Ratchet effect in the quantum kicked rotor and its destruction by dynamical localization
NASA Astrophysics Data System (ADS)
Hainaut, Clément; Rançon, Adam; Clément, Jean-François; Garreau, Jean Claude; Szriftgiser, Pascal; Chicireanu, Radu; Delande, Dominique
2018-06-01
We study experimentally a quantum kicked rotor with broken parity symmetry, supporting a ratchet effect due to the presence of a classical accelerator mode. We show that the short-time dynamics is very well described by the classical dynamics, characterized by a strongly asymmetric momentum distribution with directed motion on one side, and an anomalous diffusion on the other. At longer times, quantum effects lead to dynamical localization, causing an asymptotic resymmetrization of the wave function.
NASA Astrophysics Data System (ADS)
Xie, Yushu; Li, Fatao
2010-06-01
The objective of this paper is to study thermal inertia effect due to the fact of the properties of the hyperbolic equations based on LS theory in generalized thermoelasticity. Simulations in a 2D hollow cylinder for uncoupled dynamic thermal stresses and thermal displacements were predicted by use of finite element method with Newmark algorithm. The thermal inertia effect on LS theory in rapid transient heat transfer process is also investigated in comparison with in steady heat transfer process. When different specific heat capacity is chosen, dynamic thermal stresses appear different types of vibration, in which less heat capacity causes more violent dynamic thermal stresses because of the thermal inertia effect. Both dynamic thermal stresses and thermal displacements in rapid transient heat transfer process have the larger amplitude and higher frequency than in steady heat transfer process due to thermal inertia from the results of simulation, which is consistent with the nature of the generalized thermoelasticity.
Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T
2018-05-10
The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.
Precise attitude control of the Stanford relativity satellite.
NASA Technical Reports Server (NTRS)
Bull, J. S.; Debra, D. B.
1973-01-01
A satellite being designed by the Stanford University to measure (with extremely high precision) the effect of General Relativity is described. Specifically, the satellite will measure two relativistic precessions predicted by the theory: the geodetic effect (6.9 arcsec/yr), due solely to motion about the earth, and the motional effect (0.05 arcsec/yr), due to rotation of the earth. The gyro design requirements, including the requirement for precise attitude control and a dynamic model for attitude control synthesis, are discussed. Closed loop simulation of the satellite's natural dynamics on an analog computer is described.
Water circulation and global mantle dynamics: Insight from numerical modeling
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru
2015-05-01
We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.
Longitudinal and transverse dynamics of ions from residual gas in an electron accelerator
NASA Astrophysics Data System (ADS)
Gamelin, A.; Bruni, C.; Radevych, D.
2018-05-01
The ion cloud produced from residual gas in an electron accelerator can degrade machine performances and produce instabilities. The ion dynamics in an accelerator is governed by the beam-ion interaction, magnetic fields and eventual mitigation strategies. Due to the fact that the beam has a nonuniform transverse size along its orbit, the ions move longitudinally and accumulate naturally at some points in the accelerator. In order to design effective mitigation strategies it is necessary to understand the ion dynamics not only in the transverse plane but also in the longitudinal direction. After introducing the physics behind the beam-ion interaction, we show how to get accumulation points for a realistic electron storage ring lattice. Simulations of the ion cloud dynamics, including the effect of magnetic fields on the ions, clearing electrodes and clearing gaps are shown. Longitudinal ion trapping due to the magnetic mirror effect in the dipole fringe fields is also detailed. Finally, the effectiveness of clearing electrode using longitudinal clearing fields is discussed and compared to clearing electrodes producing transverse field only.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Spin-current emission governed by nonlinear spin dynamics.
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-10-16
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.
Spin-current emission governed by nonlinear spin dynamics
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-01-01
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712
To Which Extent can Aerosols Affect Alpine Mixed-Phase Clouds?
NASA Astrophysics Data System (ADS)
Henneberg, O.; Lohmann, U.
2017-12-01
Aerosol-cloud interactions constitute a high uncertainty in regional climate and changing weather patterns. Such uncertainties are due to the multiple processes that can be triggered by aerosol especially in mixed-phase clouds. Mixed-phase clouds most likely result in precipitation due to the formation of ice crystals, which can grow to precipitation size. Ice nucleating particles (INPs) determine how fast these clouds glaciate and form precipitation. The potential for INP to transfer supercooled liquid clouds to precipitating clouds depends on the available humidity and supercooled liquid. Those conditions are determined by dynamics. Moderately high updraft velocities result in persistent mixed-phase clouds in the Swiss Alps [1], which provide an ideal testbed to investigate the effect of aerosol on precipitation in mixed-phase clouds. To address the effect of aerosols in orographic winter clouds under different dynamic conditions, we run a number of real case ensembles with the regional climate model COSMO on a horizontal resolution of 1.1 km. Simulations with different INP concentrations within the range observed at the GAW research station Jungfraujoch in the Swiss Alps are conducted and repeated within the ensemble. Microphysical processes are described with a two-moment scheme. Enhanced INP concentrations enhance the precipitation rate of a single precipitation event up to 20%. Other precipitation events of similar strength are less affected by the INP concentration. The effect of CCNs is negligible for precipitation from orographic winter clouds in our case study. There is evidence for INP to change precipitation rate and location more effectively in stronger dynamic regimes due to the enhanced potential to transfer supercooled liquid to ice. The classification of the ensemble members according to their dynamics will quantify the interaction of aerosol effects and dynamics. Reference [1] Lohmann et al, 2016: Persistence of orographic mixed-phase clouds, GRL
NASA Astrophysics Data System (ADS)
Mukherjee, A. K.; Kavala, A. K.
2014-04-01
Shallow traps play a significant role in influencing charge dynamics through organic molecular thin films, such as pentacene. Sandwich cells of pentacene capped by gold electrodes are an excellent specimen to study the nature of underlying charge dynamics. In this paper, self-consistent numerical simulation of I-V characteristics is performed at various temperatures. The results have revealed negative value of Poole Frenkel coefficient. The location of trap energy level is found to be located at 0.24 eV above the highest occupied molecular orbit (HOMO) level of pentacene. Other physical parameters related to trap levels, such as density of states due to traps and effective carrier density due to traps, have also been estimated in this study.
NASA Astrophysics Data System (ADS)
Nguyen, T. P.; Pham, D. T.; Ngo, K. T.
2018-04-01
Reducing vibration in structures under lateral load always attracts many researchers in during pastime, hence the mainly purpose of paper analyzes effectiveness of multiple-tuned liquid dampers for reducing dynamic responses of structures under ground acceleration of earthquakes. In this study, the multi-tuned liquid damper with slat screens (M-TLDWSS) is considered in detail for analyzing dynamic response of multi-degrees of freedom structure due to earthquake, which is more different previous studies. Then, the general equation of motion of the structure and M-TLDWSS under ground acceleration of earthquake is established based on dynamic balance of principle and solved by numerical method in the time domain. The effects of characteristic parameters of M-TLDWSS on dynamic response of the structure are investigated. The results obtained in this study demonstrate that the M-TLDWSS has significantly effectiveness for reducing dynamic response of the structure.
NASA Astrophysics Data System (ADS)
Liang, Xuecheng
Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were also explained in terms of Pd change caused by sphere size change.
Charged dust dynamics - Orbital resonance due to planetary shadows
NASA Technical Reports Server (NTRS)
Horanyi, M.; Burns, J. A.
1991-01-01
The dynamics of a weakly charged dust grain orbiting in the equatorial plane of a planet surrounded by a rigidly corotating magnetospehre is examined. It is shown that an introduction of an effectilve 1D potential causes a perturbation due to electrostatic forces, which induces a motion of the pericenter, similar to the effect of the planetary oblateness. A case is examined where the charge varies periodically due to the modulation of the photoelectron current occurring as the grain enters and leaves the planetary shadow, causing the electromagnetic perturbation to resonate with the orbital period and to modify the size and eccentricity of the orbit. This effect is demonstrated both numerically and analytically for small grains comprising the Jovian ring, showing that their resulting changes are periodic, and their amplitude is much larger than that of the periodic changes due to light-pressure perturbation or the secular changes due to resonant charge variations that develop over a comparable time span.
NASA Astrophysics Data System (ADS)
Ih Choi, Woon; Kim, Kwiseon; Narumanchi, Sreekant
2012-09-01
Thermal resistance between layers impedes effective heat dissipation in electronics packaging applications. Thermal conductance for clean and disordered interfaces between silicon (Si) and aluminum (Al) was computed using realistic Si/Al interfaces and classical molecular dynamics with the modified embedded atom method potential. These realistic interfaces, which include atomically clean as well as disordered interfaces, were obtained using density functional theory. At 300 K, the magnitude of interfacial conductance due to phonon-phonon scattering obtained from the classical molecular dynamics simulations was approximately five times higher than the conductance obtained using analytical elastic diffuse mismatch models. Interfacial disorder reduced the thermal conductance due to increased phonon scattering with respect to the atomically clean interface. Also, the interfacial conductance, due to electron-phonon scattering at the interface, was greater than the conductance due to phonon-phonon scattering. This indicates that phonon-phonon scattering is the bottleneck for interfacial transport at the semiconductor/metal interfaces. The molecular dynamics modeling predictions for interfacial thermal conductance for a 5-nm disordered interface between Si/Al were in-line with recent experimental data in the literature.
Understanding the Low-Energy Dynamics of Inorganic Fullerene-Like WS2 Nanoparticles
NASA Astrophysics Data System (ADS)
Luttrell, R. D.; Rosentsveig, R.
2005-03-01
Inorganic fullerene-like nanoparticles are attracting attention due to their outstanding solid-state lubricating behavior. We present the vibrational response of inorganic fullerene-like WS2 nanoparticles and discuss the effects of local strain and effective charge on the dynamics of this material. We compare these results to those of the chemically identical (but morphologically different) layered solid.
Colloidal particle electrorotation in a nonuniform electric field
NASA Astrophysics Data System (ADS)
Hu, Yi; Vlahovska, Petia M.; Miksis, Michael J.
2018-01-01
A model to study the dynamics of colloidal particles in nonuniform electric fields is proposed. For an isolated sphere, the conditions and threshold for sustained (Quincke) rotation in a linear direct current (dc) field are determined. Particle dynamics becomes more complex with increasing electric field strength, changing from steady spinning around the particle center to time-dependent orbiting motion around the minimum field location. Pairs of particles exhibit intricate trajectories, which are a combination of translation, due to dielectrophoresis, and rotation, due to the Quincke effect. Our model provides a basis to study the collective dynamics of many particles in a general electric field.
Colloidal particle electrorotation in a nonuniform electric field.
Hu, Yi; Vlahovska, Petia M; Miksis, Michael J
2018-01-01
A model to study the dynamics of colloidal particles in nonuniform electric fields is proposed. For an isolated sphere, the conditions and threshold for sustained (Quincke) rotation in a linear direct current (dc) field are determined. Particle dynamics becomes more complex with increasing electric field strength, changing from steady spinning around the particle center to time-dependent orbiting motion around the minimum field location. Pairs of particles exhibit intricate trajectories, which are a combination of translation, due to dielectrophoresis, and rotation, due to the Quincke effect. Our model provides a basis to study the collective dynamics of many particles in a general electric field.
Dynamic characteristic of electromechanical coupling effects in motor-gear system
NASA Astrophysics Data System (ADS)
Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.
2018-06-01
Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.
Synchronization of mobile chaotic oscillator networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp; Kurths, Jürgen; Díaz-Guilera, Albert
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to themore » transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.« less
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes
NASA Astrophysics Data System (ADS)
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti
2016-08-01
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes.
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti
2016-08-28
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kineticsmore » resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.« less
Scale Dependence of Dark Energy Antigravity
NASA Astrophysics Data System (ADS)
Perivolaropoulos, L.
2002-09-01
We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.
Modeling Strain Rate Effect of Heterogeneous Materials Using SPH Method
NASA Astrophysics Data System (ADS)
Ma, G. W.; Wang, X. J.; Li, Q. M.
2010-11-01
The strain rate effect on the dynamic compressive failure of heterogeneous material based on the smoothed particle hydrodynamics (SPH) method is studied. The SPH method employs a rate-insensitive elasto-plastic damage model incorporated with a Weibull distribution law to reflect the mechanical behavior of heterogeneous rock-like materials. A series of simulations are performed for heterogeneous specimens by applying axial velocity conditions, which induce different strain-rate loadings to the specimen. A detailed failure process of the specimens in terms of microscopic crack-activities and the macro-mechanical response are discussed. Failure mechanisms between the low and high strain rate cases are compared. The result shows that the strain-rate effects on the rock strength are mainly caused by the changing internal pressure due to the inertial effects as well as the material heterogeneity. It also demonstrates that the inertial effect becomes significant only when the induced strain rate exceeds a threshold, below which, the dynamic strength enhancement can be explained due to the heterogeneities in the material. It also shows that the dynamic strength is affected more significantly for a relatively more heterogeneous specimen, which coincides with the experimental results showing that the poor quality specimen had a relatively larger increase in the dynamic strength.
Due to complex population dynamics and migration behaviors, the well-being of animal populations that host human diseases sometimes varies across landscapes in ways that cannot be deduced from geographic abundance patterns alone. In such cases, efficient management of ecological...
Dynamical anisotropic response of black phosphorus under magnetic field
NASA Astrophysics Data System (ADS)
Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong
2018-04-01
Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.
Blurred Star Image Processing for Star Sensors under Dynamic Conditions
Zhang, Weina; Quan, Wei; Guo, Lei
2012-01-01
The precision of star point location is significant to identify the star map and to acquire the aircraft attitude for star sensors. Under dynamic conditions, star images are not only corrupted by various noises, but also blurred due to the angular rate of the star sensor. According to different angular rates under dynamic conditions, a novel method is proposed in this article, which includes a denoising method based on adaptive wavelet threshold and a restoration method based on the large angular rate. The adaptive threshold is adopted for denoising the star image when the angular rate is in the dynamic range. Then, the mathematical model of motion blur is deduced so as to restore the blurred star map due to large angular rate. Simulation results validate the effectiveness of the proposed method, which is suitable for blurred star image processing and practical for attitude determination of satellites under dynamic conditions. PMID:22778666
Effect of the Large Scale Environment on the Internal Dynamics of Early-Type Galaxies
NASA Astrophysics Data System (ADS)
Maubon, G.; Prugniel, Ph.
We have studied the population-density relation in very sparse environments, from poor clusters to isolated galaxies, and we find that early-type galaxies with a young stellar population are preferably found in the lowest density environments. We show a marginal indication that this effect is due to an enhancement of the stellar formation independent of the morphological segregation, but we failed to find any effect from the internal dynamics.
Tuñón, Iñaki; Laage, Damien; Hynes, James T
2015-09-15
We offer some thoughts on the much debated issue of dynamical effects in enzyme catalysis, and more specifically on their potential role in the acceleration of the chemical step. Since the term 'dynamics' has been used with different meanings, we find it useful to first return to the Transition State Theory rate constant, its assumptions and the choices it involves, and detail the various sources of deviations from it due to dynamics (or not). We suggest that much can be learned about the key current questions for enzyme catalysis from prior extensive studies of dynamical and other effects in the case of reactions in solution. We analyze dynamical effects both in the neighborhood of the transition state and far from it, together with the situation when quantum nuclear motion is central to the reaction, and we illustrate our discussion with various examples of enzymatic reactions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Wei, Linlin; Sun, Shuaishuai; Guo, Cong; Li, Zhongwen; Sun, Kai; Liu, Yu; Lu, Wenjian; Sun, Yuping; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2017-01-01
Anisotropic lattice movements due to the difference between intralayer and interlayer bonding are observed in the layered transition-metal dichalcogenide 1T-TaSeTe following femtosecond laser pulse excitation. Our ultrafast electron diffraction investigations using 4D-transmission electron microscopy (4D-TEM) clearly reveal that the intensity of Bragg reflection spots often changes remarkably due to the dynamic diffraction effects and anisotropic lattice movement. Importantly, the temporal diffracted intensity from a specific crystallographic plane depends on the deviation parameter s, which is commonly used in the theoretical study of diffraction intensity. Herein, we report on lattice thermalization and structural oscillations in layered 1T-TaSeTe, analyzed by dynamic diffraction theory. Ultrafast alterations of satellite spots arising from the charge density wave in the present system are also briefly discussed. PMID:28470025
The crack effect on instability in a machine tool spindle with gas bearings
NASA Astrophysics Data System (ADS)
Huang, Bo-Wun
2005-09-01
Gas-bearing spindles are required for increased spindle speed in precise machining. Due to manufacturing flaws or cyclic loading, cracks frequently appear in a rotating spindle systems. Cracks markedly affect the dynamic characteristics of rotating machinery. Hence, in this study, high-speed spindles with gas bearings and the crack effect on the instability dynamics are considered. Most investigations on dynamic characteristics of the spindle system were confined to ball-bearing-type spindles. This work examines the dynamic instability in a cracked rotating spindle system with gas bearings. A round Euler-Bernoulli beam is used to approximate the spindle. The Hamilton principle is applied to derive the equation of motion for the spindle system. The effects of crack depth, rotation speed and provided air pressure on the dynamic instability of a rotating spindle system are studied
NASA Astrophysics Data System (ADS)
Seidu, Azimatu; Marini, Andrea; Gatti, Matteo
2018-03-01
Beryllium is a weakly correlated simple metal. Still we find that dynamical correlation effects, beyond the independent-particle picture, are necessary to successfully interpret the electronic spectra measured by inelastic x-ray scattering (IXS) and photoemission spectroscopies (PES). By combining ab initio time-dependent density-functional theory (TDDFT) and many-body Green's function theory in the G W approximation (G W A ), we calculate the dynamic structure factor, the quasiparticle (QP) properties and PES spectra of bulk Be. We show that band-structure effects (i.e., due to interaction with the crystal potential) and QP lifetimes (LT) are both needed in order to explain the origin of the measured double-peak features in the IXS spectra. A quantitative agreement with experiment is obtained only when LT are supplemented to the adiabatic local-density approximation (ALDA) of TDDFT. Besides the valence band, PES spectra display a satellite, a signature of dynamical correlation due to the coupling of QPs and plasmons, which we are able to reproduce thanks to the combination of the G W A for the self-energy with the cumulant expansion of the Green's function.
Anomalous dynamics of interstitial dopants in soft crystals
Tauber, Justin; Higler, Ruben; Sprakel, Joris
2016-01-01
The dynamics of interstitial dopants govern the properties of a wide variety of doped crystalline materials. To describe the hopping dynamics of such interstitial impurities, classical approaches often assume that dopant particles do not interact and travel through a static potential energy landscape. Here we show, using computer simulations, how these assumptions and the resulting predictions from classical Eyring-type theories break down in entropically stabilized body-centered cubic (BCC) crystals due to the thermal excitations of the crystalline matrix. Deviations are particularly severe close to melting where the lattice becomes weak and dopant dynamics exhibit strongly localized and heterogeneous dynamics. We attribute these anomalies to the failure of both assumptions underlying the classical description: (i) The instantaneous potential field experienced by dopants becomes largely disordered due to thermal fluctuations and (ii) elastic interactions cause strong dopant–dopant interactions even at low doping fractions. These results illustrate how describing nonclassical dopant dynamics requires taking the effective disordered potential energy landscape of strongly excited crystals and dopant–dopant interactions into account. PMID:27856751
Pump instability phenomena generated by fluid forces
NASA Technical Reports Server (NTRS)
Gopalakrishnan, S.
1985-01-01
Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.
Structures to Resist the Effects of Accidental Explosions. Volume 3. Principles of Dynamic Analysis
1984-06-01
multi-degree-of-freedom systems) is presented. A step-by-step numerical integration of an element’s motion under dynamic loads using the...structural arrangements; providing closures, and preventing damage to interior portions of structures due to structual motion , shock, and fragment...an element’s motion under dynamic loads utilizing the Acceleration-Impulse- Extrapolation Method or the Average Acceleration Method and design charts
Vacuum selection on axionic landscapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Gaoyuan; Battefeld, Thorsten, E-mail: gaoyuan.wang@stud.uni-goettingen.de, E-mail: tbattefe@astro.physik.uni-goettingen.de
2016-04-01
We compute the distribution of minima that are reached dynamically on multi-field axionic landscapes, both numerically and analytically. Such landscapes are well suited for inflationary model building due to the presence of shift symmetries and possible alignment effects (the KNP mechanism). The resulting distribution of dynamically reached minima differs considerably from the naive expectation based on counting all vacua. These differences are more pronounced in the presence of many fields due to dynamical selection effects: while low lying minima are preferred as fields roll down the potential, trajectories are also more likely to get trapped by one of the manymore » nearby minima. We show that common analytic arguments based on random matrix theory in the large D-limit to estimate the distribution of minima are insufficient for quantitative arguments pertaining to the dynamically reached ones. This discrepancy is not restricted to axionic potentials. We provide an empirical expression for the expectation value of such dynamically reached minimas' height and argue that the cosmological constant problem is not alleviated in the absence of anthropic arguments. We further comment on the likelihood of inflation on axionic landscapes in the large D-limit.« less
Influence of damage and basal friction on the grounding line dynamics
NASA Astrophysics Data System (ADS)
Brondex, Julien; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Durand, Gael
2016-04-01
The understanding of grounding line dynamics is a major issue in the prediction of future sea level rise due to ice released from polar ice sheets into the ocean. This dynamics is complex and significantly affected by several physical processes not always adequately accounted for in current ice flow models. Among those processes, our study focuses on ice damage and evolving basal friction conditions. Softening of the ice due to damaging processes is known to have a strong impact on its rheology by reducing its viscosity and therefore promoting flow acceleration. Damage creates where shear stresses are high enough which is usually the case at shear margins and in the vicinity of pinning points in contact with ice-shelves. Those areas are known to have a buttressing effect on ice shelves contributing to stabilize the grounding line. We aim at evaluating the extent to which this stabilizing effect is hampered by damaging processes. Several friction laws have been proposed by various author to model the contact between grounded-ice and bedrock. Among them, Coulomb-type friction laws enable to account for reduced friction related to low effective pressure (the ice pressure minus the water pressure). Combining such a friction law to a parametrization of the effective pressure accounting for the fact that the area upstream the grounded line is connected to the ocean, is expected to have a significant impact on the grounding line dynamics. Using the finite-element code Elmer/Ice within which both the Coulomb-type friction law, the effective pressure parametrization and the damage model have been implemented, the goal of this study is to investigate the sensitivity of the grounding line dynamics to damage and to an evolving basal friction. The relative importance between those two processes on the grounding line dynamics is addressed as well.
Damage of composite structures: Detection technique, dynamic response and residual strength
NASA Astrophysics Data System (ADS)
Lestari, Wahyu
2001-10-01
Reliable and accurate health monitoring techniques can prevent catastrophic failures of structures. Conventional damage detection methods are based on visual or localized experimental methods and very often require prior information concerning the vicinity of the damage or defect. The structure must also be readily accessible for inspections. The techniques are also labor intensive. In comparison to these methods, health-monitoring techniques that are based on the structural dynamic response offers unique information on failure of structures. However, systematic relations between the experimental data and the defect are not available and frequently, the number of vibration modes needed for an accurate identification of defects is much higher than the number of modes that can be readily identified in the experiment. These motivated us to develop an experimental data based detection method with systematic relationships between the experimentally identified information and the analytical or mathematical model representing the defective structures. The developed technique use changes in vibrational curvature modes and natural frequencies. To avoid misinterpretation of the identified information, we also need to understand the effects of defects on the structural dynamic response prior to developing health-monitoring techniques. In this thesis work we focus on two type of defects in composite structures, namely delamination and edge notch like defect. Effects of nonlinearity due to the presence of defect and due to the axial stretching are studied for beams with delamination. Once defects are detected in a structure, next concern is determining the effects of the defects on the strength of the structure and its residual stiffness under dynamic loading. In this thesis, energy release rate due to dynamic loading in a delaminated structure is studied, which will be a foundation toward determining the residual strength of the structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungfleisch, Matthias B.; Ding, Junjia; Zhang, Wei
Magnetic insulators, such as yttrium iron garnet (Y 3Fe 5O 12), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y 3Fe 5O 12/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y 3Fe 5O 12/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd 3Ga 5O 12 substrates and lift-off. We observe field-likemore » and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y 3Fe 5O 12/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident. In conclusion, our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.« less
NASA Technical Reports Server (NTRS)
Benjamin, Ilan; Pohorille, Andrew
1993-01-01
The gauche-trans isomerization reaction of 1,2-dichloroethane at the liquid-vapor interface of water is studied using molecular-dynamics computer simulations. The solvent bulk and surface effects on the torsional potential of mean force and on barrier recrossing dynamics are computed. The isomerization reaction involves a large change in the electric dipole moment, and as a result the trans/gauche ratio is considerably affected by the transition from the bulk solvent to the surface. Reactive flux correlation function calculations of the reaction rate reveal that deviation from the transition-state theory due to barrier recrossing is greater at the surface than in the bulk water. This suggests that the system exhibits non-Rice-Ramsperger-Kassel-Marcus behavior due to the weak solvent-solute coupling at the water liquid-vapor interface.
NASA Astrophysics Data System (ADS)
Ko, Dae-Eun; Shin, Sang-Hoon
2017-11-01
Spherical LNG tanks having many advantages such as structural safety are used as a cargo containment system of LNG carriers. However, it is practically difficult to fabricate perfectly spherical tanks of different sizes in the yard. The most effective method of manufacturing LNG tanks of various capacities is to insert a cylindrical part at the center of existing spherical tanks. While a simplified high-precision analysis method for the initial design of the spherical tanks has been developed for both static and dynamic loads, in the case of spherical tanks with a cylindrical central part, the analysis method available only considers static loads. The purpose of the present study is to derive the dynamic pressure distribution due to horizontal acceleration, which is essential for developing an analysis method that considers dynamic loads as well.
NASA Technical Reports Server (NTRS)
Huynh, Loc C.; Duval, R. W.
1986-01-01
The use of Redundant Asynchronous Multiprocessor System to achieve ultrareliable Fault Tolerant Control Systems shows great promise. The development has been hampered by the inability to determine whether differences in the outputs of redundant CPU's are due to failures or to accrued error built up by slight differences in CPU clock intervals. This study derives an analytical dynamic model of the difference between redundant CPU's due to differences in their clock intervals and uses this model with on-line parameter identification to idenitify the differences in the clock intervals. The ability of this methodology to accurately track errors due to asynchronisity generate an error signal with the effect of asynchronisity removed and this signal may be used to detect and isolate actual system failures.
The effect of fluids on the frictional behavior of calcite gouge
NASA Astrophysics Data System (ADS)
Rempe, M.; Di Toro, G.; Mitchell, T. M.; Hirose, T.; Smith, S. A. F.; Renner, J.
2016-12-01
The presence of fluids in fault zones affects the faults' strength and the nucleation and propagation of earthquakes due to mechanical or physico-chemical weakening effects. To better understand the effect of pore fluids on the frictional behavior of gouge-bearing faults, a series of intermediate- to high-velocity experiments was conducted using the Phv rotary-shear apparatus (Kochi Core Center, Japan) equipped with a servo-controlled pore-fluid pressure system. Calcite gouge was sheared up to several meters displacement at room-humidity (dry) and water-saturated conditions. The pore-fluid factor, λ=pf/σn, ranged from 0.15 to 0.7 and the effective normal stress, σn,eff=σn-pf, from 1 to 12 MPa. Sheared samples were analyzed using scanning electron microscopy and Raman spectroscopy. The steady-state shear stress is lower for saturated than for dry gouges sliding at V=1 mm/s, possibly due to higher intergranular lubrication and/or accelerated subcritical crack growth, as evidenced also by the observed higher degree of compaction. At V=1 m/s, dry gouges show a pronounced strengthening phase preceding the onset of dynamic weakening; saturated gouges weaken abruptly. The higher λ, the lower the peak and steady-state shear stress, but -counterintuitively- the less localized deformation. Degree of weakening and localization might be influenced by insufficient drainage at high λ. In undrained experiments, the shear stress is slightly decreased likely due to thermal pressurization of the pore fluid, but the onset of dynamic weakening is not accelerated, indicating that dynamic weakening is due to more efficient mechanisms. For example, amorphous carbon may lubricate the slip surfaces of dry and saturated calcite gouges and cause dynamic weakening, yet Raman spectra only show the presence of disordered carbon on the principal slip surface. Furthermore, the presence of small recrystallized grains suggests that strain accommodation during steady-state slip might occur by non-frictional processes, such as grain-boundary sliding aided by diffusion creep.
Raichlen, David A
2008-09-01
The dynamic similarity hypothesis (DSH) suggests that differences in animal locomotor biomechanics are due mostly to differences in size. According to the DSH, when the ratios of inertial to gravitational forces are equal between two animals that differ in size [e.g. at equal Froude numbers, where Froude = velocity2/(gravity x hip height)], their movements can be made similar by multiplying all time durations by one constant, all forces by a second constant and all linear distances by a third constant. The DSH has been generally supported by numerous comparative studies showing that as inertial forces differ (i.e. differences in the centripetal force acting on the animal due to variation in hip heights), animals walk with dynamic similarity. However, humans walking in simulated reduced gravity do not walk with dynamically similar kinematics. The simulated gravity experiments did not completely account for the effects of gravity on all body segments, and the importance of gravity in the DSH requires further examination. This study uses a kinematic model to predict the effects of gravity on human locomotion, taking into account both the effects of gravitational forces on the upper body and on the limbs. Results show that dynamic similarity is maintained in altered gravitational environments. Thus, the DSH does account for differences in the inertial forces governing locomotion (e.g. differences in hip height) as well as differences in the gravitational forces governing locomotion.
Modeling the effect of pathogenic mutations on the conformational landscape of protein kinases.
Saladino, Giorgio; Gervasio, Francesco Luigi
2016-04-01
Most proteins assume different conformations to perform their cellular functions. This conformational dynamics is physiologically regulated by binding events and post-translational modifications, but can also be affected by pathogenic mutations. Atomistic molecular dynamics simulations complemented by enhanced sampling approaches are increasingly used to probe the effect of mutations on the conformational dynamics and on the underlying conformational free energy landscape of proteins. In this short review we discuss recent successful examples of simulations used to understand the molecular mechanism underlying the deregulation of physiological conformational dynamics due to non-synonymous single point mutations. Our examples are mostly drawn from the protein kinase family. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of pitch rate history effects on dynamic stall
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Carr, Lawrence W.; Ahmed, S.
1992-01-01
Dynamic stall of an airfoil is a classic case of forced unsteady separated flow. Flow separation is brought about by large incidences introduced by the large amplitude unsteady pitching motion of an airfoil. One of the parameters that affects the dynamic stall process is the history of the unsteady motion. In addition, the problem is complicated by the effects of compressibility that rapidly appear over the airfoil even at low Mach numbers at moderately high angles of attack. Consequently, it is of interest to know the effects of pitch rate history on the dynamic stall process. This abstract compares the results of a flow visualization study of the problem with two different pitch rate histories, namely, oscillating airfoil motion and a linear change in the angle of attack due to a transient pitching motion.
Finite elements and fluid dynamics. [instability effects on solution of nonlinear equations
NASA Technical Reports Server (NTRS)
Fix, G.
1975-01-01
Difficulties concerning a use of the finite element method in the solution of the nonlinear equations of fluid dynamics are partly related to various 'hidden' instabilities which often arise in fluid calculations. The instabilities are typically due to boundary effects or nonlinearities. It is shown that in certain cases these instabilities can be avoided if certain conservation laws are satisfied, and that the latter are often intimately related to finite elements.
Dey, Snigdhadip; Joshi, Amitabh
2013-01-01
Constant immigration can stabilize population size fluctuations but its effects on extinction remain unexplored. We show that constant immigration significantly reduced extinction in fruitfly populations with relatively stable or unstable dynamics. In unstable populations with oscillations of amplitude around 1.5 times the mean population size, persistence and constancy were unrelated. Low immigration enhanced persistence without affecting constancy whereas high immigration increased constancy without enhancing persistence. In relatively stable populations with erratic fluctuations of amplitude close to the mean population size, both low and high immigration enhanced persistence. In these populations, the amplitude of fluctuations relative to mean population size went down due to immigration, and their dynamics were altered to low-period cycles. The effects of immigration on the population size distribution and intrinsic dynamics of stable versus unstable populations differed considerably, suggesting that the mechanisms by which immigration reduced extinction risk depended on underlying dynamics in complex ways. PMID:23470546
NASA Astrophysics Data System (ADS)
Sun, W.; Thompson, D. J.; Zhou, J.; Gong, D.
2016-09-01
Helical springs within the primary suspension are critical components for isolating the whole vehicle system from vibration generated at the wheel/rail contact. As train speeds increase, the frequency region of excitation becomes larger, and a simplified static stiffness can no longer represent the real stiffness property in a vehicle dynamic model. Coil springs in particular exhibit strong internal resonances, which lead to high vibration amplitudes within the spring itself as well as degradation of the vibration isolation. In this paper, the dynamic stiffness matrix method is used to determine the dynamic stiffness of a helical spring from a vehicle primary suspension. Results are confirmed with a finite element analysis. Then the spring dynamic stiffness is included within a vehicle-track coupled dynamic model of a high speed train and the effect of the dynamic stiffening of the spring on the vehicle vibration is investigated. It is shown that, for frequencies above about 50 Hz, the dynamic stiffness of the helical spring changes sharply. Due to this effect, the vibration transmissibility increases considerably which results in poor vibration isolation of the primary suspension. Introducing a rubber layer in series with the coil spring can attenuate this effect.
NASA Astrophysics Data System (ADS)
Maslennikov, O. V.; Nekorkin, V. I.
2017-10-01
Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.
Dynamical Casimir effect in stochastic systems: Photon harvesting through noise
NASA Astrophysics Data System (ADS)
Román-Ancheyta, Ricardo; Ramos-Prieto, Irán; Perez-Leija, Armando; Busch, Kurt; León-Montiel, Roberto de J.
2017-09-01
We theoretically investigate the dynamical Casimir effect in a single-mode cavity endowed with a driven off-resonant mirror. We explore the dynamics of photon generation as a function of the ratio between the cavity mode and the mirror's driving frequency. Interestingly, we find that this ratio defines a threshold—which we referred to as a metal-insulator phase transition—between exponential growth and low photon production. The low photon production is due to Bloch-like oscillations that produce a strong localization of the initial vacuum state, thus preventing higher generation of photons. To break localization of the vacuum state and enhance the photon generation, we impose a dephasing mechanism, based on dynamic disorder, into the driving frequency of the mirror. Additionally, we explore the effects of finite temperature on the photon production. Concurrently, we propose a classical analog of the dynamical Casimir effect in engineered photonic lattices, where the propagation of classical light emulates the photon generation from the quantum vacuum of a single-mode tunable cavity.
The effects of mixed layer dynamics on ice growth in the central Arctic
NASA Astrophysics Data System (ADS)
Kitchen, Bruce R.
1992-09-01
The thermodynamic model of Thorndike (1992) is coupled to a one dimensional, two layer ocean entrainment model to study the effect of mixed layer dynamics on ice growth and the variation in the ocean heat flux into the ice due to mixed layer entrainment. Model simulations show the existence of a negative feedback between the ice growth and the mixed layer entrainment, and that the underlying ocean salinity has a greater effect on the ocean beat flux than does variations in the underlying ocean temperature. Model simulations for a variety of surface forcings and initial conditions demonstrate the need to include mixed layer dynamics for realistic ice prediction in the arctic.
Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites
NASA Astrophysics Data System (ADS)
Herbold, Eric; Cai, Jing; Benson, David; Nesterenko, Vitali
2007-06-01
Recent investigations of the dynamic compressive strength of cold isostatically pressed (CIP) composites of polytetrafluoroethylene (PTFE), tungsten and aluminum powders show significant differences depending on the size of metallic particles. PTFE and aluminum mixtures are known to be energetic under dynamic and thermal loading. The addition of tungsten increases density and overall strength of the sample. Multi-material Eulerian and arbitrary Lagrangian-Eulerian methods were used for the investigation due to the complexity of the microstructure, relatively large deformations and the ability to handle the formation of free surfaces in a natural manner. The calculations indicate that the observed dependence of sample strength on particle size is due to the formation of force chains under dynamic loading in samples with small particle sizes even at larger porosity in comparison with samples with large grain size and larger density.
Explosive axion production from saxion
NASA Astrophysics Data System (ADS)
Ema, Yohei; Nakayama, Kazunori
2018-01-01
The dynamics of saxion in a supersymmetric axion model and its effect on the axion production is studied in detail. We find that the axion production is very efficient when the saxion oscillation amplitude is much larger than the Peccei-Quinn scale, due to a spike-like behavior of the effective axion mass. We also consider the axino production and several cosmological consequences. The possibility of detection of gravitational waves from the non-linear dynamics of the saxion and axion is discussed.
Chen, Wei; Shen, Jana K
2014-10-15
Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma. Copyright © 2014 Wiley Periodicals, Inc.
Chen, Wei; Shen, Jana K.
2014-01-01
Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: 1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? 2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK a values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via co-titrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle-mesh Ewald, considering the known artifacts due to charge-compensating background plasma. PMID:25142416
NASA Astrophysics Data System (ADS)
Pohl, E.; Maximini, M.; Bauschulte, A.; vom Schloß, J.; Hermanns, R. T. E.
2015-02-01
HT-PEM fuel cells suffer from performance losses due to degradation effects. Therefore, the durability of HT-PEM is currently an important factor of research and development. In this paper a novel approach is presented for an integrated short term and long term simulation of HT-PEM accelerated lifetime testing. The physical phenomena of short term and long term effects are commonly modeled separately due to the different time scales. However, in accelerated lifetime testing, long term degradation effects have a crucial impact on the short term dynamics. Our approach addresses this problem by applying a novel method for dual time scale simulation. A transient system simulation is performed for an open voltage cycle test on a HT-PEM fuel cell for a physical time of 35 days. The analysis describes the system dynamics by numerical electrochemical impedance spectroscopy. Furthermore, a performance assessment is performed in order to demonstrate the efficiency of the approach. The presented approach reduces the simulation time by approximately 73% compared to conventional simulation approach without losing too much accuracy. The approach promises a comprehensive perspective considering short term dynamic behavior and long term degradation effects.
Effect of train vibration on settlement of soil: A numerical analysis
NASA Astrophysics Data System (ADS)
Tiong, Kah-Yong; Ling, Felix Ngee-Leh; Talib, Zaihasra Abu
2017-10-01
The drastic development of transit system caused the influence of ground-borne vibrations induced by train on ground settlement became concern problem nowadays. The purpose of this study is to investigate soil settlement caused by train vibration. To facilitate this study, computer simulation of soil dynamic response using commercial finite element package - PLAXIS 2D was performed to simulate track-subgrade system together with dynamic train load under three different conditions. The results of simulation analysis established the facts that the soil deformation increased with raising in water level. This phenomenon happens because the increasing water level not only induced greater excess pore water pressure but also reduced stiffness of soil. Furthermore, the simulation analysis also deduced that the soil settlement was reduced by placing material with high stiffness between the subgrade and the ballast layer since material with high stiffness was able to dissipate energy efficiently due to its high bearing capacity, thus protecting the subgrade from deteriorating. The simulation analysis result also showed that the soil dynamic response increased with the increase in the speed of train and a noticeable amplification in soil deformation occurred as the train speed approaches the Rayleigh wave velocity of the track subgrade system. This is due to the fact that dynamic train load depend on both the self-weight of the train and the dynamic component due to inertial effects associated with the train speed. Thus, controlling the train speeds under critical velocity of track-subgrade system is able to ensure the safety of train operation as it prevents track-ground resonance and dramatic ground.
A census of the expected properties of classical Milky Way dwarfs in Milgromian dynamics
NASA Astrophysics Data System (ADS)
Lüghausen, F.; Famaey, B.; Kroupa, P.
2014-07-01
Prompted by the recent successful predictions of the internal dynamics of Andromeda's satellite galaxies, we revisit the classical Milky Way dwarf spheroidal satellites Draco, Sculptor, Sextans, Carina and Fornax in the framework of Milgromian dynamics (MOND). We use for the first time a Poisson solver with adaptive mesh refinement (AMR) in order to account simultaneously for the gravitational influence of the Milky Way and its satellites. This allows us to rigorously model the important external field effect (EFE) of Milgromian dynamics, which can reduce the effective acceleration significantly. We make predictions on the dynamical mass-to-light ratio (Mdyn/L) expected to be measured by an observer who assumes Newtonian dynamics to be valid. We show that Milgromian dynamics predicts typical Mdyn/L ≈ 10-50 M⊙/L⊙. The results for the most luminous ones, Fornax and Sculptor, agree well with available velocity dispersion data. Moreover, the central power-law slopes of the dynamical masses agree exceedingly well with values inferred observationally from velocity dispersion measurements. The results for Sextans, Carina and Draco are low compared to usually quoted observational estimates, as already pointed out by Angus. For Milgromian dynamics to survive further observational tests in these objects, one would thus need that either (a) previous observational findings based on velocity dispersion measurements have overestimated the dynamical mass due to, e.g. binaries and contaminant outliers, (b) the satellites are not in virial equilibrium due to the Milky Way tidal field, or (c) the specific theory used here does not describe the EFE correctly (e.g. the EFE could be practically negligible in some other theories), or a combination of (a)-(c).
Preliminary analysis of dynamic stall effects on a 91-meter wind turbine rotor
NASA Technical Reports Server (NTRS)
Wilson, Robert E.
1995-01-01
Analytical investigation of dynamic stall on HAWT (horizontal-axis wind turbines) rotor loads was conducted. Dynamic stall was modeled using the Gormont approach on the MOD-2 rotor, treating the blade as a rigid body teetering about a fixed axis. Blade flapwise bending moments at station 370 were determined with and without dynamic stall for spatial variations in local wind speed due to wind shear and yaw. The predicted mean flapwise bending moments were found to be in good agreement with test results. Results obtained with and without dynamic stall showed no significant difference for the mean flapwise bending moment. The cyclic bending moments calculated with and without dynamic stall effects were substantially the same. None of the calculated cyclic loads reached the level of the cyclic loads measured on the MOD-2 using the Boeing five-minute-average technique.
Slowing hot-carrier relaxation in graphene using a magnetic field
NASA Astrophysics Data System (ADS)
Plochocka, P.; Kossacki, P.; Golnik, A.; Kazimierczuk, T.; Berger, C.; de Heer, W. A.; Potemski, M.
2009-12-01
A degenerate pump-probe technique is used to investigate the nonequilibrium carrier dynamics in multilayer graphene. Two distinctly different dynamics of the carrier relaxation are observed. A fast relaxation (˜50fs) of the carriers after the initial effect of phase-space filling followed by a slower relaxation (˜4ps) due to thermalization. Both relaxation processes are less efficient when a magnetic field is applied at low temperatures which is attributed to the suppression of the electron-electron Auger scattering due to the nonequidistant Landau-level spacing of the Dirac fermions in graphene.
Mao, Wenbin; Li, Kewei; Sun, Wei
2016-01-01
Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves (TAV) was utilized to couple with SPH to simulate valve leaflet dynamics throughout the entire cardiac cycle. Comparative simulations were performed to investigate the impact of using FE-only models versus FSI models, as well as an isotropic versus an anisotropic leaflet material model in TAV simulations. From the results, substantial differences in leaflet kinematics between FE-only and FSI models were observed, and the FSI model could capture the realistic leaflet dynamic deformation due to its more accurate spatial and temporal loading conditions imposed on the leaflets. The stress and the strain distributions were similar between the FE and FSI simulations. However, the peak stresses were different due to the water hammer effect induced by the flow inertia in the FSI model during the closing phase, which led to 13%–28% lower peak stresses in the FE-only model compared to that of the FSI model. The simulation results also indicated that tissue anisotropy had a minor impact on hemodynamics of the valve. However, a lower tissue stiffness in the radial direction of the leaflets could reduce the leaflet peak stress caused by the water hammer effect. It is hoped that the developed FSI models can serve as an effective tool to better assess valve dynamics and optimize next generation TAV designs. PMID:27844463
Mao, Wenbin; Li, Kewei; Sun, Wei
2016-12-01
Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves (TAV) was utilized to couple with SPH to simulate valve leaflet dynamics throughout the entire cardiac cycle. Comparative simulations were performed to investigate the impact of using FE-only models vs. FSI models, as well as an isotropic vs. an anisotropic leaflet material model in TAV simulations. From the results, substantial differences in leaflet kinematics between FE-only and FSI models were observed, and the FSI model could capture the realistic leaflet dynamic deformation due to its more accurate spatial and temporal loading conditions imposed on the leaflets. The stress and the strain distributions were similar between the FE and FSI simulations. However, the peak stresses were different due to the water hammer effect induced by the fluid inertia in the FSI model during the closing phase, which led to 13-28% lower peak stresses in the FE-only model compared to that of the FSI model. The simulation results also indicated that tissue anisotropy had a minor impact on hemodynamics of the valve. However, a lower tissue stiffness in the radial direction of the leaflets could reduce the leaflet peak stress caused by the water hammer effect. It is hoped that the developed FSI models can serve as an effective tool to better assess valve dynamics and optimize next generation TAV designs.
Insulating nanomagnets driven by spin torque
Jungfleisch, Matthias B.; Ding, Junjia; Zhang, Wei; ...
2016-11-29
Magnetic insulators, such as yttrium iron garnet (Y 3Fe 5O 12), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y 3Fe 5O 12/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y 3Fe 5O 12/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd 3Ga 5O 12 substrates and lift-off. We observe field-likemore » and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y 3Fe 5O 12/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident. In conclusion, our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.« less
Numerical and Experimental Investigations of Humping Phenomena in Laser Micro Welding
NASA Astrophysics Data System (ADS)
Otto, Andreas; Patschger, Andreas; Seiler, Michael
The Humping effect is a phenomenon which is observed approximately since 50 years in various welding procedures and is characterized by droplets due to a pile-up of the melt pool. It occurs within a broad range of process parameters. Particularly during micro welding, humping effect is critical due to typically high feed rates. In the past, essentially two approaches (fluid-dynamic approach of streaming melt within the molten pool and the Plateau-Rayleigh instability of a liquid jet) were discussed in order to explain the occurrence of the humping effect. But none of both can fully explain all observed effects. For this reason, experimental studies in micro welding of thin metal foils were performed in order to determine the influence of process parameters on the occurrence of humping effects. The experimental observations were compared with results from numerical multi-physical simulations (incorporating beam propagation, incoupling, heat transfer, fluid dynamics etc.) to provide a deeper understanding of the causes for hump formation.
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits.
Strambini, E; Makarenko, K S; Abulizi, G; de Jong, M P; van der Wiel, W G
2016-01-06
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young's double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.
Near Wall Dynamics in Colloidal Suspensions Studied by Evansescent Wave Dynamic Light Scattering
NASA Astrophysics Data System (ADS)
Lang, Peter R.
2011-03-01
The dynamics of dispersed colloidal particles is slowed down, and becomes anisotropic in the ultimate vicinity of a flat wall due to the wall drag effect. Although theoretically predicted in the early 20th century, experimental verification of this effect for Brownian particles became possible only in the late 80s. Since then a variety of experimental investigations on near wall Brownian dynamics by evanescent wave dynamic light scattering (EWDLS) has been published. In this contribution the method of EWDLS will be briefly introduced, experiments at low and high colloid concentration for hard-sphere suspensions, and the theoretical prediction for measured initial slopes of correlation functions will be discussed. On increasing the particle concentration the influence of the wall drag effect is found to diminishes gradually, until it becomes negligible at volume fractions above ϕ 0.35. The effect that a wall exerts on the orientational dynamics was investigated for different kinds of colloids. Experiments, simulations and a virial expansion theory show that rotational dynamics is slowed down as well. However, the effect is prominent in EWDLS only if the particles' short axis is of the order of the evanescent wave penetration depth. The author acknowledges financial support from the EU through FP7, project Nanodirect (Grant 395 No. NMP4-SL-2008-213948).
Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go
2016-05-10
It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.
Non-equilibrium magnetic interactions in strongly correlated systems
NASA Astrophysics Data System (ADS)
Secchi, A.; Brener, S.; Lichtenstein, A. I.; Katsnelson, M. I.
2013-06-01
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii-Moriya coupling, but is not due to spin-orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well.
Kungwan, Nawee; Ngaojampa, Chanisorn; Ogata, Yudai; Kawatsu, Tsutomu; Oba, Yuki; Kawashima, Yukio; Tachikawa, Masanori
2017-10-05
Solvent dependence of double proton transfer in the formic acid-formamidine (FA-FN) complex at room temperature was investigated by means of ab initio path integral molecular dynamics (AIPIMD) simulation with taking nuclear quantum and thermal effects into account. The conductor-like screening model (COSMO) was applied for solvent effect. In comparison with gas phase, double proton delocalization between two heavy atoms (O and N) in FA-FN were observed with reduced proton transfer barrier height in low dielectric constant medium (<4.8). For dielectric constant medium at 4.8, the chance of finding these two protons are more pronounced due to the solvent effect which completely washes out the proton transfer barrier. In the case of higher dielectric constant medium (>4.8), the ionic species becomes more stable than the neutral ones and the formate anion and formamidium cation are thermodynamically stable. For ab initio molecular dynamics simulation, in low dielectric constant medium (<4.8) a reduction of proton transfer barrier with solvent effect is found to be less pronounced than the AIPIMD due to the absence of nuclear quantum effect. Moreover, the motions of FA-FN complex are significantly different with increasing dielectric constant medium. Such a difference is revealed in detail by the principal component analysis.
On the influence of microscale inertia on dynamic ductile crack extension
NASA Astrophysics Data System (ADS)
Jacques, N.; Mercier, S.; Molinari, A.
2012-08-01
The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.
NASA Astrophysics Data System (ADS)
Zhou, Min; Hu, Ying; Liu, Jian-chuan; Cheng, Ke; Jia, Guo-zhu
2017-10-01
In this paper, molecular dynamics simulations were performed to investigate the transportation and hydrogen bonding dynamics of water confined in (6, 6) single-walled carbon nanotube (SWCNT) in the absence and presence of time-dependent pulse-field. The effects of pulse-field range from microwave to ultraviolet frequency on the diffusivity and hydrogen bonding of confined water were analyzed. The significant confinement effect due to the narrow space inside SWCNT was observed.
Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crone, E.E.
1995-11-08
The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{submore » t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.« less
NASA Astrophysics Data System (ADS)
Ren, Sicong; Mazière, Matthieu; Forest, Samuel; Morgeneyer, Thilo F.; Rousselier, Gilles
2017-12-01
One of the most successful models for describing the Portevin-Le Chatelier effect in engineering applications is the Kubin-Estrin-McCormick model (KEMC). In the present work, the influence of dynamic strain ageing on dynamic recovery due to dislocation annihilation is introduced in order to improve the KEMC model. This modification accounts for additional strain hardening rate due to limited dislocation annihilation by the diffusion of solute atoms and dislocation pinning at low strain rate and/or high temperature. The parameters associated with this novel formulation are identified based on tensile tests for a C-Mn steel at seven temperatures ranging from 20 °C to 350 °C. The validity of the model and the improvement compared to existing models are tested using 2D and 3D finite element simulations of the Portevin-Le Chatelier effect in tension.
A Hamiltonian Model of Dissipative Wave-particle Interactions and the Negative-mass Effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Zhmoginov
2011-02-07
The effect of radiation friction is included in the Hamiltonian treatment of wave-particle interactions with autoresonant phase-locking, yielding a generalized canonical approach to the problem of dissipative dynamics near a nonlinear resonance. As an example, the negativemass eff ect exhibited by a charged particle in a pump wave and a static magnetic field is studied in the presence of the friction force due to cyclotron radiation. Particles with negative parallel masses m! are shown to transfer their kinetic energy to the pump wave, thus amplifying it. Counterintuitively, such particles also undergo stable dynamics, decreasing their transverse energy monotonically due tomore » cyclotron cooling, whereas some of those with positive m! undergo cyclotron heating instead, extracting energy from the pump wave.« less
Love-type wave propagation in a pre-stressed viscoelastic medium influenced by smooth moving punch
NASA Astrophysics Data System (ADS)
Singh, A. K.; Parween, Z.; Chatterjee, M.; Chattopadhyay, A.
2015-04-01
In the present paper, a mathematical model studying the effect of smooth moving semi-infinite punch on the propagation of Love-type wave in an initially stressed viscoelastic strip is developed. The dynamic stress concentration due to the punch for the force of a constant intensity has been obtained in the closed form. Method based on Weiner-hopf technique which is indicated by Matczynski has been employed. The study manifests the significant effect of various affecting parameters viz. speed of moving punch associated with Love-type wave speed, horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, frequency parameter, and viscoelastic parameter on dynamic stress concentration due to semi-infinite punch. Moreover, some important peculiarities have been traced out and depicted by means of graphs.
LLR data analysis and impact on lunar dynamics from recent developments at OCA LLR Station
NASA Astrophysics Data System (ADS)
Viswanathan, Vishnu; Fienga, Agnes; Courde, Clement; Torre, Jean-Marie; Exertier, Pierre; Samain, Etienne; Feraudy, Dominique; Albanese, Dominique; Aimar, Mourad; Mariey, Hervé; Viot, Hervé; Martinot-Lagarde, Gregoire
2016-04-01
Since late 2014, OCA LLR station has been able to range with infrared wavelength (1064nm). IR ranging provides both temporal and spatial improvement in the LLR observations. IR detection also permits in densification of normal points, including the L1 and L2 retroreflectors due to better signal to noise ratio. This contributes to a better modelisation of the lunar libration. The hypothesis of lunar dust and environmental effects due to the chromatic behavior noticed on returns from L2 retroreflector is discussed. In addition, data analysis shows that the effect of retroreflector tilt and the use of calibration profile for the normal point deduction algorithm, contributes to improving the precision of normal points, thereby impacting lunar dynamical models and inner physics.
ERIC Educational Resources Information Center
Schultz, Roger W.
2010-01-01
This study examined a relatively new but growing set of leadership challenges that the leader of the modern organization faces more frequently due to the dynamics of the workplace. The new challenges involve leading a workforce virtually, in that more frequently workers are physically dispersed away from the leader and fellow workers. The second…
Modeling dynamic acousto-elastic testing experiments: validation and perspectives.
Gliozzi, A S; Scalerandi, M
2014-10-01
Materials possessing micro-inhomogeneities often display a nonlinear response to mechanical solicitations, which is sensitive to the confining pressure acting on the sample. Dynamic acoustoelastic testing allows measurement of the instantaneous variations in the elastic modulus due to the change of the dynamic pressure induced by a low-frequency wave. This paper shows that a Preisach-Mayergoyz space based hysteretic multi-state elastic model provides an explanation for experimental observations in consolidated granular media and predicts memory and nonlinear effects comparable to those measured in rocks.
A New Approach on the Long Term Dynamics of NEO's Under Yarkovsky Effect.
NASA Astrophysics Data System (ADS)
Peláez, Jesús; Urrutxua, Hodei; Bombardelli, Claudio; Perez-Grande, Isabel
2011-12-01
A classical approach to the many-body problem is that of using special perturbation methods. Nowadays and due to the availability of high-speed computers is an essential tool in Space Dynamics which exhibits a great advantage: it is applicable to any orbit involving any number of bodies and all sorts of astrodynamical problems, especially when these problems fall into regions in which general perturbation theories are absent. One such case is, for example, that Near Earth Objects (NEO's) dynamics. In this field, the Group of Tether Dynamics of UPM (GDT) has developed a new regularisation scheme - called DROMO - which is characterised by only 8 ODE. This new regularisation scheme allows a new approach to the dynamics of NEO's in the long term, specially appropriated to consider the influence of the anisotropic thermal emission (Yarkovsky and YORP effects) on the dynamics. A new project, called NEODROMO, has been started in GDT that aims to provide a reliable tool for the long term dynamics of NEO's.
Use of the dynamic stiffness method to interpret experimental data from a nonlinear system
NASA Astrophysics Data System (ADS)
Tang, Bin; Brennan, M. J.; Gatti, G.
2018-05-01
The interpretation of experimental data from nonlinear structures is challenging, primarily because of dependency on types and levels of excitation, and coupling issues with test equipment. In this paper, the use of the dynamic stiffness method, which is commonly used in the analysis of linear systems, is used to interpret the data from a vibration test of a controllable compressed beam structure coupled to a test shaker. For a single mode of the system, this method facilitates the separation of mass, stiffness and damping effects, including nonlinear stiffness effects. It also allows the separation of the dynamics of the shaker from the structure under test. The approach needs to be used with care, and is only suitable if the nonlinear system has a response that is predominantly at the excitation frequency. For the structure under test, the raw experimental data revealed little about the underlying causes of the dynamic behaviour. However, the dynamic stiffness approach allowed the effects due to the nonlinear stiffness to be easily determined.
Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest
NASA Technical Reports Server (NTRS)
Stremel, R. W.; Convertino, V. A.; Bernauer, E. M.; Greenleaf, J. E.
1976-01-01
Results are presented for an experimental study designed to compare the effects of heavy static and dynamic exercise training during 14 days of bed rest on the cardiorespiratory responses to submaximal and maximal exercise performed by seven healthy men aged 19-22 yr. The parameters measured were submaximal and maximal oxygen uptake, minute ventilation, heart rate, and plasma volume. The results indicate that exercise alone during bed rest reduces but does not eliminate the reduction in maximal oxygen uptake. An additional positive hydrostatic effect is therefore necessary to restore maximal oxygen uptake to ambulatory control levels. The greater protective effect of static exercise on maximal oxygen uptake is probably due to a greater hydrostatic component from the isometric muscular contraction. Neither the static nor the dynamic exercise training regimes are found to minimize the changes in all the variables studied, thereby suggesting a combination of static and dynamic exercises.
Birth Order and Child Cognitive Outcomes: An Exploration of the Parental Time Mechanism
ERIC Educational Resources Information Center
Monfardini, Chiara; See, Sarah Grace
2016-01-01
Higher birth order positions are associated with poorer outcomes due to smaller shares of resources received within the household. Using a sample of Panel Study of Income Dynamics-Child Development Supplement children, we investigate if the negative birth order effect we find in cognitive outcomes is due to unequal allocation of mother and father…
NASA Astrophysics Data System (ADS)
Dolomatov, M. Yu.; Kovaleva, E. A.; Khamidullina, D. A.
2018-05-01
An approach that allows the calculation of dynamic viscosity for liquid hydrocarbons from quantum (ionization energies) and molecular (Wiener topological indices) parameters is proposed. A physical relationship is revealed between ionization and the energies of viscous flow activation. This relationship is due to the contribution from the dispersion component of Van der Waals forces to intermolecular interaction. A two-parameter dependence of the energy of viscous flow activation, energy of ionization, and Wiener topological indices is obtained. The dynamic viscosities of liquid hydrocarbons can be calculated from the kinetic compensation effect of dynamic viscosity, which indicates a relationship between the energy of activation and the Arrhenius pre-exponental factor of the Frenkel-Eyring hole model. Calculation results are confirmed through statistical processing of the experimental data.
Butane dihedral angle dynamics in water is dominated by internal friction
Daldrop, Jan O.; Kappler, Julian; Brünig, Florian N.; Netz, Roland R.
2018-01-01
The dihedral dynamics of butane in water is known to be rather insensitive to the water viscosity; possible explanations for this involve inertial effects or Kramers’ turnover, the finite memory time of friction, and the presence of so-called internal friction. To disentangle these factors, we introduce a method to directly extract the friction memory function from unconstrained simulations in the presence of an arbitrary free-energy landscape. By analysis of the dihedral friction in butane for varying water viscosity, we demonstrate the existence of an internal friction contribution that does not scale linearly with water viscosity. At normal water viscosity, the internal friction turns out to be eight times larger than the solvent friction and thus completely dominates the effective friction. By comparison with simulations of a constrained butane molecule that has the dihedral as the only degree of freedom, we show that internal friction comes from the six additional degrees of freedom in unconstrained butane that are orthogonal to the dihedral angle reaction coordinate. While the insensitivity of butane’s dihedral dynamics to water viscosity is solely due to the presence of internal friction, inertial effects nevertheless crucially influence the resultant transition rates. In contrast, non-Markovian effects due to the finite memory time are present but do not significantly influence the dihedral barrier-crossing rate of butane. These results not only settle the character of dihedral dynamics in small solvated molecular systems such as butane, they also have important implications for the folding of polymers and proteins. PMID:29712838
Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac
NASA Astrophysics Data System (ADS)
Eliasson, Peder
2008-05-01
The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.
Global simulation of interactions between groundwater and terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Braakhekke, M. C.; Rebel, K.; Dekker, S. C.; Smith, B.; Van Beek, L. P.; Sutanudjaja, E.; van Kampenhout, L.; Wassen, M. J.
2016-12-01
In many places in the world ecosystems are influenced by the presence of a shallow groundwater table. In these regions upward water flux due to capillary rise increases soil moisture availability in the root zone, which has strong positive effect on evapotranspiration. Additionally it has important consequences for vegetation dynamics and fluxes of carbon and nitrogen. Under water limited conditions shallow groundwater stimulates vegetation productivity, and soil organic matter decomposition while under saturated conditions groundwater may have a negative effect on these processes due to lack of oxygen. Furthermore, since plant species differ with respect to their root distribution, preference for moisture conditions, and resistance to oxygen stress, shallow groundwater also influences vegetation type. Finally, processes such as denitrification and methane production occur under strictly anaerobic conditions and are thus strongly influenced by moisture availability. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure and are therefore less suitable to represent effects of groundwater on biogeochemical fluxes. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure and biogeochemical processes. These models are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB. Using this coupled model we aim to study the influence of shallow groundwater on terrestrial ecosystem processes. We will present results of global simulations to demonstrate the effects on C, N, and water fluxes.
Dynamical spin accumulation in large-spin magnetic molecules
NASA Astrophysics Data System (ADS)
Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej
2018-01-01
The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.
Dynamical regimes due to technological change in a microeconomical model of production
NASA Astrophysics Data System (ADS)
Hamacher, K.
2012-09-01
We develop a microeconomical model to investigate the impact of technological change onto production decisions of suppliers—modeling an effective feedback mechanism of the market. An important property—the time horizon of production planning—is related to the Kolmogorov entropy of the one-dimensional maps describing price dynamics. We simulate this price dynamics in an ensemble representing the whole macroeconomy. We show how this model can be used to support ongoing research in economic growth and incorporate the obtained microeconomic findings into the discussion about appropriate macroeconomic quantities such as the production function—thus effectively underpinning macroeconomics with microeconomical dynamics. From there we can show that the model exhibits different dynamical regimes (suggesting "phase transitions") with respect to an order parameter. The non-linear feedback under technological change was found to be the crucial mechanism. The implications of the obtained regimes are finally discussed.
Dynamical regimes due to technological change in a microeconomical model of production.
Hamacher, K
2012-09-01
We develop a microeconomical model to investigate the impact of technological change onto production decisions of suppliers-modeling an effective feedback mechanism of the market. An important property-the time horizon of production planning-is related to the Kolmogorov entropy of the one-dimensional maps describing price dynamics. We simulate this price dynamics in an ensemble representing the whole macroeconomy. We show how this model can be used to support ongoing research in economic growth and incorporate the obtained microeconomic findings into the discussion about appropriate macroeconomic quantities such as the production function-thus effectively underpinning macroeconomics with microeconomical dynamics. From there we can show that the model exhibits different dynamical regimes (suggesting "phase transitions") with respect to an order parameter. The non-linear feedback under technological change was found to be the crucial mechanism. The implications of the obtained regimes are finally discussed.
Velazquez, Hector A; Hamelberg, Donald
2015-02-21
Cis-trans isomerization of peptidyl-prolyl bonds of the protein backbone plays an important role in numerous biological processes. Cis-trans isomerization can be the rate-limiting step due its extremely slow dynamics, compared to the millisecond time scale of many processes, and is catalyzed by a widely studied family of peptidyl-prolyl cis-trans isomerase enzymes. Also, mechanical forces along the peptide chain can speed up the rate of isomerization, resulting in "mechanical catalysis," and have been used to study peptidyl-prolyl cis-trans isomerization and other mechanical properties of proteins. Here, we use constant force molecular dynamics simulations to study the dynamical effects of phosphorylation on serine/threonine-proline protein motifs that are involved in the function of many proteins and have been implicated in many aberrant biological processes. We show that the rate of cis-trans isomerization is slowed down by phosphorylation, in excellent agreement with experiments. We use a well-grounded theory to describe the force dependent rate of isomerization. The calculated rates at zero force are also in excellent agreement with experimentally measured rates, providing additional validation of the models and force field parameters. Our results suggest that the slowdown in the rate upon phosphorylation is mainly due to an increase in the friction along the peptidyl-prolyl bond angle during isomerization. Our results provide a microscopic description of the dynamical effects of post-translational phosphorylation on cis-trans isomerization and insights into the properties of proteins under tension.
NASA Astrophysics Data System (ADS)
Velazquez, Hector A.; Hamelberg, Donald
2015-02-01
Cis-trans isomerization of peptidyl-prolyl bonds of the protein backbone plays an important role in numerous biological processes. Cis-trans isomerization can be the rate-limiting step due its extremely slow dynamics, compared to the millisecond time scale of many processes, and is catalyzed by a widely studied family of peptidyl-prolyl cis-trans isomerase enzymes. Also, mechanical forces along the peptide chain can speed up the rate of isomerization, resulting in "mechanical catalysis," and have been used to study peptidyl-prolyl cis-trans isomerization and other mechanical properties of proteins. Here, we use constant force molecular dynamics simulations to study the dynamical effects of phosphorylation on serine/threonine-proline protein motifs that are involved in the function of many proteins and have been implicated in many aberrant biological processes. We show that the rate of cis-trans isomerization is slowed down by phosphorylation, in excellent agreement with experiments. We use a well-grounded theory to describe the force dependent rate of isomerization. The calculated rates at zero force are also in excellent agreement with experimentally measured rates, providing additional validation of the models and force field parameters. Our results suggest that the slowdown in the rate upon phosphorylation is mainly due to an increase in the friction along the peptidyl-prolyl bond angle during isomerization. Our results provide a microscopic description of the dynamical effects of post-translational phosphorylation on cis-trans isomerization and insights into the properties of proteins under tension.
Dynamics of water in strawberry and red onion as studied by dielectric spectroscopy
NASA Astrophysics Data System (ADS)
Jansson, H.; Huldt, C.; Bergman, R.; Swenson, J.
2005-01-01
We have investigated the microscopic dynamics of strawberry and red onion by means of broadband dielectric spectroscopy. In contrast to most of the previous experiments on carbohydrate-rich biological materials, which have mainly considered the more global dynamics of the “biological matrix,” we are here focusing on the microscopic dynamics of mainly the associated water. The results for both strawberry and red onion show that the imaginary part of the permittivity contains one conductivity term and a clear dielectric loss peak, which was found to be similar to the strongest relaxation process of water in carbohydrate solutions. The temperature dependence of the relaxation process was analyzed for different water content. The relaxation process slows down, and its temperature dependence becomes more non-Arrhenius, with decreasing water content. The reason for this is most likely that, on average, the water molecules interact more strongly with carbohydrates and other biological materials at low water content, and the dynamical properties of this biological matrix changes substantially with increasing temperature (from an almost rigid matrix where the water is basically unable to perform long-range diffusion due to confinement effects, to a dynamic matrix with no static confinement effects), which also changes (i.e., reduces) the activation energy of the relaxation process with increasing temperature (i.e., causes a non-Arrhenius temperature dependence). This further changes the conductivity from mainly polarization effects at low temperatures, due to hindered ionic motions, to long-range diffusivity at T>250K . Thus, around this temperature ions in the carbohydrate solution no longer get stuck in confined cavities, since the motion of the biological matrix “opens up” the cavities and the ions are then able to perform long-range migration.
Achete, Fernanda; Van der Wegen, Mick; Roelvink, Jan Adriaan; Jaffe, Bruce E.
2017-01-01
Suspended sediment concentration is an important estuarine health indicator. Estuarine ecosystems rely on the maintenance of habitat conditions, which are changing due to direct human impact and climate change. This study aims to evaluate the impact of climate change relative to engineering measures on estuarine fine sediment dynamics and sediment budgets. We use the highly engineered San Francisco Bay-Delta system as a case study. We apply a process-based modeling approach (Delft3D-FM) to assess the changes in hydrodynamics and sediment dynamics resulting from climate change and engineering scenarios. The scenarios consider a direct human impact (shift in water pumping location), climate change (sea level rise and suspended sediment concentration decrease), and abrupt disasters (island flooding, possibly as the results of an earthquake). Levee failure has the largest impact on the hydrodynamics of the system. Reduction in sediment input from the watershed has the greatest impact on turbidity levels, which are key to primary production and define habitat conditions for endemic species. Sea level rise leads to more sediment suspension and a net sediment export if little room for accommodation is left in the system due to continuous engineering works. Mitigation measures like levee reinforcement are effective for addressing direct human impacts, but less effective for a persistent, widespread, and increasing threat like sea level rise. Progressive adaptive mitigation measures to the changes in sediment and flow dynamics resulting from sea level rise may be a more effective strategy. Our approach shows that a validated process-based model is a useful tool to address long-term (decades to centuries) changes in sediment dynamics in highly engineered estuarine systems. In addition, our modeling approach provides a useful basis for long-term, process-based studies addressing ecosystem dynamics and health.
Seasonal Variations of the James Webb Space Telescope Orbital Dynamics
NASA Technical Reports Server (NTRS)
Brown, Jonathan; Petersen, Jeremy; Villac, Benjamin; Yu, Wayne
2015-01-01
While spacecraft orbital variations due to the Earth's tilt and orbital eccentricity are well-known phenomena, the implications for the James Webb Space Telescope present unique features. We investigate the variability of the observatory trajectory characteristics, and present an explanation of some of these effects using invariant manifold theory and local approximation of the dynamics in terms of the restricted three-body problem.
Probing the holographic principle using dynamical gauge effects from open spin-orbit coupling
NASA Astrophysics Data System (ADS)
Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan
2016-05-01
Dynamical gauge fields result from locally defined symmetries and an effective over-labeling of quantum states. Coupling atoms weakly to a reservoir of laser modes can create an effective dynamical gauge field purely due to the disregard of information in the optical states. Here we report measurements revealing effects of open spin-orbit coupling in a system where an effective model can be formed from a non-abelian SU(2) × U(1) field theory following the Yang-Mills construct. Forming a close analogy to dynamical gauge effects in quantum chromodynamics, we extract a measure of atomic motion which reveals the analog of a closing mass gap for the relevant gauge boson, shedding insight on long standing open problems in gauge-fixing scale anomalies. Using arguments following the holographic principle, we measure scaling relations which can be understood by quantifying information present in the local potential. New prospects using these techniques for developing fractionalization of multi-particle and macroscopic systems using dissipative and non-abelian gauge fields will also be discussed. We acknowledge support from NSF Award No. 1068570, and the Charles E. Kaufman Foundation.
Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go
2016-01-01
It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346
NASA Astrophysics Data System (ADS)
Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.
2017-06-01
We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.
Temperature crossover of decoherence rates in chaotic and regular bath dynamics.
Sanz, A S; Elran, Y; Brumer, P
2012-03-01
The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example, the specific case of I(2) in liquid xenon is examined as a function of temperature, and the results compared with an integrable xenon bath. A crossover in behavior is found: The integrable bath induces more decoherence at low bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures. These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic dynamics on system decoherence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; Qu, Ge; Zhang, Fengjiao; Zhao, Xikang; Mei, Jianguo; Zuo, Jian-Min; Shukla, Diwakar; Diao, Ying
2017-01-01
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor–acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π–π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment. PMID:28703136
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; ...
2017-07-13
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
Gueye, Birahima; Zhang, Yan; Wang, Yujuan; Chen, Yunfei
2015-07-08
The liquid lubrication, thermolubricity and dynamic lubricity due to mechanical oscillations are investigated with an atomic force microscope in ambient environmental conditions with different relative humidity (RH) levels. Experimental results demonstrate that high humidity at low-temperature regime enhances the liquid lubricity while at high-temperature regime it hinders the effect of the thermolubricity due to the formation of liquid bridges. Friction response to the dynamic lubricity in both high- and low-temperature regimes keeps the same trends, namely the friction force decreases with increasing the amplitude of the applied vibration on the tip regardless of the RH levels. An interesting finding is that for the dynamic lubricity at high temperature, high-humidity condition leads to the friction forces higher than that at low-humidity condition while at low temperature the opposite trend is observed. An extended two-dimensional dynamic model accounting for the RH is proposed to interpret the frictional mechanism in ambient conditions.
Local Dynamics of Acid- and Ion-containing Copolymer Melts
NASA Astrophysics Data System (ADS)
Winey, Karen; Middleton, Robert; Tarver, Jacob; Tyagi, Madhusudan; Soles, Christopher; Frischknecht, Amalie
Interest in acid- and ion-containing polymers arises in part from applications as single-ion conductors for selectively transporting a counter ion for battery applications. Structurally, the low dielectric constant of organic polymers and strong ionic interactions leads to ionic aggregation. Here the polymer backbone motion was investigated through quasi-elastic neutron scattering measurements (QENS) and compared with fully atomistic molecular dynamic simulations of precise poly(ethylene-acrylic acid) copolymers and their ionomers (pxAA-y%Li). The effect of carbon spacer length (x =9, 15, 21) between the acid groups and the degree of neutralization (y) with Li on PE backbone dynamics were considered. Systematic slowing in chain dynamics were observed with increasing neutralization where polymer dynamics appear constrained due to anchoring effects. Simulations provide complementary viewpoints indicating a gradient in chain dynamics as a distance away from acid groups. These results indicate that the addition of pendant acid groups inhibit typical PE backbone motion and the neutralized forms strongly suppress the fraction of mobile PE chain.
Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition
Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A.
2016-01-01
The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. PMID:26209846
CFD Analysis of the Anti-Surge Effects by Water Hammering
NASA Astrophysics Data System (ADS)
Kim, Tae-oh; Jeong, Hyo-min; Chung, Han-shik; Lee, Sin-il; Lee, Kwang-sung
2015-09-01
Water hammering occurs due to the surge effect that comes from operating the pump, sudden stop during the operating due to a blackout and rapid open and close of the valve. By the water hammering of the pipeline and the pump, the valve are damaged. In this paper, transient analysis is conducted by CFD (Computational Fluid Dynamics). The purpose of this paper is to provide the research data about the change of the pressure and flow in the pipe that caused by the water hammering.
Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; ...
2015-10-09
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variationmore » of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Finally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.« less
NASA Astrophysics Data System (ADS)
Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.
2015-11-01
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variationmore » of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Finally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.« less
Shrestha, Uttam M; Seo, Youngho; Botvinick, Elias H; Gullberg, Grant T
2015-11-07
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.
Bianchi-V string cosmological model with dark energy anisotropy
NASA Astrophysics Data System (ADS)
Mishra, B.; Tripathy, S. K.; Ray, Pratik P.
2018-05-01
The role of anisotropic components on the dark energy and the dynamics of the universe is investigated. An anisotropic dark energy fluid with different pressures along different spatial directions is assumed to incorporate the effect of anisotropy. One dimensional cosmic strings aligned along x-direction supplement some kind of anisotropy. Anisotropy in the dark energy pressure is found to evolve with cosmic expansion at least at late times. At an early phase, the anisotropic effect due to the cosmic strings substantially affect the dynamics of the accelerating universe.
Chromosomal locus tracking with proper accounting of static and dynamic errors
Backlund, Mikael P.; Joyner, Ryan; Moerner, W. E.
2015-01-01
The mean-squared displacement (MSD) and velocity autocorrelation (VAC) of tracked single particles or molecules are ubiquitous metrics for extracting parameters that describe the object’s motion, but they are both corrupted by experimental errors that hinder the quantitative extraction of underlying parameters. For the simple case of pure Brownian motion, the effects of localization error due to photon statistics (“static error”) and motion blur due to finite exposure time (“dynamic error”) on the MSD and VAC are already routinely treated. However, particles moving through complex environments such as cells, nuclei, or polymers often exhibit anomalous diffusion, for which the effects of these errors are less often sufficiently treated. We present data from tracked chromosomal loci in yeast that demonstrate the necessity of properly accounting for both static and dynamic error in the context of an anomalous diffusion that is consistent with a fractional Brownian motion (FBM). We compare these data to analytical forms of the expected values of the MSD and VAC for a general FBM in the presence of these errors. PMID:26172745
Particle-In-Cell simulations of electron beam microbunching instability in three dimensions
NASA Astrophysics Data System (ADS)
Huang, Chengkun; Zeng, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.; Kwan, T. J. T.
2013-10-01
Microbunching instability due to Coherent Synchrotron Radiation (CSR) in a magnetic chicane is one of the major effects that can degrade the electron beam quality in an X-ray Free Electron Laser. Self-consistent simulation using the Particle-In-Cell (PIC) method for the CSR fields of the beam and their effects on beam dynamics have been elusive due to the excessive dispersion error on the grid. We have implemented a high-order finite-volume PIC scheme that models the propagation of the CSR fields accurately. This new scheme is characterized and optimized through a detailed dispersion analysis. The CSR fields from our improved PIC calculation are compared to the extended CSR numerical model based on the Lienard-Wiechert formula in 2D/3D. We also conduct beam dynamics simulation of the microbunching instability using our new PIC capability. Detailed self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed. Work supported by the U.S. Department of Energy through the LDRD program at Los Alamos National Laboratory.
Comprehensive modeling and control of flexible flapping wing micro air vehicles
NASA Astrophysics Data System (ADS)
Nogar, Stephen Michael
Flapping wing micro air vehicles hold significant promise due to the potential for improved aerodynamic efficiency, enhanced maneuverability and hover capability compared to fixed and rotary configurations. However, significant technical challenges exist to due the lightweight, highly integrated nature of the vehicle and coupling between the actuators, flexible wings and control system. Experimental and high fidelity analysis has demonstrated that aeroelastic effects can change the effective kinematics of the wing, reducing vehicle stability. However, many control studies for flapping wing vehicles do not consider these effects, and instead validate the control strategy with simple assumptions, including rigid wings, quasi-steady aerodynamics and no consideration of actuator dynamics. A control evaluation model that includes aeroelastic effects and actuator dynamics is developed. The structural model accounts for geometrically nonlinear behavior using an implicit condensation technique and the aerodynamic loads are found using a time accurate approach that includes quasi-steady, rotational, added mass and unsteady effects. Empirically based parameters in the model are fit using data obtained from a higher fidelity solver. The aeroelastic model and its ingredients are compared to experiments and computations using models of higher fidelity, and indicate reasonable agreement. The developed control evaluation model is implemented in a previously published, baseline controller that maintains stability using an asymmetric wingbeat, known as split-cycle, along with changing the flapping frequency and wing bias. The model-based controller determines the control inputs using a cycle-averaged, linear control design model, which assumes a rigid wing and no actuator dynamics. The introduction of unaccounted for dynamics significantly degrades the ability of the controller to track a reference trajectory, and in some cases destabilizes the vehicle. This demonstrates the importance of considering coupled aeroelastic and actuator dynamics in closed-loop control of flapping wings. A controller is developed that decouples the normal form of the vehicle dynamics, which accounts for coupling of the forces and moments acting on the vehicle and enables enhanced tuning capabilities. This controller, using the same control design model as the baseline controller, stabilizes the system despite the uncertainty between the control design and evaluation models. The controller is able to stabilize cases with significant wing flexibility and limited actuator capabilities, despite a reduction in control effectiveness. Additionally, to achieve a minimally actuated vehicle, the wing bias mechanism is removed. Using the same control design methodology, increased performance is observed compared to the baseline controller. However, due to the dependence on the split-cycle mechanism to generate a pitching moment instead of wing bias, the controller is more susceptible to instability from wing flexibility and limited actuator capacity. This work highlights the importance of coupled dynamics in the design and control of flapping wing micro air vehicles. Future enhancements to this work should focus on the reduced order structural and aerodynamics models. Applications include using the developed dynamics model to evaluate other kinematics and control schemes, ultimately enabling improved vehicle and control design.
Cushing, J M; Henson, Shandelle M
2018-02-03
For structured populations with an annual breeding season, life-stage interactions and behavioral tactics may occur on a faster time scale than that of population dynamics. Motivated by recent field studies of the effect of rising sea surface temperature (SST) on within-breeding-season behaviors in colonial seabirds, we formulate and analyze a general class of discrete-time matrix models designed to account for changes in behavioral tactics within the breeding season and their dynamic consequences at the population level across breeding seasons. As a specific example, we focus on egg cannibalism and the daily reproductive synchrony observed in seabirds. Using the model, we investigate circumstances under which these life history tactics can be beneficial or non-beneficial at the population level in light of the expected continued rise in SST. Using bifurcation theoretic techniques, we study the nature of non-extinction, seasonal cycles as a function of environmental resource availability as they are created upon destabilization of the extinction state. Of particular interest are backward bifurcations in that they typically create strong Allee effects in population models which, in turn, lead to the benefit of possible (initial condition dependent) survival in adverse environments. We find that positive density effects (component Allee effects) due to increased adult survival from cannibalism and the propensity of females to synchronize daily egg laying can produce a strong Allee effect due to a backward bifurcation.
1976-05-01
to Review Grants for Clinical Research and Investigation Involving Human Beings, Medical School, The University of Michigan. 3 of biomechanical models...human volunteers in dynamic sled tests found no clinically observable effects. due to acceleration on a subject in which the peak mouth angular...minutes cf rest between trials , and the average fo-ce of each set computed. Figure 2.7 shows typi- cal forcc curves and the EMG signal resulting from
NASA Astrophysics Data System (ADS)
Bezbaruah, Pratikshya; Das, Nilakshi
2018-05-01
Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.
Generating functionals and Gaussian approximations for interruptible delay reactions
NASA Astrophysics Data System (ADS)
Brett, Tobias; Galla, Tobias
2015-10-01
We develop a generating functional description of the dynamics of non-Markovian individual-based systems in which delay reactions can be terminated before completion. This generalizes previous work in which a path-integral approach was applied to dynamics in which delay reactions complete with certainty. We construct a more widely applicable theory, and from it we derive Gaussian approximations of the dynamics, valid in the limit of large, but finite, population sizes. As an application of our theory we study predator-prey models with delay dynamics due to gestation or lag periods to reach the reproductive age. In particular, we focus on the effects of delay on noise-induced cycles.
Kuzenkov, V S; Krushinskii, A L; Reutov, V P
2013-10-01
Experiments were performed on the model of ischemic stroke due to bilateral occlusion of the carotid arteries. Nitrates had various effects on the dynamics of neurological disorders and mortality rate of Wistar rats, which depended on the cation type and concentration.
Dynamical Jahn-Teller effect of fullerene anions
NASA Astrophysics Data System (ADS)
Liu, Dan; Iwahara, Naoya; Chibotaru, Liviu F.
2018-03-01
The dynamical Jahn-Teller effect of C60n - anions (n =1 -5) is studied using the numerical diagonalization of the linear pn⊗8 d Jahn-Teller Hamiltonian with the currently established coupling parameters. It is found that in all anions the Jahn-Teller effect stabilizes the low-spin states, resulting in the violation of Hund's rule. The energy gain due to the Jahn-Teller dynamics is found to be comparable to the static Jahn-Teller stabilization. The Jahn-Teller dynamics influences the thermodynamic properties via strong variation of the density of vibronic states with energy. Thus the large vibronic entropy in the low-spin states enhances the effective spin gap of C603 - quenching the spin crossover. From the calculations of the effective spin gap as a function of the Hund's rule coupling, we found that the latter should amount 40 ±5 meV in order to cope with the violation of Hund's rule and to reproduce the large spin gap. With the obtained numerical solutions, the matrix elements of electronic operators for the low-lying vibronic levels and the vibronic reduction factors are calculated for all anions.
NASA Astrophysics Data System (ADS)
Claeys, M.; Sinou, J.-J.; Lambelin, J.-P.; Todeschini, R.
2016-08-01
The nonlinear vibration response of an assembly with friction joints - named "Harmony" - is studied both experimentally and numerically. The experimental results exhibit a softening effect and an increase of dissipation with excitation level. Modal interactions due to friction are also evidenced. The numerical methodology proposed groups together well-known structural dynamic methods, including finite elements, substructuring, Harmonic Balance and continuation methods. On the one hand, the application of this methodology proves its capacity to treat a complex system where several friction movements occur at the same time. On the other hand, the main contribution of this paper is the experimental and numerical study of evidence of modal interactions due to friction. The simulation methodology succeeds in reproducing complex form of dynamic behavior such as these modal interactions.
Dynamics of Hyperon Production
NASA Astrophysics Data System (ADS)
Sibirtsev, A.
2007-11-01
The progress of strangeness physics at COSY in both experimental and theoretical aspects is reviewed. It is argued that the dynamics of hyperon production involves excitation of baryons and that it is feasible to study their properties such as mass and total width. It is shown that under certain kinematical cuts the resonance signal can be isolated from the effect due to the final state interaction. Recent puzzles concerning the Σ-hyperon production are discussed.
Planetary Gearbox Fault Diagnosis Using a Single Piezoelectric Strain Sensor
2014-12-23
However, the fault detection of planetary gearbox is very complicate since the c omplex nature of dynamic rolling structure of p lanetary gearbox...vibration transfer paths due to the unique dynamic structure of rotating planet gears. Therefore, it is difficult to diagnose PGB faults via vibration...al. 2014). To overcome the above mentioned challenges in developing effective PGB fau lt diagnosis capability , a research investigation on
Dynamic Failure of Materials: A Review
2010-08-01
stress states . It is currently unknown how well the current trend of multi-scale modeling will impact dynamic failure; however... stress can exist in the necked region after a neck is formed due to the nonuniformity of the necked region. This triaxial stress state is extremely...7 into 8, the effective stress intensity factor (Keff) can be determined in terms of the stress intensity factor (K). Because the onset of
Dynamic Failure Processes Under Confining Stress in AlON, a Transparent Polycrystalline Ceramic
2008-12-01
axes, the dynamic loading is imposed (using MKB) along the second specimen axis and the third axis is used for the ultra-high-speed photography. The...to its optically isotropic cubic crystal structure, fully dense, polycrystalline bodies can be rendered completely transparent, making it a viable... tribological loading conditions. During indentation, the region beneath the indenter is effectively confined due to the surrounding medium, and it
Assessing the Risk of Crew Injury Due to Dynamic Loads During Spaceflight
NASA Technical Reports Server (NTRS)
Somers, J. T.; Gernhardt, M.; Newby, N.
2014-01-01
Spaceflight requires tremendous amounts of energy to achieve Earth orbit and to attain escape velocity for interplanetary missions. Although the majority of the energy is managed in such a way as to limit the accelerations on the crew, several mission phases may result in crew exposure to dynamic loads. In the automotive industry, risk of serious injury can be tolerated because the probability of a crash is remote each time a person enters a vehicle, resulting in a low total risk of injury. For spaceflight, the level of acceptable injury risk must be lower to achieve a low total risk of injury because the dynamic loads are expected on each flight. To mitigate the risk of injury due to dynamic loads, the NASA Human Research Program has developed a research plan to inform the knowledge gaps and develop relevant tools for assessing injury risk. The risk of injury due to dynamic loads can be further subdivided into extrinsic and intrinsic risk factors. Extrinsic risk factors include the vehicle dynamic profile, seat and restraint design, and spacesuit design. Human tolerance to loads varies considerably depending on the direction, amplitude, and rise-time of acceleration therefore the orientation of the body to the dynamic vector is critical to determining crew risk of injury. Although a particular vehicle dynamic profile may be safe for a particular design, the seat, restraint, and suit designs can affect the risk of injury due to localized effects. In addition, characteristics intrinsic to the crewmember may also contribute to the risk of injury, such as crewmember sex, age, anthropometry, and deconditioning due to spaceflight, and each astronaut may have a different risk profile because of these factors. The purpose of the research plan is to address any knowledge gaps in the risk factors to mitigate injury risk. Methods for assessing injury risk have been well documented in other analogous industries and include human volunteer testing, human exposure to dynamic environments, post-mortem human subject (PMHS) testing, animal testing, anthropomorphic test devices (ATD), dynamic models of the human, numerical models of ATDs, and numerical models of the human. Each has inherent strengths and limitations. For example, human volunteer testing is advantageous because a population can be selected that is similar to the astronaut corps; however, because of the inherent ethical limitations, only sub-injurious conditions can be tested. PMHSs can be tested in a variety of conditions including injurious levels, but the responses are not completely analogous to living human subjects. In addition, it is exceedingly difficult to select a PMHS population that is similar to the astronaut corps. ATDs are currently widely used in the automotive industry and military because they are highly repeatable and durable. Unfortunately, because they are mechanical models of the human body, the biofidelity of the responses are limited to dynamic conditions used to validate the ATD. Numerical models of the ATD, in addition to the strengths and limitations for ATDs, are easy to use for a variety of designs before a design is fabricated, but also have additional limitations for ATDs, are easy to use for a variety of designs before a design is fabricated, but also have additional uncertainty. Dynamic models are simple and easy to use, but do not account for localized effects of the seat and suit. Finally, numerical models of the human have the potential to have the most advantages; however, the current models are not validated for the conditions expected during spaceflight. To properly assess spaceflight conditions with numerical human models, human data would be needed to optimize the model responses for those conditions. Using the appropriate assessment method with the knowledge gained for each risk factor, an appropriate approach for mitigating the risk of injury due to dynamic loads can be developed ensuring crew safety in future NASA vehicles.
Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael
2016-11-01
Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology.
Development of monofilar rotor hub vibration absorber
NASA Technical Reports Server (NTRS)
Duh, J.; Miao, W.
1983-01-01
A design and ground test program was conducted to study the performance of the monofilar absorber for vibration reduction on a four-bladed helicopter. A monofilar is a centrifugal tuned two degree-of-freedom rotor hub absorber that provides force attenuation at two frequencies using the same dynamic mass. Linear and non-linear analyses of the coupled monofilar/airframe system were developed to study tuning and attenuation characteristics. Based on the analysis, a design was fabricated and impact bench tests verified the calculated non-rotating natural frequencies and mode shapes. Performance characteristics were measured using a rotating absorber test facility. These tests showed significant attenuation of fixed-system 4P hub motions due to 3P inplane rotating-system hub forces. In addition, detuning effects of the 3P monofilar modal response were small due to the nonlinearities and tuning pin slippage. However, attenuation of 4P hub motions due to 5P inplane hub forces was poor. The performance of the 5P monofilar modal response was degraded by torsional motion of the dynamic mass relative to the support arm which resulted in binding of the dynamic components. Analytical design studies were performed to evaluate this torsional motion problem. An alternative design is proposed which may alleviate the torsional motion of the dynamic mass.
Evolution of specialization under non-equilibrium population dynamics.
Nurmi, Tuomas; Parvinen, Kalle
2013-03-21
We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Correlated lateral phase separations in stacks of lipid membranes
NASA Astrophysics Data System (ADS)
Hoshino, Takuma; Komura, Shigeyuki; Andelman, David
2015-12-01
Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, Tc, for larger inter-layer interaction. When the temperature ratio, T/Tc, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.
NASA Astrophysics Data System (ADS)
Yang, Xiaojuan; Thornton, Peter E.; Ricciuto, Daniel M.; Hoffman, Forrest M.
2016-07-01
The effects of phosphorus (P) availability on carbon (C) cycling in the Amazon region are investigated using CLM-CNP. We demonstrate that the coupling of P dynamics reduces the simulated historical terrestrial C sink due to increasing atmospheric CO2 concentrations ([CO2]) by about 26%. Our exploratory simulations show that the response of tropical forest C cycling to increasing [CO2] depends on how elevated CO2 affects phosphatase enzyme production. The effects of warming are more complex, depending on the interactions between humidity, C, and nutrient dynamics. While a simulation with low humidity generally shows the reduction of net primary productivity (NPP), a second simulation with higher humidity suggests overall increases in NPP due to the dominant effects of reduced water stress and more nutrient availability. Our simulations point to the need for (1) new observations on how elevated [CO2] affects phosphatase enzyme production and (2) more tropical leaf-scale measurements under different temperature/humidity conditions with different soil P availability.
Effect of correlations on the polarizability of the one component plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carini, P.R.
Correlational effects on the dynamical polarizability ..cap alpha..(k,..omega..) of the one component plasma (OCP) are investigated in both the weak (..gamma.. < 1) and strong (..gamma.. < 1) coupling regions (..gamma.. is the plasma parameter, ..gamma.. = k/sup 3//4..pi..n where k/sup -1/ is the Debye length and n is the number density. In the weak coupling region a numerical solution is presented over a wide range of frequencies of the complete first order (in ..gamma..) correction to the dynamical polarizability which fully accounts for dynamical screening effects and is exact in the long wavelength and weak coupling limits (k ..-->..more » 0, ..gamma.. ..-->.. 0). This complete result is compared with a similar numerical solution for the dynamical polarizability obtained from the Golden-Kalman (GK) dynamical theory for strongly coupled plasmas. Contrary to previous results reported in the literature it was found that both theories predict the change in the dispersion of the long wavelength plasmons due to finite ..gamma.. effects to be that the slope of the plasmon dispersion curve decreases from its Bohm-Gross value as the plasma parameter increases from 0. In the strong coupling region two hydrodynamical model solutions of the GK dynamical theory for the polarizability are presented.« less
Synchronization Dynamics of Coupled Chemical Oscillators
NASA Astrophysics Data System (ADS)
Tompkins, Nathan
The synchronization dynamics of complex networks have been extensively studied over the past few decades due to their ubiquity in the natural world. Prominent examples include cardiac rhythms, circadian rhythms, the flashing of fireflies, predator/prey population dynamics, mammalian gait, human applause, pendulum clocks, the electrical grid, and of the course the brain. Detailed experiments have been done to map the topology of many of these systems and significant advances have been made to describe the mathematics of these networks. Compared to these bodies of work relatively little has been done to directly test the role of topology in the synchronization dynamics of coupled oscillators. This Dissertation develops technology to examine the dynamics due to topology within networks of discrete oscillatory components. The oscillatory system used here consists of the photo-inhibitable Belousov-Zhabotinsky (BZ) reaction water-in-oil emulsion where the oscillatory drops are diffusively coupled to one another and the topology is defined by the geometry of the diffusive connections. Ring networks are created from a close-packed 2D array of drops using the Programmable Illumination Microscope (PIM) in order to test Turing's theory of morphogenesis directly. Further technology is developed to create custom planar networks of BZ drops in more complicated topologies which can be individually perturbed using illumination from the PIM. The work presented here establishes the validity of using the BZ emulsion system with a PIM to study the topology induced effects on the synchronization dynamics of coupled chemical oscillators, tests the successes and limitations of Turing's theory of morphogenesis, and develops new technology to further probe the effects of network topology on a system of coupled oscillators. Finally, this Dissertation concludes by describing ongoing experiments which utilize this new technology to examine topology induced transitions of synchronization dynamics of diffusively coupled chemical oscillators.
Phase Transitions in Geomorphology
NASA Astrophysics Data System (ADS)
Ortiz, C. P.; Jerolmack, D. J.
2015-12-01
Landscapes are patterns in a dynamic steady-state, due to competing processes that smooth or sharpen features over large distances and times. Geomorphic transport laws have been developed to model the mass-flux due to different processes, but are unreasonably effective at recovering the scaling relations of landscape features. Using a continuum approximation to compare experimental landscapes and the observed landscapes of the earth, one finds they share similar morphodynamics despite a breakdown of classical dynamical similarity between the two. We propose the origin of this effectiveness is a different kind of dynamic similarity in the statistics of initiation and cessation of motion of groups of grains, which is common to disordered systems of grains under external driving. We will show how the existing data of sediment transport points to common signatures with dynamical phase transitions between "mobile" and "immobile" phases in other disordered systems, particularly granular materials, colloids, and foams. Viewing landscape evolution from the lens of non-equilibrium statistical physics of disordered systems leads to predictions that the transition of bulk measurements such as particle flux is continuous from one phase to another, that the collective nature of the particle dynamics leads to very slow aging of bulk properties, and that the dynamics are history-dependent. Recent results from sediment transport experiments support these predictions, suggesting that existing geomorphic transport laws may need to be replaced by a new generation of stochastic models with ingredients based on the physics of disordered phase transitions. We discuss possible strategies for extracting the necessary information to develop these models from measurements of geomorphic transport noise by connecting particle-scale collective dynamics and space-time fluctuations over landscape features.
The environmental effect on the radial breathing mode of carbon nanotubes in water
NASA Astrophysics Data System (ADS)
Longhurst, M. J.; Quirke, N.
2006-06-01
We investigate, using molecular dynamics, the effect on the radial breathing mode (RBM) frequency of immersion in water for a range of single-walled carbon nanotubes. We find that nanotube-water interactions are responsible for an upshift in the RBM frequency of the order of 4-10 wave numbers. The upshift is comprised of two components: increased hydrostatic pressure on the nanotube due to curvature effects, and the dynamic coupling of the RBM with its solvation shell. In contrast to much of the current literature, we find that the latter of the two effects is dominant. This could serve as an innovative tool for determining the interaction potential between nanotubes/graphitic surfaces and fluids.
Butane dihedral angle dynamics in water is dominated by internal friction.
Daldrop, Jan O; Kappler, Julian; Brünig, Florian N; Netz, Roland R
2018-05-15
The dihedral dynamics of butane in water is known to be rather insensitive to the water viscosity; possible explanations for this involve inertial effects or Kramers' turnover, the finite memory time of friction, and the presence of so-called internal friction. To disentangle these factors, we introduce a method to directly extract the friction memory function from unconstrained simulations in the presence of an arbitrary free-energy landscape. By analysis of the dihedral friction in butane for varying water viscosity, we demonstrate the existence of an internal friction contribution that does not scale linearly with water viscosity. At normal water viscosity, the internal friction turns out to be eight times larger than the solvent friction and thus completely dominates the effective friction. By comparison with simulations of a constrained butane molecule that has the dihedral as the only degree of freedom, we show that internal friction comes from the six additional degrees of freedom in unconstrained butane that are orthogonal to the dihedral angle reaction coordinate. While the insensitivity of butane's dihedral dynamics to water viscosity is solely due to the presence of internal friction, inertial effects nevertheless crucially influence the resultant transition rates. In contrast, non-Markovian effects due to the finite memory time are present but do not significantly influence the dihedral barrier-crossing rate of butane. These results not only settle the character of dihedral dynamics in small solvated molecular systems such as butane, they also have important implications for the folding of polymers and proteins. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Harikrishnan, A. R.; Dhar, Purbarun; Agnihotri, Prabhat K.; Gedupudi, Sateesh; Das, Sarit K.
2018-04-01
Dynamic wettability and contact angle hysteresis can be correlated to shed insight onto any solid-liquid interaction. Complex fluids are capable of altering the expected hysteresis and dynamic wetting behavior due to interfacial interactions. We report the effect of capillary number on the dynamic advancing and receding contact angles of surfactant-based nanocolloidal solutions on hydrophilic, near hydrophobic, and superhydrophobic surfaces by performing forced wetting and de-wetting experiments by employing the embedded needle method. A segregated study is performed to infer the contributing effects of the constituents and effects of particle morphology. The static contact angle hysteresis is found to be a function of particle and surfactant concentrations and greatly depends on the nature of the morphology of the particles. An order of estimate of line energy and a dynamic flow parameter called spreading factor and the transient variations of these parameters are explored which sheds light on the dynamics of contact line movement and response to perturbation of three-phase contact. The Cox-Voinov-Tanner law was found to hold for hydrophilic and a weak dependency on superhydrophobic surfaces with capillary number, and even for the complex fluids, with a varying degree of dependency for different fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakke, Knut
2010-05-15
We will show that when a neutral particle with permanent electric dipole moment interacts with a specific field configuration when the local reference frames of the observers are Fermi-Walker transported, the Landau quantization analog to the He-McKellar-Wilkens setup arises in the nonrelativistic quantum dynamics of the neutral particle due the noninertial effects of the Fermi-Walker reference frame. We show that the noninertial effects do not break the infinity degeneracy of the energy levels, but in this case, the cyclotron frequency depends on the angular velocity.
