Superradiance-tidal friction correspondence
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Kapadia, Shasvath J.; Kennefick, Daniel
2014-01-01
Since the work of Hartle in the 1970s, and the subsequent development of the membrane paradigm approach to black hole physics it has been widely accepted that superradiant scattering of gravitational waves bears strong similarities with the phenomenon of "tidal friction" (well known from Newtonian gravity) operating in binary systems of viscous material bodies. In this paper we revisit the superradiance-tidal friction analogy within the context of ultracompact relativistic bodies. We advocate that as long as these bodies have nonzero viscosity they should undergo tidal friction that can be construed as a kind of superradiant scattering from the point of view of the dynamics of an orbiting test body. In addition we consider the presence of anisotropic matter, which is required for at least some ultracompact bodies, if they are to sustain a radius very close to the gravitational radius. We find that the tidal friction/superradiance output is enhanced with increasing anisotropy and that strongly anisotropic systems exhibit an unconventional response to tidal and centrifugal forces. Finally, we make contact with the artificial system comprising a black hole with its horizon replaced by a mirror (sometimes used as a proxy for ultracompact material bodies) and discuss superradiance and tidal friction in relation to it.
A semi-analytic dynamical friction model for cored galaxies
NASA Astrophysics Data System (ADS)
Petts, J. A.; Read, J. I.; Gualandris, A.
2016-11-01
We present a dynamical friction model based on Chandrasekhar's formula that reproduces the fast inspiral and stalling experienced by satellites orbiting galaxies with a large constant density core. We show that the fast inspiral phase does not owe to resonance. Rather, it owes to the background velocity distribution function for the constant density core being dissimilar from the usually assumed Maxwellian distribution. Using the correct background velocity distribution function and our semi-analytic model from previous work, we are able to correctly reproduce the infall rate in both cored and cusped potentials. However, in the case of large cores, our model is no longer able to correctly capture core-stalling. We show that this stalling owes to the tidal radius of the satellite approaching the size of the core. By switching off dynamical friction when rt(r) = r (where rt is the tidal radius at the satellite's position), we arrive at a model which reproduces the N-body results remarkably well. Since the tidal radius can be very large for constant density background distributions, our model recovers the result that stalling can occur for Ms/Menc ≪ 1, where Ms and Menc are the mass of the satellite and the enclosed galaxy mass, respectively. Finally, we include the contribution to dynamical friction that comes from stars moving faster than the satellite. This next-to-leading order effect becomes the dominant driver of inspiral near the core region, prior to stalling.
Tidal-friction theory of the earth-moon system
NASA Technical Reports Server (NTRS)
Lyttleton, R. A.
1980-01-01
Serious errors contained in Jeffreys' (1952, 1959, 1970, 1976) discussion of tidal friction in the earth-moon system are identified and their consequences are discussed. A direct solution of the dynamical tidal equations for the couple from the earth acting upon the moon and the couple from the earth acting upon the sun, which were left unsolved by Jeffreys, is found to be incompatible with observations and the predictions of linear or quadratic friction theory, due to his failure to take into account the possible change of the moment of inertia of the earth with time in the derivation of the dynamical equations. Consideration of this factor leads to the conclusion that the earth must be contracting at a rate of 14.7 x 10 to the -11th/year, which can be accounted for only by the Ramsey theory, in which the terrestrial core is considered as a phase change rather than a change in chemical composition. Implications of this value for the rates of changes in day length and lunar distance are also indicated.
Responses of water environment to tidal flat reduction in Xiangshan Bay: Part I hydrodynamics
NASA Astrophysics Data System (ADS)
Li, Li; Guan, Weibing; Hu, Jianyu; Cheng, Peng; Wang, Xiao Hua
2018-06-01
Xiangshan Bay consists of a deep tidal channel and three shallow inlets. A large-scale tidal flat has been utilized through coastal construction. To ascertain the accumulate influences of these engineering projects upon the tidal dynamics of the channel-inlets system, this study uses FVCOM to investigate the tides and flow asymmetries of the bay, and numerically simulate the long-term variations of tidal dynamics caused by the loss of tidal flats. It was found that the reduction of tidal flat areas from 1963 to 2010 slightly dampened M2 tidal amplitudes (0.1 m, ∼6%) and advanced its phases by reducing shoaling effects, while amplified M4 tidal amplitudes (0.09 m, ∼27%) and advanced its phases by reducing bottom friction, in the inner bay. Consequently, the ebb dominance was dampened indicated by reduced absolute value of elevation skewness (∼20%) in the bay. The tides and tidal asymmetry were impacted by the locations, areas and slopes of the tidal flats through changing tidal prism, shoaling effect and bottom friction, and consequently impacted tidal duration asymmetry in the bay. Tides and tidal asymmetry were more sensitive to the tidal flat at the head of the bay than the side bank. Reduced/increased tidal flat slopes around the Tie inlet dampened the ebb dominance. Tidal flat had a role in dissipating the M4 tide rather than generating it, while the advection only play a secondary role in generating the M4 tide. The full-length tidal flats reclamation would trigger the reverse of ebb to flood dominance in the bay. This study would be applicable for similar narrow bays worldwide.
Dynamical evolution of globular-cluster systems in clusters of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzio, J.C.
1987-04-01
The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.
NASA Astrophysics Data System (ADS)
McCarthy, C.; Savage, H. M.; Cooper, R. F.; Kaczynski, T.; Nielson, M.; Domingos, A.
2017-12-01
Measuring the response of ice to dynamic, time-varying stress at appropriate planetary conditions is important to improving estimates of long-term heat flux and satellite evolution. The viscoelastic and frictional responses of ice may play important roles in tidal heating and convection, but at different time and lengthscales. We will share results from two different types of laboratory experiments on polycrystalline ice samples that reproduce tidally modulated behavior: (1) forced oscillation compression experiments that measure attenuation; and (2) periodic velocity biaxial experiments that measure friction. The former inform us about the influences of frequency, temperature, grain size, and strain history on mechanical dissipation of tidal energy in the deep interiors of icy crusts. In particular, we examine the combination of low amplitude tidal forcing with a relentless (steady-state) background stress, such as that from convection. The beauty of attenuation is that it can potentially be used as mechanical spectroscopy to identify structure and mechanisms that are otherwise shrouded by steady-state behavior. Friction experiments were conducted in a biaxial apparatus in which a central ice piece is forced between two stationary pieces at constant velocity with a sinusoidal oscillation super-imposed. The rig is fitted with a new, low-temperature cryostat ( 100 - 200 K) that also employs a vacuum. These experiments explore the dependence of frictional stability on the amplitude and frequency of the oscillating load. Additionally, small quantities of impurities that are thought to be important in icy satellites: sulfuric acid and ammonia (systems with deep eutectics with ice) are added to polycrystalline ice samples and tested at subsolidus conditions to discern when/if frictional heating can cause melting at icy satellite surface temperatures. The combination of the two types of experiments will provide valuable parameters for modeling of tidal response of planetary objects. Tidal response can potentially be measured during future missions, in which case characterization of its amplitude and phase could provide direct constraints on the internal and thermal structures of these bodies.
Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux
NASA Technical Reports Server (NTRS)
Rubincam, David P.
2015-01-01
The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.
A numerical study of local variations in tidal regime of Tagus estuary, Portugal.
Dias, João Miguel; Valentim, Juliana Marques; Sousa, Magda Catarina
2013-01-01
Tidal dynamics of shallow estuaries and lagoons is a complex matter that has attracted the attention of a large number of researchers over the last few decades. The main purpose of the present work is to study the intricate tidal dynamics of the Tagus estuary, which states as the largest estuary of the Iberian Peninsula and one of the most important wetlands in Portugal and Europe. Tagus has large areas of low depth and a remarkable geomorphology, both determining the complex propagation of tidal waves along the estuary of unknown manner. A non-linear two-dimensional vertically integrated hydrodynamic model was considered to be adequate to simulate its hydrodynamics and an application developed from the SIMSYS2D model was applied to study the tidal propagation along the estuary. The implementation and calibration of this model revealed its accuracy to predict tidal properties along the entire system. Several model runs enabled the analysis of the local variations in tidal dynamics, through the interpretation of amplitude and phase patterns of the main tidal constituents, tidal asymmetry, tidal ellipses, form factor and tidal dissipation. Results show that Tagus estuary tidal dynamics is extremely dependent on an estuarine resonance mode for the semi-diurnal constituents that induce important tidal characteristics. Besides, the estuarine coastline features and topography determines the changes in tidal propagation along the estuary, which therefore result essentially from a balance between convergence/divergence and friction and advection effects, besides the resonance effects.
A Numerical Study of Local Variations in Tidal Regime of Tagus Estuary, Portugal
Dias, João Miguel; Valentim, Juliana Marques; Sousa, Magda Catarina
2013-01-01
Tidal dynamics of shallow estuaries and lagoons is a complex matter that has attracted the attention of a large number of researchers over the last few decades. The main purpose of the present work is to study the intricate tidal dynamics of the Tagus estuary, which states as the largest estuary of the Iberian Peninsula and one of the most important wetlands in Portugal and Europe. Tagus has large areas of low depth and a remarkable geomorphology, both determining the complex propagation of tidal waves along the estuary of unknown manner. A non-linear two-dimensional vertically integrated hydrodynamic model was considered to be adequate to simulate its hydrodynamics and an application developed from the SIMSYS2D model was applied to study the tidal propagation along the estuary. The implementation and calibration of this model revealed its accuracy to predict tidal properties along the entire system. Several model runs enabled the analysis of the local variations in tidal dynamics, through the interpretation of amplitude and phase patterns of the main tidal constituents, tidal asymmetry, tidal ellipses, form factor and tidal dissipation. Results show that Tagus estuary tidal dynamics is extremely dependent on an estuarine resonance mode for the semi-diurnal constituents that induce important tidal characteristics. Besides, the estuarine coastline features and topography determines the changes in tidal propagation along the estuary, which therefore result essentially from a balance between convergence/divergence and friction and advection effects, besides the resonance effects. PMID:24312474
On the life and death of satellite haloes
NASA Astrophysics Data System (ADS)
Taffoni, Giuliano; Mayer, Lucio; Colpi, Monica; Governato, Fabio
2003-05-01
We study the evolution of dark matter satellites orbiting inside more massive haloes using semi-analytical tools coupled with high-resolution N-body simulations. We select initial satellite sizes, masses, orbital energies, and eccentricities as predicted by hierarchical models of structure formation. Both the satellite (of initial mass Ms,0) and the main halo (of mass Mh) are described by a Navarro, Frenk & White density profile with various concentrations. We explore the interplay between dynamic friction and tidal mass loss/evaporation in determining the final fate of the satellite. We provide a user-friendly expression for the dynamic friction time-scale τdf,live and for the disruption time for a live (i.e. mass-losing) satellite. This can be easily implemented into existing semi-analytical models of galaxy formation improving considerably the way they describe the evolution of satellites. Massive satellites (Ms,0 > 0.1Mh) starting from typical cosmological orbits sink rapidly (irrespective of the initial circularity) toward the centre of the main halo where they merge after a time τdf,rig, as if they were rigid. Satellites of intermediate mass (0.01Mh < Ms,0 < 0.1Mh) suffer severe tidal mass losses as dynamic friction reduces their pericentre distance. In this case, mass loss increases substantially their decay time with respect to a rigid satellite. The final fate depends on the concentration of the satellite, cs, relative to that of the main halo, ch. Only in the unlikely case where cs/ch<~ 1 are satellites disrupted. In this mass range, τdf,live gives a measure of the merging time. Among the satellites whose orbits decay significantly, those that survive must have been moving preferentially on more circular orbits since the beginning as dynamical friction does not induce circularization. Lighter satellites (Ms,0 < 0.01Mh) do not suffer significant orbital decay and tidal mass loss stabilizes the orbit even further. Their orbits should map those at the time of entrance into the main halo. After more than a Hubble time satellites have masses Ms~ 1-10 per cent Ms,0, typically, implying Ms < 0.001Mh for the remnants. In a Milky-Way-like halo, light satellites should be present even after several orbital times with their baryonic components experimenting morphological changes due to tidal stirring. They coexist with the remnants of more massive satellites depleted in their dark matter content by the tidal field, which should move preferentially on tightly bound orbits.
Tidal energetics: Studies with a barotropic model
NASA Astrophysics Data System (ADS)
Stewart, James Scott
The tidal energy from luni-solar gravitational forcing is dissipated principally through the dissipation of oceanic tides. Recent estimates using disparate methods, including analysis of satellite orbits and the timing of ancient eclipses, now indicate that this dissipation totals approximately 3.5 terawatts. However, the mechanisms and spatial distribution of this dissipation is not yet fully understood. In this work, three different aspects of tidal energetics are investigated with a variable resolution barotropic tidal model. The distribution of tidal energy, dissipation and energy flux are examined using high resolution models of several marginal seas: the European shelf, the Sea of Okhotsk, the Yellow and East China Seas, the South China Sea and the Bering Sea. Most modern tide models dissipate tidal energy with a quadratic friction parameterization of bottom friction. Since such dissipation depends nonlinearly on the velocity of the tidal current, these models dissipate primarily in shallow seas where current magnitudes are high. Without assimilating observational data, such tidal models have unreasonably high levels of tidal-period averaged kinetic and potential energies. I have added a linear friction parameterization to the traditional quadratic formulation and am able to obtain realistic tidal energy levels with an unassimilated model. The resulting model is used to investigate the tidal energetics of the recent geological past when sea level was 50 meters higher and 120 meters lower than at the present time. Long-period tides are of small enough amplitude that their energetics are an almost negligible part of the total tidal energy budget. However, the behavior of these tides yields insights into the response of the ocean to large scale forcing. We have modeled the lunar fortnightly (M f) and lunar monthly (Mm) tidal components and determined that the ratio of the Mf potential-to-kinetic energy ratio to that of Mm is about 3.9, consistent with values expected for long Rossby wave dynamics. Also, we obtain quality (Q) values for the Mf and Mm tides of 5.9 and 6.2 respectively which is consistent with recent inferences of basin circulation responses of Q of about 5.5 for 5-day synoptic forcing.
A theoretical framework for analyzing the effect of external change on tidal dynamics in estuaries
NASA Astrophysics Data System (ADS)
CAI, H.; Savenije, H.; Toffolon, M.
2013-12-01
The most densely populated areas of the world are usually located in coastal areas near estuaries. As a result, estuaries are often subject to intense human interventions, such as dredging for navigation, dam construction and fresh water withdrawal etc., which in some areas has led to serious deterioration of invaluable ecosystems. Hence it is important to understand the influence of such interventions on tidal dynamics in these areas. In this study, we present one consistent theoretical framework for tidal hydrodynamics, which can be used as a rapid assessment technique that assist policy maker and managers to make considered decisions for the protection and management of estuarine environment when assessing the effect of human interventions in estuaries. Analytical solutions to the one-dimensional St. Venant equations for the tidal hydrodynamics in convergent unbounded estuaries with negligible river discharge can be cast in the form of a set of four implicit dimensionless equations for phase lag, velocity amplitude, damping, and wave celerity, as a function of two localized parameters describing friction and convergence. This method allows for the comparison of the different analytical approaches by rewriting the different solutions in the same format. In this study, classical and more recent formulations are compared, showing the differences and similarities associated to their specific simplifications. The envelope method, which is based on the consideration of the dynamics at high water and low water, can be used to derive damping equations that use different friction approximations. This results in as many analytical solutions, and thereby allows one to build a consistent theoretical framework. Analysis of the asymptotic behaviour of the equations shows that an equilibrium tidal amplitude exits reflecting the balance between friction and channel convergence. The framework is subsequently extended to take into account the effect of river discharge. Hence, the analytical solutions are applicable even in the upstream part of an estuary, where the influence of river discharge is remarkable. The proposed analytical solutions are transparent and practical, allowing a quantitative and qualitative assessment of human interventions (e.g., dredging, flow reduction) on tidal dynamics. Moreover, they are rapid assessment techniques that enable the users to set up a simple model and to understand the functioning of the system with a minimum of information required. The analytical model is illustrated in three large-scale estuaries with significant influence by human activities, i.e., the Scheldt estuary in the Netherlands, the Modaomen and the Yangtze estuaries in China. In these estuaries, the correspondence with observations is good, which suggests that the proposed model is a useful, yet realistic and reliable instrument for quick detection of the effect of human interventions on tidal dynamics and subsequent environmental issues, such as salt intrusion.
Conditions for tidal bore formation in convergent alluvial estuaries
NASA Astrophysics Data System (ADS)
Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario
2016-04-01
Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater discharge. However, freshwater discharge damps the tidal wave during its propagation and thus reduces ε and consequently limits the tidal bore development in the estuary. To take into account this process in the tidal-bore scaling analysis, it is necessary to introduce a fourth external parameter, the dimensionless river discharge Q0 .
The effect of bottom friction on tidal dipolar vortices and the associated transport
NASA Astrophysics Data System (ADS)
Duran-Matute, Matias; Kamp, Leon; van Heijst, Gertjan
2016-11-01
Tidal dipolar vortices can be formed in a semi-enclosed basin as the tides flow in and out through an inlet. If they are strong enough to overcome the opposing tidal currents, these vortices can travel away from the inlet due to their self-propelling mechanism, and hence, act as an efficient transport agent for suspended material. We present results of two-dimensional numerical simulations of the flow through an idealized tidal inlet, with either a linear or a nonlinear parameterization of the bottom friction. We then quantify the effect of the bottom friction on the propagation of the dipolar vortex and on its ability as a transport agent by computing the flushing and residence times of passive particles. Bottom friction is detrimental to the ability of tidal dipolar vortices to propagate and hinders transport away from the inlet. The magnitude of this effect is related to the relative duration of the tidal period as compared to the typical decay time scale of the vortex dipole. This research is funded by NWO (the Netherlands) through the VENI Grant 863.13.022.
Dynamical evolution of a fictitious population of binary Neptune Trojans
NASA Astrophysics Data System (ADS)
Brunini, Adrián
2018-03-01
We present numerical simulations of the evolution of a synthetic population of Binary Neptune Trojans, under the influence of the solar perturbations and tidal friction (the so-called Kozai cycles and tidal friction evolution). Our model includes the dynamical influence of the four giant planets on the heliocentric orbit of the binary centre of mass. In this paper, we explore the evolution of initially tight binaries around the Neptune L4 Lagrange point. We found that the variation of the heliocentric orbital elements due to the libration around the Lagrange point introduces significant changes in the orbital evolution of the binaries. Collisional processes would not play a significant role in the dynamical evolution of Neptune Trojans. After 4.5 × 109 yr of evolution, ˜50 per cent of the synthetic systems end up separated as single objects, most of them with slow diurnal rotation rate. The final orbital distribution of the surviving binary systems is statistically similar to the one found for Kuiper Belt Binaries when collisional evolution is not included in the model. Systems composed by a primary and a small satellite are more fragile than the ones composed by components of similar sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroimsky, Michael; Makarov, Valeri V., E-mail: michael.efroimsky@usno.navy.mil, E-mail: vvm@usno.navy.mil
Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling themore » gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.« less
Core rotational dynamics and geological events
Greff-Lefftz; Legros
1999-11-26
A study of Earth's fluid core oscillations induced by lunar-solar tidal forces, together with tidal secular deceleration of Earth's axial rotation, shows that the rotational eigenfrequency of the fluid core and some solar tidal waves were in resonance around 3.0 x 10(9), 1.8 x 10(9), and 3 x 10(8) years ago. The associated viscomagnetic frictional power at the core boundaries may be converted into heat and would destabilize the D" thermal layer, leading to the generation of deep-mantle plumes, and would also increase the temperature at the fluid core boundaries, perturbing the core dynamo process. Such phenomena could account for large-scale episodes of continental crust formation, the generation of flood basalts, and abrupt changes in geomagnetic reversal frequency.
Coastal tomographic mapping of nonlinear tidal currents and residual currents
NASA Astrophysics Data System (ADS)
Zhu, Ze-Nan; Zhu, Xiao-Hua; Guo, Xinyu
2017-07-01
Depth-averaged current data, which were obtained by coastal acoustic tomography (CAT) July 12-13, 2009 in Zhitouyang Bay on the western side of the East China Sea, are used to estimate the semidiurnal tidal current (M2) as well as its first two overtide currents (M4 and M6). Spatial mean amplitude ratios M2:M4:M6 in the bay are 1.00:0.15:0.11. The shallow-water equations are used to analyze the generation mechanisms of M4 and M6. In the deep area, where water depths are larger than 60 m, M4 velocity amplitudes measured by CAT agree well with those predicted by the advection terms in the shallow water equations, indicating that M4 in the deep area is predominantly generated by the advection terms. M6 measured by CAT and M6 predicted by the nonlinear quadratic bottom friction terms agree well in the area where water depths are less than 20 m, indicating that friction mechanisms are predominant for generating M6 in the shallow area. In addition, dynamic analysis of the residual currents using the tidally averaged momentum equation shows that spatial mean values of the horizontal pressure gradient due to residual sea level and of the advection of residual currents together contribute about 75% of the spatial mean values of the advection by the tidal currents, indicating that residual currents in this bay are induced mainly by the nonlinear effects of tidal currents. This is the first ever nonlinear tidal current study by CAT.
European Workshop on Planetary Sciences, Rome, Italy, April 23-27, 1979, Proceedings. Part 1
NASA Astrophysics Data System (ADS)
1980-02-01
Papers are presented on the dynamics and evolution of the solar system and its components. Specific topics include the dynamic stability of the solar system, the tidal friction theory of the earth moon system, the stability and irregularity of extrasolar planetary systems, angular momentum and magnetic braking during star formation, the collisional growth of planetesimals, the dynamics, interrelations and evolution of the asteroids and comets, the formation and stability of Saturn's rings, and the importance of nearly tangent orbits in planetary close encounters.
Tidal Evolution of Asteroidal Binaries. Ruled by Viscosity. Ignorant of Rigidity.
NASA Astrophysics Data System (ADS)
Efroimsky, Michael
2015-10-01
This is a pilot paper serving as a launching pad for study of orbital and spin evolution of binary asteroids. The rate of tidal evolution of asteroidal binaries is defined by the dynamical Love numbers kl divided by quality factors Q. Common in the literature is the (oftentimes illegitimate) approximation of the dynamical Love numbers with their static counterparts. Since the static Love numbers are, approximately, proportional to the inverse rigidity, this renders a popular fallacy that the tidal evolution rate is determined by the product of the rigidity by the quality factor: {k}l/Q\\propto 1/(μ Q). In reality, the dynamical Love numbers depend on the tidal frequency and all rheological parameters of the tidally perturbed body (not just rigidity). We demonstrate that in asteroidal binaries the rigidity of their components plays virtually no role in tidal friction and tidal lagging, and thereby has almost no influence on the intensity of tidal interactions (tidal torques, tidal dissipation, tidally induced changes of the orbit). A key quantity that overwhelmingly determines the tidal evolution is a product of the effective viscosity η by the tidal frequency χ . The functional form of the torque’s dependence on this product depends on who wins in the competition between viscosity and self-gravitation. Hence a quantitative criterion, to distinguish between two regimes. For higher values of η χ , we get {k}l/Q\\propto 1/(η χ ), {while} for lower values we obtain {k}l/Q\\propto η χ . Our study rests on an assumption that asteroids can be treated as Maxwell bodies. Applicable to rigid rocks at low frequencies, this approximation is used here also for rubble piles, due to the lack of a better model. In the future, as we learn more about mechanics of granular mixtures in a weak gravity field, we may have to amend the tidal theory with other rheological parameters, ones that do not show up in the description of viscoelastic bodies. This line of study provides a tool to exploring the orbital history of asteroidal pairs, as well as of their final spin states.
Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets
NASA Astrophysics Data System (ADS)
Bolmont, Emeline; Mathis, Stéphane
2016-11-01
Since 20 years, a large population of close-in planets orbiting various classes of low-mass stars (from M-type to A-type stars) has been discovered. In such systems, the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and shape the orbital architecture of the surrounding planetary system. In this context, recent observational and theoretical works demonstrated that the amplitude of this dissipation can vary over several orders of magnitude as a function of stellar mass, age and rotation. In addition, stellar spin-up occurring during the Pre-Main-Sequence (PMS) phase because of the contraction of stars and their spin-down because of the torque applied by magnetized stellar winds strongly impact angular momentum exchanges within star-planet systems. Therefore, it is now necessary to take into account the structural and rotational evolution of stars when studying the orbital evolution of close-in planets. At the same time, the presence of planets may modify the rotational dynamics of the host stars and as a consequence their evolution, magnetic activity and mixing. In this work, we present the first study of the dynamics of close-in planets of various masses orbiting low-mass stars (from 0.6~M_⊙ to 1.2~M_⊙) where we compute the simultaneous evolution of the star's structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in Celestial Mechanics, especially during the PMS phase. Moreover, because of this stronger tidal friction in the star, the orbital migration of the planet is now more pronounced and depends more on the stellar mass, rotation and age. This would very weakly affect the planets in the habitable zone because they are located at orbital distances such that stellar tide-induced migration happens on very long timescales. We also demonstrate that the rotational evolution of host stars is only weakly affected by the presence of planets except for massive companions.
Constraining friction, dilatancy and effective stress with earthquake rates in the deep crust
NASA Astrophysics Data System (ADS)
Beeler, N. M.; Thomas, A.; Burgmann, R.; Shelly, D. R.
2015-12-01
Similar to their behavior on the deep extent of some subduction zones, families of recurring low-frequency earthquakes (LFE) within zones of non-volcanic tremor on the San Andreas fault in central California show strong sensitivity to stresses induced by the tides. Taking all of the LFE families collectively, LFEs occur at all levels of the daily tidal stress, and are in phase with the very small, ~200 Pa, shear stress amplitudes while being uncorrelated with the ~2 kPa tidal normal stresses. Following previous work we assume LFE sources are small, persistent regions that repeatedly fail during shear within a much larger scale, otherwise aseismically creeping fault zone and that the correlation of LFE occurrence reflects modulation of the fault creep rate by the tidal stresses. We examine the predictions of laboratory-observed rate-dependent dilatancy associated with frictional slip. The effect of dilatancy hardening is to damp the slip rate, so high dilatancy under undrained pore pressure reduces modulation of slip rate by the tides. The undrained end-member model produces: 1) no sensitivity to the tidal normal stress, as first suggested in this context by Hawthorne and Rubin [2010], and 2) fault creep rate in phase with the tidal shear stress. Room temperature laboratory-observed values of the dilatancy and friction coefficients for talc, an extremely weak and weakly dilatant material, under-predict the observed San Andreas modulation at least by an order of magnitude owing to too much dilatancy. This may reflect a temperature dependence of the dilatancy and friction coefficients, both of which are expected to be zero at the brittle-ductile transition. The observed tidal modulation constrains the product of the friction and dilatancy coefficients to be at most 5 x 10-7 in the LFE source region, an order of magnitude smaller than observed at room temperature for talc. Alternatively, considering the predictions of a purely rate-dependent talc friction would constrain the ambient effective normal stress to be no more than 40 kPa. In summary, for friction models that have both rate-dependent strength and dilatancy, the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid pressures.
Resonant Capture and Tidal Evolution in Circumbinary Systems: Testing the Case of Kepler-38
NASA Astrophysics Data System (ADS)
Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.
2018-04-01
Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disk, ultimately stopping near their present location either by a planetary trap near the disk inner edge or by resonance capture. Here, we analyze the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modeled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disk, for time-spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.
Resonant capture and tidal evolution in circumbinary systems: testing the case of Kepler-38
NASA Astrophysics Data System (ADS)
Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.
2018-07-01
Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disc, ultimately stopping near their present location either by a planetary trap near the disc inner edge or by resonance capture. Here, we analyse the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics, and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modelled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example, we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations, and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disc, for time spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.
Modelling Ocean Dissipation in Icy Satellites: A Comparison of Linear and Quadratic Friction
NASA Astrophysics Data System (ADS)
Hay, H.; Matsuyama, I.
2015-12-01
Although subsurface oceans are confirmed in Europa, Ganymede, Callisto, and strongly suspected in Enceladus and Titan, the exact mechanism required to heat and maintain these liquid reservoirs over Solar System history remains a mystery. Radiogenic heating can supply enough energy for large satellites whereas tidal dissipation provides the best explanation for the presence of oceans in small icy satellites. The amount of thermal energy actually contributed to the interiors of these icy satellites through oceanic tidal dissipation is largely unquantified. Presented here is a numerical model that builds upon previous work for quantifying tidally dissipated energy in the subsurface oceans of the icy satellites. Recent semi-analytical models (Tyler, 2008 and Matsuyama, 2014) have solved the Laplace Tidal Equations to estimate the time averaged energy flux over an orbital period in icy satellite oceans, neglecting the presence of a solid icy shell. These models are only able to consider linear Rayleigh friction. The numerical model presented here is compared to one of these semi-analytical models, finding excellent agreement between velocity and displacement solutions for all three terms to the tidal potential. Time averaged energy flux is within 2-6% of the analytical values. Quadratic (bottom) friction is then incorporated into the model, replacing linear friction. This approach is commonly applied to terrestrial ocean dissipation studies where dissipation scales nonlinearly with velocity. A suite of simulations are also run for the quadratic friction case which are then compared to and analysed against recent scaling laws developed by Chen and Nimmo (2013).
NASA Astrophysics Data System (ADS)
Monnier, J.; Couderc, F.; Dartus, D.; Larnier, K.; Madec, R.; Vila, J.-P.
2016-11-01
The 2D shallow water equations adequately model some geophysical flows with wet-dry fronts (e.g. flood plain or tidal flows); nevertheless deriving accurate, robust and conservative numerical schemes for dynamic wet-dry fronts over complex topographies remains a challenge. Furthermore for these flows, data are generally complex, multi-scale and uncertain. Robust variational inverse algorithms, providing sensitivity maps and data assimilation processes may contribute to breakthrough shallow wet-dry front dynamics modelling. The present study aims at deriving an accurate, positive and stable finite volume scheme in presence of dynamic wet-dry fronts, and some corresponding inverse computational algorithms (variational approach). The schemes and algorithms are assessed on classical and original benchmarks plus a real flood plain test case (Lèze river, France). Original sensitivity maps with respect to the (friction, topography) pair are performed and discussed. The identification of inflow discharges (time series) or friction coefficients (spatially distributed parameters) demonstrate the algorithms efficiency.
Erosion and Accretion on a Mudflat: The Importance of Very Shallow-Water Effects
NASA Astrophysics Data System (ADS)
Shi, Benwei; Cooper, James R.; Pratolongo, Paula D.; Gao, Shu; Bouma, T. J.; Li, Gaocong; Li, Chunyan; Yang, S. L.; Wang, Ya Ping
2017-12-01
Understanding erosion and accretion dynamics during an entire tidal cycle is important for assessing their impacts on the habitats of biological communities and the long-term morphological evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very shallow-water stages (VSWS, water depths < 0.20 m). It is during these VSWS that bottom friction becomes relatively strong and thus erosion and accretion dynamics are likely to differ from those during deeper flows. In this study, we examine the contribution of very shallow-water effects to erosion and accretion of the entire tidal cycle, based on measured and modeled time-series of bed-level changes. Our field experiments revealed that the VSWS accounted for only 11% of the duration of the entire tidal cycle, but erosion and accretion during these stages accounted for 35% of the bed-level changes of the entire tidal cycle. Predicted cumulative bed-level changes agree much better with measured results when the entire tidal cycle is modeled than when only the conditions at water depths of >0.2 m (i.e., probe submerged) are considered. These findings suggest that the magnitude of bed-level changes during VSWS should not be neglected when modeling morphodynamic processes. Our results are useful in understanding the mechanisms of micro-topography formation and destruction that often occur at VSWS, and also improve our understanding and modeling ability of coastal morphological changes.
The equilibrium tide in stars and giant planets. I. The coplanar case
NASA Astrophysics Data System (ADS)
Remus, F.; Mathis, S.; Zahn, J.-P.
2012-08-01
Context. Since 1995, more than 500 extrasolar planets have been discovered orbiting very close to their parent star, where they experience strong tidal interactions. Their orbital evolution depends on the physical mechanisms that cause tidal dissipation, which remain poorly understood. Aims: We refine the theory of the equilibrium tide in fluid bodies that are partly or entirely convective, to predict the dynamical evolution of the systems. In particular, we examine the validity of modeling the tidal dissipation using the quality factor Q, which is commonly done. We consider here the simplest case where the considered star or planet rotates uniformly, all spins are aligned, and the companion is reduced to a point mass. Methods: We expand the tidal potential as a Fourier series, and express the hydrodynamical equations in the reference frame, which rotates with the corresponding Fourier component. The results are cast in the form of a complex disturbing function, which may be implemented directly in the equations governing the dynamical evolution of the system. Results: The first manifestation of the tide is to distort the shape of the star or planet adiabatically along the line of centers. This generates the divergence-free velocity field of the adiabatic equilibrium tide, which is stationary in the frame rotating with the considered Fourier component of the tidal potential; this large-scale velocity field is decoupled from the dynamical tide. The tidal kinetic energy is dissipated into heat by means of turbulent friction, which is modeled here as an eddy-viscosity acting on the adiabatic tidal flow. This dissipation induces a second velocity field, the dissipative equilibrium tide, which is in quadrature with the exciting potential; this field is responsible for the imaginary part of the disturbing function, which is implemented in the dynamical evolution equations, from which one derives the characteristic evolutionary times. Conclusions: The rate at which the system evolves depends on the physical properties of the tidal dissipation, and specifically on both how the eddy viscosity varies with tidal frequency and the thickness of the convective envelope for the fluid equilibrium tide. At low frequency, this tide is retarded by a constant time delay, whereas it lags behind by a constant angle when the tidal frequency exceeds the convective turnover rate.
NASA Astrophysics Data System (ADS)
Teng, Fei; Fang, Guohong; Xu, Xiaoqing
2017-09-01
A parameterized internal tide dissipation term and self-attraction and loading (SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M 2 and S 2 in the Bohai Sea, Yellow Sea and East China Sea (BYECS). The optimal parameters for bottom friction and internal dissipation are obtained through a series of numerical computations. Numerical simulation shows that the tide-generating force contributes 1.2% of M 2 power for the entire BYECS and up to 2.8% for the East China Sea deep basin. SAL tide contributes 4.4% of M 2 power for the BYECS and up to 9.3% for the East China Sea deep basin. Bottom friction plays a major role in dissipating tidal energy in the shelf regions, and the internal tide effect is important in the deep water regions. Numerical experiments show that artificial removal of tide-generating force in the BYECS can cause a significant difference (as much as 30 cm) in model output. Artificial removal of SAL tide in the BYECS can cause even greater difference, up to 40 cm. This indicates that SAL tide should be taken into account in numerical simulations, especially if the tide-generating force is considered.
NASA Astrophysics Data System (ADS)
Kroupa, P.
2014-05-01
The existence of dark matter particles is a key hypothesis in present-day cosmology and galactic dynamics. The validity of this hypothesis is challenged significantly by two independent arguments. 1) The dual dwarf galaxy theorem must be true in any realistic cosmological model. But it is found to be falsified when the dark-matter-based model is applied to the observational data. A consistency check of this conclusion comes from the observed significantly disk-like distributions of satellite populations which orbit in the same direction around their hosting galaxy and which cannot be derived from dark-matter models. 2) The action of dynamical friction due to expansive and massive dark matter halos must be evident in the galaxy population. The evidence however for dynamical friction is void or meagre at best. The M81 group fo galaxies already appears to rule out the existence of dynamical friction through dark matter halos, and the Milky Way satellite galaxies have been shown to challenge dark-matter-induced dynamical friction. The implication of this deduction for fundamental physics would be that exotic dark matter particles do not exist and that consequently gravitational physics on the scales of galaxies and beyond ought to be non-Newtonian/Einsteinian. An analysis of the kinematical data in galaxies shows them to be described excellently by scale-invariant dynamics, as discovered by Milgrom. This leads to a natural emergence of laws that galaxies are observed to obey. Such success has not been forthcoming in the dark-matter-based models. A consequence of this novel understanding of galactic astrophysics is that most dwarf satellite galaxies are formed as tidal dwarf galaxies in galaxy-galaxy encounters and that galactic mergers are rare.
NASA Astrophysics Data System (ADS)
Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David
2018-01-01
Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor on the San Andreas Fault in central California are sensitive to tidal stresses. LFEs occur at all levels of the tides, are strongly correlated and in phase with the 200 Pa shear stresses, and weakly and not systematically correlated with the 2 kPa tidal normal stresses. We assume that LFEs are small sources that repeatedly fail during shear within a much larger scale, aseismically slipping fault zone and consider two different models of the fault slip: (1) modulation of the fault slip rate by the tidal stresses or (2) episodic slip, triggered by the tides. LFEs are strongly clustered with duration much shorter than the semidiurnal tide; they cannot be significantly modulated on that time scale. The recurrence times of clusters, however, are many times longer than the semidiurnal, leading to an appearance of tidal triggering. In this context we examine the predictions of laboratory-observed triggered frictional (dilatant) fault slip. The undrained end-member model produces no sensitivity to the tidal normal stress, and slip onsets are in phase with the tidal shear stress. The tidal correlation constrains the diffusivity to be less than 1 × 10-6/s and the product of the friction and dilatancy coefficients to be at most 5 × 10-7, orders of magnitude smaller than observed at room temperature. In the absence of dilatancy the effective normal stress at failure would be about 55 kPa. For this model the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid.
NASA Astrophysics Data System (ADS)
Capuzzo-Dolcetta, Roberto
1993-10-01
Among the possible phenomena inducing evolution of the globular cluster system in an elliptical galaxy, dynamical friction due to field stars and tidal disruption caused by a central nucleus is of crucial importance. The aim of this paper is the study of the evolution of the globular cluster system in a triaxial galaxy in the presence of these phenomena. In particular, the possibility is examined that some galactic nuclei have been formed by frictionally decayed globular clusters moving in a triaxial potential. We find that the initial rapid growth of the nucleus, due mainly to massive clusters on box orbits falling in a short time scale into the galactic center, is later slowed by tidal disruption induced by the nucleus itself on less massive clusters in the way described by Ostriker, Binney, and Saha. The efficiency of dynamical friction is such to carry to the center of the galaxy enough globular cluster mass available to form a compact nucleus, but the actual modes and results of cluster-cluster encounters in the central potential well are complicated phenomena which remains to be investigated. The mass of the resulting nucleus is determined by the mutual feedback of the described processes, together with the initial spatial, velocity, and mass distributions of the globular cluster family. The effect on the system mass function is studied, showing the development of a low- and high-mass turnover even with an initially flat mass function. Moreover, in this paper is discussed the possibility that the globular cluster fall to the galactic center has been a cause of primordial violent galactic activity. An application of the model to M31 is presented.
The transverse dynamics of flow in a tidal channel within a greater strait
NASA Astrophysics Data System (ADS)
Khosravi, Maziar; Siadatmousavi, Seyed Mostafa; Vennell, Ross; Chegini, Vahid
2018-02-01
Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45' N), where the highest tidal velocities in spring tides were 1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.
NASA Astrophysics Data System (ADS)
Kleinhans, Maarten G.; van der Vegt, Maarten; Leuven, Jasper; Braat, Lisanne; Markies, Henk; Simmelink, Arjan; Roosendaal, Chris; van Eijk, Arjan; Vrijbergen, Paul; van Maarseveen, Marcel
2017-11-01
Analogue models or scale experiments of estuaries and short tidal basins are notoriously difficult to create in the laboratory because of the difficulty to obtain currents strong enough to transport sand. Our recently discovered method to drive tidal currents by periodically tilting the entire flume leads to intense sediment transport in both the ebb and flood phase, causing dynamic channel and shoal patterns. However, it remains unclear whether tilting produces periodic flows with characteristic tidal properties that are sufficiently similar to those in nature for the purpose of landscape experiments. Moreover, it is not well understood why the flows driven by periodic sea level fluctuation, as in nature, are not sufficient for morphodynamic experiments. Here we compare for the first time the tidal currents driven by sea level fluctuations and by tilting. Experiments were run in a 20 × 3 m straight flume, the Metronome, for a range of tilting periods and with one or two boundaries open at constant head with free inflow and outflow. Also, experiments were run with flow driven by periodic sea level fluctuations. We recorded surface flow velocity along the flume with particle imaging velocimetry and measured water levels along the flume. We compared the results to a one-dimensional model with shallow flow equations for a rough bed, which was tested on the experiments and applied to a range of length scales bridging small experiments and large estuaries. We found that the Reynolds method results in negligible flows along the flume except for the first few metres, whereas flume tilting results in nearly uniform reversing flow velocities along the entire flume that are strong enough to move sand. Furthermore, tidal excursion length relative to basin length and the dominance of friction over inertia is similar in tidal experiments and reality. The sediment mobility converges between the Reynolds method and tilting for flumes hundreds of metres long, which is impractical. Smaller flumes of a few metres in length, on the other hand, are much more dominated by friction than natural systems, meaning that sediment suspension would be impossible in the resulting laminar flow on tidal flats. Where the Reynolds method is limited by small sediment mobility and high tidal range relative to water depth, the tilting method allows for independent control over the variables flow depth, velocity, sediment mobility, tidal period and excursion length, and tidal asymmetry. A periodically tilting flume thus opens up the possibility of systematic biogeomorphological experimentation with self-formed estuaries.
Improving a prediction system for oil spills in the Yellow Sea: effect of tides on subtidal flow.
Kim, Chang-Sin; Cho, Yang-Ki; Choi, Byoung-Ju; Jung, Kyung Tae; You, Sung Hyup
2013-03-15
A multi-nested prediction system for the Yellow Sea using drifter trajectory simulations was developed to predict the movements of an oil spill after the MV Hebei Spirit accident. The speeds of the oil spill trajectories predicted by the model without tidal forcing were substantially faster than the observations; however, predictions taking into account the tides, including both tidal cycle and subtidal periods, were satisfactorily improved. Subtidal flow in the simulation without tides was stronger than in that with tides because of reduced frictional effects. Friction induced by tidal stress decelerated the southward subtidal flows driven by northwesterly winter winds along the Korean coast of the Yellow Sea. These results strongly suggest that in order to produce accurate predictions of oil spill trajectories, simulations must include tidal effects, such as variations within a tidal cycle and advections over longer time scales in tide-dominated areas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tidal synchronization of an anelastic multi-layered body: Titan's synchronous rotation
NASA Astrophysics Data System (ADS)
Folonier, Hugo A.; Ferraz-Mello, Sylvio
2017-12-01
Tidal torque drives the rotational and orbital evolution of planet-satellite and star-exoplanet systems. This paper presents one analytical tidal theory for a viscoelastic multi-layered body with an arbitrary number of homogeneous layers. Starting with the static equilibrium figure, modified to include tide and differential rotation, and using the Newtonian creep approach, we find the dynamical equilibrium figure of the deformed body, which allows us to calculate the tidal potential and the forces acting on the tide generating body, as well as the rotation and orbital elements variations. In the particular case of the two-layer model, we study the tidal synchronization when the gravitational coupling and the friction in the interface between the layers is added. For high relaxation factors (low viscosity), the stationary solution of each layer is synchronous with the orbital mean motion ( n) when the orbit is circular, but the rotational frequencies increase if the orbital eccentricity increases. This behavior is characteristic in the classical Darwinian theories and in the homogeneous case of the creep tide theory. For low relaxation factors (high viscosity), as in planetary satellites, if friction remains low, each layer can be trapped in different spin-orbit resonances with frequencies n/2,n,3n/2,2n,\\ldots . When the friction increases, attractors with differential rotations are destroyed, surviving only commensurabilities in which core and shell have the same velocity of rotation. We apply the theory to Titan. The main results are: (i) the rotational constraint does not allow us to confirm or reject the existence of a subsurface ocean in Titan; and (ii) the crust-atmosphere exchange of angular momentum can be neglected. Using the rotation estimate based on Cassini's observation (Meriggiola et al. in Icarus 275:183-192, 2016), we limit the possible value of the shell relaxation factor, when a deep subsurface ocean is assumed, to γ _s≲ 10^{-9} s^{-1}, which corresponds to a shell's viscosity η _s≳ 10^{18} Pa s, depending on the ocean's thickness and viscosity values. In the case in which a subsurface ocean does not exist, the maximum shell relaxation factor is one order of magnitude smaller and the corresponding minimum shell's viscosity is one order higher.
The early history of the lunar inclination. [effect of tidal friction
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1973-01-01
The effect of tidal friction on the inclination of the lunar orbit to the earth's equator for earth-moon distances of less than 10 earth radii is examined. The results obtained bear on a conclusion drawn by Gerstenkorn and others which has been raised as a fatal objection to the fission hypothesis of lunar origin, namely, that the present nonzero inclination of the moon's orbit to the ecliptic implies a steep inclination of the moon's orbit to the earth's equatorial plane in the early history of the earth-moon system. This conclusion is shown to be valid only for particular rheological models of the earth. The earth is assumed to behave like a highly viscous fluid in response to tides raised in it by the moon. The moon is assumed to be tideless and in a circular orbit about the earth. The equations of tidal friction are integrated numerically to give inclination of the lunar orbit as a function of earth-moon distance.
Tidal and subtidal exchange flows at an inlet of the Wadden Sea
NASA Astrophysics Data System (ADS)
Valle-Levinson, Arnoldo; Stanev, Emil; Badewien, Thomas H.
2018-03-01
Observations of underway velocity profiles during complete spring and neap tidal cycles were used to determine whether the spatial structures of tidal and subtidal flows at a tidal inlet in a multiple-inlet embayment are consistent with those observed at single-inlet embayments. Measurements were obtained at the Otzumer Balje, one of the multiple inlets among the East Frisian Islands of the Wadden Sea. The 1.5 km-wide inlet displayed a bathymetric profile consisting of a channel ∼15 m deep flanked by <5 m shoals. Neap tide observations spanned 36 h in the period May 11-12, 2011, while spring tide measurements exceeded 48 h from May 17 to May 19, 2011. Analysis of observations indicate that frictional effects from bathymetry molded tidal flows. Spatial distributions of semidiurnal tidal current amplitude and phase conform to those predicted by an analytical model for a basin with one inlet. Maximum semidiurnal flows appear at the surface in the channel, furthest away from bottom friction effects. Therefore, Otzumer Balje displays tidal hydrodynamics that are independent of the other inlets of the embayment. Subtidal exchange flows are laterally sheared, with residual inflow in the channel combined with outflow over shoals. The spatial distribution of these residual flows follow theoretical expectations of tidally driven flows interacting with bathymetry. Such distribution is similar to the tidal residual circulation at other inlets with only one communication to the ocean, suggesting that at subtidal scales the Otzumer Balje responds to tidal forcing independently of the other inlets.
Subtidal sea level variability in a shallow Mississippi River deltaic estuary, Louisiana
Snedden, G.A.; Cable, J.E.; Wiseman, W.J.
2007-01-01
The relative roles of river, atmospheric, and tidal forcings on estuarine sea level variability are examined in Breton Sound, a shallow (0.7 m) deltaic estuary situated in an interdistributary basin on the Mississippi River deltaic plain. The deltaic landscape contains vegetated marshes, tidal flats, circuitous channels, and other features that frictionally dissipate waves propagating through the system. Direct forcing by local wind stress over the surface of the estuary is minimal, owing to the lack of significant fetch due to landscape features of the estuary. Atmospheric forcing occurs almost entirely through remote forcing, where alongshore winds facilitate estuary-shelf exchange through coastal Ekman convergence. The highly frictional nature of the deltaic landscape causes the estuary to act as a low-pass filter to remote atmospheric forcing, where high-frequency, coastally-induced fluctuations are significantly damped, and the damping increases with distance from the estuary mouth. During spring, when substantial quantities of controlled Mississippi River inputs (q?? = 62 m3 s-1) are discharged into the estuary, upper estuary subtidal sea levels are forced by a combination of river and remote atmospheric forcings, while river effects are less clear downestuary. During autumn (q?? = 7 m3 s-1) sea level variability throughout the estuary is governed entirely by coastal variations at the marine boundary. A frequency-dependent analytical model, previously used to describe sea level dynamics forced by local wind stress and coastal forcing in deeper, less frictional systems, is applied in the shallow Breton Sound estuary. In contrast to deeper systems where coastally-induced fluctuations exhibit little or no frictional attenuation inside the estuary, these fluctuations in the shallow Breton Sound estuary show strong frequency-dependent amplitude reductions that extend well into the subtidal frequency spectrum. ?? 2007 Estuarine Research Federation.
NASA Astrophysics Data System (ADS)
Anak Gisen, Jacqueline Isabella; Nijzink, Remko C.; Savenije, Hubert H. G.
2014-05-01
Dispersion mathematical representation of tidal mixing between sea water and fresh water in The definition of dispersion somehow remains unclear as it is not directly measurable. The role of dispersion is only meaningful if it is related to the appropriate temporal and spatial scale of mixing, which are identified as the tidal period, tidal excursion (longitudinal), width of estuary (lateral) and mixing depth (vertical). Moreover, the mixing pattern determines the salt intrusion length in an estuary. If a physically based description of the dispersion is defined, this would allow the analytical solution of the salt intrusion problem. The objective of this study is to develop a predictive equation for estimating the dispersion coefficient at tidal average (TA) condition, which can be applied in the salt intrusion model to predict the salinity profile for any estuary during different events. Utilizing available data of 72 measurements in 27 estuaries (including 6 recently studied estuaries in Malaysia), regressions analysis has been performed with various combinations of dimensionless parameters . The predictive dispersion equations have been developed for two different locations, at the mouth D0TA and at the inflection point D1TA (where the convergence length changes). Regressions have been carried out with two separated datasets: 1) more reliable data for calibration; and 2) less reliable data for validation. The combination of dimensionless ratios that give the best performance is selected as the final outcome which indicates that the dispersion coefficient is depending on the tidal excursion, tidal range, tidal velocity amplitude, friction and the Richardson Number. A limitation of the newly developed equation is that the friction is generally unknown. In order to compensate this problem, further analysis has been performed adopting the hydraulic model of Cai et. al. (2012) to estimate the friction and depth. Keywords: dispersion, alluvial estuaries, mixing, salt intrusion, predictive equation
Divett, T; Vennell, R; Stevens, C
2013-02-28
At tidal energy sites, large arrays of hundreds of turbines will be required to generate economically significant amounts of energy. Owing to wake effects within the array, the placement of turbines within will be vital to capturing the maximum energy from the resource. This study presents preliminary results using Gerris, an adaptive mesh flow solver, to investigate the flow through four different arrays of 15 turbines each. The goal is to optimize the position of turbines within an array in an idealized channel. The turbines are represented as areas of increased bottom friction in an adaptive mesh model so that the flow and power capture in tidally reversing flow through large arrays can be studied. The effect of oscillating tides is studied, with interesting dynamics generated as the tidal current reverses direction, forcing turbulent flow through the array. The energy removed from the flow by each of the four arrays is compared over a tidal cycle. A staggered array is found to extract 54 per cent more energy than a non-staggered array. Furthermore, an array positioned to one side of the channel is found to remove a similar amount of energy compared with an array in the centre of the channel.
Inferring fault rheology from low-frequency earthquakes on the San Andreas
Beeler, Nicholas M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David R.
2013-01-01
Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor (NVT) on the San Andreas fault in central California show strong sensitivity to shear stress induced by the daily tidal cycle. LFEs occur at all levels of the tidal shear stress and are in phase with the very small, ~400 Pa, stress amplitude. To quantitatively explain the correlation, we use a model from the existing literature that assumes the LFE sources are small, persistent regions that repeatedly fail during shear of a much larger scale, otherwise aseismically creeping fault zone. The LFE source patches see tectonic loading, creep of the surrounding fault which may be modulated by the tidal stress, and direct tidal loading. If the patches are small relative to the surrounding creeping fault then the stressing is dominated by fault creep, and if patch failure occurs at a threshold stress, then the resulting seismicity rate is proportional to the fault creep rate or fault zone strain rate. Using the seismicity rate as a proxy for strain rate and the tidal shear stress, we fit the data with possible fault rheologies that produce creep in laboratory experiments at temperatures of 400 to 600°C appropriate for the LFE source depth. The rheological properties of rock-forming minerals for dislocation creep and dislocation glide are not consistent with the observed fault creep because strong correlation between small stress perturbations and strain rate requires perturbation on the order of the ambient stress. The observed tidal modulation restricts ambient stress to be at most a few kilopascal, much lower than rock strength. A purely rate dependent friction is consistent with the observations only if the product of the friction rate dependence and effective normal stress is ~ 0.5 kPa. Extrapolating the friction rate strengthening dependence of phyllosilicates (talc) to depth would require the effective normal stress to be ~50 kPa, implying pore pressure is lithostatic. If the LFE source is on the order of tens of meters, as required by the model, rate-weakening friction rate dependence (e.g., olivine) at 400 to 600°C requires that the minimum effective pressure at the LFE source is ~ 2.5 MPa.
NASA Astrophysics Data System (ADS)
Kagan, B. A.; Alvarez, O.; Izquierdo, A.
2005-05-01
The formulation of weak wind-wave/low-frequency current interaction is discussed comprehensively as applied to fixed- and moveable-bottom cases. It involves (1) a dependence of the drag coefficient on the ratio between wave and current bottom friction velocity amplitudes, (2) the resistance law for the oscillatory, rough, turbulent bottom boundary layer (BBL) which accounts for the usually neglected effects of rotation and the phase difference between the bottom stress and the friction-free current velocity, (3) the expression for the BBL depth in terms of the bottom Rossby number and (4) the bottom roughness predictor of Grant and Madsen (J. Geophys. Res., 87 (1982) 469) in the version of Tolman (J. Phys. Oceanogr., 24 (1994) 994). The formulation is implemented in the UCA (University of Cadiz) 2D nonlinear, high-resolution, hydrodynamic model and used to study the influence of wind-wave/tide interaction, bottom mobility and the improved flow-resistance description on the M 2 tidal dynamics of Cadiz Bay. The inclusion of either of the first two factors can cause the drag coefficient to increase significantly over its reference value. If the third factor is included, changes in the drag coefficient are quite moderate. This is because the effect of rotation is opposite in sign to the effect of phase difference, so that these effects taken together very nearly balance. The reason why bottom mobility has such an important influence on shallow-water tidal dynamics as wind-wave/tide interaction has, is the occurrence of the large irregular variations in the drag coefficient that accompany sediment motion.
From micro to macro: the role of defects in the mechanical response of Earth and Planetary materials
NASA Astrophysics Data System (ADS)
McCarthy, Christine
2015-04-01
Microstructural features can greatly influence the bulk behavior of materials. Impurities, grain (and subgrain) size, dislocations, and partial melt can all affect the way that seismic waves are damped in the mantle, for instance, or how tidal energy is dissipated within an icy moon's outer shell. With proper scaling of the viscoelastic response, it is possible to use the attenuation signature -- for instance, the variation of Q with the micro/mesoscale evolution of deformation-induced strain (i.e. fabric) -- as a prospecting tool to determine active deformation structure within bodies of ice or rock at macroscopic (km) scale. In order to better interpret seismic data and provide better constraints for geophysical modeling, I design and perform laboratory experiments to directly measure the plastic and anelastic behaviours of various Earth and planetary materials, including polycrystalline ice. I will discuss findings from attenuation experiments, in particular results that suggest a coupling between deformation-induced microstructure effected by tectonics and attenuation behaviour. I will also discuss recent experiments that combine anelastic and frictional response using a custom-built biaxial friction apparatus. The experiments provide dynamic, frequency-dependent material properties of ice and ice on rock deformation at frequencies consistent with tidal forcing of Antarctic and Greenland glaciers. Such data can be used directly in models of glacier and ice stream flow and will inform our understanding of the complex glacier dynamics needed to improve predictions of sea level rise. Additionally, the experimental measurements can ultimately be compared with field observations to infer characteristics of the bed interface and the material composition of the bulk glacier.
Ocean tide models for satellite geodesy and Earth rotation
NASA Technical Reports Server (NTRS)
Dickman, Steven R.
1991-01-01
A theory is presented which predicts tides in turbulent, self-gravitating, and loading oceans possessing linearized bottom friction, realistic bathymetry, and continents (at coastal boundaries no-flow conditions are imposed). The theory is phrased in terms of spherical harmonics, which allows the tide equations to be reduced to linear matrix equations. This approach also allows an ocean-wide mass conservation constraint to be applied. Solutions were obtained for 32 long and short period luni-solar tidal constituents (and the pole tide), including the tidal velocities in addition to the tide height. Calibrating the intensity of bottom friction produces reasonable phase lags for all constituents; however, tidal amplitudes compare well with those from observation and other theories only for long-period constituents. In the most recent stage of grant research, traditional theory (Liouville equations) for determining the effects of angular momentum exchange on Earth's rotation were extended to encompass high-frequency excitations (such as short-period tides).
NASA Astrophysics Data System (ADS)
Kikuchi, J.; Ide, S.; Matsumoto, N.
