Hess, Melissa; Hennessy, Joseph F. (Technical Monitor)
2002-01-01
This paper describes the Sensor Web Application Prototype (SWAP) system that was developed for the Earth Science Technology Office (ESTO). The SWAP is aimed at providing an initial engineering proof-of-concept prototype highlighting sensor collaboration, dynamic cause-effect relationship between sensors, dynamic reconfiguration, and remote monitoring of sensor webs.
Discrete impulses in ephaptically coupled nerve fibers.
Maïna, I; Tabi, C B; Ekobena Fouda, H P; Mohamadou, A; Kofané, T C
2015-04-01
We exclusively analyze the condition for modulated waves to emerge in two ephaptically coupled nerve fibers. Through the multiple scale expansion, it is shown that a set of coupled cable-like Hodgkin-Huxley equations can be reduced to a single differential-difference nonlinear equation. The standard approach of linear stability analysis of a plane wave is used to predict regions of parameters where nonlinear structures can be observed. Instability features are shown to be importantly controlled not only by the ephaptic coupling parameter, but also by the discreteness parameter. Numerical simulations, to verify our analytical predictions, are performed, and we explore the longtime dynamics of slightly perturbed plane waves in the coupled nerve fibers. On initially exciting only one fiber, quasi-perfect interneuronal communication is discussed along with the possibility of recruiting damaged or non-myelinated nerve fibers, by myelinated ones, into conduction.
Holography and Mottness: A Discrete Marriage
NASA Astrophysics Data System (ADS)
Phillips, Philip
2012-02-01
Gauge-gravity duality has allowed us to solve the physics of certain strongly coupled quantum mechanical systems using gravity. I will show how a space-time consisting of a charged black hole and a bulk Pauli coupling corresponds to a boundary theory with a dynamically generated gap (with no obvious symmetry breaking) and a massive rearrangement of the spectral weight as in classic Mott systems such as VO2. In this holographic set-up, the gap opens only when discrete scale invariance is present. This raises the possibility that the elusive symmetry that might be broken in Mott insulators, in general, might pertain to scale invariance. The relevance of this claim to recent theories of Mott systems that possess massless charged bosons is explored.
Discrete gauge symmetries in discrete MSSM-like orientifolds
NASA Astrophysics Data System (ADS)
Ibáñez, L. E.; Schellekens, A. N.; Uranga, A. M.
2012-12-01
Motivated by the necessity of discrete ZN symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z2 (R-parity) and Z3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.
A FORTRAN Program for Discrete Discriminant Analysis
ERIC Educational Resources Information Center
Boone, James O.; Brewer, James K.
1976-01-01
A Fortran program is presented for discriminant analysis of discrete variables. The program assumes discrete, nominal data with no distributional, variance-covariance assumptions. The program handles a maximum of fifty predictor variables and twelve outcome groups. (Author/JKS)
Anomalies and Discrete Chiral Symmetries
Creutz, M.
2009-09-07
The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.
A New Web-based Application Optimization Model in Multicore Web Server
NASA Astrophysics Data System (ADS)
You, Guohua; Zhao, Ying
More and more web servers adopt multi-core CPUs to improve performance because of the development of multi-core technology. However, web applications couldn't exploit the potential of multi-core web server efficiently because of traditional processing algorithm of requests and scheduling strategies of threads in O/S. In this paper, a new web-based application optimization model was proposed, which could classify and schedule the dynamic requests and static requests on scheduling core, and process the dynamic requests on the other cores. By this way, a simulation program, which is called SIM, was developed. Experiments have been done to validate the new model, and the results show that the new model can effectively improve the performance of multi-core web servers, and avoid the problems of ping-pong effect.
Aragon-Calvo, Miguel A.; Szalay, Alexander S.; Platen, Erwin; Van de Weygaert, Rien
2010-11-01
We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between the watershed basins to trace the critical points in the density field and the separatrices defined by them. The separatrices are classified into walls and the spine, the network of filaments and nodes in the matter distribution. Testing the method with a heuristic Voronoi model yields outstanding results. Following the discussion of the test results, we apply the SpineWeb method to a set of cosmological N-body simulations. The latter illustrates the potential for studying the structure and dynamics of the Cosmic Web.