Dynamic Effects in the Photoionization of the 6s Subshell of Radon and Nobelium
NASA Astrophysics Data System (ADS)
Keating, David; Manson, Steven; Deshmukh, Pranawa
2017-04-01
Relativistic interactions are very important contributors to atomic properties. Of interest is the alterations made to the wave functions, i.e., the dynamics. These dynamical changes can greatly affect the photoionization cross section of heavy (high Z) atoms. To explore the extent of these dynamic effects a theoretical study of the 6s photoionization cross section of both radon (Z = 86) and nobelium (Z = 102) have been performed using the relativistic random phase approximation (RRPA) methodology. These two cases have been selected because they offer the clearest picture of the effects in question. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. Interchannel coupling can obscure the dynamic effects by ``pulling'' minima out of the discrete spectrum and into the continuum or by inducing minima. Therefore it is necessary to perform calculations without coupling included. This is possible thanks to the RRPA and RPAE codes being able to calculate cross sections with particular channels omitted. Comparisons are presented between calculations with and without interchannel coupling. Work supported by DOE and NSF.
Dynamic structural disorder in supported nanoscale catalysts
NASA Astrophysics Data System (ADS)
Rehr, J. J.; Vila, F. D.
2014-04-01
We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.
Peptide chain dynamics in light and heavy water: zooming in on internal friction.
Schulz, Julius C F; Schmidt, Lennart; Best, Robert B; Dzubiella, Joachim; Netz, Roland R
2012-04-11
Frictional effects due to the chain itself, rather than the solvent, may have a significant effect on protein dynamics. Experimentally, such "internal friction" has been investigated by studying folding or binding kinetics at varying solvent viscosity; however, the molecular origin of these effects is hard to pinpoint. We consider the kinetics of disordered glycine-serine and α-helix forming alanine peptides and a coarse-grained protein folding model in explicit-solvent molecular dynamics simulations. By varying the solvent mass over more than two orders of magnitude, we alter only the solvent viscosity and not the folding free energy. Folding dynamics at the near-vanishing solvent viscosities accessible by this approach suggests that solvent and internal friction effects are intrinsically entangled. This finding is rationalized by calculation of the polymer end-to-end distance dynamics from a Rouse model that includes internal friction. An analysis of the friction profile along different reaction coordinates, extracted from the simulation data, demonstrates that internal as well as solvent friction varies substantially along the folding pathways and furthermore suggests a connection between friction and the formation of hydrogen bonds upon folding. © 2012 American Chemical Society
Experimental Study on Vacuum Dynamic Consolidation Treatment of Soft Soil Foundation
NASA Astrophysics Data System (ADS)
Fu-lai, Ni; Xin, Wen; Xiao-bin, Zhang; Wei, Li
2017-11-01
In view of the deficiency of the saturated silt clay foundation reinforced by the dynamic consolidation method, combination the project of soft foundation treatment test area in Tangshan, the reaserch analysed indexes, included groundwater level, pore water pressure, settlement about soil layer and so on, by use of field tests and indoor geotechnical tests, The results showed that the whole reinforcement effect with vacuum dynamic compaction method to blow fill foundation is obvious, due to the result of vacuum precipitation, generally, the excess pore water pressure can be dissipated by 90% above in 2 days around and the effective compaction coefficient can reached more than 0.9,the research work in soft foundation treatment engineering provide a new method and thought to similar engineering.
Liang, Feng; Guo, Yuzheng; Hou, Shaocong; Quan, Qimin
2017-01-01
Current methods to study molecular interactions require labeling the subject molecules with fluorescent reporters. However, the effect of the fluorescent reporters on molecular dynamics has not been quantified because of a lack of alternative methods. We develop a hybrid photonic-plasmonic antenna-in-a-nanocavity single-molecule biosensor to study DNA-protein dynamics without using fluorescent labels. Our results indicate that the fluorescein and fluorescent protein labels decrease the interaction between a single DNA and a protein due to weakened electrostatic interaction. Although the study is performed on the DNA-XPA system, the conclusion has a general implication that the traditional fluorescent labeling methods might be misestimating the molecular interactions. PMID:28560341
A mechanism for dynamic lateral polarization in CdZnTe under high flux x-ray irradiation
NASA Astrophysics Data System (ADS)
Bale, Derek S.; Soldner, Stephen A.; Szeles, Csaba
2008-02-01
It has been observed that pixillated CdZnTe detectors fabricated from crystals with low hole transport properties (μhτh<10-5cm2V-1) experience a dynamic lateral polarization when exposed to a high flux of x-rays. In this effect, counts are transferred from pixels near the edge of the irradiated region to pixels in the interior. In this letter, we propose a mechanism capable of explaining the observed dynamical effect. The mechanism is based on a transverse electric field that is generated due to space charge that builds within the material. This transverse field, in turn, is responsible for the altered carrier trajectories toward the center of the irradiated region.
Dynamic of charged planar geometry in tilted and non-tilted frames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharif, M., E-mail: msharif.math@pu.edu.pk; Zaeem Ul Haq Bhatti, M., E-mail: mzaeem.math@pu.edu.pk
2015-05-15
We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in themore » pure diffusion case and examine the effects of the electromagnetic field.« less
Kim, Yoonjung; Lee, Myeongsang; Choi, Hyunsung; Baek, Inchul; Kim, Jae In; Na, Sungsoo
2018-04-01
Silk materials are receiving significant attention as base materials for various functional nanomaterials and nanodevices, due to its exceptionally high mechanical properties, biocompatibility, and degradable characteristics. Although crystalline silk regions are composed of various repetitive motifs with differing amino acid sequences, how the effect of humidity works differently on each of the motifs and their structural characteristics remains unclear. We report molecular dynamics (MD) simulations on various silkworm fibroins composed of major motifs (i.e. (GAGAGS) n , (GAGAGA) n , and (GAGAGY) n ) at varying degrees of hydration, and reveal how each major motifs of silk fibroins change at each degrees of hydration using MD simulations and their structural properties in mechanical perspective via steered molecular dynamics simulations. Our results explain what effects humidity can have on nanoscale materials and devices consisting of crystalline silk materials.
NASA Astrophysics Data System (ADS)
Liu, J. X.; Deng, S. C.; Liang, N. G.
2008-02-01
Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.
NASA Astrophysics Data System (ADS)
Bednarek, Tomasz; Tsotridis, Georgios
2017-03-01
The objective of the current study is to highlight possible limitations and difficulties associated with Computational Fluid Dynamics in PEM single fuel cell modelling. It is shown that an appropriate convergence methodology should be applied for steady-state solutions, due to inherent numerical instabilities. A single channel fuel cell model has been taken as numerical example. Results are evaluated for quantitative as well qualitative points of view. The contribution to the polarization curve of the different fuel cell components such as bi-polar plates, gas diffusion layers, catalyst layers and membrane was investigated via their effects on the overpotentials. Furthermore, the potential losses corresponding to reaction kinetics, due to ohmic and mas transport limitations and the effect of the exchange current density and open circuit voltage, were also investigated. It is highlighted that the lack of reliable and robust input data is one of the issues for obtaining accurate results.
Effect of Dynamic Sector Boundary Changes on Air Traffic Controllers
NASA Technical Reports Server (NTRS)
Jung, Jaewoo; Lee, Paul; Kessell, Angela; Homola, Jeff; Zelinski, Shannon
2010-01-01
The effect of dynamic sector boundary changes on air traffic controller workload was investigated with data from a human-in-the-loop simulation. Multiple boundary changes were made during simulated operations, and controller rating of workload was recorded. Analysis of these data showed an increase of 16.9% in controller workload due to boundary changes. This increased workload was correlated with the number of aircraft handoffs and change in sector volume. There was also a 12.7% increase in average workload due to the changed sector design after boundary changes. This increase was correlated to traffic flow crossing points getting closer to sector boundaries and an increase in the number of flights with short dwell time in a sector. This study has identified some of the factors that affect controller workload when sector boundaries are changed, but more research is needed to better understand their relationships.
NASA Astrophysics Data System (ADS)
Claret, A.; Willems, B.
2002-06-01
We revised the current status of the apsidal-motion test to stellar structure and evolution. The observational sample was increased by about 50% in comparison to previous studies. Classical and relativistic systems were analyzed simultaneously and only systems with accurate absolute dimensions were considered. New interior models incorporating recent opacity tables, stellar rotation, mass loss, and moderate core overshooting were used as theoretical tools to compare the predicted with the observed shifts of the position of the periastron. The stellar models were computed for the precise observed masses and the adopted chemical compositions are consistent with the corresponding tables of opacities to avoid the inherent problems of interpolation in mass and in (X, Z). The derived chemical composition for each individual system was used to infer the primordial helium content as well as a law of enrichment. The values found are in good agreement with those obtained from various independent sources. For the first time, the effects of dynamic tides are taken into account systematically to determine the contribution of the tidal distortion to the predicted apsidal-motion rate. The deviations between the apsidal-motion rates resulting from the classical formula and those determined by taking into account the effects of dynamic tides are presented as a function of the level of synchronism. For systems close to synchronisation, dynamic tides cause deviations with respect to the classical apsidal-motion formula due to the effects of the compressibility of the stellar fluid. For systems with higher rotational angular velocities, additional deviations due to resonances arise when the forcing frequencies of the dynamic tides come into the range of the free oscillation modes of the component stars. The resulting comparison shows a good agreement between the observed and theoretical apsidal-motion rates. No systematic effects in the sense that models are less mass concentrated than real stars and no correlations with the evolutionary status of the systems were detected.
Shin, Ji-won; Song, Gui-bin; Ko, Jooyeon
2017-01-01
[Purpose] The purpose of this case series was to examination the effects of trunk and neck stabilization exercise on the static, dynamic trunk balance abilities of children with cerebral palsy. [Subjects and Methods] The study included 11 school aged children diagnosed with paraplegia due to a premature birth. Each child engaged in exercise treatments twice per week for eight weeks; each treatment lasted for 45 minutes. After conducting a preliminary assessment, exercise treatments were designed based on each child’s level of functioning. Another assessment was conducted after the eight weeks of treatment. [Results] The Trunk Control Measurement Scale evaluation showed that the exercise treatments had a significant effect on static sitting balance, selective movement control, dynamic reaching, and total Trunk Control Measurement Scale scores. [Conclusion] The results indicate that neck and trunk stabilization exercises that require children’s active participation are helpful for improving static and dynamic balance ability among children diagnosed with cerebral palsy. PMID:28533628
2014-01-01
Host–pathogen epidemiological processes are often unclear due both to their complexity and over-simplistic approaches used to quantify them. We applied a multi-event capture–recapture procedure on two years of data from three rabbit populations to test hypotheses about the effects on survival of, and the dynamics of host immunity to, both myxoma virus and Rabbit Hemorrhagic Disease Virus (MV and RHDV). Although the populations shared the same climatic and management conditions, MV and RHDV dynamics varied greatly among them; MV and RHDV seroprevalences were positively related to density in one population, but RHDV seroprevalence was negatively related to density in another. In addition, (i) juvenile survival was most often negatively related to seropositivity, (ii) RHDV seropositives never had considerably higher survival, and (iii) seroconversion to seropositivity was more likely than the reverse. We suggest seropositivity affects survival depending on trade-offs among antibody protection, immunosuppression and virus lethality. Negative effects of seropositivity might be greater on juveniles due to their immature immune system. Also, while RHDV directly affects survival through the hemorrhagic syndrome, MV lack of direct lethal effects means that interactions influencing survival are likely to be more complex. Multi-event modeling allowed us to quantify patterns of host–pathogen dynamics otherwise difficult to discern. Such an approach offers a promising tool to shed light on causative mechanisms. PMID:24708296
The effect of gas double-dynamic on mass distribution in solid-state fermentation.
Chen, Hong-Zhang; Zhao, Zhi-Min; Li, Hong-Qiang
2014-05-10
The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5°C and 2.48mg/(hg) under static aeration solid-state fermentation (SASSF) and 33.9°C and 5.38mg/(hg) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30±1°C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products. Copyright © 2014 Elsevier Inc. All rights reserved.
The measurement of dynamic radii for passenger car tyre
NASA Astrophysics Data System (ADS)
Anghelache, G.; Moisescu, R.
2017-10-01
The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.
Clinical Applications of Stochastic Dynamic Models of the Brain, Part I: A Primer.
Roberts, James A; Friston, Karl J; Breakspear, Michael
2017-04-01
Biological phenomena arise through interactions between an organism's intrinsic dynamics and stochastic forces-random fluctuations due to external inputs, thermal energy, or other exogenous influences. Dynamic processes in the brain derive from neurophysiology and anatomical connectivity; stochastic effects arise through sensory fluctuations, brainstem discharges, and random microscopic states such as thermal noise. The dynamic evolution of systems composed of both dynamic and random effects can be studied with stochastic dynamic models (SDMs). This article, Part I of a two-part series, offers a primer of SDMs and their application to large-scale neural systems in health and disease. The companion article, Part II, reviews the application of SDMs to brain disorders. SDMs generate a distribution of dynamic states, which (we argue) represent ideal candidates for modeling how the brain represents states of the world. When augmented with variational methods for model inversion, SDMs represent a powerful means of inferring neuronal dynamics from functional neuroimaging data in health and disease. Together with deeper theoretical considerations, this work suggests that SDMs will play a unique and influential role in computational psychiatry, unifying empirical observations with models of perception and behavior. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Dynamic Exposure to Alcohol Advertising in a Sports Context Influences Implicit Attitudes.
Zerhouni, Oulmann; Bègue, Laurent; Duke, Aaron A; Flaudias, Valentin
2016-02-01
Experimental studies investigating the impact of advertising with ecological stimuli on alcohol-related cognition are scarce. This research investigated the cognitive processes involved in learning implicit attitudes toward alcohol after incidental exposure to alcohol advertisements presented in a dynamic context. We hypothesized that incidental exposure to a specific alcohol brand would lead to heightened positive implicit attitudes toward alcohol due to a mere exposure effect. In total, 108 participants were randomly exposed to dynamic sporting events excerpts with and without advertising for a specific brand of alcohol, after completing self-reported measures of alcohol-related expectancies, alcohol consumption, and attitudes toward sport. Participants then completed a lexical decision task and an affective priming task. We showed that participants were faster to detect brand name after being exposed to advertising during a sports game, and that implicit attitudes of participants toward the brand were more positive after they were exposed to advertising, even when alcohol usage patterns were controlled for. Incidental exposure to alcohol sponsorship in sport events impacts implicit attitudes toward the advertised brand and alcohol in general. The effect of incidental advertising on implicit attitudes is also likely to be due to a mere exposure effect. However, further studies should address this point specifically. Copyright © 2016 by the Research Society on Alcoholism.
Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.
Ni, Bing-Jie; Batstone, Damien; Zhao, Bai-Hang; Yu, Han-Qing
2015-08-04
Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.
A self-cognizant dynamic system approach for prognostics and health management
NASA Astrophysics Data System (ADS)
Bai, Guangxing; Wang, Pingfeng; Hu, Chao
2015-03-01
Prognostics and health management (PHM) is an emerging engineering discipline that diagnoses and predicts how and when a system will degrade its performance and lose its partial or whole functionality. Due to the complexity and invisibility of rules and states of most dynamic systems, developing an effective approach to track evolving system states becomes a major challenge. This paper presents a new self-cognizant dynamic system (SCDS) approach that incorporates artificial intelligence into dynamic system modeling for PHM. A feed-forward neural network (FFNN) is selected to approximate a complex system response which is challenging task in general due to inaccessible system physics. The trained FFNN model is then embedded into a dual extended Kalman filter algorithm to track down system dynamics. A recursive computation technique used to update the FFNN model using online measurements is also derived. To validate the proposed SCDS approach, a battery dynamic system is considered as an experimental application. After modeling the battery system by a FFNN model and a state-space model, the state-of-charge (SoC) and state-of-health (SoH) are estimated by updating the FFNN model using the proposed approach. Experimental results suggest that the proposed approach improves the efficiency and accuracy for battery health management.
Hierarchical Process Composition: Dynamic Maintenance of Structure in a Distributed Environment
1988-01-01
One prominent hne of research stresses the independence of address space and thread of control, and the resulting efficiencies due to shared memory...cooperating processes. StarOS focuses on case of use and a general capability mechanism, while Medusa stresses the effect of distributed hardware on system...process structure and the asynchrony among agents and between agents and sources of failure. By stressing dynamic structure, we are led to adopt an
Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers
Hong, Y.-S.; Rosen, Michael R.; Reeves, R.R.
2002-01-01
In an urban fractured-rock aquifer in the Mt. Eden area of Auckland, New Zealand, disposal of storm water is via "soakholes" drilled directly into the top of the fractured basalt rock. The dynamic response of the groundwater level due to the storm water infiltration shows characteristics of a strongly time-varying system. A dynamic fuzzy modeling approach, which is based on multiple local models that are weighted using fuzzy membership functions, has been developed to identify and predict groundwater level fluctuations caused by storm water infiltration. The dynamic fuzzy model is initialized by the fuzzy clustering algorithm and optimized by the gradient-descent algorithm in order to effectively derive the multiple local models-each of which is associated with a locally valid model that represents the groundwater level state as a response to different intensities of rainfall events. The results have shown that even if the number of fuzzy local models derived is small, the fuzzy modeling approach developed provides good prediction results despite the highly time-varying nature of this urban fractured-rock aquifer system. Further, it allows interpretable representations of the dynamic behavior of the groundwater system due to storm water infiltration.
USDA-ARS?s Scientific Manuscript database
ssessment of the effectiveness of supplementary mineral nutrition in range cattle to promote important economic traits is lacking due a paucity of methods to measure cause and effect relationships, dynamic dietary mineral concentrations, shifting requirements and a lack of mineral intake quantificat...
USDA-ARS?s Scientific Manuscript database
Assessment of the effectiveness of supplementary mineral nutrition in range cattle to promote important economic traits is lacking due a paucity of methods to measure cause and effect relationships, dynamic dietary mineral concentrations, shifting requirements and a lack of mineral intake quantifica...
NASA Astrophysics Data System (ADS)
Sun, Mingye; Zheng, Youjin; Zhang, Lei; Zhao, Liping; Zhang, Bing
2017-08-01
The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4‧,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.
Simulation of interface dislocations effect on polarization distribution of ferroelectric thin films
NASA Astrophysics Data System (ADS)
Zheng, Yue; Wang, Biao; Woo, C. H.
2006-02-01
Effects of interfacial dislocations on the properties of ferroelectric thin films are investigated, using the dynamic Ginzburg-Landau equation. Our results confirm the existence of a dead layer near the film/substrate interface. Due to the combined effects of the dislocations and the near-surface eigenstrain relaxation, the ferroelectric properties of about one-third of the film volume suffers.
Flow Field Dynamics in a High-g Ultra-Compact Combustor
2016-12-01
6.1.3.1. Baseline Exit Temperatures .............................................................. 308 x 6.1.3.2. Exit Temperature Effects Due to...through improved thrust-specific fuel consumption ; however, implementation of an effective combustion scheme in the constrained space between turbine...their influence on the combustion process, and the resultant effect on exit temperature profiles and emissions (as detailed in the following section
Elasto-dynamic analysis of spinning nanodisks via a surface energy-based model
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2016-07-01
Using the surface elasticity theory of Gurtin and Murdoch, in-plane vibrations of annular nanodisks due to their rotary motion are explored. By the imposition of non-classical boundary conditions on the innermost and outermost surfaces and employing Hamilton’s principle, the unknown elasto-dynamic fields of the bulk zone are determined via the finite element method. The roles of both nanodisk geometry and surface effect on the natural frequencies are addressed. Subsequently, forced vibrations of spinning nanodisks with fixed-free and free-free boundary conditions are comprehensively examined. The obtained results show that the maximum dynamic elastic fields grow in a parabolic manner as the steady angular velocity increases. By increasing the outermost radius, the maximum dynamic elastic field is magnified and the influence of the surface effect on the results reduced. This work can be considered as a pivotal step towards optimal design and dynamic analysis of nanorotors with disk-like parts, which are one of the basic building blocks of the upcoming advanced nanotechnologies.
Lattice dynamical and dielectric properties of L-amino acids
NASA Astrophysics Data System (ADS)
Tulip, P. R.; Clark, S. J.
2006-08-01
We present the results of ab initio calculations of the lattice dynamical and dielectric properties of the L-amino acids L-alanine, L-leucine, and L-isoleucine. Normal-mode frequencies and dielectric permittivity tensors are obtained using density-functional perturbation theory implemented within the plane-wave pseudopotential approximation. IR spectra are calculated and are used to analyze the effects of intermolecular interactions and zwitterionization upon the lattice dynamics. It is found that vibronic modes associated with the carboxy and amino functional groups undergo modification from their free-molecule values due to the presence of hydrogen bonds. The role of macroscopic electric fields set up by zone-center normal modes in the lattice dynamics is investigated by analysis of the Born effective charge. Calculated permittivity tensors are found to be greater than would be obtained by a naive use of the isolated molecular values, indicating the role of intermolecular interactions in increasing molecular polarizability.
Esterified sago waste for engine oil removal in aqueous environment.
Ngaini, Zainab; Noh, Farid; Wahi, Rafeah
2014-01-01
Agro-waste from the bark of Metroxylon sagu (sago) was studied as a low cost and effective oil sorbent in dry and aqueous environments. Sorption study was conducted using untreated sago bark (SB) and esterified sago bark (ESB) in used engine oil. Characterization study showed that esterification has successfully improved the hydrophobicity, buoyancy, surface roughness and oil sorption capacity of ESB. Sorption study revealed that water uptake of SB is higher (30 min static: 2.46 g/g, dynamic: 2.67 g/g) compared with ESB (30 min static: 0.18 g/g, dynamic: 0.14 g/g). ESB, however, showed higher oil sorption capacity in aqueous environment (30 min static: 2.30 g/g, dynamic: 2.14) compared with SB (30 min static: 0 g/g, dynamic: 0 g/g). ESB has shown great poTENTial as effective oil sorbent in aqueous environment due to its high oil sorption capacity, low water uptake and high buoyancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesnikov, R.A.; Krommes, J.A.
The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for themore » model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.« less
A Computational Fluid Dynamics Study of Swirling Flow Reduction by using Anti-vortex Baffle
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John W.; West, Jeff S..
2013-01-01
An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6- DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.
A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John W.; West, Jeff S.
2017-01-01
An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6-DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has a significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to the conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.
Papaioannou, Anastasios; Kuyucak, Serdar; Kuncic, Zdenka
2017-09-01
Due to the increasing prevalence of diabetes, finding therapeutic analogues for insulin has become an urgent issue. While many experimental studies have been performed towards this end, they have limited scope to examine all aspects of the effect of a mutation. Computational studies can help to overcome these limitations, however, relatively few studies that focus on insulin analogues have been performed to date. Here, we present a comprehensive computational study of insulin analogues-three mutant insulins that have been identified with hyperinsulinemia and three mutations on the critical B26 residue that exhibit similar binding affinity to the insulin receptor-using molecular dynamics simulations with the aim of predicting how mutations of insulin affect its activity, dynamics, energetics and conformations. The time evolution of the conformers is studied in long simulations. The probability density function and potential of mean force calculations are performed on each insulin analogue to unravel the effect of mutations on the dynamics and energetics of insulin activation. Our conformational study can decrypt the key features and molecular mechanisms that are responsible for an enhanced or reduced activity of an insulin analogue. We find two key results: 1) hyperinsulinemia may be due to the drastically reduced activity (and binding affinity) of the mutant insulins. 2) Y26 B S and Y26 B E are promising therapeutic candidates for insulin as they are more active than WT-insulin. The analysis in this work can be readily applied to any set of mutations on insulin to guide development of more effective therapeutic analogues.
Influence of Evaporation on Soap Film Rupture.
Champougny, Lorène; Miguet, Jonas; Henaff, Robin; Restagno, Frédéric; Boulogne, François; Rio, Emmanuelle
2018-03-13
Although soap films are prone to evaporate due to their large surface to volume ratio, the effect of evaporation on macroscopic film features has often been disregarded in the literature. In this work, we experimentally investigate the influence of environmental humidity on soap film stability. An original experiment allows to measure both the maximum length of a film pulled at constant velocity and its thinning dynamics in a controlled atmosphere for various values of the relative humidity [Formula: see text]. At first order, the environmental humidity seems to have almost no impact on most of the film thinning dynamics. However, we find that the film length at rupture increases continuously with [Formula: see text]. To rationalize our observations, we propose that film bursting occurs when the thinning due to evaporation becomes comparable to the thinning due to liquid drainage. This rupture criterion turns out to be in reasonable agreement with an estimation of the evaporation rate in our experiment.
Dynamic Topography at Earth's Surface: Fact or Fiction? (Invited)
NASA Astrophysics Data System (ADS)
Lithgow-Bertelloni, C. R.; Silver, P. G.
2009-12-01
Contributions to Earth’s surface topography range from short-wavelength uncompensated features due to tectonic activity, to variations in crustal structure and long-wavelength deflections of the lithosphere caused by mantle dynamics. The latter we call dynamic topography. Dynamic topography elevates or depresses the surface even if the density anomaly giving rise to flow is deep in the mantle. Dynamic topography is also a major contributor to Earth’s gravitational potential and to surface deformation. However, direct observations of dynamic topography are elusive, because signals are obscured by the isostatic contribution due to crustal and lithospheric structure. The only seemingly unequivocal signals of dynamically supported topography have been found over mantle upwellings on both continents (Africa [Lithgow-Bertelloni and Silver, 1998] and Arabia [Daradich et al., 2004]) and oceanic basins (North-Atlantic [Conrad et al., 2004]). Recent work on Africa’s geomorphic history [Moore et al., 2009] and North Atlantic gravity and topography have called even these results into questions. In downwelling regions (near slabs) no clear signals have been found. I will explore why this dichotomy may exist and relate it to the need for dynamic topography in mantle flow models, with an eye towards the effects of phase transitions, lateral variations in viscosity and layered convection. I will also present recent results on dynamic topography over flat slab segments that overturn the conventional wisdom and explain basin topography in the Andean foreland. Along with the new models I will discuss a recent global lithospheric structure model with which to compute the residual topography, i.e. the “observed” dynamic topography.
A Framework of Multi Objectives Negotiation for Dynamic Supply Chain Model
NASA Astrophysics Data System (ADS)
Chai, Jia Yee; Sakaguchi, Tatsuhiko; Shirase, Keiichi
Trends of globalization and advances in Information Technology (IT) have created opportunity in collaborative manufacturing across national borders. A dynamic supply chain utilizes these advances to enable more flexibility in business cooperation. This research proposes a concurrent decision making framework for a three echelons dynamic supply chain model. The dynamic supply chain is formed by autonomous negotiation among agents based on multi agents approach. Instead of generating negotiation aspects (such as amount, price and due date) arbitrary, this framework proposes to utilize the information available at operational level of an organization in order to generate realistic negotiation aspect. The effectiveness of the proposed model is demonstrated by various case studies.
Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions
Zulick, C.; Raymond, A.; McKelvey, A.; ...
2016-06-15
Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a K α imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Furthermore, Hybrid Vlasov–Fokker–Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.
Gradual Crossover from Subdiffusion to Normal Diffusion: A Many-Body Effect in Protein Surface Water
NASA Astrophysics Data System (ADS)
Tan, Pan; Liang, Yihao; Xu, Qin; Mamontov, Eugene; Li, Jinglai; Xing, Xiangjun; Hong, Liang
2018-06-01
Dynamics of hydration water is essential for the function of biomacromolecules. Previous studies have demonstrated that water molecules exhibit subdiffusion on the surface of biomacromolecules; yet the microscopic mechanism remains vague. Here, by performing neutron scattering, molecular dynamics simulations, and analytic modeling on hydrated perdeuterated protein powders, we found water molecules jump randomly between trapping sites on protein surfaces, whose waiting times obey a broad distribution, resulting in subdiffusion. Moreover, the subdiffusive exponent gradually increases with observation time towards normal diffusion due to a many-body volume-exclusion effect.
Shortreed, Susan M.; Moodie, Erica E. M.
2012-01-01
Summary Treatment of schizophrenia is notoriously difficult and typically requires personalized adaption of treatment due to lack of efficacy of treatment, poor adherence, or intolerable side effects. The Clinical Antipsychotic Trials in Intervention Effectiveness (CATIE) Schizophrenia Study is a sequential multiple assignment randomized trial comparing the typical antipsychotic medication, perphenazine, to several newer atypical antipsychotics. This paper describes the marginal structural modeling method for estimating optimal dynamic treatment regimes and applies the approach to the CATIE Schizophrenia Study. Missing data and valid estimation of confidence intervals are also addressed. PMID:23087488
Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Tuzcu, Ilhan
2009-01-01
This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.
Linking body mass and group dynamics in an obligate cooperative breeder.
Ozgul, Arpat; Bateman, Andrew W; English, Sinead; Coulson, Tim; Clutton-Brock, Tim H
2014-11-01
Social and environmental factors influence key life-history processes and population dynamics by affecting fitness-related phenotypic traits such as body mass. The role of body mass is particularly pronounced in cooperative breeders due to variation in social status and consequent variation in access to resources. Investigating the mechanisms underlying variation in body mass and its demographic consequences can help elucidate how social and environmental factors affect the dynamics of cooperatively breeding populations. In this study, we present an analysis of the effect of individual variation in body mass on the temporal dynamics of group size and structure of a cooperatively breeding mongoose, the Kalahari meerkat, Suricata suricatta. First, we investigate how body mass interacts with social (dominance status and number of helpers) and environmental (rainfall and season) factors to influence key life-history processes (survival, growth, emigration and reproduction) in female meerkats. Next, using an individual-based population model, we show that the models explicitly including individual variation in body mass predict group dynamics better than those ignoring this morphological trait. Body mass influences group dynamics mainly through its effects on helper emigration and dominant reproduction. Rainfall has a trait-mediated, destabilizing effect on group dynamics, whereas the number of helpers has a direct and stabilizing effect. Counteracting effects of number of helpers on different demographic rates, despite generating temporal fluctuations, stabilizes group dynamics in the long term. Our study demonstrates that social and environmental factors interact to produce individual variation in body mass and accounting for this variation helps to explain group dynamics in this cooperatively breeding population. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Femtochemistry in the electronic ground state: Dynamic Stark control of vibrational dynamics
NASA Astrophysics Data System (ADS)
Shu, Chuan-Cun; Thomas, Esben F.; Henriksen, Niels E.
2017-09-01
We study the interplay of vibrational and rotational excitation in a diatomic molecule due to the non-resonant dynamic Stark effect. With a fixed peak intensity, optimal Gaussian pulse durations for maximizing vibrational or rotational transitions are obtained analytically and confirmed numerically for the H2 and Cl2 molecules. In general, pulse trains or more advanced pulse shaping techniques are required in order to obtain significant vibrational excitation. To that end, we demonstrate that a high degree of selectivity between vibrational and rotational excitation is possible with a suitably phase-modulated Gaussian pulse.
Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.
Ki, Dae-Han; Jung, Young-Dae
2013-04-21
The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.
Modeling of laser induced air plasma and shock wave dynamics using 2D-hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Paturi, Prem Kiran; S, Sai Shiva; Chelikani, Leela; Ikkurthi, Venkata Ramana; C. D., Sijoy; Chaturvedi, Shashank; Acrhem, University Of Hyderabad Team; Computational Analysis Division, Bhabha Atomic Research Centre, Visakhapatnam Team
2017-06-01
The laser induced air plasma dynamics and the SW evolution modeled using the two dimensional hydrodynamic code by considering two different EOS: ideal gas EOS with charge state effects taken into consideration and Chemical Equilibrium applications (CEA) EOS considering the chemical kinetics of different species will be presented. The inverse bremsstrahlung absorption process due to electron-ion and electron-neutrals is considered for the laser-air interaction process for both the models. The numerical results obtained with the two models were compared with that of the experimental observations over the time scales of 200 - 4000 ns at an input laser intensity of 2.3 ×1010 W/cm2. The comparison shows that the plasma and shock dynamics differ significantly for two EOS considered. With the ideas gas EOS the asymmetric expansion and the subsequent plasma dynamics have been well reproduced as observed in the experiments, whereas with the CEA model these processes were not reproduced due to the laser energy absorption occurring mostly at the focal volume. ACRHEM team thank DRDO, India for funding.
Quincke rotation of an ellipsoid
NASA Astrophysics Data System (ADS)
Vlahovska, Petia; Brosseau, Quentin
2016-11-01
The Quincke effect - spontaneous spinning of a sphere in a uniform DC electric field - has attracted considerable interest in recent year because of the intriguing dynamics exhibited by a Quincke-rotating drop and the emergent collective behavior of confined suspensions of Quincke-rotating spheres. Shape anisotropy, e.g., due to drop deformation or particle asphericity, is predicted to give rise to complex particle dynamics. Analysis of the dynamics of rigid prolate ellipsoid in a uniform DC electric field shows two possible stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field : spinless (parallel) and spinning (perpendicular). Here we report an experimental study testing the theoretical predictions. The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with theory. We also investigated the dynamics of the ellipsoidal Quincke "roller": an ellipsoid near a planar surface with normal perpendicular to the field direction. We find novel behaviors such as swinging (long axis oscillating around the applied field direction) and tumbling due to the confinement. Supported by NSF CBET awards 1437545 and 1544196.
Evaporation channel as a tool to study fission dynamics
NASA Astrophysics Data System (ADS)
Di Nitto, A.; Vardaci, E.; La Rana, G.; Nadtochy, P. N.; Prete, G.
2018-03-01
The dynamics of the fission process is expected to affect the evaporation residue cross section because of the fission hindrance due to the nuclear viscosity. Systems of intermediate fissility constitute a suitable environment for testing such hypothesis since they are characterized by evaporation residue cross sections comparable or larger than the fission ones. Observables related to emitted charged particles, due to their relatively high emission probability, can be used to put stringent constraints on models describing the excited nucleus decay and to recognize the effects of fission dynamics. In this work model simulations are compared with the experimental data collected via the 32S +100 Mo reaction at Elab = 200 MeV. Consequently we pointed out, exploring an extended set of evaporation channel observables, the limits of the statistical model and the large improvement obtained with a dynamical model. Moreover we stress the importance of using an apparatus covering a large fraction of 4π to extract observables. Finally, we discuss the opportunity to measure more sensitive observables by a new detection device in operation at LNL.
NASA Astrophysics Data System (ADS)
Torstensson, P. T.; Nielsen, J. C. O.; Baeza, L.
2011-10-01
Vertical dynamic train-track interaction at high vehicle speeds is investigated in a frequency range from about 20 Hz to 2.5 kHz. The inertial effects due to wheel rotation are accounted for in the vehicle model by implementing a structural dynamics model of a rotating wheelset. Calculated wheel-rail contact forces using the flexible, rotating wheelset model are compared with contact forces based on rigid, non-rotating models. For a validation of the train-track interaction model, calculated contact forces are compared with contact forces measured using an instrumented wheelset. When the system is excited at a frequency where two different wheelset mode shapes, due to the wheel rotation, have coinciding resonance frequencies, significant differences are found in the contact forces calculated with the rotating and non-rotating wheelset models. Further, the use of a flexible, rotating wheelset model is recommended for load cases leading to large magnitude contact force components in the high-frequency range (above 1.5 kHz). In particular, the influence of the radial wheel eigenmodes with two or three nodal diameters is significant.
Convective dynamics and chemical disequilibrium in the atmospheres of substellar objects
NASA Astrophysics Data System (ADS)
Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.
2017-11-01
The thousands of substellar objects now known provide a unique opportunity to test our understanding of atmospheric dynamics across a range of environments. The chemical timescales of certain species transition from being much shorter than the dynamical timescales to being much longer than them at a point in the atmosphere known as the quench point. This transition leads to a state of dynamical disequilibrium, the effects of which can be used to probe the atmospheric dynamics of these objects. Unfortunately, due to computational constraints, models that inform the interpretation of these observations are run at dynamical parameters which are far from realistic values. In this study, we explore the behavior of a disequilibrium chemical process with increasingly realistic planetary conditions, to quantify the effects of the approximations used in current models. We simulate convection in 2-D, plane-parallel, polytropically-stratified atmospheres, into which we add reactive passive tracers that explore disequilibrium behavior. We find that as we increase the Rayleigh number, and thus achieve more realistic planetary conditions, the behavior of these tracers does not conform to the classical predictions of disequilibrium chemistry.
Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition.
Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A
2016-08-01
The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The effects of spatial dynamics on a wormhole throat
NASA Astrophysics Data System (ADS)
Alias, Anuar; Wan Abdullah, Wan Ahmad Tajuddin
2018-02-01
Previous studies on dynamic wormholes were focused on the dynamics of the wormhole itself, be it either rotating or evolutionary in character and also in various frameworks from classical to braneworld cosmological models. In this work, we modeled a dynamic factor that represents the spatial dynamics in terms of spacetime expansion and contraction surrounding the wormhole itself. Using an RS2-based braneworld cosmological model, we modified the spacetime metric of Wong and subsequently employed the method of Bronnikov, where it is observed that a traversable wormhole is easier to exist in an expanding brane universe, however it is difficult to exist in a contracting brane universe due to stress-energy tensors requirement. This model of spatial dynamic factor affecting the wormhole throat can also be applied on the cyclic or the bounce universe model.
A review of dynamic inflow and its effect on experimental correlations
NASA Technical Reports Server (NTRS)
Gaonkar, G. H.; Peters, D. A.
1985-01-01
A review is given of the relationship between experimental data and the development of modern dynamic-inflow theory. Some of the most interesting data, first presented 10 years ago at the Dynamic Specialist's Meeting, is now reviewed in light of the newer theories. These pure blade-flapping data correlate very well with analyses that include the new dynamic inflow theory, thus verifying the theory. Experimental data are also presented for damping with coupled inplane and body motions. Although inclusion of dynamic inflow is often required to correlate this coupled data, the data cannot be used to verify any particular dynamic inflow theory due to the uncertainties in modeling the inplane degree of freedom. For verification, pure flapping is required. However, the coupled data do show that inflow is often important in such computations.
Landward vergence in accretionary prism, evidence for frontal propagation of earthquakes?
NASA Astrophysics Data System (ADS)
cubas, Nadaya; Souloumiac, Pauline
2016-04-01
Landward vergence in accretionary wedges is rare and have been described at very few places: along the Cascadia subduction zone and more recently along Sumatra where the 2004 Mw 9.1 Sumatra-Andaman event and the 2011 tsunami earthquake occurred. Recent studies have suggested a relation between landward thrust faults and frontal propagation of earthquakes for the Sumatra subduction zone. The Cascadia subduction zone is also known to have produced in 1700 a Mw9 earthquake with a large tsunami across the Pacific. Based on mechanical analysis, we propose to investigate if specific frictional properties could lead to a landward sequence of thrusting. We show that landward thrust requires very low effective friction along the megathrust with a rather high internal effective friction. We also show that landward thrust appears close to the extensional critical limit. Along Cascadia and Sumatra, we show that to get landward vergence, the effective basal friction has to be lower than 0.08. This very low effective friction is most likely due to high pore pressure. This high pore pressure could either be a long-term property or due to dynamic effects such as thermal pressurization. The fact that landward vergence appears far from the compressional critical limit favors a dynamic effect. Landward vergence would then highlight thermal pressurization due to occasional or systematic propagation of earthquakes to the trench. As a consequence, the vergence of thrusts in accretionary prism could be used to improve seismic and tsunamigenic risk assessment.
APPARATUS FOR MINIMIZING ENERGY LOSSES FROM MAGNETICALLY CONFINED VOLUMES OF HOT PLASMA
Post, R.F.
1961-10-01
An apparatus is described for controlling electron temperature in plasma confined in a Pyrotron magnetic containment field. Basically the device comprises means for directing low temperature electrons to the plasma in controlled quantities to maintain a predetermined optimum equilibrium electron temperature whereat minimum losses of plasma ions due to ambipolar effects and energy damping of the ions due to dynamical friction with the electrons occur. (AEC)
Large impacts and the evolution of Venus; an atmosphere/mantle coupled model.
NASA Astrophysics Data System (ADS)
Gillmann, Cedric; Tackley, Paul; Golabek, Gregor
2014-05-01
We investigate the evolution of atmosphere and surface conditions on Venus through a coupled model of mantle/atmosphere evolution by including meteoritic impacts mechanisms. Our main focuses are mechanisms that deplete or replenish the atmosphere: volcanic degassing, atmospheric escape and impacts. The coupling is obtained using feedback of the atmosphere on the mantle evolution. Atmospheric escape modeling involves two different aspects: hydrodynamic escape (dominant during the first few hundred million years) and non-thermal escape mechanisms as observed by the ASPERA instrument. Post 4 Ga escape is low. The atmosphere is replenished by volcanic degassing, using an adapted version of the StagYY mantle dynamics model (Armann and Tackley, 2012) and including episodic lithospheric overturn. Volatile fluxes are estimated for different mantle compositions and partitioning ratios. The evolving surface temperature is calculated from CO2 and water in the atmosphere with a gray radiative-convective atmosphere model. This surface temperature in turn acts as a boundary condition for the mantle dynamics model and has an influence on the convection, volcanism and subsequent degassing. We take into account the effects of meteorites in our simulations by adapting each relevant part of the model. They can bring volatiles as well as erode the atmosphere. Mantle dynamics are modified since the impact itself can also bring large amounts of energy to the mantle. A 2D distribution of the thermal anomaly due to the impact is used and can lead to melting. Volatile evolution due to impacts (especially the large ones) is heavily debated so we test a broad range of impactor parameters (size, velocity, timing) and test different assumptions related to impact erosion going from large eroding power (Ahrens 1993) to recent parameterization (Shuvalov, 2009, 2010). We are able to produce models leading to present-day-like conditions through episodic volcanic activity consistent with Venus observations. Without any impact, CO2 pressure only slightly increases due to degassing. On the other hand, water pressure varies rapidly leading to variations in surface temperatures of up to 200K, which have been identified to have an effect on volcanic activity. We observe a clear correlation between low temperature and mobile lid regime. We observe short term and long term effects of the impacts on planetary evolution. While small (less than kilometer scale) meteorites have a negligible effect, large ones (up to around 100 km) are able to bring volatiles to the planet and generate melt both at the impact and later on, due to volcanic events they triggered due to the changes they make to mantle dynamics. A significant amount of volatiles can be released on a short timescale. Depending on the timing of the impact, this can have significant long term effects on the surface condition evolution. Atmospheric erosion caused by impacts, on the other hand, and according to recent studies seems to have a marginal effect on the simulations, although the effects of the largest impactors is still debatable.
NASA Astrophysics Data System (ADS)
Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel
2016-04-01
The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose properties are not well known.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sissa, Cristina; Delchiaro, Francesca; Di Maiolo, Francesco
Essential-state models efficiently describe linear and nonlinear spectral properties of different families of charge-transfer chromophores. Here, the essential-state machinery is applied to the calculation of the early-stage dynamics after ultrafast (coherent) excitation of polar and quadrupolar chromophores. The fully non-adiabatic treatment of coupled electronic and vibrational motion allows for a reliable description of the dynamics of these intriguing systems. In particular, the proposed approach is reliable even when the adiabatic and harmonic approximations do not apply, such as for quadrupolar dyes that show a multistable, broken-symmetry excited state. Our approach quite naturally leads to a clear picture for a dynamicalmore » Jahn-Teller effect in these systems. The recovery of symmetry due to dynamical effects is however disrupted in polar solvents where a static symmetry lowering is observed. More generally, thermal disorder in polar solvents is responsible for dephasing phenomena, damping the coherent oscillations with particularly important effects in the case of polar dyes.« less
Interplay between social debate and propaganda in an opinion formation model
NASA Astrophysics Data System (ADS)
Gimenez, M. C.; Revelli, J. A.; Lama, M. S. de la; Lopez, J. M.; Wio, H. S.
2013-01-01
We introduce a simple model of opinion dynamics in which a two-state agent modified Sznajd model evolves due to the simultaneous action of stochastic driving and a periodic signal. The stochastic effect mimics a social temperature, so the agents may adopt decisions in support for or against some opinion or position, according to a modified Sznajd rule with a varying probability. The external force represents a simplified picture by which society feels the influence of the external effects of propaganda. By means of Monte Carlo simulations we have shown the dynamical interplay between the social condition or mood and the external influence, finding a stochastic resonance-like phenomenon when we depict the noise-to-signal ratio as a function of the social temperature. In addition, we have also studied the effects of the system size and the external signal strength on the opinion formation dynamics.
The influence of rail surface irregularities on contact forces and local stresses
NASA Astrophysics Data System (ADS)
Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik
2015-01-01
The effect of initial rail surface irregularities on promoting further surface degradation is investigated. The study concerns rolling contact fatigue formation, in particular in the form of the so-called squats. The impact of surface irregularities in the form of dimples is quantified by peak magnitudes of dynamic contact stresses and contact forces. To this end simulations of two-dimensional (later extended to three-dimensional) vertical dynamic vehicle-track interaction are employed. The most influencing parameters are identified. It is shown that even very shallow dimples might have a large impact on local contact stresses. Peak magnitudes of contact forces and stresses due to the influence of rail dimples are shown to exceed those due to rail corrugation.
Investigation of a Technique for Measuring Dynamic Ground Effect in a Subsonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Graves, Sharon S.
1999-01-01
To better understand the ground effect encountered by slender wing supersonic transport aircraft, a test was conducted at NASA Langley Research Center's 14 x 22 foot Subsonic Wind Tunnel in October, 1997. Emphasis was placed on improving the accuracy of the ground effect data by using a "dynamic" technique in which the model's vertical motion was varied automatically during wind-on testing. This report describes and evaluates different aspects of the dynamic method utilized for obtaining ground effect data in this test. The method for acquiring and processing time data from a dynamic ground effect wind tunnel test is outlined with details of the overall data acquisition system and software used for the data analysis. The removal of inertial loads due to sting motion and the support dynamics in the balance force and moment data measurements of the aerodynamic forces on the model is described. An evaluation of the results identifies problem areas providing recommendations for future experiments. Test results are validated by comparing test data for an elliptical wing planform with an Elliptical wing planform section with a NACA 0012 airfoil to results found in current literature. Major aerodynamic forces acting on the model in terms of lift curves for determining ground effect are presented. Comparisons of flight and wind tunnel data for the TU-144 are presented.
Absence of effects of an in-plane magnetic field in a quasi-two-dimensional electron system
NASA Astrophysics Data System (ADS)
Brandt, F. T.; Sánchez-Monroy, J. A.
2018-03-01
The dynamics of a quasi-two-dimensional electron system (q2DES) in the presence of a tilted magnetic field is reconsidered employing the thin-layer method. We derive the effective equations for relativistic and nonrelativistic q2DESs. Through a perturbative expansion, we show that while the magnetic length is much greater than the confinement width, the in-plane magnetic field only affects the particle dynamics through the spin. Therefore, effects due to an in-plane magnetic vector potential reported previously in the literature for 2D quantum rings, 2D quantum dots and graphene are fictitious. In particular, the so-called pseudo chiral magnetic effect recently proposed in graphene is not realistic.
Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids.
Ashrafuzzaman, Mohammad; Tseng, Chih-Yuan; Duszyk, Marek; Tuszynski, Jack A
2012-12-01
We demonstrate the effects on membrane of the tubulin-binding chemotherapy drugs: thiocolchicoside and taxol. Electrophysiology recordings across lipid membranes in aqueous phases containing drugs were used to investigate the drug effects on membrane conductance. Molecular dynamics simulation of the chemotherapy drug-lipid complexes was used to elucidate the mechanism at an atomistic level. Both drugs are observed to induce stable ion-flowing pores across membranes. Discrete pore current-time plots exhibit triangular conductance events in contrast to rectangular ones found for ion channels. Molecular dynamics simulations indicate that drugs and lipids experience electrostatic and van der Waals interactions for short periods of time when found within each other's proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides and lipids due to mainly their charge properties while forming peptide-induced ion channels in lipid bilayers. Experimental and in silico studies together suggest that the chemotherapy drugs induce ion pores inside lipid membranes due to drug-lipid physical interactions. The findings reveal cytotoxic effects of drugs on the cell membrane, which may aid in novel drug development for treatment of cancer and other diseases. © 2012 John Wiley & Sons A/S.
Time evolution of the eddy viscosity in two-dimensional navier-stokes flow
Chaves; Gama
2000-02-01
The time evolution of the eddy viscosity associated with an unforced two-dimensional incompressible Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the eddy viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes negative eddy viscosity effects. In other words, this dynamics moves monotonically the initial negative eddy viscosity to positive values before relaxation due to viscous term occurs.
Analysis of occupant protection strategies in train collisions
DOT National Transportation Integrated Search
1995-11-01
A study of the occupant dynamics and predicted fatalities due to secondary impact for passengers involved in train collisions with impact speeds up to 140 mph is described. The principal focus is on the : effectiveness of alternative strategies for p...
Adaptive Detection and ISI Mitigation for Mobile Molecular Communication.
Chang, Ge; Lin, Lin; Yan, Hao
2018-03-01
Current studies on modulation and detection schemes in molecular communication mainly focus on the scenarios with static transmitters and receivers. However, mobile molecular communication is needed in many envisioned applications, such as target tracking and drug delivery. Until now, investigations about mobile molecular communication have been limited. In this paper, a static transmitter and a mobile bacterium-based receiver performing random walk are considered. In this mobile scenario, the channel impulse response changes due to the dynamic change of the distance between the transmitter and the receiver. Detection schemes based on fixed distance fail in signal detection in such a scenario. Furthermore, the intersymbol interference (ISI) effect becomes more complex due to the dynamic character of the signal which makes the estimation and mitigation of the ISI even more difficult. In this paper, an adaptive ISI mitigation method and two adaptive detection schemes are proposed for this mobile scenario. In the proposed scheme, adaptive ISI mitigation, estimation of dynamic distance, and the corresponding impulse response reconstruction are performed in each symbol interval. Based on the dynamic channel impulse response in each interval, two adaptive detection schemes, concentration-based adaptive threshold detection and peak-time-based adaptive detection, are proposed for signal detection. Simulations demonstrate that the ISI effect is significantly reduced and the adaptive detection schemes are reliable and robust for mobile molecular communication.