2016-12-01
Slow slip events (SSEs) often occur in the Nankai subduction zone, Japan, within a band-like zone extended from the center of Honshu to western Shikoku. SSEs are believed as shear slip on the plate interface, where the frictional property changes from velocity weakening to strengthening in the dip direction. Therefore the dynamics of SSEs may give some hints on the depth dependent friction and plate subduction. The tidal modulation of SSEs has been identified by statistical analysis using strain data of Plate Boundary Observatory, in the Cascadia subduction zone [Hawthorne & Rubin, 2010]. Here, we perform similar statistical analyses using strain data recorded at borehole stations maintained by National Institute of Advanced Industrial Science and Technology, in western Japan. The correlation between the oscillation in SSEs and tidal stress was confirmed statistically. In Nankai subduction zone, it is known that SSEs are accompanied with high activity of deep tectonic tremors [Hirose & Obara, 2006]. These tremors have been known to be sensitive to tidal stress [Nakata et al., 2008]. Therefore, the tidal modulation of SSEs is another representation of tidal modulation of tremors. To clarify the relation between SSEs and tremors, we investigate whether strain changes corresponding to SSEs can be explained only by tremors activity. For an SSE occurred in Aug. 2010 in Bungo channel, we assume that the seismic moment of the SSE is 1.6 × 1018 Nm (Mw 6.1) based on the inversion of GNSS data [Nishimura et al., 2013], and that this moment is released by 715 tremors that occur during this SSE [Idehara et al., 2014]. In this case, each tremor is assigned with seismic moment of 2.2 × 1015 Nm (Mw 4.2). Then the strain change at the observation station by these tremors is calculated using the Okada [1992] method, assuming a half space and focal mechanism consistent with the regional plate motion. The calculated strain is qualitatively similar with the observed strain, suggesting that tremors almost directly represent SSE, as suggested by previous studies [e.g., Hirose & Obara, 2006]. However, the correspondence is not always apparent. For example, a similar analysis in the eastern Kii peninsula yields significant difference between observation and calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Andreas; Burkert, Andreas; Rich, R. Michael
We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M{sub V} = -11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of {approx}5.9 kpc) are comparable to the recently discovered NGCmore » 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.« less
NASA Astrophysics Data System (ADS)
FramiñAn, Mariana B.; Valle-Levinson, Arnoldo; Sepúlveda, HéCtor H.; Brown, Otis B.
2008-08-01
Intratidal variability of density and velocity fields is investigated at the turbidity front of the Río de la Plata Estuary, South America. Current velocity and temperature-salinity profiles collected in August 1999 along a repeated transect crossing the front are analyzed. Horizontal and vertical gradients, stability of the front, convergence zones, and transverse flow associated to the frontal boundary are described. Strong horizontal convergence of the across-front velocity and build up of along-front velocity shear were observed at the front. In the proximity of the front, enhanced transverse (or along-front) flow created jet-like structures at the surface and near the bottom flowing in opposite directions. These structures persisted throughout the tidal cycle and were advected upstream (downstream) by the flood (ebb) current through a distance of ˜10 km. During peak flood, the upper layer flow reversed from its predominant downstream direction and upstreamflow occupied the entire water column; outside the peak flood, two-layer estuarine circulation dominated. Changes in density field were observed in response to tidal straining, tidal advection, and wind-induced mixing, but stratification remained throughout the tidal cycle. This work demonstrates the large spatial variability of the velocity field at the turbidity front; it provides evidence of enhanced transverse circulation along the frontal boundary; and reveals the importance of advective and frictional intratidal processes in the dynamics of the central part of the estuary.
Short-term tidal asymmetry inversion in a macrotidal estuary (Beira, Mozambique)
NASA Astrophysics Data System (ADS)
Nzualo, Teodósio N. M.; Gallo, Marcos N.; Vinzon, Susana B.
2018-05-01
The distortion of the tide in estuaries, bays and coastal areas is the result of the generation of overtides due to the non-linear effects associated with friction, advection, and the finite effects of the tidal amplitude in shallow waters. The Beira estuary is classified as macrotidal, with a large ratio of S2/M2. Typical tides ranges from 6 m and 0.8 m, during springs and neaps tides, respectively. As a consequence of this large fortnightly tidal amplitude difference and the estuarine morphology, asymmetry inversions occur. Two types of tidal asymmetries were investigated in this paper, one considering tidal duration asymmetry (time difference between rising and falling tide) and the other, related to tidal velocity asymmetry (unequal magnitudes of flood and ebb peaks currents). In the Beira estuary when we examine the tidal duration asymmetry, flood dominance is observed during spring tide periods (negative time difference between rising and falling tide), while ebb dominance appears during neap tides (positive time difference between rising and falling tide). A 2DH hydrodynamic model was implemented to analyze this asymmetry inversion. The model was calibrated with water-level data measured at the Port of Beira and current data measured along the estuary. The model was run for different scenarios considering tidal constituents at the ocean boundary, river discharge and the morphology of the estuary. River discharge did not show significant effects on the tidal duration asymmetry. Through comparison of the scenarios, it was shown that the incoming ocean tide at the boundary has an ebb-dominant asymmetry, changing to flood-dominant only during spring tides due to the effect of shoaling and friction within the estuary. During neap tides, the propagation occurs mainly in the channels, and ebb dominance remains. The interplay between the estuary morphodynamics was thus identified and the relation between tidal duration asymmetry and tidal velocity asymmetry was observed. While fortnightly inversion in the tidal duration asymmetry is explained by the presence of channels and sandbanks, at the same time, the tidal velocity asymmetry acts as a positive feedback mechanism for bank formation and sediment retention.
Isopycnal deepening of an under-ice river plume in coastal waters: Field observations and modeling
NASA Astrophysics Data System (ADS)
Li, S. Samuel; Ingram, R. Grant
2007-07-01
The Great Whale River, located on the southeast coast of Hudson Bay in Canada, forms a large river plume under complete landfast ice during early spring. Short-term fluctuations of plume depth have motivated the present numerical study of an under-ice river plume subject to tidal motion and friction. We introduce a simple two-layer model for predicting the vertical penetration of the under-ice river plume as it propagates over a deepening topography. The topography is idealized but representative. Friction on the bottom surface of the ice cover, on the seabed, and at the plume interface is parameterized using the quadratic friction law. The extent of the vertical penetration is controlled by dimensionless parameters related to tidal motion and river outflow. Model predictions are shown to compare favorably with under-ice plume measurements from the river mouth. This study illustrates that isopycnal deepening occurs when the ice-cover vertical motion creates a reduced flow cross-section during the ebbing tide. This results in supercritical flow and triggers the downward plume penetration in the offshore. For a given river discharge, the freshwater source over a tidal cycle is unsteady in terms of discharge velocity because of the variation in the effective cross-sectional area at the river mouth, through which freshwater flows.
The effect of periodic forcing on the stability transition of ice friction
NASA Astrophysics Data System (ADS)
McCarthy, C.; Savage, H. M.; Skarbek, R. M.; Nettles, M.
2017-12-01
A growing body of literature documents the sensitivity of glacier flow to tidal modulation, raising the possibility of using glacier and ice stream response to relatively well-known periodic forcing to infer key glacier properties. However, much is unknown about the physics of tidal response, which can be quite large despite the small size of the tidal signal. Glaciers in Antarctica and Greenland display tidally triggered responses that vary from continuously modulated steady sliding to stick-slip motion with accompanying seismicity. In an attempt to explain differing behaviors of basal slip and aid in the prediction of future stability, we ran a series of laboratory friction experiments to explore the onset of stick-slip behavior in a simple ice-on-rock system exposed to shear velocity oscillations. Using a custom, cryo-friction apparatus, we conducted experiments in a double direct shear configuration in vertical displacement control, with constant horizontal/normal stress and at controlled temperature. A sinusoid in velocity was applied on top of the median load point velocity at various frequencies and amplitudes. We examined the effects of temperature (-2°C to -10°C), normal stress (0.1 to 1MPa), median velocity (1 and 10 microns/s), frequency (1 to 0.01 Hz), and amplitude (100% to 20% of the median) on frictional response. By varying the conditions within a single experiment, we observed transitions from smooth modulation, to repeatable stick-slips, to slow slip events. The rate and magnitude of loading appear to most strongly affect the system response. Velocity steps were analyzed to identify key rate-state parameters for the system. We will present a stability map that details the transition from stable to unstable sliding as functions of the above parameters. Ultimately these results can be scaled up to a glacier system, extended to include till and entrained debris, and used in modeling efforts to predict longterm stability of tidewater glaciers and ice streams.
EVERY INTERACTING DOUBLE WHITE DWARF BINARY MAY MERGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Ken J.
2015-05-20
Interacting double white dwarf (WD) binaries can give rise to a wide variety of astrophysical outcomes ranging from faint thermonuclear and Type Ia supernovae to the formation of neutron stars and stably accreting AM Canum Venaticorum systems. One key factor affecting the final outcome is whether mass transfer remains dynamically stable or instead diverges, leading to the tidal disruption of the donor and the merger of the binary. It is typically thought that for low ratios of the donor mass to the accretor mass, mass transfer remains stable, especially if accretion occurs via a disk. In this Letter, we examinemore » low mass ratio double WD binaries and find that the initial phase of hydrogen-rich mass transfer leads to a classical nova-like outburst on the accretor. Dynamical friction within the expanding nova shell shrinks the orbit and causes the mass transfer rate to increase dramatically above the accretor's Eddington limit, possibly resulting in a binary merger. If the binary survives the first hydrogen-rich nova outbursts, dynamical friction within the subsequent helium-powered nova shells pushes the system even more strongly toward merger. While further calculations are necessary to confirm this outcome for the entire range of binaries previously thought to be dynamically stable, it appears likely that most, if not all, interacting double WD binaries will merge during the course of their evolution.« less
NASA Astrophysics Data System (ADS)
Du, Jiabi; Shen, Jian; Zhang, Yinglong J.; Ye, Fei; Liu, Zhuo; Wang, Zhengui; Wang, Ya Ping; Yu, Xin; Sisson, Mac; Wang, Harry V.
2018-01-01
Tidal response to sea-level rise (SLR) varies in different coastal systems. To provide a generic pattern of tidal response to SLR, a systematic investigation was conducted using numerical techniques applied to idealized and realistic estuaries, with model results cross-checked by analytical solutions. Our results reveal that the response of tidal range to SLR is nonlinear, spatially heterogeneous, and highly affected by the length and bathymetry of an estuary and weakly affected by the estuary convergence with an exception of strong convergence. Contrary to the common assumption that SLR leads to a weakened bottom friction, resulting in increased tidal amplitude, we demonstrate that tidal range is likely to decrease in short estuaries and in estuaries with a narrow channel and large low-lying shallow areas.
NASA Astrophysics Data System (ADS)
Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.
2014-08-01
The impact of particle shape on the angle of internal friction, and the resulting impact on beach sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1 : 10) of the mixed sand-gravel beach at Advocate Harbour is stable in large-scale morphology over decades, despite a high tidal range of 10 m or more, and intense shore-break action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape (Corey Shape Index, CSI ≈ 0.2-0.6). High angles of internal friction of this material were determined using direct shear, ranging from φ ≈ 41 to 49°, while the round to angular gravel was characterized as φ = 33°. The addition of 25% of the elliptic plate-like sand-sized material to the gravel led to an immediate increase in friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of resistance to shear and, thus, shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray submerged in a water-filled tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being ≥7° steeper than for motion initiation of the gravel mixtures. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the angles of internal friction of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beach face.
Understanding the Influence of Retention Basin on Tidal Dynamics in Tidal Estuaries
NASA Astrophysics Data System (ADS)
Kumar, Mohit; Schuttelaars, Henk; Roos, Pieter
2014-05-01
Both the tidal motion and suspended sediment concentration (SSC) in tidal embayments and estuaries are influenced by anthropogenic (e.g. deepening ) and natural changes. An example of such an estuary is the Ems estuary, situated on the border of the Netherlands and Germany. The mean tidal range towards the end of the Ems estuary has increased from 1.5m in the 1950s to more than 3m in the 1990s while the suspended concentration has increased by a factor 10. To possibly reduce these negative effects, the construction of retention basin(s) (RB) is considered. In this contribution, the influence of location and geometry of RBs on tidal dynamics and SSC is investigated. For this purpose, a three-dimensional semi-analytic idealized model is developed. This model is an extension of the model proposed by Winant (2007) to arbitrary domain and realistic bathymetry with partial slip boundary condition at the bottom. The sea surface elevation (SSE) is calculated numerically using a finite element method. Next, the three-dimensional velocities are calculated by combining the analytically calculated vertical profiles and the gradients of the SSE which are obtained numerically. Firstly, the influence of a RB on the tidal dynamics in an infinitely long, rectangular, frictionless estuary is considered. The SSE decreases when the RB is located between a node and a landward antinode, consistent with the work of Alebregtse et al. (2013). Secondly, an estuary of finite length is connected to a sea. By varying the width of the sea, not only the effect of the distance of the RB to the landward end plays a role, but also the distance to the open sea becomes important. Finally, we discuss the influence of a RB on the tidal motion and initial sediment transport, considering the Ems estuary with realistic bathymetry. Results show that the SSE at the landward end of the Ems estuary decreases for all locations of the RBs. This decrease is most pronounced for the RB which is closest to the end of the Ems estuary. Concerning the initial sediment transport, introduction of a RB creates a convergence zone at the location of RB with enhanced along-channel transport seaward and reduced along-channel transport landward of the location of the RB. The intensity of the change in the along-channel transport decreases as the RB is located closer to the landward end. A Similar trend is obtained for cross-channel transport, meaning that the RB will fill more slowly when located closer to the end. The mechanisms resulting in these observed changes, and their sensitivity to the parameters (such as friction, geometry of RBs ,etc) will be discussed in detail.
NASA Astrophysics Data System (ADS)
Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.
2013-12-01
The impact of particle shape on the friction angle, and the resulting critical shear stress on sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1:10) of the mixed sand-gravel beach at Advocate Harbour was found stable in large-scale morphology over decades, despite a high tidal range of ten meters or more, and strong shorebreak action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape. Exceptionally high friction angles of the material were determined using direct shear, ranging from φ ≈ 41-46°, while the round to angular gravel was characterized by φ = 33°. The addition of 25% of the elliptic sand to the gravel led to an immediate increase of the friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, being characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray in a tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being 7° steeper than the latest gravel motion initiation. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the friction angles of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beachface.
Quantification of Saturn and Enceladus tidal dissipation by astrometry after Cassini
NASA Astrophysics Data System (ADS)
Lainey, V.
2017-12-01
Enceladus is the smallest moon known today harboring a global ocean under its crust. While the existence of liquid water in high quantity for such a small object is exciting from an exobiological perspective, the existence and maintenance of such an ocean over time has been very debated. The discovery of strong, largely unexpected, tidal dissipation inside Saturn has turned out to be a major actor for sustaining Enceladus ocean and geysers activity. In particular, interior evolution of Enceladus and Saturn appear closely related. In this talk we will present the way tidal mechanisms occurring inside Saturn are currently tested using astrometry. Since tidal friction may occur both inside the core and the atmosphere, looking at the frequency dependence of tidal parameters is required to assess the magnitude of both processes. Expected results using the whole Cassini data, including the possible global quantification of Enceladus tidal dissipation, will be discussed.
Warner, J.C.; Schoellhamer, D.; Schladow, G.
2003-01-01
Residual circulation patterns in a channel network that is tidally driven from entrances on opposite sides are controlled by the temporal phasing and spatial asymmetry of the two forcing tides. The Napa/Sonoma Marsh Complex in San Francisco Bay, CA, is such a system. A sill on the west entrance to the system prevents a complete tidal range at spring tides that results in tidal truncation of water levels. Tidal truncation does not occur on the east side but asymmetries develop due to friction and off-channel wetland storage. The east and west asymmetric tides meet in the middle to produce a barotropic convergence zone that controls the transport of water and sediment. During spring tides, tidally averaged water-surface elevations are higher on the truncated west side. This creates tidally averaged fluxes of water and sediment to the east. During neap tides, the water levels are not truncated and the propagation speed of the tides controls residual circulation, creating a tidally averaged flux in the opposite direction. ?? 2003 Elsevier Science B.V. All rights reserved.
Tidal dissipation in the subsurface ocean of Enceladus
NASA Astrophysics Data System (ADS)
Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.
2017-12-01
Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power radiated from the south polar terrain requires shell thicknesses smaller than about 1 km, a value that is not consistent with recent libration, gravity and topography constraints.
The Effects of the Impedance of the Flow Source on the Design of Tidal Stream Generators
NASA Astrophysics Data System (ADS)
Salter, S.
2011-12-01
The maximum performance of a wind turbine is set by the well-known Betz limit. If the designer of a wind turbine uses too fast a rotation, too large a blade chord or too high an angle of blade pitch, the air flow can take an easier path over or around the rotor. Most estimates of the tidal stream resource use equations borrowed from wind and would be reasonably accurate for a single unit. But water cannot flow through the seabed or over rotors which reach to the surface. If contra-rotating, vertical-axis turbines with a rectangular flow-window are placed close to one another and reach from the surface close to the seabed, the leakage path is blocked and they become more like turbines in a closed duct. Instead of an equation with area times velocity-cubed we should use the first power of volume flow rate though the rotor times the pressure difference across it. A long channel with a rough bed will already be losing lots of energy and will behave more like a high impedance flow. Attempts to block it with closely-packed turbines will increase the head across the turbines with only a small effect on flow rate. The same thing will occur if a close-packed line of turbines is built out to sea from a headland. It is necessary to understand the impedance of the flow source all the way out to mid-ocean. In deep seas where the current velocities at the seabed are too slow to disturb the ooze the friction coefficients will be similar to those of gloss paint, perhaps 0.0025. But the higher velocities in shallow water will remove ooze and quite large sediments leaving rough, bare rock and leading to higher friction-coefficients. Energy dissipation will be set by the higher friction coefficients and the cube of the higher velocities. The presence of turbines will reduce seabed losses and about one third of the present loss can be converted to electricity. The velocity reduction would be about 10%. In many sites the energy output will be far higher than the wind turbine equations would predict. It may be possible to measure friction coefficients by looking at the slope of the water across a likely tidal stream site as indicated by the pressure-sensing instruments built in to acoustic Doppler current profilers. If this reasoning is correct it would lead to large changes in turbine design for tidal streams particularly with regard to the very large forces which have to be passed into the seabed. The spacing of three rotor diameters, often recommended for tidal stream turbines becomes the equivalent of leaking pipes in conventional hydro-electric plant. These design changes will be discussed. Reference Salter SH. Correcting the Under-estimate of the Tidal-Stream Resource of the Pentland Firth. 8th European Wave and Tidal Energy Conference, Uppsala 2009 From www.see.ed.ac.uk/~shs then browse to /Tidal stream.
Testing tidal theory for evolved stars by using red-giant binaries observed by Kepler
NASA Astrophysics Data System (ADS)
Beck, P. G.; Mathis, S.; Gallet, F.; Charbonnel, C.; Benbakoura, M.; García, R. A.; do Nascimento, J.-D.
2018-06-01
Tidal interaction governs the redistribution of angular momentum in close binary stars and planetary systems and determines the systems evolution towards the possible equilibrium state. Turbulent friction acting on the equilibrium tide in the convective envelope of low-mass stars is known to have a strong impact on this exchange of angular momentum in binaries. Moreover, theoretical modelling in recent literature as well as presented in this paper suggests that the dissipation of the dynamical tide, constituted of tidal inertial waves propagating in the convective envelope, is weak compared to the dissipation of the equilibrium tide during the red-giant phase. This prediction is confirmed when we apply the equilibrium-tide formalism developed by Zahn (1977), Verbunt & Phinney (1995), and Remus, Mathis & Zahn (2012) onto the sample of all known red-giant binaries observed by the NASA Kepler mission. Moreover, the observations are adequately explained by only invoking the equilibrium tide dissipation. Such ensemble analysis also benefits from the seismic characterisation of the oscillating components and surface rotation rates. Through asteroseismology, previous claims of the eccentricity as an evolutionary state diagnostic are discarded. This result is important for our understanding of the evolution of multiple star and planetary systems during advanced stages of stellar evolution.
Late proterozoic and paleozoic tides, retreat of the moon, and rotation of the earth
Sonett, C.P.; Kvale, E.P.; Zakharian, A.; Chan, M.A.; Demko, T.M.
1996-01-01
The tidal rhythmites in the Proterozoic Big Cottonwood Formation (Utah, United States), the Neoproterozoic Elatina Formation of the Flinders Range (southern Australia), and the Lower Pennsylvanian Pottsville Formation (Alabama, United States) and Mansfield Formation (Indiana, United States) indicate that the rate of retreat of the lunar orbit is d??/dt k2 sin(2??) (where ?? is the Earth-moon radius vector, k2 is the tidal Love number, and ?? is the tidal lag angle) and that this rate has been approximately constant since the late Precambrian. When the contribution to tidal friction from the sun is taken into account, these data imply that the length of the terrestrial day 900 million years ago was -18 hours.
Ocean tides for satellite geodesy
NASA Technical Reports Server (NTRS)
Dickman, S. R.
1990-01-01
Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.
How tides and river flows determine estuarine bathymetries [review article
NASA Astrophysics Data System (ADS)
Prandle, D.
2004-04-01
For strongly tidal, funnel-shaped estuaries, we examine how tides and river flows determine size and shape. We also consider how long it takes for bathymetric adjustment, both to determine whether present-day bathymetry reflects prevailing forcing and how rapidly changes might occur under future forcing scenarios. Starting with the assumption of a 'synchronous' estuary (i.e., where the sea surface slope resulting from the axial gradient in phase of tidal elevation significantly exceeds the gradient in tidal amplitude ζ̂), an expression is derived for the slope of the sea bed. Thence, by integration we derive expressions for the axial depth profile and estuarine length, L, as a function of ζ̂ and D, the prescribed depth at the mouth. Calculated values of L are broadly consistent with observations. The synchronous estuary approach enables a number of dynamical parameters to be directly calculated and conveniently illustrated as functions of ζ̂ and D, namely: current amplitude Û, ratio of friction to inertia terms, estuarine length, stratification, saline intrusion length, flushing time, mean suspended sediment concentration and sediment in-fill times. Four separate derivations for the length of saline intrusion, LI, all indicate a dependency on D 2/f ÛU o ( Uo is the residual river flow velocity and f is the bed friction coefficient). Likely bathymetries for `mixed' estuaries can be delineated by mapping, against ζ̂ and D, the conditions LI/ L<1, EX/ L<1 ( EX is the tidal excursion) alongside the Simpson-Hunter criteria D/ U3<50 m -2 s 3. This zone encompasses 24 out of 25 `randomly' selected UK estuaries. However, the length of saline intrusion in a funnel-shaped estuary is also sensitive to axial location. Observations suggest that this location corresponds to a minimum in landward intrusion of salt. By combining the derived expressions for L and LI with this latter criterion, an expression is derived relating Di, the depth at the centre of the intrusion, to the corresponding value of Uo. This expression indicates Uo is always close to 1 cm s -1, as commonly observed. Converting from Uo to river flow, Q, provides a morphological expression linking estuarine depth to Q (with a small dependence on side slope gradients). These dynamical solutions are coupled with further generalised theory related to depth and time-mean, suspended sediment concentrations (as functions of ζ̂ and D). Then, by assuming the transport of fine marine sediments approximates that of a dissolved tracer, the rate of estuarine supply can be determined by combining these derived mean concentrations with estimates of flushing time, FT, based on LI. By further assuming that all such sediments are deposited, minimum times for these deposition rates to in-fill estuaries are determined. These times range from a decade for the shortest, shallowest estuaries to upwards of millennia in longer, deeper estuaries with smaller tidal ranges.
A novel approach to flow estimation in tidal rivers
NASA Astrophysics Data System (ADS)
Moftakhari, H. R.; Jay, D. A.; Talke, S. A.; Kukulka, T.; Bromirski, P. D.
2013-08-01
Reliable estimation of river discharge to the ocean from large tidal rivers is vital for water resources management and climate analyses. Due to the difficulties inherent in measuring tidal-river discharge, flow records are often limited in length and/or quality and tidal records often predate discharge records. Tidal theory indicates that tides and river discharge interact through quadratic bed friction, which diminishes and distorts the tidal wave as discharge increases. We use this phenomenon to develop a method of estimating river discharge for time periods with tidal data but no flow record. Employing sequential 32 day harmonic analyses of tidal properties, we calibrate San Francisco (SF), CA tide data to the Sacramento River delta outflow index from 1930 to 1990, and use the resulting relationship to hindcast river flow from 1858 to 1929. The M2 admittance (a ratio of the observed M2 tidal constituent to its astronomical forcing) best reproduces high flows, while low-flow periods are better represented by amplitude ratios based on higher harmonics (e.g.,M4/M22). Results show that the annual inflow to SF Bay is now 30% less than before 1900 and confirm that the flood of January 1862 was the largest since 1858.
Earth Tidal Controls on Basal Dynamics and Hydrology
NASA Astrophysics Data System (ADS)
Kulessa, B.; Hubbard, B. P.; Brown, G. H.; Becker, J.
2001-12-01
We appraise earth tidal forcing of coupled mechanical and hydrological processes beneath warm-based ice masses, which have to date been poorly documented but represent exciting phenomena that have important implications for future studies of glacier dynamics. Regular cycles in winter and early spring electrical self-potential (SP), water pressure (PW) and electrical conductivity (EC) were recorded at the bases of several boreholes drilled through Haut Glacier d'Arolla, Switzerland. Fourier power spectra of these data reflect the presence of diurnal and semi-diurnal cycles, and comparison with the earth tidal spectrum indicates that at least four components of the latter are visible in the borehole spectra: the luni-solar diurnal, the principal lunar diurnal, the principal solar semi-diurnal, and the principal lunar semi-diurnal. This correspondence suggests that earth tides exert a strong control over water flow at the bed of the glacier, at least during winter and early spring. We envisage a mechanism that involves earth-tide induced deformation of the bedrock and the unconsolidated sediments beneath the glacier, and to a certain extent probably also the overlying ice body. Basal water pockets, including those containing our sensors, located within these media are in turn also likely to be deformed periodically. We believe that PW gradients induced by such deformation may result in transient water flow and SPs in the pockets. Since PW and EC are typically out-of-phase, injection of waters of lower EC into the pockets during times of peak water flow is likely. Several lines of evidence suggest that such injection was caused by melting of the ice wall due to frictional heating, balancing creep closure which sustained some pockets through the winter. Further, the first annually-repeated post-winter reorganization event, termed the May event, may well be triggered by tidally-induced releases of waters from storage. This implies that the May event marks the opening of the subglacial drainage conditions at the start of the summer, and not the Spring event, as commonly assumed to date.
Anelastic tidal dissipation in multi-layer planets
NASA Astrophysics Data System (ADS)
Remus, F.; Mathis, S.; Zahn, J.-P.; Lainey, V.
2012-09-01
Earth-like planets have anelastic mantles, whereas giant planets may have anelastic cores. As for the fluid parts of a body, the tidal dissipation of such solid regions, gravitationally perturbed by a companion body, highly depends on its internal friction, and thus on its internal structure. Therefore, modelling this kind of interaction presents a high interest to provide constraints on planets interiors, whose properties are still quite uncertain. Here, we examine the equilibrium tide in the solid part of a planet, taking into account the presence of a fluid envelope. We derive the different Love numbers that describe its deformation and discuss the dependence of the quality factor Q on the chosen anelastic model and the size of the core. Taking plausible values for the anelastic parameters, and discussing the frequency-dependence of the solid dissipation, we show how this mechanism may compete with the dissipation in fluid layers, when applied to Jupiter- and Saturn-like planets. We also discuss the case of the icy giants Uranus and Neptune. Finally, we present the way to implement the results in the equations that describe the dynamical evolution of planetary systems.
The Origin of IRS 16: Dynamically Driven In-Spiral of a Dense Star Cluster to the Galactic Center?
NASA Astrophysics Data System (ADS)
Portegies Zwart, Simon F.; McMillan, Stephen L. W.; Gerhard, Ortwin
2003-08-01
We use direct N-body simulations to study the in-spiral and internal evolution of dense star clusters near the Galactic center. These clusters sink toward the center owing to dynamical friction with the stellar background and may go into core collapse before being disrupted by the Galactic tidal field. If a cluster reaches core collapse before disruption, its dense core, which has become rich in massive stars, survives to reach close to the Galactic center. When it eventually dissolves, the cluster deposits a disproportionate number of massive stars in the innermost parsec of the Galactic nucleus. Comparing the spatial distribution and kinematics of the massive stars with observations of IRS 16, a group of young He I stars near the Galactic center, we argue that this association may have formed in this way.
Dynamics of exoplanetary systems, links to their habitability
NASA Astrophysics Data System (ADS)
Bolmont, E.; Raymond, S. N.; Selsis, F.
2014-12-01
Our knowledge of planets' orbital dynamics, which was based on Solar System studies, has been challenged by the diversity of exoplanetary systems. Around cool and ultra cool dwarfs, the influence of tides on the orbital and spin evolution of planets can strongly affect their climate and their capacity to host surface liquid water. We illustrate the role of tides and dynamics with the extreme case of planets orbiting around brown dwarfs. In multiple planet systems, the eccentricity is excited by planet-planet interactions. Planets are therefore heated up from the inside by the tidally-induced friction. This process can heat a habitable zone planet to such a level that surface liquid water cannot exist. We also talk about the newly discovered potentially habitable Earth-sized planet Kepler-186f. Given the poorly estimated age of the system, the planet could still be evolving towards synchronization and have a high obliquity or be pseudo-synchronized with a zero obliquity. These two configurations would have a different effect on the climate of this planet.
NASA Astrophysics Data System (ADS)
Mullarney, J. C.; Bryan, K. R.; Henderson, S. M.; Norris, B. K.; Vo Luong, H. P.
2016-02-01
In recent years attention has focused on the ability of mangroves to protect shorelines against damage from the combined hydrodynamic forces of waves and tides, owing to the presence of roots (pneumatophores) and tree trunks enhancing vegetative drag. However, field measurements within these dynamic environments are limited. We report on field observations from the seaward side of Cù Lao Dung Island (Soc Trang Province) in the Mekong Delta, Vietnam. The island encompasses two contrasting environments from a sandy, prograding flat with gentle topographic slope on the southwest side to a steep, eroding and muddy fringe region on the northeast side. The data capture the flow transitions from mudflat across the fringing region to the forest interior. We observe a rotation of the obliquely incident flows to an orientation perpendicular to the vegetated/unvegetated boundary. The balances governing the large scale flow are assessed and indicate the relative importance of friction, winds and depth-averaged pressure forces. We find drag coefficients of 10-30 times greater than the usual values associated with bottom friction, with values particularly elevated in the regions of dense pneumatophores that are important during the early stages of the tidal cycle. The field observations are used in the set-up of a simple one-dimensional process model. The model predicts the movement of the tide across the vegetated flat, associated sediment transport and evolution of the across flat profile. Preliminary results indicate that mangrove profiles may evolve towards a close to linear shape in contrast to systems with temperate species or no vegetation.
Tide-surge Interaction Intensified by the Taiwan Strait
NASA Astrophysics Data System (ADS)
Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.
2010-06-01
The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.
Earth’s Rotational Deceleration: Determination of Tidal Friction Independent of Timescales
NASA Astrophysics Data System (ADS)
Deines, Steven D.; Williams, Carol A.
2016-04-01
This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, ice age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10-7 rad yr-2. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.
The Water Level and Transport Regimes of the Lower Columbia River
NASA Astrophysics Data System (ADS)
Jay, D. A.
2011-12-01
Tidal rivers are vital, spatially extensive conduits of material from land to sea. Yet the tidal-fluvial regime remains poorly understood relative to the bordering fluvial and estuarine/coastal regimes with which it interacts. The 235km-long Lower Columbia River (LCR) consists of five zones defined by topographic constrictions: a 5km-long ocean-entrance, the lower estuary (15km), an energy-minimum (67km), the tidal river (142km), and a landslide zone (5km). Buoyant plume lift-off occurs within the entrance zone, which is dominated by tidal and wave energy. The lower estuary is strongly tidally, amplifies the semidiurnal tide, and has highly variable salinity intrusion. Tidal and fluvial influences are balanced in the wide energy-minimum, into which salinity intrudes during low-flow periods. It has a turbidity maximum and a dissipation minimum at its lower end, but a water-level variance minimum at its landward end. The tidal river shows a large increase in the ratio of fluvial-to-tidal energy in the landward direction and strong seasonal variations in tidal properties. Because tidal monthly water level variations are large, low waters are higher on spring than neap tides. The steep landslide zone has only weak tides and is the site of the most seaward hydropower dam. Like many dammed systems, the LCR has pseudo-tides: daily and weakly hydropower peaking waves that propagate seaward. Tidal constituent ratios vary in the alongchannel direction due to frictional non-linearities, the changing balance of dissipation vs. propagation, and power peaking. Long-term changes to the system have occurred due to climate change and direct human manipulation. Flood control, hydropower regulation, and diversion have reduced peak flows, total load and sand transport by ~45, 50 and 80%, respectively, causing a blue-shift in the flow and water level power spectra. Overbank flows have been largely eliminated through a redundant combination of diking and flow regulation. Export of sand to the ocean now occurs mainly through dredging, though fine sediment export may be higher than natural levels. Reduced sediment input and navigational development have reduced water levels in the upper tidal river by ~0.4/1.5m during low/high flow periods, impacting both navigation and shallow-water habitat availability. Tidal amplitudes have increased due both to increased coastal tides and reduced friction. This exacerbates difficulties with low-waters during fall neap tides. Climate-induced changes have so far had much less influence on system properties than human modifications. At present, regional sea level (RSL) rise and tectonic change are in balance, yielding no net sea level rise.
The lunar nodal tide and the distance to tne Moon during the Precambrian era
NASA Technical Reports Server (NTRS)
Walker, J. C. G.; Zahnle, K. J.
1986-01-01
The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.
Observation and numerical modeling of tidal dune dynamics
NASA Astrophysics Data System (ADS)
Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry
2018-05-01
Tidal sand dune dynamics is observed for two tidal cycles in the Arcachon tidal inlet, southwest France. An array of instruments is deployed to measure bathymetric and current variations along dune profiles. Based on the measurements, dune crest horizontal and vertical displacements are quantified and show important dynamics in phase with tidal currents. We observed superimposed ripples on the dune stoss side and front, migrating and changing polarity as tidal currents reverse. A 2D RANS numerical model is used to simulate the morphodynamic evolution of a flat non-cohesive sand bed submitted to a tidal current. The model reproduces the bed evolution until a field of sand bedforms is obtained that are comparable with observed superimposed ripples in terms of geometrical dimensions and dynamics. The model is then applied to simulate the dynamics of a field of large sand dunes of similar size as the dunes observed in situ. In both cases, simulation results compare well with measurements qualitatively and quantitatively. This research allows for a better understanding of tidal sand dune and superimposed ripple morphodynamics and opens new perspectives for the use of numerical models to predict their evolution.
Tidal Friction in the Earth and Ocean
NASA Astrophysics Data System (ADS)
Ray, R. D.
2006-12-01
"Tidal Friction" is a classic subject in geophysics, with ties to some of the great scientists of the Victorian era. The subject has been reinvigorated over the past decade by space geodesy, and particularly by the Topex/Poseidon satellite altimeter mission. In fact, the topic has now taken on some significance in oceanography, with potential implications for problems of mixing, thermocline maintenance, and the thermohaline circulation. Likewise, tidal measurements have become sufficiently precise to reveal new information about the solid earth. In this respect, the tidal force is an invaluable "probe" of the earth, at frequencies well outside the seismic band. This talk will "follow the energy" of tides while noting some important geophysical implications at each stage. In the present earth-moon-sun configuration, energy for tides is extracted from the earth's rotation. Ancient eclipses bear witness to this, and the discrepancy between Babylonian (and other) observations and tidal predictions yields unique information about the mantle and the overlying fluid envelope. Complementary information comes from tidal anelasticity estimates, which are now available at frequencies ranging from semidiurnal to fortnightly, monthly, and 18.6 years. These data, when combined with various kinds of gravity measurements, are relevant to the present-day sea-level problem. Solid-earth tidal dissipation represents less than 5% of the system total. As has long been realized, the largest energy sink is the ocean. About 70% of the oceanic dissipation occurs in shallow seas (the traditional sink) and 30% in the deep ocean, generally near rugged bottom topography. The latter represents a substantial amount of power, roughly 1 gigawatt, available for generation of internal tides and other baroclinic motions. Experiments like HOME are helping unravel the links between barotropic tides, internal tides, turbulence, and mixing. The latter opens possible linkages to climate, and recent work involving 18.6-year oscillations adds intriguing (although not completely convincing) evidence of climate connections from the nodal modulations of diurnal-band tides. Connections at longer periods are quite conceivable, since tides are critically sensitive to sea level, but most ideas along these lines are still speculative and in need of further development.
Dynamic recrystallization in friction surfaced austenitic stainless steel coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.
2012-12-15
Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.
NASA Technical Reports Server (NTRS)
2001-01-01
This image of Jupiter's moon, lo, was taken by the Chandra X-Ray Observatory (CXO). Shown here is the most extreme example of the effect of tidal forces as Lo is being pulled by massive Jupiter on one side and by the outer moons Europa, Callisto, and Ganymede on the other. The opposing tidal forces alternately squeeze and stretch its interior, causing the solid surface to rise and fall by about 100 meters. The enormous amount of heat and pressure generated by the resulting friction creates colossal volcanoes and fractures on the surface of this moon.
Tidal friction and the early history of the moon's orbit
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1975-01-01
The present work investigates the consequences implied by various rheological models of the early earth for the orbital history of the moon subsequent to its formation. Models of the earth that yield small tidal angles, such as low-viscosity models, imply that the moon never orbited in the earth's equatorial plane, thereby ruling out an equatorial origin for the moon. A high-viscosity model is shown to permit the moon to originate in the equatorial plane and still account for the present-day characteristics of the moon's orbit.
Tidal friction and generalized Cassini's laws in the solar system. [for planetary spin axis rotation
NASA Technical Reports Server (NTRS)
Ward, W. R.
1975-01-01
The tidal drift toward a generalized Cassini state of rotation of the spin axis of a planet or satellite in a precessing orbit is described. Generalized Cassini's laws are applied to several solar system objects and the location of their spin axes estimated. Of those considered only the moon definitely occupies state 2 with the spin axis near to the normal of the invariable plane. Most objects appear to occupy state 1 with the spin axis near to the orbit normal. Iapetus could occupy either state depending on its oblateness. In addition, the resonant rotation of Mercury is found to have little effect on the tidal drift of its spin axis toward state 1.
EARTH’S ROTATIONAL DECELERATION: DETERMINATION OF TIDAL FRICTION INDEPENDENT OF TIMESCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deines, Steven D.; Williams, Carol A., E-mail: steven.deines@gmail.com, E-mail: cw@math.usf.edu
This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, icemore » age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10{sup −7} rad yr{sup −2}. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.« less
Influence of LOD variations on seismic energy release
NASA Astrophysics Data System (ADS)
Riguzzi, F.; Krumm, F.; Wang, K.; Kiszely, M.; Varga, P.
2009-04-01
Tidal friction causes significant time variations of geodynamical parameters, among them geometrical flattening. The axial despinning of the Earth due to tidal friction through the change of flattening generates incremental meridional and azimuthal stresses. The stress pattern in an incompressible elastic upper mantle and crust is symmetric to the equator and has its inflection points at the critical latitude close to ±45°. Consequently the distribution of seismic energy released by strong, shallow focus earthquakes should have also sharp maxima at this latitude. To investigate the influence of length of day (LOD) variations on earthquake activity an earthquake catalogue of strongest seismic events (M>7.0) was completed for the period 1900-2007. It is shown with the use of this catalogue that for the studied time-interval the catalogue is complete and consists of the seismic events responsible for more than 90% of released seismic energy. Study of the catalogue for earthquakes M>7.0 shows that the seismic energy discharged by the strongest seismic events has significant maxima at ±45°, what renders probably that the seismic activity of our planet is influenced by an external component, i.e. by the tidal friction, which acts through the variation of the hydrostatic figure of the Earth caused by it. Distribution along the latitude of earthquake numbers and energies was investigated also for the case of global linear tectonic structures, such as mid ocean ridges and subduction zones. It can be shown that the number of the shallow focus shocks has a repartition along the latitude similar to the distribution of the linear tectonic structures. This means that the position of foci of seismic events is mainly controlled by the tectonic activity.
TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D., E-mail: henning@fas.harvard.ed
Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and themore » Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.« less
1989-03-31
present several numerical studies designed to reveal the effect that some of the governing parameters have on the behavior of the system and, whenever...Friction and in the Control of Dynamical Systems with Frictional Forces FINAL TECHNICAL REPORT March 31, 1989 _ -- I -.7: .-.- - : AFOSR Contract F49620...SOLID AND STRUCTURAL MECHANICS: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces I I * FINAL
Understanding tidal friction: the history of science in nuce.
NASA Astrophysics Data System (ADS)
Brosche, P.
The evolution of the topic of tidal friction took place for a long time along two completely separated routes. The empirical evidence derived from ancient observations seemed to show a secular acceleration of the mean motion of the Moon. This was first recognized by Halley in 1695. On the theoretical side there was the solitary speculation of Kant (1754) that oceanic tides ought to have a retarding action on the rotation of the earth. The precise meeting point of the two routes is not yet known. While the greatest celestial mechanics had convincingly shown earlier that conservative mechanics could explain the facts, later Robert Mayer and G. H. Darwin introduced the fully developed concept of angular momentum transfer in the earth-moon-system. Today the precise mechanism of energy dissipation is still an enigma. In the long run, the tides must be computed for the seas by the geological past. The first steps in this direction have already been taken.
A precise mass function in the excursion set approach
NASA Astrophysics Data System (ADS)
Del Popolo, Antonino
2017-04-01
In the present paper, using previous results from Del Popolo papers, we show how the mass function evolution can be obtained in the framework of a spherical collapse model, which has been modified to take account of dynamical friction, the cosmological constant, and angular momentum which proto-structures acquire through tidal interaction with neighbouring ones. We found an improved barrier which is in excellent agreement with simulations. The quoted barrier is used to calculated the mass function. In the case of the ΛCDM paradigm, our mass function is in good agreement (within some %) with the mass function of Klypin's Bolshoi simulation for the virial mass range 5 × 109 - 5 × 1014h-1M⊙, and 0 ≾ z ≿ 10. Similar agreement is obtained with Tinker's mass function, and Castorina's simulations.
Floodtide pulses after low tides in shallow subembayments adjacent to deep channels
Warner, J.C.; Schoellhamer, D.H.; Ruhl, C.A.; Burau, J.R.
2004-01-01
In shallow waters surface gravity waves (tides) propagate with a speed proportional to the square root of water depth (c=g(h+η)). As the ratio of free surface displacement to mean depth (η/h) approaches unity the wave will travel noticeably faster at high tide than at low tide, creating asymmetries in the tidal form. This physical process is explained analytically by the increased significance of friction and the nonlinear terms in the continuity and momentum equations. In a tidal system comprising a shallow bay adjacent to a deeper channel, tidal asymmetries will be more prevalent in the shallow bay. Thus strong barotropic gradients can be generated between the two, producing rapid accelerations of currents into the bay (relative to other bay tidal processes) and create a maximum peak in the flood tide that we describe as a floodtide pulse. These floodtide pulses can promote a landward flux of suspended-sediment into the bay. In Grizzly Bay (part of northern San Francisco Bay, USA), field observations verify the occurrence of floodtide pulses during the lowest low tides of the year. No pulses were observed in neighboring Honker Bay, which has an average depth ~30 cm greater than Grizzly Bay. Numerical simulations of northern San Francisco Bay using realistic bathymetry demonstrated that floodtide pulses occurred in Grizzly Bay but not in Honker Bay, consistent with the observations. Both observations and numerical simulations show that floodtide pulses promote a landward flux of sediment into Grizzly Bay. Numerical simulations of an idealized bay-channel system quantify the importance of mean depth and friction in creating these floodtide pulses.
THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Corredoira, Martín; Kroupa, Pavel, E-mail: martinlc@iac.es, E-mail: pavel@astro.uni-bonn.de
We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarfmore » galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation.« less
Sanborn, B.; Song, B.; Nishida, E.
2017-11-02
In order to understand interfacial interaction of a bi-material during an impact loading event, the dynamic friction coefficient is one of the key parameters that must be characterized and quantified. In this study, a new experimental method to determine the dynamic friction coefficient between two metals was developed by using a Kolsky tension bar and a custom-designed friction fixture. Polyvinylidene fluoride (PVDF) force sensors were used to measure the normal force applied to the friction tribo pairs and the friction force was measured with conventional Kolsky tension bar method. To evaluate the technique, the dynamic friction coefficient between 4340 steelmore » and 7075-T6 aluminum was investigated at an impact speed of approximately 8 m/s. Additionally, the dynamic friction coefficient of the tribo pairs with varied surface roughness was also investigated. The data suggest that higher surface roughness leads to higher friction coefficients at the same speed of 8 m/s.« less
NASA Astrophysics Data System (ADS)
Voggel, Karina Theresia
2015-08-01
Ultra-Compact Dwarf Galaxies (UCDs) have filled the size gap (10-100pc) in the scaling relations of early-type stellar systems. Before their discovery, no objects were known in the parameter space between globular clusters (GCs) and dwarf galaxies. The nature of UCDs is widely debated. Two formation channels have been suggested: either UCDs are surviving nuclei of tidally stripped dwarf galaxies, or they constitute the high mass end of the GC population. In this work we establish new strategies to constrain the formation channel of UCDs, looking for the observational signatures of stripped nuclei.Before falling into a galaxy cluster dwarf galaxies initially host their own GC system. Through tidal interaction the GCs outside of the shrinking tidal radius are lost and disperse in the general GC population of the cluster, whereas GCs inside the tidal radius remain bound to the dwarf galaxy. Therefore, we expect to find some GCs close to the stripped nuclei that have not been removed yet, but dragged towards the nucleus via dynamical friction.We tested this prediction in the halo of NGC 1399, the central Fornax cluster galaxy, where we find a local overabundance of GCs on scales of 0.5 to 1 kpc around UCDs. A similar analysis of GC overdensities around UCDs in the halo of M87, the central Virgo cluster galaxy, is ongoing. Such a clustering signal of GCs around UCDs could be a hint that these UCDs formed as nuclei, and what we see is the remnant GC population of the ancestor galaxy.We also have studied the detailed structural composition of ~100 UCDs in the halo of NGC 1399 by analyzing their surface brightness profiles. We present new evidence for faint asymmetric structures and tidal tails around several UCDs, possible tracers for the assembly history of the central cluster galaxy. With new numbers on the abundance of tidal features and close GC companions within large UCD samples, the contribution of each formation channel to the GC/UCD populations in galaxy halos can be constrained.
The Moon's orbit history and inferences on its origin
NASA Technical Reports Server (NTRS)
Conway, B. A.
1984-01-01
A frequency dependent model of tidal friction was used to determine the evolution of the Earth-Moon system. The analysis considers the lunar orbit eccentricity and inclination, the solar tide on the Earth, Earth oblateness, and higher order terms in the tidal potential. A solution of the equations governing the precession of the Earth's rotational angular momentum and the lunar ascending node is found. The history is consistent with a capture origin for the Moon. It rules out the origin of the Moon by fission. Results are shown for a range of assumed values for the lunar tidal dissipation. Tidal dissipation within the Moon, during what would be the immediate postcapture period, is shown to be capable of significantly heating the Moon. The immediate postcapture orbit has a periapsis within the Earth's Roche limit. Capture into resonance with the Earth's gravitational field as this orbit tidally evolves is suggested to be a mechanism to prevent so close, an approach. It is shown that the probability of such capture is negligibly small and alternative hypotheses for the survival of the Roche limit passage is offered.
Orbital Decay in Binaries with Evolved Stars
NASA Astrophysics Data System (ADS)
Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.
2018-01-01
Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.
Improving an Assessment of Tidal Stream Energy Resource for Anchorage, Alaska
NASA Astrophysics Data System (ADS)
Xu, T.; Haas, K. A.
2016-12-01
Increasing global energy demand is driving the pursuit of new and innovative energy sources leading to the need for assessing and utilizing alternative, productive and reliable energy resources. Tidal currents, characterized by periodicity and predictability, have long been explored and studied as a potential energy source, focusing on many different locations with significant tidal ranges. However, a proper resource assessment cannot be accomplished without accurate knowledge of the spatial-temporal distribution and availability of tidal currents. Known for possessing one of the top tidal energy sources along the U.S. coastline, Cook Inlet, Alaska is the area of interest for this project. A previous regional scaled resource assessment has been completed, however, the present study is to focus the assessment on the available power specifically near Anchorage while significantly improving the accuracy of the assessment following IEC guidelines. The Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system is configured to simulate the tidal flows with grid refinement techniques for a minimum of 32 days, encompassing an entire lunar cycle. Simulation results are validated by extracting tidal constituents with harmonic analysis and comparing tidal components with National Oceanic and Atmospheric Administration (NOAA) observations and predictions. Model calibration includes adjustments to bottom friction coefficients and the usage of different tidal database. Differences between NOAA observations and COAWST simulations after applying grid refinement decrease, compared with results from a former study without grid refinement. Also, energy extraction is simulated at potential sites to study the impact on the tidal resources. This study demonstrates the enhancement of the resource assessment using grid refinement to evaluate tidal energy near Anchorage within Cook Inlet, Alaska, the productivity that energy extraction can achieve and the change in tidal currents caused by energy extraction.
NASA Astrophysics Data System (ADS)
Bertin, Xavier; Chaumillon, Eric; Sottolichio, Aldo; Pedreros, Rodrigo
2005-06-01
Tidal inlet characteristics are controlled by wave energy, tidal range, tidal prism, sediment supply and direction and rates of sand delivered to the inlet. This paper deals with the relations between inlet and lagoon evolutions, linked by the tidal prism. Our study is focused on the Maumusson Inlet and the Marennes-Oléron Bay (first oyster farming area in Europe), located on the western coast of France. The tidal range (2-6 m) and wave climate (mean height: 1.5 m) place this tidal inlet system in the mixed energy (tide, waves), tide-dominated category. The availability of high-resolution bathymetric data since 1824 permits to characterise and quantify accurately morphological changes of both the inlet and the tidal bay. Since 1824, sediment filling of the tidal bay has led to a 20% decrease in its water volume, and a 35% reduction of the inlet throat section. Furthermore, the bay is subjected to a very high anthropic pressure, mainly related to oyster farming. Thus, both natural and human-related processes seem relevant to explain high sedimentation rates. Current measurements, hydrodynamic modelling and cross-sectional area of the inlet throat are used in order to quantify tidal prism changes since 1824. Both flood and ebb tidal prism decreased by 35%. Decrease in the Marennes-Oléron Bay water volume is inferred to be responsible for a part of tidal prism decrease at the inlet. Tidal prisms decrease may also be explained by an increase in frictional resistance to tidal wave propagation, due to a general shoaling and oyster farms in the bay. A conceptual model is proposed, taking into account natural and human-related sedimentation processes, and explaining tidal inlet response to tidal bay evolutions.
Stick-slip Cycles and Tidal Modulation of Ice Stream Flow
NASA Astrophysics Data System (ADS)
Lipovsky, B.; Dunham, E. M.
2016-12-01
The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive parameters. One implication of our work is that, because the transition from steady to episodic sliding may occur by changing subglacial effective pressure, changing effective pressure may be responsible for the stagnation of the WIP.
Field migration rates of tidal meanders recapitulate fluvial morphodynamics
NASA Astrophysics Data System (ADS)
Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea
2018-02-01
The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.
Landslide movement in southwest Colorado triggered by atmospheric tides
Schulz, W.H.; Kean, J.W.; Wang, G.
2009-01-01
Landslides are among the most hazardous of geological processes, causing thousands of casualties and damage on the order of billions of dollars annually. The movement of most landslides occurs along a discrete shear surface, and is triggered by a reduction in the frictional strength of the surface. Infiltration of water into the landslide from rainfall and snowmelt and ground motion from earthquakes are generally implicated in lowering the frictional strength of this surface. However, solid-Earth and ocean tides have recently been shown to trigger shear sliding in other processes, such as earthquakes and glacial motion. Here we use observations and numerical modelling to show that a similar processatmospheric tidescan trigger movement in an ongoing landslide. The Slumgullion landslide, located in the SanJuan Mountains of Colorado, shows daily movement, primarily during diurnal low tides of the atmosphere. According to our model, the tidal changes in air pressure cause air and water in the sediment pores to flow vertically, altering the frictional stress of the shear surface; upward fluid flow during periods of atmospheric low pressure is most conducive to sliding. We suggest that tidally modulated changes in shear strength may also affect the stability of other landslides, and that the rapid pressure variations associated with some fast-moving storm systems could trigger a similar response. ?? 2009 Macmillan Publishers Limited. All rights reserved.
Understanding dynamic friction through spontaneously evolving laboratory earthquakes
Rubino, V.; Rosakis, A. J.; Lapusta, N.
2017-01-01
Friction plays a key role in how ruptures unzip faults in the Earth’s crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source. PMID:28660876
The effect of lagoons on Adriatic Sea tidal dynamics
NASA Astrophysics Data System (ADS)
Ferrarin, Christian; Maicu, Francesco; Umgiesser, Georg
2017-11-01
In this study the effects that lagoons exert on the barotropic tidal dynamics of a regional sea, the Adriatic Sea, were numerically explored. This semi-enclosed basin is one of the places with the highest tidal range in the Mediterranean Sea and is characterised by the presence of several lagoons in its northern part. The tidal dynamics of a system comprising the whole Adriatic Sea and the lagoons of Venice, Marano-Grado and Po Delta were investigated using an unstructured hydrodynamic model. Numerical experiments with and without lagoons reveal that even if the considered shallow water bodies represent only the 0.5 and 0.002% of the Adriatic Sea surface and volume, respectively, they significantly affect the entire Northern Adriatic Sea tidal dynamics by enhancing tidal range (by 5%) and currents (by 10%). The inclusion of lagoons in the computation improved the model performance by 25% in reproducing tidal constituents in the Adriatic Sea. The back-effect of the lagoons on the open-sea tide is due to the waves radiating from the co-oscillating lagoons into the adjacent sea. This is the first time these processes are shown to be relevant for the Adriatic Sea, thus enhancing the understanding of the tidal dynamics in this regional sea. These findings may also apply to other coastal seas with connections to lagoons, bays and estuaries.
Tidal-flow, circulation, and flushing characteristics of Kings Bay, Citrus County, Florida
Hammett, K.M.; Goodwin, C.R.; Sanders, G.L.
1996-01-01
Kings Bay is an estuary on the gulf coast of peninsular Florida with a surface area of less than one square mile. It is a unique estuarine system with no significant inflowing rivers or streams. As much as 99 percent of the freshwater entering the bay originates from multiple spring vents at the bottom of the estuary. The circulation and flushing characteristics of Kings Bay were evaluated by applying SIMSYS2D, a two-dimensional numerical model. Field data were used to calibrate and verify the model. Lagrangian particle simulations were used to determine the circulation characteristics for three hydrologic conditions: low inflow, typical inflow, and low inflow with reduced friction from aquatic vegetation. Spring discharge transported the particles from Kings Bay through Crystal River and out of the model domain. Tidal effects added an oscillatory component to the particle paths. The mean particle residence time was 59 hours for low inflow with reduced friction; therefore, particle residence time is affected more by spring discharge than by bottom friction. Circulation patterns were virtually identical for the three simulated hydroloigc conditions. Simulated particles introduced in the southern part of Kings Bay traveled along the eastern side of Buzzard Island before entering Crystal River and existing the model domain. The flushing characteristics of Kings Bay for the three hydrodynamic conditions were determined by simulating the injection of conservative dye constituents. The average concentration of dye initially injected in Kings Bay decreased asymptotically because of spring discharge, and the tide caused some oscillation in the average dye concentration. Ninety-five percent of the injected dye exited Kings Bay and Crystal River with 94 hours for low inflow, 71 hours for typical inflow, and 94 hours for low inflow with reduced bottom friction. Simulation results indicate that all of the open waters of Kings Bay are flushed by the spring discharge. Reduced bottom friction has little effect on flushing.
Concerted dihedral rotations give rise to internal friction in unfolded proteins.
Echeverria, Ignacia; Makarov, Dmitrii E; Papoian, Garegin A
2014-06-18
Protein chains undergo conformational diffusion during folding and dynamics, experiencing both thermal kicks and viscous drag. Recent experiments have shown that the corresponding friction can be separated into wet friction, which is determined by the solvent viscosity, and dry friction, where frictional effects arise due to the interactions within the protein chain. Despite important advances, the molecular origins underlying dry friction in proteins have remained unclear. To address this problem, we studied the dynamics of the unfolded cold-shock protein at different solvent viscosities and denaturant concentrations. Using extensive all-atom molecular dynamics simulations we estimated the internal friction time scales and found them to agree well with the corresponding experimental measurements (Soranno et al. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 17800-17806). Analysis of the reconfiguration dynamics of the unfolded chain further revealed that hops in the dihedral space provide the dominant mechanism of internal friction. Furthermore, the increased number of concerted dihedral moves at physiological conditions suggest that, in such conditions, the concerted motions result in higher frictional forces. These findings have important implications for understanding the folding kinetics of proteins as well as the dynamics of intrinsically disordered proteins.
Impact of an irregular friction formulation on dynamics of a minimal model for brake squeal
NASA Astrophysics Data System (ADS)
Stender, Merten; Tiedemann, Merten; Hoffmann, Norbert; Oberst, Sebastian
2018-07-01
Friction-induced vibrations are of major concern in the design of reliable, efficient and comfortable technical systems. Well-known examples for systems susceptible to self-excitation can be found in fluid structure interaction, disk brake squeal, rotor dynamics, hip implants noise and many more. While damping elements and amplitude reduction are well-understood in linear systems, nonlinear systems and especially self-excited dynamics still constitute a challenge for damping element design. Additionally, complex dynamical systems exhibit deterministic chaotic cores which add severe sensitivity to initial conditions to the system response. Especially the complex friction interface dynamics remain a challenging task for measurements and modeling. Today, mostly simple and regular friction models are investigated in the field of self-excited brake system vibrations. This work aims at investigating the effect of high-frequency irregular interface dynamics on the nonlinear dynamical response of a self-excited structure. Special focus is put on the characterization of the system response time series. A low-dimensional minimal model is studied which features self-excitation, gyroscopic effects and friction-induced damping. Additionally, the employed friction formulation exhibits temperature as inner variable and superposed chaotic fluctuations governed by a Lorenz attractor. The time scale of the irregular fluctuations is chosen one order smaller than the overall system dynamics. The influence of those fluctuations on the structural response is studied in various ways, i.e. in time domain and by means of recurrence analysis. The separate time scales are studied in detail and regimes of dynamic interactions are identified. The results of the irregular friction formulation indicate dynamic interactions on multiple time scales, which trigger larger vibration amplitudes as compared to regular friction formulations conventionally studied in the field of friction-induced vibrations.