Pucher, Johannes; Mayrhofer, Richard; El-Matbouli, Mansour; Focken, Ulfert
2014-01-01
Small, semi-intensively managed aquaculture ponds contribute significantly to the food security of small-scale farmers around the world. However, little is known about nutrient flows within natural food webs in such ponds in which fish production depends on the productivity of natural food resources. (15)N was applied as ammonium at 1.1 and 0.4 % of total nitrogen in a traditionally managed flow-through pond and a semi-intensively managed stagnant pond belonging to small-scale farmers in Northern Vietnam and traced through the natural food resources over 7 days. Small-sized plankton (1-60 μ m) was the dominant pelagic biomass in both ponds with higher biomass in the stagnant pond. This plankton assimilated major portions of the applied tracer and showed a high sedimentation and turnover rate. High re-activation of settled nutrients into the pelagic food web was observed. The tracer was removed more quickly from the flow-through pond than from the stagnant pond. A steady nutrient supply could increase fish production. PMID:24995524
Pucher, Johannes; Mayrhofer, Richard; El-Matbouli, Mansour; Focken, Ulfert
2014-01-01
Small, semi-intensively managed aquaculture ponds contribute significantly to the food security of small-scale farmers around the world. However, little is known about nutrient flows within natural food webs in such ponds in which fish production depends on the productivity of natural food resources. (15)N was applied as ammonium at 1.1 and 0.4 % of total nitrogen in a traditionally managed flow-through pond and a semi-intensively managed stagnant pond belonging to small-scale farmers in Northern Vietnam and traced through the natural food resources over 7 days. Small-sized plankton (1-60 μ m) was the dominant pelagic biomass in both ponds with higher biomass in the stagnant pond. This plankton assimilated major portions of the applied tracer and showed a high sedimentation and turnover rate. High re-activation of settled nutrients into the pelagic food web was observed. The tracer was removed more quickly from the flow-through pond than from the stagnant pond. A steady nutrient supply could increase fish production.
Zittrain, Jonathan
2013-03-28
What is the Web? What makes it work? And is it dying? This paper is drawn from a talk delivered by Prof. Zittrain to the Royal Society Discussion Meeting 'Web science: a new frontier' in September 2010. It covers key questions about the way the Web works, and how an understanding of its past can help those theorizing about the future. The original Web allowed users to display and send information from their individual computers, and organized the resources of the Internet with uniform resource locators. In the 20 years since then, the Web has evolved. These new challenges require a return to the spirit of the early Web, exploiting the power of the Web's users and its distributed nature to overcome the commercial and geopolitical forces at play. The future of the Web rests in projects that preserve its spirit, and in the Web science that helps make them possible.
Quantization of systems with temporally varying discretization. II. Local evolution moves
Höhn, Philipp A.
2014-10-15
Several quantum gravity approaches and field theory on an evolving lattice involve a discretization changing dynamics generated by evolution moves. Local evolution moves in variational discrete systems (1) are a generalization of the Pachner evolution moves of simplicial gravity models, (2) update only a small subset of the dynamical data, (3) change the number of kinematical and physical degrees of freedom, and (4) generate a dynamical (or canonical) coarse graining or refining of the underlying discretization. To systematically explore such local moves and their implications in the quantum theory, this article suitably expands the quantum formalism for global evolution moves, constructed in Paper I [P. A. Höhn, “Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces,” J. Math. Phys. 55, 083508 (2014); e-print http://arxiv.org/abs/arXiv:1401.6062 [gr-qc
NASA Astrophysics Data System (ADS)
Hunt, B. P. V.; Allain, V.; Menkes, C.; Lorrain, A.; Graham, B.; Rodier, M.; Pagano, M.; Carlotti, F.