Effect of Bearing Housings on Centrifugal Pump Rotor Dynamics
NASA Astrophysics Data System (ADS)
Yashchenko, A. S.; Rudenko, A. A.; Simonovskiy, V. I.; Kozlov, O. M.
2017-08-01
The article deals with the effect of a bearing housing on rotor dynamics of a barrel casing centrifugal boiler feed pump rotor. The calculation of the rotor model including the bearing housing has been performed by the method of initial parameters. The calculation of a rotor solid model including the bearing housing has been performed by the finite element method. Results of both calculations highlight the need to add bearing housings into dynamic analyses of the pump rotor. The calculation performed by modern software packages is more a time-taking process, at the same time it is a preferred one due to a graphic editor that is employed for creating a numerical model. When it is necessary to view many variants of design parameters, programs for beam modeling should be used.
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Schmidt, D. S.
1985-01-01
As aircraft become larger and lighter due to design requirements for increased payload and improved fuel efficiency, they will also become more flexible. For highly flexible vehicles, the handling qualities may not be accurately predicted by conventional methods. This study applies two analysis methods to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop model analysis technique. This method considers the effects of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Volume 1 consists of the development and application of the two analysis methods described above.
Noise suppression for micromechanical resonator via intrinsic dynamic feedback
NASA Astrophysics Data System (ADS)
Ian, Hou; Gong, Zhi-Rui; Sun, Chang-Pu
2008-09-01
We study a dynamic mechanism to passively suppress the thermal noise of a micromechanical resonator through an intrinsic self-feedback that is genuinely non-Markovian. We use two coupled resonators, one as the target resonator and the other as an ancillary resonator, to illustrate the mechanism and its noise reduction effect. The intrinsic feedback is realized through the dynamics of coupling between the two resonators: the motions of the target resonator and the ancillary resonator mutually inthence each other in a cyclic fashion. Specifically, the states that the target resonator has attained earlier will affect the state it attains later due to the presence of the ancillary resonator. We show that the feedback mechanism will bring forth the effect of noise suppression in the spectrum of displacement, but not in the spectrum of momentum.
Nuclear quantum effects in water exchange around lithium and fluoride ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, David M.; Manolopoulos, David E.; Dang, Liem X.
2015-02-14
We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell ismore » found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium.« less
The impact of inter-annual rainfall variability on African savannas changes with mean rainfall.
Synodinos, Alexis D; Tietjen, Britta; Lohmann, Dirk; Jeltsch, Florian
2018-01-21
Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Increased future ice discharge from Antarctica owing to higher snowfall.
Winkelmann, R; Levermann, A; Martin, M A; Frieler, K
2012-12-13
Anthropogenic climate change is likely to cause continuing global sea level rise, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss and ocean expansion. Uncertainties exist in modelled snowfall, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica and thus in the ultimate fate of the precipitation-deposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet.
USDA-ARS?s Scientific Manuscript database
Understanding the effects of fertilizer addition and crop removal on long-term change in soil test phosphorus (STP) and soil test potassium (STK) is crucial for maximizing the use of grower inputs on claypan soils. Due to variable nutrient supply from subsoils and variable crop removal across fields...
Axis switching and spreading of an asymmetric jet: Role of vorticity dynamics
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1994-01-01
The effects of vortex generators and periodic excitation on vorticity dynamics and the phenomenon of axis switching in a free asymmetric jet are studied experimentally. Most of the data reported are for a 3:1 rectangular jet at a Reynolds number of 450,000 and a Mach number of 0.31. The vortex generators are in the form of 'delta tabs', triangular shaped protrusions into the flow, placed at the nozzle exit. With suitable placement of the tabs, axis switching could be either stopped or augmented. Two mechanisms are identified governing the phenomenon. One, as described by previous researchers and referred to here as the omega(sub theta)-induced dynamics, is due to difference in induced velocities for different segments of a rolled up azimuthal vortical structure. The other, omega(sub x)-induced dynamics, is due to the induced velocities of streamwise vortex pairs in the flow. Both dynamics can be active in a natural asymmetric jet; the tendency for axis switching caused by the omega(sub theta)-induced dynamics may be, depending on the streamwise vorticity distribution, either resisted or enhanced by the omega(sub x)-induced dynamics. While this simple framework qualitatively explains the various observations made on axis switching, mechanisms actually in play may be much more complex. The two dynamics are not independent as the flow field is replete with both azimuthal and streamwise vortical structures which continually interact. Phase averaged flow field data for a periodically forced case, over a volume of the flow field, are presented and discussed in an effort to gain insight into the dynamics of these vortical structures.
The finite state projection approach to analyze dynamics of heterogeneous populations
NASA Astrophysics Data System (ADS)
Johnson, Rob; Munsky, Brian
2017-06-01
Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.
NASA Astrophysics Data System (ADS)
Sozzi, B.; Olivieri, M.; Mariani, P.; Giunti, C.; Zatti, S.; Porta, A.
2014-05-01
Due to the fast-growing of cooled detector sensitivity in the last years, on the image 10-20 mK temperature difference between adjacent objects can theoretically be discerned if the calibration algorithm (NUC) is capable to take into account and compensate every spatial noise source. To predict how the NUC algorithm is strong in all working condition, the modeling of the flux impinging on the detector becomes a challenge to control and improve the quality of a properly calibrated image in all scene/ambient conditions including every source of spurious signal. In literature there are just available papers dealing with NU caused by pixel-to-pixel differences of detector parameters and by the difference between the reflection of the detector cold part and the housing at the operative temperature. These models don't explain the effects on the NUC results due to vignetting, dynamic sources out and inside the FOV, reflected contributions from hot spots inside the housing (for example thermal reference far of the optical path). We propose a mathematical model in which: 1) detector and system (opto-mechanical configuration and scene) are considered separated and represented by two independent transfer functions 2) on every pixel of the array the amount of photonic signal coming from different spurious sources are considered to evaluate the effect on residual spatial noise due to dynamic operative conditions. This article also contains simulation results showing how this model can be used to predict the amount of spatial noise.
NASA Astrophysics Data System (ADS)
Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui
2018-04-01
Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).
Increased future ice discharge from Antarctica owing to higher snowfall
NASA Astrophysics Data System (ADS)
Winkelmann, Ricarda; Levermann, Anders; Martin, Maria A.; Frieler, Katja
2013-04-01
Anthropogenic climate change is likely to cause continuing global sea-level rise, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss and ocean expansion. Uncertainties exist in modelled snowfall, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model forced by climate simulations through to the end of 2500, show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario.
Facilitation drives 65 years of vegetation change in the Sonoran Desert
Butterfield, Bradley J.; Betancourt, Julio L.; Turner, Raymond M.; Briggs, John M.
2010-01-01
Ecological processes of low-productivity ecosystems have long been considered to be driven by abiotic controls with biotic interactions playing an insignificant role. However, existing studies present conflicting evidence concerning the roles of these factors, in part due to the short temporal extent of most data sets and inability to test indirect effects of environmental variables modulated by biotic interactions. Using structural equation modeling to analyze 65 years of perennial vegetation change in the Sonoran Desert, we found that precipitation had a stronger positive effect on recruitment beneath existing canopies than in open microsites due to reduced evaporation rates. Variation in perennial canopy cover had additional facilitative effects on juvenile recruitment, which was indirectly driven by effects of density and precipitation on cover. Mortality was strongly influenced by competition as indicated by negative density-dependence, whereas precipitation had no effect. The combined direct, indirect, and interactive facilitative effects of precipitation and cover on recruitment were substantial, as was the effect of competition on mortality, providing strong evidence for dual control of community dynamics by climate and biotic interactions. Through an empirically derived simulation model, we also found that the positive feedback of density on cover produces unique temporal abundance patterns, buffering changes in abundance from high frequency variation in precipitation, amplifying effects of low frequency variation, and decoupling community abundance from precipitation patterns at high abundance. Such dynamics should be generally applicable to low-productivity systems in which facilitation is important and can only be understood within the context of long-term variation in climatic patterns. This predictive model can be applied to better manage low-productivity ecosystems, in which variation in biogeochemical processes and trophic dynamics may be driven by positive density-dependent feedbacks that influence temporal abundance and productivity patterns.
Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics
NASA Astrophysics Data System (ADS)
Guo, Qiang
Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of solutions of continuous time wavelet numerical methods for the nonlinear aerosol dynamics are proved by using Schauder's fixed point theorem and the variational technique. Optimal error estimates are derived for both continuous and discrete time wavelet Galerkin schemes. We further derive reliable and efficient a posteriori error estimate which is based on stable multiresolution wavelet bases and an adaptive space-time algorithm for efficient solution of linear parabolic differential equations. The adaptive space refinement strategies based on the locality of corresponding multiresolution processes are proved to converge. At last, we develop efficient numerical methods by combining the wavelet methods proposed in previous parts and the splitting technique to solve the spatial aerosol dynamic equations. Wavelet methods along the particle size direction and the upstream finite difference method along the spatial direction are alternately used in each time interval. Numerical experiments are taken to show the effectiveness of our developed methods.
Mathematical Fluid Dynamics of Store and Stage Separation
2005-05-01
coordinates r = stretched inner radius S, (x) = effective source strength Re, = transition Reynolds number t = time r = reflection coefficient T = temperature...wave drag due to lift integral has the same form as that due to thickness, the source strength of the equivalent body depends on streamwise derivatives...revolution in which the source strength S, (x) is proportional to the x rate of change of cross sectional area, the source strength depends on the streamwise
Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Parthasarathy, Arun; Rakheja, Shaloo
2018-06-01
The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.
Dynamic testing of the T223 bridge rail.
DOT National Transportation Integrated Search
2009-09-01
The TxDOT T203 bridge rail is often used on bridges where asphalt overlays reduce the effective : height of the bridge rail. This reduction in height due to asphalt paving overlay is undesirable. For this : project, several geometric features were ch...
Effect of finite particle number sampling on baryon number fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinheimer, Jan; Koch, Volker
The effects of finite particle number sampling on the net baryon number cumulants, extracted from fluid dynamical simulations, are studied. The commonly used finite particle number sampling procedure introduces an additional Poissonian (or multinomial if global baryon number conservation is enforced) contribution which increases the extracted moments of the baryon number distribution. If this procedure is applied to a fluctuating fluid dynamics framework, one severely overestimates the actual cumulants. We show that the sampling of so-called test particles suppresses the additional contribution to the moments by at least one power of the number of test particles. We demonstrate this methodmore » in a numerical fluid dynamics simulation that includes the effects of spinodal decomposition due to a first-order phase transition. Furthermore, in the limit where antibaryons can be ignored, we derive analytic formulas which capture exactly the effect of particle sampling on the baryon number cumulants. These formulas may be used to test the various numerical particle sampling algorithms.« less
Effect of finite particle number sampling on baryon number fluctuations
Steinheimer, Jan; Koch, Volker
2017-09-28
The effects of finite particle number sampling on the net baryon number cumulants, extracted from fluid dynamical simulations, are studied. The commonly used finite particle number sampling procedure introduces an additional Poissonian (or multinomial if global baryon number conservation is enforced) contribution which increases the extracted moments of the baryon number distribution. If this procedure is applied to a fluctuating fluid dynamics framework, one severely overestimates the actual cumulants. We show that the sampling of so-called test particles suppresses the additional contribution to the moments by at least one power of the number of test particles. We demonstrate this methodmore » in a numerical fluid dynamics simulation that includes the effects of spinodal decomposition due to a first-order phase transition. Furthermore, in the limit where antibaryons can be ignored, we derive analytic formulas which capture exactly the effect of particle sampling on the baryon number cumulants. These formulas may be used to test the various numerical particle sampling algorithms.« less
Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael
2016-01-01
Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology. DOI: http://dx.doi.org/10.7554/eLife.19274.001 PMID:27801646
Effects of microscale inertia on dynamic ductile crack growth
NASA Astrophysics Data System (ADS)
Jacques, N.; Mercier, S.; Molinari, A.
2012-04-01
The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.
Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics
Jakse, Noel; Pasturel, Alain
2013-01-01
We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons with experimental data favor the LDA approximation to compute dynamic properties of liquid aluminum. We show that the GGA approximation induce more important backscattering effects due to an enhancement of the icosahedral short range order (ISRO) that impact directly dynamic properties like the self-diffusion coefficient. All these results are then used to test the Stokes-Einstein relation and the universal scaling law relating the diffusion coefficient and the excess entropy of a liquid. PMID:24190311
Diffusive molecular dynamics simulations of lithiation of silicon nanopillars
NASA Astrophysics Data System (ADS)
Mendez, J. P.; Ponga, M.; Ortiz, M.
2018-06-01
We report diffusive molecular dynamics simulations concerned with the lithiation of Si nano-pillars, i.e., nano-sized Si rods held at both ends by rigid supports. The duration of the lithiation process is of the order of milliseconds, well outside the range of molecular dynamics but readily accessible to diffusive molecular dynamics. The simulations predict an alloy Li15Si4 at the fully lithiated phase, exceedingly large and transient volume increments up to 300% due to the weakening of Sisbnd Si iterations, a crystalline-to-amorphous-to-lithiation phase transition governed by interface kinetics, high misfit strains and residual stresses resulting in surface cracks and severe structural degradation in the form of extensive porosity, among other effects.
NASA Astrophysics Data System (ADS)
Stoker, J. M.; Rowley, R. L.
1989-09-01
Mutual diffusion coefficients for selected alkanes in carbon tetrachloride were calculated using molecular dynamics and Lennard-Jones (LJ) potentials. Use of effective spherical LJ parameters is desirable when possible for two reasons: (i) computer time is saved due to the simplicity of the model and (ii) the number of parameters in the model is kept to a minimum. Results of this study indicate that mutual diffusivity is particularly sensitive to the molecular size cross parameter, σ12, and that the commonly used Lorentz-Berthelot rules are inadequate for mixtures in which the component structures differ significantly. Good agreement between simulated and experimental mutual diffusivities is obtained with a combining rule for σ12 which better represents these asymmetric mixtures using pure component LJ parameters obtained from self-diffusion coefficient data. The effect of alkane chain length on the mutual diffusion coefficient is correctly predicted. While the effects of alkane branching upon the diffusion coefficient are comparable in size to the uncertainty of these calculations, the qualitative trend due to branching is also correctly predicted by the MD results.
Dynamic Electrorheological Effects of Rotating Particles:
NASA Astrophysics Data System (ADS)
Yu, K. W.; Gu, G. Q.; Huang, J. P.; Xiao, J. J.
Particle rotation leads to a steady-state which is different from the equilibrium state in the absence of rotational motion. The change of the polarization of the particle due to the rotational motion is called the dynamic electrorheological effect (DER). There are three cases to be considered: rotating particles in a dc field, particle rotation due to a rotating field and spontaneous rotation of particle in dc field (Quincke rotation). In the DER of rotating particles, the particle rotational motion generally reduces the interparticle force between the particles. The effect becomes pronounced when the frequency is on the order of the relaxation rate of the surface charges. In the electrorotation of particles, the mutual interaction between approaching particles will change the electrorotation spectrum significantly. The electrorotation spectrum depends strongly on the medium conductivity as well as the conductivity contrast between the particle and the medium. In the collective behaviors of Quincke rotors, the mutual interactions between the individual rotors lead to the assembly of chain-like structures which make an angle with the applied field. This has an implication of a new class of material.
Yang, Xiaojuan; Thornton, Peter E.; Ricciuto, Daniel M.; ...
2016-07-14
The effects of phosphorus (P) availability on carbon (C) cycling in the Amazon region are investigated using CLM-CNP. Within this paper, we demonstrate that the coupling of P dynamics reduces the simulated historical terrestrial C sink due to increasing atmospheric CO 2 concentrations ([CO 2]) by about 26%. Our exploratory simulations show that the response of tropical forest C cycling to increasing [CO 2] depends on how elevated CO 2 affects phosphatase enzyme production. The effects of warming are more complex, depending on the interactions between humidity, C, and nutrient dynamics. While a simulation with low humidity generally shows themore » reduction of net primary productivity (NPP), a second simulation with higher humidity suggests overall increases in NPP due to the dominant effects of reduced water stress and more nutrient availability. Lastly, our simulations point to the need for (1) new observations on how elevated [CO 2] affects phosphatase enzyme production and (2) more tropical leaf-scale measurements under different temperature/humidity conditions with different soil P availability.« less
Impact of model fat emulsions on sensory perception using repeated spoon to spoon ingestion.
Appelqvist, I A M; Poelman, A A M; Cochet-Broch, M; Delahunty, C M
2016-06-01
Eating is a dynamic behaviour, in which food interacts with the mechanical and physiological environment of the mouth. This dynamic interaction changes the oral surfaces leaving particles of food and building up a film on the oral surfaces, which may impact on the temporal perception during the eating experience. The effect of repeated spoon to spoon ingestion of oil in water emulsion products (2%-50% w/w oil) was evaluated using descriptive in-mouth and after swallowing sensory attributes. Descriptive sensory analysis indicated that fatty mouthfeel and afterfeel perception (measured post swallowing) increased with the number of spoonfuls for emulsions containing 50% fat. This effect is likely due to the build-up of oil droplet layers deposited on the mouth surfaces. There was an enhancement of fatty afterfeel intensity for 50% fat emulsions containing the more lipophilic aroma ethylhexanoate compared to ethyl butanoate, indicating a cross-modal interaction. No increase in these attributes from spoon to spoon was observed for the low oil emulsions; since most of the oil in the emulsion was swallowed and very little oil was likely to be left in the mouth. Sweetness perception increased as fat level increased in the emulsion due to an increase in the effective concentration of sugar in the aqueous phase. However, the sweetness perceived did not change from spoon to spoon, suggesting that any oil-droplets deposited on the oral surfaces did not form a complete barrier, restricting access of the sucrose to the taste buds. This study highlights the importance of measuring the dynamic nature of eating and demonstrated change in sensory perception occurring with repeated ingestion of model emulsions, which was likely due to a change in mouth environment. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamics of the brain: Mathematical models and non-invasive experimental studies
NASA Astrophysics Data System (ADS)
Toronov, V.; Myllylä, T.; Kiviniemi, V.; Tuchin, V. V.
2013-10-01
Dynamics is an essential aspect of the brain function. In this article we review theoretical models of neural and haemodynamic processes in the human brain and experimental non-invasive techniques developed to study brain functions and to measure dynamic characteristics, such as neurodynamics, neurovascular coupling, haemodynamic changes due to brain activity and autoregulation, and cerebral metabolic rate of oxygen. We focus on emerging theoretical biophysical models and experimental functional neuroimaging results, obtained mostly by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). We also included our current results on the effects of blood pressure variations on cerebral haemodynamics and simultaneous measurements of fast processes in the brain by near-infrared spectroscopy and a very novel functional MRI technique called magnetic resonance encephalography. Based on a rapid progress in theoretical and experimental techniques and due to the growing computational capacities and combined use of rapidly improving and emerging neuroimaging techniques we anticipate during next decade great achievements in the overall knowledge of the human brain.
Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta.
Nguyen, Anh Tuan; Han, Jong-Seob; Han, Jae-Hung
2016-12-14
This study explores the effects of the body aerodynamics on the dynamic flight stability of an insect at various different forward flight speeds. The insect model, whose morphological parameters are based on measurement data from the hawkmoth Manduca sexta, is treated as an open-loop six-degree-of-freedom dynamic system. The aerodynamic forces and moments acting on the insect are computed by an aerodynamic model that combines the unsteady panel method and the extended unsteady vortex-lattice method. The aerodynamic model is then coupled to a multi-body dynamic code to solve the system of motion equations. First, the trimmed flight conditions of insect models with and without consideration of the body aerodynamics are obtained using a trim search algorithm. Subsequently, the effects of the body aerodynamics on the dynamic flight stability are analysed through modal structures, i.e., eigenvalues and eigenvectors in this case, which are based on linearized equations of motion. The solutions from the nonlinear and linearized equations of motion due to gust disturbances are obtained, and the effects of the body aerodynamics are also investigated through these solutions. The results showed the important effect of the body aerodynamics at high-speed forward flight (in this paper at 4.0 and 5.0 m s -1 ) and the movement trends of eigenvalues when the body aerodynamics is included.
Dynamic response functions, helical gaps, and fractional charges in quantum wires
NASA Astrophysics Data System (ADS)
Meng, Tobias; Pedder, Christopher J.; Tiwari, Rakesh P.; Schmidt, Thomas L.
We show how experimentally accessible dynamic response functions can discriminate between helical gaps due to magnetic field, and helical gaps driven by electron-electron interactions (''umklapp gaps''). The latter are interesting since they feature gapped quasiparticles of fractional charge e / 2 , and - when coupled to a standard superconductor - an 8 π-Josephson effect and topological zero energy states bound to interfaces. National Research Fund, Luxembourg (ATTRACT 7556175), Deutsche Forschungsgemeinschaft (GRK 1621 and SFB 1143), Swiss National Science Foundation.
Structured population dynamics: continuous size and discontinuous stage structures.
Buffoni, Giuseppe; Pasquali, Sara
2007-04-01
A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.
Dynamics of rain-induced pollutographs of solubles in sewers.
Rutsch, M; Müller, I; Krebs, P
2005-01-01
When looking at acute receiving water impacts due to combined sewer overflows the characteristics of the background diurnal sewage flux variation may influence the peak loads from combined sewer overflows (CSO) and wastewater treatment plant (WWTP) effluent significantly. In this paper, effects on the dynamic compounds transported in the sewer, on CSO discharges and WWTP loading are evaluated by means of hydrodynamic simulations. The simulations are based on different scenarios for diurnal dry-weather flow variations induced by different infiltration rates.
Zylbertal, Asaph; Yarom, Yosef; Wagner, Shlomo
2017-01-01
Changes in intracellular Na+ concentration ([Na+]i) are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB) mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined. PMID:28970791
Assessment of dynamic effects on aircraft design loads: The landing impact case
NASA Astrophysics Data System (ADS)
Bronstein, Michael; Feldman, Esther; Vescovini, Riccardo; Bisagni, Chiara
2015-10-01
This paper addresses the potential benefits due to a fully dynamic approach to determine the design loads of a mid-size business jet. The study is conducted by considering the fuselage midsection of the DAEDALOS aircraft model with landing impact conditions. The comparison is presented in terms of stress levels between the novel dynamic approach and the standard design practice based on the use of equivalent static loads. The results illustrate that a slight reduction of the load levels can be achieved, but careful modeling of the damping level is needed. Guidelines for an improved load definition are discussed, and suggestions for future research activities are provided.
NASA Technical Reports Server (NTRS)
Winn, F. B.; Reinbold, S. R.; Yip, K. W.; Koch, R. E.; Lubeley, A.
1975-01-01
Doppler data from Mariner 6, 7, 9, and 10 and Pioneer 10 and 11 were discussed and the rms noise level for various sun-earth-probe angles were shown. The noise levels of both S- and X-band Doppler data for sun-earth-probe angles smaller than 20 deg were observed to be orders of magnitude greater than nominal. Such solar plasma-related Doppler degradation reduced the Mariner 10-Mercury 11 encounter navigation accuracy by nearly a factor of 10. Furthermore, this degradation was shown to be indirectly related to plasma dynamics and not a direct measure of the dynamics.
Dynamical Correlation In Some Liquid Alkaline Earth Metals Near Melting
NASA Astrophysics Data System (ADS)
Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Gajjar, P. N.; Jani, A. R.
2010-12-01
The study of dynamical variables: velocity autocorrelation function (VACF) and power spectrum of liquid alkaline earth metals (Ca, Sr, and Ba) have been presented based on the static harmonic well approximation. The effective interatomic potential for liquid metals is computed using our well recognized model potential with the exchange correlation functions due to Hartree, Taylor, Ichimaru and Utsumi, Farid et al. and Sarkar et al. It is observed that the VACF computed using Sarkar et al. gives the good agreement with available molecular dynamics simulation (MD) results [Phys Rev. B 62, 14818 (2000)]. The shoulder of the power spectrum depends upon the type of local field correlation function used.
Guo, Jianchang; Mahurin, Shannon M; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Shaw, Robert W
2014-01-30
In recent years, the effect of molecular charge on the rotational dynamics of probe solutes in room-temperature ionic liquids (RTILs) has been a subject of growing interest. For the purpose of extending our understanding of charged solute behavior within RTILs, we have studied the rotational dynamics of three illustrative xanthene fluorescent probes within a series of N-alkylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Cnmpyr][Tf2N]) RTILs with different n-alkyl chain lengths (n = 3, 4, 6, 8, or 10) using time-resolved fluorescence anisotropy decay. The rotational dynamics of the neutral probe rhodamine B (RhB) dye lies between the stick and slip boundary conditions due to the influence of specific hydrogen bonding interactions. The rotation of the negatively charged sulforhodamine 640 (SR640) is slower than that of its positively charged counterpart rhodamine 6G (R6G). An analysis based upon Stokes-Einstein-Debye hydrodynamics indicates that SR640 adheres to stick boundary conditions due to specific interactions, whereas the faster rotation of R6G is attributed to weaker electrostatic interactions. No significant dependence of the rotational dynamics on the solvent alkyl chain length was observed for any of the three dyes, suggesting that the specific interactions between dyes and RTILs are relatively independent of this solvent parameter.
Dynamic gastric digestion of a commercial whey protein concentrate†.
Miralles, Beatriz; Del Barrio, Roberto; Cueva, Carolina; Recio, Isidra; Amigo, Lourdes
2018-03-01
A dynamic gastrointestinal simulator, simgi ® , has been applied to assess the gastric digestion of a whey protein concentrate. Samples collected from the outlet of the stomach have been compared to those resulting from the static digestion protocol INFOGEST developed on the basis of physiologically inferred conditions. Progress of digestion was followed by SDS-PAGE and LC-MS/MS. By SDS-PAGE, serum albumin and α-lactalbumin were no longer detectable at 30 and 60 min, respectively. On the contrary, β-lactoglobulin was visible up to 120 min, although in decreasing concentrations in the dynamic model due to the gastric emptying and the addition of gastric fluids. Moreover, β-lactoglobulin was partly hydrolysed by pepsin probably due to the presence of heat-denatured forms and the peptides released using both digestion models were similar. Under dynamic conditions, a stepwise increase in number of peptides over time was observed, while the static protocol generated a high number of peptides from the beginning of digestion. Whey protein digestion products using a dynamic stomach are consistent with those generated with the static protocol but the kinetic behaviour of the peptide profile emphasises the effect of the sequential pepsin addition, peristaltic shaking, and gastric emptying on protein digestibility. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Kezsmarki, I.; Fishman, Randy Scott
2016-04-18
Due to the complicated magnetic and crystallographic structures of BiFeO 3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a firstprinciples approach, we uncover all possibleMEcouplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO 3. First-principles calculations are used to understand the microscopic origins of theMEcouplings.Wefind that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamicME effects in BiFeO 3. A model motivated by first principles reproduces the absorption difference of counter-propagatingmore » light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic MEcouplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hiddenMEcouplings on the atomic scale and for exploiting opticalMEeffects in the next generation of technological devices such as optical diodes.« less
NASA Astrophysics Data System (ADS)
Yano, Taishi; Nishino, Koichi; Matsumoto, Satoshi; Ueno, Ichiro; Komiya, Atsuki; Kamotani, Yasuhiro; Imaishi, Nobuyuki
2018-04-01
This paper reports an overview and some important results of microgravity experiments called Dynamic Surf, which have been conducted on board the International Space Station from 2013 to 2016. The present project mainly focuses on the relations between the Marangoni instability in a high-Prandtl-number (Pr= 67 and 112) liquid bridge and the dynamic free surface deformation (DSD) as well as the interfacial heat transfer. The dynamic free surface deformations of large-scale liquid bridges (say, for diameters greater than 10 mm) are measured with good accuracy by an optical imaging technique. It is found that there are two causes of the dynamic free surface deformation in the present study: the first is the time-dependent flow behavior inside the liquid bridge due to the Marangoni instability, and the second is the external disturbance due to the residual acceleration of gravity, i.e., g-jitter. The axial distributions of DSD along the free surface are measured for several conditions. The critical parameters for the onset of oscillatory Marangoni convection are also measured for various aspect ratios (i.e., relative height to the diameter) of the liquid bridge and various thermal boundary conditions. The characteristics of DSD and the onset conditions of instability are discussed in this paper.
Inter-species competition-facilitation in stochastic riparian vegetation dynamics.
Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca
2013-02-07
Riparian vegetation is a highly dynamic community that lives on river banks and which depends to a great extent on the fluvial hydrology. The stochasticity of the discharge and erosion/deposition processes in fact play a key role in determining the distribution of vegetation along a riparian transect. These abiotic processes interact with biotic competition/facilitation mechanisms, such as plant competition for light, water, and nutrients. In this work, we focus on the dynamics of plants characterized by three components: (1) stochastic forcing due to river discharges, (2) competition for resources, and (3) inter-species facilitation due to the interplay between vegetation and fluid dynamics processes. A minimalist stochastic bio-hydrological model is proposed for the dynamics of the biomass of two vegetation species: one species is assumed dominant and slow-growing, the other is subdominant, but fast-growing. The stochastic model is solved analytically and the probability density function of the plant biomasses is obtained as a function of both the hydrologic and biologic parameters. The impact of the competition/facilitation processes on the distribution of vegetation species along the riparian transect is investigated and remarkable effects are observed. Finally, a good qualitative agreement is found between the model results and field data. Copyright © 2012 Elsevier Ltd. All rights reserved.
A model for a spatially structured metapopulation accounting for within patch dynamics.
Smith, Andrew G; McVinish, Ross; Pollett, Philip K
2014-01-01
We develop a stochastic metapopulation model that accounts for spatial structure as well as within patch dynamics. Using a deterministic approximation derived from a functional law of large numbers, we develop conditions for extinction and persistence of the metapopulation in terms of the birth, death and migration parameters. Interestingly, we observe the Allee effect in a metapopulation comprising two patches of greatly different sizes, despite there being decreasing patch specific per-capita birth rates. We show that the Allee effect is due to the way the migration rates depend on the population density of the patches. Copyright © 2013 Elsevier Inc. All rights reserved.
Effect of delta tabs on mixing and axis switching in jets from asymmetric nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1994-01-01
The effect of delta tabs on mixing and the phenomenon of axis switching in free air jets from various asymmetric nozzles was studied experimentally. Flow visualization and Pitot probe surveys were carried out with a set of small nozzles (D = 1.47 cm) at a jet Mach number, Mj = 1.63. Hot wire measurements for streamwise vorticity were carried out with larger nozzles (D = 6.35 cm) at Mj = 0.31. Jet mixing with the asymmetric nozzles, as indicated by the mass fluxes downstream, was found to be higher than that produced by a circular nozzle. The circular nozzle with four delta tabs, however, produced fluxes much higher than that produced by a asymmetric nozzles themselves or by most of the tab configurations tried with them. Even higher fluxes could be obtained with only a few cases, e.g., with 3:1 rectangular nozzle with two large delta tabs placed on the narrow edges. In this case, the jet 'fanned out' at a large angle after going through one axis switch. The axis switching could be either stopped or augmented with suitable choice of the tab configurations. Two mechanisms are identified governing the phenomenon. One, as described in Ref. 12 and referred to here as the omega(sub Theta)-induced dynamics, is due to differential induced velocities of different segments of a rolled up azimuthal vortical structure. The other is the omega(sub x)-induced dynamics due to the induced velocities of streamwise vortex pairs in the flow. While the former dynamics are responsible for rapid axis switching in periodically forced jets, the effect of the tabs is governed mainly by the latter. It is inferred that both dynamics are active in a natural asymmetric jet issuing from a nozzle having an upstream contraction. The tendency for axis switching caused by the omega(sub Theta)-induced dynamics is resisted by the omega(sub x)-induced dynamics, leading to a delayed or no switch over in that case. In jets from orifices and in screeching jets, the omega(sub Theta)-induced dynamics dominate causing a faster switch over.
Destabilization of Human Balance Control by Static and Dynamic Head Tilts
NASA Technical Reports Server (NTRS)
Paloski, William H.; Wood, Scott J.; Feiveson, Alan H.; Black, F. Owen; Hwang, Emma Y.; Reschke, Millard F.
2004-01-01
To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14,0.33,0.6 Hz) head tilts of +/-30deg in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) system. Subjects were able to maintain upright stance with static head tilts, although postural sway was increased during neck extension. Postural stability was decreased during dynamic head tilts, and the degree of destabilization varied directly with increasing frequency of head tilt. In the absence of vision and accurate foot support surface inputs, postural stability may be compromised during dynamic head tilts due to a decreased ability of the vestibular system to discern the orientation of gravity.
A novel representation of groundwater dynamics in large-scale land surface modelling
NASA Astrophysics Data System (ADS)
Rahman, Mostaquimur; Rosolem, Rafael; Kollet, Stefan
2017-04-01
Land surface processes are connected to groundwater dynamics via shallow soil moisture. For example, groundwater affects evapotranspiration (by influencing the variability of soil moisture) and runoff generation mechanisms. However, contemporary Land Surface Models (LSM) generally consider isolated soil columns and free drainage lower boundary condition for simulating hydrology. This is mainly due to the fact that incorporating detailed groundwater dynamics in LSMs usually requires considerable computing resources, especially for large-scale applications (e.g., continental to global). Yet, these simplifications undermine the potential effect of groundwater dynamics on land surface mass and energy fluxes. In this study, we present a novel approach of representing high-resolution groundwater dynamics in LSMs that is computationally efficient for large-scale applications. This new parameterization is incorporated in the Joint UK Land Environment Simulator (JULES) and tested at the continental-scale.
McKenna, James E.
2000-01-01
Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.
Euskirchen, E.S.; McGuire, A. David; Rupp, T.S.; Chapin, F. S.; Walsh, J.E.
2009-01-01
In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003–2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1) vegetation changes following a changing fire regime, and (2) changes in snow cover duration. We used a spatially explicit dynamic vegetation model (Alaskan Frame-based Ecosystem Code) to simulate changes in successional dynamics associated with fire under the future climate scenarios, and the Terrestrial Ecosystem Model to simulate changes in snow cover. Changes in summer heating due to the changes in the forest stand age distributions under future fire regimes showed a slight cooling effect due to increases in summer albedo (mean across climates of −0.9 W m−2 decade−1). Over this same time period, decreases in snow cover (mean reduction in the snow season of 4.5 d decade−1) caused a reduction in albedo, and a heating effect (mean across climates of 4.3 W m−2 decade−1). Adding both the summer negative change in atmospheric heating due to changes in fire regimes to the positive changes in atmospheric heating due to changes in the length of the snow season resulted in a 3.4 W m−2 decade−1 increase in atmospheric heating. These findings highlight the importance of gaining a better understanding of the influences of changes in surface albedo on atmospheric heating due to both changes in the fire regime and changes in snow cover duration.
Assembly-history dynamics of a pitcher-plant protozoan community in experimental microcosms.
Kadowaki, Kohmei; Inouye, Brian D; Miller, Thomas E
2012-01-01
History drives community assembly through differences both in density (density effects) and in the sequence in which species arrive (sequence effects). Density effects arise from predictable population dynamics, which are free of history, but sequence effects are due to a density-free mechanism, arising solely from the order and timing of immigration events. Few studies have determined how components of immigration history (timing, number of individuals, frequency) alter local dynamics to determine community assembly, beyond addressing when immigration history produces historically contingent assembly. We varied density and sequence effects independently in a two-way factorial design to follow community assembly in a three-species aquatic protozoan community. A superior competitor, Colpoda steinii, mediated alternative community states; early arrival or high introduction density allowed this species to outcompete or suppress the other competitors (Poterioochromonas malhamensis and Eimeriidae gen. sp.). Multivariate analysis showed that density effects caused greater variation in community states, whereas sequence effects altered the mean community composition. A significant interaction between density and sequence effects suggests that we should refine our understanding of priority effects. These results highlight a practical need to understand not only the "ingredients" (species) in ecological communities but their "recipes" as well.
Discrete-Time Quantum Walk with Phase Disorder: Localization and Entanglement Entropy.
Zeng, Meng; Yong, Ee Hou
2017-09-20
Quantum Walk (QW) has very different transport properties to its classical counterpart due to interference effects. Here we study the discrete-time quantum walk (DTQW) with on-site static/dynamic phase disorder following either binary or uniform distribution in both one and two dimensions. For one dimension, we consider the Hadamard coin; for two dimensions, we consider either a 2-level Hadamard coin (Hadamard walk) or a 4-level Grover coin (Grover walk) for the rotation in coin-space. We study the transport properties e.g. inverse participation ratio (IPR) and the standard deviation of the density function (σ) as well as the coin-position entanglement entropy (EE), due to the two types of phase disorders and the two types of coins. Our numerical simulations show that the dimensionality, the type of coins, and whether the disorder is static or dynamic play a pivotal role and lead to interesting behaviors of the DTQW. The distribution of the phase disorder has very minor effects on the quantum walk.
NASA Astrophysics Data System (ADS)
Carvalho, J. P. S.
2017-10-01
In this work, we present an approach taking into account the single-averaged equations and unaveraged equations to investigate the dynamics of artificial satellites on the effect due to the non-spherical shape of the planet Mercury. An analysis considering the long-period terms and another taking into account the short-period terms is presented. The numerical integrations of the equations developed are performed using the Maple software. We consider the numerical values of the most updated spherical harmonic coefficients in the literature. Emphasis is given to analyze the effect of the C22 term in the dynamics of the spacecraft. We show that the two techniques are in agreement (average or not average). We found orbits that librates around an equilibrium point with small variation of the orbital elements, in particular the eccentricity and argument of the pericenter. We also note that the C22 term contributes to reduce the growth of the orbital eccentricity.
Impact analyses for negative flexural responses (hogging) in railway prestressed concrete sleepers
NASA Astrophysics Data System (ADS)
Kaewunruen, S.; Ishida, T.; Remennikov, AM
2016-09-01
By nature, ballast interacts with railway concrete sleepers in order to provide bearing support to track system. Most train-track dynamic models do not consider the degradation of ballast over time. In fact, the ballast degradation causes differential settlement and impact forces acting on partial and unsupported tracks. Furthermore, localised ballast breakages underneath railseat increase the likelihood of centrebound cracks in concrete sleepers due to the unbalanced support under sleepers. This paper presents a dynamic finite element model of a standard-gauge concrete sleeper in a track system, taking into account the tensionless nature of ballast support. The finite element model was calibrated using static and dynamic responses in the past. In this paper, the effects of centre-bound ballast support on the impact behaviours of sleepers are highlighted. In addition, it is the first to demonstrate the dynamic effects of sleeper length on the dynamic design deficiency in concrete sleepers. The outcome of this study will benefit the rail maintenance criteria of track resurfacing in order to restore ballast profile and appropriate sleeper/ballast interaction.
Ratcheting rotation or speedy spinning: EPR and dynamics of Sc3C2@C80.
Roukala, Juho; Straka, Michal; Taubert, Stefan; Vaara, Juha; Lantto, Perttu
2017-08-08
Besides their technological applications, endohedral fullerenes provide ideal conditions for investigating molecular dynamics in restricted geometries. A representative of this class of systems, Sc 3 C 2 @C 80 displays complex intramolecular dynamics. The motion of the 45 Sc trimer has a remarkable effect on its electron paramagnetic resonance (EPR) spectrum, which changes from a symmetric 22-peak pattern at high temperature to a single broad lineshape at low temperature. The scandium trimer consists of two equivalent and one inequivalent metal atom, due to the carbon dimer rocking through the Sc 3 triangle. We demonstrate through first-principles molecular dynamics (MD), EPR parameter tensor averaging, and spectral modelling that, at high temperatures, three-dimensional movement of the enclosed Sc 3 C 2 moiety takes place, which renders the metal centers equivalent and their magnetic parameters effectively isotropic. In contrast, at low temperatures the dynamics becomes restricted to two dimensions within the equatorial belt of the I h symmetric C 80 host fullerene. This restores the inequivalence of the scandium centers and causes their anisotropic hyperfine couplings to broaden the experimental spectrum.
Pressure effect on phonon frequencies in some transition metals: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Kazanc, S.; Ozgen, S.
2005-08-01
It is important to determine the atomic lattice vibrations of metallic materials, under high-pressure conditions, due to its effects on material properties such as thermal, electrical and optical conductions. In this work, we have investigated the changes of acoustic phonon frequencies with hydrostatic pressure for Cu, Ni, Al, Ag and Au transition metals, using molecular dynamics (MD) simulations based on embedded atom method (EAM). For this aim, we have adopted the embedded atom potential proposed by Sutton and Chen. The phonon frequencies have been calculated from the dynamical matrix for [1 0 0], [1 1 0] and [1 1 1] high symmetry directions of the Brillouin zone. The obtained results show that the hydrostatic pressure causes an increment in phonon frequencies, and this rising do not depend linearly on the increasing pressure.
Yao, Cui-Xia; Zhang, Pei-Yu
2014-07-10
The dynamics of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction has been investigated in detail by using an accurate time-dependent wave-packet method on the ground 1(2)A' potential energy surface. Comparisons between the Coriolis coupling results and the centrifugal-sudden ones reveal that Coriolis coupling effect can influence reaction dynamics of the NeD2(+) system. Integral cross sections have been evaluated for the Ne + D2(+) reaction and its isotopic variant Ne + H2(+), and a considerable intermolecular isotopic effect has been found. Also obvious is the great enhancement of the reactivity due to the reagent vibrational excitation. Besides, a comparison with previous theoretical results is also presented and discussed.
Cold chemistry with cold molecules
NASA Astrophysics Data System (ADS)
Shagam, Yuval
Low temperature chemistry has been predicted to be dominated by quantum effects, such as shape resonances, where colliding particles exhibit wave-like behavior and tunnel through potential barriers. Observation of these quantum effects provides valuable insight into the microscopic mechanism that governs scattering processes. Our recent advances in the control of neutral supersonic molecular beams, namely merged beam experiments, have enabled continuous tuning of collision energies from the classical regime at room temperature down to 0.01 kelvin, where a quantum description of the dynamics is necessary. I will discuss our use of this technique to study how the dynamics change when molecules participate in collisions, demonstrating the crucial role the molecular quantum rotor plays. We have found that at low temperatures rotational state of the molecule can strongly affect collision dynamics considerably changing reaction rates, due to the different symmetries of the molecular wavefunction.
Long-range interactions, wobbles, and phase defects in chains of model cilia
NASA Astrophysics Data System (ADS)
Brumley, Douglas R.; Bruot, Nicolas; Kotar, Jurij; Goldstein, Raymond E.; Cicuta, Pietro; Polin, Marco
2016-12-01
Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.
Preliminary Exploration of Adaptive State Predictor Based Human Operator Modeling
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.
2012-01-01
Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to quantify the effects of changing aircraft dynamics on an operator s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. A gradient descent estimator and a least squares estimator with exponential forgetting used these data to predict pilot stick input. The results indicate that individual pilot characteristics and vehicle dynamics did not affect the accuracy of either estimator method to estimate pilot stick input. These methods also were able to predict pilot stick input during changing aircraft dynamics and they may have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot.
Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography
NASA Astrophysics Data System (ADS)
Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel
2017-03-01
Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.
NASA Astrophysics Data System (ADS)
Koochi, Ali; Hosseini-Toudeshky, Hossein; Abadyan, Mohamadreza
2018-03-01
Herein, a corrected theoretical model is proposed for modeling the static and dynamic behavior of electrostatically actuated narrow-width nanotweezers considering the correction due to finite dimensions, size dependency and surface energy. The Gurtin-Murdoch surface elasticity in conjunction with the modified couple stress theory is employed to consider the coupling effect of surface stresses and size phenomenon. In addition, the model accounts for the external force corrections by incorporating the impact of narrow width on the distribution of Casimir attraction, van der Waals (vdW) force and the fringing field effect. The proposed model is beneficial for the precise modeling of the narrow nanotweezers in nano-scale.
Multivariate dynamical modelling of structural change during development.
Ziegler, Gabriel; Ridgway, Gerard R; Blakemore, Sarah-Jayne; Ashburner, John; Penny, Will
2017-02-15
Here we introduce a multivariate framework for characterising longitudinal changes in structural MRI using dynamical systems. The general approach enables modelling changes of states in multiple imaging biomarkers typically observed during brain development, plasticity, ageing and degeneration, e.g. regional gray matter volume of multiple regions of interest (ROIs). Structural brain states follow intrinsic dynamics according to a linear system with additional inputs accounting for potential driving forces of brain development. In particular, the inputs to the system are specified to account for known or latent developmental growth/decline factors, e.g. due to effects of growth hormones, puberty, or sudden behavioural changes etc. Because effects of developmental factors might be region-specific, the sensitivity of each ROI to contributions of each factor is explicitly modelled. In addition to the external effects of developmental factors on regional change, the framework enables modelling and inference about directed (potentially reciprocal) interactions between brain regions, due to competition for space, or structural connectivity, and suchlike. This approach accounts for repeated measures in typical MRI studies of development and aging. Model inversion and posterior distributions are obtained using earlier established variational methods enabling Bayesian evidence-based comparisons between various models of structural change. Using this approach we demonstrate dynamic cortical changes during brain maturation between 6 and 22 years of age using a large openly available longitudinal paediatric dataset with 637 scans from 289 individuals. In particular, we model volumetric changes in 26 bilateral ROIs, which cover large portions of cortical and subcortical gray matter. We account for (1) puberty-related effects on gray matter regions; (2) effects of an early transient growth process with additional time-lag parameter; (3) sexual dimorphism by modelling parameter differences between boys and girls. There is evidence that the regional pattern of sensitivity to dynamic hidden growth factors in late childhood is similar across genders and shows a consistent anterior-posterior gradient with strongest impact to prefrontal cortex (PFC) brain changes. Finally, we demonstrate the potential of the framework to explore the coupling of structural changes across a priori defined subnetworks using an example of previously established resting state functional connectivity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Fisher information due to a phase noisy laser under non-Markovian environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Khalek, S., E-mail: sayedquantum@yahoo.co.uk
2014-12-15
More recently, K. Berrada [Annals of Physics 340 (2014) 60-69] [1] studied the geometric phase of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system, and collapse and revival phenomena were found for large class of states. In this paper, using this noise effect, we study the quantum fisher information (QFI) for a two-level atom system driven by a phase noise laser under non-Markovian dynamics. A new quantity, called QFI flow is used to characterize the damping effect and unveil a fundamental connection between non-Markovian behaviormore » and dynamics of system–environment correlations under phase noise laser. It is shown that QFI flow has disappeared suddenly followed by a sudden birth depending on the kind of the environment damping. QFI flow provides an indicator to characterize the dissipative quantum system’s decoherence by analyzing the behavior of the dynamical non-Markovian coefficients.« less
Dynamic effects of memory in a cobweb model with competing technologies
NASA Astrophysics Data System (ADS)
Agliari, Anna; Naimzada, Ahmad; Pecora, Nicolò
2017-02-01
We analyze a simple model based on the cobweb demand-supply framework with costly innovators and free imitators and study the endogenous dynamics of price and firms' fractions in a homogeneous good market. The evolutionary selection between technologies depends on a performance measure in which a memory parameter is introduced. The resulting dynamics is then described by a two-dimensional map. In addition to the locally stabilizing effect due to the presence of memory, we show the existence of a double stability threshold which entails for different dynamic scenarios occurring when the memory parameter takes extreme values (i.e. when consideration of the last profit realization prevails or it is too much neglected). The eventuality of different coexisting attractors as well as the structure of the basins of attraction that characterizes the path dependence property of the model with memory is shown. In particular, through global analysis we also illustrate particular bifurcations sequences that may increase the complexity of the related basins of attraction.
Complex networks repair strategies: Dynamic models
NASA Astrophysics Data System (ADS)
Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang
2017-09-01
Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.
Hunting for ghosts in elastic snap-through
NASA Astrophysics Data System (ADS)
Gomez, Michael; Moulton, Derek E.; Vella, Dominic
Elastic `snap-through' is a striking instability often seen when an elastic system loses bistability, e.g. due to a change in geometry or external loading. The switch from one state to another is generally rapid and hence is used to generate fast motions in biology and engineering. While the onset of instability has been well studied, the dynamics of the transition itself remain much less well understood. For example, the dynamics exhibited by children's jumping popper toys, or the leaves of the Venus flytrap plant, are much slower than would be expected based on a naive estimate of the elastic timescales. To explain this discrepancy, the natural conclusion has been drawn that some other effect, such as viscoelasticity, must play a role. We demonstrate here that purely elastic systems may show similar `slow' dynamics during snap-through. This behaviour is due to a remnant (or `ghost') of the snap-through bifurcation underlying the instability, analogously to bottleneck phenomena in 1-D dynamical systems. This slowness is a generic consequence of being close to bifurcation -- it does not require dissipation. We obtain scaling laws for the length of the delay and compare these to numerical simulations and experiments on real samples.
Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic Janus motors
NASA Astrophysics Data System (ADS)
Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond
2017-12-01
Collective motion in nonequilibrium steady state suspensions of self-propelled Janus motors driven by chemical reactions can arise due to interactions coming from direct intermolecular forces, hydrodynamic flow effects, or chemotactic effects mediated by chemical gradients. The relative importance of these interactions depends on the reactive characteristics of the motors, the way in which the system is maintained in a steady state, and properties of the suspension, such as the volume fraction. From simulations of a microscopic hard collision model for the interaction of fluid particles with the Janus motor we show that dynamic cluster states exist and determine the interaction mechanisms that are responsible for their formation. The relative importance of chemotactic and hydrodynamic effects is identified by considering a microscopic model in which chemotactic effects are turned off while the full hydrodynamic interactions are retained. The system is maintained in a steady state by means of a bulk reaction in which product particles are reconverted into fuel particles. The influence of the bulk reaction rate on the collective dynamics is also studied.
Beam-dynamic effects at the CMS BRIL van der Meer scans
NASA Astrophysics Data System (ADS)
Babaev, A.
2018-03-01
The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC . BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-β effect. Both effects are important to luminosity measurements and influence calibration constants at the level of 1-2%. The simulations are carried out based on 2016 CMS van der Meer scan data for proton-proton collisions at a center-of-mass energy of 13 TeV.
Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping
2016-10-01
Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhongyu; Shao, Lin, E-mail: lshao@tamu.edu; Chen, Di
Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion ismore » linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.« less
Due Date Assignment in a Dynamic Job Shop with the Orthogonal Kernel Least Squares Algorithm
NASA Astrophysics Data System (ADS)
Yang, D. H.; Hu, L.; Qian, Y.
2017-06-01
Meeting due dates is a key goal in the manufacturing industries. This paper proposes a method for due date assignment (DDA) by using the Orthogonal Kernel Least Squares Algorithm (OKLSA). A simulation model is built to imitate the production process of a highly dynamic job shop. Several factors describing job characteristics and system state are extracted as attributes to predict job flow-times. A number of experiments under conditions of varying dispatching rules and 90% shop utilization level have been carried out to evaluate the effectiveness of OKLSA applied for DDA. The prediction performance of OKLSA is compared with those of five conventional DDA models and back-propagation neural network (BPNN). The experimental results indicate that OKLSA is statistically superior to other DDA models in terms of mean absolute lateness and root mean squares lateness in most cases. The only exception occurs when the shortest processing time rule is used for dispatching jobs, the difference between OKLSA and BPNN is not statistically significant.
High-frequency intrinsic dynamics of the electrocaloric effect from direct atomistic simulations
NASA Astrophysics Data System (ADS)
Lisenkov, S.; Ponomareva, I.
2018-05-01
We propose a computational methodology capable of harvesting isothermal heat and entropy change in molecular dynamics simulations. The methodology is applied to study high-frequency dynamics of the electrocaloric effect (ECE) in ferroelectric PbTiO3. ECE is associated with a reversible change in temperature under adiabatic application of electric field or with a reversible change in entropy under isothermal application of the electric field. Accurate assessment of electrocaloric performance requires the knowledge of three quantities: isothermal heat, isothermal entropy change, and adiabatic temperature change. Our methodology allows computations of all these quantities directly, that is, without restoring to the reversible thermodynamical models. Consequently, it captures both reversible and irreversible effects, which is critical for ECE simulations. The approach is well suited to address the dynamics of the ECE, which so far remains underexplored. We report the following basic features of the intrinsic dynamics of ECE: (i) the ECE is independent of the electric field frequency, rate of application, or field profile; (ii) the effect persists up to the frequencies associated with the onset of dielectric losses and deteriorates from there due to the creation of irreversible entropy; and (iii) in the vicinity of the phase transition and in the paraelectric phase the onset of irreversible dynamics occurs at lower frequency as compared to the ferroelectric phase. The latter is attributed to lower intrinsic soft-mode frequencies and and larger losses in the paraelectric phase.
Computational Study of Nonadiabatic Effects in Atom-Molecule Reactive Scattering.
1982-11-15
a similar interpretation to those in Fig. 4-a, with the rotational effects most evident in the reactant tube (due to the mixing of the two open rotor ...AD-A125 135 COMPUTATIONAL STUDY OF NONRDIABATIC EFFECTS IN 1/2 ATOM-MOLECULE REACTIVE SCATTERING(U) CHEMICAL DYNAMICS CORP COLUMBUS OH B C GARRETT...COMPUTATIONAL STUDY OF NONADIABATIC EFFECTS [ Z IN ATOM-MOLECULE REACTIVE SCATTERING C:) TO AIR FORCE OFFICE OF SCIENTIFIC RESEARCHk CONTRACT NO. F49620-81
Kutzner, Ines; Dymke, Jörn; Damm, Philipp; Duda, Georg N.; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies. PMID:28319145
Kutzner, Ines; Richter, Anja; Gordt, Katharina; Dymke, Jörn; Damm, Philipp; Duda, Georg N; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies.
Elias, Daniel; Bernot, Melody J.
2014-01-01
Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (−1.58 NO3 µg gdm−1 h−1), and net assimilation of phosphate (1.34 PO4 µg gdm−1 h−1) and ammonium (0.03 NH4 µg gdm−1 h−1). Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action) had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by decreasing remineralization, relative to mean concentrations of metolachlor and chlorothalonil. Our regression equations can complement models of nitrogen and phosphorus availability in streams to predict potential changes in nutrient dynamics in response to pesticides in freshwaters. PMID:25275369
Identifying the biotic (e.g. decomposers, vegetation) and abiotic (e.g. temperature, moisture) mechanisms controlling litter decomposition is key to understanding ecosystem function, especially where variation in ecosystem structure due to successional processes may alter the str...
ROLE OF OCEANIC AND RIVERINE SOURCES IN NUTRIENT AND PHYTOPLANKTON DYNAMICS IN YAQUINA BAY, OREGON
There is evidence that coastal ecosystems are experiencing environmental problems due to excess nutrients. The numerous sources, forms, and pathways of nutrients make it difficult to determine the effect of increases in anthropogenic loading. This is particularly evident in Pac...
Effect of Configuration Pitching Motion on Twin Tail Buffet Response
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Kandil, Osama A.
1998-01-01
The effect of dynamic pitch-up motion of delta wing on twin-tail buffet response is investigated. The computational model consists of a delta wing-twin tail configuration. The computations are carried out on a dynamic multi-block grid structure. This multidisciplinary problem is solved using three sets of equations which consists of the unsteady Navier-Stokes equations, the aeroelastic equations, and the grid displacement equations. The configuration is pitched-up from zero up to 60 deg. angle of attack, and the freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. With the twin tail fixed as rigid surfaces and with no-forced pitch-up motion, the problem is solved for the initial flow conditions. Next, the problem is solved for the twin-tail response for uncoupled bending and torsional vibrations due to the unsteady loads on the twin tail and due to the forced pitch-up motion. The dynamic pitch-up problem is also solved for the flow response with the twin tail kept rigid. The configuration is investigated for inboard position of the twin tail which corresponds to a separation distance between the twin tail of 33% wing chord. The computed results are compared with the available experimental data.
Effects of Heavy Ion Exposure on Nanocrystal Nonvolatile Memory
NASA Technical Reports Server (NTRS)
Oldham, Timothy R.; Suhail, Mohammed; Kuhn, Peter; Prinz, Erwin; Kim, Hak; LaBel, Kenneth A.
2004-01-01
We have irradiated engineering samples of Freescale 4M nonvolatile memories with heavy ions. They use Silicon nanocrystals as the storage element, rather than the more common floating gate. The irradiations were performed using the Texas A&M University cyclotron Single Event Effects Test Facility. The chips were tested in the static mode, and in the dynamic read mode, dynamic write (program) mode, and dynamic erase mode. All the errors observed appeared to be due to single, isolated bits, even in the program and erase modes. These errors appeared to be related to the micro-dose mechanism. All the errors corresponded to the loss of electrons from a programmed cell. The underlying physical mechanisms will be discussed in more detail later. There were no errors, which could be attributed to malfunctions of the control circuits. At the highest LET used in the test (85 MeV/mg/sq cm), however, there appeared to be a failure due to gate rupture. Failure analysis is being conducted to confirm this conclusion. There was no unambiguous evidence of latchup under any test conditions. Generally, the results on the nanocrystal technology compare favorably with results on currently available commercial floating gate technology, indicating that the technology is promising for future space applications, both civilian and military.
NASA Astrophysics Data System (ADS)
Dove, A.; Colwell, J. E.
2013-12-01
Dynamic charging conditions exist on the dusty surfaces of planetary bodies such as the Moon, asteroids, and the moons of Mars. On these so-called 'airless bodies', the motions of dust particles above the surface become complex due to grain-grain and grain-plasma interactions. For example, tribocharging and other charge transfer processes can occur due to relative dust grain movements, and charged dust grains immersed in plasma interact with local electromagnetic forces. This is thought to lead to effects such as the lunar 'horizon glow,' (Rennilson and Criswell, 1974, The Moon, 10) and potential dusty 'fountains' above the lunar surface (Stubbs et al., 2006, Adv. Sp. Res., 37). Regolith grains can be mobilized by impacts or other mechanical disturbances, or simply by the Coulomb force acting on grains. Previous work has increased our theoretical understanding of the behavior of charged particles in these low-gravity environments (i.e. Poppe and Horanyi, 2010, JGR, A115; Colwell et al., 2007, Rev. Geophys., 45 (and references therein)). Experimental work has also analyzed grain surface charging due to plasma or tribocharging (Sickafoose et al., 2001, JGR, 106) and the motion of grains on surfaces in the presence of an electric field (Wang et al., 2009, JGR, 114). Occasionally, there is disagreement between theoretical predictions and observations. We present the results of new laboratory experiments aimed at understanding particle charging and the dynamics of charged particles on the surfaces of airless bodies. In the initial experiments, we analyze the motion of particles in the presence of an electric field in vacuum, either in a bell-jar or in a 0.75-second microgravity drop tower experiment box. Prior to motion, particles may be charged due to triboelectric effects, plasma interactions, or a combination of the two. Motion is induced by shaking or by low-velocity impacts in order to simulate the natural motion of slow-moving objects on regolith surfaces, or induced motion such as that due to a spacecraft. The resulting particle dynamics are tracked using high-speed, high-resolution video. Future exploration on or near the surfaces of airless bodies will certainly experience complications arising from these dusty environments, where particles may contaminate or interfere with the operation of almost any mechanical equipment. By exploring the dynamic behavior of charged particles in these environments, we can work towards solutions that will enable exploration.
NASA Astrophysics Data System (ADS)
Zhang, Qihan; Fan, Xiaolong; Zhou, Hengan; Kong, Wenwen; Zhou, Shiming; Gui, Y. S.; Hu, C.-M.; Xue, Desheng
2018-02-01
Spin pumping (SP) and spin rectification due to spin Hall magnetoresistance (SMR) can result in a dc resonant voltage signal, when magnetization in ferromagnetic insulator/nonmagnetic structures experiences ferromagnetic resonance. Since the two effects are often interrelated, quantitative identification of them is important for studying the dynamic nonlocal spin transport through an interface. In this letter, the key difference between SP and SMR rectification was investigated from the viewpoint of spin dynamics. The phase-dependent nature of SMR rectification, which is the fundamental characteristic distinguishing it from SP, was tested by a well-designed experiment. In this experiment, two identical yttrium iron garnet/Pt strips with a π phase difference in dynamic magnetization show the same SP signals and inverse SMR signals.
Research on dynamic balancing simulation of rotary shaft based on ADAMS
NASA Astrophysics Data System (ADS)
Zheng, Weiqiang; Rui, Chengjie; Yang, Jie; Liu, Pingyi
2018-02-01
Due to the design and processing technology of rotary shaft, the mass center of it does not coincide with the rotating axis of the rotary shaft and there is an unbalanced mass. The unbalanced mass can have some disadvantages, such as the centrifugal force, the vibration and so on. Those disadvantages could reduce the accuracy and service life of the equipment.In this paper, the dynamic balance of the rotary shaft is analysed by the theory analysis combined with the dynamic simulation software. This method ensures that the rotary shaft meets the dynamic balancing requirements during the design stage. It effectively supports the structural design of the rotary shift, and provides a way of thinking and method for the design and development of the same type of products.
Sándor, Bulcsú; Járai-Szabó, Ferenc; Tél, Tamás; Néda, Zoltán
2013-04-01
The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by a spring to an external static point and, due to the dragging effect of the belt, the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can be achieved only by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic, dynamics and phase transition-like behavior. Noise-induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks (around five).
Evolution of resistance to anti-cancer therapy during general dosing schedules
Foo, Jasmine; Michor, Franziska
2009-01-01
Anti-cancer drugs targeted to specific oncogenic pathways have shown promising therapeutic results in the past few years; however, drug resistance remains an important obstacle for these therapies. Resistance to these drugs can emerge due to a variety of reasons including genetic or epigenetic changes which alter the binding site of the drug target, cellular metabolism or export mechanisms. Obtaining a better understanding of the evolution of resistant populations during therapy may enable the design of more effective therapeutic regimens which prevent or delay progression of disease due to resistance. In this paper, we use stochastic mathematical models to study the evolutionary dynamics of resistance under time-varying dosing schedules and pharmacokinetic effects. The populations of sensitive and resistant cells are modeled as multi-type non-homogeneous birth-death processes in which the drug concentration affects the birth and death rates of both the sensitive and resistant cell populations in continuous time. This flexible model allows us to consider the effects of generalized treatment strategies as well as detailed pharmacokinetic phenomena such as drug elimination and accumulation over multiple doses. We develop estimates for the probability of developing resistance and moments of the size of the resistant cell population. With these estimates, we optimize treatment schedules over a subspace of tolerated schedules to minimize the risk of disease progression due to resistance as well as locate ideal schedules for controlling the population size of resistant clones in situations where resistance is inevitable. Our methodology can be used to describe dynamics of resistance arising due to a single (epi)genetic alteration in any tumor type. PMID:20004211
Can we identify effects from the 11 year solar cycle in AIM PMC Data?
NASA Astrophysics Data System (ADS)
Siskind, D. E.; Stevens, M. H.; Hervig, M. E.; Randall, C. E.
2012-12-01
One of the primary objectives of the AIM extended mission is to understand the solar cycle variation of Polar Mesospheric Clouds (PMCs). Complicating this problem have been two unexpected phenomena. First, it has become clear that PMCs vary greatly in response to meteorological variability propagating upwards from the stratosphere or teleconnecting from the opposite (winter) hemisphere. Second, the first 4 years of the AIM mission (2007-2010) corresponded to historically very low solar activity. Recently, solar activity has increased modestly; however, the problem remains of pulling out a weak signal (solar) against a noisy background (dynamics). There are two ways to reduce the geophysical noise. First, we note that due to the dynamically active Northern Hemisphere (NH) winter, the effects of meteorological teleconnections are greatest on Southern Hemisphere PMCs. By focusing on Northern Hemisphere PMCs, we get less dynamical variability. Second, it has been shown that by correlating PMC properties with stratospheric winter temperatures, a functional relationship between PMCs and dynamics can be established. In principle, deviations from this functional relationship could be interpreted as due to external forcing, i.e. from solar variability. Expectations are that clouds should decrease for higher levels of solar forcing. Surprisingly however, in 2011, the first year with higher solar activity, the SOFIE instrument on AIM saw more clouds in July than ever. We explore possible reasons for this anomaly, including the possibility of an enhancement in H2O from the launch of STS135 on July 8th. To date, 2012 also shows moderately higher solar activity, but without the contaminating effects of shuttle exhaust. We will evaluate whether PMCs were affected by solar activity in 2012. Acknowledgements: This work was sponsored by the NASA AIM Small Explorer program.
Dynamic Cluster Size Effects on the Glass Transition of Thin Films
NASA Astrophysics Data System (ADS)
Wool, Richard
2013-03-01
During cooling from the melt of amorphous materials, it has been shown experimentally that dynamic rigid clusters form in equilibrium with the liquid and their relaxation behavior determines the kinetic nature of Tg [Stanzione et al, J. Non Cryst Solids 357(2): 311-319 2011]. The fractal clusters of size R ~ 5-60 nm (polystyrene) have relaxation times τ ~ R1.8 (solid-to-liquid). They are analogous to sub critical size embryos during crystallization as the amorphous material tries to crystallize due to the strong intermolecular forces at T < Tm ; they are not related to density fluctuations or surface capillary waves. In free-standing thin films of thickness h, several important events occur: (a) The large clusters with R > h are excluded and the thin films have an average faster relaxation time compared to the bulk; consequently Tg decreases as h decreases. (b) The segmental dynamics at the 1 nm scale are largely not affected by nanoconfinement since Tg is determined only by the cluster dynamics with R >> 1 nm. (c) The mobile layer on the surface of free standing films is due to the presence of smaller clusters on the surface which will disappear with increasing rate of testing. (d) With adhesion to a solid substrate, the surface mobile layer disappears as the surface clusters size grow and the change in Tg is suppressed. (e) Physical aging is controlled by the relaxation of the rigid fractal clusters and in thin films, physical aging will occur more rapidly compared to the bulk. (f) The large effect of molecular weight M on Tg appears to be related to the effect on the cluster size distribution giving smaller clusters and faster relation times with increasing M. These results are in accord with the Twinkling Fractal theory of the glass transition.
The taccalonolides and paclitaxel cause distinct effects on microtubule dynamics and aster formation
2014-01-01
Background Microtubule stabilizers suppress microtubule dynamics and, at the lowest antiproliferative concentrations, disrupt the function of mitotic spindles, leading to mitotic arrest and apoptosis. At slightly higher concentrations, these agents cause the formation of multiple mitotic asters with distinct morphologies elicited by different microtubule stabilizers. Results We tested the hypothesis that two classes of microtubule stabilizing drugs, the taxanes and the taccalonolides, cause the formation of distinct aster structures due, in part, to differential effects on microtubule dynamics. Paclitaxel and the taccalonolides suppressed the dynamics of microtubules formed from purified tubulin as well as in live cells. Both agents suppressed microtubule dynamic instability, with the taccalonolides having a more pronounced inhibition of microtubule catastrophe, suggesting that they stabilize the plus ends of microtubules more effectively than paclitaxel. Live cell microscopy was also used to evaluate the formation and resolution of asters after drug treatment. While each drug had similar effects on initial formation, substantial differences were observed in aster resolution. Paclitaxel-induced asters often coalesced over time resulting in fewer, larger asters whereas numerous compact asters persisted once they were formed in the presence of the taccalonolides. Conclusions We conclude that the increased resistance of microtubule plus ends to catastrophe may play a role in the observed inability of taccalonolide-induced asters to coalesce during mitosis, giving rise to the distinct morphologies observed after exposure to these agents. PMID:24576146
Effect of mass variation on dynamics of tethered system in orbital maneuvering
NASA Astrophysics Data System (ADS)
Sun, Liang; Zhao, Guowei; Huang, Hai
2018-05-01
In orbital maneuvering, the mass variation due to fuel consumption has an obvious impact on the dynamics of tethered system, which cannot be neglected. The contributions of the work are mainly shown in two aspects: 1) the improvement of the model; 2) the analysis of dynamics characteristics. As the mass is variable, and the derivative of the mass is directly considered in the traditional Lagrange equation, the expression of generalized force is complicated. To solve this problem, the coagulated derivative is adopted in the paper; besides, the attitude dynamics equations derived in this paper take into account the effect of mass variation and the drift of orbital trajectory at the same time. The bifurcation phenomenon, the pendular motion angular frequency, and amplitudes of tether vibration revealed in this paper can provide a reference for the parameters and controller design in practical engineering. In the article, a dumbbell model is adopted to analyze the dynamics of tethered system, in which the mass variation of base satellite is fully considered. Considering the practical application, the case of orbital transfer under a transversal thrust is mainly studied. Besides, compared with the analytical solutions of librational angles, the effects of mass variation on stability and librational characteristic are studied. Finally, in order to make an analysis of the effect on vibrational characteristic, a lumped model is introduced, which reveals a strong coupling of librational and vibrational characteristics.
Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine
NASA Astrophysics Data System (ADS)
Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir
2017-04-01
Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.
NASA Astrophysics Data System (ADS)
Guo, Zhen; Pan, Haixi; Li, Chuanyu; Zhang, Lili; Yan, Shuai; Zhang, Wei; Yao, Jia; Tang, Yuguo; Yang, Hongbo; Wu, Yihui; Feng, Liping; Zhou, Lianqun
2017-08-01
Carrier generation, transport, separation, and recombination behaviors can be modulated for improving the performance of semiconductor devices by using piezotronic and piezo-phototronic effects with creating piezopotential in crystals based on non-centrosymmetric semiconductor materials such as group II-VI and III-V semiconductors and transition metal dichalcogenides (TMDCs), which have emerged as attractive materials for electronic/photonic applications because of their novel properties. Until now, much effort has been devoted to improving the performance of devices based on the aforementioned materials through modulation of the carrier behavior. However, due to existing drawbacks, it has been difficult to further enhance the device performance for a built structure. However, effective exploration of the piezotronic and piezo-phototronic effects in these semiconducting materials could pave the way to the realization of high-performance devices. In general, the effective modulation of carrier behavior dynamically in devices such as light-emitting diodes, photodetectors, solar cells, nanogenerators, and so on, remains a key challenge. Due to the polarization of ions in semiconductor materials with noncentral symmetry under external strain, a piezopotential is created considering piezotronic and piezo-photoronic effects, which could dynamically modulate charge carrier transport behaviors across p-n junctions or metal-semiconductor interfaces. Through a combination of these effects and semiconductor properties, the performance of the related devices could be improved and new types of devices such as piezoelectric field-effect transistors and sensors have emerged, with potential applications in self-driven devices for effective energy harvesting and biosensing with high sensitivity, which are different from those traditionally designed and may have potential applications in strained triggered devices. The objective of this review is to briefly introduce the corresponding mechanisms for modulating carrier behavior on the basis of piezotronic and piezo-phototronic effects in materials such as group II-VI and group III-V semiconductors and TMDCs, as well as to discuss possible solutions to effectively enhance the performance of the devices via carrier modulation.
Direct construction of mesoscopic models from microscopic simulations
NASA Astrophysics Data System (ADS)
Lei, Huan; Caswell, Bruce; Karniadakis, George Em
2010-02-01
Starting from microscopic molecular-dynamics (MD) simulations of constrained Lennard-Jones (LJ) clusters (with constant radius of gyration Rg ), we construct two mesoscopic models [Langevin dynamics and dissipative particle dynamics (DPD)] by coarse graining the LJ clusters into single particles. Both static and dynamic properties of the coarse-grained models are investigated and compared with the MD results. The effective mean force field is computed as a function of the intercluster distance, and the corresponding potential scales linearly with the number of particles per cluster and the temperature. We verify that the mean force field can reproduce the equation of state of the atomistic systems within a wide density range but the radial distribution function only within the dilute and the semidilute regime. The friction force coefficients for both models are computed directly from the time-correlation function of the random force field of the microscopic system. For high density or a large cluster size the friction force is overestimated and the diffusivity underestimated due to the omission of many-body effects as a result of the assumed pairwise form of the coarse-grained force field. When the many-body effect is not as pronounced (e.g., smaller Rg or semidilute system), the DPD model can reproduce the dynamic properties of the MD system.
Sarkar, Sudipto; Kamilya, Dibyendu; Mal, B C
2007-03-01
Inclined plate settlers are used in treating wastewater due to their low space requirement and high removal rates. The prediction of sedimentation efficiency of these settlers is essential for their performance evaluation. In the present study, the technique of dimensional analysis was applied to predict the sedimentation efficiency of these inclined plate settlers. The effect of various geometric parameters namely, distance between plates (w(p)), plate angle (alpha), length of plate (l(p)), plate roughness (epsilon(p)), number of plates (n(p)) and particle diameter (d(s)) on the dynamic conditions, influencing the sedimentation process was studied. From the study it was established that neither the Reynolds criterion nor the Froude criterion was singularly valid to simulate the sedimentation efficiency (E) for different values of w(p) and flow velocity (v(f)). Considering the prevalent scale effect, simulation equations were developed to predict E at different dynamic conditions. The optimum dynamic condition producing the maximum E is also discussed.
NASA Astrophysics Data System (ADS)
Han, Dongju
2018-05-01
Safe and efficient flight powered by an aircraft turbojet engine relies on the performance of the engine controller preventing compressor surge with robustness from noises or disturbances. This paper proposes the effective nonlinear controller associated with the nonlinear filter for the real turbojet engine with highly nonlinear dynamics. For the feasible controller study the nonlinearity of the engine dynamics was investigated by comparing the step responses from the linearized model with the original nonlinear dynamics. The fuzzy-based PID control logic is introduced to control the engine efficiently and FAUKF is applied for robustness from noises. The simulation results prove the effectiveness of FAUKF applied to the proposed controller such that the control performances are superior over the conventional controller and the filer performance using FAUKF indicates the satisfactory results such as clearing the defects by reducing the distortions without compressor surge, whereas the conventional UKF is not fully effective as occurring some distortions with compressor surge due to a process noise.
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1985-01-01
A progress report is presented that deals with three major topics related to Tethered Satellite System Dynamics. The SAO rotational dynamics computer code was updated. The program is now suitable to deal with inclined orbits. The output has been also modified in order to show the satellite Euler angles referred to the rotating orbital frame. The three-dimensional high resolution computer program SLACK3 was developed. The code simulates the three-dimensional dynamics of a tether going slack taking into account the effect produced by boom rotations. Preliminary simulations on the three-dimensional dynamics of a recoiling slack tether are shown in this report. A program to evaluate the electric potential around a severed tether is immersed in a plasma. The potential is computed on a three-dimensional grid axially symmetric with respect to the tether longitudinal axis. The electric potential variations due to the plasma are presently under investigation.
Restoration of rhythmicity in diffusively coupled dynamical networks.
Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen
2015-07-15
Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.
On the coherency of dynamic load estimates for vehicles on flexible structures
NASA Astrophysics Data System (ADS)
Mitra, Mainak; Gordon, Timothy
2014-05-01
This paper develops a novel form of a well-known signal processing technique, so as to be applicable to the interaction between a heavy truck and a supporting bridge structure. Motivated by the problem of structural health monitoring of bridges, a new modal coherency function is defined. This relates the input action of moving wheel loads to the dynamic response of the bridge, including the effects of unevenness of the road surface and the vertical dynamics of the truck suspension. The analysis here is specifically aimed at future experimental testing - the validation of axle load estimators obtained from sensors on the truck. It is applicable even when no independent 'ground truth' for the dynamic loads is available. The approach can be more widely used in the analysis of dynamic interactions involving suspended moving loads on deformable structures, e.g. for structural vibrations due to high-speed trains.
Zhao, Chuan-Li; Hsu, Hua-Feng
2014-01-01
This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n 4) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n 3) time by providing a dynamic programming algorithm. PMID:25258727
Zhao, Chuan-Li; Hsu, Chou-Jung; Hsu, Hua-Feng
2014-01-01
This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n(4)) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n(3)) time by providing a dynamic programming algorithm.
Etampawala, Thusitha; Ratnaweera, Dilru; Morgan, Brian; ...
2015-02-02
Our work reports on the detailed molecular dynamic behavior of miscible blends of Poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and their pure counterparts by quasi-elastic neutron scattering measurements (QENS). The study provides the measure of relaxation processes on pico-to-nanosecond time scales. A single relaxation process was observed in pure P3HT and PCBM while two relaxation processes, one fast and one slow, were observed in the blends. The fast process was attributed to the dynamics of P3HT while the slow process was correlated to the dynamics of PCBM. The results show that the relaxation process is a balance betweenmore » two opposing effects: increased mobility due to thermal activation of P3HT molecules and decrease mobility due to the presence of PCBM which is correlated to the percent crystallinity of P3HT and local packing density of PCBM in the amorphous phase. The threshold for the domination of the thermally activated relaxation is between 5 and 9 vol.% of PCBM loading. Two distinct spatial dependences of the relaxation processes, in which the crossover length scale depends neither on temperature nor composition, were observed for all the samples. They were attributed to the collective motions of the hexyl side chains and the rotational motions of the C-C single bonds of the side chains. Finally, these results provide an understanding of the effects of PCBM loading and temperature on the dynamics of the polymer-fullerene blends which provides a tool to optimize the efficiency of charge carrier and exciton transport within the organic photovoltaic (OPV) active layer to improve the high performance of organic solar cells.« less
NASA Astrophysics Data System (ADS)
Bai, Zheng Feng; Zhao, Ji Jun; Chen, Jun; Zhao, Yang
2018-03-01
In the dynamic analysis of satellite antenna dual-axis driving mechanism, it is usually assumed that the joints are ideal or perfect without clearances. However, in reality, clearances in joints are unavoidable due to assemblage, manufacturing errors and wear. When clearance is introduced to the mechanism, it will lead to poor dynamic performances and undesirable vibrations due to impact forces in clearance joint. In this paper, a design optimization method is presented to reduce the undesirable vibrations of satellite antenna considering clearance joints in dual-axis driving mechanism. The contact force model in clearance joint is established using a nonlinear spring-damper model and the friction effect is considered using a modified Coulomb friction model. Firstly, the effects of clearances on dynamic responses of satellite antenna are investigated. Then the optimization method for dynamic design of the dual-axis driving mechanism with clearance is presented. The objective of the optimization is to minimize the maximum absolute vibration peak of antenna acceleration by reducing the impact forces in clearance joint. The main consideration here is to optimize the contact parameters of the joint elements. The contact stiffness coefficient, damping coefficient and the dynamic friction coefficient for clearance joint elements are taken as the optimization variables. A Generalized Reduced Gradient (GRG) algorithm is used to solve this highly nonlinear optimization problem for dual-axis driving mechanism with clearance joints. The results show that the acceleration peaks of satellite antenna and contact forces in clearance joints are reduced obviously after design optimization, which contributes to a better performance of the satellite antenna. Also, the application and limitation of the proposed optimization method are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Daniel L., E-mail: dlsilva.physics@gmail.com, E-mail: deboni@ifsc.usp.br; Instituto de Física, Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP; Fonseca, Ruben D.
2015-02-14
This paper reports on the static and dynamic first-order hyperpolarizabilities of a class of push-pull octupolar triarylamine derivatives dissolved in toluene. We have combined hyper-Rayleigh scattering experiment and the coupled perturbed Hartree-Fock method implemented at the Density Functional Theory (DFT) level of theory to determine the static and dynamic (at 1064 nm) first-order hyperpolarizability (β{sub HRS}) of nine triarylamine derivatives with distinct electron-withdrawing groups. In four of these derivatives, an azoaromatic unit is inserted and a pronounceable increase of the first-order hyperpolarizability is reported. Based on the theoretical results, the dipolar/octupolar character of the derivatives is determined. By using amore » polarizable continuum model in combination with the DFT calculations, it was found that although solvated in an aprotic and low dielectric constant solvent, due to solvent-induced polarization and the frequency dispersion effect, the environment substantially affects the first-order hyperpolarizability of all derivatives investigated. This statement is supported due to the solvent effects to be essential for the better agreement between theoretical results and experimental data concerning the dynamic first-order hyperpolarizability of the derivatives. The first-order hyperpolarizability of the derivatives was also modeled using the two- and three-level models, where the relationship between static and dynamic first hyperpolarizabilities is given by a frequency dispersion model. Using this approach, it was verified that the dynamic first hyperpolarizability of the derivatives is satisfactorily reproduced by the two-level model and that, in the case of the derivatives with an azoaromatic unit, the use of a damped few-level model is essential for, considering also the molecular size of such derivatives, a good quantitative agreement between theoretical results and experimental data to be observed.« less
Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms
NASA Astrophysics Data System (ADS)
Wang, Da-Wei; Li, Zheng-Hong; Zheng, Hang; Zhu, Shi-Yao
2010-04-01
A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.
Effects of dynamical grouping on cooperation in N-person evolutionary snowdrift game
NASA Astrophysics Data System (ADS)
Ji, M.; Xu, C.; Hui, P. M.
2011-09-01
A population typically consists of agents that continually distribute themselves into different groups at different times. This dynamic grouping has recently been shown to be essential in explaining many features observed in human activities including social, economic, and military activities. We study the effects of dynamic grouping on the level of cooperation in a modified evolutionary N-person snowdrift game. Due to the formation of dynamical groups, the competition takes place in groups of different sizes at different times and players of different strategies are mixed by the grouping dynamics. It is found that the level of cooperation is greatly enhanced by the dynamic grouping of agents, when compared with a static population of the same size. As a parameter β, which characterizes the relative importance of the reward and cost, increases, the fraction of cooperative players fC increases and it is possible to achieve a fully cooperative state. Analytically, we present a dynamical equation that incorporates the effects of the competing game and group size distribution. The distribution of cooperators in different groups is assumed to be a binomial distribution, which is confirmed by simulations. Results from the analytic equation are in good agreement with numerical results from simulations. We also present detailed simulation results of fC over the parameter space spanned by the probabilities of group coalescence νm and group fragmentation νp in the grouping dynamics. A high νm and low νp promotes cooperation, and a favorable reward characterized by a high β would lead to a fully cooperative state.
USDA-ARS?s Scientific Manuscript database
Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms...
Particle Creation in Oscillating Cavities with Cubic and Cylindrical Geometry
NASA Astrophysics Data System (ADS)
Setare, M. R.; Dinani, H. T.
2008-04-01
In the present paper we study the creation of massless scalar particles from the quantum vacuum due to the dynamical Casimir effect by oscillating cavities with cubic and cylindrical geometry. To the first order of the amplitude we derive the expressions for the number of the created particles.
The Virtual Liver Project: Modeling Tissue Response To Chemicals Through Multiscale Simulation
The US EPA Virtual Liver Project is aimed at simulating the risk of toxic effects from environmental chemicals in silico. The computational systems model of organ injury due to chronic chemical exposure is based on: (i) the dynamics of perturbed molecular pathways, (ii) their lin...
The highest uncertainties in net nitrogen (N) fluxes between the atmosphere and biologically active pools are predominately due to denitrification (DeN). This diminishes confidence in our assessment of wetland N removal at transition zones between upland and aquatic systems. This...
Topsoil thickness effects on phosphorus and potassium dynamics on claypan soils
USDA-ARS?s Scientific Manuscript database
Due to variable depth to claypan (DTC) across landscapes, nutrient supply from subsoils, and crop removal, precise P and K fertilizer management on claypan soil fields can be difficult. Therefore, a study was performed to determine if DTC derived from soil apparent electrical conductivity (ECa) coul...
Introduction to Physical Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
A slight deviation from Newtonian dynamics can lead to new effects associated with the concept of physical intelligence. Non-Newtonian effects such as deviation from classical thermodynamic as well as quantum-like properties have been analyzed. A self-supervised (intelligent) particle that can escape from Brownian motion autonomously is introduced. Such a capability is due to a coupling of the particle governing equation with its own Liouville equation via an appropriate feedback. As a result, the governing equation is self-stabilized, and random oscillations are suppressed, while the Liouville equation takes the form of the Fokker-Planck equation with negative diffusion. Non- Newtonian properties of such a dynamical system as well as thermodynamical implications have been evaluated.
Tests of general relativity using Starprobe radio metric tracking data
NASA Technical Reports Server (NTRS)
Mease, K. D.; Anderson, J. D.; Wood, L. J.; White, L. K.
1982-01-01
The potential of a proposed spacecraft mission, called Starprobe, for testing general relativity and providing information on the interior structure and dynamics of the sun is investigated. Parametric, gravitational perturbation terms are derived which represent relativistic effects and effects due to spatial and temporal variations in the solar potential at a given radial distance. A covariance analysis based on Kalman filtering theory predicts the accuracies with which the free parameters in the perturbation terms can be estimated with radio metric tracking data through the process of trajectory reconstruction. It is concluded that Starprobe can contribute significant information on both the nature of gravitation and the structure and dynamics of the solar interior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Stephen J.; Ni, Guangjian
The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motionmore » will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.« less
Mussenbrock, T; Brinkmann, R P; Lieberman, M A; Lichtenberg, A J; Kawamura, E
2008-08-22
In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are dominant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) stochastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases the dissipation by factors of 2-5. We conclude that the nonlinear plasma dynamics should be taken into account in order to describe quantitatively correct electron heating in asymmetric capacitive radio frequency discharges.
Vertical distribution of CH4 and N2O over the tropical site Hyderabad
NASA Technical Reports Server (NTRS)
Lal, Shyam; Subbaraya, B. H.; Fabian, Peter; Borchers, R.
1994-01-01
Vertical distribution profiles of N2O and CH4 have been measured from Hyderabad, India using a balloon-borne cryogenic air sampler. The samples have been analyzed using gas chromatographic techniques. Results for two balloon flights made in 1987 and 1990 show effects of tropical characteristics like higher tropopause and upwelling motion due to Hadley circulation. These profiles also exhibit perturbations around 25 km height, which are likely to be due to dynamical effects. A comparison with the SAMS data show that the SAMS values for both these gases are higher by a factor of about 1.5 to 2 around 30 km height.
NASA Astrophysics Data System (ADS)
Wang, Bing-Bing; Wang, Xiao-Dong; Wang, Tian-Hu
2014-09-01
Adding salts into polymer solution has been found to modulate the fiber structure and significantly improve the solution spinnability in electrospinning. However, the mechanisms have not been fully understood. This work adopted molecular dynamics method to investigate the dynamic behavior of poly(ethylene oxide) (PEO)/water droplet with or without dissolved NaCl salt under high-voltage electric field. Our simulation results agreed with the previous experimental reports well. We observed that some daughter droplets detach from the mother droplet due to the ions evaporation and hydration effect, which significantly accelerates the water evaporation and hence improves the solution spinnability. We also observed that some sodium ions are always coordinated with the ether oxygen group in the PEO chain. When these ions are accelerated by the electric field, the PEO chain segments follow the motion of the ions, inevitably stretching the chain and improving the fiber morphology.
NASA Astrophysics Data System (ADS)
Shen, Yu; Wen, Cuie; Yang, Xincheng; Pang, Yanzhao; Sun, Lele; Tao, Jingmei; Gong, Yulan; Zhu, Xinkun
2015-12-01
The purpose of this paper is to investigate the effect of dynamic recovery on the mechanical properties of copper (Cu) during surface mechanical attrition treatment (SMAT) at both room temperature (RT) and cryogenic temperature (CT). Copper sheets were processed by SMAT at RT and at CT for 5, 15, and 30 min, respectively. The Cu samples after SMAT at RT for 30 min exhibited better ductility but lower strength than the samples after SMAT at CT for 30 min due to dynamic recovery. X-ray diffraction analysis indicated that decreasing temperature during SMAT led to an increase in the twin and dislocation densities. In addition, a thicker gradient structure layer with finer grains was obtained in the SMAT-processed Cu samples at CT than at RT. The results indicated that SMAT at CT can effectively suppress the occurring of dynamic recovery and produce ultrahigh strength pure copper without seriously sacrificing its ductility.
Collision dynamics of H+ + N2 at low energies based on time-dependent density-functional theory
NASA Astrophysics Data System (ADS)
Yu, W.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Gao, C.-Z.; Wei, B.
2018-02-01
Using time-dependent density-functional theory at the level of local density approximation augmented by a self-interaction correction and coupled non-adiabatically to molecular dynamics, we study, from a theoretical perspective, scattering dynamics of the proton in collisions with the N2 molecule at 30 eV. Nine different collision configurations are employed to analyze the proton energy loss spectra, electron depletion, scattering angles and self-interaction effects. Our results agree qualitatively with the experimental data and previous theoretical calculations. The discrepancies are ascribed to the limitation of the theoretical models in use. We find that self-interaction effects can significantly influence the electron capture and the excited diatomic vibrational motion, which is in consistent with other calculations. In addition, it is found that the molecular structure can be readily retrieved from the proton energy loss spectra due to a significant momentum transfer in head-on collisions.
NASA Astrophysics Data System (ADS)
Lapusta, N.; Thomas, M.; Noda, H.; Avouac, J.
2012-12-01
Long-term simulations that incorporate both seismic events and aseismic slip are quite important for studies of earthquake physics but challenging computationally. To study long deformation histories, most simulation methods do not incorporate full inertial effects (wave propagation) during simulated earthquakes, using quasi-dynamic approximations instead. Here we compare the results of quasi-dynamic simulations to the fully dynamic ones for a range of problems to determine the applicability of the quasi-dynamic approach. Intuitively, the quasi-dynamic approach should do relatively well in problems where wave-mediated effects are relatively simple but should have substantially different (and hence wrong) response when the wave-mediated stress transfers dominate the character of the seismic events. This is exactly what we observe in our simulations. We consider a 2D model of a rate-and-state fault with a seismogenic (steady-state velocity-weakening) zone surrounded by creeping (steady-state velocity-strengthening) areas. If the seismogenic zone is described by the standard Dieterich-Ruina rate-and-state friction, the resulting earthquake sequences consist of relatively simple crack-like ruptures, and the inclusion of true wave-propagation effects mostly serves to concentrate stress more efficiently at the rupture front. Hence, in such models, rupture speeds and slip rates are significantly (several times) lower in the quasi-dynamic simulations compared to the fully dynamic ones, but the total slip, the crack-like nature of seismic events, and the overall pattern of earthquake sequences is comparable, consistently with prior studies. Such behavior can be classified as qualitatively similar but quantitatively different, and it motivates the popularity of the quasi-dynamic methods in simulations. However, the comparison changes dramatically once we consider a model with enhanced dynamic weakening in the seismogenic zone in the form of flash heating. In this case, the fully dynamic simulations produce seismic ruptures in the form of short-duration slip pulses, where the pulses form due to a combination of enhanced weakening and wave effects. The quasi-dynamic simulations in the same model produce completely different results, with large crack-like ruptures, different total slips, different rupture patterns, and different prestress state before large, model-spanning events. Such qualitative differences between the quasi-dynamic and fully-dynamic simulation should result in any model where inertial effects lead to qualitative differences, such as cases with supershear transition or fault with different materials on the two sides. We will present results on our current work on how the quasi-dynamic and fully dynamic simulations compare for the cases with heterogeneous fault properties.
Qiu, Linjing; Hao, Mingde; Wu, Yiping
2017-01-15
Although many studies have been conducted on crop yield in rain-fed agriculture, the possible impacts of climate change on the carbon (C) dynamics of rain-fed rotation systems, particularly their direction and magnitude at the long-term scale, are still poorly understood. In this study, the sensitivity of C dynamics of a typical rotation system to elevated CO 2 and changed temperature and precipitation were first tested using the CENTURY model, based on data collected from a 30-year field experiment of a corn-wheat-wheat-millet (CWWM) rotation system in the tableland of the Loess Plateau. The possible responses of crop biomass C and soil organic C (SOC) accumulation were then evaluated under scenarios representing the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicated that elevated CO 2 and increased precipitation exerted positive effect on biomass C in CWWM rotation system, while increasing the temperature by 1°C, 2°C and 4°C had negative effects on biomass C due to opposite responses of corn and winter wheat to warming. SOC accumulation was enhanced by increased CO 2 concentration and precipitation but impaired by increased temperature. Under future RCP scenarios with dynamic CO 2 , the biomass C of corn exhibited decrease during the period of 2046-2075 under RCP4.5 and the period of 2016-2075 under RCP8.5 due to reduced precipitation and a warmer climate. In contrast, winter wheat would benefit from increased CO 2 and temperature and was projected to have larger biomass C under both RCP scenarios. Although the climate condition had large differences between RCP4.5 and RCP8.5, the projected SOC had similar trends under two scenarios due to CO 2 fertilizer effect and precipitation fluctuation. These results implied that crop biomass C and SOC accumulation in a warmer environment are strongly related to precipitation, and increase in field water storage should be emphasized in coping with future climate. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xun, Zhi-Peng; Tang, Gang; Han, Kui; Hao, Da-Peng; Xia, Hui; Zhou, Wei; Yang, Xi-Quan; Wen, Rong-Ji; Chen, Yu-Ling
2010-07-01
In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model, the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by using the kinetic Monte-Carlo method. In the simulation, noise reduction technique is used in order to eliminate the crossover effect. Our results show that due to the existence of the finite-size effect, the effective global roughness exponent of the (1+1)-dimensional Das Sarma-Tamborenea model systematically decreases with system size L increasing when L > 256. This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys. Rev. E 70 031607]. In addition, our simulation results also show that the Das Sarma-Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.
2016-07-01
Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.
Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet
NASA Technical Reports Server (NTRS)
McMaster, Matthew S.
1992-01-01
Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.
Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutson, M. Shane; Ma Xiaoyan
We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo)--specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo --especially at 355 nm--due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.
NASA Astrophysics Data System (ADS)
Wu, Zong-Kwei J.
2006-12-01
Photodetectors based on intraband infrared absorption in the quantum dots have demonstrated improved performance over its quantum well counterpart by lower dark current, relative temperature insensitivity, and its ability for normal incidence operation. Various scattering processes, including phonon emission/absorption and carrier-carrier scattering, are critical in understanding device operation on the fundamental level. In previous studies, our group has investigated carrier dynamics in both low- and high-density regime. Ultrafast electron-hole scattering and the predicted phonon bottleneck effect in intrinsic quantum dots have been observed. Further examination on electron dynamics in unipolar structures is presented in this thesis. We used n-doped quantum dot in mid-infrared photodetector device structure to study the electron dynamics in unipolar structure. Differential transmission spectroscopy with mid-infrared intraband pump and optical interband probe was implemented to measure the electron dynamics directly without creating extra electron-hole pair, Electron relaxation after excitation was measured under various density and temperature conditions. Rapid capture into quantum dot within ˜ 10 ps was observed due to Auger-type electron-electron scattering. Intradot relaxation from the quantum dot excited state to the ground state was also observed on the time scale of 100 ps. With highly doped electron density in the structure, the inter-sublevel relaxation is dominated by Auger-type electron-electron scattering and the phonon bottleneck effect is circumvented. Nanosecond-scale recovery in larger-sized quantum dots was observed, not intrinsic to electron dynamics but due to band-bending and built-in voltage drift. An ensemble Monte Carlo simulation was also established to model the dynamics in quantum dots and in goad agreement with the experimental results. We presented a comprehensive picture of electron dynamics in the unipolar quantum dot structure. Although the phonon bottleneck is circumvented with high doped electron density, relaxation processes in unipolar quantum dots have been measured with time scales longer than that of bipolar systems. The results explain the operation principles of the quantum dot infrared photodetector on a microscopic level and provide basic understanding for future applications and designs.
Connected cruise control: modelling, delay effects, and nonlinear behaviour
NASA Astrophysics Data System (ADS)
Orosz, Gábor
2016-08-01
Connected vehicle systems (CVS) are considered in this paper where vehicles exchange information using wireless vehicle-to-vehicle (V2V) communication. The concept of connected cruise control (CCC) is established that allows control design at the level of individual vehicles while exploiting V2V connectivity. Due to its high level of modularity the proposed design can be applied to large heterogeneous traffic systems. The dynamics of a simple CVS is analysed in detail while taking into account nonlinearities in the vehicle dynamics as well as in the controller. Time delays that arise due to intermittencies and packet drops in the communication channels are also incorporated. The results are summarised using stability charts which allow one to select control gains to maintain stability and ensure disturbance attenuation when the delay is below a critical value.
General relativistic dynamics of an extreme mass-ratio binary interacting with an external body
NASA Astrophysics Data System (ADS)
Yang, Huan; Casals, Marc
2017-10-01
We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.
NASA Astrophysics Data System (ADS)
Cygorek, M.; Axt, V. M.
2015-08-01
Starting from a quantum kinetic theory for the spin dynamics in diluted magnetic semiconductors, we derive simplified equations that effectively describe the spin transfer between carriers and magnetic impurities for an arbitrary initial impurity magnetization. Taking the Markov limit of these effective equations, we obtain good quantitative agreement with the full quantum kinetic theory for the spin dynamics in bulk systems at high magnetic doping. In contrast, the standard rate description where the carrier-dopant interaction is treated according to Fermi’s golden rule, which involves the assumption of a short memory as well as a perturbative argument, has been shown previously to fail if the impurity magnetization is non-zero. The Markov limit of the effective equations is derived, assuming only a short memory, while higher order terms are still accounted for. These higher order terms represent the precession of the carrier-dopant correlations in the effective magnetic field due to the impurity spins. Numerical calculations show that the Markov limit of our effective equations reproduces the results of the full quantum kinetic theory very well. Furthermore, this limit allows for analytical solutions and for a physically transparent interpretation.
Loop quantum cosmology of Bianchi IX: effective dynamics
NASA Astrophysics Data System (ADS)
Corichi, Alejandro; Montoya, Edison
2017-03-01
We study solutions to the effective equations for the Bianchi IX class of spacetimes within loop quantum cosmology (LQC). We consider Bianchi IX models whose matter content is a massless scalar field, by numerically solving the loop quantum cosmology effective equations, with and without inverse triad corrections. The solutions are classified using certain geometrically motivated classical observables. We show that both effective theories—with lapse N = V and N = 1—resolve the big bang singularity and reproduce the classical dynamics far from the bounce. Moreover, due to the positive spatial curvature, there is an infinite number of bounces and recollapses. We study the limit of large field momentum and show that both effective theories reproduce the same dynamics, thus recovering general relativity. We implement a procedure to identify amongst the Bianchi IX solutions, those that behave like k = 0,1 FLRW as well as Bianchi I, II, and VII0 models. The effective solutions exhibit Bianchi I phases with Bianchi II transitions and also Bianchi VII0 phases, which had not been studied before. We comment on the possible implications of these results for a quantum modification to the classical BKL behaviour.
NASA Astrophysics Data System (ADS)
Hiwarkar, V. R.; Babitsky, V. I.; Silberschmidt, V. V.
2013-07-01
Numerous techniques are available for monitoring structural health. Most of these techniques are expensive and time-consuming. In this paper, vibration-based techniques are explored together with their use as diagnostic tools for structural health monitoring. Finite-element simulations are used to study the effect of material nonlinearity on dynamics of a cracked bar. Additionally, several experiments are performed to study the effect of vibro-impact behavior of crack on its dynamics. It was observed that a change in the natural frequency of the cracked bar due to crack-tip plasticity and vibro-impact behavior linked to interaction of crack faces, obtained from experiments, led to generation of higher harmonics; this can be used as a diagnostic tool for structural health monitoring.
Dynamical friction in the primordial neutrino sea
NASA Astrophysics Data System (ADS)
Okoli, Chiamaka; Scrimgeour, Morag I.; Afshordi, Niayesh; Hudson, Michael J.
2017-06-01
Standard big bang cosmology predicts a cosmic neutrino background at Tν ≃ 1.95 K. Given the current neutrino oscillation measurements, we know most neutrinos move at large, but non-relativistic, velocities. Therefore, dark matter haloes moving in the sea of primordial neutrinos form a neutrino wake behind them, which would slow them down, due to the effect of dynamical friction. In this paper, we quantify this effect for realistic haloes, in the context of the halo model of structure formation, and show that it scales as m_ν ^4× relative velocity and monotonically grows with the halo mass. Galaxy redshift surveys can be sensitive to this effect (at >3σ confidence level, depending on survey properties, neutrino mass and hierarchy) through redshift space distortions of distinct galaxy populations.
A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks.