NASA Astrophysics Data System (ADS)
Lipovsky, Bradley Paul; Dunham, Eric M.
2017-04-01
The Whillans Ice Plain (WIP), Antarctica, experiences twice daily tidally modulated stick-slip cycles. Slip events last about 30 min, have sliding velocities as high as ˜0.5 mm/s (15 km/yr), and have total slip ˜0.5 m. Slip events tend to occur during falling ocean tide: just after high tide and just before low tide. To reproduce these characteristics, we use rate-and-state friction, which is commonly used to simulate tectonic faulting, as an ice stream sliding law. This framework describes the evolving strength of the ice-bed interface throughout stick-slip cycles. We present simulations that resolve the cross-stream dimension using a depth-integrated treatment of an elastic ice layer loaded by tides and steady ice inflow. Steady sliding with rate-weakening friction is conditionally stable with steady sliding occurring for sufficiently narrow ice streams relative to a nucleation length. Stick-slip cycles occur when the ice stream is wider than the nucleation length or, equivalently, when effective pressures exceed a critical value. Ice streams barely wider than the nucleation length experience slow-slip events, and our simulations suggest that the WIP is in this slow-slip regime. Slip events on the WIP show a sense of propagation, and we reproduce this behavior by introducing a rate-strengthening region in the center of the otherwise rate-weakening ice stream. If pore pressures are raised above a critical value, our simulations predict that the WIP would exhibit quasi-steady tidally modulated sliding as observed on other ice streams. This study validates rate-and-state friction as a sliding law to describe ice stream sliding styles.
Global ocean tide mapping using TOPEX/Poseidon altimetry
NASA Technical Reports Server (NTRS)
Sanchez, Braulio V.; Cartwright, D. E.; Estes, R. H.; Williamson, R. G.; Colombo, O. L.
1991-01-01
The investigation's main goals are to produce accurate tidal maps of the main diurnal, semidiurnal, and long-period tidal components in the world's deep oceans. This will be done by the application of statistical estimation techniques to long time series of altimeter data provided by the TOPEX/POSEIDON mission, with additional information provided by satellite tracking data. In the prelaunch phase, we will use in our simulations and preliminary work data supplied by previous oceanographic missions, such as Seasat and Geosat. These results will be of scientific interest in themselves. The investigation will also be concerned with the estimation of new values, and their uncertainties, for tidal currents and for the physical parameters appearing in the Laplace tidal equations, such as bottom friction coefficients and eddy viscosity coefficients. This will be done by incorporating the altimetry-derived charts of vertical tides as boundary conditions in the integration of those equations. The methodology of the tidal representation will include the use of appropriate series expansions such as ocean-basin normal modes and spherical harmonics. The results of the investigation will be space-determined tidal models of coverage and accuracy superior to that of the present numerical models of the ocean tides, with the concomitant benefits to oceanography and associated disciplinary fields.
Frequency-Dependent Tidal Triggering of Low Frequency Earthquakes Near Parkfield, California
NASA Astrophysics Data System (ADS)
Xue, L.; Burgmann, R.; Shelly, D. R.
2017-12-01
The effect of small periodic stress perturbations on earthquake generation is not clear, however, the rate of low-frequency earthquakes (LFEs) near Parkfield, California has been found to be strongly correlated with solid earth tides. Laboratory experiments and theoretical analyses show that the period of imposed forcing and source properties affect the sensitivity to triggering and the phase relation of the peak seismicity rate and the periodic stress, but frequency-dependent triggering has not been quantitatively explored in the field. Tidal forcing acts over a wide range of frequencies, therefore the sensitivity to tidal triggering of LFEs provides a good probe to the physical mechanisms affecting earthquake generation. In this study, we consider the tidal triggering of LFEs near Parkfield, California since 2001. We find the LFEs rate is correlated with tidal shear stress, normal stress rate and shear stress rate. The occurrence of LFEs can also be independently modulated by groups of tidal constituents at semi-diurnal, diurnal and fortnightly frequencies. The strength of the response of LFEs to the different tidal constituents varies between LFE families. Each LFE family has an optimal triggering frequency, which does not appear to be depth dependent or systematically related to other known properties. This suggests the period of the applied forcing plays an important role in the triggering process, and the interaction of periods of loading history and source region properties, such as friction, effective normal stress and pore fluid pressure, produces the observed frequency-dependent tidal triggering of LFEs.
Transient eddy formation around headlands
Signell, Richard P.; Geyer, W. Rockwell
1991-01-01
Eddies with length scales of 1-10 km are commonly observed in coastal waters and play an important role in the dispersion of water-borne materials. The generation and evolution of these eddies by oscillatory tidal flow around coastal headlands is investigated with analytical and numerical models. Using shallow water depth-averaged vorticity dynamics, eddies are shown to form when flow separation occurs near the tip of the headland, causing intense vorticity generated along the headland to be injected into the interior. An analytic boundary layer model demonstrates that flow separation occurs when the pressure gradient along the boundary switches from favoring (accelerating) to adverse (decelerating), and its occurrence depends principally on three parameters: the aspect ratio [b/a], where b and a are characteristic width and length scales of the headland; [H/CDa], where H is the water depth, CD is the depth-averaged drag coefficient; and [Uo/aa], where Uo and a are the magnitude and frequency of the far-field tidal flow. Simulations with a depth-averaged numerical model show a wide range of responses to changes in these parameters, including cases where no separation occurs, cases where only one eddy exists at a given time, and cases where bottom friction is weak enough that eddies produced during successive tidal cycles coexist, interacting strongly with each other. These simulations also demonstrate that in unsteady flow, a strong start-up vortex forms after the flow separates, leading to a much more intense patch of vorticity and stronger recirculation than found in steady flow.
Effect of time derivative of contact area on dynamic friction
NASA Astrophysics Data System (ADS)
Arakawa, Kazuo
2014-06-01
This study investigated dynamic friction during oblique impact of a golf ball by evaluating the ball's angular velocity, contact force, and the contact area between the ball and target. The effect of the contact area on the angular velocities was evaluated, and the results indicated that the contact area plays an important role in dynamic friction. In this study, the dynamic friction force F was given by F = μN + μη dA/dt, where μ is the coefficient of friction, N is the contact force, dA/dt is the time derivative of the contact area A, and η is a coefficient associated with the contact area.
NASA Astrophysics Data System (ADS)
Garel, E.; Pacheco, A.; Ferreira, Ó.
2009-04-01
The present study documents the poorly-described hydro-sediment dynamics of narrow bedrock-controlled estuaries during periods of low-river discharge. The results also contribute to assess the geomorphological evolution of these systems, when affected by drastic flow regulation. The Guadiana Estuary is a narrow rock-bound mesotidal estuary, 80 km in length, located at the southern border between Spain and Portugal. Until recently, the river inputs to the estuary displayed high (annual and seasonal) variability, characterized by periods of droughts, and episodic flood events with (monthly-averaged) fluvial discharge as high as 5,000 m3s-1 (160 m3s-1 in average, for the period 1947/2001). This pattern has ceased in February 2002, with the impoundment of the main river by the large Alqueva dam, 60 km upstream from the estuary head. At present, the daily-averaged river discharge is generally kept low throughout the year (< 50 m3s-1). In the absence of significant flood events to expel massively sediment out of the estuary, concerns have been raised about sand infilling at the mouth and increased erosion at the adjacent coastline. For the assessment of the sediment balance of the estuary under present hydrodynamic conditions, this study examines the tidal currents and bedload transport at the entrance of the estuarine channel. Current measurement transects were performed across the 600 m-wide channel entrance using a ship borne Acoustic Doppler Profiler (ADP, operating at 1.5 MHz frequency) during 2 entire tidal cycles, at spring (17 September 2008, 3.0 m tidal range) and at neap tide (21 October 2008, 1.6 m tidal range). Surficial sediment samples were also collected across the channel during the spring tidal cycle. The bed sediment consists of well-sorted medium sand with mean grain size ranging from 0.5 to 0.3 mm (with coarser material at the deepest part of the channel cross-section). Tidal currents were analysed along 6 sub-sections to take into account these grain size variations. The friction velocity and bed shear stress were computed based on the mean depth-averaged velocities of each sub-sections and considering a power law vertical velocity profile. The transport rate of sand was then estimated using Nielsen (1992) formula for bedload transport. The transport of sand in suspension was not considered in the study, as the skin friction velocities were lesser than the estimated settling velocities of the grains. Maximum velocity values (about 1.2 and 0.8 m.s-1 at spring and neap, respectively) were observed near the surface of the deepest sub-section of the channel. The tidal prism was about 1.5 times larger at spring (39x106 m3) than at neap (25x106m3), whereas the fresh water inputs during both tidal cycles were comparatively negligible. Maximum depth-averaged, bed and surface current velocities were ebb-directed at both neap and spring tides, for each of the 6 channel sub-sections. No significant lateral variation of the tidal flow was observed, in relation with the narrowness of the channel. Vertical residual velocity profiles were also directed downstream at both neap and spring tide. At neap, however, the (ebb-directed) residual velocities were slower near the bed and faster near the surface, when compared to the spring tide. These differences were induced by the reinforcement of the estuarine circulation, in relation with enhanced stratified conditions during neap periods (weak currents and reduced mixing). The net bedload transport of sand was also directed downstream for all channel sub-sections. The transport rates of the entire channel were estimated to be of about 30 and 10 m3 for the spring and neap tidal cycles, respectively. Extrapolation of these extreme (i.e. neap and spring) rates yielded a potential seaward export of sand of approximately 15,000 m3yr-1. This study suggests that the Guadiana estuary departs from typical estuaries where landward net transport of sediment is generally described. The outputs of the study are important with respect to the long-term (decades) geomorphological evolution and sustainable management of the estuary mouth and adjacent coastline.
Energy storage inherent in large tidal turbine farms
Vennell, Ross; Adcock, Thomas A. A.
2014-01-01
While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516
Energy storage inherent in large tidal turbine farms.
Vennell, Ross; Adcock, Thomas A A
2014-06-08
While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels.
Critical Latitude in Tidal Dynamics Using the Kara Sea as an Example
NASA Astrophysics Data System (ADS)
Kagan, B. A.; Sofina, E. V.; Timofeev, A. A.
2018-03-01
It is well known that, within the linear nonviscous equations of tidal dynamics, the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components unlimitedly increase when approaching the critical latitude. It is also known that the linear equations of tidal dynamics with a constant and specified vertical eddy viscosity indicate the occurrence of significant tidal velocity shears in the near-bottom layer, which are responsible for increasing the baroclinic tidal energy dissipation, the turbulent kinetic energy, and the thickness of the bottom boundary layer. The first circumstance—the growth of the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components—is due to the elimination in the original equations of small terms, which are small everywhere except for the critical latitude zone. The second circumstance—the occurrence of significant tidal velocity shears—is due to the fact that internal tidal waves, which induce the dissipation of the baroclinic tidal energy and the diapycnal diffusion, are either not taken into account or described inadequately. It is suggested that diapycnal diffusion can lead to the degeneration (complete or partial) of tidal velocity shears, with all the ensuing consequences. The aforesaid is confirmed by simulation results obtained using the QUODDY-4 high-resolution three-dimensional finite-element hydrostatic model along the 66.25° E section, which passes in the Kara Sea across the critical latitude.
Modification of ocean-estuary salt fluxes by density-driven advection of a headland eddy
NASA Astrophysics Data System (ADS)
Fram, J. P.; Stacey, M. T.
2005-05-01
Scalar exchange between San Francisco Bay and the coastal ocean is examined using shipboard observations made across the Golden Gate Channel. Ocean-estuary exchange is often described as a combination of two independent types of mechanisms: density-driven exchange such as gravitational circulation and tidal asymmetries such as tidal trapping. In this study we found that exchange is also governed by an interaction between these mechanisms. Tidally trapped eddies created in shallow shoals are mixed into the main channel earlier in the tidal cycle during the rainy season because the eddies are pushed seaward by gravitational circulation. This interaction increases the tidally averaged dispersive salt flux into the bay. The study consists of experiments during each of three 'seasons': winter/spring runoff (March 2002), summer upwelling (July 2003), and fall relaxation (October 2002). Within each experiment, transects across the channel were repeated approximately every 12 minutes for 25 hours during both spring tide and the following neap tide. Velocity was measured from a boat-mounted ADCP. Scalar concentrations were measured from a tow-yoed SeaSciences Acrobat. Salinity exchange over each spring-neap cycle is quantified with harmonic analysis. Harmonic results are decomposed into flux mechanisms using temporal and spatial correlations. The temporal correlation of cross-sectional averaged salinity and velocity (tidal pumping flux) is the largest part of the dispersive flux of salinity into the bay. From the tidal pumping portion of the dispersive flux, it is shown that there is less exchange than was found in earlier studies. Furthermore, tidal pumping flux scales strongly with flow due to density-driven movement of tidally trapped eddies and density-driven increases in ebb-flood frictional phasing. Complex bathymetry makes salinity exchange scale differently with flow than would be expected from simple tidal pumping and gravitational circulation models.
Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations.
Brown, Paul A; Messina, Michael
2016-03-03
We present a simple computational algorithm that allows for the inclusion of memory friction in a quantum dynamics simulation of a small, quantum, primary system coupled to many atoms in the surroundings. We show how including a memory friction operator, F̂, in the primary quantum system's Hamiltonian operator builds memory friction into the dynamics of the primary quantum system. We show that, in the harmonic, semi-classical limit, this friction operator causes the classical phase-space centers of a wavepacket to evolve exactly as if it were a classical particle experiencing memory friction. We also show that this friction operator can be used to include memory friction in the quantum dynamics of an anharmonic primary system. We then generalize the algorithm so that it can be used to treat a primary quantum system that is evolving, non-adiabatically on two coupled potential energy surfaces, i.e., a model that can be used to model H atom transfer, for example. We demonstrate this approach's computational ease and flexibility by showing numerical results for both harmonic and anharmonic primary quantum systems in the single surface case. Finally, we present numerical results for a model of non-adiabatic H atom transfer between a reactant and product state that includes memory friction on one or both of the non-adiabatic potential energy surfaces and uncover some interesting dynamical effects of non-memory friction on the H atom transfer process.
Characterising Tidal Flow Within AN Energetic Tidal Environment
NASA Astrophysics Data System (ADS)
Neill, S. P.; Goward Brown, A.; Lewis, M. J.
2016-02-01
The Pentland Firth is a highly energetic and complex tidal strait separating the north of Scotland with the Orkney Islands and is a key location for tidal energy exploitation. Topographic features including islands and headlands, combined with bathymetric complexities within the Pentland Firth create turbulent hydrodynamic flows which are difficult to observe. Site selection in tidal energy environments historically focuses on tidal current magnitude. Without consideration for the more complex hydrodynamics of tidal energy environments tidal energy developers may miss the opportunity to tune their devices or create environment specific tidal energy converters in order to harness the greatest potential from site. Fully characterising these tidal energy environments ensures economic energy extraction. Understanding the interaction of energy extraction with the environment will reduce uncertainty in site selection and allow mitigation of any potential environmental concerns. We apply the 3D ROMS model to the Pentland Firth with the aim of resolving uncertainties within tidal energy resource assessment. Flow magnitudes and directions are examined with a focus on tidal phasing and asymmetry and application to sediment dynamics. Using the ROMS model, it is possible to determine the extent to which the tidal resource varies temporally and spatially with tidal energy extraction. Accurately modelling the tidal dynamics within this environment ensures that potential consequences of tidal energy extraction on the surrounding environment are better understood.
Peptide chain dynamics in light and heavy water: zooming in on internal friction.
Schulz, Julius C F; Schmidt, Lennart; Best, Robert B; Dzubiella, Joachim; Netz, Roland R
2012-04-11
Frictional effects due to the chain itself, rather than the solvent, may have a significant effect on protein dynamics. Experimentally, such "internal friction" has been investigated by studying folding or binding kinetics at varying solvent viscosity; however, the molecular origin of these effects is hard to pinpoint. We consider the kinetics of disordered glycine-serine and α-helix forming alanine peptides and a coarse-grained protein folding model in explicit-solvent molecular dynamics simulations. By varying the solvent mass over more than two orders of magnitude, we alter only the solvent viscosity and not the folding free energy. Folding dynamics at the near-vanishing solvent viscosities accessible by this approach suggests that solvent and internal friction effects are intrinsically entangled. This finding is rationalized by calculation of the polymer end-to-end distance dynamics from a Rouse model that includes internal friction. An analysis of the friction profile along different reaction coordinates, extracted from the simulation data, demonstrates that internal as well as solvent friction varies substantially along the folding pathways and furthermore suggests a connection between friction and the formation of hydrogen bonds upon folding. © 2012 American Chemical Society
The northern tidal dynamic of Aceh waters: A 3D numerical model
NASA Astrophysics Data System (ADS)
Irham, M.; Miswar, E.; Ilhamsyah, Y.; Setiawan, I.
2018-05-01
The northern tidal dynamic of Aceh waters studied by employing three-dimensional (3D) numerical hydrodynamic model. The purpose of this study is to understand the phenomena and the characteristic of the northern tidal dynamic of Aceh waters. The research used the explicit-splitting scheme numerical model of Navier-Stokes formulation. The result displays that the vertical rotation of flow movement (vertical eddy) at a depth of 15 to 25 meter eastern part of the study area. Hence, the result also informs that the current circulation identically to the upwelling in the western region of Aceh during the wet season and vice versa. However, during the transitional season, the flow circulation depends on how the tidal dynamic occurs in the area.
Dynamic measurements of gear tooth friction and load
NASA Technical Reports Server (NTRS)
Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.
1991-01-01
As part of a program to study fundamental mechanisms of gear noise, static and dynamic gear tooth strain measurements were made on the NASA gear-noise rig. Tooth-fillet strains from low-contact ratio-spur gears were recorded for 28 operating conditions. A method is introduced whereby strain gage measurements taken from both the tension and compression sides of a gear tooth can be transformed into the normal and frictional loads on the tooth. This technique was applied to both the static and dynamic strain data. The static case results showed close agreement with expected results. For the dynamic case, the normal-force computation produced very good results, but the friction results, although promising, were not as accurate. Tooth sliding friction strongly affected the signal from the strain gage on the tensionside of the tooth. The compression gage was affected by friction to a much lesser degree. The potential of the method to measure friction force was demonstrated, but further refinement will be required before this technique can be used to measure friction forces dynamically with an acceptable degree of accuracy.
Stochastic dynamic modeling of regular and slow earthquakes
NASA Astrophysics Data System (ADS)
Aso, N.; Ando, R.; Ide, S.
2017-12-01
Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal diffusion appears much slower than the particle velocity of each molecule. The concept of stochastic triggering originates in the Brownian walk model [Ide, 2008], and the present study introduces the stochastic dynamics into dynamic simulations. The stochastic dynamic model has the potential to explain both regular and slow earthquakes more realistically.
NASA Astrophysics Data System (ADS)
Koohafkan, Michael
2006-05-01
The Moon's orbit and spin period are nearly synchronized, or tidally locked. Could the Moon's orbit and the Earth's spin eventually synchronize as well? The Moon's gravitational pull on the Earth produces tides in our oceans, and tidal friction gradually lengthens our days. Less obvious gravitational interactions between the Earth and Moon may also have effects on Earth's spin. The Earth is slightly distorted into an egg-like shape, and the torque exerted by the Moon on our equatorial bulge slowly changes the tilt of our spin axis. How do effects such as these change as the Moon drifts away from Earth? I will examine gravitational interactions between Earth and Moon to learn how they contribute to the deceleration of the Earth's rotation. My goal is to determine the amount of time it would take for the Earth's rotational speed to decelerate until the period of a single rotation matches the period of the Moon's orbit around Earth -- when the Earth is ``tidally locked'' with the Moon. I aim to derive a general mathematical expression for the rotational deceleration of the Earth due to Moon's gravitational influences.
Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data
NASA Technical Reports Server (NTRS)
Egbert, G. D.; Ray, R. D.
2000-01-01
How and where the ocean tides dissipate their energy are longstanding questions that have consequences ranging from the history of the Moon to the mixing of the oceans. Historically, the principal sink of tidal energy has been thought to be bottom friction in shallow seas. There has long been suggestive however, that tidal dissipation also occurs in the open ocean through the scattering by ocean-bottom topography of surface tides into internal waves, but estimates of the magnitude of this possible sink have varied widely. Here we use satellite altimeter data from Topex/Poseidon to map empirically the tidal energy dissipation. We show that approximately 10(exp 12) watts-that is, 1 TW, representing 25-30% of the total dissipation-occurs in the deep ocean, generally near areas of rough topography. Of the estimated 2 TW of mixing energy required to maintain the large-scale thermohaline circulation of the ocean, one-half could therefore be provided by the tides, with the other half coming from action on the surface of the ocean.
A multivariable model for predicting the frictional behaviour and hydration of the human skin.
Veijgen, N K; van der Heide, E; Masen, M A
2013-08-01
The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is developed that describes the friction behaviour of human skin as a function of the subject characteristics, contact conditions, the properties of the counter material as well as environmental conditions. Although the frictional behaviour of human skin is a multivariable problem, in literature the variables that are associated with skin friction have been studied using univariable methods. In this work, multivariable models for the static and dynamic coefficients of friction as well as for the hydration of the skin are presented. A total of 634 skin-friction measurements were performed using a recently developed tribometer. Using a statistical analysis, previously defined potential influential variables were linked to the static and dynamic coefficient of friction and to the hydration of the skin, resulting in three predictive quantitative models that descibe the friction behaviour and the hydration of human skin respectively. Increased dynamic coefficients of friction were obtained from older subjects, on the index finger, with materials with a higher surface energy at higher room temperatures, whereas lower dynamic coefficients of friction were obtained at lower skin temperatures, on the temple with rougher contact materials. The static coefficient of friction increased with higher skin hydration, increasing age, on the index finger, with materials with a higher surface energy and at higher ambient temperatures. The hydration of the skin was associated with the skin temperature, anatomical location, presence of hair on the skin and the relative air humidity. Predictive models have been derived for the static and dynamic coefficient of friction using a multivariable approach. These two coefficients of friction show a strong correlation. Consequently the two multivariable models resemble, with the static coefficient of friction being on average 18% lower than the dynamic coefficient of friction. The multivariable models in this study can be used to describe the data set that was the basis for this study. Care should be taken when generalising these results. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Haas, T. D.; Pierik, H. J.; van der Spek, A.; Cohen, K.; van Maanen, B.; Kleinhans, M. G.
2016-12-01
Estuaries and tidal basins are partly enclosed coastal bodies of water with a free connection to the open sea at their tidal inlet and with no to marginal riverine input (tidal basins) or substantial riverine input (estuaries). Their tidal inlets can only remain open over Holocene timescales when (1) the formation of accommodation space exceeds infilling or (2) the inlet system is in dynamic equilibrium (sediment input equals output). Physical and numerical modelling suggest that estuaries and tidal basins develop toward a dynamic equilibrium under constant boundary conditions and remain open over long timescales, whereas many natural estuaries and tidal basins have filled up and were closed off or became deltas during the Holocene. This raises the question if and how tidal inlets can remain open over long timescales? And what is the effect of river inflow and sediment supply thereon? Here we compare the Holocene evolution of tidal systems along the Dutch coast to empirically identify the most important factors that control their long-term evolution. Along the coast of the Netherlands estuaries and tidal basins were formed during the middle Holocene driven by rapid relative sea-level rise and during the late Holocene driven by natural and human-induced subsidence in coastal plain peatlands. During the Holocene tidal inlets connected to rivers (estuaries) were able to persist and attain dynamic equilibrium while tidal basins without or with a very marginal riverine inflow were unstable and closed off under abundant sediment supply. There are many examples of long-lived tidal inlets that rapidly closed off after upstream river avulsion leading to a decrease and finally loss of riverine input. Long-term net import of sediment from the sea into Dutch tidal basins is favoured by strong, flood-dominated, tidal asymmetry along the Dutch coast, the shallow sand-rich floor of the North Sea and the abundance of mud in the coastal area supplied by the Rhine and Meuse rivers. While sandy tidal basins may obtain dynamic equilibrium and remain open over long timescales, we hypothesize that an abundance of mud and eco-engineering species often culminates in continuous basin filling with fine sediment and the growth of intertidal and supratidal areas, eventually resulting in closure of the basin.
Space-Time Variations in Tidal Stress and Cascadia Tremor Amplitude
NASA Astrophysics Data System (ADS)
Klaus, A. J.; Creager, K. C.; Sweet, J.; Wech, A.
2011-12-01
We present a new analysis of the influence of tidal stresses on the amplitude of non-volcanic tremor in Washington State. Tremor counts (Thomas et al., 2009), tremor amplitude (Rubinstein et al., 2008), and strain (Hawthorne and Rubin, 2010) are modulated by tidal stresses in Cascadia as well as in California. However, tremor amplitudes have not yet been extensively studied in Cascadia. Furthermore, Hawthorne and Rubin's Cascadia-wide tidal stress model (2010) allows us to look at the tremor-tide relationship in more detail than ever before. The ability to look at the tidal modulation of tremor amplitude in space as well as time will increase our understanding of this phenomenon and may provide information about the frictional properties of the plate interface. We focus on the August 2010 episodic tremor and slip (ETS) event recorded by the Array of Arrays, a seismic experiment on the Olympic Peninsula. The instrument response is deconvolved, seismograms band-pass filtered at 1.5-5.5 Hz and envelopes are made in 5-minute windows. An inverse problem compensates for site corrections and source-receiver distances to produce, for any given time, a single amplitude measurement at the source. Source locations are determined using an envelope waveform cross-correlation method. Then, we compare the amplitudes, catalog of tremor locations, and the tidal stress at the desired location and time. Amplitudes during the August 2010 ETS event are clearly modulated by tidal stresses. Viewed in the frequency domain, there are clear peaks in the tremor amplitude spectrum at several tidal periods, most prominently the 12.4 and 24 hour periods. Comparison with Hawthorne and Rubin's tidal stress model shows that higher amplitudes are associated with positive shear stress in the downdip direction and, less strongly, with more compressional normal stress.
Multiple spatially localized dynamical states in friction-excited oscillator chains
NASA Astrophysics Data System (ADS)
Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M.
2018-03-01
Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity vd while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity.
NASA Astrophysics Data System (ADS)
Stark, J.; Smolders, S.; Meire, P.; Temmerman, S.
2017-11-01
Marsh restoration projects are nowadays being implemented as ecosystem-based strategies to reduce flood risks and to restore intertidal habitat along estuaries. Changes in estuarine tidal hydrodynamics are expected along with such intertidal area changes. A validated hydrodynamic model of the Scheldt Estuary is used to gain fundamental insights in the role of intertidal area characteristics on tidal hydrodynamics and tidal asymmetry in particular through several geomorphological scenarios in which intertidal area elevation and location along the estuary is varied. Model results indicate that the location of intertidal areas and their storage volume relative to the local tidal prism determine the intensity and reach along the estuary over which tidal hydrodynamics are affected. Our model results also suggest that intertidal storage areas that are located within the main estuarine channel system, and hence are part of the flow-carrying part of the estuary, may affect tidal hydrodynamics differently than intertidal areas that are side-basins of the main estuarine channel, and hence only contribute little to the flow-carrying cross-section of the estuary. If tidal flats contribute to the channel cross-section and exert frictional effects on the tidal propagation, the elevation of intertidal flats influences the magnitude and direction of tidal asymmetry along estuarine channels. Ebb-dominance is most strongly enhanced if tidal flats are around mean sea level or slightly above. Conversely, flood-dominance is enhanced if the tidal flats are situated low in the tidal frame. For intertidal storage areas at specific locations besides the main channel, flood-dominance in the estuary channel peaks in the vicinity of those areas and generally reduces upstream and downstream compared to a reference scenario. Finally, the model results indicate an along-estuary varying impact on the tidal prism as a result of adding intertidal storage at a specific location. In addition to known effects of tidal prism decrease upstream and tidal prism increase downstream of additional storage areas, our model results indicate a reduction in tidal prism far downstream of intertidal storage areas as a result of a decreasing tidal range. This study may assist estuarine managers in assessing the impact of marsh restoration and managed shoreline realignment projects, as well as with the morphological management of estuaries through dredging and disposal of sediment on intertidal areas.
Secondary currents in a curved, stratified, estuarine channel
Lacy, J.R.; Monismith, Stephen G.
2001-01-01
This paper presents a study of secondary circulation in a curved stratified channel in northern San Francisco Bay over a 12.5-hour tidal cycle. Secondary currents were strong at times (varying by up to 35 cm/s from top to bottom) but relatively transient, as the balance between centrifugal and lateral baroclinic forcing changed over time. The short travel time around the bend did not allow a steady state balance to develop between centrifugal and lateral baroclinic forcing. During the flood tide the confluence of two streams with different velocities produced a strong lateral gradient in streamwise velocity. As a result, lateral advection was a significant term in the streamwise momentum balance, having the same order of magnitude as the barotropic and baroclinic pressure gradients, and the frictional terms. During the first part of the ebb, secondary currents were induced by lateral baroclinic forcing. The direction of the secondary circulation reversed later in the ebb, as the baroclinic forcing became weaker than the centrifugal acceleration. The gradient Richardson number showed that stratification was stable over most of the tidal cycle, decreasing the importance of friction and allowing secondary currents to persist. Copyright 2001 by the American Geophysical Union.
Measurement of the Earth's rotation: 720 BC to AD 2015
NASA Astrophysics Data System (ADS)
Stephenson, F. R.; Morrison, L. V.; Hohenkerk, C. Y.
2016-12-01
New compilations of records of ancient and medieval eclipses in the period 720 BC to AD 1600, and of lunar occultations of stars in AD 1600-2015, are analysed to investigate variations in the Earth's rate of rotation. It is found that the rate of rotation departs from uniformity, such that the change in the length of the mean solar day (lod) increases at an average rate of +1.8 ms per century. This is significantly less than the rate predicted on the basis of tidal friction, which is +2.3 ms per century. Besides this linear change in the lod, there are fluctuations about this trend on time scales of decades to centuries. A power spectral density analysis of fluctuations in the range 2-30 years follows a power law with exponent -1.3, and there is evidence of increased power at a period of 6 years. There is some indication of an oscillation in the lod with a period of roughly 1500 years. Our measurements of the Earth's rotation for the period 720 BC to AD 2015 set firm boundaries for future work on post-glacial rebound and core-mantle coupling which are invoked to explain the departures from tidal friction.
Butane dihedral angle dynamics in water is dominated by internal friction
Daldrop, Jan O.; Kappler, Julian; Brünig, Florian N.; Netz, Roland R.
2018-01-01
The dihedral dynamics of butane in water is known to be rather insensitive to the water viscosity; possible explanations for this involve inertial effects or Kramers’ turnover, the finite memory time of friction, and the presence of so-called internal friction. To disentangle these factors, we introduce a method to directly extract the friction memory function from unconstrained simulations in the presence of an arbitrary free-energy landscape. By analysis of the dihedral friction in butane for varying water viscosity, we demonstrate the existence of an internal friction contribution that does not scale linearly with water viscosity. At normal water viscosity, the internal friction turns out to be eight times larger than the solvent friction and thus completely dominates the effective friction. By comparison with simulations of a constrained butane molecule that has the dihedral as the only degree of freedom, we show that internal friction comes from the six additional degrees of freedom in unconstrained butane that are orthogonal to the dihedral angle reaction coordinate. While the insensitivity of butane’s dihedral dynamics to water viscosity is solely due to the presence of internal friction, inertial effects nevertheless crucially influence the resultant transition rates. In contrast, non-Markovian effects due to the finite memory time are present but do not significantly influence the dihedral barrier-crossing rate of butane. These results not only settle the character of dihedral dynamics in small solvated molecular systems such as butane, they also have important implications for the folding of polymers and proteins. PMID:29712838
Are there reliable constitutive laws for dynamic friction?
Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew
2015-09-28
Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).
Modelling Watershed and Estuarine Controls on Salt Marsh Distributions
NASA Astrophysics Data System (ADS)
Yousefi Lalimi, F.; Marani, M.; Murray, A. B.; D'Alpaos, A.
2017-12-01
The formation and evolution of tidal platforms have been extensively studied through observations and models, describing landform dynamics as a result of the local interactions and feedbacks among hydrodynamics, vegetation, and sediment transport. However, existing work mainly focuses on individual marsh platforms and, possibly, their immediate surrounding, such that the influence and controls on marsh dynamics of inland areas (through fluvial inputs) and of exchanges with the ocean have not been comprehensively and simultaneously accounted for. Here, we develop and use a process-based model to evaluate the relative role of watershed, estuarine, and ocean controls on salt marsh accretionary and depositional/erosional dynamics and define how these factors interact to determine salt marsh resilience to environmental change at the whole-estuary scale. Our results, in line with previous work, show that no stable equilibrium exists for the erosional dynamics of the marsh/tidal flat boundary. In addition, we find that under some circumstances, vertical accretion/erosion dynamics can lead to transitions between salt marsh and tidal flat equilibrium states that occur much more rapidly than marsh/tidal flat boundary erosion or accretion could. We further define, in the multidimensional space of estuarine-scale morphodynamic forcings, the basins of attractions leading to marsh-dominated and tidal-flat-dominated estuaries. The relatively slow dynamics asymptotically leading to marsh- or tidal-flat- dominance in many cases suggest that estuaries are likely to be found, at any given time, in a transition state dictated by temporal variations in environmental forcings.
Soranno, Andrea; Buchli, Brigitte; Nettels, Daniel; Cheng, Ryan R.; Müller-Späth, Sonja; Pfeil, Shawn H.; Hoffmann, Armin; Lipman, Everett A.; Makarov, Dmitrii E.; Schuler, Benjamin
2012-01-01
Internal friction, which reflects the “roughness” of the energy landscape, plays an important role for proteins by modulating the dynamics of their folding and other conformational changes. However, the experimental quantification of internal friction and its contribution to folding dynamics has remained challenging. Here we use the combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and microfluidic mixing to determine the reconfiguration times of unfolded proteins and investigate the mechanisms of internal friction contributing to their dynamics. Using concepts from polymer dynamics, we determine internal friction with three complementary, largely independent, and consistent approaches as an additive contribution to the reconfiguration time of the unfolded state. We find that the magnitude of internal friction correlates with the compactness of the unfolded protein: its contribution dominates the reconfiguration time of approximately 100 ns of the compact unfolded state of a small cold shock protein under native conditions, but decreases for more expanded chains, and approaches zero both at high denaturant concentrations and in intrinsically disordered proteins that are expanded due to intramolecular charge repulsion. Our results suggest that internal friction in the unfolded state will be particularly relevant for the kinetics of proteins that fold in the microsecond range or faster. The low internal friction in expanded intrinsically disordered proteins may have implications for the dynamics of their interactions with cellular binding partners. PMID:22492978
Soranno, Andrea; Buchli, Brigitte; Nettels, Daniel; Cheng, Ryan R; Müller-Späth, Sonja; Pfeil, Shawn H; Hoffmann, Armin; Lipman, Everett A; Makarov, Dmitrii E; Schuler, Benjamin
2012-10-30
Internal friction, which reflects the "roughness" of the energy landscape, plays an important role for proteins by modulating the dynamics of their folding and other conformational changes. However, the experimental quantification of internal friction and its contribution to folding dynamics has remained challenging. Here we use the combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and microfluidic mixing to determine the reconfiguration times of unfolded proteins and investigate the mechanisms of internal friction contributing to their dynamics. Using concepts from polymer dynamics, we determine internal friction with three complementary, largely independent, and consistent approaches as an additive contribution to the reconfiguration time of the unfolded state. We find that the magnitude of internal friction correlates with the compactness of the unfolded protein: its contribution dominates the reconfiguration time of approximately 100 ns of the compact unfolded state of a small cold shock protein under native conditions, but decreases for more expanded chains, and approaches zero both at high denaturant concentrations and in intrinsically disordered proteins that are expanded due to intramolecular charge repulsion. Our results suggest that internal friction in the unfolded state will be particularly relevant for the kinetics of proteins that fold in the microsecond range or faster. The low internal friction in expanded intrinsically disordered proteins may have implications for the dynamics of their interactions with cellular binding partners.
Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation
Bar-Sinai, Yohai; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran
2015-01-01
Frictional interfaces abound in natural and man-made systems, yet their dynamics are not well-understood. Recent extensive experimental data have revealed that velocity-strengthening friction, where the steady-state frictional resistance increases with sliding velocity over some range, is a generic feature of such interfaces. This physical behavior has very recently been linked to slow stick-slip motion. Here we elucidate the importance of velocity-strengthening friction by theoretically studying three variants of a realistic friction model, all featuring identical logarithmic velocity-weakening friction at small sliding velocities, but differ in their higher velocity behaviors. By quantifying energy partition (e.g. radiation and dissipation), the selection of interfacial rupture fronts and rupture arrest, we show that the presence or absence of strengthening significantly affects the global interfacial resistance and the energy release during frictional instabilities. Furthermore, we show that different forms of strengthening may result in events of similar magnitude, yet with dramatically different dissipation and radiation rates. This happens because the events are mediated by rupture fronts with vastly different propagation velocities, where stronger velocity-strengthening friction promotes slower rupture. These theoretical results may have significant implications on our understanding of frictional dynamics. PMID:25598161
Phase lag control of tidally reversing mega-ripple geometry and bed stress in tidal inlets
NASA Astrophysics Data System (ADS)
Traykovski, P.
2016-02-01
Recent observations in the Columbia River Mouth, New River Inlet, and Wasque Shoals have shown that tidally reversing mega-ripples are an ubiquitous bedform morphology in energetic tidal inlets. As the name implies, these bedforms reverse asymmetry and migration direction in each half tidal cycle. With wavelengths of 2 to 5 m and heights of 0.2 to 0.5 m, these bedforms are larger than current formed ripples, but smaller than dunes. Unlike dunes which have a depth dependent geometry, observations indicate the tidally reversing mega-ripples geometry is related to the time dependent tidal flow and independent of depth. Previous empirical relations for predicting the geometry of ripples or dunes do not successfully predict the geometry of these features. A time dependent geometric model was developed that accounts for the reversal of migration and asymmetry to successfully predict bedform geometry. The model requires sufficient sediment transport in each half tidal cycle to reverse the asymmetry before the bedforms begin to grow. Both the observations and model indicate that the complete reversal of asymmetry and development of a steep lee face occurs near or after maximum flow in each half tidal cycle. This phase lag in bedform response to tidal forcing also has important implications for bed stress in tidal inlets. Observations of frictional drag in the Columbia River mouth based on a tidal momentum balance of surface slope over 10 km regressed against quadratic near bed velocity show drag coefficients that fall off as CD U-1.4. Reynolds stress measurements performed using the dual ADV differencing technique show similar relations. The Reynolds stress measurements also show a dramatic asymmetry between accelerating flows and decelerating flows with a factor of 5 increase during deceleration. Pulse coherent Doppler profiles of near bed turbulence indicate that the turbulence is dominated by energetic fluctuations in separation zones downstream of steep lee faces. The phase lag of the bedform evolution, whereby steep lee faces are only present in the decelerating phase of the tidal cycle, provides an explanation for the asymmetry and non-quadratic behavior of the drag coefficients.
NASA Astrophysics Data System (ADS)
Hofmeister, A. M.; Criss, R. E.
2016-12-01
Early Earth conditions were largely erased, but the powerful Virial Theorem (VT) constrains Earth's post-accretion state, which largely dictates subsequent thermal and dynamical evolution. Proposals of huge initial inventories of primordial heat are based on Kelvin's disproven theory of starlight. Rather, the VT requires that gravitational potential of the Solar nebula was converted to rotational energy in a conservative, bound accretionary system, which is confirmed by planetary orbit characteristics. In addition, the VT relates axial spin to gravitational self-potential (Ug,self) of each body [2016 Can. J. Phys. p. 380]. From the VT, ½Ug,self binds the body and is unavailable, but spin energy (SE), also equal to ½Ug,self, degrades while gradually evolving heat via friction. The VT likewise restricts primordial heat of core formation, and is consistent with entropy reduction due to ordering and volume restriction [2015 J. Earth Sci., p. 124]. High initial Virial spin is confirmed by (1) data on young stars, (2) independent projections of Earth's initial spin as 2-17 hrs (from fossils and the current rate of spin loss: Lathe 2006), and (3) current SE for all planets defining a power-law trend with Ug,self, which further requires a universal cause for spin loss [2012 Planet. Space Sci. p. 111]. Spin loss is caused by tidal friction and differential rotation of layers. Dissipation is concentrated in the upper layers and especially in the brittle zone, which are much weaker than the highly compressed, essentially hydrostatic interior. With friction, neither mechanical energy nor angular momentum are conserved. Earth's frictional dissipation is immense. Uniform release over time would provide 300-700 TW. This source dominated heat generation for 2 Ga, whereas radiogenic heat dominates today. Exponential spin down suggests 100x more heat production during the Hadean than now, which obliterated early rocks while promoting outgassing and differentiation. Reduction to 10x present levels in the Archean permitted formation of a thin lithosphere and stabilized an ocean and atmosphere. Frictional heat from spin loss helps explain why oceanic heat flux today resembles that of continents which store all the chondritic U and Th. Topside frictional and radiogenic heat production prohibits lower mantle convection.
General relativistic dynamics of an extreme mass-ratio binary interacting with an external body
NASA Astrophysics Data System (ADS)
Yang, Huan; Casals, Marc
2017-10-01
We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.
NASA Astrophysics Data System (ADS)
Dai, Peng; Zhang, Jisheng; Zheng, Jinhai
2017-12-01
The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.
Butane dihedral angle dynamics in water is dominated by internal friction.
Daldrop, Jan O; Kappler, Julian; Brünig, Florian N; Netz, Roland R
2018-05-15
The dihedral dynamics of butane in water is known to be rather insensitive to the water viscosity; possible explanations for this involve inertial effects or Kramers' turnover, the finite memory time of friction, and the presence of so-called internal friction. To disentangle these factors, we introduce a method to directly extract the friction memory function from unconstrained simulations in the presence of an arbitrary free-energy landscape. By analysis of the dihedral friction in butane for varying water viscosity, we demonstrate the existence of an internal friction contribution that does not scale linearly with water viscosity. At normal water viscosity, the internal friction turns out to be eight times larger than the solvent friction and thus completely dominates the effective friction. By comparison with simulations of a constrained butane molecule that has the dihedral as the only degree of freedom, we show that internal friction comes from the six additional degrees of freedom in unconstrained butane that are orthogonal to the dihedral angle reaction coordinate. While the insensitivity of butane's dihedral dynamics to water viscosity is solely due to the presence of internal friction, inertial effects nevertheless crucially influence the resultant transition rates. In contrast, non-Markovian effects due to the finite memory time are present but do not significantly influence the dihedral barrier-crossing rate of butane. These results not only settle the character of dihedral dynamics in small solvated molecular systems such as butane, they also have important implications for the folding of polymers and proteins. Copyright © 2018 the Author(s). Published by PNAS.
Soranno, Andrea; Holla, Andrea; Dingfelder, Fabian; Nettels, Daniel; Makarov, Dmitrii E.; Schuler, Benjamin
2017-01-01
Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques. PMID:28223518
Soranno, Andrea; Holla, Andrea; Dingfelder, Fabian; Nettels, Daniel; Makarov, Dmitrii E; Schuler, Benjamin
2017-03-07
Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques.
Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure.
Hu, Zhan; Yao, Peng; van der Wal, Daphne; Bouma, Tjeerd J
2017-08-02
Short-term bed-level dynamics has been identified as one of the main factors affecting biota establishment or retreat on tidal flats. However, due to a lack of proper instruments and intensive labour involved, the pattern and drivers of daily bed-level dynamics are largely unexplored in a spatiotemporal context. In this study, 12 newly-developed automatic bed-level sensors were deployed for nearly 15 months on two tidal flats with contrasting wave exposure, proving an unique dataset of daily bed-level changes and hydrodynamic forcing. By analysing the data, we show that (1) a general steepening trend exists on both tidal flats, even with contrasting wave exposure and different bed sediment grain size; (2) daily morphodynamics level increases towards the sea; (3) tidal forcing sets the general morphological evolution pattern at both sites; (4) wave forcing induces short-term bed-level fluctuations at the wave-exposed site, but similar effect is not seen at the sheltered site with smaller waves; (5) storms provoke aggravated erosion, but the impact is conditioned by tidal levels. This study provides insights in the pattern and drivers of daily intertidal bed-level dynamics, thereby setting a template for future high-resolution field monitoring programmes and inviting in-depth morphodynamic modelling for improved understanding and predictive capability.
NASA Astrophysics Data System (ADS)
Hu, Zhan; van der Wal, Daphne; Cai, Huayang; van Belzen, Jim; Bouma, Tjeerd J.
2018-06-01
Dynamic equilibrium theory (DET) has been applied to tidal flats to systematically explain intertidal morphological responses to various distributions of bed shear stress (BSS). However, it is difficult to verify this theory with field observations because of the discrepancy between the idealized conceptions of theory and the complex reality of intertidal dynamics. The core relation between intertidal morphodynamics and BSS distribution can be easily masked by noise in complex datasets, leading to conclusions of insufficient field evidence to support DET. In the current study, hydrodynamic and morphodynamic data were monitored daily for one year on two tidal flats with contrasting wave exposures. BSS distribution was obtained by validated numerical models. Tidal flat dynamic equilibrium behaviour and BSS were linked via Empirical Orthogonal Function (EOF) analysis. We show that the principal morphodynamic modes corresponded well with the respective modes of BSS found at both sites. Tide-induced BSS was the dominant force at both sites, regardless of the level of wave exposure. The overall erosional and steepening trend found at the two flats can be attributed to the prevailing action of tidal forcing and reduced sediment supply. Hence, EOF analysis confirmed that tidal flat morphodynamics are consistent with DET, providing both field and model evidence to support this theory.
A technique for measuring dynamic friction coefficient under impact loading
NASA Astrophysics Data System (ADS)
Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.
2014-09-01
We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.
A technique for measuring dynamic friction coefficient under impact loading.
Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y
2014-09-01
We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.
NASA Astrophysics Data System (ADS)
Salehipour, Hesam; Peltier, W. Richard
2013-04-01
Increasing recognition of the importance of the diapycnal mixing induced by the dissipation of internal tides excited by the interaction of the barotropic tide with bottom topography has begun to attract increasing attention. The partition of the dissipation of the barotropic tide between that related to the internal tide and that related to bottom friction is also of considerable interest as this partition has been shown to shift significantly between the modern and Last Glacial Maximum tidal regimes [Griffiths and Peltier, 2008, 2009] . Ocean general circulation models, though clearly unable to explicitly resolve small scale mixing processes, currently rely on the introduction of an appropriate parameterization of the contribution to such mixing due to dissipation of the internal tidal. One widely-used parameterization of this kind (which is currently employed in POP2) is that proposed by Jayne and St. Laurent [GRL 2001] and is based on topographic roughness. This contrasts with the parameterization of Carrere and Lyard [GRL 2003] and Lyard [Ocean Dynamics, 2006] which also considers the flow direction with respect to the topographic features. Both of these parameterizations require the tuning of parameters to arrive at sensible tidal amplitudes. We have developed an original higher order barotropic tidal model based on the discontinuous Galerkin finite element method applied on global triangular grids [Salehipour et al., submitted to Ocean Modelling] in which we parameterize the energy conversion to baroclinic tides by introducing an anisotropic internal tide drag [Griffiths and Peltier GRL 2008, Griffiths and Peltier J Climate 2009] which also considers the time dependent angle of attack of the barotropic tidal flow on abyssal topographic features but requires no tuning parameters. The model is massively parallelized which enables very high resolution modeling of global barotropic tides as well as the implementation of local grid refinement. In this paper we will present maps of energy dissipation for different tidal constituents using grids with resolutions up to 1/18° in coastal regions as well as in areas with high gradients in the bottom topography. The discontinuous Galerkin formulation provides important energy conservation properties as well as enabling the accurate representation of sharp topographic gradients without smoothing, a feature well matched to the multi-scale problem of the dissipation of the internal tide. We will describe the detailed energy budgets delivered by this model under both modern and Last Glacial Maximum oceanographic conditions, including relative sea level and internal density stratification effects. The results of the simulations will be illustrated with global maps with enhanced resolution for the internal tidal dissipation which may be exploited in the parameterization of vertical mixing. We will use the reconstructed paleotopography of the ICE-5G model of Peltier [Annu. Rev. Earth Planet Sci. 2004] as well as the more recent refinement (ICE-6G) to compute the characteristics of the LGM tidal regime and will compare these characteristics to those of the modern ocean.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, A. K.
1978-01-01
A description is presented of six simulation cases investigating the effect of the variation of static-dynamic Coulomb friction on servo system stability/performance. The upper and lower levels of dynamic Coulomb friction which allowed operation within requirements were determined roughly to be three times and 50% respectively of nominal values considered in a table. A useful application for the nonlinear time response simulation is the sensitivity analysis of final hardware design with respect to such system parameters as cannot be varied realistically or easily in the actual hardware. Parameters of the static/dynamic Coulomb friction fall in this category.
Mixing on the Heard Island Plateau during HEOBI
NASA Astrophysics Data System (ADS)
Robertson, R.
2016-12-01
On the plateau near Heard and McDonald Islands, the water column was nearly always well mixed. Typically, temperature differences between the surface and the bottom, 100-200 m, were less than 0.2oC and often less that 0.1oC. Surface stratification developed through insolation and deep primarily through a combination of upwelling from canyons and over the edge of the plateau and tidal advection. This stratification was primarily removed by a combination of wind and tidal mixing. Persistent winds of 30 knots mixed the upper 20-50 m. Strong wind events, 40-60 knots, mixed the water column to 100-200 m depth, which over the plateau, was often the entire water column. Benthic tidal friction mixed the bottom 30-50 m. Although the water column was unstratified at the two plume sites intensively investigated, tidal velocities were baroclinic, probably due to topographic controls. Tidal advection changed the bottom temperatures by 0.5oC within 8 hours, more than doubling the prior stratification. Wind mixing quickly homogenized the water column, resulting in the surface often showing the deeper upwelling and advective events. Although acoustic plumes with bubbles were observed in the water column, there was no evidence of geothermal vents or geothermal influence on temperatures. Mixing by bubbles rising in the water column was indistinguishable from the wind and tidal mixing, although the strongest upward vertical velocities were observed at the sites of these acoustic/bubble plumes.
Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C
2014-07-24
Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C.
2014-06-25
Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagatesmore » into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Furthermore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.« less
NASA Astrophysics Data System (ADS)
Yamada, Naoya; Wada, Masato; Kabir, M. Hasnat; Gong, Jin; Furukawa, Hidemitsu
2013-03-01
Gels are soft and wet materials that differ from hard and dry materials like metals, plastics and ceramics. These have some unique characteristic such as low frictional properties, high water content and materials permeability. A decade earlier, DN gels having a mechanical strength of 30MPa of the maximum breaking stress in compression was developed and it is a prospective material as the biomaterial of the human body. Indeed it frictional coefficient and mechanical strength are comparable to our cartilages. In this study, we focus on the dynamic frictional interface of hydrogels and aim to develop a new apparatus with a polarization microscope for observation. The dynamical interface is observed by the friction of gel and glass with hudroxypropylcellulose (HPC) polymer solution sandwiching. At the beginning, we rubbed hydrogel and glass with HPC solution sandwiching on stage of polarization microscope. Second step, we designed a new system which combined microscope with friction measuring machine. The comparison between direct observation with this instrument and measurement of friction coefficient will become a foothold to elucidate distinctive frictional phenomena that can be seen in soft and wet materials.
Combined impacts of tidal energy extraction and sea level rise in the Gulf of Maine
NASA Astrophysics Data System (ADS)
Hashemi, M. R.; Kresning, B.
2016-12-01
The objective of this study was to assess the combined effects of SLR and tidal energy extraction on the dynamics of tides in the Gulf of Maine in both US and Canadian waters. The dynamics of tides in the Gulf of Maine is dominated by tidal resonance, which generates one of the largest tidal ranges in the world. Further, sea level rise (SLR) is affecting tidal circulations globally, and in the Gulf of Maine. A large tidal energy resource is available in the Gulf of Maine, particularly in the Bay of Fundy, and is expected to be harvested in the future. Currently, more than 6 projects are operational or under development in this region (in both US and Canadian waters). Understanding the far-field impacts of tidal-stream arrays is important for future development of tidal energy extraction. The impacts include possible changes in water elevation, which can potentially increase flooding in coastal areas. Further, SLR can affect tidal energy resources and the impacts of tidal energy extraction during the project lifetime - which is usually more than 25 years. A tidal model of the Gulf of Maine was developed using Regional Ocean Model System (ROMS) at one arcminute scale. An array of turbines were simulated in the model. After validation of the model at NOAA tidal gauge stations and NERACOOS buoys, several scenarios; including SLR scenario, and tidal extraction scenario, were examined. In particular, the results of a recent research was used to assess the impacts of SLR on the boundary of the model domain, which was neglected in previous studies. The results of the impacts of the tidal energy extraction with and without the SLR were presented, and compared with those from literature. This includes the decrease of tidal range and M2 amplitude in Minas Basin due to the 2.5 GW extraction scenario, and possible changes in Massachusetts coastal area. The impacts were compared with the level of uncertainty in the model. It was shown that the impact of SLR on the dynamics of tides is more than those from energy extraction assuming 2.5 GW extraction in Minas Passage.
Measurement of Gear Tooth Dynamic Friction
NASA Technical Reports Server (NTRS)
Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.
1996-01-01
Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.
Modeling and simulation of dynamics of a planar-motion rigid body with friction and surface contact
NASA Astrophysics Data System (ADS)
Wang, Xiaojun; Lv, Jing
2017-07-01
The modeling and numerical method for the dynamics of a planar-motion rigid body with frictional contact between plane surfaces were presented based on the theory of contact mechanics and the algorithm of linear complementarity problem (LCP). The Coulomb’s dry friction model is adopted as the friction law, and the normal contact forces are expressed as functions of the local deformations and their speeds in contact bodies. The dynamic equations of the rigid body are obtained by the Lagrange equation. The transition problem of stick-slip motions between contact surfaces is formulated and solved as LCP through establishing the complementary conditions of the friction law. Finally, a numerical example is presented as an example to show the application.
Dynamic mechanical analysis of waste tyre rubber filled brake friction composite materials
NASA Astrophysics Data System (ADS)
Rathi, Mukesh Kumar; Singh, Tej; Chauhan, Ranchan
2018-05-01
In this research work, the dynamic mechanical properties of waste tyre rubber filled friction composites were studied. Four friction composites with varying amount of waste rubber (0, 4, 8, 12 wt.%) and barium sulphate (38, 42, 46, 50 wt.%) were designed and fabricated as per industrial norms. Dynamic mechanical analysis has been carried out to characterize the storage modulus, loss modulus and damping factor of the fabricated friction composite. Experimental results indicated that storage modulus decreases with increasing waste rubber content up to particular loading (4 wt.%), and after that it increases with further loading. The loss modulus of the composites increases steadily with increasing waste rubber content whereas, damping factor remain maximum for 12 wt.% waste rubber filled friction composites.
Flow through a very porous obstacle in a shallow channel.
Creed, M J; Draper, S; Nishino, T; Borthwick, A G L
2017-04-01
A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.
Frequency-dependent solvent friction and torsional damping in liquid 1,2-difluoroethane
NASA Astrophysics Data System (ADS)
MacPhail, Richard A.; Monroe, Frances C.
1991-04-01
We have used Raman spectroscopy to study the torsional dynamics, rotational dynamics, and conformational solvation energy of liquid 1,2-difluoroethane. From the Raman intensities, we obtain Δ H(g-t) = -2.4±0.1 kcal/mol, indicating strong dipolar solvation of the gauche conformer. We analyze the Raman linewidths of the CCF bending bands to obtain the zero-frequency torsional damping coefficient or well friction for the gauche conformer, and from the linewidth of the torsion band we obtain the friction evaluated at the torsional frequency. The zero-frequency well friction shows deviations from hydrodynamic behavior reminiscent of those observed for barrier friction, whereas the high-frequency friction is considerably smaller in magnitude and independent of temperature and viscosity. The zero-frequency torsional friction correlates linearly with the rotational friction. It is argued that the small amplitude of the torsional fluctuations emphasizes the short distance, or high wavevector components of the solvent friction. Dielectric friction apparently does not contribute to the torsional friction at the observed frequencies.
An analytical model of dynamic sliding friction during impact
NASA Astrophysics Data System (ADS)
Arakawa, Kazuo
2017-01-01
Dynamic sliding friction was studied based on the angular velocity of a golf ball during an oblique impact. This study used the analytical model proposed for the dynamic sliding friction on lubricated and non-lubricated inclines. The contact area A and sliding velocity u of the ball during impact were used to describe the dynamic friction force Fd = λAu, where λ is a parameter related to the wear of the contact area. A comparison with experimental results revealed that the model agreed well with the observed changes in the angular velocity during impact, and λAu is qualitatively equivalent to the empirical relationship, μN + μη‧dA/dt, given by the product between the frictional coefficient μ and the contact force N, and the additional term related to factor η‧ for the surface condition and the time derivative of A.
The importance of correct specification of tribological parameters in dynamical systems modelling
NASA Astrophysics Data System (ADS)
Alaci, S.; Ciornei, F. C.; Romanu, I. C.; Ciornei, M. C.