2015-03-01
This study investigated the food web structure of the oligotrophic picophytoplankton-dominated pelagic ecosystem in the vicinity of New Caledonia, within the Archipelagic Deep Basin (ARCH) province of the southwest sub-tropical Pacific. Nitrogen stable isotope (δ15N) data were collected for mesozooplankton (0.2-2 mm), macrozooplankton (2-20 mm), micronekton (20-200 mm) and nekton (>200 mm) during 2002-2004 and 2011. Using a coupled δ15N size-spectrum approach, we estimated (1) organism trophic level (TL); (2) food chain length (FCL); (3) predator prey mass ratio (PPMR); and (4) transfer efficiency (TE). The role of phytoplankton size structure in determining these parameters was investigated. Applying a trophic enrichment factor (TEF) of 3.4, maximum TL was calculated at ~5. The number of TLs spanned by each length class was 1.97 for mesozooplankton, 2.07 for macrozooplankton, 2.75 for micronekton, and 2.21 for nekton. Estimated PPMR was 10,099:1 for mesozooplankton, 3683:1 for macrozooplankton/micronekton, and 2.44×105:1 for nekton, corresponding to TEs of 6.3%, 8.5% and 2.4%, respectively. PPMR and TE were strongly influenced by the TEF used, and TEF 3.4 likely over and underestimated PPMR and TE, respectively, for mesozooplankton and macrozooplankton/micronekton. Comparatively low PPMR for mesozooplankton and macrozooplankton/micronekton indicated longer food chains and higher connectivity within these groups than for the nekton. Conversely, the high PPMR yet high trophic niche width for the nekton indicated that they prey primarily on macrozooplankton/micronekton, with a relatively high degree of dietary specialisation. Our results are discussed in the context of other marine food webs. The ARCH food chain was found to be 1-1.5 trophic levels longer than the eutrophic micro-/nanophytoplankton-dominated Californian upwelling system, providing empirical support for the role of phytoplankton size in determining FCL. Group specific PPMR estimates demonstrated
A Case Study in Web 2.0 Application Development
NASA Astrophysics Data System (ADS)
Marganian, P.; Clark, M.; Shelton, A.; McCarty, M.; Sessoms, E.
2010-12-01
Recent web technologies focusing on languages, frameworks, and tools are discussed, using the Robert C. Byrd Green Bank Telescopes (GBT) new Dynamic Scheduling System as the primary example. Within that example, we use a popular Python web framework, Django, to build the extensive web services for our users. We also use a second complimentary server, written in Haskell, to incorporate the core scheduling algorithms. We provide a desktop-quality experience across all the popular browsers for our users with the Google Web Toolkit and judicious use of JQuery in Django templates. Single sign-on and authentication throughout all NRAO web services is accomplished via the Central Authentication Service protocol, or CAS.
Invasive Mutualists Erode Native Pollination Webs
Aizen, Marcelo A; Morales, Carolina L; Morales, Juan M
2008-01-01
Plant–animal mutualisms are characterized by weak or asymmetric mutual dependences between interacting species, a feature that could increase community stability. If invasive species integrate into mutualistic webs, they may alter web structure, with consequences for species persistence. However, the effect of alien mutualists on the architecture of plant–pollinator webs remains largely unexplored. We analyzed the extent of mutual dependency between interacting species, as a measure of mutualism strength, and the connectivity of 10 paired plant–pollinator webs, eight from forests of the southern Andes and two from oceanic islands, with different incidences of alien species. Highly invaded webs exhibited weaker mutualism than less-invaded webs. This potential increase in network stability was the result of a disproportionate increase in the importance and participation of alien species in the most asymmetric interactions. The integration of alien mutualists did not alter overall network connectivity, but links were transferred from generalist native species to super-generalist alien species during invasion. Therefore, connectivity among native species declined in highly invaded webs. These modifications in the structure of pollination webs, due to dominance of alien mutualists, can leave many native species subject to novel ecological and evolutionary dynamics. PMID:18271628
Discrete-time infinity control problem with measurement feedback
NASA Technical Reports Server (NTRS)
Stoorvogel, A. A.; Saberi, A.; Chen, B. M.
1992-01-01
The paper is concerned with the discrete-time H(sub infinity) control problem with measurement feedback. The authors extend previous results by having weaker assumptions on the system parameters. The authors also show explicitly the structure of H(sub infinity) controllers. Finally, they show that it is in certain cases possible, without loss of performance, to reduce the dynamical order of the controllers.
Discrete quadratic solitons with competing second-harmonic components
Setzpfandt, Frank; Pertsch, Thomas; Sukhorukov, Andrey A.
2011-11-15
We describe families of discrete solitons in quadratic waveguide arrays supported by competing cascaded nonlinear interactions between one fundamental and two second-harmonic modes. We characterize the existence, stability, and excitation dynamics of these solitons and show that their features may resemble those of solitons in saturable media. Our results also demonstrate that a power threshold may appear for soliton formation, leading to a suppression of beam self-focusing which explains recent experimental observations.