Perisic, Ana; Bauch, Chris T
2009-05-28
Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network. We simulate transmission of a vaccine-preventable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection. We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination). We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective. For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large differences in population-level outcomes such as final size and final number vaccinated. The qualitative outcome of rational, self interested behaviour under a voluntary vaccination policy can vary substantially depending on interactions between social contact structure, perceived vaccine and disease risks, and the way that individual vaccination decision-making is modelled.
A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks
2009-01-01
Background Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network. Methods We simulate transmission of a vaccine-prevetable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection. Results We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination). We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective. Conclusion For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large differences in population-level outcomes such as final size and final number vaccinated. The qualitative outcome of rational, self interested behaviour under a voluntary vaccination policy can vary substantially depending on interactions between social contact structure, perceived vaccine and disease risks, and the way that individual vaccination decision-making is modelled. PMID:19476616
Self Diffusion in Nano Filled Polymer Melts: a Molecular Dynamics Simulation Study
NASA Astrophysics Data System (ADS)
Desai, Tapan; Keblinski, Pawel
2003-03-01
SELF DIFFUSION IN NANO FILLED POLYMER MELTS: A MOLECULAR DYNAMICS SIMULATION STUDY* T. G. Desai,P. Keblinski, Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY. Using molecular dynamics simulations, we studied the dynamics of the polymeric systems containing immobile and analytically smooth spherical nanoparticles. Each chain consisted of N monomers connected by an anharmonic springs described by the finite extendible nonlinear elastic, FENE potential. The system comprises of 3nanoparticles and the rest by freely rotating but not overlapping chains. The longest chain studied has a Radius of gyration equal to particle size radius and comparable to inter-particle distance. There is no effect on the structural characteristics such as Radius of gyration or end to end distance due to the nanoparticles. Diffusion of polymeric chains is not affected by the presence of either attractive or repulsive nanoparticles. In all cases Rouse dynamics is observed for short chains with a crossover to reptation dynamics for longer chains.
Kim, Tae-Woo; Kim, Woojae; Park, Kyu Hyung; Kim, Pyosang; Cho, Jae-Won; Shimizu, Hideyuki; Iyoda, Masahiko; Kim, Dongho
2016-02-04
Exciton dynamics in π-conjugated molecular systems is highly susceptible to conformational disorder. Using time-resolved and single-molecule spectroscopic techniques, the effect of chain length on the exciton dynamics in a series of linear oligothiophenes, for which the conformational disorder increased with increasing chain length, was investigated. As a result, extraordinary features of the exciton dynamics in longer-chain oligothiophene were revealed. Ultrafast fluorescence depolarization processes were observed due to exciton self-trapping in longer and bent chains. Increase in exciton delocalization during dynamic planarization processes was also observed in the linear oligothiophenes via time-resolved fluorescence spectra but was restricted in L-10T because of its considerable conformational disorder. Exciton delocalization was also unexpectedly observed in a bent chain using single-molecule fluorescence spectroscopy. Such delocalization modulates the fluorescence spectral shape by attenuating the 0-0 peak intensity. Collectively, these results provide significant insights into the exciton dynamics in conjugated polymers.
Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model
NASA Technical Reports Server (NTRS)
Rizvi, Farheen
2016-01-01
Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.
The role of boundary layer momentum advection in the mean location of the ITCZ
NASA Astrophysics Data System (ADS)
Dixit, Vishal; Srinivasan, J.
2017-08-01
The inter-tropical convergence zones (ITCZ) form closer to the equator during equinoxes while they form well away from the equator during the boreal summer. A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known. We used idealized aqua planet simulations with fixed, zonally symmetric sea surface temperature boundary conditions to simulate the near equatorial and off-equatorial ITCZ. As opposed to the convergence of inter-hemispheric flows in the near equatorial convergence, the off-equatorial convergence forms due to the deceleration of cross-equatorial meridional flow. The detailed momentum budget of the off-equatorial convergence zone reveals that the simple balance is not sufficient to capture the relevant dynamics. The deceleration of the meridional flow is strongly modulated by the inertial effects due to the meridional advection of zonal momentum in addition to the terms in the simple balance. The simple balance predicts a spurious near equatorial convergence and a consistent off-equatorial convergence of the meridional flow. The spurious convergence disappears when inertial effects are included in the balance. As cross equatorial meridional flow decelerates to form convergence, the inertial effects cancel the pressure gradient effects near the equator while they add away from the equator. The contribution to the off-equatorial convergence induced by the pressure gradients is significantly larger than the contribution due to the inertial effects and hence pressure gradients appear to be the primary factor in anchoring the strength and location of the off-equatorial convergence.
An extended patch-dynamic framework for food chains in fragmented landscapes
Liao, Jinbao; Chen, Jiehong; Ying, Zhixia; Hiebeler, David E.; Nijs, Ivan
2016-01-01
Habitat destruction, a key determinant of species loss, can be characterized by two components, patch loss and patch fragmentation, where the former refers to the reduction in patch availability, and the latter to the division of the remaining patches. Classical metacommunity models have recently explored how food web dynamics respond to patch loss, but the effects of patch fragmentation have largely been overlooked. Here we develop an extended patch-dynamic model that tracks the patch occupancy of the various trophic links subject to colonization-extinction-predation dynamics by incorporating species dispersal with patch connectivity. We found that, in a simple food chain, species at higher trophic level become extinct sooner with increasing patch loss and fragmentation due to the constraint in resource availability, confirming the trophic rank hypothesis. Yet, effects of fragmentation on species occupancy are largely determined by patch loss, with maximal fragmentation effects occurring at intermediate patch loss. Compared to the spatially explicit simulations that we also performed, the current model with pair approximation generates similar community patterns especially in spatially clustered landscapes. Overall, our extended framework can be applied to model more complex food webs in fragmented landscapes, broadening the scope of existing metacommunity theory. PMID:27608823
Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft
NASA Astrophysics Data System (ADS)
Su, Weihua
This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation of the framework. Gust responses of the Flying-Wing configuration subject to stall effects are investigated. A bilinear torsional stiffness model is introduced to study the skin wrinkling due to large bending curvature of the Flying-Wing. The numerical studies illustrate the improvements of the existing reduced-order formulation with new capabilities of both structural modeling and coupled aeroelastic and flight dynamic analysis of fully flexible aircraft.
Neutral dynamics and ion energy transport in MST plasma
NASA Astrophysics Data System (ADS)
Xing, Zichuan; Nornberg, Mark; den Hartog, Daniel; Kumar, Santosh; Anderson, Jay
2015-11-01
Neutral dynamics can have a significant effect on ion energy transport through charge exchange collisions. Whereas previously charge exchange was considered a direct loss mechanism in MST plasmas, new analysis indicates that significant thermal charge exchange neutrals are reionized. Further, the temperatures of the neutral species in the core of the plasma are suspected to be much higher than room temperature, which has a large effect on ion energy losses due to charge exchange. The DEGAS2 Monte Carlo simulation code is applied to the MST reversed field pinch experiment to estimate the density and temperature profile of the neutral species. The result is then used to further examine the effect of the neutral species on ion energy transport in improved confinement plasmas. This enables the development of a model that accounts for collisional equilibration between species, classical convective and conductive energy transport, and energy loss due to charge exchange collisions. The goal is to quantify classical, stochastic, and anomalous ion heating and transport in RFP plasmas. Work supported by the US DOE. DEGAS2 is provided by PPPL and STRAHL is provided by Ralph Dux of the Max-Planck-Institut fur Plasmaphysik.
Genetic and Dynamic Analyses of Murine Peak Bone Density
1999-10-01
DAMD17-96-1-6309 differences, the location of bone regulatory genes with strong and modifier effects , the mode of inheritance for each gene, the...estimate the cortical cross-sectional area, most likely due to partial volume effects . Thus, the high density bone area was consistently estimated to be...significant or highly significant linkage with BMD; b) 9 Beamer, WG DAMD17-96-1-6309 none of the loci exhibited significant interaction effects by ANOVA
Dynamic spin injection into a quantum well coupled to a spin-split bound state
NASA Astrophysics Data System (ADS)
Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.
2018-05-01
We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.
Aerodynamics of Stardust Sample Return Capsule
NASA Technical Reports Server (NTRS)
Mitcheltree, R. A.; Wilmoth, R. G.; Cheatwood, F. M.; Brauckmann, G. J.; Greene, F. A.
1997-01-01
Successful return of interstellar dust and cometary material by the Stardust Sample Return Capsule requires an accurate description of the Earth entry vehicle's aerodynamics. This description must span the hypersonic-rarefied, hypersonic-continuum, supersonic, transonic, and subsonic flow regimes. Data from numerous sources are compiled to accomplish this objective. These include Direct Simulation Monte Carlo analyses, thermochemical nonequilibrium computational fluid dynamics, transonic computational fluid dynamics, existing wind tunnel data, and new wind tunnel data. Four observations are highlighted: 1) a static instability is revealed in the free-molecular and early transitional-flow regime due to aft location of the vehicle s center-of-gravity, 2) the aerodynamics across the hypersonic regime are compared with the Newtonian flow approximation and a correlation between the accuracy of the Newtonian flow assumption and the sonic line position is noted, 3) the primary effect of shape change due to ablation is shown to be a reduction in drag, and 4) a subsonic dynamic instability is revealed which will necessitate either a change in the vehicle s center-of-gravity location or the use of a stabilizing drogue parachute.
Dynamical influences on thermospheric composition: implications for semi-empirical models
NASA Astrophysics Data System (ADS)
Sutton, E. K.; Solomon, S. C.
2014-12-01
The TIE-GCM was recently augmented to include helium and argon, two approximately inert species that can be used as tracers of dynamics in the thermosphere. The former species is treated as a major species due to its large abundance near the upper boundary. The effects of exospheric transport are also included in order to simulate realistic seasonal and latitudinal helium distributions. The latter species is treated as a classical minor species, imparting absolutely no forces on the background atmosphere. In this study, we examine the interplay of the various dynamical terms - i.e. background circulation, molecular and Eddy diffusion - as they drive departures from the distributions that would be expected under the assumption of diffusive equilibrium. As this has implications on the formulation of all empirical thermospheric models, we use this understanding to address the following questions: (1) how do errors caused by the assumption of diffusive equilibrium manifest within empirical models of the thermosphere? and (2) where and when does an empirical model's output disagree with its underlying datasets due to the inherent limitations of said model's formulation?
Piezoelectric effect on the thermal conductivity of monolayer gallium nitride
NASA Astrophysics Data System (ADS)
Zhang, Jin
2018-01-01
Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.
Modeling of larch forest dynamics under a changing climate in eastern Siberia
NASA Astrophysics Data System (ADS)
Nakai, T.; Kumagai, T.; Iijima, Y.; Ohta, T.; Kotani, A.; Maximov, T. C.; Hiyama, T.
2017-12-01
According to the projection by an earth system model under RCP8.5 scenario, boreal forest in eastern Siberia (near Yakutsk) is predicted to experience significant changes in climate, in which the mean annual air temperature is projected to be positive and the annual precipitation will be doubled by the end of 21st century. Since the forest in this region is underlain by continuous permafrost, both increasing temperature and precipitation can affect the dynamics of forest through the soil water processes. To investigate such effects, we adopted a newly developed terrestrial ecosystem dynamics model named S-TEDy (SEIB-DGVM-originated Terrestrial Ecosystem Dynamics model), which mechanistically simulates "the way of life" of each individual tree and resulting tree mortality under the future climate conditions. This model was first developed for the simulation of the dynamics of a tropical rainforest in the Borneo Island, and successfully reproduced higher mortality of large trees due to a prolonged drought induced by ENSO event of 1997-1998. To apply this model to a larch forest in eastern Siberia, we are developing a soil submodel to consider the effect of thawing-freezing processes. We will present a simulation results using the future climate projection.
A 4DCT imaging-based breathing lung model with relative hysteresis
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long
2016-01-01
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. PMID:28260811
Highly dynamic animal contact network and implications on disease transmission
Chen, Shi; White, Brad J.; Sanderson, Michael W.; Amrine, David E.; Ilany, Amiyaal; Lanzas, Cristina
2014-01-01
Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling. However most studies assume static network structure due to lack of accurate observation and appropriate analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a high-resolution contact network relevant to infectious disease transmission. The animal contact network aggregated at hourly level was highly variable and dynamic within and between days, for both network structure (network degree distribution) and individual rank of degree distribution in the network (degree order). We integrated network degree distribution and degree order heterogeneities with a commonly used contact-based, directly transmitted disease model to quantify the effect of these two sources of heterogeneity on the infectious disease dynamics. Four conditions were simulated based on the combination of these two heterogeneities. Simulation results indicated that disease dynamics and individual contribution to new infections varied substantially among these four conditions under both parameter settings. Changes in the contact network had a greater effect on disease dynamics for pathogens with smaller basic reproduction number (i.e. R0 < 2). PMID:24667241
A 4DCT imaging-based breathing lung model with relative hysteresis
NASA Astrophysics Data System (ADS)
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long
2016-12-01
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry.
Temperature-driven regime shifts in the dynamics of size-structured populations.
Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David
2011-02-01
Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.
Active Polar Two-Fluid Macroscopic Dynamics
NASA Astrophysics Data System (ADS)
Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.
2014-03-01
We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.
Resumption of dynamism in damaged networks of coupled oscillators
NASA Astrophysics Data System (ADS)
Kundu, Srilena; Majhi, Soumen; Ghosh, Dibakar
2018-05-01
Deterioration in dynamical activities may come up naturally or due to environmental influences in a massive portion of biological and physical systems. Such dynamical degradation may have outright effect on the substantive network performance. This requires us to provide some proper prescriptions to overcome undesired circumstances. In this paper, we present a scheme based on external feedback that can efficiently revive dynamism in damaged networks of active and inactive oscillators and thus enhance the network survivability. Both numerical and analytical investigations are performed in order to verify our claim. We also provide a comparative study on the effectiveness of this mechanism for feedbacks to the inactive group or to the active group only. Most importantly, resurrection of dynamical activity is realized even in time-delayed damaged networks, which are considered to be less persistent against deterioration in the form of inactivity in the oscillators. Furthermore, prominence in our approach is substantiated by providing evidence of enhanced network persistence in complex network topologies taking small-world and scale-free architectures, which makes the proposed remedy quite general. Besides the study in the network of Stuart-Landau oscillators, affirmative influence of external feedback has been justified in the network of chaotic Rössler systems as well.
Rabi-Bloch oscillations in spatially distributed systems: Temporal dynamics and frequency spectra
NASA Astrophysics Data System (ADS)
Levie, Ilay; Kastner, Raphael; Slepyan, Gregory
2017-10-01
We consider one-dimensional chains of two-level quantum systems coupled via tunneling. The chain is driven by the superposition of dc and ac fields in the strong coupling regime. Based on the fundamental principles of electrodynamics and quantum theory, we have developed a generalized model of quantum dynamics for such interactions, free of rotating-wave approximation. The system of equations of motion was studied numerically. We analyzed the dynamics and spectra of the inversion density, dipole current density, and tunneling current density. In the case of resonant interaction with the ac component, the particle dynamics exhibits itself in the oscillatory regime, which may be interpreted as a combination of Rabi and Bloch oscillations with their strong mutual influence. Such scenario for an obliquely incident ac field dramatically differs from the individual picture of both types of oscillations due to the interactions. This effect is counterintuitive because of the existence of markedly different frequency ranges for such two types of oscillations. These dynamics manifest themselves in multiline spectra in different combinations of Rabi and Bloch frequencies. The effect is promising as a framework of a new type of spectroscopy in nanoelectronics and electrical control of nanodevices.
Unraveling cellular pathways contributing to drug-induced liver injury by dynamical modeling.
Kuijper, Isoude A; Yang, Huan; Van De Water, Bob; Beltman, Joost B
2017-01-01
Drug-induced liver injury (DILI) is a significant threat to human health and a major problem in drug development. It is hard to predict due to its idiosyncratic nature and which does not show up in animal trials. Hepatic adaptive stress response pathway activation is generally observed in drug-induced liver injury. Dynamical pathway modeling has the potential to foresee adverse effects of drugs before they go in trial. Ordinary differential equation modeling can offer mechanistic insight, and allows us to study the dynamical behavior of stress pathways involved in DILI. Areas covered: This review provides an overview on the progress of the dynamical modeling of stress and death pathways pertinent to DILI, i.e. pathways relevant for oxidative stress, inflammatory stress, DNA damage, unfolded proteins, heat shock and apoptosis. We also discuss the required steps for applying such modeling to the liver. Expert opinion: Despite the strong progress made since the turn of the century, models of stress pathways have only rarely been specifically applied to describe pathway dynamics for DILI. We argue that with minor changes, in some cases only to parameter values, many of these models can be repurposed for application in DILI research. Combining both dynamical models with in vitro testing might offer novel screening methods for the harmful side-effects of drugs.
Prieto, Paula; Ochagavía, Helga; Savin, Roxana; Griffiths, Simon; Slafer, Gustavo A
2018-04-27
As wheat yield is linearly related to grain number, understanding the physiological determinants of the number of fertile florets based on floret development dynamics due to the role of the particular genes is relevant. The effects of photoperiod genes on dynamics of floret development are largely ignored. Field experiments were carried out to (i) characterize the dynamics of floret primordia initiation and degeneration and (ii) to determine which are the most critical traits of such dynamics in establishing genotypic differences in the number of fertile florets at anthesis in near isogenic lines (NILs) carrying photoperiod-insensitive alleles. Results varied in magnitude between the two growing seasons, but in general introgression of Ppd-1a alleles reduced the number of fertile florets. The actual effect was affected not only by the genome and the doses but also by the source of the alleles. Differences in the number of fertile florets were mainly explained by differences in the floret generation/degeneration dynamics, and in most cases associated with floret survival. Manipulating photoperiod insensitivity, unquestionably useful for changing flowering time, may reduce spike fertility but much less than proportionally to the change in duration of development, as the insensitivity alleles did increase the rate of floret development.
Phase Inversion of EPDM/PP Blends: Effect of Viscosity Ratio
NASA Astrophysics Data System (ADS)
Machado, Ana Vera; Antunes, Carla Filipa; van Duin, Martin
2011-07-01
EPDM/PP blends and TPVs with and without crosslinking, respectively, were prepared, in a batch mixer, using three different EPDM rubbers. EPDM/PP based TPVs were dynamic vulcanised using the resol/SnCl2 system. Samples were collected along the time in order to get information on the morphology evolution and crosslinking density during dynamic vulcanisation. The morphology was studied by SEM and the crosslink density by gel content. In the case of low viscosity EPDMs, crosslinking of the EPDM phase was retarded due to its low crosslinking efficiency. This delay on crosslinking reaction enables the observation of the various stages of the morphological mechanism that takes place during dynamic vulcanisation. It could be observed that phase inversion takes place via lamellar mechanism. More detailed insight on phase inversion mechanism during dynamic vulcanisation was accomplished.
NASA Astrophysics Data System (ADS)
Fu, Shihua; Li, Haitao; Zhao, Guodong
2018-05-01
This paper investigates the evolutionary dynamic and strategy optimisation for a kind of networked evolutionary games whose strategy updating rules incorporate 'bankruptcy' mechanism, and the situation that each player's bankruptcy is due to the previous continuous low profits gaining from the game is considered. First, by using semi-tensor product of matrices method, the evolutionary dynamic of this kind of games is expressed as a higher order logical dynamic system and then converted into its algebraic form, based on which, the evolutionary dynamic of the given games can be discussed. Second, the strategy optimisation problem is investigated, and some free-type control sequences are designed to maximise the total payoff of the whole game. Finally, an illustrative example is given to show that our new results are very effective.
Role of “Hard” and “Soft” Confinement on Polymer Dynamics at the Nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Ravi P.; Green, Peter F.
2017-08-11
We investigated the segmental dynamics of asymmetrically confined polymer films and report an unusual phenomenon in which the presence and thickness of a soft confining layer are responsible for significant changes in the segmental dynamics of the confined films. Specifically, the segmental dynamics of poly(vinyl alcohol) (PVA) thin films asymmetrically confined between hard aluminum (Al), and soft polystyrene (PS) films are shown to shift by as much as half an order of magnitude upon changes in the thicknesses of the confining PS layer. These effects are more significant than those due to symmetric confinement between hard Al substrates or exposuremore » to a free surface. These observations, partially rationalized in terms of recent simulations and theory, implicate the role of the moduli of the confining layers.« less
Asymptotic entanglement dynamics phase diagrams for two electromagnetic field modes in a cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumond, R. C.; Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, Vienna; Souza, L. A. M.
We investigate theoretically an open dynamics for two modes of electromagnetic field inside a microwave cavity. The dynamics is Markovian and determined by two types of reservoirs: the ''natural'' reservoirs due to dissipation and temperature of the cavity, and an engineered one, provided by a stream of atoms passing trough the cavity, as devised by Pielawa et al. [Phys. Rev. Lett. 98, 240401 (2007)]. We found that, depending on the reservoir parameters, the system can have distinct ''phases'' for the asymptotic entanglement dynamics: it can disentangle at finite time or it can have persistent entanglement for large times, with themore » transition between them characterized by the possibility of asymptotical disentanglement. Incidentally, we also discuss the effects of dissipation on the scheme proposed in the above reference for generation of entangled states.« less
Heteroclinic tangle phenomena in nanomagnets subject to time-harmonic excitations
NASA Astrophysics Data System (ADS)
Serpico, C.; Quercia, A.; Bertotti, G.; d'Aquino, M.; Mayergoyz, I.; Perna, S.; Ansalone, P.
2015-05-01
Magnetization dynamics in uniformly magnetized nanomagnets excited by time-harmonic (AC) external fields or spin-polarized injected currents is considered. The analysis is focused on the behaviour of the AC-excited dynamics near saddle equilibria. It turns out that this dynamics has a chaotic character at moderately low power level. This chaotic and fractal nature is due to the phenomenon of heteroclinic tangle which is produced by the combined effect of AC-excitations and saddle type dynamics. By using the perturbation technique based on Melnikov function, analytical formulas for the threshold AC excitation amplitudes necessary to create the heteroclinic tangle are derived. Both the cases of AC applied fields and AC spin-polarized injected currents are treated. Then, by means of numerical simulations, we show how heteroclinic tangle is accompanied by the erosion of the safe basin around the stable regimes.
ERIC Educational Resources Information Center
Kiosoglous, Cameron Michael
2013-01-01
Coaching effectiveness is a result of a coach getting the best out of the people and resources in their environment. For coaches, learning from experience is vital in a role that is a complex, dynamic and multifaceted process of balancing fun and winning where one cannot be sure if results will go according to plan. At the Olympic level, due to…
Thermomechanical properties of polymeric materials and related stresses
NASA Technical Reports Server (NTRS)
Lee, Sheng Yen
1990-01-01
The thermomechanical properties of a number of widely used polymeric materials were determined by thermomechanical analysis and dynamic mechanical analysis. A combined profile of the coefficient of thermal expansion and the modulus change over a wide temperature range obtained by the analyses shows clearly the drastic effect of the glass transition on both the CTE and the modulus of a polymer, and the damaging potential due to such effect.
Houben, David; Sonnet, Philippe
2015-11-01
Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier's scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sejas, S.; Cai, M.
2012-12-01
Surfing warming due to CO2 doubling is a robust feature of coupled general circulation models (GCM), as noted in the IPCC AR4 assessment report. In this study, the contributions of different climate feedbacks to the magnitude, spatial distribution, and seasonality of the surface warming is examined using data from NCAR's CCSM4. In particular, a focus is placed on polar regions to see which feedbacks play a role in polar amplification and its seasonal pattern. A new climate feedback analysis method is used to isolate the surface warming or cooling contributions of both radiative and non-radiative (dynamical) climate feedbacks to the total (actual) surface temperature change given by the CCSM4. These contributions (or partial surface temperature changes) are additive and their total is approximately equal to the actual surface temperature change. What is found is that the effects of CO2 doubling alone warms the surface throughout with a maximum in polar regions, which indicates the CO2 forcing alone has a degree of polar warming amplification. Water vapor feedback is a positive feedback throughout but is most responsible for the surface warming found in the tropics. Polar warming amplification is found to be strongest away from summer (especially in NH), which is primarily caused by a positive feedback due to cloud feedbacks but with the surface temperature change due to the CO2 forcing alone and the ocean dynamics and storage feedback also playing an important role. Contrary to popular belief, surface albedo feedback (SAF) does not account for much of the polar amplification. SAF tries to amplify polar warming, but in summer. No major polar amplification is seen in summer for the actual surface temperature, so SAF is not the feedback responsible for polar amplification. This is actually a consequence of the ocean dynamics and storage feedback, which negates the effects of SAF to a large degree.
Brekke, Kjell Arne; Øksendal, Bernt; Stenseth, Nils Chr.
2007-01-01
It is well known from Hardin's “Tragedy of the Commons” [Hardin G (1968) Science 162:1243–1248] that, if open access is allowed, overgrazing typically results. Hardin, and most authors of the subsequent literature, adopted a static view of the underlying ecosystem. Here we extend this tragedy of the commons to consider the dynamics of the involved ecosystem as well. We consider a general model that allows for a variable carrying capacity of the pastures (due to variation in precipitation) and a stimulating effect on plant growth due to grazing. Our analysis further emphasizes the tragedy; in addition to overgrazing, the ecosystem may approach limit cycles. Thus, unless the pastoralists are able to coordinate themselves, the human capability of long-term planning will generally not stabilize the system. Although numerical optimization shows that a cooperative optimum would yield a high and stable harvest, the open-access system may produce limit cycles, in which even the peak harvest may be below the stable cooperative optimal harvest. Such fluctuations cause both losses in biomass production and utility losses. Our dynamic analysis also demonstrates that, in the absence of cooperation between herders, too much rain in an otherwise dry area might (temporally) destabilize the ecological grazing system through overstocking, subsequently leading to further overgrazing (which will be observed in, but not caused by, the typically dry conditions of landscapes where pastoralism is practiced). In short, through this study we have brought time (and temporal dynamics) into the Hardin's tragedy of the commons and show that the tragedy might be profoundly worsened. PMID:17804790
Brekke, Kjell Arne; Øksendal, Bernt; Stenseth, Nils Chr
2007-09-11
It is well known from Hardin's "Tragedy of the Commons" [Hardin G (1968) Science 162:1243-1248] that, if open access is allowed, overgrazing typically results. Hardin, and most authors of the subsequent literature, adopted a static view of the underlying ecosystem. Here we extend this tragedy of the commons to consider the dynamics of the involved ecosystem as well. We consider a general model that allows for a variable carrying capacity of the pastures (due to variation in precipitation) and a stimulating effect on plant growth due to grazing. Our analysis further emphasizes the tragedy; in addition to overgrazing, the ecosystem may approach limit cycles. Thus, unless the pastoralists are able to coordinate themselves, the human capability of long-term planning will generally not stabilize the system. Although numerical optimization shows that a cooperative optimum would yield a high and stable harvest, the open-access system may produce limit cycles, in which even the peak harvest may be below the stable cooperative optimal harvest. Such fluctuations cause both losses in biomass production and utility losses. Our dynamic analysis also demonstrates that, in the absence of cooperation between herders, too much rain in an otherwise dry area might (temporally) destabilize the ecological grazing system through overstocking, subsequently leading to further overgrazing (which will be observed in, but not caused by, the typically dry conditions of landscapes where pastoralism is practiced). In short, through this study we have brought time (and temporal dynamics) into the Hardin's tragedy of the commons and show that the tragedy might be profoundly worsened.
Simulating the dynamic behavior of chain drive systems by advanced CAE programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, J.; Meyer, J.
1996-09-01
Due to the increased requirements for chain drive systems of 4-stroke internal combustion engines CAE-tools are necessary to design the optimum dynamic system. In comparison to models used din the past the advantage of the new model CDD (Chain Drive Dynamics) is the capability of simulating the trajectory of each chain link around the drive system. Each chain link is represented by a mass with two degrees of freedom and is coupled to the next by a spring-damper element. The drive sprocket can be moved with a constant or non-constant speed. As in reality the other sprockets are driven bymore » the running chain and can be excited by torques. Due to these unique model features it is possible to calculate all vibration types of the chain, polygon effects and radial or angular vibrations of the sprockets very accurately. The model includes the detailed simulation of a mechanical or a hydraulic tensioner as well. The method is ready to be coupled to other detailed calculation models (e.g. valve train systems, crankshaft, etc.). The high efficiency of the tool predicting the dynamic and acoustic behavior of a chain drive system will be demonstrated in comparison to measurements.« less
Dynamic response for structural health monitoring of the Penang (I) cable-stayed bridge
NASA Astrophysics Data System (ADS)
Mohammed, M. I.; Sulaeman, E.; Mustapha, F.
2017-03-01
The paper discusses the dynamic response of the Penang (I) cable stayed bridge structure under various moving load representing typical traffic load of the bridge. The bridge has a total span of 440 m excluding the transition bridge that assumed to be not connected structurally to the main bridge structure. The bridge that links the fast growing Pinang Island and the Malaysian Mainland Peninsula has been known to be fully utilized which leads to the construction of Penang (II) bridge and now the third one. Due to highly traffic use of the bridge that may lead to reduction of the bridge design life, the dynamic response of the bridge becomes important to predict critical part of the bridge structure elements including the main girder and the 144 stay cables. The present study reveals that, due to flexible nature of the cable stayed bridge, the moving load that interacts with the natural dynamic characteristics of the bridge, gives significant stress increment compare to proportional static load especially when the moving load is un-symmetric. For this reason, several classes of typical vehicle passing the bridge with various vehicle speeds are investigated to demonstrate their effect on the bridge displacement, internal forces and stresses. The results can be used for further fatigue assessment of the bridge.
A nanobiosensor for dynamic single cell analysis during microvascular self-organization.
Wang, S; Sun, J; Zhang, D D; Wong, P K
2016-10-14
The formation of microvascular networks plays essential roles in regenerative medicine and tissue engineering. Nevertheless, the self-organization mechanisms underlying the dynamic morphogenic process are poorly understood due to a paucity of effective tools for mapping the spatiotemporal dynamics of single cell behaviors. By establishing a single cell nanobiosensor along with live cell imaging, we perform dynamic single cell analysis of the morphology, displacement, and gene expression during microvascular self-organization. Dynamic single cell analysis reveals that endothelial cells self-organize into subpopulations with specialized phenotypes to form microvascular networks and identifies the involvement of Notch1-Dll4 signaling in regulating the cell subpopulations. The cell phenotype correlates with the initial Dll4 mRNA expression level and each subpopulation displays a unique dynamic Dll4 mRNA expression profile. Pharmacological perturbations and RNA interference of Notch1-Dll4 signaling modulate the cell subpopulations and modify the morphology of the microvascular network. Taken together, a nanobiosensor enables a dynamic single cell analysis approach underscoring the importance of Notch1-Dll4 signaling in microvascular self-organization.
Dynamic changes of rice blast fungus in the USA through six decades
USDA-ARS?s Scientific Manuscript database
Rice blast disease caused by the fungus Magnaporthe oryzae is a serious rice disease in the USA and worldwide. M. oryzae is highly adaptive and changeable due to the instability of its genome and resistance genes which are effective only when M. oryzae isolates contain the cognate avirulence (AVR) g...
Effect of viroid infection on the dynamics of phenolic metabolites in the apoplast of tomato
USDA-ARS?s Scientific Manuscript database
Plants are capable of producing a wide array of secondary metabolites which serve many functions, due to their bioactive, redox or structural properties. Subtle changes in the external or internal environment can cause significant changes in the array of secondary metabolites presented in the tissu...
Due to complex population dynamics and source-sink metapopulation processes, animal fitness sometimes varies across landscapes in ways that cannot be deduced from simple density patterns. In this study, we examine spatial patterns in fitness using a combination of intensive fiel...
Relationship between the Full Range Leadership Model and Information Technology Tools Usage
ERIC Educational Resources Information Center
Landell, Antonio White
2013-01-01
Due to major technological and social changes, world dynamics have undergone tremendous leadership style and technology transitions. The transformation of information technology tools usage (ITTU) created a new paradigm confronting leaders that can provide the right change of vision to effectively motivate, inspire, and transform others to work at…
Steppe plant response to seasonal fire
Paulette L. Ford
2003-01-01
Fire is a natural grassland disturbance that affects a variety of ecosystem factors including nutrient cycling, species diversity, and population and community dynamics. Caution is warranted when interpreting the effects of fire on grasslands due to the variety of fire types (e.g. wildfire vs prescribed burn), season of occurrence, weather conditions, grassland uses (e...
Nuclear quantum effects in water exchange around lithium and fluoride ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, David M.; Manolopoulos, David; Dang, Liem X.
2015-02-14
We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell ismore » found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the water exchange reactions are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. LXD was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.« less
On the damping effect due to bolted junctions in space structures subjected to pyro-shock
NASA Astrophysics Data System (ADS)
de Benedetti, M.; Garofalo, G.; Zumpano, M.; Barboni, R.
2007-06-01
The damping due to bolted or riveted joints in the dynamics of assembled structures subjected to pyro-shock has been studied. A relevant effect in this phenomenon is the micro-slip between the jointed surfaces. In order to verify the feasibility and the reliability of the numerical analyses performed on structures with junctions, the numerical results obtained by the finite elements method have been compared with those obtained experimentally. Several numerical analyses, in which friction forces have been represented as nonlinear loads, have been carried out for the FE models of two application cases: an electronic unit mounted within the Radarsat-2 satellite, and the complete Cosmo-Skymed spacecraft. Considering the load type, involving a typical high frequency response spectrum between 100 and 10 000 Hz, both numerical and experimental data have been reduced to the shock response spectrum form. After the comparative evaluation, taking into account also the damping effect, the agreement between numerical results and experimental data has been evaluated. The proposed numerical approach yields an effective and less expensive instrument, able to provide indications in the design phase, to allow the prevision of the dynamic behaviour of the structure for the prevention of failures in units or systems mounted within the spacecraft or launch vehicle. With the proposed model, it is possible to determine in a simple and direct way the characteristics of the damping due to the single bolted and riveted joints, and use them in similar multiple joints in the complete structure assembling or substructuring.
Application of Local Discretization Methods in the NASA Finite-Volume General Circulation Model
NASA Technical Reports Server (NTRS)
Yeh, Kao-San; Lin, Shian-Jiann; Rood, Richard B.
2002-01-01
We present the basic ideas of the dynamics system of the finite-volume General Circulation Model developed at NASA Goddard Space Flight Center for climate simulations and other applications in meteorology. The dynamics of this model is designed with emphases on conservative and monotonic transport, where the property of Lagrangian conservation is used to maintain the physical consistency of the computational fluid for long-term simulations. As the model benefits from the noise-free solutions of monotonic finite-volume transport schemes, the property of Lagrangian conservation also partly compensates the accuracy of transport for the diffusion effects due to the treatment of monotonicity. By faithfully maintaining the fundamental laws of physics during the computation, this model is able to achieve sufficient accuracy for the global consistency of climate processes. Because the computing algorithms are based on local memory, this model has the advantage of efficiency in parallel computation with distributed memory. Further research is yet desirable to reduce the diffusion effects of monotonic transport for better accuracy, and to mitigate the limitation due to fast-moving gravity waves for better efficiency.
Tao, Jianmin; Rappe, Andrew M.
2016-01-20
Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C 6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C 8 and C 10 between small molecules. We findmore » that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C 8 and 7% for C 10. As a result, inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.« less
Effect of chordwise forces and deformations and deformations due to steady lift on wing flutter
NASA Technical Reports Server (NTRS)
Boyd, W. N.
1977-01-01
This investigation explores the effects of chordwise forces and deformations and steady-state deformation due to lift on the static and dynamic aeroelastic stability of a uniform cantilever wing. Results of this analysis are believed to have practical applications for high-performance sailplanes and certain RPV's. The airfoil cross section is assumed to be symmetric and camber bending is neglected. Motions in vertical bending, fore-and-aft bending, and torsion are considered. A differential equation model is developed, which included the nonlinear elastic bending-torsion coupling that accompanies even moderate deflections. A linearized expansion in small time-dependent deflections is made about a steady flight condition. The stability determinant of the linearized system then contains coefficients that depend on steady displacements. Loads derived from two-dimensional incompressible aerodynamic theory are used to obtain the majority of the results, but cases using three-dimensional subsonic compressible theory are also studied. The stability analysis is carried out in terms of the dynamically uncoupled natural modes of vibration of the uniform cantilever.
Defunct Satellites, Rotation Rates and the YORP Effect
NASA Astrophysics Data System (ADS)
Albuja, A.; Scheeres, D.
2013-09-01
With the increasing number of defunct satellites and associated space debris found in orbit, it is important to understand the dynamics governing the motion of these bodies. Orbit perturbations are coupled with the body's attitude dynamics; therefore it is necessary to have an understanding of attitude dynamics for accurate predictions of debris orbits. Additionally, it is important to have a clear idea of the rotational dynamics of such objects for removal and mitigation purposes. The Yarkovsky-O'Keefe-Raszvieskii-Paddack (YORP) effect has been well studied and credited for the observed secular change in angular velocity of various asteroids. The YORP effect arises due to sunlight being either absorbed and re-emitted as energy or being directly reflected, creating a net downward force on the body's surface. As a result of both of these factors, an overall torque is created on the body yielding a change in the rotational dynamics. While YORP has been extensively studied for asteroids, it has yet to be systematically applied to objects in Earth orbit such as space debris. This paper analyzes the effects of YORP on the obliquity and angular velocity of defunct satellites and other pieces of debris found in Earth orbit. The rotational dynamics are first averaged over the rotational period and next over the orbital period of the Earth, about which the debris is assumed to be orbiting. Using these averaged dynamics, long-term predictions of the evolution of both angular velocity and obliquity are made. In the analysis simulation results are compared to published observational data for defunct satellites. The observed rotation periods of the satellites are used to compute how much torque would be required to obtain such a period only due to YORP. These required torques are compared to the torques that we predict to be acting on these satellites. As an example of what we will present, consider the GEO satellite Gorizont-11. The normalized inferred coefficient for the satellite Gorizont-11 is compared to the computed normalized coefficient for the same satellite. The computed normalized coefficient for Gorizont-11 is 6e-3, while the inferred normalized coefficient for the same satellite is 9e-3. We note that these are of the same order of magnitude, although the real number will be a function of the optical reflectance properties of the bodies, their geometry, etc. The results of this work show that YORP could be the sole cause for the anomalous and rapid rotation of some defunct satellites that has been seen through observations.
The Bumper Boats Effect: Effect of Inertia on Self Propelled Active Particles Systems
NASA Astrophysics Data System (ADS)
Dai, Chengyu; Bruss, Isaac; Glotzer, Sharon
Active matter has been well studied using the standard Brownian dynamics model, which assumes that the self-propelled particles have no inertia. However, many examples of active systems, such as sub-millimeter bacteria and colloids, have non-negligible inertia. Using particle-based Langevin Dynamics simulation with HOOMD-blue, we study the role of particle inertia on the collective emergent behavior of self-propelled particles. We find that inertia hinders motility-induced phase separation. This is because the effective speed of particles is reduced due to particle-particle collisions-\\x9Dmuch like bumper boats, which take time to reach terminal velocity after a crash. We are able to fully account for this effect by tracking a particle's average rather than terminal velocity, allowing us to extend the standard Brownian dynamics model to account for the effects of momentum. This study aims to inform experimental systems where the inertia of the active particles is non-negligible. We acknowledge the funding support from the Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.
The effect of seasonal harvesting on stage-structured population models.
Tang, Sanyi; Chen, Lansun
2004-04-01
In most models of population dynamics, increases in population due to birth are assumed to be time-independent, but many species reproduce only during a single period of the year. We propose an exploited single-species model with stage structure for the dynamics in a fish population for which births occur in a single pulse once per time period. Since birth pulse populations are often characterized with a discrete time dynamical system determined by its Poincaré map, we explore the consequences of harvest timing to equilibrium population sizes under seasonal dependence and obtain threshold conditions for their stability, and show that the timing of harvesting has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. Moreover, our results imply that the population can sustain much higher harvest rates if the mature fish is removed as early in the season (after the birth pulse) as possible. Further, the effects of harvesting effort and harvest timing on the dynamical complexity are also investigated. Bifurcation diagrams are constructed with the birth rate (or harvesting effort or harvest timing) as the bifurcation parameter, and these are observed to display rich structure, including chaotic bands with periodic windows, pitch-fork and tangent bifurcations, non-unique dynamics (meaning that several attractors coexist) and attractor crisis. This suggests that birth pulse, in effect, provides a natural period or cyclicity that makes the dynamical behavior more complex.
Drop impact on spherical soft surfaces
NASA Astrophysics Data System (ADS)
Chen, Simeng; Bertola, Volfango
2017-08-01
The impact of water drops on spherical soft surfaces is investigated experimentally through high-speed imaging. The effect of a convex compliant surface on the dynamics of impacting drops is relevant to various applications, such as 3D ink-jet printing, where drops of fresh material impact on partially cured soft substrates with arbitrary shape. Several quantities which characterize the morphology of impacting drops are measured through image-processing, including the maximum and minimum spreading angles, length of the wetted curve, and dynamic contact angle. In particular, the dynamic contact angle is measured using a novel digital image-processing scheme based on a goniometric mask, which does not require edge fitting. It is shown that the surface with a higher curvature enhances the retraction of the spreading drop; this effect may be due to the difference of energy dissipation induced by the curvature of the surface. In addition, the impact parameters (elastic modulus, diameter ratio, and Weber number) are observed to significantly affect the dynamic contact angle during impact. A quantitative estimation of the deformation energy shows that it is significantly smaller than viscous dissipation.
Effects of multi-pulsed coaxial helicity injection on dynamics of spherical torus
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.; Kagei, Y.
2012-10-01
The mechanism to rebuild the magnetic fields and to amplify the currents in the high-q spherical torus (ST) by the multi-pulsed coaxial helicity injection is investigated using the resistive nonlinear 3D-MHD simulations. During the driven phase, the dynamics is almost axisymmetric because the magnetic fluctuation level of n=0 mode compared with other higher modes is much larger. The toroidal current It is effectively amplified due to the merging of plasmoid ejected from the gun region with the pre-existing ST in the confinement region. The poloidal flux is not significantly amplified because the current sheet generated by the merging process does not rapidly decay. The negative toroidal flow vt is then induced in the direction of It around the central open flux column (OFC) region by inductive toroidal electric field Et (=-vzBr) because of the plasmoid ejection. The strong poloidal flow vz (=ErBt) is also driven from the gun to confinement region due to the Lorentz force. As the result of vz, the flow vortices associated with the dynamo effect are caused around the upper confinement region. During the decay phase, the closed field lines are regenerated due to the dissipation of magnetic fluctuations. The helical distortion of the OFC becomes small, and then ordered magnetic field structures without flows are built. Just after turning off the external electric field, the poloidal flow from the confinement to gun region is caused by the pressure gradients. The parallel current density λ concentrated in the OFC diffuses to the core region, but does not relax in the direction of the Taylor state due to the pressure gradients.
Numerical simulations of loop quantum Bianchi-I spacetimes
NASA Astrophysics Data System (ADS)
Diener, Peter; Joe, Anton; Megevand, Miguel; Singh, Parampreet
2017-05-01
Due to the numerical complexities of studying evolution in an anisotropic quantum spacetime, in comparison to the isotropic models, the physics of loop quantized anisotropic models has remained largely unexplored. In particular, robustness of bounce and the validity of effective dynamics have so far not been established. Our analysis fills these gaps for the case of vacuum Bianchi-I spacetime. To efficiently solve the quantum Hamiltonian constraint we perform an implementation of the Cactus framework which is conventionally used for applications in numerical relativity. Using high performance computing, numerical simulations for a large number of initial states with a wide variety of fluctuations are performed. Big bang singularity is found to be replaced by anisotropic bounces for all the cases. We find that for initial states which are sharply peaked at the late times in the classical regime and bounce at a mean volume much greater than the Planck volume, effective dynamics is an excellent approximation to the underlying quantum dynamics. Departures of the effective dynamics from the quantum evolution appear for the states probing deep Planck volumes. A detailed analysis of the behavior of this departure reveals a non-monotonic and subtle dependence on fluctuations of the initial states. We find that effective dynamics in almost all of the cases underestimates the volume and hence overestimates the curvature at the bounce, a result in synergy with earlier findings in the isotropic case. The expansion and shear scalars are found to be bounded throughout the evolution.
NASA Astrophysics Data System (ADS)
Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun
2014-08-01
By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.
Many-body dynamics of chemically propelled nanomotors
NASA Astrophysics Data System (ADS)
Colberg, Peter H.; Kapral, Raymond
2017-08-01
The collective behavior of chemically propelled sphere-dimer motors made from linked catalytic and noncatalytic spheres in a quasi-two-dimensional confined geometry is studied using a coarse-grained microscopic dynamical model. Chemical reactions at the catalytic spheres that convert fuel to product generate forces that couple to solvent degrees of freedom as a consequence of momentum conservation in the microscopic dynamics. The collective behavior of the many-body system is influenced by direct intermolecular interactions among the motors, chemotactic effects due to chemical gradients, hydrodynamic coupling, and thermal noise. Segregation into high and low density phases and globally homogeneous states with strong fluctuations are investigated as functions of the motor characteristics. Factors contributing to this behavior are discussed in the context of active Brownian models.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Leslie, F. W.
1991-01-01
The dynamical behavior of fluids, in particular the effect of surface tension on partially-filled rotating fluids, in a full-scale Gravity Probe-B Spacecraft propellant dewar tank imposed by various frequencies of gravity jitters have been investigated. Results show that fluid stress distribution exerted on the outer and inner walls of rotating dewar are closely related to the characteristics of slosh waves excited on the liquid-vapor interface in the rotating dewar tank. This can provide a set of tool for the spacecraft dynamic control leading toward the control of spacecraft unbalance caused by the uneven fluid stress distribution due to slosh wave excitations.
Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids
NASA Astrophysics Data System (ADS)
Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo
2016-09-01
We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.
Dynamics of a movable micromirror in a nonlinear optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Tarun; ManMohan; Bhattacherjee, Aranya B.
We consider the dynamics of a movable mirror (cantilever) of a nonlinear optical cavity. We show that a chi{sup (3)} medium with a strong Kerr nonlinearity placed inside a cavity inhibits the normal mode splitting (NMS) due to the photon blockade mechanism. This study demonstrates that the displacement spectrum of the micromirror could be used as a tool to detect the photon blockade effect. Moreover the ability to control the photon number fluctuation by tuning the Kerr nonlinearity emerges as a new handle to coherently control the dynamics of the micromirror, which further could be useful in the realization ofmore » tuneable quantum-mechanical devices. We also found that the temperature of the micromechanical mirror increases with increasing Kerr nonlinearity.« less
Mean field model of acetylcholine mediated dynamics in the cerebral cortex.
Clearwater, J M; Rennie, C J; Robinson, P A
2007-12-01
A recent continuum model of the large scale electrical activity of the cerebral cortex is generalized to include cholinergic modulation. In this model, dynamic modulation of synaptic strength acts over the time scales of nicotinic and muscarinic receptor action. The cortical model is analyzed to determine the effect of acetylcholine (ACh) on its steady states, linear stability, spectrum, and temporal responses to changes in subcortical input. ACh increases the firing rate in steady states of the system. Changing ACh concentration does not introduce oscillatory behavior into the system, but increases the overall spectral power. Model responses to pulses in subcortical input are affected by the tonic level of ACh concentration, with higher levels of ACh increasing the magnitude firing rate response of excitatory cortical neurons to pulses of subcortical input. Numerical simulations are used to explore the temporal dynamics of the model in response to changes in ACh concentration. Evidence is seen of a transition from a state in which intracortical inputs are emphasized to a state where thalamic afferents have enhanced influence. Perturbations in ACh concentration cause changes in the firing rate of cortical neurons, with rapid responses due to fast acting facilitatory effects of nicotinic receptors on subcortical afferents, and slower responses due to muscarinic suppression of intracortical connections. Together, these numerical simulations demonstrate that the actions of ACh could be a significant factor modulating early components of evoked response potentials.
Microscopic information processing and communication in crowd dynamics
NASA Astrophysics Data System (ADS)
Henein, Colin Marc; White, Tony
2010-11-01
Due, perhaps, to the historical division of crowd dynamics research into psychological and engineering approaches, microscopic crowd models have tended toward modelling simple interchangeable particles with an emphasis on the simulation of physical factors. Despite the fact that people have complex (non-panic) behaviours in crowd disasters, important human factors in crowd dynamics such as information discovery and processing, changing goals and communication have not yet been well integrated at the microscopic level. We use our Microscopic Human Factors methodology to fuse a microscopic simulation of these human factors with a popular microscopic crowd model. By tightly integrating human factors with the existing model we can study the effects on the physical domain (movement, force and crowd safety) when human behaviour (information processing and communication) is introduced. In a large-room egress scenario with ample exits, information discovery and processing yields a crowd of non-interchangeable individuals who, despite close proximity, have different goals due to their different beliefs. This crowd heterogeneity leads to complex inter-particle interactions such as jamming transitions in open space; at high crowd energies, we found a freezing by heating effect (reminiscent of the disaster at Central Lenin Stadium in 1982) in which a barrier formation of naïve individuals trying to reach blocked exits prevented knowledgeable ones from exiting. Communication, when introduced, reduced this barrier formation, increasing both exit rates and crowd safety.
Living in a network of scaling cities and finite resources.
Qubbaj, Murad R; Shutters, Shade T; Muneepeerakul, Rachata
2015-02-01
Many urban phenomena exhibit remarkable regularity in the form of nonlinear scaling behaviors, but their implications on a system of networked cities has never been investigated. Such knowledge is crucial for our ability to harness the complexity of urban processes to further sustainability science. In this paper, we develop a dynamical modeling framework that embeds population-resource dynamics-a generalized Lotka-Volterra system with modifications to incorporate the urban scaling behaviors-in complex networks in which cities may be linked to the resources of other cities and people may migrate in pursuit of higher welfare. We find that isolated cities (i.e., no migration) are susceptible to collapse if they do not have access to adequate resources. Links to other cities may help cities that would otherwise collapse due to insufficient resources. The effects of inter-city links, however, can vary due to the interplay between the nonlinear scaling behaviors and network structure. The long-term population level of a city is, in many settings, largely a function of the city's access to resources over which the city has little or no competition. Nonetheless, careful investigation of dynamics is required to gain mechanistic understanding of a particular city-resource network because cities and resources may collapse and the scaling behaviors may influence the effects of inter-city links, thereby distorting what topological metrics really measure.