2018-01-01
When modelling the behaviour of dynamical systems, the friction phenomenon cannot be neglected. Dry and fluid friction may occur, but dry friction has more severe effects upon the behaviour of the systems, based on the fact that the introduced discontinuities are more important. In the modelling of dynamical systems, dry friction is the main cause of occurrence of the bifurcation phenomenon. These aspects become more complex if, in the case of dry friction, static and dynamic frictions are put forward. The behaviour of a simple dynamical system is studied, consisting in a prismatic body linked to the ground by a spring, placed on a conveyor belt. The theoretical model is described by a nonlinear differential equation which after numerical integration leads to the conclusion that the steady motion of the prism is an un-damped oscillatory motion. The system was qualitatively modelled using specialised software for dynamical analysis. It was impractical to obtain a steady uniform translational motion of a rigid, therefore the conveyor belt was replaced by a metallic disc in uniform rotation motion. The attempts to compare the CAD model to the theoretical model were unsuccessful because the efforts of selecting the tribological parameters directed to the conclusion that the motion of the prism is a damped oscillation. To decide which of the methods depicts reality, a test-rig was assembled and it indicated a sustained oscillation. The conclusion is that the model employed by the dynamical analysis software cannot describe the actual model and a more complex model is required in the description of the friction phenomenon.
Effects of internal friction on contact formation dynamics of polymer chain
NASA Astrophysics Data System (ADS)
Bian, Yukun; Li, Peng; Zhao, Nanrong
2018-04-01
A theoretical framework is presented to study the contact formation dynamics of polymer chains, in accompany with an electron-transfer quenching. Based on a non-Markovian Smoluchowski equation supplemented with an exponential sink term, we derive the mean time of contact formation under Wilemski-Fixman approximation. Our particular attentions are paid to the effect of internal friction. We find out that internal friction induces a novel fractional viscosity dependence, which will become more remarkable as internal friction increases. Furthermore, we clarify that internal friction inevitably promotes a diffusion-controlled mechanism by slowing the chain relaxation. Finally, we apply our theory to rationalise the experimental investigation for contact formation of a single-stranded DNA. The theoretical results can reproduce the experimental data very well with quite reasonable estimation for the intrinsic parameters. Such good agreements clearly demonstrate the validity of our theory which has appropriately addressed the very role of internal friction to the relevant dynamics.
The origin of neap-spring tidal cycles
Kvale, E.P.
2006-01-01
The origin of oceanic tides is a basic concept taught in most introductory college-level sedimentology/geology, oceanography, and astronomy courses. Tides are typically explained in the context of the equilibrium tidal theory model. Yet this model does not take into account real tides in many parts of the world. Not only does the equilibrium tidal model fail to explicate amphidromic circulation, it also does not explain diurnal tides in low latitude positions. It likewise fails to explain the existence of tide-dominated areas where neap-spring cycles are synchronized with the 27.32-day orbital cycle of the Moon (tropical month), rather than with the more familiar 29.52-day cycle of lunar phases (synodic month). Both types of neap-spring cycles can be recognized in the rock record. A complete explanation of the origin of tides should include a discussion of dynamic tidal theory. In the dynamic tidal model, tides resulting from the motions of the Moon in its orbit around the Earth and the Earth in its orbit around the Sun are modeled as products of the combined effects of a series of phantom satellites. The movement of each of these satellites, relative to the Earth's equator, creates its own tidal wave that moves around an amphidromic point. Each of these waves is referred to as a tidal constituent. The geometries of the ocean basins determine which of these constituents are amplified. Thus, the tide-raising potential for any locality on Earth can be conceptualized as the result of a series of tidal constituents specific to that region. A better understanding of tidal cycles opens up remarkable opportunities for research on tidal deposits with implications for, among other things, a more complete understanding of the tidal dynamics responsible for sediment transport and deposition, changes in Earth-Moon distance through time, and the possible influences tidal cycles may exert on organisms. ?? 2006 Elsevier B.V. All rights reserved.
Influence of damage and basal friction on the grounding line dynamics
NASA Astrophysics Data System (ADS)
Brondex, Julien; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Durand, Gael
2016-04-01
The understanding of grounding line dynamics is a major issue in the prediction of future sea level rise due to ice released from polar ice sheets into the ocean. This dynamics is complex and significantly affected by several physical processes not always adequately accounted for in current ice flow models. Among those processes, our study focuses on ice damage and evolving basal friction conditions. Softening of the ice due to damaging processes is known to have a strong impact on its rheology by reducing its viscosity and therefore promoting flow acceleration. Damage creates where shear stresses are high enough which is usually the case at shear margins and in the vicinity of pinning points in contact with ice-shelves. Those areas are known to have a buttressing effect on ice shelves contributing to stabilize the grounding line. We aim at evaluating the extent to which this stabilizing effect is hampered by damaging processes. Several friction laws have been proposed by various author to model the contact between grounded-ice and bedrock. Among them, Coulomb-type friction laws enable to account for reduced friction related to low effective pressure (the ice pressure minus the water pressure). Combining such a friction law to a parametrization of the effective pressure accounting for the fact that the area upstream the grounded line is connected to the ocean, is expected to have a significant impact on the grounding line dynamics. Using the finite-element code Elmer/Ice within which both the Coulomb-type friction law, the effective pressure parametrization and the damage model have been implemented, the goal of this study is to investigate the sensitivity of the grounding line dynamics to damage and to an evolving basal friction. The relative importance between those two processes on the grounding line dynamics is addressed as well.
Patterns, drivers and implications of dissolved oxygen dynamics in tropical mangrove forests
NASA Astrophysics Data System (ADS)
Mattone, Carlo; Sheaves, Marcus
2017-10-01
Estuarine mangrove forests regulate and facilitate many ecological processes, and provide nursery ground for many commercially important species. However, mangroves grow in sediments with high carbon loading and high respiration rates which can potentially influencing the dissolved oxygen (DO) dynamics of tidal water flowing into mangrove forests, as bacteria strip DO from the incoming water to carry out metabolic functions. In turn this is likely to influence the way nekton and other aquatic organisms utilize mangrove forests. Despite these possibilities, previous work has focused on looking at DO dynamics within mangrove creeks, with little research focusing on understanding DO dynamics within the mangrove forests themselves during tidal inundation or of DO levels of pools within the forest remaining once the tide has ebbed. The present study investigates the pattern in DO at various distances within an estuarine Rhizophora stylosa forest in tropical north Queensland. DO levels were recorded at 5 min interval over 2 days and multiple tidal cycles, data were collected between 2013 and 2014 for a total of 32 tidal cycles encompassing multiples seasons and tidal amplitudes. There were substantial fluctuations in DO, often varying from normoxic to hypoxic within the same tidal cycle. A range of factors influenced DO dynamics, in particular: tidal height, amount of sunlight, tidal phase, and distance from the outer edge of the mangrove forest. In fact, spring tides tend to have high DO saturation, particularly during the flooding phase, however as the tide starts ebbing, DO depletes rapidly especially in areas further inside the forest. Moreover during tidal disconnection the remnant pools within the forest quickly became anoxic. These variations in DO suggest that the use of mangrove forests by animals is likely to be constrained by their ability to withstand low DO levels, and provides a plausible explanation for the apparent paucity of benthic organism observed inside similar mangrove forest in previous studies of South Pacific mangroves. Low DO levels coupled with low densities of benthic prey also provides a likely explanation for the limited utilisation of landwards areas of these forests by fish and other nekton.
NASA Astrophysics Data System (ADS)
Guimond, J. A.; Seyfferth, A.; Michael, H. A.
2017-12-01
Salt marshes are biogeochemical hotspots where large quantities of carbon are processed and stored. High primary productivity and deposition of carbon-laden sediment enable salt marsh soils to accumulate and store organic carbon. Conversely, salt marshes can laterally export carbon from the marsh platform to the tidal channel and eventually the ocean via tidal pumping. However, carbon export studies largely focus on tidal channels, missing key physical and biogeochemical mechanisms driving the mobilization of dissolved organic carbon (DOC) within the marsh platform and limiting our understanding of and ability to predict coastal carbon dynamics. We hypothesize that iron redox dynamics mediate the mobilization/immobilization of DOC in the top 30 cm of salt marsh sediment near tidal channels. The mobilized DOC can then diffuse into the flooded surface water or be advected to tidal channels. To elucidate DOC dynamics driven by iron redox cycles, we measured porewater DOC, Fe(II), total iron, total sulfate, pH, redox potential, and electrical conductivity (EC) beside the creek, at the marsh levee, and in the marsh interior in a mid-latitude tidal salt marsh in Dover, Delaware. Samples were collected at multiple tide stages during a spring and neap tide at depths of 5-75cm. Samples were also collected from the tidal channel. Continuous Eh measurements were made using in-situ electrodes. A prior study shows that DOC and Fe(II) concentrations vary spatially across the marsh. Redox conditions near the creek are affected by tidal oscillations. High tides saturate the soil and decrease redox potential, whereas at low tide, oxygen enters the sediment and increases the Eh. This pattern is always seen in the top 7-10cm of sediment, with more constant low Eh at depth. However, during neap tides, this signal penetrates deeper. Thus, between the creek and marsh levee, hydrology mediates redox conditions. Based on porewater chemistry, if DOC mobilization can be linked to redox cycles, then hydrologic oscillations can be tied to DOC dynamics and predicted with hydrologic models. By elucidating the mechanisms driving the mobilization of DOC, we can begin to better understand, quantify, and forecast coastal carbon dynamics.
Solvent viscosity and friction in protein folding dynamics.
Hagen, Stephen J
2010-08-01
The famous Kramers rate theory for diffusion-controlled reactions has been extended in numerous ways and successfully applied to many types of reactions. Its application to protein folding reactions has been of particular interest in recent years, as many researchers have performed experiments and simulations to test whether folding reactions are diffusion-controlled, whether the solvent is the source of the reaction friction, and whether the friction-dependence of folding rates generally can provide insight into folding dynamics. These experiments involve many practical difficulties, however. They have also produced some unexpected results. Here we briefly review the Kramers theory for reactions in the presence of strong friction and summarize some of the subtle problems that arise in the application of the theory to protein folding. We discuss how the results of these experiments ultimately point to a significant role for internal friction in protein folding dynamics. Studies of friction in protein folding, far from revealing any weakness in Kramers theory, may actually lead to new approaches for probing diffusional dynamics and energy landscapes in protein folding.
Possible tidal resonance of the early Earth's ocean due to the lunar orbit evolution
NASA Astrophysics Data System (ADS)
Motoyama, M.; Tsunakawa, H.; Takahashi, F.
2016-12-01
The ocean tide is one of the most important factors affecting the Earth's surface environment and the evolution of the Earth-Moon system (e.g. Goldreich, 1966). According to the Giant Impact hypothesis, the Moon was formed very near the Earth 4.6 billion years ago (Hartmann and Davis, 1979). At that time, the tidal force would be about several thousand times as strong as the present. However previous studies pointed out that significant attenuation of tidal waves might have occurred due to mechanical response of water motion (e.g. Hansen, 1982; Abe and Ooe, 2001), resulting in relatively calm state like the present ocean.In the present study, we analyze tidal response of the ocean on the early Earth using a model of constant-depth ocean covering all the surface of the rigid Earth. The examined modes of response are not only M2 corresponding to spherical harmonics Y22 but also others such as Y21, since the lunar orbital plane would be inclined.First, estimated is an ocean depth for possible resonance of the individual mode. Eigen frequencies of the fluid on a rotating sphere with no friction are calculated on the basis of previous study (Longuet-Higgins, 1968). These frequencies depend on the Earth's rotation rate and the ocean depth. The Earth's rotation period is assumed to have changed from 5 hours to 24 hours for the past 4.6 billion years (e.g. Mignard, 1980; Stacey and Davis, 2008). It is found that resonance could occur for diurnal modes of Y21 and Y31 with reasonable depths of the ancient ocean (1300 - 5200 m).Then we obtain a 2D response function on a sphere with friction in order to estimate the tidal amplitude of the ocean for main modes . The response function in the present study shows good agreement with the numerical simulation result of the tidal torque response of M2 (Abe et al., 1997). The calculation results suggest that diurnal modes of Y21 and Y31 would grown on the early Earth, while the other modes would fairly be attenuated. In particular, mode Y21 could have an amplitude of several meters at the mid-latitude zone. Thus it may be necessary to take account of mode Y21 and Y31 for the study on the early evolution of the Earth-Moon system.
Effect of velocity-dependent friction on multiple-vehicle collisions in traffic flow
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2017-01-01
We present the dynamic model for the multiple-vehicle collisions to take into account the velocity-dependent friction force. We study the effect of the velocity-dependent friction on the chain-reaction crash on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle and the friction force depends highly on the vehicular speed. The first crash may induce more collisions. We investigate whether or not the first collision induces the multiple-vehicle collisions, numerically and analytically. The dynamic transitions occur from no collisions, through a single collision and double collisions, to multiple collisions with decreasing the headway. We explore the effect of the velocity-dependent friction on the dynamic transitions and the region maps in the multiple-vehicle collisions.
Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations
NASA Astrophysics Data System (ADS)
Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.
2016-12-01
This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a tide, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the tide and results are compared to those obtained for a static reference level. We first separately simulate the tide and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one-way coupling. Four levels of nested grids are used, from a 1 arc-min spherical coordinate grid in the deep ocean down to a 39-m Cartesian grid in the HRE. Bottom friction coefficients in the finer grids are calibrated for the tide to achieve the local spatially averaged MHW level at high tide in the HRE. Combined tsunami-tide simulations are then performed for four phases of the tide corresponding to each tsunami arriving at Sandy Hook (NJ): 1.5 h ahead, concurrent with, 1.5 h after, and 3 h after the local high tide. These simulations are forced along the offshore boundary of the third-level grid by linearly superposing time series of surface elevation and horizontal currents of the calibrated tide and each tsunami wave train; this is done in deep enough water for a linear superposition to be accurate. Combined tsunami-tide simulations are then performed with FUNWAVE-TVD in this and the finest nested grids. Results show that, for the 3 PMTs, depending on the tide phase, the dynamic simulations lead to no or to a slightly increased inundation in the HRE (by up to 0.15 m depending on location), and to larger currents than for the simulations over a static level; the CRT SMF proxy tsunami is the PMT leading to maximum inundation in the HRE. For all tide phases, nonlinear interactions between tide and tsunami currents modify the elevation, current, and celerity of tsunami wave trains, mostly in the shallower water areas of the HRE where bottom friction dominates, as compared to a linear superposition of wave elevations and currents. We note that, while dynamic simulations predict a slight increase in inundation, this increase may be on the same order as, or even less than sources of uncertainty in the modeling of tsunami sources, such as their initial water elevation, and in bottom friction and bathymetry used in tsunami grids. Nevertheless, results in this paper provide insight into the magnitude and spatial variability of tsunami propagation and impact in the complex inland waterways surrounding New York City, and of their modification by dynamic tidal effects. We conclude that changes in inundation resulting from the inclusion of a dynamic tide in the specific case of the HRE, although of scientific interest, are not significant for tsunami hazard assessment and that the standard approach of specifying a static reference level equal to MHW is conservative. However, in other estuaries with similarly complex bathymetry/topography and stronger tidal currents, a simplified static approach might not be appropriate.
Dynamical friction for supersonic motion in a homogeneous gaseous medium
NASA Astrophysics Data System (ADS)
Thun, Daniel; Kuiper, Rolf; Schmidt, Franziska; Kley, Wilhelm
2016-05-01
Context. The supersonic motion of gravitating objects through a gaseous ambient medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planetesimals, planets, and all kind of stars up to galaxies and black holes. In particular, the dynamical friction caused by the wake that forms behind the object plays an important role for the dynamics of the system. To calculate the dynamical friction for a particular system, standard formulae based on linear theory are often used. Aims: It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem: first, the mass, radius, and velocity of the perturber; second, the gas mass density, soundspeed, and adiabatic index of the gaseous medium; and finally, the size of the forming wake. Methods: We perform dedicated sequences of high-resolution numerical studies of rigid bodies moving supersonically through a homogeneous ambient medium and calculate the total drag acting on the object, which is the sum of gravitational and hydrodynamical drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. In various numerical experiments, we determine the drag force acting on the moving body and its dependence on the basic physical parameters of the problem, as given above. From the final equilibrium state of the simulations, for gravitating objects we compute the dynamical friction by direct numerical integration of the gravitational pull acting on the embedded object. Results: The numerical experiments confirm the known scaling laws for the dependence of the dynamical friction on the basic physical parameters as derived in earlier semi-analytical studies. As a new important result we find that the shock's stand-off distance is revealed as the minimum spatial interaction scale of dynamical friction. Below this radius, the gas settles into a hydrostatic state, which - owing to its spherical symmetry - causes no net gravitational pull onto the moving body. Finally, we derive an analytic estimate for the stand-off distance that can easily be used when calculating the dynamical friction force.
NASA Astrophysics Data System (ADS)
Li, Li; Guan, Weibing; He, Zhiguo; Yao, Yanming; Xia, Yuezhang
2017-11-01
Xiangshan Bay is a semi-enclosed bay in China, in which tidal flats have been substantially reclaimed to support the development of local economies and society over previous decades. The loss of tidal flats has led to changes of tides and locally suspended sediment in the bay. The effects of tidal flat reduction on locally suspended sediment dynamics was investigated using a numerical model forced by tidal data and calibrated by observed tidal elevation and currents. The model satisfactorily reproduces observed water levels, currents, and suspended sediment concentration in the estuary, and therefore is subsequently applied to analyze the impact of tidal flat reclamation on locally suspended sediment transport. After the loss of the tidal flats from 1963 to 2010, the suspended sediment concentrations (SSC) at the bottom boundary layer were reduced/increased in the outer bay/tidal flat areas due to weakened tidal currents. In the inner bay, the SSC values near the bottom level increased from 1963 to 2003 due to the narrowed bathymetry, and then decreased from 2003 to 2010 because of the reduced tidal prism. The model scenarios suggest that: (1) a reduction of tidal flat areas appears to be the main factor for enhancing the transport of sediments up-estuary, due to the increased Eulerian velocity and tidal pumping; (2) A reduction of tidal flat areas impacts on spatial and temporal SSC distribution: reducing the SSC values in the water areas due to the reduced current; and (3) a tidal flat reduction influences the net sediment fluxes: lessening the erosion and inducing higher/lower landward/seaward sediment transportation.
Dynamics and locomotion of flexible foils in a frictional environment
NASA Astrophysics Data System (ADS)
Wang, Xiaolin; Alben, Silas
2018-01-01
Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N-periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.
Dynamics and locomotion of flexible foils in a frictional environment.
Wang, Xiaolin; Alben, Silas
2018-01-01
Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N -periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.
Nonmonotonicity of the Frictional Bimaterial Effect
NASA Astrophysics Data System (ADS)
Aldam, Michael; Xu, Shiqing; Brener, Efim A.; Ben-Zion, Yehuda; Bouchbinder, Eran
2017-10-01
Sliding along frictional interfaces separating dissimilar elastic materials is qualitatively different from sliding along interfaces separating identical materials due to the existence of an elastodynamic coupling between interfacial slip and normal stress perturbations in the former case. This bimaterial coupling has important implications for the dynamics of frictional interfaces, including their stability and rupture propagation along them. We show that while this bimaterial coupling is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a nonmonotonic dependence on the bimaterial contrast. In particular, we show that for a regularized Coulomb friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is a nonmonotonic function of the bimaterial contrast and provides analytic insight into the origin of this nonmonotonicity. We further show that for velocity-strengthening rate-and-state friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is also a nonmonotonic function of the bimaterial contrast. Results from simulations of dynamic rupture along a bimaterial interface with slip-weakening friction provide evidence that the theoretically predicted nonmonotonicity persists in nonsteady, transient frictional dynamics.
Effects of rail dynamics and friction characteristics on curve squeal
NASA Astrophysics Data System (ADS)
Ding, B.; Squicciarini, G.; Thompson, D. J.
2016-09-01
Curve squeal in railway vehicles is an instability mechanism that arises in tight curves under certain running and environmental conditions. In developing a model the most important elements are the characterisation of friction coupled with an accurate representation of the structural dynamics of the wheel. However, the role played by the dynamics of the rail is not fully understood and it is unclear whether this should be included in a model or whether it can be safely neglected. This paper makes use of previously developed time domain and frequency domain curve squeal models to assess whether the presence of the rail and the falling characteristics of the friction force can modify the instability mechanisms and the final response. For this purpose, the time-domain model has been updated to include the rail dynamics in terms of its state space representation in various directions. Frequency domain and time domain analyses results show that falling friction is not the only reason for squeal and rail dynamics can play an important role, especially under constant friction conditions.
Micromachine friction test apparatus
deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.
2002-01-01
A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.
Broad timescale forcing and geomorphic mediation of tidal marsh flow and temperature dynamics
Enwright, Christopher; Culberson, Steven; Burau, Jon R.
2013-01-01
Tidal marsh functions are driven by interactions between tides, landscape morphology, and emergent vegetation. Less often considered are the diurnal pattern of tide extremes and seasonal variation of solar insolation in the mix of tidal marsh driver interactions. This work demonstrates how high-frequency hydroperiod and water temperature variability emerges from disparate timescale interactions between tidal marsh morphology, tidal harmonics, and meteorology in the San Francisco Estuary. We compare the tidal and residual flow and temperature response of neighboring tidal sloughs, one possessing natural tidal marsh morphology, and one that is modified for water control. We show that the natural tidal marsh is tuned to lunar phase and produces tidal and fortnight water temperature variability through interacting tide, meteorology, and geomorphic linkages. In contrast, temperature variability is dampened in the modified slough where overbank marsh plain connection is severed by levees. Despite geomorphic differences, a key finding is that both sloughs are heat sinks in summer by latent heat flux-driven residual upstream water advection and sensible and long-wave heat transfer. The precession of a 335-year tidal harmonic assures that these dynamics will shift in the future. Water temperature regulation appears to be a key function of natural tidal sloughs that depends critically on geomorphic mediation. We investigate approaches to untangling the relative influence of sun versus tide on residual water and temperature transport as a function of system morphology. The findings of this study likely have ecological consequences and suggest physical process metrics for tidal marsh restoration performance.
Physically representative atomistic modeling of atomic-scale friction
NASA Astrophysics Data System (ADS)
Dong, Yalin
Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.
Three-dimensional circulation dynamics of along-channel flow in stratified estuaries
NASA Astrophysics Data System (ADS)
Musiak, Jeffery Daniel
Estuaries are vital because they are the major interface between humans and the oceans and provide valuable habitat for a wide range of organisms. Therefore it is important to model estuarine circulation to gain a better comprehension of the mechanics involved and how people effect estuaries. To this end, this dissertation combines analysis of data collected in the Columbia River estuary (CRE) with novel data processing and modeling techniques to further the understanding of estuaries that are strongly forced by riverflow and tides. The primary hypothesis tested in this work is that the three- dimensional (3-D) variability in along-channel currents in a strongly forced estuary can be largely accounted for by including the lateral variations in density and bathymetry but neglecting the secondary, or lateral, flow. Of course, the forcing must also include riverflow and oceanic tides. Incorporating this simplification and the modeling ideas put forth by others with new modeling techniques and new ideas on estuarine circulation will allow me to create a semi-analytical quasi 3-D profile model. This approach was chosen because it is of intermediate complexity to purely analytical models, that, if tractable, are too simple to be useful, and 3-D numerical models which can have excellent resolution but require large amounts of time, computer memory and computing power. Validation of the model will be accomplished using velocity and density data collected in the Columbia River Estuary and by comparison to analytical solutions. Components of the modeling developed here include: (1) development of a 1-D barotropic model for tidal wave propagation in frictionally dominated systems with strong topography. This model can have multiple tidal constituents and multiply connected channels. (2) Development and verification of a new quasi 3-D semi-analytical velocity profile model applicable to estuarine systems which are strongly forced by both oceanic tides and riverflow. This model includes diurnal and semi-diurnal tidal and non- linearly generated overtide circulation and residual circulation driven by riverflow, baroclinic forcing, surface wind stress and non-linear tidal forcing. (3) Demonstration that much of the lateral variation in along-channel currents is caused by variations in along- channel density forcing and bathymetry.
Sea-level rise impacts on the tides of the European Shelf
NASA Astrophysics Data System (ADS)
Idier, Déborah; Paris, François; Cozannet, Gonéri Le; Boulahya, Faiza; Dumas, Franck
2017-04-01
Sea-level rise (SLR) can modify not only total water levels, but also tidal dynamics. Several studies have investigated the effects of SLR on the tides of the western European continental shelf (mainly the M2 component). We further investigate this issue using a modelling-based approach, considering uniform SLR scenarios from -0.25 m to +10 m above present-day sea level. Assuming that coastal defenses are constructed along present-day shorelines, the patterns of change in high tide levels (annual maximum water level) are spatially similar, regardless of the magnitude of sea-level rise (i.e., the sign of the change remains the same, regardless of the SLR scenario) over most of the area (70%). Notable increases in high tide levels occur especially in the northern Irish Sea, the southern part of the North Sea and the German Bight, and decreases occur mainly in the western English Channel. These changes are generally proportional to SLR, as long as SLR remains smaller than 2 m. Depending on the location, they can account for +/-15% of regional SLR. High tide levels and the M2 component exhibit slightly different patterns. Analysis of the 12 largest tidal components highlights the need to take into account at least the M2, S2, N2, M4, MS4 and MN4 components when investigating the effects of SLR on tides. Changes in high tide levels are much less proportional to SLR when flooding is allowed, in particular in the German Bight. However, some areas (e.g., the English Channel) are not very sensitive to this option, meaning that the effects of SLR would be predictable in these areas, even if future coastal defense strategies are ignored. Physically, SLR-induced tidal changes result from the competition between reductions in bed friction damping, changes in resonance properties and increased reflection at the coast, i.e., local and non-local processes. A preliminary estimate of tidal changes by 2100 under a plausible non-uniform SLR scenario (using the RCP4.5 scenario) is provided. Though the changes display similar patterns, the high water levels appear to be sensitive to the non-uniformity of SLR.
Gueye, Birahima; Zhang, Yan; Wang, Yujuan; Chen, Yunfei
2015-07-08
The liquid lubrication, thermolubricity and dynamic lubricity due to mechanical oscillations are investigated with an atomic force microscope in ambient environmental conditions with different relative humidity (RH) levels. Experimental results demonstrate that high humidity at low-temperature regime enhances the liquid lubricity while at high-temperature regime it hinders the effect of the thermolubricity due to the formation of liquid bridges. Friction response to the dynamic lubricity in both high- and low-temperature regimes keeps the same trends, namely the friction force decreases with increasing the amplitude of the applied vibration on the tip regardless of the RH levels. An interesting finding is that for the dynamic lubricity at high temperature, high-humidity condition leads to the friction forces higher than that at low-humidity condition while at low temperature the opposite trend is observed. An extended two-dimensional dynamic model accounting for the RH is proposed to interpret the frictional mechanism in ambient conditions.
A high precision semi-analytic mass function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Popolo, Antonino; Pace, Francesco; Le Delliou, Morgan, E-mail: adelpopolo@oact.inaf.it, E-mail: francesco.pace@manchester.ac.uk, E-mail: delliou@ift.unesp.br
In this paper, extending past works of Del Popolo, we show how a high precision mass function (MF) can be obtained using the excursion set approach and an improved barrier taking implicitly into account a non-zero cosmological constant, the angular momentum acquired by tidal interaction of proto-structures and dynamical friction. In the case of the ΛCDM paradigm, we find that our MF is in agreement at the 3% level to Klypin's Bolshoi simulation, in the mass range M {sub vir} = 5 × 10{sup 9} h {sup −1} M {sub ⊙}–−5 × 10{sup 14} h {sup −1} M {sub ⊙}more » and redshift range 0 ∼< z ∼< 10. For z = 0 we also compared our MF to several fitting formulae, and found in particular agreement with Bhattacharya's within 3% in the mass range 10{sup 12}–10{sup 16} h {sup −1} M {sub ⊙}. Moreover, we discuss our MF validity for different cosmologies.« less
Dynamical Tidal Response of a Rotating Neutron Star
NASA Astrophysics Data System (ADS)
Landry, Philippe; Poisson, Eric
2017-01-01
The gravitational wave phase of a neutron star (NS) binary is sensitive to the deformation of the NS that results from its companion's tidal influence. In a perturbative treatment, the tidal deformation can be characterized by a set of dimensionless constants, called Love numbers, which depend on the NS equation of state. For static NSs, one type of Love number encodes the response to gravitoelectric tidal fields (associated with mass multipole moments), while another does likewise for gravitomagnetic fields (associated with mass currents). A NS subject to a gravitomagnetic tidal field develops internal fluid motions through gravitomagnetic induction; the fluid motions are irrotational, provided the star is non-rotating. When the NS is allowed to rotate, the situation is complicated by couplings between the tidal field and the star's spin. The problem becomes tractable in the slow-rotation limit. In this case, the fluid motions induced by an external gravitomagnetic field are fully dynamical, even if the tidal field is stationary: interior metric and fluid variables are time-dependent, and vary on the timescale of the rotation period. Remarkably, the exterior geometry of the NS remains time-independent.
Estimation of river pollution index in a tidal stream using kriging analysis.
Chen, Yen-Chang; Yeh, Hui-Chung; Wei, Chiang
2012-08-29
Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI) in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.
Inferring Fault Frictional and Reservoir Hydraulic Properties From Injection-Induced Seismicity
NASA Astrophysics Data System (ADS)
Jagalur-Mohan, Jayanth; Jha, Birendra; Wang, Zheng; Juanes, Ruben; Marzouk, Youssef
2018-02-01
Characterizing the rheological properties of faults and the evolution of fault friction during seismic slip are fundamental problems in geology and seismology. Recent increases in the frequency of induced earthquakes have intensified the need for robust methods to estimate fault properties. Here we present a novel approach for estimation of aquifer and fault properties, which combines coupled multiphysics simulation of injection-induced seismicity with adaptive surrogate-based Bayesian inversion. In a synthetic 2-D model, we use aquifer pressure, ground displacements, and fault slip measurements during fluid injection to estimate the dynamic fault friction, the critical slip distance, and the aquifer permeability. Our forward model allows us to observe nonmonotonic evolutions of shear traction and slip on the fault resulting from the interplay of several physical mechanisms, including injection-induced aquifer expansion, stress transfer along the fault, and slip-induced stress relaxation. This interplay provides the basis for a successful joint inversion of induced seismicity, yielding well-informed Bayesian posterior distributions of dynamic friction and critical slip. We uncover an inverse relationship between dynamic friction and critical slip distance, which is in agreement with the small dynamic friction and large critical slip reported during seismicity on mature faults.
NASA Astrophysics Data System (ADS)
Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang
2016-12-01
Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.
Tidal Response of Preliminary Jupiter Model
NASA Astrophysics Data System (ADS)
Wahl, Sean M.; Hubbard, William B.; Militzer, Burkhard
2016-11-01
In anticipation of improved observational data for Jupiter’s gravitational field, from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms, using the non-perturbative concentric Maclaurin Spheroid method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal and rotational perturbations, which we find to be important for a rapidly rotating planet like Jupiter. Our predicted static tidal Love number, {k}2=0.5900, is ˜10% larger than previous estimates. The value is, as expected, highly correlated with the zonal harmonic coefficient J 2, and is thus nearly constant when plausible changes are made to the interior structure while holding J 2 fixed at the observed value. We note that the predicted static k 2 might change, due to Jupiter’s dynamical response to the Galilean moons, and find reasons to argue that the change may be detectable—although we do not present here a theory of dynamical tides for highly oblate Jovian planets. An accurate model of Jupiter’s tidal response will be essential for interpreting Juno observations and identifying tidal signals from effects of other interior dynamics of Jupiter’s gravitational field.
Study on longitudinal force simulation of heavy-haul train
NASA Astrophysics Data System (ADS)
Chang, Chongyi; Guo, Gang; Wang, Junbiao; Ma, Yingming
2017-04-01
The longitudinal dynamics model of heavy-haul trains and air brake model used in the longitudinal train dynamics (LTDs) are established. The dry friction damping hysteretic characteristic of steel friction draft gears is simulated by the equation which describes the suspension forces in truck leaf springs. The model of draft gears introduces dynamic loading force, viscous friction of steel friction and the damping force. Consequently, the numerical model of the draft gears is brought forward. The equation of LTDs is strongly non-linear. In order to solve the response of the strongly non-linear system, the high-precision and equilibrium iteration method based on the Newmark-β method is presented and numerical analysis is made. Longitudinal dynamic forces of the 20,000 tonnes heavy-haul train are tested, and models and solution method provided are verified by the test results.
NASA Astrophysics Data System (ADS)
Zhao, You-Qun; Li, Hai-Qing; Lin, Fen; Wang, Jian; Ji, Xue-Wu
2017-07-01
The accurate estimation of road friction coefficient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coefficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coefficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode surface. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time and resist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.
Nano-Sized Grain Refinement Using Friction Stir Processing
2013-03-01
friction stir weld is a very fine grain microstructure produced as a result of dynamic recrystallization. The friction stir ... Friction Stir Processing, Magnesium, Nano-size grains Abstract A key characteristic of a friction stir weld is a very fine grain microstructure...state process developed on the basis of the friction stir welding (FSW) technique invented by The Welding Institute (TWI) in 1991 [2]. During
Flow through a very porous obstacle in a shallow channel
Draper, S.; Nishino, T.; Borthwick, A. G. L.
2017-01-01
A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence. PMID:28484321
Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces
NASA Astrophysics Data System (ADS)
Tal, Yuval; Hager, Bradford H.
2017-09-01
This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.
Numerical Studies of Friction Between Metallic Surfaces and of its Dependence on Electric Currents
NASA Astrophysics Data System (ADS)
Meintanis, Evangelos; Marder, Michael
2009-03-01
We will present molecular dynamics simulations that explore the frictional mechanisms between clean metallic surfaces. We employ the HOLA molecular dynamics code to run slider-on-block experiments. Both objects are allowed to evolve freely. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. We also find that plastic deformations can significantly affect both objects, despite a difference in hardness. Metallic contacts have significant technological applications in the transmission of electric currents. To explore the effects of the latter to sliding, we had to integrate an electrodynamics solver into the molecular dynamics code. The disparate time scales involved posed a challenge, but we have developed an efficient scheme for such an integration. A limited electrodynamic solver has been implemented and we are currently exploring the effects of currents in the friction and wear of metallic contacts.
Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H2 on Ag(111)
NASA Astrophysics Data System (ADS)
Maurer, Reinhard J.; Jiang, Bin; Guo, Hua; Tully, John C.
2017-06-01
Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on the fly from density functional theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H2 on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.
Bottom friction. A practical approach to modelling coastal oceanography
NASA Astrophysics Data System (ADS)
Bolanos, Rodolfo; Jensen, Palle; Kofoed-Hansen, Henrik; Tornsfeldt Sørensen, Jacob
2017-04-01
Coastal processes imply the interaction of the atmosphere, the sea, the coastline and the bottom. The spatial gradients in this area are normally large, induced by orographic and bathymetric features. Although nowadays it is possible to obtain high-resolution bathymetry, the details of the seabed, e.g. sediment type, presence of biological material and living organisms are not available. Additionally, these properties as well as bathymetry can also be highly dynamic. These bottom characteristics are very important to describe the boundary layer of currents and waves and control to a large degree the dissipation of flows. The bottom friction is thus typically a calibration parameter in numerical modelling of coastal processes. In this work, we assess this process and put it into context of other physical processes uncertainties influencing wind-waves and currents in the coastal areas. A case study in the North Sea is used, particularly the west coast of Denmark, where water depth of less than 30 m cover a wide fringe along the coast, where several offshore wind farm developments are being carried out. We use the hydrodynamic model MIKE 21 HD and the spectral wave model MIKE 21 SW to simulate atmosphere and tidal induced flows and the wind wave generation and propagation. Both models represent state of the art and have been developed for flexible meshes, ideal for coastal oceanography as they can better represent coastlines and allow a variable spatial resolution within the domain. Sensitivity tests to bottom friction formulations are carried out into context of other processes (e.g. model forcing uncertainties, wind and wave interactions, wind drag coefficient). Additionally, a map of varying bottom properties is generated based on a literature survey to explore the impact of the spatial variability. Assessment of different approaches is made in order to establish a best practice regarding bottom friction and coastal oceanographic modelling. Its contribution is also assessed during storm conditions, where its most evident impact is expected as waves are affected by the bottom processes in larger areas, making bottom dissipation more efficient. We use available waves and current measurements in the North Sea (e.g. Ekofisk, Fino platforms and some other coastal stations at the west coast of Denmark) to quantify the importance of processes influencing waves and currents in the coastal zone and putting it in the context of the importance of bottom friction and other processes uncertainties.
NASA Astrophysics Data System (ADS)
Santos, A.; Córdoba, E.; Ramírez, Z.; Sierra, C.; Ortega, Y.
2017-12-01
This project aims to determine the coefficient of dynamic friction between micrometric size coatings of alumina and metallic materials (Steel and aluminium); the methodology used to achieve the proposed objective consisted of 4 phases, in the first one was developed a procedure that allowed, from a Pin on Disk machine built based on the specifications given by the ASTM G99-05 standard (Standard test method for wear tests with a Pin on Disk machine), to determine the coefficient of dynamic friction between two materials in contact; subsequently the methodology was verified through tests between steel-steel and steel-aluminium, due to these values are widely reported in the literature; as a third step, deposits of alumina particles of micrometric size were made on a steel substrate through thermal spraying by flame; finally, the tests were carried out between pins of steel of aluminium and alumina coating to determine the coefficients of dynamic friction between these two surfaces. The results of the project allowed to verify that the developed methodology is valid to obtain coefficients of dynamic friction between surfaces in contact since the percentages of error were of 3.5% and 2.1% for steel-steel and aluminium-steel, respectively; additionally, it was found that the coefficient of friction between steel-alumina coatings is 0.36 and aluminium-alumina coating is 0.25.
Quantum friction in arbitrarily directed motion
Klatt, J.; Farías, M. Belen; Dalvit, D. A. R.; ...
2017-05-30
In quantum friction, the electromagnetic fluctuation-induced frictional force decelerating an atom which moves past a macroscopic dielectric body, has so far eluded experimental evidence despite more than three decades of theoretical studies. Inspired by the recent finding that dynamical corrections to such an atom's internal dynamics are enhanced by one order of magnitude for vertical motion—compared with the paradigmatic setup of parallel motion—here we generalize quantum friction calculations to arbitrary angles between the atom's direction of motion and the surface in front of which it moves. Motivated by the disagreement between quantum friction calculations based on Markovian quantum master equationsmore » and time-dependent perturbation theory, we carry out our derivations of the quantum frictional force for arbitrary angles by employing both methods and compare them.« less
Initial Dynamical Evolution of Star Clusters with Tidal Field
NASA Astrophysics Data System (ADS)
Park, So-Myoung; Goodwin, Simon P.; Kim, Sungsoo S.
2017-03-01
Observations have been suggested that star clusters could form from the rapid collapse and violent relaxation of substructured distributions. We investigate the collapse of fractal stellar distributions in no, weak, and very strong tidal fields. We find that the rapid collapse of substructure into spherical clusters happens quickly with no or a weak tidal field, but very strong tidal fields prevent a cluster forming. However, we also find that dense Plummer spheres are also rapidly destroyed in strong tidal fields. We suggest that this is why the low-mass star clusters cannot survive near the galactic centre which has strong tidal field.
Tidal asymmetry in a tidal creek with mixed mainly semidiurnal tide, Bushehr Port, Persian Gulf
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Taleb; Chegini, Vahid; Sadrinasab, Masoud; Siadatmousavi, Seyed Mostafa; Yari, Sadegh
2016-03-01
This study investigated the tidal asymmetry imposed by both the interaction of principal tides and the higher harmonics generated by distortions within a tidal creek network with mixed mainly semidiurnal tide in the Bushehr Port, Persian Gulf. Since velocity and water-level imposed by principal triad tides K1-O1-M2 are in quadrature, duration asymmetries during a tidal period in this short, shallow inverse estuary should be manifest as skewed velocities. The principal tides produce periodic asymmetries including a strong ebb-dominance and a weak flood-dominance condition during spring and neap tides respectively. The higher harmonics induced by nonlinearities engender a flood-dominance condition where the convergence effects are higher than frictional effects, and an ebbdominance condition where intertidal storage are extended. Since the triad K1-O1-M2 driven asymmetry is not overcome by higher harmonics close to the mouth, the periodic asymmetry dominates within the creek in which higher harmonics reinforce the weak flood-dominance (strong ebb-dominance) condition in the convergent channel (divergent area). Also, the maximum flood and the maximum ebb from all harmonic constituents occurred close to high water slack time during both spring and neap tides in this short creek. Since occational wetting of intertidal areas happened close to the high water (HW) time during spring tide, the water level flooded slowly close to the HW time of the spring tide.
Image contrast mechanisms in dynamic friction force microscopy: Antimony particles on graphite
NASA Astrophysics Data System (ADS)
Mertens, Felix; Göddenhenrich, Thomas; Dietzel, Dirk; Schirmeisen, Andre
2017-01-01
Dynamic Friction Force Microscopy (DFFM) is a technique based on Atomic Force Microscopy (AFM) where resonance oscillations of the cantilever are excited by lateral actuation of the sample. During this process, the AFM tip in contact with the sample undergoes a complex movement which consists of alternating periods of sticking and sliding. Therefore, DFFM can give access to dynamic transition effects in friction that are not accessible by alternative techniques. Using antimony nanoparticles on graphite as a model system, we analyzed how combined influences of friction and topography can effect different experimental configurations of DFFM. Based on the experimental results, for example, contrast inversion between fractional resonance and band excitation imaging strategies to extract reliable tribological information from DFFM images are devised.
Tidal Wave Reflectance, Evolution and Distortion in Elkhorn Slough, CA
2013-03-01
School O1 Lunisolar diurnal Tidal Constituent ONR Office of Naval Research p Pressure Rhfm High-Frequency Motion Tidal Reflection Coefficient RIVET ...2012 an experiment at the New River Inlet, known as the River and Inlet Dynamics experiment ( RIVET ) was conducted. RIVET 2 is currently scheduled for
Tidal downscaling from the open ocean to the coast: a new approach applied to the Bay of Biscay
NASA Astrophysics Data System (ADS)
Toublanc, F.; Ayoub, N. K.; Lyard, F.; Marsaleix, P.; Allain, D. J.
2018-04-01
Downscaling physical processes from a large scale to a regional scale 3D model is a recurrent issue in coastal processes studies. The choice of boundary conditions will often greatly influence the solution within the 3D circulation model. In some regions, tides play a key role in coastal dynamics and must be accurately represented. The Bay of Biscay is one of these regions, with highly energetic tides influencing coastal circulation and river plume dynamics. In this study, three strategies are tested to force with barotropic tides a 3D circulation model with a variable horizontal resolution. The tidal forcings, as well as the tidal elevations and currents resulting from the 3D simulations, are compared to tidal harmonics extracted from satellite altimetry and tidal gauges, and tidal currents harmonics obtained from ADCP data. The results show a strong improvement of the M2 solution within the 3D model with a "tailored" tidal forcing generated on the same grid and bathymetry as the 3D configuration, compared to a global tidal atlas forcing. Tidal harmonics obtained from satellite altimetry data are particularly valuable to assess the performance of each simulation. Comparisons between sea surface height time series, a sea surface salinity database, and daily averaged 2D currents also show a better agreement with this tailored forcing.
The tidally averaged momentum balance in a partially and periodically stratified estuary
Stacey, M.T.; Brennan, Matthew L.; Burau, J.R.; Monismith, Stephen G.
2010-01-01
Observations of turbulent stresses and mean velocities over an entire spring-neap cycle are used to evaluate the dynamics of tidally averaged flows in a partially stratified estuarine channel. In a depth-averaged sense, the net flow in this channel is up estuary due to interaction of tidal forcing with the geometry of the larger basin. The depth-variable tidally averaged flow has the form of an estuarine exchange flow (downstream at the surface, upstream at depth) and varies in response to the neap-spring transition. The weakening of the tidally averaged exchange during the spring tides appears to be a result of decreased stratification on the tidal time scale rather than changes in bed stress. The dynamics of the estuarine exchange flow are defined by a balance between the vertical divergence of the tidally averaged turbulent stress and the tidally averaged pressure gradient in the lower water column. In the upper water column, tidal stresses are important contributors, particularly during the neap tides. The usefulness of an effective eddy viscosity in the tidally averaged momentum equation is explored, and it is seen that the effective eddy viscosity on the subtidal time scale would need to be negative to close the momentum balance. This is due to the dominant contribution of tidally varying turbulent momentum fluxes, which have no specific relation to the subtidal circulation. Using a water column model, the validity of an effective eddy viscosity is explored; for periodically stratified water columns, a negative effective viscosity is required. ?? 2010 American Meteorological Society.
NASA Technical Reports Server (NTRS)
Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.
1977-01-01
An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.
NASA Astrophysics Data System (ADS)
Cameron, M. E.; Smith-Konter, B. R.; Burkhard, L. M.; Collins, G. C.; Seifert, F.; Pappalardo, R. T.
2015-12-01
Ganymede exhibits two geologically distinct terrains known as dark and light (grooved) terrain. The mechanism for a transition from dark to light terrain remains unclear; however, inferences of strike-slip faulting and distributed shear zones suggest that strike-slip tectonism may be important to the structural development of Ganymede's surface and in this transition. Here we investigate the role of tidal stresses on Ganymede in the formation and evolution of strike-slip structures in both dark and grooved terrains. Using numerical code SatStress, we calculate both diurnal and non-synchronous rotation (NSR) tidal stresses at Ganymede's surface. Specifically, we investigate the role of fault friction and orbital eccentricity in the development of ~45 km of right-lateral offset at Dardanus Sulcus and a possible case of <10 km of right-lateral offset at Tiamat Sulcus. We compute Coulomb failure conditions for these target fractures and consider tidal stress scenarios for both present eccentricity (0.0013) and possible past high (~0.05) eccentricity of Ganymede. We find that while diurnal stresses are not large enough to support strike-slip failure at present or past eccentricities, models that include both diurnal and NSR stress readily generate shear and normal stress magnitudes that could give rise to shear failure. Results for a past high eccentricity assuming a low coefficient of friction (μf = 0.2) suggest shear failure is possible down to depths of 1-2 km along both Dardanus and Tiamat. For a high coefficient of friction (μf = 0.6), failure is limited to about 1 km depth at Dardanus and Tiamat, although confined to small episodic slip windows for the latter. Moreover, our models predict a right-lateral sense of slip, in agreement with inferred offset observed at both regions. Based on these results, we infer that past shear failure on Ganymede is possible when NSR is a driving stress mechanism. We complement this study with a detailed morphological mapping of strike-slip morphologies (en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and possible strained craters) at Nun Sulcus and several other locations. These structures serve as example regions to provide improved constraints for global stress mechanisms responsible for strike-slip fault evolution on Ganymede.
The impacts of land reclamation on suspended-sediment dynamics in Jiaozhou Bay, Qingdao, China
NASA Astrophysics Data System (ADS)
Gao, Guan Dong; Wang, Xiao Hua; Bao, Xian Wen; Song, Dehai; Lin, Xiao Pei; Qiao, Lu Lu
2018-06-01
A three-dimensional, high-resolution tidal model coupled with the UNSW sediment model (UNSW-Sed) based on Finite Volume Coastal Ocean Model (FVCOM) was set up to study the suspended-sediment dynamics and its change in Jiaozhou Bay (JZB) due to land reclamation over the period 1935 to 2008. During the past decades, a large amount of tidal flats were lost due to land reclamation. Other than modulating the tides, the tidal flats are a primary source for sediment resuspensions, leading to turbidity maxima nearshore. The tidal dynamics are dominant in controlling the suspended-sediment dynamics in JZB and have experienced significant changes with the loss of tidal flats due to the land reclamation. The sediment model coupled with the tide model was used to investigate the changes in suspended-sediment dynamics due to the land reclamation from 1935 to 2008, including suspended-sediment concentrations (SSC) and the horizontal suspended-sediment fluxes. This model can predict the general patterns of the spatial and temporal variation of SSC. The model was applied to investigate how the net transport of suspended sediments between JZB and its adjacent sea areas changed with land reclamation: in 1935 the net movement of suspended sediments was from JZB to the adjacent sea (erosion for JZB), primarily caused by horizontal advection associated with a horizontal gradient in the SSC; This seaward transport (erosion for JZB) had gradually declined from 1935 to 2008. If land reclamation on a large scale is continued in future, the net transport between JZB and the adjacent sea would turn landward and JZB would switch from erosion to siltation due to the impact of land reclamation on the horizontal advection of suspended sediments. We also evaluate the primary physical mechanisms including advection of suspended sediments, settling lag and tidal asymmetry, which control the suspended-sediment dynamics with the process of land reclamation.
Tidal dynamics in the inter-connected Mediterranean, Marmara, Black and Azov seas
NASA Astrophysics Data System (ADS)
Ferrarin, Christian; Bellafiore, Debora; Sannino, Gianmaria; Bajo, Marco; Umgiesser, Georg
2018-02-01
In this study we investigated the tidal dynamics in a system of inter-connected land-locked basins formed by the Mediterranean, the Marmara, the Black and the Azov seas (MMBA system). Through the application of an unstructured grid hydrodynamic model to a unique domain representing the whole MMBA system, we simulated the tidal propagation and transformation inside each basin and in the straits connecting them. The model performance was evaluated against amplitudes and phases of major tidal constituents from 77 tidal gauges. The numerical results provided a description of the characteristics of the principal semi-diurnal, diurnal and long-term tides over the entire system. Even if the narrow straits act as a barrier for the tidal sea surface oscillations, our numerical results demonstrated that the along-strait interface slope produces water fluxes between the adjacent basins of the same order of magnitude of the climatological transports estimated by several authors. The long-term tidal modulations of the water exchange between the Mediterranean and the Black seas resulted to be non negligible and may partially explain the monthly and fortnightly flow variability observed in the Dardanelles and Bosphorus straits.
Dynamic rupture modeling with laboratory-derived constitutive relations
Okubo, P.G.
1989-01-01
A laboratory-derived state variable friction constitutive relation is used in the numerical simulation of the dynamic growth of an in-plane or mode II shear crack. According to this formulation, originally presented by J.H. Dieterich, frictional resistance varies with the logarithm of the slip rate and with the logarithm of the frictional state variable as identified by A.L. Ruina. Under conditions of steady sliding, the state variable is proportional to (slip rate)-1. Following suddenly introduced increases in slip rate, the rate and state dependencies combine to produce behavior which resembles slip weakening. When rupture nucleation is artificially forced at fixed rupture velocity, rupture models calculated with the state variable friction in a uniformly distributed initial stress field closely resemble earlier rupture models calculated with a slip weakening fault constitutive relation. Model calculations suggest that dynamic rupture following a state variable friction relation is similar to that following a simpler fault slip weakening law. However, when modeling the full cycle of fault motions, rate-dependent frictional responses included in the state variable formulation are important at low slip rates associated with rupture nucleation. -from Author
Meziane, A; Norris, A N; Shuvalov, A L
2011-10-01
Analytical and numerical modeling of the nonlinear interaction of shear wave with a frictional interface is presented. The system studied is composed of two homogeneous and isotropic elastic solids, brought into frictional contact by remote normal compression. A shear wave, either time harmonic or a narrow band pulse, is incident normal to the interface and propagates through the contact. Two friction laws are considered and the influence on interface behavior is investigated: Coulomb's law with a constant friction coefficient and a slip-weakening friction law which involves static and dynamic friction coefficients. The relationship between the nonlinear harmonics and the dissipated energy, and the dependence on the contact dynamics (friction law, sliding, and tangential stress) and on the normal contact stress are examined in detail. The analytical and numerical results indicate universal type laws for the amplitude of the higher harmonics and for the dissipated energy, properly non-dimensionalized in terms of the pre-stress, the friction coefficient and the incident amplitude. The results suggest that measurements of higher harmonics can be used to quantify friction and dissipation effects of a sliding interface. © 2011 Acoustical Society of America
KCTF evolution of trans-neptunian binaries: Connecting formation to observation
NASA Astrophysics Data System (ADS)
Porter, Simon B.; Grundy, William M.
2012-08-01
Recent observational surveys of trans-neptunian binary (TNB) systems have dramatically increased the number of known mutual orbits. Our Kozai Cycle Tidal Friction (KCTF) simulations of synthetic trans-neptunian binaries show that tidal dissipation in these systems can completely reshape their original orbits. Specifically, solar torques should have dramatically accelerated the semimajor axis decay and circularization timescales of primordial (or recently excited) TNBs. As a result, our initially random distribution of TNBs in our simulations evolved to have a large population of tight circular orbits. This tight circular population appears for a range of TNO physical properties, though a strong gravitational quadrupole can prevent some from fully circularizing. We introduce a stability parameter to predict the effectiveness of KCTF on a TNB orbit, and show that a number of known TNBs must have a large gravitational quadrupole to be stable.
ΔT and tidal acceleration values from three european medieval eclipses
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Marco, F. J.
2011-10-01
There are many possible reasons for the fact that the rate of rotation of the Earth is slowly decreasing in time, being the most important the tidal friction. Since Universal Time (UT) is a time scale based on the rotation of the Earth and ΔT defined as the difference between the uniform time-scale (Dynamical Time), and the Universal Time, clearly that ΔT will vary with time. The problem is that this variation is not uniform, existing irregular fluctuations. In addition, it is not possible to predict exact values for ΔT, being the only possibility its deduction a posteriori from observations. ΔT is strongly related with occultations and eclipses, because it is used for the calculation of exact times of the event, and for determining the position of the central line or the zone of visibility. In this sense, a value ΔT =3600s is roughly equivalent to a shift of 15. in longitude. Past values of ΔT can be deduced from historical astronomical observations such as ancient eclipses which have been widely studied by F.R. Stephenson [3] and [4] who has even obtained an approximation fitted with cubic splines for ΔT from -500 to +1950. This approximation is nowadays widely used in astronomical calculations. The derived relative error from ΔT obtained from ancient eclipsed is quite large, mainly because of the large width of the totality zone and the inaccuracy in the definition of the observational place. A possibility to partially solve these former problems is the analysis of total eclipse records from multiple sites, which could provide a narrow parameter range. In addition, The conjunct analysis of these astronomical phenomena is useful for determining a range of ΔT in function of the tidal acceleration of the Moon. Further discussion about these eclipses in under review.
High precision tracking control of a servo gantry with dynamic friction compensation.
Zhang, Yangming; Yan, Peng; Zhang, Zhen
2016-05-01
This paper is concerned with the tracking control problem of a voice coil motor (VCM) actuated servo gantry system. By utilizing an adaptive control technique combined with a sliding mode approach, an adaptive sliding mode control (ASMC) law with friction compensation scheme is proposed in presence of both frictions and external disturbances. Based on the LuGre dynamic friction model, a dual-observer structure is used to estimate the unmeasurable friction state, and an adaptive control law is synthesized to effectively handle the unknown friction model parameters as well as the bound of the disturbances. Moreover, the proposed control law is also implemented on a VCM servo gantry system for motion tracking. Simulations and experimental results demonstrate good tracking performance, which outperform traditional control approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Meintanis, Evangelos Anastasios
We have extended the HOLA molecular dynamics (MD) code to run slider-on-block friction experiments for Al and Cu. Both objects are allowed to evolve freely and show marked deformation despite the hardness difference. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. Our first data also show a mechanism for decoupling between load and friction at high velocities. Such a mechanism can explain an increase in the coefficient of friction of metals with velocity. The study of the effects of currents on our system required the development of a suitable electrodynamic (ED) solver, as the disparity of MD and ED time scales threatened the efficiency of our code. Our first simulations combining ED and MD are presented.
Conner, William H.; Krauss, Ken W.; Baldwin, Andrew H.; Hutchinson, Stephen
2014-01-01
Tidal wetlands are some of the most dynamic areas of the Earth and are found at the interface between the land and sea. Salinity, regular tidal flooding, and infrequent catastrophic flooding due to storm events result in complex interactions among biotic and abiotic factors. The complexity of these interactions, along with the uncertainty of where one draws the line between tidal and nontidal, makes characterizing tidal wetlands a difficult task. The three primary types of tidal wetlands are tidal marshes, mangroves, and freshwater forested wetlands. Tidal marshes are dominated by herbaceous plants and are generally found at middle to high latitudes of both hemispheres. Mangrove forests dominate tropical coastlines around the world while tidal freshwater forests are global in distribution. All three wetland types are highly productive ecosystems, supporting abundant and diverse faunal communities. Unfortunately, these wetlands are subject to alteration and loss from both natural and anthropogenic causes.
Tidal distortion caused by the resonance of sexta-diurnal tides in a micromesotidal embayment
NASA Astrophysics Data System (ADS)
Song, Dehai; Yan, Yuhan; Wu, Wen; Diao, Xiliang; Ding, Yang; Bao, Xianwen
2016-10-01
Double high water and double-peak flood current were observed in Daya Bay (DYB), China, which is a shallow, mixed, mainly semidiurnal-tide dominated bay with a micro to mesotidal range. Harmonic analysis reveals that the quarter and especially the sexta-diurnal constituents are getting much stronger as tides propagating into the bay. The astronomical tides-induced tidal asymmetry is yet dominant at the bay entrance but overtaken by the sexta-diurnal tides at the end of the bay. Both the M4 and M6 tide meet the requirement proposed in previous studies but still unable to produce a double high water alone. Therefore, the conditions to produce a double high water between a fundamental tide and its higher harmonics need to be revisited. Analytical solutions were obtained in this paper, which fit the numerical solutions very well. Modeling result indicates M6 alone with M2 can produce the double high water in DYB but limited in some regions, while the combination of M2, M4, and M6 tides would enhance the capability. The amplification of sexta-diurnal tides in DYB is dominated by resonance and followed by shoaling effect. Bottom friction damped M6 a lot and largely confined its amplification. However, the quadratic friction and other nonlinear processes are just responsible for about 10% of the total M6 increase.
Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining
Zhang, Dekun; Chen, Kai; Guo, Yongbo
2018-01-01
This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677
Dynamical continuous time random Lévy flights
NASA Astrophysics Data System (ADS)
Liu, Jian; Chen, Xiaosong
2016-03-01
The Lévy flights' diffusive behavior is studied within the framework of the dynamical continuous time random walk (DCTRW) method, while the nonlinear friction is introduced in each step. Through the DCTRW method, Lévy random walker in each step flies by obeying the Newton's Second Law while the nonlinear friction f(v) = - γ0v - γ2v3 being considered instead of Stokes friction. It is shown that after introducing the nonlinear friction, the superdiffusive Lévy flights converges, behaves localization phenomenon with long time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.
Departure of microscopic friction from macroscopic drag in molecular fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanasaki, Itsuo; Fujiwara, Daiki; Kawano, Satoyuki, E-mail: kawano@me.es.osaka-u.ac.jp
2016-03-07
Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.
Dynamical evolution of galaxies in dense cluster environment.
NASA Astrophysics Data System (ADS)
Gnedin, O. Y.
1997-12-01
I present the results of study of the dynamics of galaxies in clusters of galaxies. The effects of the galaxy environment could be quite dramatic. The time-varying gravitational potential of the cluster subjects the galaxies to strong tidal effects. The tidal density cutoff effectively strips the dark matter halos and leads to highly concentrated structures in the galactic centers. The fast gravitational tidal shocks raise the random motion of stars in the galaxies, transforming the thin disks into the kinematically hot thick configurations. The tidal shocks also cause relaxation of stellar energies that enhances the rate of accretion onto the galactic centers. These effects of the time-varying cluster potential have not been consistently taken into account before. I present numerical N-body simulations of galaxies using the Self-Consistent Field code with 10(7) - 10(8) particles. The code is coupled with the PM code that provides a fully dynamic simulation of the cluster potential. The tidal field of the cluster along the galaxy trajectories is imposed as an external perturbation on the galaxies in the SCF scheme. Recent HST observations show that the high-redshift (z > 0.4) clusters contain numerous bright blue spirals, often with distorted profiles, whereas the nearby clusters are mostly populated by featureless ellipticals. The goal of my study is to understand whether dynamics is responsible for the observed strong evolution of galaxies in clusters.
Atomistic Simulation of Single Asperity Contact
NASA Astrophysics Data System (ADS)
Philip; Kromer; Marder, Michael
2003-03-01
In the standard (Bowden and Tabor) model of friction, the macroscopic behavior of sliding results from the deformation of microscopic asperities in contact. A recent idea instead extracts macroscopic friction from the aggregate behavior of traveling, self-healing interfacial cracks: certain families of cracks are found to be mathematically forbidden, and the envelope of allowed cracks dictates the familiar Coulomb law of friction. To explore the connection between the new and traditional pictures of friction, we conducted molecular dynamics (MD) simulations of single-asperity contact subjected to an oscillatory sliding force -- a geometry important for the problem of fretting (damage due to small-scale vibratory contact). Our simulations reveal the importance of traveling interface cracks to the dynamics of slip at the interface, and illuminate the dynamics of crack initiation and suppression.
Stick-slip chaos in a mechanical oscillator with dry friction
NASA Astrophysics Data System (ADS)
Kousaka, Takuji; Asahara, Hiroyuki; Inaba, Naohiko
2018-03-01
This study analyzes a forced mechanical dynamical system with dry friction that can generate chaotic stick-slip vibrations. We find that the dynamics proposed by Yoshitake et al. [Trans. Jpn. Soc. Mech. Eng. C 61, 768 (1995)] can be expressed as a nonautonomous constraint differential equation owing to the static friction force. The object is constrained to the surface of a moving belt by a static friction force from when it sticks to the surface until the force on the object exceeds the maximal static friction force. We derive a 1D Poincaré return map from the constrained mechanical system, and prove numerically that this 1D map has an absolutely continuous invariant measure and a positive Lyapunov exponent, providing strong evidence for chaos.
TIDAL HEATING IN A MAGMA OCEAN WITHIN JUPITER’S MOON Io
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, Robert H.; Henning, Wade G.; Hamilton, Christopher W., E-mail: robert.h.tyler@nasa.gov
Active volcanism observed on Io is thought to be driven by the temporally periodic, spatially differential projection of Jupiter's gravitational field over the moon. Previous theoretical estimates of the tidal heat have all treated Io as essentially a solid, with fluids addressed only through adjustment of rheological parameters rather than through appropriate extension of the dynamics. These previous estimates of the tidal response and associated heat generation on Io are therefore incomplete and possibly erroneous because dynamical aspects of the fluid behavior are not permitted in the modeling approach. Here we address this by modeling the partial-melt asthenosphere as amore » global layer of fluid governed by the Laplace Tidal Equations. Solutions for the tidal response are then compared with solutions obtained following the traditional solid-material approach. It is found that the tidal heat in the solid can match that of the average observed heat flux (nominally 2.25 W m{sup −2}), though only over a very restricted range of plausible parameters, and that the distribution of the solid tidal heat flux cannot readily explain a longitudinal shift in the observed (inferred) low-latitude heat fluxes. The tidal heat in the fluid reaches that observed over a wider range of plausible parameters, and can also readily provide the longitudinal offset. Finally, expected feedbacks and coupling between the solid/fluid tides are discussed. Most broadly, the results suggest that both solid and fluid tidal-response estimates must be considered in exoplanet studies, particularly where orbital migration under tidal dissipation is addressed.« less
NASA Astrophysics Data System (ADS)
Nelson, N.; Munoz-Carpena, R.; Neale, P.; Tzortziou, M.; Megonigal, P.
2017-12-01
Due to strong abiotic forcing, dissolved oxygen (DO) in shallow tidal creeks often disobeys the conventional explanation of general aquatic DO cycling as biologically-regulated. In the present work, we seek to quantify the relative importance of abiotic (hydrologic and climatic), and biotic (primary productivity as represented by chlorophyll-a) descriptors of tidal creek DO. By fitting multiple linear regression models of DO to hourly chlorophyll-a, water quality, hydrology, and weather data collected in a tidal creek of a Chesapeake Bay marsh (Maryland, USA), temporal shifts (summer - early winter) in the relative importance of tidal creek DO descriptors were uncovered. Moreover, this analysis identified an alternative approach to evaluating tidal stage as a driver of DO by dividing stage into two DO-relevant variables: stage above and below bankfull depth. Within the hydrologic variable class, stage below bankfull depth dominated as an important descriptor, thus highlighting the role of pore water drainage and mixing as influential processes forcing tidal creek DO. Study findings suggest that tidal creek DO dynamics are explained by a balance of hydrologic, climatic, and biotic descriptors during warmer seasons due to many of these variables (i.e., chlorophyll-a, water temperature) acting as tracers of estuarine-marsh water mixing; conversely, in early winter months when estuarine and marsh waters differ less distinctly, hydrologic variables increase in relative importance as descriptors of tidal creek DO. These findings underline important distinctions in the underlying mechanisms dictating DO variability in shallow tidal marsh-creek environments relative to open water estuarine systems.
NASA Astrophysics Data System (ADS)
Tyler, Robert
2012-04-01
The tidal flow response and associated dissipative heat generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing strong tidal flow and appreciable dissipative heat. Of primary interest in this study are the ocean parameters that can be expected to evolve (notably, the ocean depth in an ocean attempting to freeze, and the stratification in an ocean attempting to cool) because this evolution can cause an ocean to be pushed into a resonant configuration where the increased dissipative heat of the resonant response halts further evolution and a liquid ocean can be maintained by ocean tidal heat. In this case the resonant ocean tidal response is not only allowed but may be inevitable. Previous work on this topic is extended to describe the resonant configurations in both unstratified and stratified cases for an assumed global ocean on Titan subject to both obliquity and eccentricity tidal forces. Results indicate first that the assumption of an equilibrium tidal response is not justified and the correct dynamical response must be considered. Second, the ocean tidal dissipation will be appreciable if the ocean configuration is near that producing a resonant state. The parameters values required for this resonance are provided in this study, and examples/movies of calculated ocean tidal flow are also presented.
NASA Astrophysics Data System (ADS)
Nelson, Natalie G.; Muñoz-Carpena, Rafael; Neale, Patrick J.; Tzortziou, Maria; Megonigal, J. Patrick
2017-08-01
Due to strong abiotic forcing, dissolved oxygen (DO) in shallow tidal creeks often disobeys the conventional explanation of general aquatic DO cycling as biologically regulated. In the present work, we seek to quantify the relative importance of abiotic (hydrologic and climatic), and biotic (primary productivity as represented by chlorophyll-a) descriptors of tidal creek DO. By fitting multiple linear regression models of DO to hourly chlorophyll-a, water quality, hydrology, and weather data collected in a tidal creek of a Chesapeake Bay marsh (Maryland, USA), temporal shifts (summer-early winter) in the relative importance of tidal creek DO descriptors were uncovered. Moreover, this analysis identified an alternative approach to evaluating tidal stage as a driver of DO by dividing stage into two DO-relevant variables: stage above and below bankfull depth. Within the hydrologic variable class, stage below bankfull depth dominated as an important descriptor, thus highlighting the role of pore water drainage and mixing as influential processes forcing tidal creek DO. Study findings suggest that tidal creek DO dynamics are explained by a balance of hydrologic, climatic, and biotic descriptors during warmer seasons due to many of these variables (i.e., chlorophyll-a, water temperature) acting as tracers of estuarine-marsh water mixing; conversely, in early winter months when estuarine and marsh waters differ less distinctly, hydrologic variables increase in relative importance as descriptors of tidal creek DO. These findings underline important distinctions in the underlying mechanisms dictating DO variability in shallow tidal marsh-creek environments relative to open water estuarine systems.
NASA Technical Reports Server (NTRS)
Boes, D. J.
1984-01-01
This report describes the results of a program designed to evaluate the breakaway friction and dynamic friction/wear characteristics of materials having potential for use as load bearing components in a high-performance high-temperature heavy duty diesel engine. Ten candidate materials were selected, six of which were evaluated under all possible material combinations as both stationary as well as moving breakaway specimens. The remaining materials were evaluated either in the static mode against themselves and all other materials, or against themselves only. Experiments were performed at five temperatures up to 650 C (1200 F) and unit pressures of 700 kPa (100 lb/sq in.), 3500 kPa (500 lb/sq in.), and 7000 kPa (1000 lb/sq in.). Experimental results indicate that under dynamic conditions, four of the ten materials exhibited good to excellent friction/wear characteristics in various material combinations. These materials were: titanium carbide, silicon nitride, silicon carbide (reaction sintered), and Refel (SiC).
NASA Astrophysics Data System (ADS)
Ishkhanyan, M. V.; Karapetyan, A. V.
2010-04-01
We analyze the dynamics of a homogeneous ball on a horizontal plane with friction of all kinds, namely, sliding, spinning, and rolling friction, taken into account. The qualitative-analytic study of the ball dynamics is supplemented with numerical experiments. The problem on the motion of a homogeneous ball on a horizontal plane with friction was apparently first studied in 1758 by I. Euler (Leonard Euler's son) with sliding friction taken into account in the framework of the Coulomb model. I. Euler showed that the ball sliding ceases in finite time, after which the ball uniformly rolls along a fixed straight line and uniformly spins about the vertical. This result has long become classical and is described in many textbooks on theoretical mechanics. In 1998, V. F. Zhuravlev considered the problem of motion of a homogeneous ball on a horizontal plane with sliding and spinning friction taken into account in the framework of the Contensou-Zhuravlev model [1, 2] and showed that the ball sliding and spinning cease simultaneously, after which the ball uniformly rolls along a fixed straight line. The Contensou-Zhuravlev theory was further developed in [3-7]. In the present paper, we consider themotion of a homogeneous ball on a horizontal plane with friction of all kinds taken into account in the framework of the model proposed in [8]. We show that, in one and the same time, both the sliding velocity and the angular velocity of the ball become zero. Our studies are based on the results obtained in [2], the properties of the friction model proposed in [8], and the method for qualitative analysis of dynamics of dissipative systems [9, 10]. The qualitative-analytic study is supplemented with numerical experiments.
Friction is Fracture: a new paradigm for the onset of frictional motion
NASA Astrophysics Data System (ADS)
Fineberg, Jay
Friction is generally described by a single degree of freedom, a `friction coefficient'. We experimentally study the space-time dynamics of the onset of dry and lubricated frictional motion when two contacting bodies start to slide. We first show that the transition from static to dynamic sliding is governed by rupture fronts (closely analogous to earthquakes) that break the contacts along the interface separating the two bodies. Moreover, the structure of these ''laboratory earthquakes'' is quantitatively described by singular solutions originally derived to describe the motion of rapid cracks under applied shear. We demonstrate that this framework quantitatively describes both earthquake motion and arrest. This framework also providing a new window into the hidden properties of the micron thick interface that governs a body's frictional properties. Using this window we show that lubricated interfaces, although ``slippery'', actually becomes tougher; lubricants significantly increase dissipated energy during rupture. The results establish a new (and fruitful) paradigm for describing friction. Israel Science Foundation, ERC.
Dynamics of translational friction in needle-tissue interaction during needle insertion.
Asadian, Ali; Patel, Rajni V; Kermani, Mehrdad R
2014-01-01
In this study, a distributed approach to account for dynamic friction during needle insertion in soft tissue is presented. As is well known, friction is a complex nonlinear phenomenon. It appears that classical or static models are unable to capture some of the observations made in systems subjected to significant frictional effects. In needle insertion, translational friction would be a matter of importance when the needle is very flexible, or a stop-and-rotate motion profile at low insertion velocities is implemented, and thus, the system is repeatedly transitioned from a pre-sliding to a sliding mode and vice versa. In order to characterize friction components, a distributed version of the LuGre model in the state-space representation is adopted. This method also facilitates estimating cutting force in an intra-operative manner. To evaluate the performance of the proposed family of friction models, experiments were conducted on homogeneous artificial phantoms and animal tissue. The results illustrate that our approach enables us to represent the main features of friction which is a major force component in needle-tissue interaction during needle-based interventions.
The influence of suspension components friction on race car vertical dynamics
NASA Astrophysics Data System (ADS)
Benini, Claudio; Gadola, Marco; Chindamo, Daniel; Uberti, Stefano; Marchesin, Felipe P.; Barbosa, Roberto S.
2017-03-01
This work analyses the effect of friction in suspension components on a race car vertical dynamics. It is a matter of fact that race cars aim at maximising their performance, focusing the attention mostly on aerodynamics and suspension tuning: suspension vertical and rolling stiffness and damping are parameters to be taken into account for an optimal setup. Furthermore, friction in suspension components must not be ignored. After a test session carried out with a F4 on a Four Poster rig, friction was detected on the front suspension. The real data gathered allow the validation of an analytical model with friction, confirming that its influence is relevant for low frequency values closed to the car pitch natural frequency. Finally, some setup proposals are presented to describe what should be done on actual race cars in order to correct vehicle behaviour when friction occurs.
Constraint counting for frictional jamming
NASA Astrophysics Data System (ADS)
Quint, D. A.; Henkes, S.; Schwarz, J. M.
2012-02-01
While the frictionless jamming transition has been intensely studied in recent years, more realistic frictional packings are less well understood. In frictionless sphere packings, the transition is predicted by a simple mean-field constraint counting argument, the isostaticity argument. For frictional packings, a modified constraint counting argument, which includes slipping contacts at the Coulomb threshold, has had limited success in accounting for the transition. We propose that the frictional jamming transition is not mean field and is triggered by the nucleation of unstable regions, which are themselves dynamical objects due to the Coulomb criterion. We create frictional packings using MD simulations and test for the presence and shape of rigid clusters with the pebble game to identify the partition of the packing into stable and unstable regions. To understand the dynamics of these unstable regions we follow perturbations at contacts crucial to the stability of the ``frictional house of cards.''
On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars
NASA Astrophysics Data System (ADS)
Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.
2018-05-01
We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.
The early dynamical evolution of star clusters near the Galactic Centre
NASA Astrophysics Data System (ADS)
Park, So-Myoung; Goodwin, Simon P.; Kim, Sungsoo S.
2018-07-01
We examine the dynamical evolution of both Plummer sphere and substructured (fractal) star-forming regions in Galactic Centre (GC) strong tidal fields to see what initial conditions could give rise to an Arches-like massive star cluster by ˜2 Myr. We find that any initial distribution has to be contained within its initial tidal radius to survive, which sets a lower limit of the initial density of the Arches of ˜600 M⊙ pc-3 if the Arches is at 30 pc from the GC, or ˜200 M⊙ pc-3 if the Arches is at 100 pc from the GC. Plummer spheres that survive change little other than to dynamically mass segregate, but initially fractal distributions rapidly erase substructure, dynamically mass segregate and by 2 Myr look extremely similar to initial Plummer spheres, therefore it is almost impossible to determine the initial conditions of clusters in strong tidal fields.
The early dynamical evolution of star clusters near the Galactic Centre
NASA Astrophysics Data System (ADS)
Park, So-Myoung; Goodwin, Simon P.; Kim, Sungsoo S.
2018-04-01
We examine the dynamical evolution of both Plummer sphere and substructured (fractal) star forming regions in Galactic Centre (GC) strong tidal fields to see what initial conditions could give rise to an Arches-like massive star cluster by ˜2 Myr. We find that any initial distribution has to be contained within its initial tidal radius to survive, which sets a lower limit of the initial density of the Arches of ˜ 600 M⊙ pc-3 if the Arches is at 30 pc from the GC, or ˜ 200 M⊙ pc-3 if the Arches is at 100 pc from the GC. Plummer spheres that survive change little other than to dynamically mass segregate, but initially fractal distributions rapidly erase substructure, dynamically mass segregate and by 2 Myr look extremely similar to initial Plummer spheres, therefore it is almost impossible to determine the initial conditions of clusters in strong tidal fields.
Numerical simulation of tides in Ontario Lacus
NASA Astrophysics Data System (ADS)
Vincent, David; Karatekin, Ozgür
2015-04-01
Hydrocarbons liquid filled lakes has been recently detected on Titan's surface. Most of these lakes are located in the northern latitudes but there is a substantial lake in the southern latitudes: Ontario Lacus. This lake gets our attention because of possible shoreline changes suggested by Cassini flybys over Ontario Lacus between September 2005 (T7) et January 2010 (T65). The shoreline changes could be due to evaporation-precipitation processes but could also be a consequence of tides. Previous studies showed that the maximal tidal amplitudes of Ontario Lacus would be about 0.2m (for an uniform bathymetry of 20m). In this study we simulate tidal amplitude and currents with SLIM (Second-generation Louvain-la-Neuve Ice-ocean Model, http://sites.uclouvain.be/slim/ ) which resolves 2D shallow water equation on an unstructured mesh. Unstructured mesh prevents problems like mesh discontinuities at poles and allows higher accuracy at some place like coast or straits without drastically increasing computing costs. The tide generating force modeled in this work is the gradient of tidal potential due to titan's obliquity and titan's orbital eccentricity around Saturn (other contribution such as sun tide generating force are unheeded). The uncertain input parameters such as the wind direction and amplitude, bottom friction and thermo-physical properties of hydrocarbons liquids are varied within their expected ranges. SAR data analysis can result in different bathymetry according to the method. We proceed simulations for different bathymetries: tidal amplitudes doesn't change but this is not the case for tidal currents. Using a recent bathymetry deduced from most recent RADAR/SAR observations and a finer mesh, the peak-to peak tidal amplitudes are calculated to be up to 0.6 m. which is more than a factor two larger than the previous results. The maximal offshore tidal currents magnitude is about 0.06 m/s.
Scalar model for frictional precursors dynamics
Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano
2015-01-01
Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective. PMID:25640079
Scalar model for frictional precursors dynamics.
Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano
2015-02-02
Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective.
Savidge, William B; Brink, Jonathan; Blanton, Jackson O
2016-12-01
Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.
NASA Astrophysics Data System (ADS)
Savidge, William B.; Brink, Jonathan; Blanton, Jackson O.
2016-12-01
Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.
NASA Astrophysics Data System (ADS)
Masunaga, Eiji; Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu
2018-04-01
This study investigates the dynamics of tidally induced internal waves over a shallow ridge, the Izu-Ogasawara Ridge off the Japanese mainland, using a downscaled high-resolution regional ocean numerical model. Both the Kuroshio and tides contribute to the field of currents in the study area. The model results show strong internal tidal energy fluxes over the ridge, exceeding 3.5 kW m-1, which are higher than the fluxes along the Japanese mainland. The flux in the upstream side of the Kuroshio is enhanced by an interaction of internal waves and currents. The tidal forcing induces 92% of the total internal wave energy flux, exhibiting the considerable dominance of tides in internal waves. The tidal forcing enhances the kinetic energy, particularly in the northern area of the ridge where the Kuroshio Current is not a direct influence. The tidal forcing contributes to roughly 30% of the total kinetic energy in the study area.
Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto; Kudoh, Shoji
2017-04-01
Diaphragmatic motion in a standing position during tidal breathing remains unclear. The purpose of this observational study was to evaluate diaphragmatic motion during tidal breathing in a standing position in a health screening center cohort using dynamic chest radiography in association with participants' demographic characteristics. One hundred seventy-two subjects (103 men; aged 56.3 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions of and peak motion speeds of the diaphragms. Associations between the excursions and participants' demographics (gender, height, weight, body mass index [BMI], smoking history, tidal volume, vital capacity, and forced expiratory volume) were investigated. The average excursion of the left diaphragm (14.9 ± 4.6 mm, 95% CI 14.2-15.5 mm) was significantly larger than that of the right (11.0 ± 4.0 mm, 95% CI 10.4-11.6 mm) (P <0.001). The peak motion speed of the left diaphragm (inspiratory, 16.6 ± 4.2 mm/s; expiratory, 13.7 ± 4.2 mm/s) was significantly faster than that of the right (inspiratory, 12.4 ± 4.4 mm/s; expiratory, 9.4 ± 3.8 mm/s) (both P <0.001). Both simple and multiple regression models demonstrated that higher BMI and higher tidal volume were associated with increased excursions of the bilateral diaphragm (all P <0.05). The average excursions of the diaphragms are 11.0 mm (right) and 14.9 mm (left) during tidal breathing in a standing position. The diaphragmatic motion of the left is significantly larger and faster than that of the right. Higher BMI and tidal volume are associated with increased excursions of the bilateral diaphragm. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Colpi, Monica; Pallavicini, Andrea
1998-07-01
The drag force on a satellite of mass M moving with speed V in the gravitational field of a spherically symmetric background of stars is computed. During the encounter, the stars are subject to a time-dependent force that alters their equilibrium. The resulting distortion in the stellar density field acts back to produce a force FΔ that decelerates the satellite. This force is computed using a perturbative technique known as linear response theory. In this paper, we extend the formalism of linear response to derive the correct expression for the back-reaction force FΔ that applies when the stellar system is described by an equilibrium one-particle distribution function. FΔ is expressed in terms of a suitable correlation function that couples the satellite dynamics to the unperturbed dynamics of the stars. At time t, the force depends upon the whole history of the composite system. In the formalism, we account for the shift of the stellar center of mass resulting from linear momentum conservation. The self-gravity of the response is neglected since it contributes to a higher order in the perturbation. Linear response theory applies also to the case of a satellite orbiting outside the spherical galaxy. The case of a satellite moving on a straight line, at high speed relative to the stellar dispersion velocity, is explored. We find that the satellite during its passage raises (1) global tides in the stellar distribution and (2) a wake, i.e., an overdense region behind its trail. If the satellite motion is external to the galaxy, it suffers a dissipative force that is not exclusively acting along V but acquires a component along R, the position vector relative to the center of the spherical galaxy. We derive the analytical expression of the force in the impulse approximation. In penetrating short-lived encounters, the satellite moves across the stellar distribution and the transient wake excited in the density field is responsible for most of the deceleration. We find that dynamical friction arises from a memory effect involving only those stars perturbed along the path. The force can be written in terms of an effective Coulomb logarithm that now depends upon time. The value of ln Λ is computed for two simple equilibrium density distributions; it is shown that the drag increases as the satellite approaches the denser regions of the stellar distribution and attains a maximum after pericentric passage. When the satellite crosses the edge of the galaxy, the force does not vanish since the galaxy keeps memory of the perturbation induced and declines on a time comparable to the dynamical time of the stellar system. In the case of a homogeneous cloud, we compute the total energy loss. In evaluating the contribution resulting from friction, we derive self-consistently the maximum impact parameter, which is found to be equal to the length traveled by the satellite within the system. Tides excited by the satellite in the galaxy reduce the value of the energy loss by friction; in close encounters, this value is decreased by a factor of ~1.5.
NASA Astrophysics Data System (ADS)
Saltiel, Seth; Bonner, Brian P.; Mittal, Tushar; Delbridge, Brent; Ajo-Franklin, Jonathan B.
2017-07-01
Frictional properties affect the propagation of high-amplitude seismic waves across rock fractures and faults. Laboratory evidence suggests that these properties can be measured in active seismic surveys, potentially offering a route to characterizing friction in situ. We present experimental results from a subresonance torsional modulus and attenuation apparatus that utilizes micron-scale sinusoidal oscillations to probe the nonlinear stress-strain relation at a range of strain amplitudes and rates. Nonlinear effects are further quantified using harmonic distortion; however, time series data best illuminate underlying physical processes. The low-frequency stress-strain hysteretic loops show stiffening at the sinusoid's static ends, but stiffening is reduced above a threshold frequency. This shape is determined by harmonic generation in the strain; the stress signal has no harmonics, confirming that the fractured sample is the source of the nonlinearity. These qualitative observations suggest the presence of rate-dependent friction and are consistent between fractures in three different rock types. We propose that static friction at the low strain rate part of the cycle, when given sufficient "healing" time at low oscillation frequencies, causes this stiffening cusp shape in the hysteresis loop. While rate-and-state friction is commonly used to represent dynamic friction, it cannot capture static friction or negative slip velocities. So we implement another dynamic friction model, based on the work of Dahl, which describes this process and produces similar results. Since the two models have a similar form, parameterizations of field data could constraint fault model inputs, such as specific location velocity strengthening or weakening properties.
Kinetic theory of dark solitons with tunable friction.
Hurst, Hilary M; Efimkin, Dmitry K; Spielman, I B; Galitski, Victor
2017-05-01
We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose-Einstein condensate coupled to a noninteracting Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semiclassical dynamics of the dark soliton, a particlelike object with negative mass, and calculate its friction coefficient. Surprisingly, it depends periodically on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We develop a general theory of stochastic dynamics for negative-mass objects and find that their dynamics are drastically different from their positive-mass counterparts: they do not undergo Brownian motion. From the exact phase-space probability distribution function (i.e., in position and velocity), we find that both the trajectory and lifetime of the soliton are altered by friction, and the soliton can undergo Brownian motion only in the presence of friction and a confining potential. These results agree qualitatively with experimental observations by Aycock et al. [Proc. Natl. Acad. Sci. USA 114 , 2503 (2017)] in a similar system with bosonic impurity scatterers.
Kinetic theory of dark solitons with tunable friction
Hurst, Hilary M.; Efimkin, Dmitry K.; Spielman, I. B.; Galitski, Victor
2018-01-01
We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose-Einstein condensate coupled to a noninteracting Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semiclassical dynamics of the dark soliton, a particlelike object with negative mass, and calculate its friction coefficient. Surprisingly, it depends periodically on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We develop a general theory of stochastic dynamics for negative-mass objects and find that their dynamics are drastically different from their positive-mass counterparts: they do not undergo Brownian motion. From the exact phase-space probability distribution function (i.e., in position and velocity), we find that both the trajectory and lifetime of the soliton are altered by friction, and the soliton can undergo Brownian motion only in the presence of friction and a confining potential. These results agree qualitatively with experimental observations by Aycock et al. [Proc. Natl. Acad. Sci. USA 114, 2503 (2017)] in a similar system with bosonic impurity scatterers. PMID:29744482
Adaptive methods, rolling contact, and nonclassical friction laws
NASA Technical Reports Server (NTRS)
Oden, J. T.
1989-01-01
Results and methods on three different areas of contemporary research are outlined. These include adaptive methods, the rolling contact problem for finite deformation of a hyperelastic or viscoelastic cylinder, and non-classical friction laws for modeling dynamic friction phenomena.
Steady and transient sliding under rate-and-state friction
NASA Astrophysics Data System (ADS)
Putelat, Thibaut; Dawes, Jonathan H. P.
2015-05-01
The physics of dry friction is often modelled by assuming that static and kinetic frictional forces can be represented by a pair of coefficients usually referred to as μs and μk, respectively. In this paper we re-examine this discontinuous dichotomy and relate it quantitatively to the more general, and smooth, framework of rate-and-state friction. This is important because it enables us to link the ideas behind the widely used static and dynamic coefficients to the more complex concepts that lie behind the rate-and-state framework. Further, we introduce a generic framework for rate-and-state friction that unifies different approaches found in the literature. We consider specific dynamical models for the motion of a rigid block sliding on an inclined surface. In the Coulomb model with constant dynamic friction coefficient, sliding at constant velocity is not possible. In the rate-and-state formalism steady sliding states exist, and analysing their existence and stability enables us to show that the static friction coefficient μs should be interpreted as the local maximum at very small slip rates of the steady state rate-and-state friction law. Next, we revisit the often-cited experiments of Rabinowicz (J. Appl. Phys., 22:1373-1379, 1951). Rabinowicz further developed the idea of static and kinetic friction by proposing that the friction coefficient maintains its higher and static value μs over a persistence length before dropping to the value μk. We show that there is a natural identification of the persistence length with the distance that the block slips as measured along the stable manifold of the saddle point equilibrium in the phase space of the rate-and-state dynamics. This enables us explicitly to define μs in terms of the rate-and-state variables and hence link Rabinowicz's ideas to rate-and-state friction laws. This stable manifold naturally separates two basins of attraction in the phase space: initial conditions in the first one lead to the block eventually stopping, while in the second basin of attraction the sliding motion continues indefinitely. We show that a second definition of μs is possible, compatible with the first one, as the weighted average of the rate-and-state friction coefficient over the time the block is in motion.
Suppression of friction by mechanical vibrations.
Capozza, Rosario; Vanossi, Andrea; Vezzani, Alessandro; Zapperi, Stefano
2009-08-21
Mechanical vibrations are known to affect frictional sliding and the associated stick-slip patterns causing sometimes a drastic reduction of the friction force. This issue is relevant for applications in nanotribology and to understand earthquake triggering by small dynamic perturbations. We study the dynamics of repulsive particles confined between a horizontally driven top plate and a vertically oscillating bottom plate. Our numerical results show a suppression of the high dissipative stick-slip regime in a well-defined range of frequencies that depends on the vibrating amplitude, the normal applied load, the system inertia and the damping constant. We propose a theoretical explanation of the numerical results and derive a phase diagram indicating the region of parameter space where friction is suppressed. Our results allow to define better strategies for the mechanical control of friction.
Rubber friction and tire dynamics.
Persson, B N J
2011-01-12
We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.
Determination of the static friction coefficient from circular motion
NASA Astrophysics Data System (ADS)
Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.
2014-07-01
This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s-1, and the videos are analyzed using Tracker video-analysis software, allowing the students to dynamically model the motion of the coin. The students have to obtain the static friction coefficient by comparing the centripetal and maximum static friction forces. The experiment only requires simple and inexpensive materials. The dynamics of circular motion and static friction forces are difficult for many students to understand. The proposed laboratory exercise addresses these topics, which are relevant to the physics curriculum.
Indirect evidence for substantial damping of low-mode internal tides in the open ocean
2015-09-12
see also Arbic et al., 2012; M€uller et al., 2012; Waterhouse et al., 2014] (C. B. Rocha, Mesoscale to submesoscale wavenumber spectra in Drake Passage...nominal horizontal resolution, at the equator , of 1/ 12.58. The simulations are forced by the M2 tide, the largest tidal constit- uent in the ocean, and by...2005] is given below. Thorough discussions on topographic wave drag and quadratic bottom friction and their appearance in the momentum equations can
Tidal stirring and phytoplankton bloom dynamics in an estuary
Cloern, J.E.
1991-01-01
In South San Francisco Bay, estuarine phytoplankton biomass fluctuates at the time scale of days to weeks; much of this variability is associated with fluctuations in tidal energy. During the spring seasons of every year from 1980-1990, episodic blooms occurred in which phytoplankton biomass rose from a baseline of 2-4mg chlorophyll a m-3, peaked at 20-40 chlorophyll a m-3, then returned to baseline values, all within several weeks. Each episode of biomass increase occurred during neap tides, and each bloom decline coincided with spring tides. This suggests that daily variations in the rate of vertical mixing by tidal stirring might control phytoplankton bloom dynamics in some estuaries. Simulation experiments with a numerical model of phytoplankton population dynamics support this hypothesis. -from Author
Chandrasekhar's dynamical friction and non-extensive statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, J.M.; Lima, J.A.S.; De Souza, R.E.
2016-05-01
The motion of a point like object of mass M passing through the background potential of massive collisionless particles ( m || M ) suffers a steady deceleration named dynamical friction. In his classical work, Chandrasekhar assumed a Maxwellian velocity distribution in the halo and neglected the self gravity of the wake induced by the gravitational focusing of the mass M . In this paper, by relaxing the validity of the Maxwellian distribution due to the presence of long range forces, we derive an analytical formula for the dynamical friction in the context of the q -nonextensive kinetic theory. Inmore » the extensive limiting case ( q = 1), the classical Gaussian Chandrasekhar result is recovered. As an application, the dynamical friction timescale for Globular Clusters spiraling to the galactic center is explicitly obtained. Our results suggest that the problem concerning the large timescale as derived by numerical N -body simulations or semi-analytical models can be understood as a departure from the standard extensive Maxwellian regime as measured by the Tsallis nonextensive q -parameter.« less
A nested numerical tidal model of the southern New England bight
NASA Technical Reports Server (NTRS)
Gordon, R. B.; Spaulding, M. L.
1979-01-01
Efforts were focused on the development and application of a three-dimensional numerical model for predicting pollutant and sediment transport in estuarine and coastal environments. To successfully apply the pollutant and sediment transport model to Rhode Island coastal waters, it was determined that the flow field in this region had to be better described through the use of existing numerical circulation models. A nested, barotropic numerical tidal model was applied to the southern New England Bight (Long Island, Block Island, Rhode Island Sounds, Buzzards Bay, and the shelf south of Block Island). Forward time and centered spatial differences were employed with the bottom friction term evaluated at both time levels. Using existing tide records on the New England shelf, adequate information was available to specify the tide height boundary condition further out on the shelf. Preliminary results are within the accuracy of the National Ocean Survey tide table data.
Effect of the tiger stripes on the deformation of Saturn's moon Enceladus
NASA Astrophysics Data System (ADS)
Souček, Ondřej; Hron, Jaroslav; Běhounková, Marie; Čadek, Ondřej
2016-07-01
Enceladus is a small icy moon of Saturn with active jets of water emanating from fractures around the south pole, informally called tiger stripes, which might be connected to a subsurface water ocean. The effect of these features on periodic tidal deformation of the moon has so far been neglected because of the difficulties associated with implementation of faults in continuum mechanics models. Here we estimate the maximum possible impact of the tiger stripes on tidal deformation and heat production within Enceladus's ice shell by representing them as narrow zones with negligible frictional and bulk resistance passing vertically through the whole ice shell. Assuming a uniform ice shell thickness of 25 km, consistent with the recent estimate of libration, we demonstrate that the faults can dramatically change the distribution of stress and strain in Enceladus's south polar region, leading to a significant increase of the heat production in this area.
Spin-orbit coupling and tidal dissipation in hot Jupiter systems
NASA Astrophysics Data System (ADS)
Shabaltas, Natalia Igorevna
Hot Jupiters are giant planets located extremely close to their host stars, with orbital periods less than 5 days. Many aspects of hot Jupiter (HJ) formation remain unclear, but several clues, such as the observed misalignment between their orbital axes and their hosts' spin axes, point to a dynamical origin. In the first portion of this work we explore the stellar spin-orbit dynamics of one such dynamical formation channel, the Lidov-Kozai mechanism. We show that the coupling between the stellar spin and the planet orbit can lead to complex, and sometimes chaotic, behavior of the stellar spin vector. Many features of this behavior arise due to a set of resonances between the stellar spin axis precession timescale and the Lidov-Kozai timescale. Under the assumption that the stellar quadrupole does not induce precession in the planet's orbit, given a system with a set of initial parameters, we show that it is possible to predict whether the system can attain high spin-orbit misalignments. In the second portion of this work, we discuss tidal dissipation in giant planets, another aspect that is crucial to dynamical HJ formation theories. We show that tidal dissipation in the cores of giant planets can be significant, and can help reconcile inconsistencies in the tidal dissipation efficiencies inferred from observations of Jupiter's moons and from high-eccentricity HJ migration theories. Finally, we improve upon existing core tidal dissipation theories by presenting semi-analytical formulae for dissipation in a core surrounded by a polytropic n = 1 envelope.
NASA Astrophysics Data System (ADS)
Lamb, B. T.; Tzortziou, M.; McDonald, K. C.
2017-12-01
Wetlands play a key role in Earth's carbon cycle. However, wetland carbon cycling exhibits a high level of spatiotemporal dynamism, and thus, is not as well understood as carbon cycling in other ecosystems. In order to accurately characterize wetland carbon cycling and fluxes, wetland vegetation phenology, seasonal inundation dynamics, and tidal regimes must be understood as these factors influence carbon generation and transport. Here, we use radar remote sensing to map wetland properties in the Chesapeake Bay, the largest estuary in the United States with more than 1,500 square miles of tidal wetlands, across a range of tidal amplitudes, salinity regimes, and soil organic matter content levels. We have been using Sentinel-1 and ALOS PALSAR-1 radar measurements to characterize vegetation and seasonal inundation dynamics with the future goal of characterizing salinity gradients and tidal regimes. Differences in radar backscatter from various surface targets has been shown to effectively discriminate between dry soil, wet soil, vegetated areas, and open water. Radar polarization differences and ratios are particularly effective at distinguishing between vegetated and non-vegetated areas. Utilizing these principles, we have been characterizing wetland types using supervised classification techniques including: Random Forest, Maximum Likelihood, and Minimum Distance. The National Wetlands Inventory has been used as training and validation data. Ideally, the techniques we outline in this research will be applicable to the characterization of wetlands in coastal areas outside of Chesapeake Bay.
Estimates of bottom roughness length and bottom shear stress in South San Francisco Bay, California
Cheng, R.T.; Ling, C.-H.; Gartner, J.W.; Wang, P.-F.
1999-01-01
A field investigation of the hydrodynamics and the resuspension and transport of participate matter in a bottom boundary layer was carried out in South San Francisco Bay (South Bay), California, during March-April 1995. Using broadband acoustic Doppler current profilers, detailed measurements of turbulent mean velocity distribution within 1.5 m above bed have been obtained. A global method of data analysis was used for estimating bottom roughness length zo and bottom shear stress (or friction velocities u*). Field data have been examined by dividing the time series of velocity profiles into 24-hour periods and independently analyzing the velocity profile time series by flooding and ebbing periods. The global method of solution gives consistent properties of bottom roughness length zo and bottom shear stress values (or friction velocities u*) in South Bay. Estimated mean values of zo and u* for flooding and ebbing cycles are different. The differences in mean zo and u* are shown to be caused by tidal current flood-ebb inequality, rather than the flooding or ebbing of tidal currents. The bed shear stress correlates well with a reference velocity; the slope of the correlation defines a drag coefficient. Forty-three days of field data in South Bay show two regimes of zo (and drag coefficient) as a function of a reference velocity. When the mean velocity is >25-30 cm s-1, the ln zo (and thus the drag coefficient) is inversely proportional to the reference velocity. The cause for the reduction of roughness length is hypothesized as sediment erosion due to intensifying tidal currents thereby reducing bed roughness. When the mean velocity is <25-30 cm s-1, the correlation between zo and the reference velocity is less clear. A plausible explanation of scattered values of zo under this condition may be sediment deposition. Measured sediment data were inadequate to support this hypothesis, but the proposed hypothesis warrants further field investigation.
Tidal river dynamics: Implications for deltas
NASA Astrophysics Data System (ADS)
Hoitink, A. J. F.; Jay, D. A.
2016-03-01
Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity intrusion, a realm that can extend inland hundreds of kilometers. One key phenomenon resulting from this interaction is the emergence of large fortnightly tides, which are forced long waves with amplitudes that may increase beyond the point where astronomical tides have become extinct. These can be larger than the linear tide itself at more landward locations, and they greatly influence tidal river water levels and wetland inundation. Exploration of the spectral redistribution and attenuation of tidal energy in rivers has led to new appreciation of a wide range of consequences for fluvial and coastal sedimentology, delta evolution, wetland conservation, and salinity intrusion under the influence of sea level rise and delta subsidence. Modern research aims at unifying traditional harmonic tidal analysis, nonparametric regression techniques, and the existing understanding of tidal hydrodynamics to better predict and model tidal river dynamics both in single-thread channels and in branching channel networks. In this context, this review summarizes results from field observations and modeling studies set in tidal river environments as diverse as the Amazon in Brazil, the Columbia, Fraser and Saint Lawrence in North America, the Yangtze and Pearl in China, and the Berau and Mahakam in Indonesia. A description of state-of-the-art methods for a comprehensive analysis of water levels, wave propagation, discharges, and inundation extent in tidal rivers is provided. Implications for lowland river deltas are also discussed in terms of sedimentary deposits, channel bifurcation, avulsion, and salinity intrusion, addressing contemporary research challenges.
The Effect of Waves on the Tidal-Stream Energy Resource
NASA Astrophysics Data System (ADS)
Lewis, M. J.; Neill, S. P.; Robins, P. E.; Hashemi, M. R.
2016-02-01
The tidal-stream energy resource is typically estimated using depth-averaged "tide-only" hydrodynamic models and do not consider the influence of waves. We find that waves will reduce the available resource, and the wave climate needs to be considered when designing a resilient and efficient tidal-stream energy device. Using well-validated oceanographic models of the Irish Sea and Northwest European shelf, we show tidal-stream energy sites with quiescent wave climates are extremely limited, with limited sea-space and limited scope for future development. To fully realise the potential of tidal-stream energy and to ensure globally deployable devices, the influence of waves on the resource and turbines must be considered. The effect of waves upon the tidal current was investigated using observations (ADCP and wave buoy time-series), and a state-of-the-art, 3-dimensional, dynamically coupled wave-tide model (COAWST). The presence of waves reduced the depth-averaged tidal current, which reduced the potential extractable power by 10% per metre wave height increase. To ensure resilience and survivability, tidal-stream energy device may cease to produce electricity during extremes (often called downtime), however the wave conditions threshold for device shut-down is unknown, and requires future work. The presence of waves will also effect turbine performance and design criteria; for example, the presence of waves was found to alter the shape of the velocity profile, and wave-current misalignment (waves propagating at an angle oblique to the plane of tidal flow) was found to occur for a significant amount of time at many potential tidal-stream energy sites. Therefore, waves reduced the available resource, furthermore the influence of waves on the interaction between tidal energy devices and the tidal-stream resource needs to be characterised in physically-scaled tank experiments and computational fluid dynamics (CFD) numerical models.
A new algorithm for modeling friction in dynamic mechanical systems
NASA Technical Reports Server (NTRS)
Hill, R. E.
1988-01-01
A method of modeling friction forces that impede the motion of parts of dynamic mechanical systems is described. Conventional methods in which the friction effect is assumed a constant force, or torque, in a direction opposite to the relative motion, are applicable only to those cases where applied forces are large in comparison to the friction, and where there is little interest in system behavior close to the times of transitions through zero velocity. An algorithm is described that provides accurate determination of friction forces over a wide range of applied force and velocity conditions. The method avoids the simulation errors resulting from a finite integration interval used in connection with a conventional friction model, as is the case in many digital computer-based simulations. The algorithm incorporates a predictive calculation based on initial conditions of motion, externally applied forces, inertia, and integration step size. The predictive calculation in connection with an external integration process provides an accurate determination of both static and Coulomb friction forces and resulting motions in dynamic simulations. Accuracy of the results is improved over that obtained with conventional methods and a relatively large integration step size is permitted. A function block for incorporation in a specific simulation program is described. The general form of the algorithm facilitates implementation with various programming languages such as FORTRAN or C, as well as with other simulation programs.
Perception and Haptic Rendering of Friction Moments.
Kawasaki, H; Ohtuka, Y; Koide, S; Mouri, T
2011-01-01
This paper considers moments due to friction forces on the human fingertip. A computational technique called the friction moment arc method is presented. The method computes the static and/or dynamic friction moment independent of a friction force calculation. In addition, a new finger holder to display friction moment is presented. This device incorporates a small brushless motor and disk, and connects the human's finger to an interface finger of the five-fingered haptic interface robot HIRO II. Subjects' perception of friction moment while wearing the finger holder, as well as perceptions during object manipulation in a virtual reality environment, were evaluated experimentally.
Tidal disruption of fuzzy dark matter subhalo cores
NASA Astrophysics Data System (ADS)
Du, Xiaolong; Schwabe, Bodo; Niemeyer, Jens C.; Bürger, David
2018-03-01
We study tidal stripping of fuzzy dark matter (FDM) subhalo cores using simulations of the Schrödinger-Poisson equations and analyze the dynamics of tidal disruption, highlighting the differences with standard cold dark matter. Mass loss outside of the tidal radius forces the core to relax into a less compact configuration, lowering the tidal radius. As the characteristic radius of a solitonic core scales inversely with its mass, tidal stripping results in a runaway effect and rapid tidal disruption of the core once its central density drops below 4.5 times the average density of the host within the orbital radius. Additionally, we find that the core is deformed into a tidally locked ellipsoid with increasing eccentricities until it is completely disrupted. Using the core mass loss rate, we compute the minimum mass of cores that can survive several orbits for different FDM particle masses and compare it with observed masses of satellite galaxies in the Milky Way.
Dispersion in tidally averaged transport equation
Cheng, R.T.; Casulli, V.
1992-01-01
A general governing inter-tidal transport equation for conservative solutes has been derived without invoking the weakly nonlinear approximation. The governing inter-tidal transport equation is a convection-dispersion equation in which the convective velocity is a mean Lagrangian residual current, and the inter-tidal dispersion coefficient is defined by a dispersion patch. When the weakly nonlinear condition is violated, the physical significance of the Stokes' drift, as used in tidal dynamics, becomes questionable. For nonlinear problems, analytical solutions for the mean Lagrangian residual current and for the inter-tidal dispersion coefficient do not exist, they must be determined numerically. A rectangular tidal inlet with a constriction is used in the first example. The solutions of the residual currents and the computed properties of the inter-tidal dispersion coefficient are used to illuminate the mechanisms of the inter-tidal transport processes. Then, the present formulation is tested in a geometrically complex tidal estuary – San Francisco Bay, California. The computed inter-tidal dispersion coefficients are in the range between 5×104 and 5×106 cm2/sec., which are consistent with the values reported in the literature
Scanning-electron-microscope used in real-time study of friction and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1975-01-01
Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.
Compact configurations within small evolving groups of galaxies
NASA Astrophysics Data System (ADS)
Mamon, G. A.
Small virialized groups of galaxies are evolved with a gravitational N-body code, where the galaxies and a diffuse background are treated as single particles, but with mass and luminosity profiles attached, which enbles the estimation of parameters such as internal energies, half-mass radii, and the softened potential energies of interaction. The numerical treatment includes mergers, collisional stripping, tidal limitation by the mean-field of the background (evaluated using a combination of instantaneous and impulsive formulations), galaxy heating from collisons, and background heating from dynamical friction. The groups start out either as dense as appear the groups in Hickson's (1982) catalog, or as loose as appear those in Turner and Gott's (1976a) catalog, and they are simulated many times (usually 20) with different initial positions and velocities. Dense groups of galaxies with massive dark haloes coalesce into a single galaxy and lose their compact group appearance in approximately 3 group half-mass crossing times, while dense groups of galaxies without massive haloes survive the merger instability for 15 half-mass crossing times (in a more massive background to keep the same total group mass).
Substructure of fuzzy dark matter haloes
NASA Astrophysics Data System (ADS)
Du, Xiaolong; Behrens, Christoph; Niemeyer, Jens C.
2017-02-01
We derive the halo mass function (HMF) for fuzzy dark matter (FDM) by solving the excursion set problem explicitly with a mass-dependent barrier function, which has not been done before. We find that compared to the naive approach of the Sheth-Tormen HMF for FDM, our approach has a higher cutoff mass and the cutoff mass changes less strongly with redshifts. Using merger trees constructed with a modified version of the Lacey & Cole formalism that accounts for suppressed small-scale power and the scale-dependent growth of FDM haloes and the semi-analytic GALACTICUS code, we study the statistics of halo substructure including the effects from dynamical friction and tidal stripping. We find that if the dark matter is a mixture of cold dark matter (CDM) and FDM, there will be a suppression on the halo substructure on small scales which may be able to solve the missing satellites problem faced by the pure CDM model. The suppression becomes stronger with increasing FDM fraction or decreasing FDM mass. Thus, it may be used to constrain the FDM model.
NASA Astrophysics Data System (ADS)
McLachlan, R. L.; Ogston, A. S.; Allison, M. A.
2017-09-01
River gauging stations are often located upriver of tidal propagation where sediment transport processes and storage are impacted by widely varying ratios of marine to freshwater influence. These impacts are not yet thoroughly understood. Therefore, sediment fluxes measured at these stations may not be suitable for predicting changes to coastal morphology. To characterize sediment transport dynamics in this understudied zone, flow velocity, salinity, and suspended-sediment properties (concentration, size, and settling velocity) were measured within the tidal Sông Hậu distributary of the lower Mekong River, Vietnam. Fine-sediment aggregation, settling, and trapping rates were promoted by seasonal and tidal fluctuations in near-bed shear stress as well as the intermittent presence of a salt wedge and estuary turbidity maximum. Beginning in the tidal river, fine-grained particles were aggregated in freshwater. Then, in the interface zone between the tidal river and estuary, impeded near-bed shear stress and particle flux convergence promoted settling and trapping. Finally, in the estuary, sediment retention was further encouraged by stratification and estuarine circulation which protected the bed against particle resuspension and enhanced particle aggregation. These patterns promote mud export ( 1.7 t s-1) from the entire study area in the high-discharge season when fluvial processes dominate and mud import ( 0.25 t s-1) into the estuary and interface zone in the low-discharge season when estuarine processes dominate. Within the lower region of the distributaries, morphological change in the form of channel abandonment was found to be promoted within minor distributaries by feedbacks between channel depth, vertical mixing, and aggregate trapping. In effect, this field study sheds light on the sediment trapping capabilities of the tidal river - estuary interface zone, a relatively understudied region upstream of where traditional concepts place sites of deposition, and predicts how fine-sediment dynamics and morphology of large tropical deltas such as the Mekong will respond to changing fluvial and marine influences in the future.
Seasonal variations in suspended-sediment dynamics in the tidal reach of an estuarine tributary
Downing-Kunz, Maureen A.; Schoellhamer, David H.
2013-01-01
Quantifying sediment supply from estuarine tributaries is an important component of developing a sediment budget, and common techniques for estimating supply are based on gages located above tidal influence. However, tidal interactions near tributary mouths can affect the magnitude and direction of sediment supply to the open waters of the estuary. We investigated suspended-sediment dynamics in the tidal reach of Corte Madera Creek, an estuarine tributary of San Francisco Bay, using moored acoustic and optical instruments. Flux of both water and suspended-sediment were calculated from observed water velocity and turbidity for two periods in each of wet and dry seasons during 2010. During wet periods, net suspended-sediment flux was seaward; tidally filtered flux was dominated by the advective component. In contrast, during dry periods, net flux was landward; tidally filtered flux was dominated by the dispersive component. The mechanisms generating this landward flux varied; during summer we attributed wind–wave resuspension in the estuary and subsequent transport on flood tides, whereas during autumn we attributed increased spring tide flood velocity magnitude leading to local resuspension. A quadrant analysis similar to that employed in turbulence studies was developed to summarize flux time series by quantifying the relative importance of sediment transport events. These events are categorized by the direction of velocity (flood vs. ebb) and the magnitude of concentration relative to tidally averaged conditions (relatively turbid vs. relatively clear). During wet periods, suspended-sediment flux was greatest in magnitude during relatively turbid ebbs, whereas during dry periods it was greatest in magnitude during relatively turbid floods. A conceptual model was developed to generalize seasonal differences in suspended-sediment dynamics; model application to this study demonstrated the importance of few, relatively large events on net suspended-sediment flux. These results suggest that other estuarine tributaries may alternate seasonally as sediment sinks or sources, leading to the conclusion that calculations of estuary sediment supply from local tributaries that do not account for tidal reaches may be overestimates.
Reaction wheel low-speed compensation using a dither signal
NASA Astrophysics Data System (ADS)
Stetson, John B., Jr.
1993-08-01
A method for improving low-speed reaction wheel performance on a three-axis controlled spacecraft is presented. The method combines a constant amplitude offset with an unbiased, oscillating dither to harmonically linearize rolling solid friction dynamics. The complete, nonlinear rolling solid friction dynamics using an analytic modification to the experimentally verified Dahl solid friction model were analyzed using the dual-input describing function method to assess the benefits of dither compensation. The modified analytic solid friction model was experimentally verified with a small dc servomotor actuated reaction wheel assembly. Using dither compensation abrupt static friction disturbances are eliminated and near linear behavior through zero rate can be achieved. Simulated vehicle response to a wheel rate reversal shows that when the dither and offset compensation is used, elastic modes are not significantly excited, and the uncompensated attitude error reduces by 34:1.
NASA Astrophysics Data System (ADS)
Claeys, M.; Sinou, J.-J.; Lambelin, J.-P.; Todeschini, R.
2016-08-01
The nonlinear vibration response of an assembly with friction joints - named "Harmony" - is studied both experimentally and numerically. The experimental results exhibit a softening effect and an increase of dissipation with excitation level. Modal interactions due to friction are also evidenced. The numerical methodology proposed groups together well-known structural dynamic methods, including finite elements, substructuring, Harmonic Balance and continuation methods. On the one hand, the application of this methodology proves its capacity to treat a complex system where several friction movements occur at the same time. On the other hand, the main contribution of this paper is the experimental and numerical study of evidence of modal interactions due to friction. The simulation methodology succeeds in reproducing complex form of dynamic behavior such as these modal interactions.
In-Vivo Human Skin to Textiles Friction Measurements
NASA Astrophysics Data System (ADS)
Pfarr, Lukas; Zagar, Bernhard
2017-10-01
We report on a measurement system to determine highly reliable and accurate friction properties of textiles as needed for example as input to garment simulation software. Our investigations led to a set-up that allows to characterize not just textile to textile but also textile to in-vivo human skin tribological properties and thus to fundamental knowledge about genuine wearer interaction in garments. The method of test conveyed in this paper is measuring concurrently and in a highly time resolved manner the normal force as well as the resulting shear force caused by a friction subject intending to slide out of the static friction regime and into the dynamic regime on a test bench. Deeper analysis of various influences is enabled by extending the simple model following Coulomb's law for rigid body friction to include further essential parameters such as contact force, predominance in the yarn's orientation and also skin hydration. This easy-to-use system enables to measure reliably and reproducibly both static and dynamic friction for a variety of friction partners including human skin with all its variability there might be.
Resonant Tidal Excitation of Internal Waves in the Earth's Fluid Core
NASA Technical Reports Server (NTRS)
Tyler, Robert H.; Kuang, Weijia
2014-01-01
It has long been speculated that there is a stably stratified layer below the core-mantle boundary, and two recent studies have improved the constraints on the parameters describing this stratification. Here we consider the dynamical implications of this layer using a simplified model. We first show that the stratification in this surface layer has sensitive control over the rate at which tidal energy is transferred to the core. We then show that when the stratification parameters from the recent studies are used in this model, a resonant configuration arrives whereby tidal forces perform elevated rates of work in exciting core flow. Specifically, the internal wave speed derived from the two independent studies (150 and 155 m/s) are in remarkable agreement with the speed (152 m/s) required for excitation of the primary normal mode of oscillation as calculated from full solutions of the Laplace Tidal Equations applied to a reduced-gravity idealized model representing the stratified layer. In evaluating this agreement it is noteworthy that the idealized model assumed may be regarded as the most reduced representation of the stratified dynamics of the layer, in that there are no non-essential dynamical terms in the governing equations assumed. While it is certainly possible that a more realistic treatment may require additional dynamical terms or coupling, it is also clear that this reduced representation includes no freedom for coercing the correlation described. This suggests that one must accept either (1) that tidal forces resonantly excite core flow and this is predicted by a simple model or (2) that either the independent estimates or the dynamical model does not accurately portray the core surface layer and there has simply been an unlikely coincidence between three estimates of a stratification parameter which would otherwise have a broad plausible range.
Effects of friction on forced two-dimensional Navier-Stokes turbulence.
Blackbourn, Luke A K; Tran, Chuong V
2011-10-01
Large-scale dissipation mechanisms have been routinely employed in numerical simulations of two-dimensional turbulence to absorb energy at large scales, presumably mimicking the quasisteady picture of Kraichnan in an unbounded fluid. Here, "side effects" of such a mechanism--mechanical friction--on the small-scale dynamics of forced two-dimensional Navier-Stokes turbulence are elaborated by both theoretical and numerical analysis. Given a positive friction coefficient α, viscous dissipation of enstrophy has been known to vanish in the inviscid limit ν→0. This effectively renders the scale-neutral friction the only mechanism responsible for enstrophy dissipation in that limit. The resulting dynamical picture is that the classical enstrophy inertial range becomes a dissipation range in which the dissipation of enstrophy by friction mainly occurs. For each α>0, there exists a critical viscosity ν(c), which depends on physical parameters, separating the regimes of predominant viscous and frictional dissipation of enstrophy. It is found that ν(c)=[η'(1/3)/(Ck(f)(2))]exp[-η'(1/3)/(Cα)], where η' is half the enstrophy injection rate, k(f) is the forcing wave number, and C is a nondimensional constant (the Kraichnan-Batchelor constant). The present results have important theoretical and practical implications. Apparently, mechanical friction is a poor choice in numerical attempts to address fundamental issues concerning the direct enstrophy transfer in two-dimensional Navier-Stokes turbulence. Furthermore, as relatively strong friction naturally occurs on the surfaces and at lateral boundaries of experimental fluids as well as at the interfaces of shallow layers in geophysical fluid models, the frictional effects discussed in this study are crucial in understanding the dynamics of these systems.