ERIC Educational Resources Information Center
Raeder, Aggi
1997-01-01
Discussion of ways to promote sites on the World Wide Web focuses on how search engines work and how they retrieve and identify sites. Appropriate Web links for submitting new sites and for Internet marketing are included. (LRW)
ERIC Educational Resources Information Center
Simko, Juraj; Cummins, Fred
2010-01-01
Movement science faces the challenge of reconciling parallel sequences of discrete behavioral goals with observed fluid, context-sensitive motion. This challenge arises with a vengeance in the speech domain, in which gestural primitives play the role of discrete goals. The task dynamic framework has proved effective in modeling the manner in which…
Parasites in food webs: the ultimate missing links
Lafferty, Kevin D.; Allesina, Stefano; Arim, Matias; Briggs, Cherie J.; De Leo, Giulio A.; Dobson, Andrew P.; Dunne, Jennifer A.; Johnson, Pieter T.J.; Kuris, Armand M.; Marcogliese, David J.; Martinez, Neo D.; Memmott, Jane; Marquet, Pablo A.; McLaughlin, John P.; Mordecai, Eerin A.; Pascual, Mercedes; Poulin, Robert; Thieltges, David W.
2008-01-01
Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.
NASA Technical Reports Server (NTRS)
Duncan, S.
1984-01-01
Technological goals for a silicon dendritic web growth program effort are presented. Principle objectives for this program include: (1) grow long web crystals front continuously replenished melt; (2) develop temperature distribution in web and melt; (3) improve reproductibility of growth; (4) develop configurations for increased growth rates (width and speed); (5) develop new growth system components as required for improved growth; and (6) evaluate quality of web growth.
Discrete auroras and magnetotail processes.
NASA Astrophysics Data System (ADS)
Lyons, L. R.
Important information about magnetospheric phenomena associated with auroras and substorms can be inferred from low-altitude auroral observations. Satellite observations have shown that discrete auroral arcs lie within a boundary plasma sheet (BPS) region that is outside the central plasma sheet (CPS). The observations imply that arcs are generated along BPS field lines by magnetospheric processes that form large, perpendicular electric field structures. The BPS and the arc generation processes apparently lie along field lines that are in the vicinity of the boundary between open and closed field lines and cross the tail (or magnetopause) current sheet. Ground-based observations show that the first indication of a substorm onset is the brightening of a quiet, discrete arc. This suggests that substorms are initiated along the BPS field lines associated with arc generation, and not within the CPS. Finally, auroral observations have shown that the area of open, polar-cap field lines varies considerably during periods of geomagnetic activity. Expansion of the polar cap has the potential for releasing trapped plasma sheet particles along freshly open field lines. The resulting evacuation of field lines has the potential for being an important loss process for the plasma sheet and for being a source of tailward flows and energetic particle bursts in the tail.
ERIC Educational Resources Information Center
Thelwall, Mike
2001-01-01
Discusses business use of the Web and related search engine design issues as well as research on general and academic links before reporting on a survey of the links published by a collection of business Web sites. Results indicate around 66% of Web sites do carry external links, most of which are targeted at a specific purpose, but about 17%…
Multimedia Web Searching Trends.
ERIC Educational Resources Information Center
Ozmutlu, Seda; Spink, Amanda; Ozmutlu, H. Cenk
2002-01-01
Examines and compares multimedia Web searching by Excite and FAST search engine users in 2001. Highlights include audio and video queries; time spent on searches; terms per query; ranking of the most frequently used terms; and differences in Web search behaviors of U.S. and European Web users. (Author/LRW)
ERIC Educational Resources Information Center
Liu, Dennis
2006-01-01
The human brain contains an estimated 100 billion neurons, and browsing the Web, one might be led to believe that there's a Web site for every one of those cells. It's no surprise that there are lots of Web sites concerning the nervous system. After all, the human brain is toward the top of nearly everyone's list of favorite organs and of…
ERIC Educational Resources Information Center
Money, William H.
Instructors should be concerned with how to incorporate the World Wide Web into an information systems (IS) curriculum organized across three areas of knowledge: information technology, organizational and management concepts, and theory and development of systems. The Web fits broadly into the information technology component. For the Web to be…
ERIC Educational Resources Information Center
Snider, Jean; Martin, Florence
2012-01-01
Web usability focuses on design elements and processes that make web pages easy to use. A website for college students was evaluated for underutilization. One-on-one testing, focus groups, web analytics, peer university review and marketing focus group and demographic data were utilized to conduct usability evaluation. The results indicated that…
Langseth, Brian J.; Jones, Michael L.; Riley, Stephen C.