Rice, William D.; Liu, Wenyong; Baker, Thomas A.; ...
2015-11-23
Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn 2+, Co 2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields B eff, whichmore » should dramatically impact carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large B eff that exist in Mn 2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating B eff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn 2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.« less
Effect of pH and Ibuprofen on Phopholipid Bilayer Bending Modulus
NASA Astrophysics Data System (ADS)
Boggara, Mohan; Faraone, Antonio; Krishnamoorti, Ramanan
2010-03-01
Non-steroidal anti-inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, are known to cause gastrointestinal (GI) toxicity with chronic usage. However, NSAIDs pre-associated with phospholipids has been experimentally shown to reduce the GI toxicity and increase the therapeutic efficacy. In this study, using neutron spin-echo the effect of ibuprofen on the phospholipid membrane bending modulus is studied as a function of pH and temperature. Ibuprofen was found to lower the bending modulus at all pH values. We further present molecular insights into the observed effect on membrane dynamics based on structural studies using molecular dynamics simulations and small angle neutron scattering data as well as changes in zwitterionic headgroup electrostatics due to pH and addition of ibuprofen. This study is expected to help towards effective design of drug delivery nanoparticles based on variety of soft condensed matter such as lipids or polymers.
Pseudo-dynamic source characterization accounting for rough-fault effects
NASA Astrophysics Data System (ADS)
Galis, Martin; Thingbaijam, Kiran K. S.; Mai, P. Martin
2016-04-01
Broadband ground-motion simulations, ideally for frequencies up to ~10Hz or higher, are important for earthquake engineering; for example, seismic hazard analysis for critical facilities. An issue with such simulations is realistic generation of radiated wave-field in the desired frequency range. Numerical simulations of dynamic ruptures propagating on rough faults suggest that fault roughness is necessary for realistic high-frequency radiation. However, simulations of dynamic ruptures are too expensive for routine applications. Therefore, simplified synthetic kinematic models are often used. They are usually based on rigorous statistical analysis of rupture models inferred by inversions of seismic and/or geodetic data. However, due to limited resolution of the inversions, these models are valid only for low-frequency range. In addition to the slip, parameters such as rupture-onset time, rise time and source time functions are needed for complete spatiotemporal characterization of the earthquake rupture. But these parameters are poorly resolved in the source inversions. To obtain a physically consistent quantification of these parameters, we simulate and analyze spontaneous dynamic ruptures on rough faults. First, by analyzing the impact of fault roughness on the rupture and seismic radiation, we develop equivalent planar-fault kinematic analogues of the dynamic ruptures. Next, we investigate the spatial interdependencies between the source parameters to allow consistent modeling that emulates the observed behavior of dynamic ruptures capturing the rough-fault effects. Based on these analyses, we formulate a framework for pseudo-dynamic source model, physically consistent with the dynamic ruptures on rough faults.
NASA Astrophysics Data System (ADS)
Austermann, Jacqueline; Pollard, David; Mitrovica, Jerry X.; Moucha, Robert; Forte, Alessandro M.; DeConto, Robert M.
2015-04-01
Reconstructions of the Antarctic ice sheet over long timescales (i.e. Myrs) require estimates of bedrock elevation through time. Ice sheet models have accounted, with varying levels of sophistication, for changes in the bedrock elevation due to glacial isostatic adjustment (GIA), but they have neglected other processes that may perturb topography. One notable example is dynamic topography, the deflection of the solid surface of the Earth due to convective flow within the mantle. Numerically predicted changes in dynamic topography have been used to correct paleo shorelines for this departure from eustasy, but the effect of such changes on ice sheet stability is unknown. In this study we use numerical predictions of time-varying dynamic topography to reconstruct bedrock elevation below the Antarctic ice sheet during the mid Pliocene warm period (~3 Ma). Moreover, we couple this reconstruction to a three-dimensional ice sheet model to explore the impact of dynamic topography on the evolution of the Antarctic ice sheet since the Pliocene. Our modeling indicates significant uplift in the area of the Transantarctic Mountains (TAM) and the adjacent Wilkes basin. This predicted uplift, which is at the lower end of geological inferences of uplift of the TAM, implies a lower elevation of the basin in the Pliocene. Relative to simulations that do not include dynamic topography, the lower elevation leads to a smaller Antarctic Ice Sheet volume and a more significant retreat of the grounding line in the Wilkes basin, both of which are consistent with offshore sediment core data. We conclude that reconstructions of the Antarctic Ice Sheet during the mid-Pliocene warm period should be based on bedrock elevation models that include the impact of both GIA and dynamic topography.
Temperature dependence of dynamic deformation in FCC metals, aluminum and invar
Chen, Laura; Swift, D. C.; Austin, R. A.; ...
2017-01-01
Laser-driven shock experiments were performed on fcc metals, aluminum and invar, at a range of initial temperatures from approximately 120-800 K to explore the effect of initial temperature on dynamic strength properties at strain rates reaching up to 10 7 s -1. In aluminum, velocimetry data demonstrated an increase of peak stress of the elastic wave, σ E, with initial temperature. Alternatively, for invar, σ E exhibits little-to-no decrease over the same initial temperature range. Aluminum’s unusual deformation behavior is found to primarily be due to anharmonic vibrational effects. Differences in the magnetic structure of aluminum and invar can accountmore » for discrepancies in high rate deformation behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torii, Hajime, E-mail: torii.hajime@shizuoka.ac.jp
The intensity of the band at ∼200 cm{sup −1} (∼6 THz) in the Terahertz spectrum of liquid water mainly arises from the modulations of the extent of intermolecular charge transfer through hydrogen bonds, called intermolecular charge fluxes, occurring upon molecular translations along the O…H hydrogen bonds. To obtain reasonable spectral profiles from simulations, it is necessary to effectively incorporate the effects of those intermolecular charge fluxes, but apparently it is not possible by simple classical molecular dynamics simulations with fixed atomic partial charges even if they are amended by molecular induced dipoles due to intermolecular electrostatic interactions. The present paper showsmore » how we can do reasonably correct spectral simulations, without resorting to fully ab initio molecular dynamics.« less
Simulating Effects of High Angle of Attack on Turbofan Engine Performance
NASA Technical Reports Server (NTRS)
Liu, Yuan; Claus, Russell W.; Litt, Jonathan S.; Guo, Ten-Huei
2013-01-01
A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.
Vuguin, Patricia; Sopher, Aviva B.; Roumimper, Hailey; Chin, Vivian; Silfen, Miriam; McMahon, Donald J.; Fennoy, Ilene; Oberfield, Sharon E.
2018-01-01
Background/Aims To delineate the relationship of PCOS, obesity, and hyperandrogenemia (HA) with glucose and insulin dynamics in adolescents across a broad body mass index (BMI). Methods Seventy-four PCOS (16 yr) and 82 controls (16 yr) were evaluated by an oral glucose tolerance test. Subjects were categorized by BMI: normal weight (NW; 21±0.4 kg/m2), overweight/obese (OO; 33±1.0 kg/m2), and severe obesity (SO; 48±1.4 kg/m2). Indices of glucose and insulin dynamics were determined. Multiple linear regression analysis was used to evaluate the contribution of PCOS, HA and BMI to these indices. Results BMI was significantly associated with systolic and diastolic blood pressure and insulin resistance. A significant interaction between BMI and PCOS and indices of post-glucose load was observed. The mean difference in peak glucose, early glucose response, area under the curve for glucose, and glucose effectiveness (SgIo) between PCOS and C were significantly different between OO and SO. In PCOS, testosterone was positively associated with BMI, fasting insulin, early insulin response, diastolic blood pressure, and negatively associated with Sglo. Conclusions Abnormal glucose dynamics in adolescents with PCOS is mainly due to SO. The combination of PCOS and SO has a synergistic effect on glucose dynamics when compared to all other groups. PMID:28478437
Lagrangian Transport Calculations Using UARS Data. Part 2; Ozone
NASA Technical Reports Server (NTRS)
Manney, Gloria L.; Zurek, R. W.; Froidevaux, L.; Waters, J. W.; ONeill, A.; Swinbank, R.
1995-01-01
Trajectory calculations are used to examine ozone transport in the polar winter stratosphere during periods of the Upper Atmosphere Research Satellite (UARS) observations. The value of these calculations for determining mass transport was demonstrated previously using UARS observations of long-lived tracers, In the middle stratosphere, the overall ozone behavior observed by the Microwave Limb Sounder in the polar vortex is reproduced by this purely dynamical model. Calculations show the evolution of ozone in the lower stratosphere during early winter to be dominated by dynamics in December 1992 in the Arctic. Calculations for June 1992 in the Antarctic show evidence of chemical ozone destruction and indicate that approx. 50% of the chemical destruction may be masked by dynamical effects, mainly diabatic descent, which bring higher ozone into the lower-stratospheric vortex. Estimating differences between calculated and observed fields suggests that dynamical changes masked approx. 20% - 35% of chemical ozone loss during late February and early March 1993 in the Arctic. In the Antarctic late winter, in late August and early September 1992, below approx. 520 K, the evolution of vortex-averaged ozone is entirely dominated by chemical effects; above this level, however, chemical ozone depletion can be partially or completely masked by dynamical effects. Our calculations for 1992 showed that chemical loss was nearly completely compensated by increases due to diabatic descent at 655 K.
The effect of lagoons on Adriatic Sea tidal dynamics
NASA Astrophysics Data System (ADS)
Ferrarin, Christian; Maicu, Francesco; Umgiesser, Georg
2017-11-01
In this study the effects that lagoons exert on the barotropic tidal dynamics of a regional sea, the Adriatic Sea, were numerically explored. This semi-enclosed basin is one of the places with the highest tidal range in the Mediterranean Sea and is characterised by the presence of several lagoons in its northern part. The tidal dynamics of a system comprising the whole Adriatic Sea and the lagoons of Venice, Marano-Grado and Po Delta were investigated using an unstructured hydrodynamic model. Numerical experiments with and without lagoons reveal that even if the considered shallow water bodies represent only the 0.5 and 0.002% of the Adriatic Sea surface and volume, respectively, they significantly affect the entire Northern Adriatic Sea tidal dynamics by enhancing tidal range (by 5%) and currents (by 10%). The inclusion of lagoons in the computation improved the model performance by 25% in reproducing tidal constituents in the Adriatic Sea. The back-effect of the lagoons on the open-sea tide is due to the waves radiating from the co-oscillating lagoons into the adjacent sea. This is the first time these processes are shown to be relevant for the Adriatic Sea, thus enhancing the understanding of the tidal dynamics in this regional sea. These findings may also apply to other coastal seas with connections to lagoons, bays and estuaries.
Cortical dynamics of figure-ground segmentation: shine-through.
Francis, Gregory
2009-01-01
The shine-through effect occurs when a brief offset vernier target is followed by a grating of non-offset vernier elements. Rather than mask the target, this stimulus sequence produces a percept of the target vernier occluding the mask elements. We analyzed the dynamics of the 3D LAMINART model of depth perception and found that it explains the appearance of shine-through for these stimuli. The model explanation proposes that shine-through is due to a combination of false binocular disparity matches between the target and the central element of the mask, and a weakening of between disparity competition due to spatial competition and boundary grouping. Simulations of the model demonstrate that its behavior closely matches empirical data on the properties of shine-through. The model is contrasted with an alternative explanation of shine-through, and novel mask conditions are studied that allow for empirical tests of the model hypotheses.
Mortality Dynamics of Spodoptera frugiperda (Lepidoptera: Noctuidae) Immatures in Maize.
Varella, Andrea Corrêa; Menezes-Netto, Alexandre Carlos; Alonso, Juliana Duarte de Souza; Caixeta, Daniel Ferreira; Peterson, Robert K D; Fernandes, Odair Aparecido
2015-01-01
We characterized the dynamics of mortality factors affecting immature developmental stages of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Multiple decrement life tables for egg and early larval stages of S. frugiperda in maize (Zea mays L.) fields were developed with and without augmentative releases of Telenomus remus Nixon (Hymenoptera: Platygastridae) from 2009 to 2011. Total egg mortality ranged from 73 to 81% and the greatest egg mortality was due to inviability, dislodgement, and predation. Parasitoids did not cause significant mortality in egg or early larval stages and the releases of T. remus did not increase egg mortality. Greater than 95% of early larvae died from predation, drowning, and dislodgment by rainfall. Total mortality due to these factors was largely irreplaceable. Results indicate that a greater effect in reducing generational survival may be achieved by adding mortality to the early larval stage of S. frugiperda.
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.
Modelling voltage sag mitigation using dynamic voltage restorer and analyzing power quality issue
NASA Astrophysics Data System (ADS)
Ismail, Nor Laili; Hidzir, Hizrin Dayana Mohd; Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Ibrahim, Pungut; Ali, Che Ku Muhammad Sabri Che Ku
2018-02-01
Power quality problem which are arise due to a fault or a pulsed load can have caused an interruption of critical load. The modern power systems are becoming more sensitive to the quality of the power supplied by the utility company. Voltage sags and swells, flicker, interruptions, harmonic distortion and other distortion to the sinusoidal waveform are the examples of the power quality problems. The most affected due to these problems is industrial customers who use a lot of sensitive equipment. There has suffered a huge loss to these problems. Resulting of broken or damage equipment if voltage sag exceeds the sensitive threshold of the equipment. Thus, device such as Static Synchronous Compensator (STATCOM) and Dynamic Voltage Restorer (DVR) has been created to solve this problem among users. DVR is a custom power device that most effective and efficient. This paper intended to report the DVR operations during voltage sag compensation.
Sedimentation dynamics and diffusion of suspensions of swimming E. coli
NASA Astrophysics Data System (ADS)
Arratia, Paulo; Patteson, Alison; Singh, Jaspreet; Purohit, Prashant
2017-11-01
Sedimentation in active fluids has come into focus due to the ubiquity of swimming micro-organisms in natural and man-made environments. Here, we experimentally investigate sedimentation of passive particles in water containing various concentrations of the bacterium E. coli. Results show that the presence of live bacteria reduces the velocity of the sedimentation front even in the dilute regime, where constant sedimentation velocity is expected to be independent of particle concentration. The presence of live bacteria increases the effective diffusion coefficient, which determines the width of the sedimentation front. For higher bacteria concentration, we find the development of two sedimentation fronts due to bacterial death. A model in which the advection-diffusion equation describing the settling of particles under gravity is coupled to the population dynamics of the bacteria captures the experimental trends relatively well. This work is supported by NSF-CBET-1437482.
Mortality Dynamics of Spodoptera frugiperda (Lepidoptera: Noctuidae) Immatures in Maize
Varella, Andrea Corrêa; Menezes-Netto, Alexandre Carlos; Alonso, Juliana Duarte de Souza; Caixeta, Daniel Ferreira; Peterson, Robert K. D.; Fernandes, Odair Aparecido
2015-01-01
We characterized the dynamics of mortality factors affecting immature developmental stages of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Multiple decrement life tables for egg and early larval stages of S. frugiperda in maize (Zea mays L.) fields were developed with and without augmentative releases of Telenomus remus Nixon (Hymenoptera: Platygastridae) from 2009 to 2011. Total egg mortality ranged from 73 to 81% and the greatest egg mortality was due to inviability, dislodgement, and predation. Parasitoids did not cause significant mortality in egg or early larval stages and the releases of T. remus did not increase egg mortality. Greater than 95% of early larvae died from predation, drowning, and dislodgment by rainfall. Total mortality due to these factors was largely irreplaceable. Results indicate that a greater effect in reducing generational survival may be achieved by adding mortality to the early larval stage of S. frugiperda. PMID:26098422
Dark Matter Halos with VIRUS-P
NASA Astrophysics Data System (ADS)
Murphy, Jeremy; Gebhardt, K.
2010-05-01
We present new, two-dimensional stellar kinematic data on several of the most massive galaxies in the local universe. These data were taken with the integral field spectrograph, VIRUS-P, and extend to unprecedented radial distances. Once robust stellar kinematics are in hand, we run orbit-based axisymmetric dynamical models in order to constrain the stellar mass-to-light ratio and dark matter halo parameters. We have run a large set of dynamical models on the second rank galaxy in the Virgo cluster, M87, and find clear evidence for a massive dark matter halo. The two-dimensional stellar kinematics for several of our other targets, all first and second rank galaxies, are also presented. Dark matter halos are known to dominate the mass profile of elliptical galaxies somewhere between one to two effective radii, yet due to the low surface brightness at these radial distances, determining stellar dynamics is technologically challenging. To overcome this, constraints on the dark matter halo are often made with planetary nebulae or globular clusters at large radii. However, as results from different groups have returned contradictory results, it remains unclear whether different dynamical tracers always follow the stellar kinematics. Due to VIRUS-P's large field of view and on-sky fiber diameter, we are able to determine stellar kinematics at radial distances that overlap with other dynamical tracers. Understanding what the dynamics of stars, planetary nebula and globular clusters tell us about both the extent of the dark matter halo profile and the formation histories of the largest elliptical galaxies is a primary science driver for this work.
Onset of jamming for gas-fluidized grains
NASA Astrophysics Data System (ADS)
Abate, Adam
2006-03-01
Upon approach to jamming, whether for molecular liquids or colloidal particles or grains of sand, the microscopic dynamics can develop dramatic long-ranged correlations while the microscopic structure remains relatively unchanged. Experimentally, it has been difficult to study such phenomena in full detail due to the range of temporal and spatial scales involved. Here we introduce a new model system that is both easier to image and to manipulate at the microscale: a bidisperse system of steel beads rolling stochastically due to a nearly-levitating upflow of air. At fixed air flow, we demonstrate that this system exhibits all the hallmarks of a jamming transition as spheres are added and the area fraction increases toward close-packing. In terms of structure, the pair correlation function and the Voronoi cell shape distribution functions exhibit peak splitting. In terms of dynamics, the mean-squared displacement develops a plateau separating the short-time ballistic from the long-time diffusive motions; in this plateau the displacement distribution is non-Gaussian, due to spatial heterogeneities. While this phenomenology is familiar, one feature observed previously only in simulation is the presence of string-like swirls of rearranging grains. We highlight these by movies of an appropriately time-averaged velocity field. We hope to connect such dynamics both to a microscopic measure of effective temperature and to the macroscopic viscosity of the system.
The effects of disulfide bonds on the denatured state of barnase.
Clarke, J.; Hounslow, A. M.; Bond, C. J.; Fersht, A. R.; Daggett, V.
2000-01-01
The effects of engineered disulfide bonds on protein stability are poorly understood because they can influence the structure, dynamics, and energetics of both the native and denatured states. To explore the effects of two engineered disulfide bonds on the stability of barnase, we have conducted a combined molecular dynamics and NMR study of the denatured state of the two mutants. As expected, the disulfide bonds constrain the denatured state. However, specific extended beta-sheet structure can also be detected in one of the mutant proteins. This mutant is also more stable than would be predicted. Our study suggests a possible cause of the very high stability conferred by this disulfide bond: the wild-type denatured ensemble is stabilized by a nonnative hydrophobic cluster, which is constrained from occurring in the mutant due to the formation of secondary structure. PMID:11206061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leoni, Fabio; Franzese, Giancarlo
2014-11-07
Confinement can modify the dynamics, the thermodynamics, and the structural properties of liquid water, the prototypical anomalous liquid. By considering a generic model for anomalous liquids, suitable for describing solutions of globular proteins, colloids, or liquid metals, we study by molecular dynamics simulations the effect that an attractive wall with structure and a repulsive wall without structure have on the phases, the crystal nucleation, and the dynamics of the fluid. We find that at low temperatures the large density of the attractive wall induces a high-density, high-energy structure in the first layer (“templating” effect). In turn, the first layer inducesmore » a “molding” effect on the second layer determining a structure with reduced energy and density, closer to the average density of the system. This low-density, low-energy structure propagates further through the layers by templating effect and can involve all the existing layers at the lowest temperatures investigated. Therefore, although the high-density, high-energy structure does not self-reproduce further than the first layer, the structured wall can have a long-range influence thanks to a sequence of templating, molding, and templating effects through the layers. We find that the walls also have an influence on the dynamics of the liquid, with a stronger effect near the attractive wall. In particular, we observe that the dynamics is largely heterogeneous (i) among the layers, as a consequence of the sequence of structures caused by the walls presence, and (ii) within the same layer, due to superdiffusive liquid veins within a frozen matrix of particles near the walls at low temperature and high density. Hence, the partial freezing of the first layer does not correspond necessarily to an effective reduction of the channel's section in terms of transport properties, as suggested by other authors.« less
Leoni, Fabio; Franzese, Giancarlo
2014-11-07
Confinement can modify the dynamics, the thermodynamics, and the structural properties of liquid water, the prototypical anomalous liquid. By considering a generic model for anomalous liquids, suitable for describing solutions of globular proteins, colloids, or liquid metals, we study by molecular dynamics simulations the effect that an attractive wall with structure and a repulsive wall without structure have on the phases, the crystal nucleation, and the dynamics of the fluid. We find that at low temperatures the large density of the attractive wall induces a high-density, high-energy structure in the first layer ("templating" effect). In turn, the first layer induces a "molding" effect on the second layer determining a structure with reduced energy and density, closer to the average density of the system. This low-density, low-energy structure propagates further through the layers by templating effect and can involve all the existing layers at the lowest temperatures investigated. Therefore, although the high-density, high-energy structure does not self-reproduce further than the first layer, the structured wall can have a long-range influence thanks to a sequence of templating, molding, and templating effects through the layers. We find that the walls also have an influence on the dynamics of the liquid, with a stronger effect near the attractive wall. In particular, we observe that the dynamics is largely heterogeneous (i) among the layers, as a consequence of the sequence of structures caused by the walls presence, and (ii) within the same layer, due to superdiffusive liquid veins within a frozen matrix of particles near the walls at low temperature and high density. Hence, the partial freezing of the first layer does not correspond necessarily to an effective reduction of the channel's section in terms of transport properties, as suggested by other authors.
Local and global dynamical effects of dark energy
NASA Astrophysics Data System (ADS)
Chernin, A. D.
Local expansion flows of galaxies were discovered by Lemaitre and Hubble in 1927-29 at distances of less than 25-30 Mpc. The global expansion of the Universe as a whole was predicted theoretically by Friedmann in 1922-24 and discovered in the 1990s in observations at truly cosmological distances of more than 1 000 Mpc. On all these spatial scales, the flows follow a (nearly) linear velocity-distance relation, known now as Hubble's law. This similarity of local and global phenomena is due to the universal dark energy antigravity which dominates the cosmic dynamics on both local and global spatial scales.
NASA Astrophysics Data System (ADS)
Couque, Hervé
2012-08-01
The DYMAT International Conference is a "compelling scientific event" for engineers and scientists working in the dynamic behaviour of materials field. Since 1983, DYMAT has been organizing a five days single sessions of oral presentations and poster exhibitions with proceedings available at the beginning of the conferences. Well-known for its scientific interest, the triennially DYMAT International Conferences are the platform to present the most recent scientific achievements on dynamic behaviour of materials relevant to crashworthiness in all types of transports; terminal ballistics related to defence and shielding of satellites, of turbine; blast effects due to industrial explosions, terrorist attacks; material processing such as high speed machining.
NASA Technical Reports Server (NTRS)
Buglia, James J.; Young, George R.; Timmons, Jesse D.; Brinkworth, Helen S.
1961-01-01
An analytical method has been developed which approximates the dispersion of a spinning symmetrical body in a vacuum, with time-varying mass and inertia characteristics, under the action of several external disturbances-initial pitching rate, thrust misalignment, and dynamic unbalance. The ratio of the roll inertia to the pitch or yaw inertia is assumed constant. Spin was found to be very effective in reducing the dispersion due to an initial pitch rate or thrust misalignment, but was completely Ineffective in reducing the dispersion of a dynamically unbalanced body.
Qin, Chuan; Zhao, Jianlin; Di, Jianglei; Wang, Le; Yu, Yiting; Yuan, Weizheng
2009-02-10
We employed digital holographic microscopy to visually test microoptoelectromechanical systems (MOEMS). The sample is a blazed-angle adjustable grating. Considering the periodic structure of the sample, a local area unwrapping method based on a binary template was adopted to demodulate the fringes obtained by referring to a reference hologram. A series of holograms at different deformation states due to different drive voltages were captured to analyze the dynamic character of the MOEMS, and the uniformity of different microcantilever beams was also inspected. The results show this testing method is effective for a periodic structure.
Delannoy, Joachim; de Maleprade, Hélène; Clanet, Christophe; Quéré, David
2018-05-31
A superhydrophobic capillary tube immersed in water and brought in contact with the bath surface will be invaded by air, owing to its aerophilicity. We discuss this phenomenon where the ingredients of classical capillary rise are inverted, which leads to noticeable dynamical features. (1) The main regime of air invasion is linear in time, due to the viscous resistance of water. (2) Menisci in tubes with millimetre-size radii strongly oscillate before reaching their equilibrium depth, a consequence of inertia. On the whole, capillary descent provides a broad variety of dynamics where capillary effects, viscous friction and liquid inertia all play a role.
Input reconstruction of chaos sensors.
Yu, Dongchuan; Liu, Fang; Lai, Pik-Yin
2008-06-01
Although the sensitivity of sensors can be significantly enhanced using chaotic dynamics due to its extremely sensitive dependence on initial conditions and parameters, how to reconstruct the measured signal from the distorted sensor response becomes challenging. In this paper we suggest an effective method to reconstruct the measured signal from the distorted (chaotic) response of chaos sensors. This measurement signal reconstruction method applies the neural network techniques for system structure identification and therefore does not require the precise information of the sensor's dynamics. We discuss also how to improve the robustness of reconstruction. Some examples are presented to illustrate the measurement signal reconstruction method suggested.
Determination of broken KAM surfaces for particle orbits in toroidal confinement systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R. B.
2015-10-05
Here, the destruction of Kolmogorov–Arnold–Moser surfaces in a Hamiltonian system is an important topic in nonlinear dynamics, and in particular in the theory of particle orbits in toroidal magnetic confinement systems. Analytic models for transport due to mode-particle resonances are not sufficiently correct to give the effect of these resonances on transport. In this paper we compare three different methods for the detection of the loss of stability of orbits in the dynamics of charged particles in a toroidal magnetic confinement device in the presence of time dependent magnetic perturbations.
Mohammed, Ameer; Zamani, Majid; Bayford, Richard; Demosthenous, Andreas
2017-12-01
In Parkinson's disease (PD), on-demand deep brain stimulation is required so that stimulation is regulated to reduce side effects resulting from continuous stimulation and PD exacerbation due to untimely stimulation. Also, the progressive nature of PD necessitates the use of dynamic detection schemes that can track the nonlinearities in PD. This paper proposes the use of dynamic feature extraction and dynamic pattern classification to achieve dynamic PD detection taking into account the demand for high accuracy, low computation, and real-time detection. The dynamic feature extraction and dynamic pattern classification are selected by evaluating a subset of feature extraction, dimensionality reduction, and classification algorithms that have been used in brain-machine interfaces. A novel dimensionality reduction technique, the maximum ratio method (MRM) is proposed, which provides the most efficient performance. In terms of accuracy and complexity for hardware implementation, a combination having discrete wavelet transform for feature extraction, MRM for dimensionality reduction, and dynamic k-nearest neighbor for classification was chosen as the most efficient. It achieves a classification accuracy of 99.29%, an F1-score of 97.90%, and a choice probability of 99.86%.
NASA Astrophysics Data System (ADS)
Gao, Fei; Liu, Zhenyu; Misra, R. D. K.; Liu, Haitao; Yu, Fuxiao
2014-09-01
The hot deformation behavior of an ultra-pure 17%Cr ferritic stainless steel was studied in the temperature range of 750-1000 °C and strain rates of 0.5 to 10 s-1 using isothermal hot compression tests in a thermomechanical simulator. The microstructural evolution was investigated using electron backscattered diffraction and transmission electron microscopy. A modified constitutive equation considering the effect of strain on material constant was developed, which predicted the flow stress for the deformation conditions studied, except at 950 °C in 1 s-1 and 900 °C in 10 s-1. Decreasing deformation temperature and increasing strain was beneficial in refining the microstructure. Decreasing deformation temperature, the in-grain shear bands appeared in the microstructure. It is suggested that the dynamic softening mechanism is closely related to deformation temperature. At low deformation temperature, dynamic recovery was major softening mechanism and no dynamic recrystallization occurred. At high deformation temperature, dynamic softening was explained in terms of efficient dynamic recovery and limited continuous dynamic recrystallization. A drop in the flow stress was not found due to very small fraction of new grains nucleated during dynamic recrystallization.
NASA Astrophysics Data System (ADS)
Noh, J.; Russo, S.
2017-08-01
Long-term dynamic monitoring of the masonry façade of Palazzo Ducale known as Doge's palace in Venice, Italy was performed from September 2010 to October 2012. This article demonstrates the results of preliminary analysis on the data set of the first 12-month long monitoring campaign for out-of-plumb dynamic responses of the medieval façade of the monument. The aim of the analysis of the dynamic signals is to validate the data set and investigate dynamic characteristics of the vibration signature of the historical masonry wall in the long-term. Palazzo Ducale is a heavily visited heritage due to its high cultural importance and architectural value. Nevertheless, little is known about the dynamic behaviour of the double-leaf masonry façade. In this study, the dynamic properties of the structure are presented by dynamic identification carried out with the effect of the ambient vibration measured at four different locations on the façade and portico level. The trend and intensity of the vibration at each measurement locations are identified over the year. In addition, the issue on eliminating the noise blended in the signals for reliable analysis are also discussed.
Lattice Strain Due to an Atomic Vacancy
Li, Shidong; Sellers, Michael S.; Basaran, Cemal; Schultz, Andrew J.; Kofke, David A.
2009-01-01
Volumetric strain can be divided into two parts: strain due to bond distance change and strain due to vacancy sources and sinks. In this paper, efforts are focused on studying the atomic lattice strain due to a vacancy in an FCC metal lattice with molecular dynamics simulation (MDS). The result has been compared with that from a continuum mechanics method. It is shown that using a continuum mechanics approach yields constitutive results similar to the ones obtained based purely on molecular dynamics considerations. PMID:19582230
Sadeghipour, Maryam; Khoshnevisan, Mohammad Hossein; Jafari, Afshin; Shariatpanahi, Seyed Peyman
2017-01-01
By using a standard questionnaire, the level of dental brushing frequency was assessed among 201 adolescent female middle school students in Tehran. The initial assessment was repeated after 5 months, in order to observe the dynamics in dental health behavior level. Logistic Regression model was used to evaluate the correlation among individuals' dental health behavior in their social network. A significant correlation on dental brushing habits was detected among groups of friends. This correlation was further spread over the network within the 5 months period. Moreover, it was identified that the average brushing level was improved within the 5 months period. Given that there was a significant correlation between social network's nodes' in-degree value, and brushing level, it was suggested that the observed improvement was partially due to more popularity of individuals with better tooth brushing habit. Agent Based Modeling (ABM) was used to demonstrate the dynamics of dental brushing frequency within a sample of friendship network. Two models with static and dynamic assumptions for the network structure were proposed. The model with dynamic network structure successfully described the dynamics of dental health behavior. Based on this model, on average, every 43 weeks a student changes her brushing habit due to learning from her friends. Finally, three training scenarios were tested by these models in order to evaluate their effectiveness. When training more popular students, considerable improvement in total students' brushing frequency was demonstrated by simulation results.
The evolution of kicked stellar-mass black holes in star cluster environments
NASA Astrophysics Data System (ADS)
Webb, Jeremy J.; Leigh, Nathan W. C.; Singh, Abhishek; Ford, K. E. Saavik; McKernan, Barry; Bellovary, Jillian
2018-03-01
We consider how dynamical friction acts on black holes that receive a velocity kick while located at the centre of a gravitational potential, analogous to a star cluster, due to either a natal kick or the anisotropic emission of gravitational waves during a black hole-black hole merger. Our investigation specifically focuses on how well various Chandrasekhar-based dynamical friction models can predict the orbital decay of kicked black holes with mbh ≲ 100 M⊙ due to an inhomogeneous background stellar field. In general, the orbital evolution of a kicked black hole follows that of a damped oscillator where two-body encounters and dynamical friction serve as sources of damping. However, we find models for approximating the effects of dynamical friction do not accurately predict the amount of energy lost by the black hole if the initial kick velocity vk is greater than the stellar velocity dispersion σ. For all kick velocities, we also find that two-body encounters with nearby stars can cause the energy evolution of a kicked BH to stray significantly from standard dynamical friction theory as encounters can sometimes lead to an energy gain. For larger kick velocities, we find the orbital decay of a black hole departs from classical theory completely as the black hole's orbital amplitude decays linearly with time as opposed to exponentially. Therefore, we have developed a linear decay formalism, which scales linearly with black hole mass and v_k/σ in order to account for the variations in the local gravitational potential.
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.
2014-01-01
Control-theoretic modeling of human operator's dynamic behavior in manual control tasks has a long, rich history. There has been significant work on techniques used to identify the pilot model of a given structure. This research attempts to go beyond pilot identification based on experimental data to develop a predictor of pilot behavior. Two methods for pre-dicting pilot stick input during changing aircraft dynamics and deducing changes in pilot behavior are presented This approach may also have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot. With this ability to detect changes in piloting behavior, the possibility now exists to mediate human adverse behaviors, hardware failures, and software anomalies with autono-my that may ameliorate these undesirable effects. However, appropriate timing of when au-tonomy should assume control is dependent on criticality of actions to safety, sensitivity of methods to accurately detect these adverse changes, and effects of changes in levels of auto-mation of the system as a whole.
NASA Astrophysics Data System (ADS)
Liao, Yiliang; Ye, Chang; Gao, Huang; Kim, Bong-Joong; Suslov, Sergey; Stach, Eric A.; Cheng, Gary J.
2011-07-01
Warm laser shock peening (WLSP) is a new high strain rate surface strengthening process that has been demonstrated to significantly improve the fatigue performance of metallic components. This improvement is mainly due to the interaction of dislocations with highly dense nanoscale precipitates, which are generated by dynamic precipitation during the WLSP process. In this paper, the dislocation pinning effects induced by the nanoscale precipitates during WLSP are systematically studied. Aluminum alloy 6061 and AISI 4140 steel are selected as the materials with which to conduct WLSP experiments. Multiscale discrete dislocation dynamics (MDDD) simulation is conducted in order to investigate the interaction of dislocations and precipitates during the shock wave propagation. The evolution of dislocation structures during the shock wave propagation is studied. The dislocation structures after WLSP are characterized via transmission electron microscopy and are compared with the results of the MDDD simulation. The results show that nano-precipitates facilitate the generation of highly dense and uniformly distributed dislocation structures. The dislocation pinning effect is strongly affected by the density, size, and space distribution of nano-precipitates.
Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics
Zhu, Mingmin; Zhou, Ziyao; Peng, Bin; ...
2017-02-03
Our work aims at magnonics manipulation by the magnetoelectric coupling effect and is motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La 0.7Sr 0.3MnO 3/0.7Pb(Mg 1/3Nb 2/3)O 3-0.3PbTiO 3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage-induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin-lattice coupling effect, i.e., varying exchange stiffness due to voltage-induced anisotropic lattice changes, has been establishedmore » to explain experiment results with good agreement. In addition, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin-lattice coupling effect provides a platform for realizing energy-efficient, tunable magnonics devices.« less
Dynamic Jahn-Teller effect in the parent insulating state of the molecular superconductor Cs₃C₆₀.
Klupp, Gyöngyi; Matus, Péter; Kamarás, Katalin; Ganin, Alexey Y; McLennan, Alec; Rosseinsky, Matthew J; Takabayashi, Yasuhiro; McDonald, Martin T; Prassides, Kosmas
2012-06-19
The 'expanded fulleride' Cs(3)C(60) is an antiferromagnetic insulator in its normal state and becomes a molecular superconductor with T(c) as high as 38 K under pressure. There is mounting evidence that superconductivity is not of the conventional BCS type and electron-electron interactions are essential for its explanation. Here we present evidence for the dynamic Jahn-Teller effect as the source of the dramatic change in electronic structure occurring during the transition from the metallic to the localized state. We apply infrared spectroscopy, which can detect subtle changes in the shape of the C(60)3- ion due to the Jahn-Teller distortion. The temperature dependence of the spectra in the insulating phase can be explained by the gradual transformation from two temperature-dependent solid-state conformers to a single one, typical and unique for Jahn-Teller systems. These results unequivocally establish the relevance of the dynamic Jahn-Teller effect to overcoming Hund's rule and forming a low-spin state, leading to a magnetic Mott-Jahn-Teller insulator.
Fish robotics and hydrodynamics
NASA Astrophysics Data System (ADS)
Lauder, George
2010-11-01
Studying the fluid dynamics of locomotion in freely-swimming fishes is challenging due to difficulties in controlling fish behavior. To provide better control over fish-like propulsive systems we have constructed a variety of fish-like robotic test platforms that range from highly biomimetic models of fins, to simple physical models of body movements during aquatic locomotion. First, we have constructed a series of biorobotic models of fish pectoral fins with 5 fin rays that allow detailed study of fin motion, forces, and fluid dynamics associated with fin-based locomotion. We find that by tuning fin ray stiffness and the imposed motion program we can produce thrust both on the fin outstroke and instroke. Second, we are using a robotic flapping foil system to study the self-propulsion of flexible plastic foils of varying stiffness, length, and trailing edge shape as a means of investigating the fluid dynamic effect of simple changes in the properties of undulating bodies moving through water. We find unexpected non-linear stiffness-dependent effects of changing foil length on self-propelled speed, and as well as significant effects of trailing edge shape on foil swimming speed.
Soft hair of dynamical black hole and Hawking radiation
NASA Astrophysics Data System (ADS)
Chu, Chong-Sun; Koyama, Yoji
2018-04-01
Soft hair of black hole has been proposed recently to play an important role in the resolution of the black hole information paradox. Recent work has emphasized that the soft modes cannot affect the black hole S-matrix due to Weinberg soft theorems. However as soft hair is generated by supertranslation of geometry which involves an angular dependent shift of time, it must have non-trivial quantum effects. We consider supertranslation of the Vaidya black hole and construct a non-spherical symmetric dynamical spacetime with soft hair. We show that this spacetime admits a trapping horizon and is a dynamical black hole. We find that Hawking radiation is emitted from the trapping horizon of the dynamical black hole. The Hawking radiation has a spectrum which depends on the soft hair of the black hole and this is consistent with the factorization property of the black hole S-matrix.
A cumulant functional for static and dynamic correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollett, Joshua W., E-mail: j.hollett@uwinnipeg.ca; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2; Hosseini, Hessam
A functional for the cumulant energy is introduced. The functional is composed of a pair-correction and static and dynamic correlation energy components. The pair-correction and static correlation energies are functionals of the natural orbitals and the occupancy transferred between near-degenerate orbital pairs, rather than the orbital occupancies themselves. The dynamic correlation energy is a functional of the statically correlated on-top two-electron density. The on-top density functional used in this study is the well-known Colle-Salvetti functional. Using the cc-pVTZ basis set, the functional effectively models the bond dissociation of H{sub 2}, LiH, and N{sub 2} with equilibrium bond lengths and dissociationmore » energies comparable to those provided by multireference second-order perturbation theory. The performance of the cumulant functional is less impressive for HF and F{sub 2}, mainly due to an underestimation of the dynamic correlation energy by the Colle-Salvetti functional.« less
[Dynamics of decapitation after falling in a self-tightening rope noose].
Wehner, Heinz-Dieter; Schulz, Martin Manfred; Wehner, Arno
2006-01-01
In decapitation by dropping into a slip noose, it is in principle justified to doubt that suicide is involved. It must hence always be checked whether the dynamics to be inferred from the concrete facts can result in decapitation. Essential characteristics of the dynamics are the deceleration forces (tractional force of the rope) that are determined by the height of the drop, the directional force of the rope and the body mass of the victim as well as the density of the lines of centripetal force acting on the neck. However, the appropriateness of the dynamics must at all events be corroborated by compatible autopsy and scientific criminological findings with regard to the characteristic wound morphology, the intravital signs, the trace analysis and the topography of the fiber ablation traces on the rope that are due to the effect of heat.
Broadband optical switch based on liquid crystal dynamic scattering.
Geis, M W; Bos, P J; Liberman, V; Rothschild, M
2016-06-27
This work demonstrates a novel broadband optical switch, based on dynamic-scattering effect in liquid crystals (LCs). Dynamic-scattering-mode technology was developed for display applications over four decades ago, but was displaced in favor of the twisted-nematic LCs. However, with the recent development of more stable LCs, dynamic scattering provides advantages over other technologies for optical switching. We demonstrate broadband polarization-insensitive attenuation of light directly passing thought the cell by 4 to 5 orders of magnitude at 633 nm. The attenuation is accomplished by light scattering to higher angles. Switching times of 150 μs to 10% transmission have been demonstrated. No degradation of devices is found after hundreds of switching cycles. The light-rejection mechanism is due to scattering, induced by disruption of LC director orientation with dopant ion motion with an applied electric field. Angular dependence of scattering is characterized as a function of bias voltage.
Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider
NASA Astrophysics Data System (ADS)
Wang, Shu-Xin; Sun, Xiu-Jun; Wang, Yan-Hui; Wu, Jian-Guo; Wang, Xiao-Ming
2011-03-01
PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.
Dynamic Properties of DNA-Programmable Nanoparticle Crystallization.
Yu, Qiuyan; Zhang, Xuena; Hu, Yi; Zhang, Zhihao; Wang, Rong
2016-08-23
The dynamics of DNA hybridization is very important in DNA-programmable nanoparticle crystallization. Here, coarse-grained molecular dynamics is utilized to explore the structural and dynamic properties of DNA hybridizations for a self-complementary DNA-directed nanoparticle self-assembly system. The hexagonal close-packed (HCP) and close-packed face-centered cubic (FCC) ordered structures are identified for the systems of different grafted DNA chains per nanoparticle, which are in good agreement with the experimental results. Most importantly, the dynamic crystallization processes of DNA hybridizations are elucidated by virtue of the mean square displacement, the percentage of hybridizations, and the lifetime of DNA bonds. The lifetime can be modeled by the DNA dehybridization, which has an exponential form. The lifetime of DNA bonds closely depends on the temperature. A suitable temperature for the DNA-nanoparticle crystallization is obtained in the work. Moreover, a too large volume fraction hinders the self-assembly process due to steric effects. This work provides some essential information for future design of nanomaterials.
NASA Astrophysics Data System (ADS)
Macieszczak, Katarzyna; Zhou, YanLi; Hofferberth, Sebastian; Garrahan, Juan P.; Li, Weibin; Lesanovsky, Igor
2017-10-01
We investigate the dynamics of a generic interacting many-body system under conditions of electromagnetically induced transparency (EIT). This problem is of current relevance due to its connection to nonlinear optical media realized by Rydberg atoms. In an interacting system the structure of the dynamics and the approach to the stationary state becomes far more complex than in the case of conventional EIT. In particular, we discuss the emergence of a metastable decoherence-free subspace, whose dimension for a single Rydberg excitation grows linearly in the number of atoms. On approach to stationarity this leads to a slow dynamics, which renders the typical assumption of fast relaxation invalid. We derive analytically the effective nonequilibrium dynamics in the decoherence-free subspace, which features coherent and dissipative two-body interactions. We discuss the use of this scenario for the preparation of collective entangled dark states and the realization of general unitary dynamics within the spin-wave subspace.
Deng, Mingge; Grinberg, Leopold; Caswell, Bruce; Karniadakis, George Em
2015-06-28
We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a dissipative particle dynamics (DPD) method. Unlike previous works, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance.
Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A
2014-12-01
The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those configurations, respectively. The unexpected moments were due to the inertia of the superior mounting structures. This study has shown that eccentric axial compression produces unexpected moments due to translation constraints at all loading rates and due to the inertia of the superior mounting structures in dynamic experiments. It may be incorrect to assume that bending moments are equal to the product of compression force and eccentricity, particularly where the test configuration involves translational constraints and where the experiments are dynamic. In order to reduce inertial moment artifacts, the mass, and moment of inertia of any loading jig structures that rotate with the specimen should be minimized. Also, the distance between these structures and the load cell should be reduced.
Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica.
Rozendaal, Danae M A; Chazdon, Robin L
2015-03-01
Second-growth tropical forests are an important global carbon sink. As current knowledge on biomass accumulation during secondary succession is heavily based on chronosequence studies, direct estimates of annual rates of biomass accumulation in monitored stands are largely unavailable. We evaluated the contributions of tree diameter increment, recruitment, and mortality to annual tree biomass change during succession for three groups of tree species: second-growth (SG) specialists, generalists, and old-growth (OG) specialists. We monitored six second-growth tropical forests that varied in stand age and two old-growth forests in northeastern Costa Rica. We monitored these over a period of 8 to 16 years. To assess rates of biomass change during secondary succession, we compared standing biomass and biomass dynamics between second-growth forest stages and old-growth forest, and evaluated the effect of stand age on standing biomass and biomass dynamics in second-growth forests. Standing tree biomass increased with stand age during succession, whereas the rate of biomass change decreased. Biomass change was largely driven by tree diameter increment and mortality, with a minor contribution from recruitment. The relative importance of these demographic drivers shifted over succession. Biomass gain due to tree diameter increment decreased with stand age, whereas biomass loss due to mortality increased. In the age range of our second-growth forests, 10-41 years, SG specialists dominated tree biomass in second-growth forests. SG specialists, and to a lesser extent generalists, also dominated stand-level biomass increase due to tree diameter increment, whereas SG specialists largely accounted for decreases in biomass due to mortality. Our results indicate that tree growth is largely driving biomass dynamics early in succession, whereas both growth and mortality are important later in succession. Biomass dynamics are largely accounted for by a few SG specialists and one generalist species, Pentaclethra macroloba. To assess the generality of our results, similar long-term studies should be compared across tropical forest landscapes.
Land Breeze and Thermals: A Scale Threshold to Distinguish Their Effects
Yongqiang Liu
2005-01-01
Land breeze is a type of mesoscale circulation developed due to thermal forcing over a heterogeneous landscape. It can contribute to atmospheric dynamic and hydrologic processes through affecting heat and water fluxes on the land-atmosphere interface and generating shallow convective precipitation. If the scale of the landscape heterogeneity is smaller than a certain...
Subcontinental impacts of an invasive tree disease on forest structure and dynamics
Jeffrey R. Garnas; Matthew P. Ayres; Andrew M. Liebhold; Celia. Evans
2011-01-01
Introduced pests and pathogens are a major source of disturbance to ecosystems world-wide. The famous examples have produced dramatic reductions in host abundance, including virtual extirpation, but most introductions have more subtle impacts that are hard to quantify but are potentially at least as important due to the pathogens' effects on host reproduction,...
Corinne E. Block; Jennifer D. Knoepp; Katherine J. Elliott; Jennifer M. Fraterrigo
2012-01-01
The impacts of exotic insects and pathogens on forest ecosystems are increasingly recognized, yet the factors influencing the magnitude of effects remain poorly understood. Eastern hemlock (Tsuga canadensis) exerts strong control on nitrogen (N) dynamics, and its loss due to infestation by the hemlock woolly adelgid (Adelges tsugae...
Observed and projected C change in the Southeastern US
John Coulston; David Wear; Jim Vose
2015-01-01
Over the past century forest regrowth in Europe and North America expanded forest carbon (C) sinks and offset C emissions but future C accumulation is uncertain due to the effects of land use changes, management, disturbance, and climate change. Policy makers need insights into forest C dynamics as they anticipate emissions futures and goals. Using a completely...
Keep Away from Danger: Dangerous Objects in Dynamic and Static Situations
Anelli, Filomena; Nicoletti, Roberto; Bolzani, Roberto; Borghi, Anna M.
2013-01-01
Behavioral and neuroscience studies have shown that objects observation evokes specific affordances (i.e., action possibilities) and motor responses. Recent findings provide evidence that even dangerous objects can modulate the motor system evoking aversive affordances. This sounds intriguing since so far the majority of behavioral, brain imaging, and transcranial magnetic stimulation studies with painful and dangerous stimuli strictly concerned the domain of pain, with the exception of evidence suggesting sensitivity to objects’ affordances when neutral objects are located in participants’ peripersonal space. This study investigates whether the observation of a neutral or dangerous object in a static or dynamic situation differently influences motor responses, and the time-course of the dangerous objects’ processing. In three experiments we manipulated: object dangerousness (neutral vs. dangerous); object category (artifact vs. natural); manual response typology (press vs. release a key); object presentation (Experiment 1: dynamic, Experiments 2 and 3: static); object movement direction (Experiment 1: away vs. toward the participant) or size (Experiments 2 and 3: big vs. normal vs. small). The task required participants to decide whether the object was an artifact or a natural object, by pressing or releasing one key. Results showed a facilitation for neutral over dangerous objects in the static situation, probably due to an affordance effect. Instead, in the dynamic condition responses were modulated by the object movement direction, with a dynamic affordance effect elicited by neutral objects and an escape-avoidance effect provoked by dangerous objects (neutral objects were processed faster when they moved toward-approached the participant, whereas dangerous objects were processed faster when they moved away from the participant). Moreover, static stimuli influenced the manual response typology. These data indicate the emergence of dynamic affordance and escaping-avoidance effects. PMID:23847512
Keep away from danger: dangerous objects in dynamic and static situations.