Dynamics of static friction between steel and silicon
Yang, Zhiping; Zhang, H. P.; Marder, M.
2008-01-01
We conducted experiments in which steel and silicon or quartz are clamped together. Even with the smallest tangential forces we could apply, we always found reproducible sliding motions on the nanometer scale. The velocities we study are thousands of times smaller than in previous investigations. The samples first slide and then lock up even when external forces hold steady. One might call the result “slip-stick” friction. We account for the results with a phenomenological theory that results from considering the rate and state theory of dynamic friction at low velocities. Our measurements lead us to set the instantaneous coefficient of static friction that normally enters rate and state theories to zero. PMID:18768792
Suwa, N; Watari, F; Yamagata, S; Iida, J; Kobayashi, M
2003-11-15
A new testing apparatus for the measurement of frictional properties was designed and the frictional coefficients were obtained and compared with each other in various combinations of brackets and orthodontic wires, including esthetic fiber-reinforced plastic (FRP) wire that was especially designed and manufactured. Three kinds of wires (stainless steel, nickel-titanium, and FRP) and four brackets (single-crystal alumina, polycrystalline alumina, polycarbonate, and stainless steel) were used. The testing was done under dry and wet conditions. The friction testing equipment was designed to attach the bracket to a C-shaped bar suspended with a variable mass, and sliding along a fixed wire. The transition between static and dynamic friction was measured as a breakaway force, with the use of a universal test machine. In addition to material properties, this testing fixture eliminates geometrical factors, such as the rotational moment at the edge of the bracket slot, deflection of the orthodontic wire, and tension of the ligature wire. Nearly ideal frictional properties between materials are obtained. The frictional properties of FRP wire were similar to those of metal wires on all brackets, except the polycrystalline alumina bracket. The frictional coefficient between the polycrystalline ceramic bracket and FRP wire was larger than that of other combinations. There was little difference in frictional coefficients between dry and wet conditions. Copyright 2003 Wiley Periodicals, Inc.
Study of Nanoscale Friction Behaviors of Graphene on Gold Substrates Using Molecular Dynamics
NASA Astrophysics Data System (ADS)
Zhu, Pengzhe; Li, Rui
2018-02-01
In this paper, we investigate the friction behaviors of graphene flakes sliding on a gold substrate using molecular dynamics simulations. The effects of flake size, flake shape, relative rotation angle between flake and substrate, and crystal orientation of substrate on the friction process are thoroughly studied. It is found that under the same load, the average friction forces per atom are smaller for a bigger graphene flake, which exhibits an obvious size effect. It is also shown that flake shape is critical in determining the friction in the sliding process. The average friction forces per atom for the square flake are much bigger than those for the triangular and round flakes. Moreover, the average friction forces per atom for the triangular flake are the smallest. We also find that the orientation of graphene flake relative to gold substrate plays a vital role in the friction process. The friction forces for the graphene flake sliding along the armchair direction are much bigger than those for the flakes with rotation. In addition, it is also found that single crystalline gold substrate exhibits a significant anisotropic effect of friction, which is attributed to the anisotropic effect of potential energy corrugation. These understandings not only shed light on the underlying mechanisms of graphene flake sliding on the gold substrates but also may guide the design and fabrication of nanoscale graphene-based devices.
Cheng, Ryan R; Hawk, Alexander T; Makarov, Dmitrii E
2013-02-21
Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.
NASA Astrophysics Data System (ADS)
Ryan, K. J.; Geist, E. L.; Oglesby, D. D.; Kyriakopoulos, C.
2016-12-01
Motivated by the 2011 Mw 9 Tohoku-Oki event, we explore the effects of realistic fault dynamics on slip, free surface deformation, and the resulting tsunami generation and local propagation from a hypothetical Mw 9 megathrust earthquake along the Alaskan-Aleutian (A-A) Megathrust. We demonstrate three scenarios: a spatially-homogenous prestress and frictional parameter model and two models with rate-strengthening-like friction (e.g., Dieterich, 1992). We use a dynamic finite element code to model 3-D ruptures, using time-weakening friction (Andrews, 2004) as a proxy for rate-strengthening friction, along a portion of the A-A subduction zone. Given geometric, material, and plate-coupling data along the A-A megathrust assembled from the Science Application for Risk Reduction (SAFRR) team (e.g., Bruns et al., 1987; Hayes et al., 2012; Johnson et al., 2004; Santini et al., 2003; Wells at al., 2003), we are able to dynamically model rupture. Adding frictional-strengthening to a region of the fault reduces both average slip and free surface displacement above the strengthening zone, with the magnitude of the reductions depending on the strengthening zone location. Corresponding tsunami models, which use a finite difference method to solve the long-wave equations (e.g., Liu et al., 1995; Satake, 2002; Shuto, 1991), match sea floor displacement, in time, to the free surface displacement from the rupture models. Tsunami models show changes in local peak amplitudes and beaming patterns for each slip distribution. Given these results, other heterogeneous parameterizations, with respect to prestress and friction, still need to be examined. Additionally, a more realistic fault geometry will likely affect the rupture dynamics. Thus, future work will incorporate stochastic stress and friction distributions as well as a more complex fault geometry based on Slab 1.0 (Hayes et al., 2012).
Sensitivity of grounding line dynamics to basal conditions
NASA Astrophysics Data System (ADS)
Gagliardini, O.; Brondex, J.; Chauveau, G.; Gillet-chaulet, F.; Durand, G.
2017-12-01
In the context of a warming climate, the dynamical contribution of Antarctica to future sea level rise is still tainted by high uncertainties. Among the processes entering these uncertainties is the link between basal hydrology, friction and grounding line dynamics. Recent works have shown how sensitive is the response of the grounding line retreat to the choice of the form of the friction law. Indeed, starting from the same initial state, grounding line retreat rates can range over almost two orders of magnitude depending on the friction law formulation.Here, we use a phenomenological law that depends on the water pressure and allows a continuous transition from a Weertman-type friction at low water pressure to a Coulomb-type friction at high water pressure. This friction law depends on two main parameters that control the Weertman and Coulomb regimes. The range of values for these two parameters is only weakly physically constrained, and it can be shown that, for a given basal shear stress, different couples of parameters can conduct to the same sliding velocity. In addition, we show that close to the grounding line where basal water pressure is high, determining these two parameters might conduct to an ill-posed inverse problem with no solution.The aim of this presentation is to discuss a methodology to guide the choice of the two friction parameters and explore the sensitivity of the grounding line dynamics to this initial choice. We present results obtained both on a synthetic configuration used by the Marine Ice Sheet Model Intercomparison exercise and for the Amundsen sea sector using the experiments proposed by InitMIP-Antarctica, the first exercise in a series of ISMIP6 ice-sheet model intercomparison activities.
2011-09-30
McGlathery, J.T. Morris, T.J. Tolhurst, L.A. Deegan , D.S. Johnson, Ecogeomorphology of Salt Marshes (in press) Fagherazzi S., D.M. FitzGerald, R.W...Fulweiler, Z. Hughes, P.L. Wiberg, K.J. McGlathery, J.T. Morris, T.J. Tolhurst, L.A. Deegan , D.S. Johnson, Ecogeomorphology of Tidal Flats (in press
NASA Astrophysics Data System (ADS)
Kerr, P. C.; Donahue, A. S.; Westerink, J. J.; Luettich, R. A.; Zheng, L. Y.; Weisberg, R. H.; Huang, Y.; Wang, H. V.; Teng, Y.; Forrest, D. R.; Roland, A.; Haase, A. T.; Kramer, A. W.; Taylor, A. A.; Rhome, J. R.; Feyen, J. C.; Signell, R. P.; Hanson, J. L.; Hope, M. E.; Estes, R. M.; Dominguez, R. A.; Dunbar, R. P.; Semeraro, L. N.; Westerink, H. J.; Kennedy, A. B.; Smith, J. M.; Powell, M. D.; Cardone, V. J.; Cox, A. T.
2013-10-01
A Gulf of Mexico performance evaluation and comparison of coastal circulation and wave models was executed through harmonic analyses of tidal simulations, hindcasts of Hurricane Ike (2008) and Rita (2005), and a benchmarking study. Three unstructured coastal circulation models (ADCIRC, FVCOM, and SELFE) validated with similar skill on a new common Gulf scale mesh (ULLR) with identical frictional parameterization and forcing for the tidal validation and hurricane hindcasts. Coupled circulation and wave models, SWAN+ADCIRC and WWMII+SELFE, along with FVCOM loosely coupled with SWAN, also validated with similar skill. NOAA's official operational forecast storm surge model (SLOSH) was implemented on local and Gulf scale meshes with the same wind stress and pressure forcing used by the unstructured models for hindcasts of Ike and Rita. SLOSH's local meshes failed to capture regional processes such as Ike's forerunner and the results from the Gulf scale mesh further suggest shortcomings may be due to a combination of poor mesh resolution, missing internal physics such as tides and nonlinear advection, and SLOSH's internal frictional parameterization. In addition, these models were benchmarked to assess and compare execution speed and scalability for a prototypical operational simulation. It was apparent that a higher number of computational cores are needed for the unstructured models to meet similar operational implementation requirements to SLOSH, and that some of them could benefit from improved parallelization and faster execution speed.
Spatially varying drag within a wave-exposed mangrove forest and on the adjacent tidal flat
NASA Astrophysics Data System (ADS)
Mullarney, Julia C.; Henderson, Stephen M.; Reyns, Johan A. H.; Norris, Benjamin K.; Bryan, Karin R.
2017-09-01
Mangroves have been shown to protect shorelines against damage from the combined hydrodynamic forces of waves and tides, owing to the presence of roots (pneumatophores) and tree trunks that enhance vegetative drag. However, field measurements within these environments are limited. We present field observations of flows from the seaward coast of Cù Lao Dung Island (Sóc Trăng Province) in the Mekong Delta, Vietnam. Measurements were made in two different seasons along a transect that crosses from mudflats to mangrove forest. Flows are also explored using an idealised numerical model. Both the data and model capture the flow transitions from mudflat across the fringing region to the forest interior. We observe a rotation of the obliquely incident flows toward an orientation nearly perpendicular to the vegetated/unvegetated boundary. The momentum balances governing the large-scale flow are assessed and indicate the relative importance of friction, winds and depth-averaged pressure forces. In the forest, drag coefficients were 10-30 times greater than values usually observed for bottom friction, with particularly effective friction in the regions of dense pneumatophores at the fringe and when water depths were lower than the height of the pneumatophores. Pressure gradient balances suggest that the drag induced by bottom friction from pneumatophores was dominant relative to drag from the larger, but sparser, tree trunks.
Quasi-dynamic earthquake fault systems with rheological heterogeneity
NASA Astrophysics Data System (ADS)
Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.
2009-12-01
Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.
NASA Astrophysics Data System (ADS)
Cao, Liang; Downey, Austin; Laflamme, Simon; Taylor, Douglas; Ricles, James
2015-07-01
Supplemental damping can be used as a cost-effective method to reduce structural vibrations. In particular, passive systems are now widely accepted and have numerous applications in the field. However, they are typically tuned to specific excitations and their performances are bandwidth-limited. A solution is to use semi-active devices, which have shown to be capable of substantially enhanced mitigation performance. The authors have recently proposed a new type of semi-active device, which consists of a variable friction mechanism based on a vehicle duo-servo drum brake, a mechanically robust and reliable technology. The theoretical performance of the proposed device has been previously demonstrated via numerical simulations. In this paper, we further the understanding of the device, termed Modified Friction Device (MFD) by fabricating a small scale prototype and characterizing its dynamic behavior. While the dynamics of friction is well understood for automotive braking technology, we investigate for the first time the dynamic behavior of this friction mechanism at low displacements and velocities, in both forward and backward directions, under various hydraulic pressures. A modified 3-stage dynamic model is introduced. A LuGre friction model is used to characterize the friction zone (Stage 1), and two pure stiffness regions to characterize the dynamics of the MFD once the rotation is reversed and the braking shoes are sticking to the drum (Stage 2) and the rapid build up of forces once the shoes are held by the anchor pin (Stage 3). The proposed model is identified experimentally by subjecting the prototype to harmonic excitations. It is found that the proposed model can be used to characterize the dynamics of the MFD, and that the largest fitting error arises at low velocity under low pressure input. The model is then verified by subjecting the MFD to two different earthquake excitations under different pressure inputs. The model is capable of tracking the device's response, despite a lower fitting performance under low pressure and small force output, as it was found in the harmonic tests due to the possible nonlinearity in Stage 2 of the model.
Jahani, Nariman; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A.
2015-01-01
This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R2 ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. PMID:26316512
Dynamical turbulent flow on the Galton board with friction.
Chepelianskii, A D; Shepelyansky, D L
2001-07-16
We study numerically and analytically the dynamics of charged particles on the Galton board, a regular lattice of disk scatters, in the presence of constant external force, magnetic field, and friction. It is shown that under certain conditions friction leads to the appearance of a strange chaotic attractor. In this regime the average velocity and direction of particle flow can be effectively affected by electric and magnetic fields. We discuss the applications of these results to the charge transport in antidot superlattices and the stream of suspended particles in a viscous flow through scatters.
1986-03-31
Martins, J.A.C. and Campos , L.T. [1986], "Existence and Local Uniqueness of Solutions to Contact Problems in Elasticity with Nonlinear Friction...noisy and ttoubl esome vibt.t4ons. If the sound generated by the friction-induced oscillations of Rviolin strings may be the delight of all music lovers...formulation. See 0den and Martins - [1985] and Rabier, Martins, Oden and Campos [1986]. - It is now simple to show, in a 6o’uman manner, that, for
Dynamics of hydrated mucopolysaccharides in cartilaginous tissues treated by laser radiation
NASA Astrophysics Data System (ADS)
Omelchenko, Alexander I.; Sobol, Emil N.; Ignatieva, Natalia Y.; Lunin, Valerii V.; Jumel, Kornelia; Harding, Stephen E.; Jones, Nicholas
2001-05-01
Dynamic mechanical properties of hydrated mucopolysaccharides have been studied in heated solutions by means of molecular hydrodynamic and acoustic techniques. These experiments model the thermal condition used for laser reshaping of cartilage. It has been shown that elastic modulus and internal friction depends on concentration of chondroitine sulphate in the solution and temperature. Maximum of internal friction was revealed at about 40 degree(s)C that corresponds to temperature of breakdown of hydrophobic bonds. Temperature dependence of internal friction manifests structural changes in polysaccharides molecules under laser heating.
A dynamic unilateral contact problem with adhesion and friction in viscoelasticity
NASA Astrophysics Data System (ADS)
Cocou, Marius; Schryve, Mathieu; Raous, Michel
2010-08-01
The aim of this paper is to study an interaction law coupling recoverable adhesion, friction and unilateral contact between two viscoelastic bodies of Kelvin-Voigt type. A dynamic contact problem with adhesion and nonlocal friction is considered and its variational formulation is written as the coupling between an implicit variational inequality and a parabolic variational inequality describing the evolution of the intensity of adhesion. The existence and approximation of variational solutions are analysed, based on a penalty method, some abstract results and compactness properties. Finally, some numerical examples are presented.
Solving the BM Camelopardalis puzzle
NASA Technical Reports Server (NTRS)
Teke, Mathias; Busby, Michael R.; Hall, Douglas S.
1989-01-01
BM Camelopardalis (=12 Cam) is a chromospherically active binary star with a relatively large orbital eccentricity. Systems with large eccentricities usually rotate pseudosynchronously. However, BM Cam has been a puzzle since its observed rotation rate is virtually equal to its orbital period indicating synchronization. All available photometry data for BM Cam have been collected and analyzed. Two models of modulated ellipticity effect are proposed, one based on equilibrium tidal deformation of the primary star and the other on a dynamical tidal effect. When the starspot variability is removed from the data, the dynamical tidal model was the better approximation to the real physical situation. The analysis indicates that BM Cam is not rotating pseudosynchronously but rotating in virtual synchronism after all.
Flocculation and sediment deposition in a hypertidal creek
NASA Astrophysics Data System (ADS)
O'Laughlin, C.; van Proosdij, D.; Milligan, T. G.
2014-07-01
In the hypertidal Bay of Fundy, environmental impacts in response to commercial-scale tidal power development remain to be fully understood. The extraction of tidal energy may impact sediment dynamics in far-field environments, such as the intertidal zone, through potential alterations to tidal amplitude in the Minas Basin. Tidal conditions (e.g. current velocity, turbulence, suspended sediment concentration) were monitored in a sheltered salt marsh creek over 18 tidal cycles in various stages of the spring-neap cycle. Samples of deposited and suspended sediments were collected and analyzed for grain size using a Beckman Coulter Multisizer III. Results suggest that the flocculated component of both deposited and suspended sediment is consistently high over a wide range of tidal conditions. A routinely high incoming concentration of highly-flocculated material results in large amounts of sediment deposition in tidal creeks in response to individual tidal cycles. Resuspension and removal of newly deposited material is shown to vary with over-marsh, bankfull and channel-restricted tides. Disruption of the tidal regime due to a reduction in Minas Basin tidal amplitude may lessen the cumulative export capacity of tidal channels over time, potentially leading to gradual infilling of tidal creeks. The long-term effects of tidal power development on intertidal areas are generally unknown.
ATMOSPHERIC CIRCULATION OF HOT JUPITERS: DAYSIDE–NIGHTSIDE TEMPERATURE DIFFERENCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komacek, Thaddeus D.; Showman, Adam P., E-mail: tkomacek@lpl.arizona.edu
The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperaturemore » differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.« less
The coefficient of friction, particularly of ice
NASA Astrophysics Data System (ADS)
Mills, Allan
2008-07-01
The static and dynamic coefficients of friction are defined, and values from 0.3 to 0.6 are quoted for common materials. These drop to about 0.15 when oil is added as a lubricant. Water ice at temperatures not far below 0 °C is remarkable for low coefficients of around 0.05 for static friction and 0.04-0.02 for dynamic friction, but these figures increase as the temperature diminishes. Reasons for the slipperiness of ice are summarized, but they are still not entirely clear. One hypothesis suggests that it is related to the transient formation of a lubricating film of liquid water produced by frictional heating. If this is the case, some composition melting a little above ambient temperatures might provide a skating rink that did not require expensive refrigeration. Various compositions have been tested, but an entirely satisfactory material has yet to be found.
The frequency response of dynamic friction: Enhanced rate-and-state models
NASA Astrophysics Data System (ADS)
Cabboi, A.; Putelat, T.; Woodhouse, J.
2016-07-01
The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10-50 N), of sliding speeds (1-10 mm/s) and frequencies (100-2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.
Tidal stripping as a test of satellite quenching in redMaPPer clusters
Fang, Yuedong; Clampitt, Joseph; Dalal, Neal; ...
2016-08-24
When dark matter haloes are accreted by massive host clusters, strong gravitational tidal forces begin stripping mass from the accreted subhaloes. This stripping eventually removes all mass beyond a subhalo's tidal radius, with unbound mass remaining in the vicinity of the satellite for at most a dynamical time tdyn. The N-body subhalo study of Chamberlain et al. verified this picture and pointed out a useful observational consequence: correlations between subhaloes beyond the tidal radius are sensitive to the infall time, tinfall, of the subhalo on to its host. We perform this correlation using ~160 000 red satellite galaxies in Sloanmore » Digital Sky Survey redMaPPer clusters and find evidence that subhalo correlations do persist well beyond the tidal radius, suggesting that many of the observed satellites fell into their current host less than a dynamical time ago, tinfall < tdyn. Combined with estimated dynamical times tdyn ~3–5 Gyr and SED fitting results for the time at which satellites stopped forming stars, tquench ~6 Gyr, we infer that for a significant fraction of the satellites, star formation quenched before those satellites entered their current hosts. Finally, the result holds for red satellites over a large range of cluster-centric distances 0.1–0.6 Mpc h –1. We discuss the implications of this result for models of galaxy formation.« less
Tidal stripping as a test of satellite quenching in redMaPPer clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Yuedong; Clampitt, Joseph; Dalal, Neal
When dark matter haloes are accreted by massive host clusters, strong gravitational tidal forces begin stripping mass from the accreted subhaloes. This stripping eventually removes all mass beyond a subhalo's tidal radius, with unbound mass remaining in the vicinity of the satellite for at most a dynamical time tdyn. The N-body subhalo study of Chamberlain et al. verified this picture and pointed out a useful observational consequence: correlations between subhaloes beyond the tidal radius are sensitive to the infall time, tinfall, of the subhalo on to its host. We perform this correlation using ~160 000 red satellite galaxies in Sloanmore » Digital Sky Survey redMaPPer clusters and find evidence that subhalo correlations do persist well beyond the tidal radius, suggesting that many of the observed satellites fell into their current host less than a dynamical time ago, tinfall < tdyn. Combined with estimated dynamical times tdyn ~3–5 Gyr and SED fitting results for the time at which satellites stopped forming stars, tquench ~6 Gyr, we infer that for a significant fraction of the satellites, star formation quenched before those satellites entered their current hosts. Finally, the result holds for red satellites over a large range of cluster-centric distances 0.1–0.6 Mpc h –1. We discuss the implications of this result for models of galaxy formation.« less
NASA Astrophysics Data System (ADS)
Yamada, M.; Mangeney, A.; Moretti, L.; Matsushi, Y.
2014-12-01
Understanding physical parameters, such as frictional coefficients, velocity change, and dynamic history, is important issue for assessing and managing the risks posed by deep-seated catastrophic landslides. Previously, landslide motion has been inferred qualitatively from topographic changes caused by the event, and occasionally from eyewitness reports. However, these conventional approaches are unable to evaluate source processes and dynamic parameters. In this study, we use broadband seismic recordings to trace the dynamic process of the deep-seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Based on the previous results of waveform inversions and precise topographic surveys done before and after the event, we applied numerical simulations using the SHALTOP numerical model (Mangeney et al., 2007). This model describes homogeneous continuous granular flows on a 3D topography based on a depth averaged thin layer approximation. We assume a Coulomb's friction law with a constant friction coefficient, i. e. the friction is independent of the sliding velocity. We varied the friction coefficients in the simulation so that the resulting force acting on the surface agrees with the single force estimated from the seismic waveform inversion. Figure shows the force history of the east-west components after the band-pass filtering between 10-100 seconds. The force history of the simulation with frictional coefficient 0.27 (thin red line) the best agrees with the result of seismic waveform inversion (thick gray line). Although the amplitude is slightly different, phases are coherent for the main three pulses. This is an evidence that the point-source approximation works reasonably well for this particular event. The friction coefficient during the sliding was estimated to be 0.38 based on the seismic waveform inversion performed by the previous study and on the sliding block model (Yamada et al., 2013), whereas the frictional coefficient estimated from the numerical simulation was about 0.27. This discrepancy may be due to the digital elevation model, to the other forces such as pressure gradients and centrifugal acceleration included in the model. However, quantitative interpretation of this difference requires further investigation.
The evolution of kicked stellar-mass black holes in star cluster environments
NASA Astrophysics Data System (ADS)
Webb, Jeremy J.; Leigh, Nathan W. C.; Singh, Abhishek; Ford, K. E. Saavik; McKernan, Barry; Bellovary, Jillian
2018-03-01
We consider how dynamical friction acts on black holes that receive a velocity kick while located at the centre of a gravitational potential, analogous to a star cluster, due to either a natal kick or the anisotropic emission of gravitational waves during a black hole-black hole merger. Our investigation specifically focuses on how well various Chandrasekhar-based dynamical friction models can predict the orbital decay of kicked black holes with mbh ≲ 100 M⊙ due to an inhomogeneous background stellar field. In general, the orbital evolution of a kicked black hole follows that of a damped oscillator where two-body encounters and dynamical friction serve as sources of damping. However, we find models for approximating the effects of dynamical friction do not accurately predict the amount of energy lost by the black hole if the initial kick velocity vk is greater than the stellar velocity dispersion σ. For all kick velocities, we also find that two-body encounters with nearby stars can cause the energy evolution of a kicked BH to stray significantly from standard dynamical friction theory as encounters can sometimes lead to an energy gain. For larger kick velocities, we find the orbital decay of a black hole departs from classical theory completely as the black hole's orbital amplitude decays linearly with time as opposed to exponentially. Therefore, we have developed a linear decay formalism, which scales linearly with black hole mass and v_k/σ in order to account for the variations in the local gravitational potential.
Emergence of a stellar cusp by a dark matter cusp in a low-mass compact ultrafaint dwarf galaxy
NASA Astrophysics Data System (ADS)
Inoue, Shigeki
2017-06-01
Recent observations have been discovering new ultrafaint dwarf galaxies as small as ˜20 pc in half-light radius and ˜3 km s-1 in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, I.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formula and N-body simulations to study how dynamical friction changes a stellar density profile and how different it is between a cuspy and a cored dark matter halo. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability that results in emergence of a stellar cusp in the central region ≲2 pc. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultrafaint dwarf galaxies.
NASA Astrophysics Data System (ADS)
Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.
2017-12-01
Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.
Strain-induced friction anisotropy between graphene and molecular liquids
NASA Astrophysics Data System (ADS)
Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent; Vo, Van-Hoang
2017-01-01
In this paper, we study the friction behavior of molecular liquids with anisotropically strained graphene. Due to the changes of lattice and the potential energy surface, the friction is orientation dependent and can be computed by tensorial Green-Kubo formula. Simple quantitative estimations are also proposed for the zero-time response and agree reasonably well with the molecular dynamics results. From simulations, we can obtain the information of structures, dynamics of the system, and study the influence of strain and molecular shapes on the anisotropy degree. It is found that unilateral strain can increase friction in all directions but the strain direction is privileged. Numerical evidences also show that nonspherical molecules are more sensitive to strain and give rise to more pronounced anisotropy effects.
Nonmonotonic Aging and Memory in a Frictional Interface
NASA Astrophysics Data System (ADS)
Dillavou, Sam; Rubinstein, Shmuel M.
2018-06-01
We measure the static frictional resistance and the real area of contact between two solid blocks subjected to a normal load. We show that following a two-step change in the normal load the system exhibits nonmonotonic aging and memory effects, two hallmarks of glassy dynamics. These dynamics are strongly influenced by the discrete geometry of the frictional interface, characterized by the attachment and detachment of unique microcontacts. The results are in good agreement with a theoretical model we propose that incorporates this geometry into the framework recently used to describe Kovacs-like relaxation in glasses as well as thermal disordered systems. These results indicate that a frictional interface is a glassy system and strengthen the notion that nonmonotonic relaxation behavior is generic in such systems.
Iverson, Richard M.
2016-01-01
Results from a highly idealized, 2-D computational model indicate that dynamic normal-stress rarefactions might cause friction reduction in long-runout landslides, but the physical relevance of the idealized dynamics has not been confirmed by experimental tests. More importantly, the model results provide no evidence that refutes alternative hypotheses about friction reduction mechanisms. One alternative hypothesis, which is strongly supported by field evidence, experimental data, and the predictions of a well-constrained computational model, involves development of high pore fluid pressures in deforming landslide material or overridden bed material. However, no scientific basis exists for concluding that a universal mechanism is responsible for friction reduction in all long-runout landslides.
Einert, T R; Sing, C E; Alexander-Katz, A; Netz, R R
2011-12-01
We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength ε and the globule size N (G) is observed. We find two distinct dynamical regimes: a liquid-like regime (for ε < ε(s) with fast internal dynamics and a solid-like regime (for ε > ε(s) with slow internal dynamics. The cohesion strength ε(s) of this freezing transition depends on N (G) . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with ε and scales extensive in N (G) . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.
Numerical analysis of tidal dynamics in the region around Gulf of Mannar and Palk Strait
NASA Astrophysics Data System (ADS)
Scaria, Sajumon; Murali, K.; Shanmugam, P.
2015-04-01
A 3D hydrodynamic model is presented to study tidal dynamics along the Indian coast and adjoining marginal seas as well as to investigate the volume transport of water across a tidal channel between the Gulf of Mannar and Palk Strait areas. The numerical model is validated in three stages, and its performance is further assessed by comparing the derived amplitudes of the semidiurnal and diurnal constituents with those of FES 2004 model. The accuracy of the model is ensured by comparing the tidal elevations at selected locations with the observed data. As a next level of validation, the elevations are subjected to the harmonic analysis in order to derive the harmonic constants. The numerical analysis of tidal energetics in the Palk Strait and Gulf of Mannar leads to conclude that M2 constituent undergoes more dissipation and the area-integrated mean dissipation rate of M2 and K1 is 3.22 and 0.25 GW. The temporal and spatial distributions of the sectional daily water volume transport are also analysed for the channel connecting the Palk Strait and the Gulf of Mannar. The localized geographical factors near the Adam's bridge area strongly influence the tidal flow, and the water volume transport shows seasonal variations.
Atmospheric dynamics of tidally synchronized extrasolar planets.
Cho, James Y-K
2008-12-13
Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.
Experimental and theoretical study of friction torque from radial ball bearings
NASA Astrophysics Data System (ADS)
Geonea, Ionut; Dumitru, Nicolae; Dumitru, Ilie
2017-10-01
In this paper it is presented a numerical simulation and an experimental study of total friction torque from radial ball bearings. For this purpose it is conceived a virtual CAD model of the experimental test bench for bearing friction torque measurement. The virtual model it is used for numerical simulation in Adams software, that allows dynamic study of multi-body systems and in particularly with facility Adams Machinery of dynamic behavior of machine parts. It is manufactured an experimental prototype of the test bench for radial ball bearings friction torque measurement. In order to measure the friction torque of the tested bearings it is used an equal resistance elastic beam element, with strain gauge transducer to measure bending deformations. The actuation electric motor of the bench has the shaft mounted on two bearings and the motor housing is fixed to the free side of the elastic beam, which is bended by a force proportional with the total friction torque. The beam elastic element with strain gauge transducer is calibrated in order to measure the force occurred. Experimental determination of the friction torque is made for several progressive radial loads. It is established the correlation from the friction torque and bearing radial load. The bench allows testing of several types and dimensions of radial bearings, in order to establish the bearing durability and of total friction torque.
Internal friction of single polypeptide chains at high stretch.
Khatri, Bhavin S; Byrne, Katherine; Kawakami, Masaru; Brockwell, David J; Smith, D Alastair; Radford, Sheena E; McLeish, Tom C B
2008-01-01
Experiments that measure the viscoelasticity of single molecules from the Brownian fluctuations of an atomic force microscope (AFM) have provided a new window onto their internal dynamics in an underlying conformational landscape. Here we develop and apply these methods to examine the internal friction of unfolded polypeptide chains at high stretch. The results reveal a power law dependence of internal friction with tension (exponent 1.3 +/- 0.5) and a relaxation time approximately independent of force. To explain these results we develop a frictional worm-like chain (FWLC) model based on the Rayleigh dissipation function of a stiff chain with dynamical resistance to local bending. We analyse the dissipation rate integrated over the chain length by its Fourier components to calculate an effective tension-dependent friction constant for the end-to-end vector of the chain. The result is an internal friction that increases as a power law with tension with an exponent 3/2, consistent with experiment. Extracting the intrinsic bending friction constant of the chain it is found to be approximately 7 orders of magnitude greater than expected from solvent friction alone; a possible explanation we offer is that the underlying energy landscape for bending amino acids and/or peptide bond is rough, consistent with recent results on both proteins and polysaccharides.
A modeling approach to establish environmental flow threshold in ungauged semidiurnal tidal river
NASA Astrophysics Data System (ADS)
Akter, A.; Tanim, A. H.
2018-03-01
Due to shortage of flow monitoring data in ungauged semidiurnal river, 'environmental flow' (EF) determination based on its key component 'minimum low flow' is always difficult. For EF assessment this study selected a reach immediately after the Halda-Karnafuli confluence, a unique breeding ground for Indian Carp fishes of Bangladesh. As part of an ungauged tidal river, EF threshold establishment faces challenges in changing ecological paradigms with periodic change of tides and hydrologic alterations. This study describes a novel approach through modeling framework comprising hydrological, hydrodynamic and habitat simulation model. The EF establishment was conceptualized according to the hydrologic process of an ungauged semi-diurnal tidal regime in four steps. Initially, a hydrologic model coupled with a hydrodynamic model to simulate flow considering land use changes effect on streamflow, seepage loss of channel, friction dominated tidal decay as well as lack of long term flow characteristics. Secondly, to define hydraulic habitat feature, a statistical analysis on derived flow data was performed to identify 'habitat suitability'. Thirdly, to observe the ecological habitat behavior based on the identified hydrologic alteration, hydraulic habitat features were investigated. Finally, based on the combined habitat suitability index flow alteration and ecological response relationship was established. Then, the obtained EF provides a set of low flow indices of desired regime and thus the obtained discharge against maximum Weighted Usable Area (WUA) was defined as EF threshold for the selected reach. A suitable EF regime condition was obtained within flow range 25-30.1 m3/s i.e., around 10-12% of the mean annual runoff of 245 m3/s and these findings are within researchers' recommendation of minimum flow requirement. Additionally it was observed that tidal characteristics are dominant process in semi-diurnal regime. However, during the study period (2010-2015) the validated model with those reported observations can provide guidance for the decision support system (DSS) to maintain EF range in an ungauged tidal river.
2011-01-01
Impact and friction model of nanofluid for molecular dynamics simulation was built which consists of two Cu plates and Cu-Ar nanofluid. The Cu-Ar nanofluid model consisted of eight spherical copper nanoparticles with each particle diameter of 4 nm and argon atoms as base liquid. The Lennard-Jones potential function was adopted to deal with the interactions between atoms. Thus motion states and interaction of nanoparticles at different time through impact and friction process could be obtained and friction mechanism of nanofluids could be analyzed. In the friction process, nanoparticles showed motions of rotation and translation, but effected by the interactions of nanoparticles, the rotation of nanoparticles was trapped during the compression process. In this process, agglomeration of nanoparticles was very apparent, with the pressure increasing, the phenomenon became more prominent. The reunited nanoparticles would provide supporting efforts for the whole channel, and in the meantime reduced the contact between two friction surfaces, therefore, strengthened lubrication and decreased friction. In the condition of overlarge positive pressure, the nanoparticles would be crashed and formed particles on atomic level and strayed in base liquid. PMID:21711753
On the role of surface friction in tropical cyclone intensification
NASA Astrophysics Data System (ADS)
Wang, Yuqing
2017-04-01
Recent studies have debated on whether surface friction is positive or negative to tropical cyclone intensification in the view on angular momentum budget. That means whether the frictionally induced inward angular momentum transport can overcome the loss of angular momentum to the surface due to surface friction itself. Although this issue is still under debate, this study investigates another implicit dynamical effect, which modifies the radial location and strength of eyewall convection. We found that moderate surface friction is necessary for rapid intensity of tropical cyclones. This is demonstrated first by a simple coupled dynamical system that couples a multi-level boundary layer model and a shallow water equation model above with mass source parameterized by mass flux from the boundary layer model below, and then by a full physics model. The results show that surface friction leads to the inward penetration of inflow under the eyewall, shift the boundary layer mass convergence slightly inside the radius of maximum wind, and enhance the upward mass flux, and thus diabatic heating in the eyewall and intensification rate of a TC. This intensification process is different from the direct angular momentum budget previously used to explain the role of surface friction in tropical cyclone intensification.
NASA Astrophysics Data System (ADS)
Wu, He; Wang, Xin; Wang, Bingzhen; Bai, Yang; Wang, Peitao
2017-11-01
Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southern cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.
NASA Astrophysics Data System (ADS)
Ernstsen, Verner B.; Winter, Christian; Becker, Marius; Bartholdy, Jesper
2010-05-01
Tidal inlets are a common feature along much of the world's coastlines. They interrupt the alongshore continuity of shoreline processes, and by being exposed to both wave and current forcing, tidal inlets belong to the morphologically most dynamic and complex coastal systems on Earth. The tidal channels in these inlets are characterized by high flow velocities and, accordingly, the channel beds are typically sandy and covered with bedforms. The bedform fields in nature are often complex systems with larger primary-bedforms superimposed by smaller secondary-bedforms (cf. Bartholdy et al., 2002). There is a considerable amount of detailed field investigations on the dynamics of primary-bedforms at various temporal scales, ranging from short- to long-term tide-related cycles to flood hydrographs to seasonality. However, Julien et al. (2002) stated that a composite analysis of primary- and secondary-bedforms is recommended for future studies on resistance to flow. Such knowledge on the behaviour of compound bedforms is still deficient. In this study, we combine the findings on the dynamics of primary- and secondary-bedform height from detailed field investigations carried out in two high-energy tidal channels during 2007 and 2008: the Knudedyb tidal inlet channel in the Danish Wadden Sea and the Innenjade tidal channel in the Jade Bay, German Bight (both survey areas being ebb-dominated). We provide process-based explanations of the bedform behaviour and present a conceptual model of compound bedform dynamics. The conducted field investigations comprised repetitive, simultaneous measurements of high-resolution swath bathymetry (using a multibeam echosounder system) and flow velocity (using an acoustic Doppler current profiler) in combination with detailed spatial mapping of bed material characteristics (from grab sampling of bed material). For an objective and discrete analysis of primary- and secondary-bedforms a modified version of the bedform tracking tool originally developed by van der Mark and Blom (2007) was applied (cf. Ernstsen et al., 2010). In both tidal channels primary-bedform height generally decreased during ebb tide and increased during flood tide. This was due to erosion and deposition of the crest, as the trough remained practically constant. The erosion of the crest occurred at high energy stages during ebb tide, while the overall deposition on the crest occurred during flood tide. The low erosion in the trough is due to a combination of low flow velocity and the development of an armour layer of shell lag-deposits. Regarding secondary-bedform height, both tidal channels displayed a general increase with increasing mean flow velocity and a general decrease with decreasing mean flow velocity (cf. Ernstsen et al., 2010). References Bartholdy, J., Bartholomae, A., Flemming, B.W. 2002. Grain-size control of large compound flow-transverse bedforms in a tidal inlet of the Danish Wadden Sea. Mar Geol 188: 391-413. Ernstsen, V.B., Winter, C., Becker, M. and Bartholdy, J. 2010. Tide-controlled variations of primary- and secondary-bedform height: Innenjade tidal channel (Jade Bay, German Bight). In: Vionnet, C., G. Perillo, E. Latrubesse and M. Garcia (editors) River, Coastal and Estuarine Morphodynamics: RCEM 2009. Taylor & Francis Group, London, pp. 779-786. Julien, P.Y., Klaassen, G.J., ten Brinke, W.B.M. & Wilbers, A.W.E. 2002. Case study: Bed resistance of Rhine River during 1998 flood. J Hydraul Eng-ASCE 128(12): 1042-1050. van der Mark, C.F. & Blom, A. 2007. A new and widely applicable tool for determining the geometric properties of bedforms. Technical report, University of Twente, Enschede, The Netherlands, pp. 57.
NASA Astrophysics Data System (ADS)
Ghebali, Sacha; Garicano-Mena, Jesús; Ferrer, Esteban; Valero, Eusebio
2018-04-01
A Dynamic Mode Decomposition (DMD) of Direct Numerical Simulations (DNS) of fully developed channel flows is undertaken in order to study the main differences in flow features between a plane-channel flow and a passively “controlled” flow wherein the mean friction was reduced relative to the baseline by modifying the geometry in order to generate a streamwise-periodic spanwise pressure gradient, as is the case for an oblique wavy wall. The present analysis reports POD and DMD modes for the plane channel, jointly with the application of a sparsity-promoting method, as well as a reconstruction of the Reynolds shear stress with the dynamic modes. Additionally, a dynamic link between the streamwise velocity fluctuations and the friction on the wall is sought by means of a composite approach both in the plane and wavy cases. One of the DMD modes associated with the wavy-wall friction exhibits a meandering motion which was hardly identifiable on the instantaneous friction fluctuations.
Tidal resonances in binary star systems. II - Slowly rotating stars
NASA Astrophysics Data System (ADS)
Alexander, M. E.
1988-12-01
The potential energy of tidal interactions in a binary system with rotating components is formulated as a perturbation Hamiltonian which self-consistently couples the dynamics of the rotating stars' oscillations and orbital motion. The action-angle formalism used to discuss tidal resonances in the nonrotating case (Alexander, 1987) is extended to rotating stars. The behavior of a two-mode system and the procedure for treating an arbitrary number of modes are discussed.
2012-09-30
standard linear wave theory. Suspended sediment concentration (SSC) was estimated using the backscatter signal of the ADCP and the turbidity value...measured by the OBS when present. The OBS turbidity signal was calibrated against SSC measured in a laboratory tank, using sediments collected on the...link the geotechnical properties of sediment substrates to the spatial and hydrodynamic characteristics of tidal channels • To develop new
NASA Astrophysics Data System (ADS)
Dong, Sheng; Dapino, Marcelo J.
2015-04-01
Ultrasonic lubrication has been proven effective in reducing dynamic friction. This paper investigates the relationship between friction reduction, power consumption, linear velocity, and normal stress. A modified pin-on-disc tribometer was adopted as the experimental set-up, and a Labview system was utilized for signal generation and data acquisition. Friction reduction was quantified for 0.21 to 5.31 W of electric power, 50 to 200 mm/s of linear velocity, and 23 to 70 MPa of normal stress. Friction reduction near 100% can be achieved under certain conditions. Lower linear velocity and higher electric power result in greater friction reduction, while normal stress has little effect on friction reduction. Contour plots of friction reduction, power consumption, linear velocity, and normal stress were created. An efficiency coefficient was proposed to calculate power requirements for a certain friction reduction or reduced friction for a given electric power.
A robust control scheme for flexible arms with friction in the joints
NASA Technical Reports Server (NTRS)
Rattan, Kuldip S.; Feliu, Vicente; Brown, H. Benjamin, Jr.
1988-01-01
A general control scheme to control flexible arms with friction in the joints is proposed in this paper. This scheme presents the advantage of being robust in the sense that it minimizes the effects of the Coulomb friction existing in the motor and the effects of changes in the dynamic friction coefficient. A justification of the robustness properties of the scheme is given in terms of the sensitivity analysis.
Calculating lunar retreat rates using tidal rhythmites
Kvale, E.P.; Johnson, H.W.; Sonett, C.P.; Archer, A.W.; Zawistoski, A.N.N.
1999-01-01
Tidal rhythmites are small-scale sedimenta??r}- structures that can preserve a hierarchy of astronomically induced tidal periods. They can also preserve a record of periodic nontidal sedimentation. If properly interpreted and understood, tidal rhjthmites can be an important component of paleoastronomy and can be used to extract information on ancient lunar orbital dynamics including changes in Earth-Moon distance through geologic time. Herein we present techniques that can be used to calculate ancient Earth-Moon distances. Each of these techniques, when used on a modern high-tide data set, results in calculated estimates of lunar orbital periods and an EarthMoon distance that fall well within 1 percent of the actual values. Comparisons to results from modern tidal data indicate that ancient tidal rhythmite data as short as 4 months can provide suitable estimates of lunar orbital periods if these tidal records are complete. An understanding of basic tidal theory allows for the evaluation of completeness of the ancient tidal record as derived from an analysis of tidal rhythmites. Utilizing the techniques presented herein, it appears from the rock record that lunar orbital retreat slowed sometime during the midPaleozoic. Copyright ??1999, SEPM (Society for Sedimentary Geology).
Dynamic-scanning-electron-microscope study of friction and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1974-01-01
A friction and wear apparatus was built into a real time scanning electron microscope (SEM). The apparatus and SEM comprise a system which provides the capability of performing dynamic friction and wear experiments in situ. When the system is used in conjunction with dispersive X-ray analysis, a wide range of information on the wearing process can be obtained. The type of wear and variation with speed, load, and time can be investigated. The source, size, and distribution of wear particles can be determined and metallic transferal observed. Some typical results obtained with aluminum, copper, and iron specimens are given.
NASA Astrophysics Data System (ADS)
Azhikodan, Gubash; Yokoyama, Katsuhide
2018-03-01
The erosion and deposition dynamics of fine sediment in a highly turbid estuarine channel were successfully surveyed during the period from August 29 to September 12, 2009 using an echo sounder in combination with a high-resolution acoustic Doppler current profiler. Field measurements were conducted focusing on the tide driven dynamics of suspended sediment concentration (SSC), and fluid mud at the upstream of the macrotidal Chikugo river estuary during semidiurnal and fortnightly tidal cycles. Morphological evolution was observed especially during the spring tide over a period of two weeks. The elevation of the channel bed was stable during neap tide, but it underwent fluctuations when the spring tide occurred owing to the increase in the velocity and shear stress. Two days of time lag were observed between the maximum SSC and peak tidal flow, which resulted in the asymmetry between neap-to-spring and spring-to-neap transitions. During the spring tide, a hysteresis loop was observed between shear stress and SSC, and its direction was different during flood and ebb tides. Although both fine sediments and flocs were dominant during flood tides, only fine sediments were noticed during ebb tides. Hence, the net elevation change in the bed was positive, and sedimentation took place during the semilunar tidal cycle. Finally, a bed of consolidated mud was deposited on the initial bed, and the height of the channel bed increased by 0.9 m during the two-week period. The observed hysteretic effect between shear stress and SSC during the spring tides, and the asymmetrical neap-spring-neap tidal cycle influenced the near-bed sediment dynamics of the channel, and led to the formation of a fluid mud layer at the bottom of the river.
Dissecting the evolution of dark matter subhaloes in the Bolshoi simulation
NASA Astrophysics Data System (ADS)
van den Bosch, Frank C.
2017-06-01
We present a comprehensive analysis of the evolution of dark matter subhaloes in the cosmological Bolshoi simulation. We identify a complete set of 12 unique evolution channels by which subhaloes evolve in between simulation outputs, and study their relative importance and demographics. We show that instantaneous masses and maximum circular velocities of individual subhaloes are extremely noisy, despite the use of a sophisticated, phase-space-based halo finder. We also show that subhaloes experience frequent penetrating encounters with other subhaloes (on average about one per dynamical time), and that subhaloes whose apo-centre lies outside the virial radius of their host (the 'ejected' or 'backsplash' haloes) experience tidal forces that modify their orbits. This results in an average fractional subhalo exchange rate among host haloes of ˜0.01 Gyr-1 (at the present time). In addition, we show that there are three distinct disruption channels; one in which subhaloes drop below the mass resolution limit of the simulation, one in which subhaloes 'merge' with their host halo largely driven by dynamical friction, and one in which subhaloes abruptly disintegrate. We estimate that roughly 80 per cent of all subhalo disruption in the Bolshoi simulation is numerical, rather than physical. This 'overmerging' is a serious road-block for the use of numerical simulations to interpret small-scale clustering, or for any other study that is sensitive to the detailed demographics of dark matter substructure.
NASA Astrophysics Data System (ADS)
Abbate, F.; Mastrobuono-Battisti, A.; Colpi, M.; Possenti, A.; Sippel, A. C.; Dotti, M.
2018-01-01
The origin of the nuclear star cluster in the centre of our Galaxy is still unknown. One possibility is that it formed after the disruption of stellar clusters that spiralled into the Galactic Centre due to dynamical friction. We trace the formation of the nuclear star cluster around the central black hole, using state-of-the-art N-body simulations, and follow the dynamics of the neutron stars born in the clusters. We then estimate the number of millisecond pulsars (MSPs) that are released in the nuclear star cluster during its formation. The assembly and tidal dismemberment of globular clusters lead to a population of MSPs distributed over a radius of about 20 pc, with a peak near 3 pc. No clustering is found on the subparsec scale. We simulate the detectability of this population with future radio telescopes like the MeerKAT radio telescope and SKA1, and find that about an order of 10 MSPs can be observed over this large volume, with a paucity of MSPs within the central parsec. This helps discriminating this scenario from the in situ formation model for the nuclear star cluster that would predict an overabundance of MSPs closer to the black hole. We then discuss the potential contribution of our MSP population to the gamma-ray excess at the Galactic Centre.
CAM/LIFTER forces and friction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabbey, D.J.; Lee, J.; Patterson, D.J.
1992-02-01
This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less
Dynamics of a particle with friction and delay
NASA Astrophysics Data System (ADS)
Monteiro Marques, Manuel D. P.; Dzonou, Raoul
2018-03-01
We are interested in the motion of a simple mechanical system having a finite number of degrees of freedom subjected to a unilateral constraint with dry friction and delay effects (with maximal duration τ > 0). At the contact point, we characterize the friction by a Coulomb law associated with a friction cone. Starting from a formulation of the problem that was given by Jean-Jacques Moreau in the form of a second-order differential inclusion in the sense of measures, we consider a sweeping process algorithm that converges towards a solution to the dynamical contact problem. The mathematical machinery as well as the general plan of the existence proof may seem much too heavy in order to treat just this simple case, but they have proved useful in more complex settings. xml:lang="fr"
On the relationship between forearc deformation, frictional properties and megathrust earthquakes
NASA Astrophysics Data System (ADS)
Cubas, Nadaya; Singh, Satish
2014-05-01
A better understanding of the relation between the structural geology and the morphology of forearc wedges with frictional properties could provide insights on earthquake mechanics. Therefore, we study, with simple mechanical analysis allowing for inverse studies, the three subduction zones that produced the major earthquakes of the 21st century : Central Chile (Maule 2010 Mw 8.8), NE Japan (Tohoku-Oki 2011 Mw 9.0) and Sumatra (Sumatra-Andaman 2004 Mw 9.1, Nias 2005 Mw 8.7). We first apply the critical taper theory that yields the effective friction of the subduction interface, the wedge internal friction and pore fluid pressure. We then apply the limit analysis approach to constrain variations of frictional properties along the megathrust from the location and style of forearc faulting. We show that seismic ruptures most often coincide with the mechanically stable part of the wedge whereas regions undergoing aseismic slip are at critical state, consistent with evidence for active deformation. In the rupture area, we found a low effective dynamic friction, probably reflecting strong dynamic weakening. Where no frontal rupture was observed, we obtain intermediate values of long-term effective friction along the frontal aseismic zone, implying hydrostatic pore pressure. On the contrary, where the rupture reached the seafloor (Tohoku-Oki earthquake, parts of the Sumatra-Andaman 2004 earthquake), a very low long-term effective friction and a high pore pressure are observed. The difference of properties of the frontal wedge might reflect differences in permeability. A lower permeability would enhance dynamic weakening and allow for frontal propagation of ruptures. We also show that spatial variations of frictional properties between aseismic and seismogenic zones can lead to the activation of splay faults. We also show that a high pore pressure along accretionary wedges can change the vergence of frontal thrusts. As a consequence, wedge morphology and deformation can be used to improve seismic and tsunamigenic risk assessment.
Solution procedure of dynamical contact problems with friction
NASA Astrophysics Data System (ADS)
Abdelhakim, Lotfi
2017-07-01
Dynamical contact is one of the common research topics because of its wide applications in the engineering field. The main goal of this work is to develop a time-stepping algorithm for dynamic contact problems. We propose a finite element approach for elastodynamics contact problems [1]. Sticking, sliding and frictional contact can be taken into account. Lagrange multipliers are used to enforce non-penetration condition. For the time discretization, we propose a scheme equivalent to the explicit Newmark scheme. Each time step requires solving a nonlinear problem similar to a static friction problem. The nonlinearity of the system of equation needs an iterative solution procedure based on Uzawa's algorithm [2][3]. The applicability of the algorithm is illustrated by selected sample numerical solutions to static and dynamic contact problems. Results obtained with the model have been compared and verified with results from an independent numerical method.
Ameseder, Felix; Radulescu, Aurel; Holderer, Olaf; Falus, Peter; Richter, Dieter; Stadler, Andreas M
2018-05-17
A general property of disordered proteins is their structural expansion that results in a high molecular flexibility. The structure and dynamics of bovine serum albumin (BSA) denatured by guanidinium hydrochloride (GndCl) were investigated using small-angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). SANS experiments demonstrated the relevance of intrachain interactions for structural expansion. Using NSE experiments, we observed a high internal flexibility of denatured BSA in addition to center-of-mass diffusion detected by dynamic light scattering. Internal motions measured by NSE were described using concepts based on polymer theory. The contribution of residue-solvent friction was accounted for using the Zimm model including internal friction (ZIF). Disulfide bonds forming loops of amino acids of the peptide backbone have a major impact on internal dynamics that can be interpreted with a reduced set of Zimm modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca
2015-02-01
Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less
NASA Astrophysics Data System (ADS)
Roberts, J. H.; Nimmo, F.
2007-12-01
Rapid strike-slip motion is predicted to be a consequence of diurnal tidal stresses in most satellites of the outer solar system with short orbital timescales [1]. Such motion can lead to near-surface heating through friction or viscous dissipation [2]. Here we discuss the effect of near-surface shear heating on convection in the underlying ice shells of icy satellites [3], with a focus on Enceladus and a possible origin of the south polar thermal anomaly [4]. We present models of convection in spherical ice shells including both spatially variable volumetric tidal heating [5] and regional shear heating localized in the top 5 km at either the pole or the equator. We observe that the presence of the near-surface heating strongly controls the convective pattern, increasing the wavelength, and promoting the formation of a hot upwelling beneath the shear zone. Our results suggest that localized near- surface heating may result in a degree-1 convective planform in an ice shell of a thickness that may be appropriate for a differentiated Enceladus (d < 0.36 Rsat). The near-surface heating and convection pattern will produce a localized heat flow anomaly. The upwelling beneath the shear zone also produces a few hundred meters of long-wavelength dynamic topography. The ℓ=2 component of the topography may cause reorientation of the satellite [6]. [1] Hoppa, G., B. R. Tufts, R. Greenberg, and P. Geissler, Icarus, 141, 287-298, 1999. [2] Nimmo, F., E. Gaidos, JGR, 107, 5021, 2002. [3] Han, L., A. P. Showman, LPSC XXXVIII, #2277, 2007. [4] Spencer, J. R., et al., Science, 311, 1401-1405. [5] Tobie, G., A. Mocquet, C. Sotin, Icarus, 177 534-549. [6] Nimmo, F., R. T. Pappalardo, Nature, 441, 614-616.
Seasonal modulation of M2 tide in the Northern Bay of Bengal
NASA Astrophysics Data System (ADS)
Tazkia, A. R.; Krien, Y.; Durand, F.; Testut, L.; Islam, AKM S.; Papa, F.; Bertin, X.
2017-04-01
The Northern Bay of Bengal (BoB) with its adjoining Ganges-Brahmaputra-Meghna delta (GBM) forms the largest deltaic region in the world. It is surrounded by a wide area of low-lying land (less than a few meters above mean sea level), very densely populated. It is home to a strong variability of sea level, across all timescales, with ample tides and frequent storm surges. It is also subject to extended river flooding during the monsoon season, with frequent overflows of two of the world's largest rivers (Brahmaputra and Ganges). There is thus a need to understand and predict the various mechanisms responsible for coastal and estuarine water level variability in this area. In this study, we address one of the least understood facets of this variability: the low-frequency modulation of tides. We focus on the seasonal changes of amplitude of the semi-diurnal lunar tide, M2. It is found that M2 amplitude shows marked changes between winter and summer seasons (of order 10 cm), incommensurate with most of the world's coastal ocean. We observe contrasted patterns from the open areas of the coastal ocean to the inner part of the GBM estuary. In the coastal ocean and over most of the GBM delta, M2 amplitude is stronger during summer and decreases until winter. Conversely, in the far northern part of GBM estuary, M2 amplitude is stronger during winter and weaker during summer. We make use of a hydrodynamic barotropic tidal model to decipher the processes responsible for this evolution. It is found that throughout the coastal ocean and over most of the GBM delta, this evolution is driven by frictional effects, with a seasonal modulation of bottom dissipation of tidal energy. Our simple barotropic model, however, does not capture the observed range of seasonal modulation of tides in the GBM estuary and at its mouth. Our study advocates for a careful consideration of these processes for a proper representation of the tidal dynamics as well as of the flooding hazard in the Bengal delta.
NASA Astrophysics Data System (ADS)
Irfan, Mohammad Abdulaziz
Dynamic deformation, flow, and failure are integral parts of all dynamic processes in materials. Invariably, dynamic failure also involves the relative sliding of one component of the material over the other. Advances in elucidation of these failure mechanisms under high loading rates has been of great interest to scientists working in this area. The need to develop new dynamic mechanical property tests for materials under well characterized and controllable loading conditions has always been a challenge to experimentalists. The current study focuses on the development of two experimental methods to study some aspects of dynamic material response. The first part focuses on the development of a single stage gas gun facility for investigating high-speed metal to metal interfacial friction with applications to high speed machining. During the course of this investigation a gas gun was designed and built capable of accelerating projectiles upto velocities of 1 km/s. Using this gas gun pressure-shear plate impact friction experiments were conducted to simulate conditions similar to high speed machining at the tool-workpiece interface. The impacting plates were fabricated from materials representing the tribo-pair of interest. Accurate measurements of the interfacial tractions, i.e. the normal pressure and the frictional stress at the tribo-pair interface, and the interfacial slip velocity could be made by employing laser interferometry. Normal pressures of the order of 1-2 MPa were generated and slipping velocities of the order of 50 m/s were obtained. In order to illustrate the structure of the constitutive law governing friction, the study included experimental investigation of frictional response to step changes in normal pressure and interfacial shear stress. The results of these experiments indicate that sliding resistance for Ti6Al4V/CH steel interface is much lower than measured under quasi-static sliding conditions. Also the temperature at the interface strongly effects the sliding resistance of the interface. The experimental results deduced from the response of the sliding interface to step changes in normal pressure and the applied shear stress reinforce the importance of including frictional memory in the development of rate dependent state variable friction models. The second part of the thesis presents an investigation into the dynamic deformation and failure of extrinsically toughened DRA composites. Experiments were conducted using the split Hopkinson pressure bar to investigate the deformation and flow behavior under dynamic compression loading. A modified Hopkinson bar apparatus was used to explore the dynamic fracture behavior of three different extrinsically toughened DRA composites. The study was paralleled by systematic exploration of the failure modes in each composite. For all the composites evaluated the dynamic crack propagation characteristics of the composites are observed to be strongly dependent on the volume fraction of the ductile phase reinforcement in the composite, the yield stress of the ductile phase reinforcement, the micro-structural arrangement of the ductile phase reinforcements with respect to the notch, and the impact velocity employed in the particular experiment.
Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.
In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less
Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California
Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; ...
2014-12-17
In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less
NASA Astrophysics Data System (ADS)
Gurzadyan, V. G.; Kocharyan, A. A.
2015-07-01
The recently developed method (Paper 1) enabling one to investigate the evolution of dynamical systems with an accuracy not dependent on time is developed further. The classes of dynamical systems which can be studied by that method are much extended, now including systems that are: (1) non-Hamiltonian, conservative; (2) Hamiltonian with time-dependent perturbation; (3) non-conservative (with dissipation). These systems cover various types of N-body gravitating systems of astrophysical and cosmological interest, such as the orbital evolution of planets, minor planets, artificial satellites due to tidal, non-tidal perturbations and thermal thrust, evolving close binary stellar systems, and the dynamics of accretion disks.
On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars
NASA Astrophysics Data System (ADS)
Fleming, David; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.
2018-04-01
To date, no binary star system with an orbital period less than 7.5 days has been observed to host a circumbinary planet (CBP), a puzzling observation given the thousands of binary stars with orbital periods < 10 days discovered by the Kepler mission (Kirk et al., 2016) and the observational biases that favor their detection (Munoz & Lai, 2015). We outline a mechanism that explains the observed lack of CBPs via coupled stellar-tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations, transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that in some cases, the stability semi-major axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that typically, at least one planet is ejected from the system. We apply our theory to the shortest period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar-tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.
Yang, Ye; Chui, Ting Fong May; Shen, Ping Ping; Yang, Yang; Gu, Ji Dong
2018-03-15
Anthropogenic activities such as land reclamation are threatening tidal marshes worldwide. This study's hypothesis is that land reclamation in a semi-enclosed bay alters the seasonal dynamics of intertidal benthic infauna, which is a key component in the tidal marsh ecosystem. Mai Po Tidal Marsh, Deep Bay, Pearl River Estuary, China was used as a case study to evaluate the hypothesis. Ecological models that simulate benthic biomass dynamics with governing environmental factors were developed, and various scenario experiments were conducted to evaluate the impact of reclamations. Environmental variables, selected from the areas of hydrodynamics, meteorology, and water quality based on correlation analysis, were used to generate Bayesian regression models for biomass prediction. The best-performing model, which considered average water age (i.e., a hydrodynamic indicator of estuarine circulation) in the previous month, salinity variation (i.e., standard deviation of salinity), and the total sunny period in the current month, captured well both seasonal and yearly trends in the benthic infauna observations from 2002 to 2008. This model was then used to simulate biomass dynamics with varying inputs of water age and salinity variation from coastal numerical models of different reclamation scenarios. The simulation results suggest that the reclamation in 2007 decreased the spatial and annual average benthic infauna biomass in the tidal marsh by 20%, which agreed with the 28% biomass decrease recorded by field survey. The range of biomass seasonal variation also decreased significantly from 2.1 to 230.5g/m 2 (without any reclamation) to 1.2 to 131.1g/m 2 (after the 2007 reclamation), which further demonstrates the substantial ecological impact of reclamation. The ecological model developed in this study could simulate seasonal biomass dynamics and evaluate the ecological impact of reclamation projects. It can therefore be applied to evaluate the ecological impact of coastal engineering projects for tidal marsh management, conservation, and restoration. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Crane, Harold L.
1961-01-01
With an electric analog computer, an investigation has been made of the effects of control frictions and preloads on the transient longitudinal response of a fighter airplane during abrupt small attitude corrections. The simulation included the airplane dynamics, powered control system, feel system, and a simple linearized pseudopilot. Control frictions at the stick pivot and at the servo valve as well as preloads of the stick and valve were considered individually and in combinations. It is believed that the results which are presented in the form of time histories and vector diagrams present a more detailed illustration of the effects of stray forces and compensating forces in the longitudinal control system than has previously been available. Consistent with the results of previous studies, the present results show that any of these four friction and preload forces caused some deterioration of the response. However, even a small amount of valve friction caused an oscillatory pitching response during which the phasing of the valve friction was such that it caused energy to be fed into the pitching oscillation of the air-plane. Of the other friction and preload forces which were considered, it was found that stick preload was close to 180 deg. out of phase with valve friction and thus could compensate in large measure for valve friction as long as the cycling of the stick encompassed the trim point. Either stick friction or valve preload provided a smaller stabilizing effect primarily through a reduction in the amplitude of the resultant force vector acting on the control system. Some data were obtained on the effects of friction when the damping or inertia of the control system or the pilot lag was varied.
NASA Technical Reports Server (NTRS)
Crane, Harold L
1957-01-01
With an electric analog computer, an investigation has been made of the effects of control frictions and preloads on the transient longitudinal response of a fighter airplane during abrupt small attitude corrections. The simulation included the airplane dynamics, powered control system, feel system, and a simple linearized pseudopilot. Control frictions at the stick pivot and at the servo valve as well as preloads of the stick and valve were considered individually and in combinations. It is believed that the results which are presented in the form of time histories and vector diagrams present a more detailed illustration of the effects of stray forces and compensating forces in the longitudinal control system than has previously been available. Consistent with the results of previous studies, the present results show that any of thesefour friction and preload forces caused some deterioration of the response. However, even a small amount of valve friction caused an oscillatory pitching response during which the phasing of the valve friction was such that it caused energy to be fed into the pitching oscillation of the airplane. Of the other friction and preload forces which were considered, it was found that stick preload was close to 180 degrees out of phase with valve friction and thus could compensate in large measure for valve friction as long as the cycling of the stick encompassed the trim point. Either stick friction or valve preload provided a smaller stabilizing effect primarily through a reduction in the amplitude of the resultant force vector acting on the control system. Some data were obtained on the effects of friction when the damping or inertia of the control system or the pilot lag was varied.
A comparison of roughness parameters and friction coefficients of aesthetic archwires.
Rudge, Philippa; Sherriff, Martyn; Bister, Dirk
2015-02-01
Compare surface roughness of 'aesthetic' nickel-titanium (NiTi) archwires with their dynamic frictional properties. Archwires investigated were: four fully coated tooth coloured [Forestadent: Biocosmetic (FB) and Titanol Cosmetic (FT); TOC Tooth Tone (TT); and Hawley Russell Coated Superelastic NiTi (HRC)]; two partially coated tooth coloured [DB Euroline Microcoated (DB) and TP Aesthetic NiTi (TP)]; two rhodium coated [TOC Sentalloy (TS) and Hawley Russell Rhodium Coated Superelastic NiTi (HRR)]; and two controls: stainless steel [Forestadent Steel (FS)] and NiTi archwire [Forestadent Titanol Superelastic (FN)]. Surface roughness [profilometry (Rugosurf)] was compared with frictional coefficients for archwire/bracket/ligature combinations (n = 10). Analysis of variance, Sidak's multiple comparison of means, and Spearman's correlation coefficient were used for analysis. Roughness coefficients were from low to high: FB; FN; TT; FS; TS; HRR; FT; DB; TP; HRC. Friction coefficients were from low to high: TP; FS; FN; HRR; FT; DB; FB; HRC; TS; TT. Coated archwires generally exhibited higher friction than uncoated controls. TP had the lowest friction but this was not statistically significant (P < 0.05). Friction of tooth coloured coated archwires were significantly different for some wires. Spearman's correlation did not demonstrate consistency between surface roughness (R a) and dynamic friction. Aesthetic archwires investigated had either low surface roughness or low frictional resistance but not both properties simultaneously. Causes for friction are likely to be multifactorial and do not appear to be solely determined by surface roughness (measured by profilometry). For selecting the most appropriate aligning archwire, both surface roughness and frictional resistance need to be considered. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Mechanism of axial strain effects on friction in carbon nanotube rotating bearings.
Huang, Jianzhang; Han, Qiang
2018-08-10
A systematic study of axial strain effects on friction in carbon nanotube bearings is conducted in this paper. The relationships between friction and axial strains are determined by implementing molecular dynamics simulations. It is found that the dependence of friction on velocity and temperature is altered by axial strains. The mechanism of strain effects is revealed through numerical and theoretical analyses. Based on phonon computations, axial strain effects tune friction by adjusting the distribution of the phonon frequency density, which affects the transfer efficiency of orderly kinetic energy into disorderly thermal energy. The findings in this work advance the understanding of friction in carbon nanotubes and suggest the great potential of axial strain effects on tuning friction in nanodevice applications.
NASA Astrophysics Data System (ADS)
McBride, R.; Wood, E. T.
2017-12-01
Cedar Island, VA is a low-profile, washover-dominated barrier island that has breached at least three times in the past sixty years. Cedar Island Inlet, a former wave-dominated tidal inlet, was open for the following time periods: 1) 1956-1962, 2) 1992-1997, and 3) 1998-2007. Air photos, satellite imagery, and geomorphic features (i.e., relict flood tidal deltas, recurved-spit ridges) record the spatial and temporal extent of the three ephemeral inlets. Based on three sediment vibracores, benthic foraminiferal and sedimentologic analyses offer high resolution insights of inlet dynamics and lifecycle evolution. Four foraminiferal biofacies are completely dominated by Elphidium excavatum (54-100%) and contain unique assemblages of accessory species based on cluster analyses: tidal inlet floor (low abundance estuarine and shelf species; 23% Haynesina germanica); flood tidal delta/inlet fill (high abundance estuarine and shelf species; 2% Buccella frigida, 2% Ammonia parkinsoniana, and 2% Haynesina germanica); high-energy inlet fill (low abundance, low diversity shelf species; 9% Elphidium gunteri); and washover/beach/aeolian (low abundance, predominantly shelf species; 3% Buccella frigida and 3% Ammonia parkinsoniana). The estuarine biofacies is barren of all foraminifera. Grain size trends indicate a first order coarsening-upward succession with second order coarsening- and fining-upwards packages in inlet throat deposits, while a first order fining-upward succession is observed in flood tidal delta deposits with two second order coarsening-upward packages in the proximal flood tidal delta. Contrary to typical wave-dominated tidal inlets that open, migrate laterally in the direction of net longshore transport, and close, the 1998-2007 tidal inlet, and possibly the 1956-1962 inlet, migrated laterally and rotated, whereas the 1992-1997 inlet remained stationary and did not rotate. In the vicinity of the vibracores, preserved deposits are attributed to the 1956-1962 and 1998-2007 tidal inlets and not to the 1992-1997 inlet. Additionally, a previously undocumented older inlet deposit was discovered. Thus, each ephemeral inlet has undergone a unique lifecycle where tidal prism, accommodation space, and flood tidal delta morphology influenced the degree of migration and rotation.
Another look at North Sea pole tide dynamics
NASA Technical Reports Server (NTRS)
Dickman, S. R.; Preisig, J. R.
1986-01-01
The mechanism proposed by Wunsch (1974) to explain pole tide observations in the North Sea is evaluated. Wunsch's equations governing pole tide in the North Sea are presented, and solutions for correcting the depth, stream function, and deviation of the tidal height from the equilibrium values are described. The similarity between the Stokes paradox and the tidal equations of the North Sea, and the need for inclusion of inertial terms in the tidal equations are discussed.
Atomistic Simulation of Frictional Sliding Between Cellulose Iß Nanocrystals
Xiawa Wu; Robert J. Moon; Ashlie Martini
2013-01-01
Sliding friction between cellulose IÃ nanocrystals is studied using molecular dynamics simulation. The effects of sliding velocity, normal load, and relative angle between sliding surface are predicted, and the results analyzed in terms of the number of hydrogen bonds within and between the cellulose chains. We find that although the observed friction trends can be...
ERIC Educational Resources Information Center
Corpuz, Edgar D.; Rebello, N. Sanjay
2011-01-01
In this paper, we discuss the first phase of a multiphase study aimed at investigating the dynamics of students' knowledge construction in the context of unfamiliar physical phenomenon--microscopic friction. The first phase of this study involved the investigation of the variations in students' mental models of microscopic friction. Clinical…
Monitoring of the tidal dynamics of the Dutch Waddensea by SIR-B
NASA Technical Reports Server (NTRS)
Koopmans, B. N.; Vanderzee, D.; Verstappen, A. T.; Woldai, T.; Hoschititzky, H.
1984-01-01
The potential of LANDSAT data, covering the entire tidal flats at a certain, known, tidal situation, was assessed. It was discovered that the data cannot be used for systematic survey because of the long interval between subsequent passes, weather conditions often interfere with recording, and of the lack of correlation between passes and the tidal situation. The objective is to overcome the problems by using: (1) the synoptic view obtained by SIR-B, which has the potential of surveying large areas of the flats simultaneously; (2) the all-weather capability of the microwave system; (3) the recording during consecutive days, which results in a straightforeward correlation with the tidal cycle and the picturing of different tidal stages; and (4) the multiangle incidence of SIR-B to analyze the bottom configuration of submerged parts of the flats. The use of a weather independent monitoring device, such as radar, an improvement in the monitoring technique of tidal coastal areas.
A system shift in tidal choking due to the construction of Yangshan Harbour, Shanghai, China
NASA Astrophysics Data System (ADS)
Guo, Wenyun; Wang, Xiao Hua; Ding, Pingxing; Ge, Jianzhong; Song, Dehai
2018-06-01
Tidal choking is a geometric feature caused by a narrowed channel. Construction of the Yangshan Harbour, Shanghai, China obstructed three key channels and intensively changed the local geometry and topography. In this study nine numerical experiments based on the Finite-Volume Community Ocean Model are conducted to study the project's influence on tidal characteristics. Results show that stronger tidal choking happened at the East Entrance after project, mainly due to the jet induced water-level drop forced by Bernoulli law and the longer and narrower geometry. The stronger tidal choking forces a faster flow and larger tidal energy flux at the choked channel while reducing the tidal amplitude in the Inner Harbour Area (IHA). The scouring on this channel reduces the choking effect but further enlarges tidal energy flux. Moreover, damming the channels decrease the tidal amplitude at the lee side of tidal propagating direction while increasing the amplitude on the stoss side. The dams also decrease the tidal current on both sides, and meanwhile develop two patches with stronger current aside the dam. The project induced changes in tidal characteristics are complex in space, and perturbations in bathymetry increase this complexity. Yangshan Harbour's construction induces little changes in the total tidal energy density in the IHA, but induces obvious changes in the spatial distribution of tidal energy. Although this study is site-specific, the findings may be applicable to tidal dynamics in land reclamation close to open seas, such as the dramatic reclamation of islands in the South China Sea.
NASA Astrophysics Data System (ADS)
Chen, G. X.; Zhou, Z. R.; Ouyang, H.; Jin, X. S.; Zhu, M. H.; Liu, Q. Y.
2010-10-01
The present work proposes friction coupling at the wheel-rail interface as the mechanism for formation of rail corrugation. Stability of a wheelset-track system is studied using the finite element complex eigenvalue method. Two models for a wheelset-track system on a tight curved track and on a straight track are established. In these two models, motion of the wheelset is coupled with that of the rail by friction. Creep force at the interface is assumed to become saturated and approximately equal to friction force, which is equal to the normal contact force multiplied by dynamic coefficient of friction. The rail is supported by vertical and lateral springs and dampers at the positions of sleepers. Numerical results show that there is a strong propensity of self-excited vibration of the wheelset-track system when the friction coefficient is larger than 0.21. Some unstable frequencies fall in the range 60-1200 Hz, which correspond to frequencies of rail corrugation. Parameter sensitivity analysis shows that the dynamic coefficient of friction, spring stiffness and damping of the sleeper supports all have important influences on the rail corrugation formation. Bringing the friction coefficient below a certain level can suppress or eliminate rail corrugation.
Near-bed turbulence and sediment flux measurements in tidal channels
Wright, S.A.; Whealdon-Haught, D.R.
2012-01-01
Understanding the hydrodynamics and sediment transport dynamics in tidal channels is important for studies of estuary geomorphology, sediment supply to tidal wetlands, aquatic ecology and fish habitat, and dredging and navigation. Hydrodynamic and sediment transport data are essential for calibration and testing of numerical models that may be used to address management questions related to these topics. Herein we report preliminary analyses of near-bed turbulence and sediment flux measurements in the Sacramento-San Joaquin Delta, a large network of tidal channels and wetlands located at the confluence of the Sacramento and San Joaquin Rivers, California, USA (Figure 1). Measurements were made in 6 channels spanning a wide range of size and tidal conditions, from small channels that are primarily fluvial to large channels that are tidally dominated. The results of these measurements are summarized herein and the hydrodynamic and sediment transport characteristics of the channels are compared across this range of size and conditions.
Statistical Decoupling of a Lagrangian Fluid Parcel in Newtonian Cosmology
NASA Astrophysics Data System (ADS)
Wang, Xin; Szalay, Alex
2016-03-01
The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differential equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.
STATISTICAL DECOUPLING OF A LAGRANGIAN FLUID PARCEL IN NEWTONIAN COSMOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Szalay, Alex, E-mail: xwang@cita.utoronto.ca
The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differentialmore » equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.« less
NASA Astrophysics Data System (ADS)
Kuwahara, Takuya; Moras, Gianpietro; Moseler, Michael
2017-09-01
Large-scale quantum molecular dynamics of water-lubricated diamond (111) surfaces in sliding contact reveals multiple friction regimes. While water starvation causes amorphization of the tribological interface, small H2O traces are sufficient to preserve crystallinity. This can result in high friction due to cold welding via ether groups or in ultralow friction due to aromatic surface passivation triggered by tribo-induced Pandey reconstruction. At higher water coverage, Grotthuss-type diffusion and H2O dissociation yield dense H /OH surface passivation leading to another ultralow friction regime.
Friction damping of two-dimensional motion and its application in vibration control
NASA Technical Reports Server (NTRS)
Menq, C.-H.; Chidamparam, P.; Griffin, J. H.
1991-01-01
This paper presents an approximate method for analyzing the two-dimensional friction contact problem so as to compute the dynamic response of a structure constrained by friction interfaces. The friction force at the joint is formulated based on the Coulomb model. The single-term harmonic balance scheme, together with the receptance approach of decoupling the effect of the friction force on the structure from those of the external forces has been utilized to obtain the steady state response. The computational efficiency and accuracy of the method are demonstrated by comparing the results with long-term time solutions.
NASA Astrophysics Data System (ADS)
Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.
2017-12-01
Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.
49 CFR 238.431 - Brake system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... dynamic brake does not result in exceeding the allowable stopping distance; (2) The friction brake alone... speed for safe operation of the train using only the friction brake portion of the blended brake with no...
49 CFR 238.431 - Brake system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... dynamic brake does not result in exceeding the allowable stopping distance; (2) The friction brake alone... speed for safe operation of the train using only the friction brake portion of the blended brake with no...
49 CFR 238.431 - Brake system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... dynamic brake does not result in exceeding the allowable stopping distance; (2) The friction brake alone... speed for safe operation of the train using only the friction brake portion of the blended brake with no...
CAM/LIFTER forces and friction. Final report, September 15, 1988--November 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabbey, D.J.; Lee, J.; Patterson, D.J.
1992-02-01
This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less
Precisely cyclic sand: self-organization of periodically sheared frictional grains.
Royer, John R; Chaikin, Paul M
2015-01-06
The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain-friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many-degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic.
Precisely cyclic sand: Self-organization of periodically sheared frictional grains
Royer, John R.; Chaikin, Paul M.
2015-01-01
The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain–friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many–degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic. PMID:25538298
NASA Astrophysics Data System (ADS)
Unno, M.; Shibata, A.; Yabuno, H.; Yanagisawa, D.; Nakano, T.
2017-04-01
Reducing noise generated by automobile windshield wipers during reversals is a desirable feature. For this purpose, details of the behavior of the wiper blade need to be ascertained. In this study, we present theoretical and experimental clarification of this behavior during reversals. Using simulation algorithms to consider exactly the effects of dynamic and static friction, we determined theoretical predictions for the vibrational response caused by friction and the response frequency and compared these results with experimental ones obtained from a mock-up incorporating an actual wiper blade. We introduce an analytical link model with two degrees of freedom and consider two types of states at the blade tip. In the stick and the slip states, static friction and dynamic friction, respectively, act on the blade tip. In the theoretical approach, the static friction is expressed by a set-valued function. The transition between the two states is repeated and an evaluation of an exact transition time leads to an accurate prediction of the behavior of the wiper system. In the analysis, the slack variable method is used to find the exact transition time. Assuming low blade speeds during reversal, a parameter study indicates that the blade tip transitions between slip and stick states and the frequency of the vibration caused by this transitions is close to the natural frequency of the neck of the wiper blade. The theoretical predictions are in good agreement with experimental observations.
NASA Astrophysics Data System (ADS)
Noda, H.
2016-05-01
Pressure solution creep (PSC) is an important elementary process in rock friction at high temperatures where solubilities of rock-forming minerals are significantly large. It significantly changes the frictional resistance and enhances time-dependent strengthening. A recent microphysical model for PSC-involved friction of clay-quartz mixtures, which can explain a transition between dilatant and non-dilatant deformation (d-nd transition), was modified here and implemented in dynamic earthquake sequence simulations. The original model resulted in essentially a kind of rate- and state-dependent friction (RSF) law, but assumed a constant friction coefficient for clay resulting in zero instantaneous rate dependency in the dilatant regime. In this study, an instantaneous rate dependency for the clay friction coefficient was introduced, consistent with experiments, resulting in a friction law suitable for earthquake sequence simulations. In addition, a term for time-dependent strengthening due to PSC was added which makes the friction law logarithmically rate-weakening in the dilatant regime. The width of the zone in which clasts overlap or, equivalently, the interface porosity involved in PSC plays a role as the state variable. Such a concrete physical meaning of the state variable is a great advantage in future modelling studies incorporating other physical processes such as hydraulic effects. Earthquake sequence simulations with different pore pressure distributions demonstrated that excess pore pressure at depth causes deeper rupture propagation with smaller slip per event and a shorter recurrence interval. The simulated ruptures were arrested a few kilometres below the point of pre-seismic peak stress at the d-nd transition and did not propagate spontaneously into the region of pre-seismic non-dilatant deformation. PSC weakens the fault against slow deformation and thus such a region cannot produce a dynamic stress drop. Dynamic rupture propagation further down to brittle-plastic transition, evidenced by geological observations, would require even smaller frictional resistance at coseismic slip rate, suggesting the importance of implementation of dynamic weakening activated at coseismic slip rates for more realistic simulation of earthquake sequences. The present models produced much smaller afterslip at deeper parts of arrested ruptures than those with logarithmic RSF laws because of a more significant rate-strengthening effect due to linearly viscous PSC. Detailed investigation of afterslip would give a clue to understand the deformation mechanism which controls shear resistance of the fault in a region of arrest of earthquake ruptures.
Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems
ERIC Educational Resources Information Center
Tavares, J. M.
2009-01-01
The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…
NASA Astrophysics Data System (ADS)
Vick, Michelle; Lai, Dong; Fuller, Jim
2017-06-01
A white dwarf (WD) captured into a high-eccentricity orbit around a massive black hole (MBH) may undergo many pericentre passages before tidal disruption. During these passages, the tidal potential of the MBH excites internal oscillations or waves in the WD, and the dissipation of these oscillations can significantly influence the physical properties of the WD prior to its disruption. We calculate the amplitude of the tidally excited gravity (buoyancy) waves in the WD as a function of the pericentre distance and eccentricity for realistic WD models, under the assumption that these outgoing gravity waves are efficiently dissipated in the outer layers of the WD by non-linear effects or radiative damping. We obtain fitting formulae for the tidal energy and angular momentum transfer rates as well as the tidal heating rate. We find that these dynamical tides are much weaker than gravitational radiation in driving the orbital decay of the WD-MBH binary, and they are also inefficient in changing the WD spin during the orbital evolution. Incorporating our computed tidal dissipation rate into a mesa-based WD evolution code, we find that tidal heating can lead to appreciable brightening of the WD and may induce runaway fusion in the hydrogen envelope well before the WD undergoes tidal disruption.
Global climate change could alter sea-level and salinity dynamics in Pacific Northwest estuaries. We combined survey and experimental approaches to better understand potential climate change effects on the future of tidal wetland primary producers in the region. Surveys conducte...
Ganju, Neil K.; Lentz, Steven J.; Kirincich, Anthony R.; Farrar, J. Thomas
2011-01-01
Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.
Bathymetrically controlled velocity-shear front at a tidal river confluence
NASA Astrophysics Data System (ADS)
Blain, Cheryl Ann; Mied, Richard P.; McKay, Paul; Chen, Wei; Rhea, W. Joseph
2015-08-01
Nonbuoyant front formation at the confluence of Nanjemoy Creek and the main Potomac River (MD) channel is examined. Terra satellite ASTER imagery reveals a sediment color front emerging from Nanjemoy Creek when the Potomac is near maximum ebb. Nearly contemporaneous ASTER and Landsat ETM+ imagery are used to extract surface velocities, which suggest a velocity shear front is collocated with the color front. In situ velocities (measured by RiverRay traverses near the Nanjemoy Creek mouth) confirm the shear front's presence. A finite-element simulation (using ADCIRC) replicates the observed velocity-shear front and is applied to decipher its physics. Three results emerge: (1) the velocity-shear front forms, confined to a shoal downstream of the creek-river confluence for most of the tidal cycle, (2) a simulation with a flat bottom in Nanjemoy Creek and Potomac River (i.e., no bathymetry variation) indicates the velocity-shear front never forms, hence the front cannot exist without the bathymetry, and (3) an additional simulation with a blocked-off Creek entrance demonstrates that while the magnitude of the velocity shear is largely unchanged without the creek, shear front formation is delayed in time. Without the Creek, there is no advection of the M6 tidal constituent (generated by nonlinear interaction of the flow with bottom friction) onto the shoals, only a locally generated contribution. A tidal phase difference between Nanjemoy and Potomac causes the ebbing Nanjemoy Creek waters to intrude into the Potomac as far south as its deep channel, and draw from a similar location in the Potomac during Nanjemoy flood.
Effect of the tiger stripes on the tidal deformation of Enceladus
NASA Astrophysics Data System (ADS)
Soucek, Ondrej; Hron, Jaroslav; Behounkova, Marie; Cadek, Ondrej
2016-10-01
The south polar region of Saturn's moon Enceladus has been subjected to a thorough scientific scrutiny since the Cassini mission discovery of an enigmatic system of fractures informally known as "tiger stripes". This fault system is possibly connected to the internal water ocean and exhibits a striking geological activity manifesting itself in the form of active water geysers on the moon's surface.The effect of the faults on periodic tidal deformation of the moon has so far been neglected because of the difficulties associated with the implementation of fractures in continuum mechanics models. Employing an open source finite element FEniCS package, we provide a numerical estimate of the maximum possible impact of the tiger stripes on the tidal deformation and the heat production in Enceladus's ice shell by representing the faults as narrow zones with negligible frictional and bulk resistance passing vertically through the whole shell.For a uniform ice shell thickness of 25 km, consistent with the recent estimate of libration, and for linear elastic rheology, we demonstrate that the faults can dramatically change the distribution of stress and strain in Enceladus's south polar region, leading to a significant increase of the heat flux and to a complex deformation pattern in this area. We also present preliminary results studying the effects of (i) variable ice-shell thickness, based on the recent topography, gravity and libration inversion model by Čadek et al. (2016) and (ii) Maxwell viscoelastic rheology on the global tidal deformation of the ice shell.O.S. acknowledges support by the Grant Agency of the Czech Republic through the project 15-14263Y.
Jackson, M I; Hiley, M J; Yeadon, M R
2011-10-13
In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. Copyright © 2011 Elsevier Ltd. All rights reserved.
Internal friction and nonequilibrium unfolding of polymeric globules.
Alexander-Katz, Alfredo; Wada, Hirofumi; Netz, Roland R
2009-07-10
The stretching response of a single collapsed homopolymer is studied using Brownian dynamic simulations. The irreversibly dissipated work is found to be dominated by internal friction effects below the collapse temperature, and the internal viscosity grows exponentially with the effective cohesive strength between monomers. These results explain friction effects of globular DNA and are relevant for dissipation at intermediate stages of protein folding.
Listening in on Friction: Stick-Slip Acoustical Signatures in Velcro
NASA Astrophysics Data System (ADS)
Hurtado Parra, Sebastian; Morrow, Leslie; Radziwanowski, Miles; Angiolillo, Paul
2013-03-01
The onset of kinetic friction and the possible resulting stick-slip motion remain mysterious phenomena. Moreover, stick-slip dynamics are typically accompanied by acoustic bursts that occur temporally with the slip event. The dry sliding dynamics of the hook-and-loop system, as exemplified by Velcro, manifest stick-slip behavior along with audible bursts that are easily micrphonically collected. Synchronized measurements of the friction force and acoustic emissions were collected as hooked Velcro was driven at constant velocity over a bed of looped Velcro in an anechoic chamber. Not surprising, the envelope of the acoustic bursts maps well onto the slip events of the friction force time series and the intensity of the bursts trends with the magnitude of the difference of the friction force during a stick-slip event. However, the analysis of the acoustic emission can serve as a sensitive tool for revealing some of the hidden details of the evolution of the transition from static to kinetic friction. For instance, small acoustic bursts are seen prior to the Amontons-Coulomb threshold, signaling precursor events prior to the onset of macroscopically observed motion. Preliminary spectral analysis of the acoustic emissions including intensity-frequency data will be presented.
NASA Astrophysics Data System (ADS)
Soranno, Andrea; Zosel, Franziska; Hofmann, Hagen
2018-03-01
Internal friction is frequently found in protein dynamics. Its molecular origin however is difficult to conceptualize. Even unfolded and intrinsically disordered polypeptide chains exhibit signs of internal friction despite their enormous solvent accessibility. Here, we compare four polymer theories of internal friction with experimental results on the intrinsically disordered protein ACTR (activator of thyroid hormone receptor). Using nanosecond fluorescence correlation spectroscopy combined with single-molecule Förster resonance energy transfer (smFRET), we determine the time scales of the diffusive chain dynamics of ACTR at different solvent viscosities and varying degrees of compaction. Despite pronounced differences between the theories, we find that all models can capture the experimental viscosity-dependence of the chain relaxation time. In contrast, the observed slowdown upon chain collapse of ACTR is not captured by any of the theories and a mechanistic link between chain dimension and internal friction is still missing, implying that the current theories are incomplete. In addition, a discrepancy between early results on homopolymer solutions and recent single-molecule experiments on unfolded and disordered proteins suggests that internal friction is likely to be a composite phenomenon caused by a variety of processes.
Ratchet due to broken friction symmetry.
Nordén, B; Zolotaryuk, Y; Christiansen, P L; Zolotaryuk, A V
2002-01-01
A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must be provided with some internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion. In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments. Despite the setup being three dimensional, the ratchet rotary motion is proved to be described by one dynamical equation. This kind of motion is a result of the interplay of friction and inertia. We also consider a case with viscous friction, which is irrelevant to this gadget, but it can be a possible mechanism of rotary unidirectional motion of some swimming organisms in a liquid.
Soranno, Andrea; Zosel, Franziska; Hofmann, Hagen
2018-03-28
Internal friction is frequently found in protein dynamics. Its molecular origin however is difficult to conceptualize. Even unfolded and intrinsically disordered polypeptide chains exhibit signs of internal friction despite their enormous solvent accessibility. Here, we compare four polymer theories of internal friction with experimental results on the intrinsically disordered protein ACTR (activator of thyroid hormone receptor). Using nanosecond fluorescence correlation spectroscopy combined with single-molecule Förster resonance energy transfer (smFRET), we determine the time scales of the diffusive chain dynamics of ACTR at different solvent viscosities and varying degrees of compaction. Despite pronounced differences between the theories, we find that all models can capture the experimental viscosity-dependence of the chain relaxation time. In contrast, the observed slowdown upon chain collapse of ACTR is not captured by any of the theories and a mechanistic link between chain dimension and internal friction is still missing, implying that the current theories are incomplete. In addition, a discrepancy between early results on homopolymer solutions and recent single-molecule experiments on unfolded and disordered proteins suggests that internal friction is likely to be a composite phenomenon caused by a variety of processes.
Kawasaki, S; Tada, T; Persson, B N J
2018-06-27
We study the contact mechanics between 3 different tire tread compounds and a smooth glass surface in water. We study both adhesion and sliding friction at low-sliding speeds. For 2 of the compounds the rubber-glass contact in water is hydrophobic and we observe adhesion, and slip-stick sliding friction dynamics. For one compound the contact is hydrophilic, resulting in vanishing adhesion, and steady-state (or smooth) sliding dynamics. We also show the importance of dynamical scrape, both on the macroscopic level and at the asperity level, which reduces the water film thickness between the solids during slip. The experiments show that the fluid is removed much faster from the rubber-glass asperity contact regions for a hydrophobic contact than for a hydrophilic contact. We also study friction on sandblasted glass in water. In this case all the compounds behave similarly and we conclude that no dewetting occur in the asperity contact regions. We propose that this is due to the increased surface roughness which reduces the rubber-glass binding energy.
NASA Astrophysics Data System (ADS)
Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.
2016-12-01
Several studies reported that occurrence of slow slip events (SSEs) in the Nankai region is affected by earth tides (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The tidal effect on the SSEs is also examined by numerical studies (e.g., Hawthorne and Rubin, 2013). In our previous study, repeating SSEs in the Shikoku region are numerically reproduced, incorporating the actual plate configuration (Matsuzawa et al., 2013). In this study, we examined the behavior of SSEs in the Shikoku region, considering stress perturbation by earth tides. Our numerical model is similar to our previous study (Matsuzawa et al., 2013). A plate interface is expressed by small triangular elements. A rate- and state-dependent friction law (RS-law) with cutoff velocities is adopted as the friction law on each element. We assumed that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. The short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of short-term SSEs. Calculating stress change by earth tides as in Yabe et al., (2015), we assume that the stress change is represented by periods of 10 major tides. Incorporating this stress perturbation, we calculate the evolution of slip on the plate interface. In the numerical result, repeating short-term SSEs are reproduced in the short-term SSE region. Recurrent intervals of SSEs at an isolated patch (e.g., northeastern Shikoku) have small fluctuation. Introducing tidal effect, peak velocity becomes faster than that in the case without tidal effect. On the other hand, the difference of peak velocities is not clear between the cases with and without tidal effect at widely connected SSE region (e.g., western Shikoku), as the intervals and peak velocities of SSEs are largely fluctuated in both cases. Hirahara (2016) suggested that the recurrence interval of events is synchronized to the period of external force, when these two periods are close. In our result, recurrence intervals of SSEs at the isolated patch seem to be less fluctuated in the case with tides, and perhaps, may be attracted to the period of integer multiple of the long period tides (e.g., Mf), although further examination is required to confirm this interpretation.
NASA Astrophysics Data System (ADS)
Huang, Kang; Xiong, Yangshou; Wang, Tao; Chen, Qi
2017-01-01
Employing high-contact-ratio (HCR) gear is an effective method of decreasing the load on a single tooth, as well as reducing vibration and noise. While the spindlier tooth leads to greater relative sliding, having more teeth participate in contact at the same time makes the HCR gear more sensitive to the surface quality. Available literature regarding HCR gear primarily investigates the geometrical optimization, load distribution, or efficiency calculation. Limited work has been conducted on the effect of rough surfaces on the dynamic performance of HCR gear. For this reason, a multi-degree-of-freedom (MDOF) model is presented mathematically to characterize the static transmission error based on fractal theory, investigate the relative sliding friction using an EHL-based friction coefficient formula, and detail the time-varying friction coefficient suitable for HCR gear. Based on numerical results, the surface roughness has little influence on system response in terms of the dynamic transmission error but has a large effect on the motion in off-line-of-action (OLOA) direction and friction force. The impact of shaft-bearing stiffness and damping ratio is also explored with results revealing that a greater shaft-bearing stiffness is beneficial in obtaining a more stable motion in OLOA direction, and a larger damping ratio results in a smaller effective friction force. The theory presented in this report outlines a new method of analyzing the dynamics of HCR gear in respect of introducing surface roughness into MDOF model directly, as well as establishing an indirect relationship between dynamic responses and surface roughness. This method is expected to guide surface roughness design and manufacturing in the future.
Epidemics in markets with trade friction and imperfect transactions.
Moslonka-Lefebvre, Mathieu; Monod, Hervé; Gilligan, Christopher A; Vergu, Elisabeta; Filipe, João A N
2015-06-07
Market trade-routes can support infectious-disease transmission, impacting biological populations and even disrupting trade that conduces the disease. Epidemiological models increasingly account for reductions in infectious contact, such as risk-aversion behaviour in response to pathogen outbreaks. However, responses in market dynamics clearly differ from simple risk aversion, as are driven by other motivation and conditioned by "friction" constraints (a term we borrow from labour economics). Consequently, the propagation of epidemics in markets of, for example livestock, is frictional due to time and cost limitations in the production and exchange of potentially infectious goods. Here we develop a coupled economic-epidemiological model where transient and long-term market dynamics are determined by trade friction and agent adaptation, and can influence disease transmission. The market model is parameterised from datasets on French cattle and pig exchange networks. We show that, when trade is the dominant route of transmission, market friction can be a significantly stronger determinant of epidemics than risk-aversion behaviour. In particular, there is a critical level of friction above which epidemics do not occur, which suggests some epidemics may not be sustained in highly frictional markets. In addition, friction may allow for greater delay in removal of infected agents that still mitigates the epidemic and its impacts. We suggest that policy for minimising contagion in markets could be adjusted to the level of market friction, by adjusting the urgency of intervention or by increasing friction through incentivisation of larger-volume less-frequent transactions that would have limited effect on overall trade flow. Our results are robust to model specificities and can hold in the presence of non-trade disease-transmission routes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Slow Earthquakes and The Mechanics of Slow Frictional Stick-Slip
NASA Astrophysics Data System (ADS)
Marone, Chris; Scuderi, Marco; Leeman, John; Saffer, Demian; Collettini, Cristiano; Johnson, Paul
2015-04-01
Slow earthquakes represent one mode of the spectrum of fault slip behaviors ranging from steady aseismic slip to normal earthquakes. Like normal earthquakes, slow earthquakes can occur repetitively, such that a fault fails in a form of stick-slip failure defined by interseismic strain accumulation and slow, quasidynamic slip. The mechanics of frictional stick-slip and seismogenic faulting appear to apply to slow earthquakes, however, the mechanisms that limit dynamic slip velocity, rupture propagation speed, and the scaling between moment and duration of slow earthquakes are poorly understood. Here, we describe laboratory experiments that explore the mechanics of repetitive, slow frictional stick-slip failure. We document the role of loading stiffness and friction constitutive behavior in dictating the properties of repetitive, frictional stick-slip. Our results show that a spectrum of dynamic and quasidynamic slip velocities can occur in stick-slip events depending on the relation between loading stiffness k and the rheologic critical stiffness kc given, in the context of rate and state friction, by the ratio of the friction rate parameter (b-a) divided by the critical friction distance Dc. Slow slip is favored by conditions for which k is ~ equal to kc, whereas normal, fast stick slip occurs when k/kc < 1. We explore the role of elastic coupling and spatially extended slip propagation by comparing slow slip results for shear in a layer driven by forcing blocks of varying stiffness. We evaluate our data in the framework of rate and state friction laws and focus on the frictional mechanics of slow stick-slip failure with special attention paid to the connections between quasidynamic failure and mechanisms of the brittle-ductile transition in fault rocks.
Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.
Bonhommeau, David; Halberstadt, Nadine; Viel, Alexandra
2006-01-14
We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.
On the Formation of Extended Galactic Disks by Tidally Disrupted Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Peñarrubia, Jorge; McConnachie, Alan; Babul, Arif
2006-10-01
We explore the possibility that extended disks, such as that recently discovered in M31, are the result of a single dwarf (109-1010 Msolar) satellite merger. We conduct N-body simulations of dwarf NFW halos with embedded spheroidal stellar components on coplanar, prograde orbits in an M31-like host galaxy. As the orbit decays due to dynamical friction and the system is disrupted, the stellar particles relax to form an extended, exponential-disk-like structure that spans the radial range 30-200 kpc. The disk scale length Rd correlates with the initial extent of the stellar component within the satellite halo: the more embedded the stars, the smaller the resulting disk scale length. If the progenitors start on circular orbits, the kinematics of the stars that make up the extended disk have an average rotational motion that is 30-50 km s-1 lower than the host's circular velocity. For dwarf galaxies moving on highly eccentric orbits (e~=0.7), the stellar debris exhibits a much lower rotational velocity. Our results imply that extended galactic disks might be a generic feature of the hierarchical formation of spiral galaxies such as M31 and the Milky Way.
Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics.
Correia, Alexandre C M; Laskar, Jacques
2004-06-24
Mercury is locked into a 3/2 spin-orbit resonance where it rotates three times on its axis for every two orbits around the sun. The stability of this equilibrium state is well established, but our understanding of how this state initially arose remains unsatisfactory. Unless one uses an unrealistic tidal model with constant torques (which cannot account for the observed damping of the libration of the planet) the computed probability of capture into 3/2 resonance is very low (about 7 per cent). This led to the proposal that core-mantle friction may have increased the capture probability, but such a process requires very specific values of the core viscosity. Here we show that the chaotic evolution of Mercury's orbit can drive its eccentricity beyond 0.325 during the planet's history, which very efficiently leads to its capture into the 3/2 resonance. In our numerical integrations of 1,000 orbits of Mercury over 4 Gyr, capture into the 3/2 spin-orbit resonant state was the most probable final outcome of the planet's evolution, occurring 55.4 per cent of the time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popolo, A. Del; Delliou, M. Le, E-mail: adelpopolo@oact.inaf.it, E-mail: delliou@ift.unesp.br
2014-12-01
We continue the study of the impact of baryon physics on the small scale problems of the ΛCDM model, based on a semi-analytical model (Del Popolo, 2009). With such model, we show how the cusp/core, missing satellite (MSP), Too Big to Fail (TBTF) problems and the angular momentum catastrophe can be reconciled with observations, adding parent-satellite interaction. Such interaction between dark matter (DM) and baryons through dynamical friction (DF) can sufficiently flatten the inner cusp of the density profiles to solve the cusp/core problem. Combining, in our model, a Zolotov et al. (2012)-like correction, similarly to Brooks et al. (2013),more » and effects of UV heating and tidal stripping, the number of massive, luminous satellites, as seen in the Via Lactea 2 (VL2) subhaloes, is in agreement with the numbers observed in the MW, thus resolving the MSP and TBTF problems. The model also produces a distribution of the angular spin parameter and angular momentum in agreement with observations of the dwarfs studied by van den Bosch, Burkert, and Swaters (2001)« less
Border Forces and Friction Control Epithelial Closure Dynamics
Cochet-Escartin, Olivier; Ranft, Jonas; Silberzan, Pascal; Marcq, Philippe
2014-01-01
We study the closure dynamics of a large number of well-controlled circular apertures within an epithelial monolayer, where the collective cell migration responsible for epithelization is triggered by the removal of a spatial constraint rather than by scratching. Based on experimental observations, we propose a physical model that takes into account border forces, friction with the substrate, and tissue rheology. Border protrusive activity drives epithelization despite the presence of a contractile actomyosin cable at the periphery of the wound. The closure dynamics is quantified by an epithelization coefficient, defined as the ratio of protrusive stress to tissue-substrate friction, that allows classification of different phenotypes. The same analysis demonstrates a distinct signature for human cells bearing the oncogenic RasV12 mutation, demonstrating the potential of the approach to quantitatively characterize metastatic transformations. PMID:24411238
Nitrogen dynamics in a tidal river zone influenced by highly urbanization, western Japan
NASA Astrophysics Data System (ADS)
Saito, M.; Onodera, S. I.; Shimizu, Y.; Maruyama, Y.; Jin, G.; Aritomi, D.
2014-12-01
Tidal river and estuary are the transition zone between freshwater and seawater with high biological production. These areas have characteristics of water level fluctuation which causes surface water-groundwater interaction and the associated change in dynamics of nitrogen. Generally in coastal megacities, severe groundwater depression and high contaminants load influence on the environment of tidal river. However, these effects on the nitrogen dynamics and its load from a river to sea have not been fully evaluated in previous studies. Therefore, we aimed to clarify the characteristics of the nitrogen dynamics with the surface water-groundwater interaction in the tidal river zone of Osaka metropolitan city, western Japan. We conducted the field survey from the river mouth to the 7km upstream area of Yamato River, which has a length of 68km and a watershed area of 1,070 km2. Spatial variations in radon (222Rn) concentrations and the difference of hydraulic potential between river waters and the pore waters suggest that the groundwater discharges to the river channel in the upstream area. In contrast, the river water recharged into the groundwater near the river mouth area. It may be caused by the lowering of groundwater level associated with the excess abstraction in the urban area. The spatial and temporal variations in nutrient concentration indicate that nitrate-nitrogen (NO3-N) concentration changed temporally and it was negatively correlated with dissolved organic nitrogen (DON) concentration. Based on the mass balance estimation in winter and summer periods, nitrogen was removed in tidal river zone in both periods which was estimated to be about 10 % of total nitrogen (TN) load from the upstream. However, dissolved inorganic nitrogen (DIN) and DON was re-produced in winter and summer periods, respectively. NO3-N concentrations were negatively correlated with velocity of river water, which suggests the progress of denitrification in the tidal river zone under low discharge condition. Nitrogen and oxygen stable isotope ratios (δ15N, δ18O) of nitrate (NO3-) suggests the possibility of nitrification progress in the winter periods.
NASA Astrophysics Data System (ADS)
Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong
2014-07-01
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.
NASA Astrophysics Data System (ADS)
Grasso, F.; Verney, R.; Le Hir, P.; Thouvenin, B.; Schulz, E.; Kervella, Y.; Khojasteh Pour Fard, I.; Lemoine, J.-P.; Dumas, F.; Garnier, V.
2018-01-01
Tidal pumping, baroclinic circulation, and vertical mixing are known to be the main mechanisms responsible for the estuarine turbidity maximum (ETM) formation. However, the influence of hydro-meteorological conditions on ETM dynamics is still not properly grasped and requires further investigation to be quantified. Based on a realistic three-dimensional numerical model of the macrotidal Seine Estuary (France) that accounts for mud and sand transport processes, the objective of this study is to quantify the influence of the main forcing (river flow, tides, and waves) on the ETM location and mass changes. As expected, the ETM location is strongly modulated by semidiurnal tidal cycles and fortnightly time scales with a high sensitivity to river flow variations. The ETM mass is clearly driven by the tidal range, characteristic of the tidal pumping mechanism. However, it is not significantly affected by the river flow. Energetic wave conditions substantially influence the ETM mass by contributing up to 44% of the maximum mass observed during spring tides and by increasing the mass by a factor of 3 during mean tides compared to calm wave conditions. This means that neglecting wave forcing can result in significantly underestimating the ETM mass in estuarine environments. In addition, neap-to-spring phasing has a strong influence on ETM location and mass through a hysteresis response associated with the delay for tidal pumping and stratification to fully develop. Finally, simulations show that the uppermost limit of the Seine ETM location did not change notably during the last 35 years; however, the seaward limit migrated few kilometers upstream.
Three-Dimensional Dynamics of Baroclinic Tides Over a Seamount
NASA Astrophysics Data System (ADS)
Vlasenko, Vasiliy; Stashchuk, Nataliya; Nimmo-Smith, W. Alex M.
2018-02-01
The Massachusetts Institute of Technology general circulation model is used for the analysis of baroclinic tides over Anton Dohrn Seamount (ADS), in the North Atlantic. The model output is validated against in situ data collected during the 136th cruise of the RRS "James Cook" in May-June 2016. The observational data set includes velocity time series recorded at two moorings as well as temperature, salinity, and velocity profiles collected at 22 hydrological stations. Synthesis of observational and model data enabled the reconstruction of the details of baroclinic tidal dynamics over ADS. It was found that the baroclinic tidal waves are generated in the form of tidal beams radiating from the ADS periphery to its center, focusing tidal energy in a surface layer over the seamount's summit. This energy focusing enhances subsurface water mixing and the local generation of internal waves. The tidal beams interacting with the seasonal pycnocline generate short-scale internal waves radiating from the ADS center. An important ecological outcome from this study concerns the pattern of residual currents generated by tides. The rectified flows over ADS have the form of a pair of dipoles, cyclonic and anticyclonic eddies located at the seamount's periphery. These eddies are potentially an important factor in local larvae dispersion and their escape from ADS.
NASA Astrophysics Data System (ADS)
Zhang, X.; Lin, C. M., Sr.; Dalrymple, R. W.; Gao, S., Sr.
2017-12-01
Cone penetration testing (CPT) has proved to be as an effective method for sedimentological purposes in wave-dominated coastal environments. This study, based upon interpretation of 500 CPTs, carried out in the late Quaternary Qiantang River incised-valley fill over the eastern China coastal plain, shows how CPTs can also be used for detailed facies characterization and identification of the key surfaces for sequence-stratigraphic interpretation in tide-dominated systems based upon estimation of three major parameters: cone-tip resistance (qc), sleeve friction (fs), and the ratio of fs and qc (FR). Plotting of qc versus FR, in combination with the CPT curve shape and the relative depth in profile, is adopted as the major tool. The lithologic character which is controlled mainly by sediment supply and dynamics, and post-depositional diagenesis is respected as the main factor affecting how well the CPT technique works. Within this particular tide-dominated environment, dominated by non-cohesive sand and silt, the accumulation of the materials from fluid muds is rare. As a result, the tidal-channel deposits exhibit the nature of coarse-grained deposits, different from that of the other mud-dominated facies associations. On the other hand, a distinct layer of fine-grained deposit at the base of the Holocene sequences was subjected to early diagenesis during the last glacial maximum and early transgression, to become uniformly hard and over-consolidated, geotechnically distinct from the overlying softer sediments. Besides, due to the different sediment dynamics, the tidal-flat and salt-marsh deposits exhibit a distinct geotechnical behavior with the offshore shallow marine muddy deposits. All the above mentioned situations provide the basis for the recognition of facies association and the correlated key surfaces, even for the mapping of the incised-valley boundary. As a consequence, the CPT method has a potential to be a very attractive alternative to economically less convenient methods for the geological mapping in the tide-dominated coastal plain areas.
BRIEF COMMUNICATION: A note on the Coulomb collision operator in curvilinear coordinates
NASA Astrophysics Data System (ADS)
Goncharov, P. R.
2010-10-01
The dynamic friction force, diffusion tensor, flux density in velocity space and Coulomb collision term are expressed in curvilinear coordinates via Trubnikov potential functions corresponding to each species of a background plasma. For comparison, explicit formulae are given for the dynamic friction force, diffusion tensor and collisional flux density in velocity space in curvilinear coordinates via Rosenbluth potential functions summed over all species of the background plasma.
Yang, Lei; Guo, Yanjie; Diao, Dongfeng
2017-05-31
Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.
NASA Astrophysics Data System (ADS)
Bomer, J.; Wilson, C.; Hale, R. P.
2017-12-01
In the Ganges-Brahmaputra Delta (GBD) and other tide-dominated systems, periodic flooding of the land surface during the tidal cycle promotes sediment accretion and surface elevation gain over time. However, over the past several decades, anthropogenic modification of the GBD tidal deltaplain through embankment construction has precluded sediment delivery to catchment areas, leading to widespread channel siltation and subsidence in poldered landscapes. Amongst the current discussion on GBD sustainability, the relationship between tidal inundation period and resultant sedimentation in natural and embanked settings remains unclear. Moreover, an evaluation of how riparian sedimentology and stratigraphic architecture changes across the GBD tidal-fluvial spectrum is notably absent, despite its critical importance in assessing geomorphic change in human-impacted transitional environments. To provide local-scale, longitudinal trends of coupled landscape-channel dynamics, an array of surface elevation tables, groundwater piezometers, and sediment traps deployed in natural and embanked settings have been monitored seasonally over a time span of 4 years. This knowledge base will be extended across the GBD tidal-fluvial transition by collecting sediment cores from carefully selected point bars along the Gorai River. Sediments will be analyzed for lithologic, biostratigraphic, and geochemical properties to provide an integrated framework for discerning depositional zones and associated facies assemblages across this complex transitional environment. Preliminary comparisons of accretion and hydroperiod data suggest that inundation duration strongly governs mass accumulation on the intertidal platform, though other factors such as mass extraction from sediment source and vegetation density may play secondary roles.
Effect of simulation conditions on friction in polytetrafluoroethylene (PTFE)
NASA Astrophysics Data System (ADS)
Barry, Peter R.; Jang, Inkook; Perry, Scott S.; Sawyer, W. Gregory; Sinnott, Susan B.; Phillpot, Simon R.
2007-12-01
We report the results of molecular-dynamics simulations of friction at polytetrafluoroethylene (PTFE) interfaces and show that the calculated tribological properties are robust against significant changes in the sliding speed and the morphology of the polymer.
Skin-Friction Measurements in a 3-D, Supersonic Shock-Wave/Boundary-Layer Interaction
NASA Technical Reports Server (NTRS)
Wideman, J. K.; Brown, J. L.; Miles, J. B.; Ozcan, O.
1994-01-01
The experimental documentation of a three-dimensional shock-wave/boundary-layer interaction in a nominal Mach 3 cylinder, aligned with the free-stream flow, and 20 deg. half-angle conical flare offset 1.27 cm from the cylinder centerline. Surface oil flow, laser light sheet illumination, and schlieren were used to document the flow topology. The data includes surface-pressure and skin-friction measurements. A laser interferometric skin friction data. Included in the skin-friction data are measurements within separated regions and three-dimensional measurements in highly-swept regions. The skin-friction data will be particularly valuable in turbulence modeling and computational fluid dynamics validation.
Rotational and frictional dynamics of the slamming of a door
NASA Astrophysics Data System (ADS)
Klein, Pascal; Müller, Andreas; Gröber, Sebastian; Molz, Alexander; Kuhn, Jochen
2017-01-01
A theoretical and experimental investigation of the rotational dynamics, including friction, of a slamming door is presented. Based on existing work regarding different damping models for rotational and oscillatory motions, we examine different forms for the (angular) velocity dependence (ωn, n = 0, 1, 2) of the frictional force. An analytic solution is given when all three friction terms are present and several solutions for specific cases known from the literature are reproduced. The motion of a door is investigated experimentally using a smartphone, and the data are compared with the theoretical results. A laboratory experiment under more controlled conditions is conducted to gain a deeper understanding of the movement of a slammed door. Our findings provide quantitative evidence that damping models involving quadratic air drag are most appropriate for the slamming of a door. Examining this everyday example of a physical phenomenon increases student motivation, because they can relate it to their own personal experience.
A Study Of High Speed Friction Behavior Under Elastic Loading Conditions
NASA Astrophysics Data System (ADS)
Crawford, P. J.; Hammerberg, J. E.
2005-03-01
The role of interfacial dynamics under high strain-rate conditions is an important constitutive relationship in modern modeling and simulation studies of dynamic events (<100 μs in length). The frictional behavior occurring at the interface between two metal surfaces under high elastic loading and sliding speed conditions is studied using the Rotating Barrel Gas Gun (RBGG) facility. The RBGG utilizes a low-pressure gas gun to propel a rotating annular projectile towards an annular target rod. Upon striking the target, the projectile imparts both an axial and a torsional impulse into the target. Resulting elastic waves are measured using strain gauges attached to the target rod. The kinetic coefficient of friction is obtained through an analysis of the resulting strain wave data. Experiments performed using Cu/Cu, Cu/Stainless steel and Cu/Al interfaces provide some insight into the kinetic coefficient of friction behavior at varying sliding speeds and impact loads.
Slip complexity and frictional heterogeneities in dynamic fault models
NASA Astrophysics Data System (ADS)
Bizzarri, A.
2005-12-01
The numerical modeling of earthquake rupture requires the specification of the fault system geometry, the mechanical properties of the media surrounding the fault, the initial conditions and the constitutive law for fault friction. The latter accounts for the fault zone properties and allows for the description of processes of nucleation, propagation, healing and arrest of a spontaneous rupture. In this work I solve the fundamental elasto-dynamic equation for a planar fault, adopting different constitutive equations (slip-dependent and rate- and state-dependent friction laws). We show that the slip patterns may be complicated by different causes. The spatial heterogeneities of constitutive parameters are able to cause the healing of slip, like barrier-healing or slip pulses. Our numerical experiments show that the heterogeneities of the parameter L affect the dynamic rupture propagation and weakly modify the dynamic stress drop and the rupture velocity. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way: a velocity strengthening area (a > b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties. Moreover, the slip distribution on the fault plane is complicated considering the effects of the rake rotation during the propagation: depending on the position on the fault plane, the orientation of instantaneous total dynamic traction can change with time with respect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of the initial stress and on its distribution. They also depend on the curvature and direction of the rupture front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near the rupture front and within the cohesive zone, where the breakdown processes take places. Finally, the rupture behavior, the fault slip distribution and the traction evolution may be changed and complicated including additional physical phenomena, like thermal pressurization of pore fluid (due to frictional heating). Our results involve interesting implications for slip duration and fracture energy.
Experimental Characterization of Hysteresis in a Revolute Joint for Precision Deployable Structures
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Fung, Jimmy; Gloss, Kevin; Liechty, Derek S.