2014-01-01
Ecopath with Ecosim (EwE) is a widely used modeling tool in fishery research and management. Ecopath requires a mass-balanced snapshot of a food web at a particular point in time, which Ecosim then uses to simulate changes in biomass over time. Initial inputs to Ecopath, including estimates for biomasses, production to biomass ratios, consumption to biomass ratios, and diets, rarely produce mass balance, and thus ad hoc changes to inputs are required to balance the model. There has been little previous research of whether ad hoc changes to achieve mass balance affect Ecosim simulations. We constructed an EwE model for the offshore community of Lake Huron, and balanced the model using four contrasting but realistic methods. The four balancing methods were based on two contrasting approaches; in the first approach, production of unbalanced groups was increased by increasing either biomass or the production to biomass ratio, while in the second approach, consumption of predators on unbalanced groups was decreased by decreasing either biomass or the consumption to biomass ratio. We compared six simulation scenarios based on three alternative assumptions about the extent to which mortality rates of prey can change in response to changes in predator biomass (i.e., vulnerabilities) under perturbations to either fishing mortality or environmental production. Changes in simulated biomass values over time were used in a principal components analysis to assess the comparative effect of balancing method, vulnerabilities, and perturbation types. Vulnerabilities explained the most variation in biomass, followed by the type of perturbation. Choice of balancing method explained little of the overall variation in biomass. Under scenarios where changes in predator biomass caused large changes in mortality rates of prey (i.e., high vulnerabilities), variation in biomass was greater than when changes in predator biomass caused only small changes in mortality rates of prey (i.e., low
Periodic versus constant harvesting of discretely reproducing fish populations.
Yakubu, Abdul-Aziz; Fogarty, Michael J
2009-03-01
We use a single-species discrete-time model to demonstrate changes that introduction of the strong Allee mechanism and periodic exploitations have on compensatory and overcompensatory stock dynamics through comparison with corresponding models that lack such constraints. Periodic and constant exploitations simplify complex overcompensatory stock dynamics with or without the Allee effect. Both constant and periodic exploitations force a sudden collapse to extinction of fisheries systems that exhibit the Allee mechanism. However, in the absence of the Allee effect, fisheries systems decline to zero smoothly under high exploitation.
Parameter redundancy in discrete state‐space and integrated models
McCrea, Rachel S.
2016-01-01
Discrete state‐space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state‐space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state‐space models using discrete analogues of methods for continuous state‐space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. PMID:27362826
Parameter redundancy in discrete state-space and integrated models.
Cole, Diana J; McCrea, Rachel S
2016-09-01
Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant.
Discrete element modelling of subglacial sediment deformation
NASA Astrophysics Data System (ADS)
Christensen, A. D.; Egholm, D. L.; Piotrowski, J. A.; Tulaczyk, S.
2012-04-01
Soft, deformable sediments are often present under glaciers. Subglacial sediments deform under the differential load of the ice, and this causes the overlying glacier to accelerate its motion. Understanding the rheology of subglacial sediment is therefore important for models of glacial dynamics. Previous studies of the mechanical behaviour of subglacial sediments have primarily relied on analytical considerations and laboratory shearing experiments. As a novel approach, the Discrete Element Method (DEM) is used to explore the highly nonlinear dynamics of a granular bed that is exposed to stress conditions comparable to subglacial environments. The numerical approach allows close monitoring of the mechanical and rheological behaviour under a range of conditions. Of special interest is bed shear strength, strain distribution and -localization, mode of deformation, and role of effective normal pressure during shearing. As a calibration benchmark, results from laboratory ring-shear experiments on granular material are compared to similar numerical experiments. The continuously recorded stress dynamics in the laboratory shear experiments are compared to DEM experiments, and the micro-mechanical parameters in the contact model of the DEM code are calibrated to match the macroscopic Mohr-Coulomb failure criteria parameters, constrained from successive laboratory shear tests under a range of normal pressures. The data-parallel nature of the basic DEM formulation makes the problem ideal for utilizing the high arithmetic potential of modern general-purpose GPUs. Using the Nvidia Cuda C toolkit, the algorithm is formulated for spherical particles in three dimensions with a soft-body contact model. Scene rendering is performed using a custom Cuda ray-tracing algorithm. Efforts on optimization of the particle algorithm are discussed, and future plans of expansion are presented.