Anelli, Filomena; Nicoletti, Roberto; Bolzani, Roberto; Borghi, Anna M
2013-01-01
Behavioral and neuroscience studies have shown that objects observation evokes specific affordances (i.e., action possibilities) and motor responses. Recent findings provide evidence that even dangerous objects can modulate the motor system evoking aversive affordances. This sounds intriguing since so far the majority of behavioral, brain imaging, and transcranial magnetic stimulation studies with painful and dangerous stimuli strictly concerned the domain of pain, with the exception of evidence suggesting sensitivity to objects' affordances when neutral objects are located in participants' peripersonal space. This study investigates whether the observation of a neutral or dangerous object in a static or dynamic situation differently influences motor responses, and the time-course of the dangerous objects' processing. In three experiments we manipulated: object dangerousness (neutral vs. dangerous); object category (artifact vs. natural); manual response typology (press vs. release a key); object presentation (Experiment 1: dynamic, Experiments 2 and 3: static); object movement direction (Experiment 1: away vs. toward the participant) or size (Experiments 2 and 3: big vs. normal vs. small). The task required participants to decide whether the object was an artifact or a natural object, by pressing or releasing one key. Results showed a facilitation for neutral over dangerous objects in the static situation, probably due to an affordance effect. Instead, in the dynamic condition responses were modulated by the object movement direction, with a dynamic affordance effect elicited by neutral objects and an escape-avoidance effect provoked by dangerous objects (neutral objects were processed faster when they moved toward-approached the participant, whereas dangerous objects were processed faster when they moved away from the participant). Moreover, static stimuli influenced the manual response typology. These data indicate the emergence of dynamic affordance and escaping-avoidance effects.
Photon-phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator
NASA Astrophysics Data System (ADS)
Zhang, Lin; Ji, Fengzhou; Zhang, Xu; Zhang, Weiping
2017-07-01
A direct photon-phonon parametric effect of quadratic coupling on the mean-field dynamics of an optomechanical resonator in the large-scale-movement regime is found and investigated. Under a weak pumping power, the mechanical resonator damps to a steady state with a nonlinear static response sensitively modified by the quadratic coupling. When the driving power increases beyond the static energy balance, the steady states lose their stabilities via Hopf bifurcations, and the resonator produces stable self-sustained oscillation (limit-circle behavior) of discrete energies with step-like amplitudes due to the parametric effect of quadratic coupling, which can be understood roughly by the power balance between gain and loss on the resonator. A further increase in the pumping power can induce a chaotic dynamic of the resonator via a typical routine of period-doubling bifurcation, but which can be stabilized by the parametric effect through an inversion-bifurcation process back to the limit-circle states. The bifurcation-to-inverse-bifurcation transitions are numerically verified by the maximal Lyapunov exponents of the dynamics, which indicate an efficient way of suppressing the chaotic behavior of the optomechanical resonator by quadratic coupling. Furthermore, the parametric effect of quadratic coupling on the dynamic transitions of an optomechanical resonator can be conveniently detected or traced by the output power spectrum of the cavity field.
NASA Technical Reports Server (NTRS)
Lewellen, D. C.; Lewellen, W. S.
2001-01-01
High-resolution numerical large-eddy simulations of the near wake of a B757 including simplified NOx and HOx chemistry were performed to explore the effects of dynamics on chemistry in wakes of ages from a few seconds to several minutes. Dilution plays an important basic role in the NOx-O3 chemistry in the wake, while a more interesting interaction between the chemistry and dynamics occurs for the HOx species. These simulation results are compared with published measurements of OH and HO2 within a B757 wake under cruise conditions in the upper troposphere taken during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) mission in May 1996. The simulation provides a much finer grained representation of the chemistry and dynamics of the early wake than is possible from the 1 s data samples taken in situ. The comparison suggests that the previously reported discrepancy of up to a factor of 20 - 50 between the SUCCESS measurements of the [HO2]/[OH] ratio and that predicted by simplified theoretical computations is due to the combined effects of large mixing rates around the wake plume edges and averaging over volumes containing large species fluctuations. The results demonstrate the feasibility of using three-dimensional unsteady large-eddy simulations with coupled chemistry to study such phenomena.
Spin-charge coupled dynamics driven by a time-dependent magnetization
NASA Astrophysics Data System (ADS)
Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo
2017-03-01
The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.
NASA Astrophysics Data System (ADS)
Auersch, Lutz
2015-01-01
Train-induced ground vibration can be excited by wheel and track irregularities and by two kinds of irregularities of the soil, by geometric irregularities or by the spatially varying soil stiffness. For both types of irregularities, the effective track irregularity on top of the track is calculated in wavenumber domain and with wavenumber integrals. For a general multi-beam track model, the wavenumber integrals are solved numerically. The irregularities of the soil are filtered by the track when transferred from the bottom to the top of the track. The high-wavenumber irregularities are strongly reduced due to the bending stiffness of the track and the compliance of the support. In addition, soft track elements reduce directly the stiffness variation of the support. Therefore, the mitigation effect of elastic track elements for these excitation components seems to be important. For under-sleeper pads and slab tracks, calculation and measurements are presented including additional excitation components and the dynamic vehicle-track interaction, and the relevance of the excitation mechanisms is discussed based on the dynamic forces which are acting on the ground. Due to the restricted amplitudes, the parametric excitation by the stiffness variation seems to be less important than the geometric irregularities. The calculations yield the correct trends of the measurements and many details of the measured ballast, slab, and under-sleeper-pad tracks.
Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.
Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind
2018-01-26
Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Long-term influence of asteroids on planet longitudes and chaotic dynamics of the solar system
NASA Astrophysics Data System (ADS)
Woillez, E.; Bouchet, F.
2017-11-01
Over timescales much longer than an orbital period, the solar system exhibits large-scale chaotic behavior and can thus be viewed as a stochastic dynamical system. The aim of the present paper is to compare different sources of stochasticity in the solar system. More precisely we studied the importance of the long term influence of asteroids on the chaotic dynamics of the solar system. We show that the effects of asteroids on planets is similar to a white noise process, when those effects are considered on a timescale much larger than the correlation time τϕ ≃ 104 yr of asteroid trajectories. We computed the timescale τe after which the effects of the stochastic evolution of the asteroids lead to a loss of information for the initial conditions of the perturbed Laplace-Lagrange secular dynamics. The order of magnitude of this timescale is precisely determined by theoretical argument, and we find that τe ≃ 104 Myr. Although comparable to the full main-sequence lifetime of the sun, this timescale is considerably longer than the Lyapunov time τI ≃ 10 Myr of the solar system without asteroids. This shows that the external sources of chaos arise as a small perturbation in the stochastic secular behavior of the solar system, rather due to intrinsic chaos.
Sound and vision: visualization of music with a soap film
NASA Astrophysics Data System (ADS)
Gaulon, C.; Derec, C.; Combriat, T.; Marmottant, P.; Elias, F.
2017-07-01
A vertical soap film, freely suspended at the end of a tube, is vibrated by a sound wave that propagates in the tube. If the sound wave is a piece of music, the soap film ‘comes alive’: colours, due to iridescences in the soap film, swirl, split and merge in time with the music (see the snapshots in figure 1 below). In this article, we analyse the rich physics behind these fascinating dynamical patterns: it combines the acoustic propagation in a tube, the light interferences, and the static and dynamic properties of soap films. The interaction between the acoustic wave and the liquid membrane results in capillary waves on the soap film, as well as non-linear effects leading to a non-oscillatory flow of liquid in the plane of the film, which induces several spectacular effects: generation of vortices, diphasic dynamical patterns inside the film, and swelling of the soap film under certain conditions. Each of these effects is associated with a characteristic time scale, which interacts with the characteristic time of the music play. This article shows the richness of those characteristic times that lead to dynamical patterns. Through its artistic interest, the experiments presented in this article provide a tool for popularizing and demonstrating science in the classroom or to a broader audience.
The fabrication of flip-covered plasmonic nanostructure surfaces with enhanced wear resistance
NASA Astrophysics Data System (ADS)
Jung, Joo-Yun; Sung, Sang-Keun; Kim, Kwang-Seop; Cheon, So-Hui; Lee, Jihye; Choi, Jun-Hyuk; Lee, Eungsug
2017-01-01
Exposed nanostructure surfaces often suffer from external dynamic wear, particularly when used in human interaction, resulting in surface defects and the degradation of plasmonic resonance properties particularly in terms of transmittance extinction rate and peak-to-valley slope. In this work, a method for the fabrication of flip-covered silver nanostructure-arrayed surfaces is shown to enhance wear resistance. Selectively transferred silver dot and silver webbed-trench exposed reference samples were fabricated by metal nanoimprint, and flip-covered samples were created by flipping and bonding reference samples onto a PET film coated with an adhesive layer. The samples' spectral transmittance was measured before and after a dynamic wear test. Some spectral shift was observed due to the change in refractive index of the surrounding media, but this was not as significant as the effects of the other chosen geometry factors. It was found that dynamic wear had a greater effect on the plasmonic resonance behavior of the exposed samples than in those that had been flip-covered. This suggests that flip-covering may be an effective strategy for the protection of plasmonic resonators against dynamic wear. It is expected that the slight variations in spectral transmittance could be compensated through proper tuning of the sample geometry.
Active polar two-fluid macroscopic dynamics.
Pleiner, H; Svenšek, D; Brand, H R
2013-11-01
We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria as well as shoals of fish, flocks of birds and migrating insects. Due to the fact that the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units, which are typically biological in nature. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to a second velocity as a variable. We analyze in detail how the macroscopic behavior of an active system with a polar dynamic preferred direction compares to other systems with two velocities including immiscible liquids and electrically neutral quantum liquids such as superfluid (4)He and (3)He . We critically discuss changes in the normal mode spectrum when comparing uncharged superfluids, immiscible liquids and active system with a polar dynamic preferred direction. We investigate the influence of a macroscopic hand (collective effects of chirality) on the macroscopic behavior of such active media.
Visual search for facial expressions of emotions: a comparison of dynamic and static faces.
Horstmann, Gernot; Ansorge, Ulrich
2009-02-01
A number of past studies have used the visual search paradigm to examine whether certain aspects of emotional faces are processed preattentively and can thus be used to guide attention. All these studies presented static depictions of facial prototypes. Emotional expressions conveyed by the movement patterns of the face have never been examined for their preattentive effect. The present study presented for the first time dynamic facial expressions in a visual search paradigm. Experiment 1 revealed efficient search for a dynamic angry face among dynamic friendly faces, but inefficient search in a control condition with static faces. Experiments 2 to 4 suggested that this pattern of results is due to a stronger movement signal in the angry than in the friendly face: No (strong) advantage of dynamic over static faces is revealed when the degree of movement is controlled. These results show that dynamic information can be efficiently utilized in visual search for facial expressions. However, these results do not generally support the hypothesis that emotion-specific movement patterns are always preattentively discriminated. (c) 2009 APA, all rights reserved
NASA Technical Reports Server (NTRS)
Acosta, Waldo A.; Chang, Clarence T.
2016-01-01
An experimental investigation of the combustion dynamic characteristics of a research multi-element lean direct injection (LDI) combustor under simulated gas turbine conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flametube combustion chamber under acoustically isolated conditions. A nine-point swirl venturi lean direct injection (SV-LDI) geometry was evaluated at inlet pressures up to 2,413 kPa and non-vitiated air temperatures up to 867 K. The equivalence ratio was varied to obtain adiabatic flame temperatures between 1388 K and 1905 K. Dynamic pressure measurements were taken upstream of the SV-LDI, in the combustion zone and downstream of the exit nozzle. The measurements showed that combustion dynamics were fairly small when the fuel was distributed uniformly and mostly due to fluid dynamics effects. Dynamic pressure fluctuations larger than 40 kPa at low frequencies were measured at 653 K inlet temperature and 1117 kPa inlet pressure when fuel was shifted and the pilot fuel injector equivalence ratio was increased to 0.72.
NASA Astrophysics Data System (ADS)
Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.
2012-07-01
The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.
First-principles variational formulation of polarization effects in geometrical optics
Ruiz, D. E.; Dodin, I. Y.
2015-10-02
The propagation of electromagnetic waves in isotropic dielectric media with local dispersion is studied under the assumption of small but nonvanishing λ/l, where λ is the wavelength and l is the characteristic inhomogeneity scale. It is commonly known that, due to nonzero λ/l, such waves can experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the wave "spin". The present work reports how Lagrangians describing these effects can be deduced, rather than guessed, within a strictly classical theory. In addition to the commonly known ray Lagrangian that features the Berry connection, amore » simple alternative Lagrangian is proposed that naturally has a canonical form. The presented theory captures not only the eigenray dynamics but also the dynamics of continuous-wave fields and rays with mixed polarization, or "entangled" waves. In conclusion, the calculation assumes stationary lossless media with isotropic local dispersion, but generalizations to other media are straightforward.« less
Trapping photons on the line: controllable dynamics of a quantum walk
NASA Astrophysics Data System (ADS)
Xue, Peng; Qin, Hao; Tang, Bao
2014-04-01
Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.
Deuteration as a Means to Tune Crystallinity of Conducting Polymers
Jakowski, Jacek; Huang, Jingsong; Garashchuk, Sophya; ...
2017-08-25
The effects of deuterium isotope substitution on conjugated polymer chain stacking of poly(3-hexylthiophene) is studied in this paper experimentally by X-ray diffraction (XRD) in combination with gel permeation chromatography and theoretically using density functional theory and quantum molecular dynamics. For four P3HT materials with different levels of deuteration (pristine, main-chain deuterated, side-chain deuterated, and fully deuterated), the XRD measurements show that main-chain thiophene deuteration significantly reduces crystallinity, regardless of the side-chain deuteration. The reduction of crystallinity due to the main-chain deuteration is a quantum nuclear effect resulting from a static zero-point vibrational energy combined with a dynamic correlation of themore » dipole fluctuations. The quantum molecular dynamics simulations confirm the interchain correlation of the proton–proton and deuteron–deuteron motions but not of the proton–deuteron motion. Thus and finally, isotopic purity is an important factor affecting stability and properties of conjugated polymer crystals, which should be considered in the design of electronic and spintronic devices.« less
Deuteration as a Means to Tune Crystallinity of Conducting Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakowski, Jacek; Huang, Jingsong; Garashchuk, Sophya
The effects of deuterium isotope substitution on conjugated polymer chain stacking of poly(3-hexylthiophene) is studied in this paper experimentally by X-ray diffraction (XRD) in combination with gel permeation chromatography and theoretically using density functional theory and quantum molecular dynamics. For four P3HT materials with different levels of deuteration (pristine, main-chain deuterated, side-chain deuterated, and fully deuterated), the XRD measurements show that main-chain thiophene deuteration significantly reduces crystallinity, regardless of the side-chain deuteration. The reduction of crystallinity due to the main-chain deuteration is a quantum nuclear effect resulting from a static zero-point vibrational energy combined with a dynamic correlation of themore » dipole fluctuations. The quantum molecular dynamics simulations confirm the interchain correlation of the proton–proton and deuteron–deuteron motions but not of the proton–deuteron motion. Thus and finally, isotopic purity is an important factor affecting stability and properties of conjugated polymer crystals, which should be considered in the design of electronic and spintronic devices.« less
Spatio-temporal dynamics of turbulence trapped in geodesic acoustic modes
NASA Astrophysics Data System (ADS)
Sasaki, M.; Kobayashi, T.; Itoh, K.; Kasuya, N.; Kosuga, Y.; Fujisawa, A.; Itoh, S.-I.
2018-01-01
The spatio-temporal dynamics of turbulence with the interaction of geodesic acoustic modes (GAMs) are investigated, focusing on the phase-space structure of turbulence, where the phase-space consists of real-space and wavenumber-space. Based on the wave-kinetic framework, the coupling equation between the GAM and the turbulence is numerically solved. The turbulence trapped by the GAM velocity field is obtained. Due to the trapping effect, the turbulence intensity increases where the second derivative of the GAM velocity (curvature of the GAM) is negative. While, in the positive-curvature region, the turbulence is suppressed. Since the trapped turbulence propagates with the GAMs, this relationship is sustained spatially and temporally. The dynamics of the turbulence in the wavenumber spectrum are converted in the evolution of the frequency spectrum, and the simulation result is compared with the experimental observation in JFT-2M tokamak, where the similar patterns are obtained. The turbulence trapping effect is a key to understand the spatial structure of the turbulence in the presence of sheared flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sule, Nishant; Yifat, Yuval; Gray, Stephen K.
We examine the formation and concomitant rotation of electrodynamically bound dimers (EBD) of 150nm diameter Ag nanoparticles trapped in circularly polarized focused Gaussian beams. The rotation frequency of an EBD increases linearly with the incident beam power, reaching high mean values of ~ 4kHz for a relatively low incident power of 14mW. Using a coupled-dipole/effective polarizability model, we reveal that retardation of the scattered fields and electrodynamic interactions can lead to a “negative torque” causing rotation of the EBD in the direction opposite to that of the circular polarization. This intriguing opposite-handed rotation due to negative torque is clearly demonstratedmore » using electrodynamics-Langevin dynamics simulations by changing particle separations and thus varying the retardation effects. Finally, negative torque is also demonstrated in experiments from statistical analysis of the EBD trajectories. These results demonstrate novel rotational dynamics of nanoparticles in optical matter using circular polarization and open a new avenue to control orientational dynamics through coupling to interparticle separation.« less
Dynamic node immunization for restraint of harmful information diffusion in social networks
NASA Astrophysics Data System (ADS)
Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong
2018-08-01
To restrain the spread of harmful information is crucial for the healthy and sustainable development of social networks. We address the problem of restraining the spread of harmful information by immunizing nodes in the networks. Previous works have developed methods based on the network topology or studied how to immunize nodes in the presence of initial infected nodes. These static methods, in which nodes are immunized at once, may have poor performance in the certain situation due to the dynamics of diffusion. To tackle this problem, we introduce a new dynamic immunization problem of immunizing nodes during the process of the diffusion in this paper. We formulate the problem and propose a novel heuristic algorithm by dealing with two sub-problems: (1) how to select a node to achieve the best immunization effect at the present time? (2) whether the selected node should be immunized right now? Finally, we demonstrate the effectiveness of our algorithm through extensive experiments on various real datasets.
Pressure effect on micellization of non-ionic surfactant Triton X-100
NASA Astrophysics Data System (ADS)
Espinosa, Yanis R.; Caffarena, Ernesto R.; Martínez, Yanina Berrueta; Grigera, J. Raúl
2018-02-01
Micellar aggregates can be arranged in new types of conformational assemblies when they are isotropically compressed. Thus, the pressure effects in the underlying fundamental interactions leading to self-assembly of micellar aggregates can be represented by changes in the phase boundaries with increasing pressure. In this paper, we have employed molecular dynamics simulations to study the self-assembly of micelles composed of the non-ionic surfactant Triton X-100 at the atomic scale, monitoring the changes in the solvation dynamics when the micelles are subjected to a wide range of hydrostatic pressures. The computational molecular model was capable of self-assembling and forming a non-ionic micelle, which subsequently was coupled to a high-pressure barostat producing a geometric transition of the micelle due to changes in the solvation dynamics. Accordingly, under a high pressure regime, the hydrogen bonds are redistributed, the water density is modified, and water acts as an unstructured liquid, capable of penetrating into the micelle.
Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya
2016-01-01
Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices. PMID:28004825
NASA Astrophysics Data System (ADS)
Civitani, Marta; Djalal, Sophie; Chipaux, Remi
2009-08-01
In a X-ray telescope in formation flight configuration, the optics and the focal-plane detectors reside in two different spacecraft. The dynamics of the detector spacecraft (DSC) with respect to the mirror spacecraft (MSC, carrying the mirrors of the telescope) changes continuously the arrival positions of the photons on the detectors. In this paper we analyze this issue for the case of the SIMBOL-X hard X-ray mission, extensively studied by CNES and ASI until 2009 spring. Due to the existing gaps between pixels and between detector modules, the dynamics of the system may produce a relevant photometric effect. The aim of this work is to present the optimization study of the control-law algorithm with respect to the detector's geometry. As the photometric effect may vary depending upon position of the source image on the detector, the analysis-carried out using the simuLOS (INAF, CNES, CEA) simulation tool-is extended over the entire SIMBOL-X field of view.
Dynamic observation on the growth behaviors in manganese silicide/silicon nanowire heterostructures.
Hsieh, Yu-Hsun; Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Lin, Wan-Jhen; Wu, Wen-Wei
2015-02-07
Metal silicide nanowires (NWs) are very interesting materials with diverse physical properties. Among the silicides, manganese silicide nanostructures have attracted wide attention due to their several potential applications, including in microelectronics, optoelectronics, spintronics and thermoelectric devices. In this work, we exhibited the formation of pure manganese silicide and manganese silicide/silicon nanowire heterostructures through solid state reaction with line contacts between manganese pads and silicon NWs. Dynamical process and phase characterization were investigated by in situ transmission electron microscopy (in situ TEM) and spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), respectively. The growth dynamics of the manganese silicide phase under thermal effects were systematically studied. Additionally, Al2O3, serving as the surface oxide, altered the growth behavior of the MnSi nanowire, enhancing the silicide/Si epitaxial growth and effecting the diffusion process in the silicon nanowire as well. In addition to fundamental science, this significant study has great potential in advancing future processing techniques in nanotechnology and related applications.
Cordeiro, Taynara Cristina; Barrella, Walter; Butturi-Gomes, Davi; Petrere Júnior, Miguel
2018-03-01
Given the complexity of the dynamics in litter reposition, our objective was modeling the possible main and interaction effects of tidal oscillations, seasons of the year and the moon phases over the solid waste in Santos beaches. A total of 80 collections were carried out using quadrat sampling, from which we classified, counted and weighed all residue items. We fitted mixed Hurdle models to the output datasets and performed hypotheses tests based on this framework. We found plastic to be the most abundant residue in all seasons, moon phases and tides, followed by Styrofoam and wood. Our models suggest the strongest effect was due to seasonal variations, which, in turn, may be related to different human activities. Although the dynamics of different components showed independency of all interaction structures, plastics depended on the interaction of tide and season, whose impact over estuarine life and ecosystem services shall be further investigated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lai, Chen-Yen; Chien, Chih-Chun
2016-01-01
While batteries offer electronic source and sink for electronic devices, atomic analogues of source and sink and their theoretical descriptions have been a challenge in cold-atom systems. Here we consider dynamically emerged local potentials as controllable source and sink for bosonic atoms. Although a sink potential can collect bosons in equilibrium and indicate its usefulness in the adiabatic limit, sudden switching of the potential exhibits low effectiveness in pushing bosons into it. This is due to conservation of energy and particle in isolated systems such as cold atoms. By varying the potential depth and interaction strength, the systems can further exhibit averse response, where a deeper emerged potential attracts less bosonic atoms into it. To explore possibilities for improving the effectiveness, we investigate what types of system-environment coupling can help bring bosons into a dynamically emerged sink, and a Lindblad operator corresponding to local cooling is found to serve the purpose. PMID:27849034
Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings
NASA Astrophysics Data System (ADS)
Cunha, Americo; Soize, Christian; Sampaio, Rubens
2015-11-01
This work intends to analyze the nonlinear stochastic dynamics of drillstrings in horizontal configuration. For this purpose, it considers a beam theory, with effects of rotatory inertia and shear deformation, which is capable of reproducing the large displacements that the beam undergoes. The friction and shock effects, due to beam/borehole wall transversal impacts, as well as the force and torque induced by bit-rock interaction, are also considered in the model. Uncertainties of bit-rock interaction model are taken into account using a parametric probabilistic approach. Numerical simulations have shown that the mechanical system of interest has a very rich nonlinear stochastic dynamics, which generate phenomena such as bit-bounce, stick-slip, and transverse impacts. A study aiming to maximize the drilling process efficiency, varying drillstring velocities of translation and rotation is presented. Also, the work presents the definition and solution of two optimizations problems, one deterministic and one robust, where the objective is to maximize drillstring rate of penetration into the soil respecting its structural limits.
Comparisons of Kinematics and Dynamics Simulation Software Tools
NASA Technical Reports Server (NTRS)
Shiue, Yeu-Sheng Paul
2002-01-01
Kinematic and dynamic analyses for moving bodies are essential to system engineers and designers in the process of design and validations. 3D visualization and motion simulation plus finite element analysis (FEA) give engineers a better way to present ideas and results. Marshall Space Flight Center (MSFC) system engineering researchers are currently using IGRIP from DELMIA Inc. as a kinematic simulation tool for discrete bodies motion simulations. Although IGRIP is an excellent tool for kinematic simulation with some dynamic analysis capabilities in robotic control, explorations of other alternatives with more powerful dynamic analysis and FEA capabilities are necessary. Kinematics analysis will only examine the displacement, velocity, and acceleration of the mechanism without considering effects from masses of components. With dynamic analysis and FEA, effects such as the forces or torques at the joint due to mass and inertia of components can be identified. With keen market competition, ALGOR Mechanical Event Simulation (MES), MSC visualNastran 4D, Unigraphics Motion+, and Pro/MECHANICA were chosen for explorations. In this study, comparisons between software tools were presented in terms of following categories: graphical user interface (GUI), import capability, tutorial availability, ease of use, kinematic simulation capability, dynamic simulation capability, FEA capability, graphical output, technical support, and cost. Propulsion Test Article (PTA) with Fastrac engine model exported from IGRIP and an office chair mechanism were used as examples for simulations.
Impact of jamming on collective cell migration
NASA Astrophysics Data System (ADS)
Nnetu, Kenechukwu David; Knorr, Melanie; Pawlizak, Steve; Fuhs, Thomas; Zink, Mareike; KäS, Josef A.
2012-02-01
Multi-cellular migration plays an important role in physiological processes such as embryogenesis, cancer metastasis and tissue repair. During migration, single cells undergo cycles of extension, adhesion and retraction resulting in morphological changes. In a confluent monolayer, there are inter-cellular interactions and crowding, however, the impact of these interactions on the dynamics and elasticity of the monolayer at the multi-cellular and single cell level is not well understood. Here we study the dynamics of a confluent epithelial monolayer by simultaneously measuring cell motion at the multi-cellular and single cell level for various cell densities and tensile elasticity. At the multi-cellular level, the system exhibited spatial kinetic transitions from isotropic to anisotropic migration on long times and the velocity of the monolayer decreased with increasing cell density. Moreover, the dynamics was spatially and temporally heterogeneous. Interestingly, the dynamics was also heterogeneous in wound-healing assays and the correlation length was fitted by compressed exponential. On the single cell scale, we observed transient caging effects with increasing cage rearrangement times as the system age due to an increase in density. Also, the density dependent elastic modulus of the monolayer scaled as a weak power law. Together, these findings suggest that caging effects at the single cell level initiates a slow and heterogeneous dynamics at the multi-cellular level which is similar to the glassy dynamics of deformable colloidal systems.
Odd–even structural sensitivity on dynamics in network-forming ionic liquids
Yang, Ke; Cai, Zhikun; Tyagi, Madhusudan; ...
2016-04-13
Understanding structural sensitivity on properties of materials is an important step toward the rational design of materials. As a compelling case of sensitive structure-property relationship, an odd-even effect refers to the alternating trend of physical or chemical properties on odd/even number of repeating structural units. In crystalline or semi-crystalline materials, such odd-even variations of macroscopic properties emerge as manifestations of differences in the periodic packing patterns of molecules. Therefore, due to the lack of long-range order, such odd-even phenomenon is not expected in liquids. Herein, we report the discovery of a remarkable odd-even effect of the dynamical properties in themore » liquid phase, which challenges the traditional periodic packing explanations. In a class of network-forming ionic liquid (NIL), using incoherent quasi-elastic neutron scattering measurements, we measured the dynamical properties including the diffusion coefficient and the rotational relaxation time. These dynamical properties showed pronounced alternating trends with increased number of methylene (–CH 2– ) groups in the backbone. Meanwhile, the structure factor S(Q) showed no long-range periodic packing of molecules, while the pair distribution function g(r) revealed subtle differences in the local molecular morphology. As a result, the observed dynamical odd-even phenomenon in liquids showed that profound dynamical changes originate from subtle local structural differences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K.
2016-01-15
A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentialsmore » are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.« less
Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove
NASA Technical Reports Server (NTRS)
Hartshorn, Fletcher
2011-01-01
Aerodynamic computational fluid dynamics analysis of a wing glove attached to one wing of a business jet is presented and discussed. A wing glove placed on only one wing will produce asymmetric aerodynamic effects that will result in overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to ensure that the wing glove does not have a significant effect on the aircraft flight characteristics. TRANAIR (Calmar Research Corporation, Cato, New York), a nonlinear full potential solver, and Star-CCM+ (CD-adapco, Melville, New York), a finite volume full Reynolds-averaged Navier-Stokes computational fluid dynamics solver, are used to analyze a full aircraft with and without the glove at a variety of flight conditions, aircraft configurations, and angles of attack and sideslip. Changes in the aircraft lift, drag, and side force along with roll, pitch, and yaw are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove are discussed. Results show that the glove produces only small changes in the aerodynamic forces and moments acting on the aircraft, most of which are insignificant.
Dynamics of early planetary gear trains
NASA Technical Reports Server (NTRS)
August, R.; Kasuba, R.; Frater, J. L.; Pintz, A.
1984-01-01
A method to analyze the static and dynamic loads in a planetary gear train was developed. A variable-variable mesh stiffness (VVMS) model was used to simulate the external and internal spur gear mesh behavior, and an equivalent conventional gear train concept was adapted for the dynamic studies. The analysis can be applied either involute or noninvolute spur gearing. By utilizing the equivalent gear train concept, the developed method may be extended for use for all types of epicyclic gearing. The method is incorporated into a computer program so that the static and dynamic behavior of individual components can be examined. Items considered in the analysis are: (1) static and dynamic load sharing among the planets; (2) floating or fixed Sun gear; (3) actual tooth geometry, including errors and modifications; (4) positioning errors of the planet gears; (5) torque variations due to noninvolute gear action. A mathematical model comprised of power source, load, and planetary transmission is used to determine the instantaneous loads to which the components are subjected. It considers fluctuating output torque, elastic behavior in the system, and loss of contact between gear teeth. The dynamic model has nine degrees of freedom resulting in a set of simultaneous second order differential equations with time varying coefficients, which are solved numerically. The computer program was used to determine the effect of manufacturing errors, damping and component stiffness, and transmitted load on dynamic behavior. It is indicated that this methodology offers the designer/analyst a comprehensive tool with which planetary drives may be quickly and effectively evaluated.
Zhu, Zhiwei; Zhou, Xiaoqin
2012-01-01
The main contribution of this paper is the development of a linearized model for describing the dynamic hysteresis behaviors of piezoelectrically actuated fast tool servo (FTS). A linearized hysteresis force model is proposed and mathematically described by a fractional order differential equation. Combining the dynamic modeling of the FTS mechanism, a linearized fractional order dynamic hysteresis (LFDH) model for the piezoelectrically actuated FTS is established. The unique features of the LFDH model could be summarized as follows: (a) It could well describe the rate-dependent hysteresis due to its intrinsic characteristics of frequency-dependent nonlinear phase shifts and amplitude modulations; (b) The linearization scheme of the LFDH model would make it easier to implement the inverse dynamic control on piezoelectrically actuated micro-systems. To verify the effectiveness of the proposed model, a series of experiments are conducted. The toolpaths of the FTS for creating two typical micro-functional surfaces involving various harmonic components with different frequencies and amplitudes are scaled and employed as command signals for the piezoelectric actuator. The modeling errors in the steady state are less than ±2.5% within the full span range which is much smaller than certain state-of-the-art modeling methods, demonstrating the efficiency and superiority of the proposed model for modeling dynamic hysteresis effects. Moreover, it indicates that the piezoelectrically actuated micro systems would be more suitably described as a fractional order dynamic system.
Raqeeb, Abdul; Solomon, Dennis; Paré, Peter D; Seow, Chun Y
2010-11-01
Airway smooth muscle (ASM) is able to generate maximal force under static conditions, and this isometric force can be maintained over a large length range due to length adaptation. The increased force at short muscle length could lead to excessive narrowing of the airways. Prolonged exposure of ASM to submaximal stimuli also increases the muscle's ability to generate force in a process called force adaptation. To date, the effects of length and force adaptation have only been demonstrated under static conditions. In the mechanically dynamic environment of the lung, ASM is constantly subjected to periodic stretches by the parenchyma due to tidal breathing and deep inspiration. It is not known whether force recovery due to muscle adaptation to a static environment could occur in a dynamic environment. In this study the effect of length oscillation mimicking tidal breathing and deep inspiration was examined. Force recovery after a length change was attenuated in the presence of length oscillation, except at very short lengths. Force adaptation was abolished by length oscillation. We conclude that in a healthy lung (with intact airway-parenchymal tethering) where airways are not allowed to narrow excessively, large stretches (associated with deep inspiration) may prevent the ability of the muscle to generate maximal force that would occur under static conditions irrespective of changes in mean length; mechanical perturbation on ASM due to tidal breathing and deep inspiration, therefore, is the first line of defense against excessive bronchoconstriction that may result from static length and force adaptation.
Dynamic and Inherent B0 Correction for DTI Using Stimulated Echo Spiral Imaging
Avram, Alexandru V.; Guidon, Arnaud; Truong, Trong-Kha; Liu, Chunlei; Song, Allen W.
2013-01-01
Purpose To present a novel technique for high-resolution stimulated echo (STE) diffusion tensor imaging (DTI) with self-navigated interleaved spirals (SNAILS) readout trajectories that can inherently and dynamically correct for image artifacts due to spatial and temporal variations in the static magnetic field (B0) resulting from eddy currents, tissue susceptibilities, subject/physiological motion, and hardware instabilities. Methods The Hahn spin echo formed by the first two 90° radio-frequency pulses is balanced to consecutively acquire two additional images with different echo times (TE) and generate an inherent field map, while the diffusion-prepared STE signal remains unaffected. For every diffusion-encoding direction, an intrinsically registered field map is estimated dynamically and used to effectively and inherently correct for off-resonance artifacts in the reconstruction of the corresponding diffusion-weighted image (DWI). Results After correction with the dynamically acquired field maps, local blurring artifacts are specifically removed from individual STE DWIs and the estimated diffusion tensors have significantly improved spatial accuracy and larger fractional anisotropy. Conclusion Combined with the SNAILS acquisition scheme, our new method provides an integrated high-resolution short-TE DTI solution with inherent and dynamic correction for both motion-induced phase errors and off-resonance effects. PMID:23630029
Chng, Choon-Peng; Yang, Lee-Wei
2008-01-01
Molecular dynamics (MD) simulation has remained the most indispensable tool in studying equilibrium/non-equilibrium conformational dynamics since its advent 30 years ago. With advances in spectroscopy accompanying solved biocomplexes in growing sizes, sampling their dynamics that occur at biologically interesting spatial/temporal scales becomes computationally intractable; this motivated the use of coarse-grained (CG) approaches. CG-MD models are used to study folding and conformational transitions in reduced resolution and can employ enlarged time steps due to the absence of some of the fastest motions in the system. The Boltzmann-Inversion technique, heavily used in parameterizing these models, provides a smoothed-out effective potential on which molecular conformation evolves at a faster pace thus stretching simulations into tens of microseconds. As a result, a complete catalytic cycle of HIV-1 protease or the assembly of lipid-protein mixtures could be investigated by CG-MD to gain biological insights. In this review, we survey the theories developed in recent years, which are categorized into Folding-based and Molecular-Mechanics-based. In addition, physical bases in the selection of CG beads/time-step, the choice of effective potentials, representation of solvent, and restoration of molecular representations back to their atomic details are systematically discussed. PMID:19812774
NASA Technical Reports Server (NTRS)
Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt;
2016-01-01
We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.
Sun, Lifan; Ji, Baofeng; Lan, Jian; He, Zishu; Pu, Jiexin
2017-01-01
The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects’ extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches. PMID:28937629
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghattyvenkatakrishna, Pavan K; Carri, Gustavo A.
We present a Molecular Dynamics simulation study of the effect of trehalose concentration on the structure and dynamics of individual proteins immersed in trehalose/water mixtures. Hen Egg White Lysozyme is used in this study and trehalose concentrations of 0%, 10%, 20%, 30% and 100% by weight are explored. Surprisingly, we have found that changes in trehalose concentration do not change the global structural characteristics of the protein as measured by standard quantities like the mean square deviation, radius of gyration, solvent accessible surface area, inertia tensor and asphericity. Only in the limit of pure trehalose these metrics change significantly. Specifically,more » we found that the protein is compressed by 2% when immersed in pure trehalose. At the amino acid level there is noticeable rearrangement of the surface residues due to the change in polarity of the surrounding environment with the addition of trehalose. From a dynamic perspective, our computation of the Incoherent Intermediate Scattering Function shows that the protein slows down with increasing trehalose concentration; however, this slowdown is not monotonic. Finally, we also report in-depth results for the hydration layer around the protein including its structure, hydrogen- bonding characteristics and dynamic behavior at different length scales.« less
Analysis on pseudo excitation of random vibration for structure of time flight counter
NASA Astrophysics Data System (ADS)
Wu, Qiong; Li, Dapeng
2015-03-01
Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.
Convection Models for Ice-Water System: Dynamical Investigation of Phase Transition
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2012-12-01
Ever since planetary missions of Voyager and Galileo revealed a dynamically altered surface of the icy moon Europa, a possible subsurface ocean under an icy shell has been speculated and surface features have been interpreted from an interior dynamics perspective. The physics of convection in a two phase water-ice system is governed by a wide set of physical parameters that include melting viscosity of ice, the variation of viscosity due to pressure and temperature, temperature contrast across and tidal heating within the system, and the evolving thickness of each layer. Due to the extreme viscosity contrast between liquid water and solid ice, it is not feasible to model the entire system to study convection. However, using a low-viscosity proxy (higher viscosity than the liquid water but much lower than solid ice) for the liquid phase provides a convenient approximation of the system, and allows for a relatively realistic representation of convection within the ice layer while also providing a self-consistent ice layer thickness that is a function of the thermal state of the system. In order to apply this method appropriately, we carefully examine the upper bound of viscosity required for the low-viscosity proxy to adequately represent the liquid phase. We identify upper bounds on the viscosity of the proxy liquid such that convective dynamics of the ice are not affected by further reductions of viscosity. Furthermore, we investigate how the temperature contrast across the system and viscosity contrast between liquid and ice control ice layer thickness. We also investigate ice shell thickening as a function of cooling, particularly how viscosity affects the conduction-to-convection transition within the ice shell. Finally, we present initial results that investigate the effects that latent heat of fusion (due to the ice-water phase transition) has on ice convection.
Teodoro, Grazielle Sales; van den Berg, Eduardo; Arruda, Rafael
2013-01-01
Mistletoes are aerial hemiparasitic plants which occupy patches of favorable habitat (host trees) surrounded by unfavorable habitat and may be possibly modeled as a metapopulation. A metapopulation is defined as a subdivided population that persists due to the balance between colonization and extinction in discrete habitat patches. Our aim was to evaluate the dynamics of the mistletoe Psittacanthus robustus and its host Vochysia thyrsoidea in three Brazilian savanna areas using a metapopulation approach. We also evaluated how the differences in terms of fire occurrence affected the dynamic of those populations (two areas burned during the study and one was fire protected). We monitored the populations at six-month intervals. P. robustus population structure and dynamics met the expected criteria for a metapopulation: i) the suitable habitats for the mistletoe occur in discrete patches; (ii) local populations went extinct during the study and (iii) colonization of previously non-occupied patches occurred. The ratio of occupied patches decreased in all areas with time. Local mistletoe populations went extinct due to two different causes: patch extinction in area with no fire and fire killing in the burned areas. In a burned area, the largest decrease of occupied patch ratios occurred due to a fire event that killed the parasites without, however, killing the host trees. The greatest mortality of V. thyrsoidea occurred in the area without fire. In this area, all the dead trees supported mistletoe individuals and no mortality was observed for parasite-free trees. Because P. robustus is a fire sensitive species and V. thyrsoidea is fire tolerant, P. robustus seems to increase host mortality, but its effect is lessened by periodic burning that reduces the parasite loads. PMID:23776554
NASA Astrophysics Data System (ADS)
Simmel, Martin; Bühl, Johannes; Ansmann, Albert; Tegen, Ina
2014-05-01
Over Leipzig, altocumulus clouds are frequently observed using a suite of remote sensing instruments. These observations cover a wide range of heights, temperatures, and microphysical properties of the clouds ranging from purely liquid to heavily frozen. For the current study, two cases were chosen to test the sensitivity of these clouds with respect to several microphysical and dynamical parameters such as aerosol properties (CCN, IN), ice particle shape as well as turbulence. The mixed-phase spectral microphysical model SPECS was coupled to a dynamical model of the Asai-Kasahara type resulting in the model system AK-SPECS. The relatively simple dynamics allows for a fine vertical resolution needed for the rather shallow cloud layers observed. Additionally, the proper description of hydrometeor sedimentation is important especially for the fast growing ice crystals to realistically capture their interaction with the vapour and liquid phase (Bergeron-Findeisen process). Since the focus is on the cloud microphysics, the dynamics in terms of vertical velocity profile is prescribed for the model runs and the feedback of the microphysics on dynamics by release or consumption of latent heat due to phase transfer is not taken into account. The microphysics focuses on (1) ice particle shape allowing hexagonal plates and columns with size-dependant axis ratios and (2) the ice nuclei (IN) budget realized with a prognostic temperature resolved field of potential IN allowing immersion freezing only when active IN and supercooled drops above a certain size threshold are present within a grid cell. Sensitivity studies show for both cases that ice particle shape seems to have the major influence on ice mass formation under otherwise identical conditions. This is due to the effect (1) on terminal fall velocity of the individual ice particle allowing for longer presence times in conditions supersaturated with respect to ice and (2) on water vapour deposition which is enhanced due to increased capacitance because of deviation from the spherical shape.
NASA Astrophysics Data System (ADS)
Fernandez-del-Rincon, A.; Garcia, P.; Diez-Ibarbia, A.; de-Juan, A.; Iglesias, M.; Viadero, F.
2017-02-01
Gear transmissions remain as one of the most complex mechanical systems from the point of view of noise and vibration behavior. Research on gear modeling leading to the obtaining of models capable of accurately reproduce the dynamic behavior of real gear transmissions has spread out the last decades. Most of these models, although useful for design stages, often include simplifications that impede their application for condition monitoring purposes. Trying to filling this gap, the model presented in this paper allows us to simulate gear transmission dynamics including most of these features usually neglected by the state of the art models. This work presents a model capable of considering simultaneously the internal excitations due to the variable meshing stiffness (including the coupling among successive tooth pairs in contact, the non-linearity linked with the contacts between surfaces and the dissipative effects), and those excitations consequence of the bearing variable compliance (including clearances or pre-loads). The model can also simulate gear dynamics in a realistic torque dependent scenario. The proposed model combines a hybrid formulation for calculation of meshing forces with a non-linear variable compliance approach for bearings. Meshing forces are obtained by means of a double approach which combines numerical and analytical aspects. The methodology used provides a detailed description of the meshing forces, allowing their calculation even when gear center distance is modified due to shaft and bearing flexibilities, which are unavoidable in real transmissions. On the other hand, forces at bearing level were obtained considering a variable number of supporting rolling elements, depending on the applied load and clearances. Both formulations have been developed and applied to the simulation of the vibration of a sample transmission, focusing the attention on the transmitted load, friction meshing forces and bearing preloads.
Effects of dams and geomorphic context on riparian forests of the Elwha River, Washington
Shafroth, Patrick B.; Perry, Laura G; Rose, Chanoane A; Braatne, Jeffrey H
2016-01-01
Understanding how dams affect the shifting habitat mosaic of river bottomlands is key for protecting the many ecological functions and related goods and services that riparian forests provide and for informing approaches to riparian ecosystem restoration. We examined the downstream effects of two large dams on patterns of forest composition, structure, and dynamics within different geomorphic contexts and compared them to upstream reference conditions along the Elwha River, Washington, USA. Patterns of riparian vegetation in river segments downstream of the dams were driven largely by channel and bottomland geomorphic responses to a dramatically reduced sediment supply. The river segment upstream of both dams was the most geomorphically dynamic, whereas the segment between the dams was the least dynamic due to substantial channel armoring, and the segment downstream of both dams was intermediate due to some local sediment supply. These geomorphic differences were linked to altered characteristics of the shifting habitat mosaic, including older forest age structure and fewer young Populus balsamifera subsp. trichocarpa stands in the relatively static segment between the dams compared to more extensive early-successional forests (dominated by Alnus rubra and Salix spp.) and pioneer seedling recruitment upstream of the dams. Species composition of later-successional forest communities varied among river segments as well, with greater Pseudotsuga menziesii and Tsuga heterophylla abundance upstream of both dams, Acer spp. abundance between the dams, and P. balsamifera subsp. trichocarpa and Thuja plicata abundance below both dams. Riparian forest responses to the recent removal of the two dams on the Elwha River will depend largely on channel and geomorphic adjustments to the release, transport, and deposition of the large volume of sediment formerly stored in the reservoirs, together with changes in large wood dynamics.
The statistical mechanics of human weight change
2017-01-01
Over the past 35 years there has been a near doubling in the worldwide prevalence of obesity. Body Mass Index (BMI) distributions in high-income societies have increasingly shifted rightwards, corresponding to increases in average BMI that are due to well-studied changes in the socioeconomic environment. However, in addition to this shift, BMI distributions have also shown marked changes in their particular shape over time, exhibiting an ongoing right-skewed broadening that is not well understood. Here, we compile and analyze the largest data set so far of year-over-year BMI changes. The data confirm that, on average, heavy individuals become lighter while light individuals become heavier year-over-year, and also show that year-over-year BMI evolution is characterized by fluctuations with a magnitude that is linearly proportional to BMI. We find that the distribution of human BMIs is intrinsically dynamic—due to the short-term variability of human weight—and its shape is determined by a balance between deterministic drift towards a natural set point and diffusion resulting from random fluctuations in, e.g., diet and physical activity. We formulate a stochastic mathematical model for BMI dynamics, deriving a theoretical shape for the BMI distribution and offering a mechanism that may explain the right-skewed broadening of BMI distributions over time. An extension of the base model investigates the hypothesis that peer-to-peer social influence plays a role in BMI dynamics. While including this effect improves the fit with the data, indicating that correlations in the behavior of individuals with similar BMI may be important for BMI dynamics, testing social transmission against other plausible unmodeled effects and interpretations remains the subject of future work. Implications of our findings on the dynamics of BMI distributions for public health interventions are discussed. PMID:29253025
Entanglement dynamics in a Kerr spacetime
NASA Astrophysics Data System (ADS)
Menezes, G.
2018-04-01
We consider the entanglement dynamics between two-level atoms in a rotating black hole background. In our model the two-atom system is envisaged as an open system coupled with a massless scalar field prepared in one of the physical vacuum states of interest. We employ the quantum master equation in the Born-Markov approximation in order to describe the time evolution of the atomic subsystem. We investigate two different states of motion for the atoms, namely static atoms and also stationary atoms with zero angular momentum. The purpose of this work is to expound the impact on the creation of entanglement coming from the combined action of the different physical processes underlying the Hawking effect and the Unruh-Starobinskii effect. We demonstrate that, in the scenario of rotating black holes, the degree of quantum entanglement is significantly modified due to the phenomenon of superradiance in comparison with the analogous cases in a Schwarzschild spacetime. In the perspective of a zero angular momentum observer (ZAMO), one is allowed to probe entanglement dynamics inside the ergosphere, since static observers cannot exist within such a region. On the other hand, the presence of superradiant modes could be a source for violation of complete positivity. This is verified when the quantum field is prepared in the Frolov-Thorne vacuum state. In this exceptional situation, we raise the possibility that the loss of complete positivity is due to the breakdown of the Markovian approximation, which means that any arbitrary physically admissible initial state of the two atoms would not be capable to hold, with time evolution, its interpretation as a physical state inasmuch as negative probabilities are generated by the dynamical map.
Transverse ac-driven and geometric ratchet effects for vortices in conformal crystal pinning arrays
Reichhardt, Charles; Reichhardt, Cynthia Jane Olsen
2016-02-11
A conformal pinning array is created by taking a conformal transformation of a uniform hexagonal lattice to create a structure in which the sixfold ordering of the original lattice is preserved but which has a spatial gradient in the pinning site density. With a series of conformal arrays it is possible to create asymmetric substrates, and it was previously shown that when an ac drive is applied parallel to the asymmetry direction, a pronounced ratchet effect occurs with a net dc flow of vortices in the same direction as the ac drive. Here, in this article, we show that whenmore » the ac drive is applied perpendicular to the substrate asymmetry direction, it is possible to realize a transverse ratchet effect where a net dc flow of vortices is generated perpendicular to the ac drive. The conformal transverse ratchet effect is distinct from previous versions of transverse ratchets in that it occurs due to the generation of non-Gaussian transverse vortex velocity fluctuations by the plastic motion of vortices, so that the system behaves as a noise correlation ratchet. The transverse ratchet effect is much more pronounced in the conformal arrays than in random gradient arrays and is absent in square gradient arrays due the different nature of the vortex flow in each geometry. We show that a series of reversals can occur in the transverse ratchet effect due to changes in the vortex flow across the pinning gradient as a function of vortex filling, pinning strength, and ac amplitude. We also consider the case where a dc drive applied perpendicular to the substrate asymmetry direction generates a net flow of vortices perpendicular to the dc drive, producing what is known as a geometric or drift ratchet that again arises due to non-Gaussian dynamically generated fluctuations. The drift ratchet is more efficient than the ac driven ratchet and also exhibits a series of reversals for varied parameters. Lastly, our results should be general to a wide class of systems undergoing nonequilibrium dynamics on conformal substrates, such as colloidal particles on optical traps.« less
Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J
2011-04-13
We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.
Organizational Strategy and Business Environment Effects Based on a Computation Method
NASA Astrophysics Data System (ADS)
Reklitis, Panagiotis; Konstantopoulos, Nikolaos; Trivellas, Panagiotis
2007-12-01
According to many researchers of organizational theory, a great number of problems encountered by the manufacturing firms are due to their ineffectiveness to respond to significant changes of their external environment and align their competitive strategy accordingly. From this point of view, the pursuit of the appropriate generic strategy is vital for firms facing a dynamic and highly competitive environment. In the present paper, we adopt Porter's typology to operationalise organizational strategy (cost leadership, innovative and marketing differentiation, and focus) considering changes in the external business environment (dynamism, complexity and munificence). Although simulation of social events is a quite difficult task, since there are so many considerations (not all well understood) involved, in the present study we developed a dynamic system based on the conceptual framework of strategy-environment associations.