NASA Astrophysics Data System (ADS)
Rugenski, A. T.; Kohler, A.; Minshall, G. W.; Danehy, R. J.; Taki, D.
2005-05-01
Nutrient budgets of stream/riparian ecosystems in the Intermountain West have been depleted through declining salmon populations and certain anthropogenic disturbances (e.g. forestry practices). We measured stream food web responses to a riparian fertilization and an in-stream carcass analog addition in 4 Idaho streams with a 15 N tracer. Aerial application of fertilizer pellets to light (224 kg/ha) and heavy (448 kg/ha) treatment sections of 2 streams and carcass analog additions to 2 others were completed in autumn. Periphyton response was measured through chlorophyll a, nutrient diffusing substrata, and stable isotope analyses. Macroinvertebrates were analyzed for abundance, biomass, community structure, and stable isotope composition. Also, willow (Salix) breakdown rates were determined. Pre-treatment chlorophyll a values showed no significant difference between treatment and reference reaches. Post-treatment results showed significantly higher chlorophyll a and δ 15 N values in treatment reaches compared to reference reaches. Macroinvertebrate abundance, richness, biomass, and δ 15 N values also increased in treated reaches. No significant differences were detected in leaf breakdown rates between reaches. Riparian fertilization effects were longer lasting than the in-stream treatment. These results suggest that nutrient addition to streams and riparian areas can be used as a management tool to increase stream productivity where nutrients are limiting.
Discrete Element Modelling of Floating Debris
NASA Astrophysics Data System (ADS)
Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed
2016-04-01
Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical
Nonlinear nano-scale localized breather modes in a discrete weak ferromagnetic spin lattice
NASA Astrophysics Data System (ADS)
Kavitha, L.; Parasuraman, E.; Gopi, D.; Prabhu, A.; Vicencio, Rodrigo A.
2016-03-01
We investigate the propagation dynamics of highly localized discrete breather modes in a weak ferromagnetic spin lattice with on-site easy axis anisotropy due to crystal field effect. We derive the discrete nonlinear equation of motion by employing boson mappings and p-representation. We explore the onset of modulational instability both analytically in the framework of linear stability analysis and numerically by means of molecular dynamics (MD) simulations, and a perfect agreement was demonstrated. It is also explored that how the antisymmetric nature of the canted ferromagnetic lattice supports highly localized discrete breather (DBs) modes as shown in the stability/instability windows. The energy exchange between low amplitude discrete breathers favours the growth of higher amplitude DBs, resulting eventually in the formation of few long-lived high amplitude DBs.
An Integrated Environment for Geospatial Web Service Composition
NASA Astrophysics Data System (ADS)
Zhao, P.; di, L.; Wei, Y.
2006-05-01
Assembling individual geospatial web services into more complex and more useful web processes to achieve desired results proves to be essential for complex geospatial applications. As geospatial web services embed lots of geospatial information and knowledge, the geospatial domain-specific tools are needed to help users discover, retrieve and integrate these services. We have developed an integrated environment that allows users in the semi-automatic and dynamic composition of geospatial web services. This paper illustrates the whole life cycle of a web service composition: 1) discover services in OGC Catalog Service for Web (CSW), 2) present and select matching service at each step of a composition with the assistance of intelligent autonomous interface agent, 3) compose a service chain based on domain knowledge, and 4) execute the composed service chain automatically through its BPEL and WSDL scripts. The environment has been used to demonstrate practical benefits in the context of OGC Web services for Earth science research and applications.
Observers for discrete-time nonlinear systems
NASA Astrophysics Data System (ADS)
Grossman, Walter D.
Observer synthesis for discrete-time nonlinear systems with special applications to parameter estimation is analyzed. Two new types of observers are developed. The first new observer is an adaptation of the Friedland continuous-time parameter estimator to discrete-time systems. The second observer is an adaptation of the continuous-time Gauthier observer to discrete-time systems. By adapting these observers to discrete-time continuous-time parameter estimation problems which were formerly intractable become tractable. In addition to the two newly developed observers, two observers already described in the literature are analyzed and deficiencies with respect to noise rejection are demonstrated. Improved versions of these observers are proposed and their performance demonstrated. The issues of discrete-time observability, discrete-time system inversion, and optimal probing are also addressed.
Warren, David W.
1997-01-01
A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.