1997-01-01
Recent studies of the micro-dynamic behavior of a deployable telescope metering truss have identified instabilities in the equilibrium shape of the truss in response to low-energy dynamic loading. Analyses indicate that these micro-dynamic instabilities arise from stick-slip friction within the truss joints (e.g., hinges and latches). The present study characterizes the low-magnitude quasi-static load cycle response of the precision revolute joints incorporated in the deployable telescope metering truss, and specifically, the hysteretic response of these joints caused by stick-slip friction within the joint. Detailed descriptions are presented of the test setup and data reduction algorithms, including discussions of data-error sources and data-filtering techniques. Test results are presented from thirteen specimens, and the effects of joint preload and manufacturing tolerances are investigated. Using a simplified model of stick-slip friction, a relationship is made between joint load-cycle behavior and micro-dynamic dimensional instabilities in the deployable telescope metering truss.
NASA Astrophysics Data System (ADS)
Alexandrov, Dmitri V.; Bashkirtseva, Irina A.; Ryashko, Lev B.
2015-04-01
A non-linear behavior of dynamic model of the magma-plug system under the action of N-shaped friction force and stochastic disturbances is studied. It is shown that the deterministic dynamics essentially depends on the mutual arrangement of an equilibrium point and the friction force branches. Variations of this arrangement imply bifurcations, birth and disappearance of stable limit cycles, changes of the stability of equilibria, system transformations between mono- and bistable regimes. A slope of the right increasing branch of the friction function is responsible for the formation of such regimes. In a bistable zone, the noise generates transitions between small and large amplitude stochastic oscillations. In a monostable zone with single stable equilibrium, a new dynamic phenomenon of noise-induced generation of large amplitude stochastic oscillations in the plug rate and pressure is revealed. A beat-type dynamics of the plug displacement under the influence of stochastic forcing is studied as well.
Effects of the internal friction and the solvent quality on the dynamics of a polymer chain closure.
Yu, Wancheng; Luo, Kaifu
2015-03-28
Using 3D Langevin dynamics simulations, we investigate the effects of the internal friction and the solvent quality on the dynamics of a polymer chain closure. We show that the chain closure in good solvents is a purely diffusive process. By extrapolation to zero solvent viscosity, we find that the internal friction of a chain plays a non-ignorable role in the dynamics of the chain closure. When the solvent quality changes from good to poor, the mean closure time τc decreases by about 1 order of magnitude for the chain length 20 ≤ N ≤ 100. Furthermore, τc has a minimum as a function of the solvent quality. With increasing the chain length N, the minimum of τc occurs at a better solvent. Finally, the single exponential distributions of the closure time in poor solvents suggest that the negative excluded volume of segments does not alter the nearly Poisson statistical characteristics of the process of the chain closure.
Dynamic simulation of train-truck collision at level crossings
NASA Astrophysics Data System (ADS)
Ling, Liang; Guan, Qinghua; Dhanasekar, Manicka; Thambiratnam, David P.
2017-01-01
Trains crashing onto heavy road vehicles stuck across rail tracks are more likely occurrences at level crossings due to ongoing increase in the registration of heavy vehicles and these long heavy vehicles getting caught in traffic after partly crossing the boom gate; these incidents lead to significant financial losses and societal costs. This paper presents an investigation of the dynamic responses of trains under frontal collision on road trucks obliquely stuck on rail tracks at level crossings. This study builds a nonlinear three-dimensional multi-body dynamic model of a passenger train colliding with an obliquely stuck road truck on a ballasted track. The model is first benchmarked against several train dynamics packages and its predictions of the dynamic response and derailment potential are shown rational. A geometry-based derailment assessment criterion is applied to evaluate the derailment behaviour of the frontal obliquely impacted trains under different conditions. Sensitivities of several key influencing parameters, such as the train impact speed, the truck mass, the friction at truck tyres, the train-truck impact angle, the contact friction at the collision zone, the wheel/rail friction and the train suspension are reported.
Tire/runway friction interface
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1990-01-01
An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.
Lateral variability of the estuarine turbidity maximum in a tidal strait: Chapter 24
Ganju, N.K.; Schoellhamer, D.H.; ,
2008-01-01
The behavior of the estuarine turbidity maximum (ETM) in response to freshwater flow, tidal forcing, and bed dynamics has been studied extensively by many researchers. However, the majority of investigations focus on the longitudinal position and strength of the ETM, which can vary over tidal, spring-neap, and seasonal timescales. ETMs may become longitudinally fixed due to bathymetric constraints, and thus the lateral position may vary significantly on differing timescales. Lateral dynamics of the ETM may affect contaminant uptake in biologically active regions, while local deposition patterns may be affected by the dominant lateral position. A longitudinally fixed ETM in Carquinez Strait, California, was studied to specifically investigate the dynamics of lateral ETM variability during April 2004. an abrupt topographical control on the north side restricts gravitational circulation resulting in convergence and particle trapping, creating the ETM. The cross-section was continuously monitored with two upward-looking velocity profilers and four optical backscatterance sensors. In addition, cross-sectional measurements over one tidal cycle were performed during a spring tide with boat-mounted velocity and water quality profilers. The lateral and vertical positions of the ETM center of mass varied by a maximum of 250 and 5 m, respectively (20% of width and 17% of depth) over the tidal timescale, while tidally averaged lateral and vertical positions varied substantially less (50 and 1 m, respectively). ETM position responded to tidal energy (Urms), with higher vertical position and a laterally centered position resulting from increased mixing during spring tides, and a northerly lateral position from decreased mixing during neap tides. Hydrodynamic and sediment transport modeling of this period reproduces the lateral and vertical movements of the ETM center of mass. Modeling results indicate increased gravitational circulation in the strait and enhanced particle trapping on the north side during neap tides, thus displacing the ETM center of mass to the north. The south side has no topographical control, and therefore no particle trapping mechanism exists on the south side. Secondary circulation is strengthened on spring tides, distributing near-bed sediment toward the south. The field and modeling results are in agreement with previous work in Carquinez Strait and further elucidate the strong lateral variation of the ETM, even in narrow, energetic tidal straits. ?? 2008 Elsevier B.V. All rights reserved.
In the mid-1990s the Tampa Bay Estuary Program proposed a nutrient reduction strategy focused on improving water clarity to promote seagrass expansion within Tampa Bay. A System Dynamics Model is being developed to evaluate spatially and temporally explicit impacts of nutrient r...
Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.
2004-01-01
Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.
Crustal control of dissipative ocean tides in Enceladus and other icy moons
NASA Astrophysics Data System (ADS)
Beuthe, Mikael
2016-12-01
Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 m deep. The model is general: it applies to all icy satellites with a thin crust and a shallow ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.
Subsurface Ocean Tides in Enceladus and Other Icy Moons
NASA Astrophysics Data System (ADS)
Beuthe, M.
2016-12-01
Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.
Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces.
Amundsen, David Skålid; Trømborg, Jørgen Kjoshagen; Thøgersen, Kjetil; Katzav, Eytan; Malthe-Sørenssen, Anders; Scheibert, Julien
2015-09-01
The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasistatic velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a one-dimensional (1D) spring-block model of an extended frictional interface for various friction laws. With the classical Amontons-Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks accelerates steady-state rupture fronts and we give an approximate expression for this effect. We demonstrate that the 1D results are qualitatively valid in 2D. Our results provide insights into the qualitative role of various key parameters of a frictional interface on its rupture dynamics. They will be useful to better understand the many systems in which spring-block models have proved adequate, from friction to granular matter and earthquake dynamics.
Sekhar, Ashok; Vallurupalli, Pramodh; Kay, Lewis E
2012-11-20
Friction plays a critical role in protein folding. Frictional forces originating from random solvent and protein fluctuations both retard motion along the folding pathway and activate protein molecules to cross free energy barriers. Studies of friction thus may provide insights into the driving forces underlying protein conformational dynamics. However, the molecular origin of friction in protein folding remains poorly understood because, with the exception of the native conformer, there generally is little detailed structural information on the other states participating in the folding process. Here, we study the folding of the four-helix bundle FF domain that proceeds via a transiently formed, sparsely populated compact on-pathway folding intermediate whose structure was elucidated previously. Because the intermediate is stabilized by both native and nonnative interactions, friction in the folding transition between intermediate and folded states is expected to arise from intrachain reorganization in the protein. However, the viscosity dependencies of rates of folding from or unfolding to the intermediate, as established by relaxation dispersion NMR spectroscopy, clearly indicate that contributions from internal friction are small relative to those from solvent, so solvent frictional forces drive the folding process. Our results emphasize the importance of solvent dynamics in mediating the interconversion between protein configurations, even those that are highly compact, and in equilibrium folding/unfolding fluctuations in general.
NASA Technical Reports Server (NTRS)
Chaudhuri, Dilip K.; Slifka, Andrew J.; Siegwarth, James D.
1993-01-01
Unlubricated sliding friction and wear of 440C steels in an oxygen environment have been studied under a variety of load, speed, and temperature ranging from approximately -185 to 675 deg C. A specially designed test apparatus with a ball-on-flat geometry has been used for this purpose. The observed dependencies of the initial coefficient of friction, the average dynamic coefficient of friction, and the wear rate on load, speed, and test temperatures have been examined from the standpoint of existing theories of friction and wear. High contact temperatures are generated during the sliding friction, causing rapid oxidation and localized surface melting. A combination of fatigue, delamination, and loss of hardness due to tempering of the martensitic structure is responsible for the high wear rate observed and the coefficient of friction.
Coastal Carbon Dynamics as a New Chapter in SOCCR2: Tidal Wetlands and Estuaries
NASA Astrophysics Data System (ADS)
Windham-Myers, L.; Megonigal, P.; Cai, W. J.; Hopkinson, C.; Wang, A. Z.; Andersson, A. J.; Hinson, A.; Lagomasino, D.; Peteet, D. M.; Giri, C. P.; Howard, J.; Tang, J.; Crosswell, J.; Martin Hernandez-Ayon, J. M.; Dunton, K. H.; Kroeger, K. D.; Paulsen, M. L.; Allison, M. A.; Siedlecki, S. A.; Alin, S. R.; Hu, X.; Tzortziou, M.; Najjar, R.; Schafer, K. V.; Watson, E.; Pidgeon, E.
2016-12-01
Estuaries and tidal wetlands have been identified as distinct landscape elements for carbon cycling, worthy of a chapter in the pending State of the Carbon Cycle Report - version 2. Despite relatively small aerial coverage compared to other subsystems, tidal wetlands and estuaries have the greatest influence on carbon dynamics of any coastal ocean subsystem. As conduits that filter all material passing between land and the sea, they also exhibit the highest transfer rates of CO2 with the atmosphere of any of the coastal ocean subsystems. Carbon dynamics in estuaries and wetlands are constantly changing, reflecting geomorphic and ecological responses to long and short-term perturbations in external drivers such as sea-level rise, climate change, nutrient loading and land-use change. The influence of these drivers are profound in coastal systems, often more so than in inland wetlands or open ocean environments, and thus require distinct attention to patterns and processes associated with coastal ecosystem functioning, including carbon sequestration services in tidal wetland soils. This new chapter focusses on data sources available in North America to: (1) assess the current state of carbon stocks and fluxes in coastal settings, (2) document understanding of drivers associated with significant fluxes and stocks, and (3) synthesize carbon dynamics from a global context to regional perspectives (East, West, Gulf and high-latitude coastlines). Insights from remote sensing, in situ field data, and numerical models have advanced our ability to monitor and project carbon cycling in this dynamic and narrow fringe at the land-ocean interface. This synthetic chapter will address how these advances can help in decision making, as well as address remaining gaps in our knowledge and monitoring capabilities for these diverse and productive habitats.
Land claim and loss of tidal flats in the Yangtze Estuary.
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-04-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world's largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km(2), a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.
Land claim and loss of tidal flats in the Yangtze Estuary
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-01-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics. PMID:27035525
Land claim and loss of tidal flats in the Yangtze Estuary
NASA Astrophysics Data System (ADS)
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-04-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.
Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Safari, Hamed; Samandari, Mohammad Mahdi; Geramipanah, Farideh
2015-05-01
A fundamental problem in fully understanding the dynamic nature of screw loosening is lack of recognition of the entire process of screw tightening and retightening. The purpose of this study was to explain the dynamic nature of abutment screw retightening by using finite element methods to investigate the effect of the coefficient of friction and retightening on the settling effect. Precise computer models were designed of a Straumann dental implant, a directly attached crown, an abutment screw, and the bone surrounding the implant. All threaded interfaces were designed with a spiral thread helix with a specific coefficient of static and kinetic friction, and the surfaces were characterized as fine, regular, and rough. Abaqus software was used for dynamic simulation, which involved applying rotational displacement to the abutment screw and torque controlling during the steps of tightening, relaxation, retightening, and second relaxation and at different coefficients of friction. The obtained torque and preload values were compared to the predicted values. When surfaces changed from fine to rough, the remaining torque and preload decreased, and the settling effect increased. Upon retightening, the remaining torque and preload increased, and the settling effect also decreased. The reduction of the coefficient of friction contributes to increases in the preload and decreases in the settling effect. Retightening reduced the settling effect and had an insignificant effect on the preload. At high coefficients of friction, the retightening effect was intensified. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Tidal modulation on the Changjiang River plume in summer
NASA Astrophysics Data System (ADS)
WU, H.
2011-12-01
Tide effects on the structure of the near-field Changjiang River Plume and on the extension of the far-field plume have often been neglected in analysis and numerical simulations, which is the focus of this study. Numerical experiments highlighted the crucial role of the tidal forcing in modulating the Changjiang River plume. Without the tidal forcing, the plume results in an unrealistic upstream extension along the Jiangsu Coast. With the tidal forcing, the vertical mixing increases, resulting in a strong horizontal salinity gradient at the northern side of the Changjiang River mouth along the Jiangsu Coast, which acts as a dynamic barrier and restricts the northward migration of the plume. Furthermore, the tidal forcing produces a bi-directional plume structure in the near field and the plume separation is located at the head of the submarine canyon. A significant bulge occurs around the head of submarine canyon and rotates anticyclonically, which carries large portion of the diluted water towards the northeast and merges into the far-field plume. A portion of the diluted water moves towards the southeast, which is mainly caused by tidal ratification. This bi-directional plume structure is more evident under certain wind condition. During the neap tide with the reduced tidal energy, the near-field plume extends farther offshore and the bulge becomes less evident. These dynamic behaviors are maintained and fundamentally important in the region around the river mouth even under the summer monsoon and the shelf currents, although in the far field the wind forcing and shelf currents eventually dominate the plume extension.
H. Wu
Uncertainty Analysis for Oil-Film Interferometry Skin-Friction Measurement Techniques
NASA Technical Reports Server (NTRS)
Naughton, Jonathan W.; Brown, James L.; Merriam, Marshal (Technical Monitor)
1996-01-01
Over the past 20 years, the use of oil-film interferometry to measure the skin friction coefficient (C(sub f) = tau/q where tau is the surface shear stress and q is the dynamic pressure) has increased. Different forms of this oil-film technique with various levels of accuracy and ease of use have been successfully applied in a wide range of flows. The method's popularity is growing due to its relative ease of implementation and minimal intrusiveness as well as an increased demand for C(sub f) measurements. Nonetheless, the accuracy of these methods has not been rigorously addressed to date. Most researchers have simply shown that the skin-friction measurements made using these techniques compare favorably with other measurements and theory, most of which are only accurate to within 5-20%. The use of skin-friction data in the design of commercial aircraft, whose drag at cruise is 50% skin-friction drag, and in the validation of computational fluid dynamics programs warrants better uncertainty estimates. Additional information is contained in the original extended abstract.
Relating stick-slip friction experiments to earthquake source parameters
McGarr, Arthur F.
2012-01-01
Analytical results for parameters, such as static stress drop, for stick-slip friction experiments, with arbitrary input parameters, can be determined by solving an energy-balance equation. These results can then be related to a given earthquake based on its seismic moment and the maximum slip within its rupture zone, assuming that the rupture process entails the same physics as stick-slip friction. This analysis yields overshoots and ratios of apparent stress to static stress drop of about 0.25. The inferred earthquake source parameters static stress drop, apparent stress, slip rate, and radiated energy are robust inasmuch as they are largely independent of the experimental parameters used in their estimation. Instead, these earthquake parameters depend on C, the ratio of maximum slip to the cube root of the seismic moment. C is controlled by the normal stress applied to the rupture plane and the difference between the static and dynamic coefficients of friction. Estimating yield stress and seismic efficiency using the same procedure is only possible when the actual static and dynamic coefficients of friction are known within the earthquake rupture zone.
Three dimensional modelling of earthquake rupture cycles on frictional faults
NASA Astrophysics Data System (ADS)
Simpson, Guy; May, Dave
2017-04-01
We are developing an efficient MPI-parallel numerical method to simulate earthquake sequences on preexisting faults embedding within a three dimensional viscoelastic half-space. We solve the velocity form of the elasto(visco)dynamic equations using a continuous Galerkin Finite Element Method on an unstructured pentahedral mesh, which thus permits local spatial refinement in the vicinity of the fault. Friction sliding is coupled to the viscoelastic solid via rate- and state-dependent friction laws using the split-node technique. Our coupled formulation employs a picard-type non-linear solver with a fully implicit, first order accurate time integrator that utilises an adaptive time step that efficiently evolves the system through multiple seismic cycles. The implementation leverages advanced parallel solvers, preconditioners and linear algebra from the Portable Extensible Toolkit for Scientific Computing (PETSc) library. The model can treat heterogeneous frictional properties and stress states on the fault and surrounding solid as well as non-planar fault geometries. Preliminary tests show that the model successfully reproduces dynamic rupture on a vertical strike-slip fault in a half-space governed by rate-state friction with the ageing law.
Friction on the Bond and the Vibrational Relaxation in Simple Liquids.
NASA Astrophysics Data System (ADS)
Mishra, Bimalendu Kumar
In chapter 1, the energy relaxation of a stiff Morse oscillator dissolved in a simple LJ fluid is calculated using a reversible integrator (r-RESPA) in molecular dynamics generated from the Trotter factorization of the classical propagator. We compare the "real" relaxation from full MD simulations with that predicted by the Generalized Langevin Equation (GLE) with memory friction determined from the full Molecular Dynamics for a series of fluid densities. It is found that the GLE gives very good agreement with MD for the vibrational energy relaxation for this nonlinear oscillator far from equilibrium only for high density fluids, but reduced densities rho < 0.5 the energy relaxation from the MD simulation becomes considered slower than that from the GLE. An analysis of the statistical properties of the random force shows that as the density is lowered the non-Gaussian behavior of the random force becomes more prominent. This behavior is consistent with a simple model in which the oscillator undergoes generalized Langevin dynamics between strong binary collisions with solvent atoms. In chapter 2, molecular hydrodynamics is used to calculate the memory friction on the intramolecular vibrational coordinate of a homonuclear diatomic molecule dissolved in a simple liquid. The predicted memory friction is then compared to recent computer experiments. Agreement with the experimental memory functions is obtained when the linearized hydrodynamics is modified to include gaussian viscoelasticity and compressibility. The hydrodynamic friction on the bond appears to agree qualitatively very well, although quantitative agreement is not found at high frequencies. Various limits of the hydrodynamic friction are discussed.
Internal Friction And Instabilities Of Rotors
NASA Technical Reports Server (NTRS)
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1992-01-01
Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.
NASA Astrophysics Data System (ADS)
Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Søren; Babb, David; Toudal Pedersen, Leif; Ehn, Jens; Bendtsen, Jørgen; Barber, David
2017-11-01
In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series showed that water dynamics and the thermohaline structure were modified considerably during a storm event on 22-24 April, when northerly winds exceeded 15 m s-1. The storm initiated downwelling-like water dynamics characterized by on-shore water transport in the surface (0-40 m) layer and compensating offshore flow at intermediate depths. After the storm, currents reversed in both layers, and the relaxation phase of downwelling lasted ˜ 4 days. Although current velocities did not exceed 5 cm s-1, the enhanced circulation during the storm caused cold turbid intrusions at 75-95 m depth, which are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic mode of the internal tide with a velocity minimum at ˜ 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus. Our findings provide evidence that shelf-basin interaction and tidal forcing can potentially modify coastal Wandel Sea waters even though they are isolated from the atmosphere by landfast sea ice almost year-round. The northerly storms over the continental slope cause an enhanced circulation facilitating a release of cold and turbid subglacial water to the shelf. The tidal flow may contribute to the removal of such water from the glacial terminus.
NASA Astrophysics Data System (ADS)
Peng, Y.; Rubin, A. M.
2016-12-01
Significant complexities of episodic slip and tremor (ETS) have been revealed by short tremor bursts lasting minutes to hours, many of which show clear migration patterns. In Cascadia, large-scale rapid tremor reversals (RTRs) extend tens of km along strike, repeatedly occupying the same general source area during an ETS episode [e.g. Thomas et al, 2013; Peng and Rubin, 2016]. We also observe repetitive tremor bursts occurring well behind the main front in Guerrero, Mexico. In contrast to RTRs, these bursts do not originate from the main front, and generally propagate along the slip direction, similar to those reported from Shikoku, Japan [Shelly et al., 2007]. Both types of bursts occur intermittently, with recurrence intervals gradually increasing to tidal periods. However, even the tidally-modulated bursts are unlikely to be driven solely by tidal forcing. Since the stress must decrease during each burst, while the local maxima of the tidal stress remain nearly constant, each tidal peak stress cannot supply the stress drop for the next repetition. Here we explore the possibility that these repetitive bursts are driven by surrounding tremor-less slow slip. We develop a numerical model governed by a rate-and-state friction law that transitions from velocity-weakening to velocity-strengthening with increasing slip speed. A region with a larger transitional velocity than the background is used to represent the tremor zone. For this zone to slip intermittently, its stiffness needs to be sufficiently large that the slip during each burst is less than the total slip of the background during an episode, but smaller than its own critical stiffness. This critical stiffness decreases as the ratio of the background loading rate to the transitional cutoff velocity increases; from elasticity this ratio decreases as the main front moves across the model tremor zone. With these considerations, we successfully reproduce the burst-like behavior with increasingly large recurrence intervals in the model tremor zone during a single slow slip event. Future work will include investigating the propagation velocities of these bursts, which in Guerrero decrease systematically with increasing time since the previous migration through the same region, and tidal modulation of their recurrence intervals.
NASA Astrophysics Data System (ADS)
Davis, P. M.; Stacey, F. D.
2009-12-01
Melt breccia samples returned from the Apollo mission have dates that suggest that the impacts that formed major basins on the Moon occurred between 3.8 and 4.0 Ga i.e., about 0.6 G years after Lunar formation. Three models have been proposed to explain the LHB. Heliocentric models including (1) The period marked the end of large-scale impacts associated with planetary formation and (2) It corresponded to a spike in impacts associated with major reorientation of the solar system (the ‘Nice model’), when the orbits Jupiter and Saturn became resonant, causing the orbits of Uranus and Neptune to become unstable and grow, scattering cometary and asteroidal fragments into Earth-Moon crossing orbits, and a geocentric model (3) It was due to collision with the last of a series of moonlets formed during Earth accretion which were swept up by tidal regression of a large Moon that had been formed near the Earth by a giant impact. While there is no smoking gun for any of these scenarios we will discuss a possible scenario for (3). Numerical calculations show that tidal regression of a large inner Moon sequentially traps exterior smaller moonlets into 2:1 resonance. Resonant trapping rapidly increases the eccentricity of their orbits causing them to become Moon-crossing. If the orbital radii of the moonlets had a resonance or Bode's law-type distribution, for the last collision to take place at 0.6 Gy, the Moon would have been at ~40 RE when it took place. One of the implications is that the associated LHB impacts would have significantly less relative velocity than those derived from asteroidal or cometary distances associated with (1) or (2). This may explain the low content of vapor condensate in the Lunar breccias. The tidal evolution from ~40 RE at 0.6 Gy requires a lower tidal friction than at present, but this has been evident for many years from tidal rhythmite data.
Tidal characteristics of the gulf of Tonkin
NASA Astrophysics Data System (ADS)
Minh, Nguyen Nguyet; Patrick, Marchesiello; Florent, Lyard; Sylvain, Ouillon; Gildas, Cambon; Damien, Allain; Van Uu, Dinh
2014-12-01
The Gulf of Tonkin, situated in the South China Sea, is a zone of strong ecological, touristic and economic interest. Improving our knowledge of its hydro-sedimentary processes is of great importance to the sustainable development of the area. The scientific objective of this study is to revisit the dominant physical processes that characterize tidal dynamics in the Gulf of Tonkin using a high-resolution model and combination of all available data. Particular attention is thus given to model-data cross-examination using tidal gauges and coastal satellite altimetry and to model calibration derived from a set of sensitivity experiments to model parameters. The tidal energy budget of the gulf (energy flux and dissipation) is then analyzed and its resonance properties are evaluated and compared with idealized models and observations. Then, the tidal residual flow in both Eulerian and Lagrangian frameworks is evaluated. Finally, the problem of tidal frontogenesis is addressed to explain the observed summer frontal structures in chlorophyll concentrations.
Exploring Stellar Populations in the Tidal Tails of NGC3256
NASA Astrophysics Data System (ADS)
Rodruck, Michael; Konstantopoulos, Iraklis; Charlton, Jane C.
2015-01-01
Galaxy interactions can inject material into the intergalactic medium via violent gravitational dynamics, often visualized in tidal tails. The composition of these tails has remained a mystery, as previous studies have focused on detecting tidal features, rather than the composite material itself. With this in mind, we have developed an observing program using deep, multiband imaging to probe the chaotic regions of tidal tails in search for an underlying stellar population. NGC3256's Western and Eastern tidal tails serve as a case study for this new technique. Our results show median color values of u - g = 1.12 and r - i = 0.09 for the Western tail, and u - g = 1.29 and r - i = 0.21 for the Eastern tail, corresponding to ages of approximately 450 Myr and 900 Myr for the tails, respectively. A u - g color gradient is seen in the Western tail as well, running from 1.32 to 1.08 (~2000 Myr to 400 Myr), suggesting ages inside tidal tails can have significant variations.
Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon
NASA Astrophysics Data System (ADS)
Marani, Marco; D'Alpaos, Andrea; Lanzoni, Stefano; Carniello, Luca; Rinaldo, Andrea
2007-06-01
Looking across a tidal landscape, can one foresee the signs of impending shifts among different geomorphological structures? This is a question of paramount importance considering the ecological, cultural and socio-economic relevance of tidal environments and their worldwide decline. In this Letter we argue affirmatively by introducing a model of the coupled tidal physical and biological processes. Multiple equilibria, and transitions among them, appear in the evolutionary dynamics of tidal landforms. Vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions drive the bio-geomorphic evolution of the system. Our approach provides general quantitative routes to model the fate of tidal landforms, which we illustrate in the case of the Venice lagoon (Italy), for which a large body of empirical observations exists spanning at least five centuries. Such observations are reproduced by the model, which also predicts that salt marshes in the Venice lagoon may not survive climatic changes in the next century if IPCC's scenarios of high relative sea level rise occur.
Focal mechanisms and tidal modulation for tectonic tremors in Taiwan
NASA Astrophysics Data System (ADS)
Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.
2015-12-01
Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.
NASA Astrophysics Data System (ADS)
Yang, Ye; Chui, Ting Fong May
2017-07-01
Many coastal areas worldwide have been reclaimed to meet the increasing land demand. Understanding the effects of land reclamation on the hydrodynamics and transport processes of a semi-enclosed bay is therefore of significance. From a case study of Deep Bay (DB) in China and referring to idealized bay models, the effects of two types of land reclamation, one that narrows the bay mouth and another that reduces the water area inside the bay, were examined in this study. Simulation results of idealized models show that the current velocity at the bay mouth and the incoming tidal energy flux are negatively correlated with the width of bay mouth, as the tidal prism remains almost constant when the bay mouth width reduces. The bay mouth width reduction would also increase the tidal energy dissipation inside of the bay due to friction increase. In DB, a 30% reduction in the mouth width increased the bay mouth current velocity by up to 5% and the total incoming energy flux by 18%. The narrowed bay mouth also substantially changed the bay's vertical structure of salinity, increasing the stratification strength by 1.7×10-4 s-2. For reductions in the water surface area in the head of the bay, results from idealized bay simulations show that the current velocity throughout the bay, the incoming tidal energy flux, and salinity at the inner bay all decrease with water area reduction. Reclaiming 14% of area in DB, the current velocity reduced by 9% at the bay mouth, but increased in the middle and inner parts. The incoming tidal energy flux also increased as the coastline became more streamlined after reclamation, and the salinity at inner bay decreased. Both reclamation types have substantially altered the water and salt transport processes and increased the water exchange ability of the bay with the adjacent sea.
On kinetics of a dynamically unbalanced rotator with sliding friction in supports
NASA Astrophysics Data System (ADS)
Chistyakov, Viktor V.
2018-05-01
The dynamics is analytically and numerically modelled for both free and forced rotations of a rigid body around the central but non-principal vertical axis Oz under action of dry friction forces in plain bearings and heel supports in combination with other dissipative and conservative axial torques. The inertia forces due to D'Alembert principle cause the supports' reactions and hence the decelerating friction torque depending on not only angular speed but acceleration too. This dependence makes the dynamical equations not resolved with regard to the senior derivative and ambiguous, and being thus resolved they have an irrational or singular right hand side. This irrationality/singularity results in their featured solutions or paradoxical absence of those in frames of absolutely rigid body approach. The kinetics obtained is analyzed and compared with the standard ones of rotation under action of conservative elastic and drag torques.
Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles
NASA Astrophysics Data System (ADS)
Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho
2017-08-01
The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.
Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1975-01-01
Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Becker, Daniel; Showman, Adam P.
Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiationmore » exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ{sub wave}, plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ{sub wave}∼√(τ{sub rad}/Ω), where τ{sub rad} is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ{sub rad} ∼ τ{sub vert}, where τ{sub vert} is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ{sub rad} and the horizontal day-night advection timescale, τ{sub adv}. Only because τ{sub adv} ∼ τ{sub vert} for hot Jupiters does the commonly assumed timescale comparison between τ{sub rad} and τ{sub adv} yield approximately correct predictions for the heat redistribution efficiency.« less
Synergy and Self-organization in Tribosystem’s evolution. Energy Model of Friction
NASA Astrophysics Data System (ADS)
Fedorov, S. V.; Assenova, E.
2018-01-01
Different approaches are known to treat self-organization in tribosystems, related to the structural adaptation in the formation of dissipative surface structures and of frictional or tribo-films, using of synergistic modifying of layers and coatings, e.g. of the selective material transfer during friction, etc. Regarding tribological processes in contact systems, self-organization is observed as spontaneous creation of higher ordered structures during the contact interaction. The proposed paper considers friction as process of transformation and dissipation of energy and process of elasto-plastic deformation localized in thin surface layers of the interacting bodies. Еnergetic interpretation of friction is proposed. Based on the energy balance equations of friction, the evolution of tribosystems is followed in its adaptive-dissipative character. It reflects the variable friction surfaces compatibility and the nonlinear dynamics of friction evolution. Structural-energy relationships in the contacting surfaces evolution are obtained. Maximum of tribosystem’s efficiency during the evolution is the stage of self-organzation of the friction surface layers, which is a state of abnormal low friction and wear.
The Role of Bed Roughness in Wave Transformation Across Sloping Rock Shore Platforms
NASA Astrophysics Data System (ADS)
Poate, Tim; Masselink, Gerd; Austin, Martin J.; Dickson, Mark; McCall, Robert
2018-01-01
We present for the first time observations and model simulations of wave transformation across sloping (Type A) rock shore platforms. Pressure measurements of the water surface elevation using up to 15 sensors across five rock platforms with contrasting roughness, gradient, and wave climate represent the most extensive collected, both in terms of the range of environmental conditions, and the temporal and spatial resolution. Platforms are shown to dissipate both incident and infragravity wave energy as skewness and asymmetry develop and, in line with previous studies, surf zone wave heights are saturated and strongly tidally modulated. Overall, the observed properties of the waves and formulations derived from sandy beaches do not highlight any systematic interplatform variation, in spite of significant differences in platform roughness, suggesting that friction can be neglected when studying short wave transformation. Optimization of a numerical wave transformation model shows that the wave breaker criterion falls between the range of values reported for flat sandy beaches and those of steep coral fore reefs. However, the optimized drag coefficient shows significant scatter for the roughest sites and an alternative empirical drag model, based on the platform roughness, does not improve model performance. Thus, model results indicate that the parameterization of frictional drag using the bottom roughness length-scale may be inappropriate for the roughest platforms. Based on these results, we examine the balance of wave breaking to frictional dissipation for rock platforms and find that friction is only significant for very rough, flat platforms during small wave conditions outside the surf zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan
For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less
Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; ...
2016-07-11
For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less
Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea
NASA Astrophysics Data System (ADS)
Zhang, Heng; Cheng, Weicong; Qiu, Xixi; Feng, Xiangbo; Gong, Wenping
2017-06-01
A triply-nested two-dimensional (2D) ocean circulation model along with observed sea level records are used to study tide-surge interaction along the east coast of the Leizhou Peninsula (LP) which is characterized by extensive mudflats, large tidal ranges and a complex coastline. The dependency of surge maxima on the water level and the phase of tide are respectively investigated using two statistical approaches. Results show that tide-surge interaction along the east coast of the LP is significant, where surges peak 3-6 h before or after the nearest high water. The triply-nested 2D ocean circulation model is used to quantify tide-surge interaction in this region and to investigate its physical cause. The largest amplitudes of tide-surge interaction are found in the shallow water region of the Leizhou Bay, with values up to 1 m during typhoon events. Numerical experiments reveal that nonlinear bottom friction is the main contributor to tide-surge interaction, while the contribution of the nonlinear advective effect can be neglected. The shallow water effect enhances the role of nonlinear bottom friction in determining tide-surge modulation, leaving the surge peaks usually occur on the rising or falling tide. It is also found that the relative contribution of local wind and remote wind is different depending on the storm track and storm intensity, which would finally affect the temporal and spatial distribution of tide-surge interaction during typhoon events. These findings confirm the importance of coupling storm surges and tides for the prediction of storm surge events in regions which are characterized by shallow water depths and large tidal ranges.
Marsh Pool and Tidal Creek Morphodynamics: Dynamic Equilibrium of New England Saltmarshes?
NASA Astrophysics Data System (ADS)
Wilson, C.; FitzGerald, D. M.; Hughes, Z. J.
2012-12-01
Under natural conditions, high saltmarsh platforms in New England exhibit poor drainage, creating waterlogged pannes (where short-form Spartina alterniflora dominates) and stagnant pools that experience tidal exchange only during spring tides and storm-induced flooding events. It is well accepted that a legacy of ditching practices (either for agriculture or mosquito control purposes) provide "overdrainage" of saltmarshes (after Redfield, 1972) and a shift in biogeochemical conditions: lowering of groundwater tables, aeration of soil, and decrease in preserved belowground biomass. Analysis of historical imagery in the Plum Island Estuary of Massachusetts reveals closure and decrease in length of anthropogenic ditches in recent decades is closely linked to marsh pool evolution. Field analyses including stratigraphic transects and elevation surveys suggest these marshes are reverting to natural drainage conditions. Further, an important dynamic interaction exists between saltmarsh pools and natural tidal creeks: creeks incise into pool areas, causing drainage of the pools, and formation of an unvegetated mudflat which can be rapidly recolonized by halophytic Spartina alterniflora vegetation. It was determined that pool and creek dynamics are cyclic in nature. The marsh platform is in dynamic equilibrium with respect to elevation and sea-level whereby marsh elevation may be lost (due to degradation of organic matter and formation of a pool) however may be regained (by creek incision into pools, restoration of tidal exchange, and rapid vertical accretion with Spartina alterniflora recolonization. Since vertical accretion in saltmarshes is a function of both organic and inorganic contributions to the marsh subsurface, it is hypothesized that cannibalization of existing muds is supplying inorganic material in this sediment starved system.
Onset of frictional sliding of rubber–glass contact under dry and lubricated conditions
Tuononen, Ari J.
2016-01-01
Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons’ law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements. PMID:27291939
The high-speed sliding friction of graphene and novel routes to persistent superlubricity
Liu, Yilun; Grey, François; Zheng, Quanshui
2014-01-01
Recent experiments on microscopic graphite mesas demonstrate reproducible high-speed microscale superlubricity, even under ambient conditions. Here, we explore the same phenomenon on the nanoscale, by studying a graphene flake sliding on a graphite substrate, using molecular dynamics. We show that superlubricity is punctuated by high-friction transients as the flake rotates through successive crystallographic alignments with the substrate. Further, we introduce two novel routes to suppress frictional scattering and achieve persistent superlubricity. We use graphitic nanoribbons to eliminate frictional scattering by constraining the flake rotation, an approach we call frictional waveguides. We can also effectively suppress frictional scattering by biaxial stretching of the graphitic substrate. These new routes to persistent superlubricity at the nanoscale may guide the design of ultra-low dissipation nanomechanical devices. PMID:24786521
NASA Technical Reports Server (NTRS)
Greenberg, Harry; Sternfield, Leonard
1944-01-01
The relation between the elevator hinge moment parameters and the control forces for changes in forward speed and in maneuvers is shown for several values of static stability and elevator mass balance. The stability of the short period oscillations is shown as a series of boundaries giving the limits of the stable regions in terms of the elevator hinge moment parameters. The effects of static stability, elevator moment of inertia, elevator mass unbalance, and airplane density are also considered. Dynamic instability is likely to occur if there is mass unbalance of the elevator control system combined with a small restoring tendency (high aerodynamic balance). This instability can be prevented by a rearrangement of the unbalancing weights which, however, involves an increase of the amount of weight necessary. It can also be prevented by the addition of viscous friction to the elevator control system provided the airplane center of gravity is not behind a certain critical position. For high values of the density parameter, which correspond to high altitudes of flight, the addition of moderate amounts of viscous friction may be destabilizing even when the airplane is statically stable. In this case, increasing the viscous friction makes the oscillation stable again. The condition in which viscous friction causes dynamic instability of a statically stable airplane is limited to a definite range of hinge moment parameters. It is shown that, when viscous friction causes increasing oscillations, solid friction will produce steady oscillations having an amplitude proportional to the amount of friction.
The three-dimensional (3D) finite difference model Environmental Fluid Dynamics Code (EFDC) was used to simulate the hydrodynamics and sediment transport in a partially stratified micro-tidal estuary. The estuary modeled consisted of a 16-km reach of the St. Johns River, Florida,...
Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiao-Yu; Key Laboratory of Hubei Province for Water Jet Theory and New Technology, Wuhan University, Wuhan 430072; Wu, RunNi
2014-05-05
Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decreasemore » the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.« less
NASA Technical Reports Server (NTRS)
Greenberg, Harry; Sternfield, Leonard
1943-01-01
Charts showing the variation in dynamic stability with the rudder hinge-moment characteristics are presented. A stabilizing rudder floating tendency combined with a high degree of aerodynamic balance is shown to lead to oscillations of increasing amplitude. This dynamic instability is increased by viscous-friction in the rudder control system. The presence of solid friction in the rudder control system will cause steady oscillations of constant amplitude if the floating angle of the rudder per unit angle of sideslip is stabilizing and greater than a certain critical value that depends on other airplane parameters, such as vertical-tail area and airplane moment of inertia about the vertical axis. The amplitude of the steady oscillation is proportional to the amount of friction and is generally quite small but increases as the condition of dynamic instability is approached. An approximate method of calculating the amplitudes of the steady oscillation is explained and is illustrated by a numerical example. A more accurate step-by-step calculation of the motion is also made and it is shown that the agreement with the approximate method is good.
An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles
NASA Technical Reports Server (NTRS)
Bossard, J. A.; Peck, R. E.; Schmidt, D. K.
1993-01-01
The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.
Modeling the Structure and Dynamics of Dwarf Spheroidal Galaxies with Dark Matter and Tides
NASA Astrophysics Data System (ADS)
Muñoz, Ricardo R.; Majewski, Steven R.; Johnston, Kathryn V.
2008-05-01
We report the results of N-body simulations of disrupting satellites aimed at exploring whether the observed features of dSphs can be accounted for with simple, mass-follows-light (MFL) models including tidal disruption. As a test case, we focus on the Carina dwarf spheroidal (dSph), which presently is the dSph system with the most extensive data at large radius. We find that previous N-body, MFL simulations of dSphs did not sufficiently explore the parameter space of satellite mass, density, and orbital shape to find adequate matches to Galactic dSph systems, whereas with a systematic survey of parameter space we are able to find tidally disrupting, MFL satellite models that rather faithfully reproduce Carina's velocity profile, velocity dispersion profile, and projected density distribution over its entire sampled radius. The successful MFL model satellites have very eccentric orbits, currently favored by CDM models, and central velocity dispersions that still yield an accurate representation of the bound mass and observed central M/L ~ 40 of Carina, despite inflation of the velocity dispersion outside the dSph core by unbound debris. Our survey of parameter space also allows us to address a number of commonly held misperceptions of tidal disruption and its observable effects on dSph structure and dynamics. The simulations suggest that even modest tidal disruption can have a profound effect on the observed dynamics of dSph stars at large radii. Satellites that are well described by tidally disrupting MFL models could still be fully compatible with ΛCDM if, for example, they represent a later stage in the evolution of luminous subhalos.
The Influence of Water Circulation on Dissolved Organic Matter Dynamics in Bald Head Creek
NASA Astrophysics Data System (ADS)
Lebrasse, M. C.; Osburn, C. L.; Bohnenstiehl, D. R.; He, R.
2016-12-01
Dissolved organic matter (DOM) plays an important role in biogeochemical cycles in estuaries such as tidal creeks draining coastal wetlands such as salt marshes. However, significant knowledge gaps remain regarding the quantity and quality of the DOM that tidally exchanges between salt marshes and their adjacent estuaries. Tidal movements play a central role in lateral exchanges of materials and bidirectional flow results in the mixing of DOM from marsh plants and estuarine DOM. The aim of this study was to better understand the role of water circulation on the distribution and quality of DOM in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina. Dissolved organic carbon (DOC) concentration, stable carbon isotopes, and chromophoric DOM (CDOM) absorbance at 254 nm (a254) were used to distinguish between DOM quantity and quality at three locations along the creek: Site 3 (upstream), Site 2 (middle stream), and Site 1 (near the creek mouth). Samples were collected over four tidal cycles between March-August 2016 and compared to time series data collected approximately weekly from 2014-2016. DOM characteristics differed substantially over the tidal cycle. Higher CDOM and DOC concentration were observed at low tide than at high tide at all three sites, suggesting greater export of carbon from the marsh into the creek as the tides recede. Analysis of CDOM quality based on specific UV absorbance at 254 nm (SUVA254) and spectral slope ratio (SR) showed that the marsh end-member (Site 3) source of DOM had greater aromaticity and higher molecular weight. Site 1 showed greater variability over the tidal cycle most likely due to a greater tidal influence, being closer to the mouth. Additionally, an unmanned surface vehicle (USV) and a hydrodynamic model were used to map water circulation and DOC concentration along the creek to compute exchanges with the adjacent estuary. Results suggest that estuarine OM dynamics are strongly controlled by the circulation of water, especially for tidal creeks where tidal pumping can dominate lateral fluxes of DOM to adjacent waters.
NASA Astrophysics Data System (ADS)
Struck, Curtis; Appleton, Philip; Charmandaris, Vassilis; Reach, William; Smith, Beverly
2004-09-01
We propose to use Spitzer's unprecedented sensitivity and wide spatial and spectral evolution to study the distribution of star formation in a sample of colliding galaxies with a wide range of tidal and splash structures. Star forming environments like those in strong tidal spirals, and in extra-disk structures like tails were probably far more common in the early stages of galaxy evolution, and important contributors to the net star formation. Using the Spitzer data and data from other wavebands, we will compare the pattern of SF to maps of gas and dust density and phase distribution. With the help of dynamical modeling, we will relate these in turn to dynamical triggers, to better understand the trigger mechanisms. We expect our observations to complement both the SINGS archive and the archives produced by other GO programs, such as those looking at merger remnants or tidal dwarf formation.
Raman spectroscopic study of reaction dynamics
NASA Astrophysics Data System (ADS)
MacPhail, R. A.
1990-12-01
The Raman spectra of reacting molecules in liquids can yield information about various aspects of the reaction dynamics. The author discusses the analysis of Raman spectra for three prototypical unimolecular reactions, the rotational isomerization of n-butane and 1,2-difluoroethane, and the barrierless exchange of axial and equatorial hydrogens in cyclopentane via pseudorotation. In the first two cases the spectra are sensitive to torsional oscillations of the gauche conformer, and yield estimates of the torsional solvent friction. In the case of cyclopentane, the spectra can be used to discriminate between different stochastic models of the pseudorotation dynamics, and to determine the relevant friction coefficients.
Modulation of Folding Internal Friction by Local and Global Barrier Heights.
Zheng, Wenwei; de Sancho, David; Best, Robert B
2016-03-17
Recent experiments have revealed an unexpected deviation from a first power dependence of protein relaxation times on solvent viscosity, an effect that has been attributed to "internal friction". One clear source of internal friction in protein dynamics is the isomerization of dihedral angles. A key outstanding question is whether the global folding barrier height influences the measured internal friction, based on the observation that the folding rates of fast-folding proteins, with smaller folding free energy barriers, tend to exhibit larger internal friction. Here, by studying two alanine-based peptides, we find that systematic variation of global folding barrier heights has little effect on the internal friction for folding rates. On the other hand, increasing local torsion angle barriers leads to increased internal friction, which is consistent with solvent memory effects being the origin of the viscosity dependence. Thus, it appears that local torsion transitions determine the viscosity dependence of the diffusion coefficient on the global coordinate and, in turn, internal friction effects on the folding rate.
Spin-orbital Tidal Dynamics and Tidal Heating in the TRAPPIST-1 Multiplanet System
NASA Astrophysics Data System (ADS)
Makarov, Valeri V.; Berghea, Ciprian T.; Efroimsky, Michael
2018-04-01
We perform numerical simulations of the TRAPPIST-1 system of seven exoplanets orbiting a nearby M dwarf, starting with a previously suggested stable configuration. The long-term stability of this configuration is confirmed, but the motion of planets is found to be chaotic. The eccentricity values are found to vary within finite ranges. The rates of tidal dissipation and tidal evolution of orbits are estimated, assuming an Earth-like rheology for the planets. We find that under this assumption, the planets b, d, and e were captured in the 3:2 or higher spin–orbit resonances during the initial spin-down, but slipped further down into the 1:1 resonance. Depending on its rheology, the innermost planet b may be captured in a stable pseudosynchronous rotation. Nonsynchronous rotation ensures higher levels of tidal dissipation and internal heating. The positive feedback between the viscosity and the dissipation rate—and the ensuing runaway heating—are terminated by a few self-regulation processes. When the temperature is high and the viscosity is low enough, the planet spontaneously leaves the 3:2 resonance. Further heating is stopped either by passing the peak dissipation or by the emergence of partial melt in the mantle. In the post-solidus state, the tidal dissipation is limited to the levels supported by the heat transfer efficiency. The tides on the host star are unlikely to have had a significant dynamical impact. The tides on the synchronized inner planets tend to reduce these planets’ orbital eccentricity, possibly contributing thereby to the system’s stability.
Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico
We perform the first systematic study of how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N -body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidalmore » captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase in the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates, we find that the rate of tidal inspirals relative to collisions increases as the initial semimajor axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars (NSs). In this case, we find the rate of highly eccentric white dwarf—NS mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients, such as Ca-rich transients.« less
Bergamaschi, Brian A.; Fleck, Jacob A.; Downing, Bryan D.; Boss, Emmanuel; Pellerin, Brian A.; Ganju, Neil K.; Schoellhamer, David H.; Byington, Amy A.; Heim, Wesley A.; Stephenson, Mark; Fujii, Roger
2012-01-01
We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM—representative of particle-associated and filter-passing Hg, respectively—together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005–2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.
NASA Astrophysics Data System (ADS)
Wang, A. Z.; Chu, S. N.; Kroeger, K. D.; Gonneea, M. E.; Ganju, N. K.
2017-12-01
Dynamic lateral exports of dissolved inorganic carbon (DIC) and total alkalinity (Alk) via tidal exchange from highly productive intertidal marshes are an important piece of puzzle in the coastal carbon cycle, challenging our capability of assessing coastal carbon budgets and projecting future changes under anthropogenic pressure. The effects of these exports on seawater chemistry are profound yet complicated to study. This study presents the latest development of assessing lateral DIC and Alk fluxes from tidal marshes and examining their effects on seawater chemistry and coastal carbon budgets. The study evaluates different approaches to quantify these exports in order to obtain insights on the best and efficient way to capture the dynamics of such exports. A state-of-the-art DIC sensor, Channelized Optical System (CHANOS), was deployed to establish the true DIC fluxes. They are compared to the fluxes derived from empirical modeling and traditional bottle measurements. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and Alk over a same tidal cycle. However, their generation is decoupled as a result of deferential effects of aerobic and anaerobic respirations. This creates complex scenarios of large swings of seawater chemistry and buffering capacity in tidal water over tidal and seasonal cycles. Marsh exports of DIC and Alk may have complex implications for the future, more acidified ocean. The latest estimates of marsh DIC and Alk exports suggest they are a major term in the marsh carbon budget and can be translated into one of the primary components in the coastal carbon cycle.
2013-04-01
to maximize joint efficiency. 15. SUBJECT TERMS friction stir welding, strain rate, dynamic recrystallization , joint efficiency, stir zone (SZ...stir welding, Strain rate, Dynamic recrystallization , Joint efficiency, Stir Zone (SZ) Abstract The initial microstructure plays an important role in... eutectic Mg17Al12 phase. Park et al. [7] demonstrated the importance of texture and related it to the mechanical properties of an AZ61 alloy
Effects of asperity contact on stick-slip dynamics
NASA Astrophysics Data System (ADS)
Yamaguchi, Tetsuo
2017-04-01
It is believed that asperity contact plays an important role in fricton, in particular in onset of dynamic slip or stick-slip motions. However, there remains very few studies controling asperities and observing their effects on mascoscopic stick-slip behavior or frictional constitutive laws. Here we perform stick-slip friction experiments between compliant gels with well-controlled asperity shape/size/configurations by molding technique. We find that, as curvature radius of the asperity becomes larger and the normal stress becomes smaller, velocity dependence turns from rate-strengthening to rate-weakening and accordingly, frictional behavior transitions from steady sliding, slow slip to fast slip. In this talk, we discuss the asperity size effects based on microscopic/macroscopic observations as well as a theoretical argument.
NASA Technical Reports Server (NTRS)
Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.
1997-01-01
In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alcantara rocket site in northeastern Brazil as part of the International Guard Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3 deg S) and magnetic (approx. 0.5 deg S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50-MHz radar (Cornell University) provided local sounding of the electrojet region. A description of the campaign logistics and the measurements performed with the Nike-Orion instrumentation and their implications for turbulence due to gravity waves and tidal instability in the mesosphere and lower thermosphere (MLT) are presented here. From a study of electron density fluctuations measured by rocket probes, we have found evidence for equatorial mesospheric neutral-atmospheric turbulence between 85 and 90 km. Furthermore, falling-sphere data imply that gravity wave breaking was a source for this turbulence. Mean motions and the various planetary, tidal, and gravity wave structures and their coherence and variability are the subjects of a companion paper.
NASA Astrophysics Data System (ADS)
Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.
1997-11-01
In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alca‸ntara rocket site in northeastern Brazil as part of the International Guará Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3°S) and magnetic (~0.5°S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50-MHz radar (Cornell University) provided local sounding of the electrojet region. A description of the campaign logistics and the measurements performed with the Nike-Orion instrumentation and their implications for turbulence due to gravity waves and tidal instability in the mesosphere and lower thermosphere (MLT) are presented here. From a study of electron density fluctuations measured by rocket probes, we have found evidence for equatorial mesospheric neutral-atmospheric turbulence between 85 and 90 km. Furthermore, falling-sphere data imply that gravity wave breaking was a source for this turbulence. Mean motions and the various planetary, tidal, and gravity wave structures and their coherence and variability are the subjects of a companion paper.
NASA Astrophysics Data System (ADS)
Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.
2014-12-01
Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.
A hypothesis for delayed dynamic earthquake triggering
Parsons, T.
2005-01-01
It's uncertain whether more near-field earthquakes are triggered by static or dynamic stress changes. This ratio matters because static earthquake interactions are increasingly incorporated into probabilistic forecasts. Recent studies were unable to demonstrate all predictions from the static-stress-change hypothesis, particularly seismicity rate reductions. However, current dynamic stress change hypotheses do not explain delayed earthquake triggering and Omori's law. Here I show numerically that if seismic waves can alter some frictional contacts in neighboring fault zones, then dynamic triggering might cause delayed triggering and an Omori-law response. The hypothesis depends on faults following a rate/state friction law, and on seismic waves changing the mean critical slip distance (Dc) at nucleation zones.
Reconnection Dynamics and Mutual Friction in Quantum Turbulence
NASA Astrophysics Data System (ADS)
Laurie, Jason; Baggaley, Andrew W.
2015-07-01
We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles.
Contact line friction of electrowetting actuated viscous droplets
NASA Astrophysics Data System (ADS)
Vo, Quoc; Tran, Tuan
2018-06-01
We examine the contact line friction coefficient of viscous droplets spreading and retracting on solid surfaces immersed in ambient oil. By using the electrowetting effect, we generate a surface tension imbalance to drive the spreading and the retracting motion of the three-phase contact line (TCL). We show that neither the driving force intensity nor TCL direction significantly influences the friction coefficient. Instead, the friction coefficient depends equivalently on the viscosity of liquid droplets and the surrounding oil. We derive and experimentally verify a transient timescale that can be used to characterize both the spreading and retracting dynamics.
Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions
NASA Astrophysics Data System (ADS)
Vilotte, J. P.; Scala, A.; Festa, G.
2017-12-01
We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.
Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)
NASA Astrophysics Data System (ADS)
Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard
2016-04-01
Coastal ecosystems have been attributed the potential to store large amounts of organic carbon (OC), often referred to as blue carbon, of which a considerable amount is stored in tidal marsh soils. Large uncertainties still exist with respect to the amount and controlling factors of soil organic carbon (SOC) stored in these ecosystems. Moreover, most research has focused on SOC dynamics of saltmarshes, while brackish and freshwater marshes are often even more productive and thus receive even larger organic carbon inputs. Therefore, in this study the OC dynamics of tidal marsh soils along an estuarine gradient are studied in order to contribute to our knowledge of 1) the stocks, 2) the controlling factors and 3) the fate of SOC in tidal marshes with different environmental characteristics. This research thus contributes to a better understanding of the potential of coastal environments to store organic carbon under future climatic changes. Soil and vegetation samples are collected in tidal salt-, brackish- and freshwater marshes in the Scheldt estuary (Belgium - The Netherlands). At each tidal marsh, three replicate soil cores up to 1.5m depth in 0.03m increments are collected at locations with both a low and a high elevation. These cores are analyzed for OC, stable C and N isotopes, bulk density and texture. Incubation experiments of topsoil samples were conducted and both aboveground and belowground biomass were collected. The results show that SOC stocks (range: 13,5 - 35,4 kg OC m-2), standing biomass (range: 2000 - 7930 g DW m-2) and potential soil respiration of CO2 (range: 0,03 - 0,12 % per unit OC per day) decrease with increasing salinity. This shows that both the amount of OC from local macrophytes and the quality of the organic matter are important factors controlling the SOC stocks. In addition, based on the analysis of stable C and N isotopes, it appears that when a significant fraction of SOC is derived from local macrophytes, higher SOC stocks are found, while a change in aboveground vegetation type can have large effects on SOC accumulation. Moreover, as these marsh soils have been dated before, the observed depth patterns in SOC can be linked to historical changes (e.g. changes in vegetation). A calibrated model simulating sediment deposition in these marshes is coupled to a two-pool OC model to study the effect of sediment deposition rate on the fate of SOC, with most input information being collected at the field sites. This allows us to calculate the residence time of OC in these tidal marsh soils, a measure that is very uncertain, also for other ecosystems. The part concerning modelling is however still under progress at the moment of writing. This study shows to which extent OC stocks and dynamics of tidal marsh soils along a temperate estuary are controlled by 1) the amount and quality of OC input and 2) the contribution from different sources of OC, and uses these finding to construct a 1D model to simulate these dynamics through time.
Nonlinear friction dynamics on polymer surface under accelerated movement
NASA Astrophysics Data System (ADS)
Aita, Yuuki; Asanuma, Natsumi; Takahashi, Akira; Mayama, Hiroyuki; Nonomura, Yoshimune
2017-04-01
Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE) resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction) and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.
NASA Astrophysics Data System (ADS)
Choi, Kyungsik; Kim, Do Hyeong
2016-06-01
Tidal dunes with well-defined rhythmic tidal bundles are documented from the lower intertidal zone of an open-coast macrotidal environment in Gyeonggi Bay, Korea. Based on combined morphologic, sedimentologic and hydrodynamic datasets, this study aims to characterize the factors that govern the temporal and spatial variability of tidal bundles in a non-barred, unconfined macrotidal environment. The tidal dunes are flood-asymmetric and of longer wavelength (10-20 m) with small ebb caps on the upper bank, and symmetric to slightly ebb-asymmetric and of shorter wavelength (5-10 m) with larger ebb caps on the lower bank. The upper-bank dunes are characterized by more steeply dipping flood-directed planar cross-beds and thinner mud drapes than the lower-bank dunes. Each tidal bundle consists of a single mud drape that is stratified to cross-stratified, rich in silt and very fine sand. It overlies ebb-directed ripples and represents dynamic mud deposition during the ebb tidal phase. The presence of strong rotary currents (up to 0.25 m/s) and low suspended-sediment concentration of flood currents prevent deposition of mud drapes during the high-tide slack-water period. The distinct asymmetry in the water elevation at which the velocity peaks during the ebb and flood phases results in the preferential preservation of flood-directed cross-beds in the lower intertidal zone, where the ebb current - although stronger than the flood currents - is of shorter duration and hence unable to reverse the dune profile. The pronounced time-velocity asymmetry at the higher elevation combined with the distinct velocity peak asymmetry leads to a better preservation of hierarchical tidal cycles in the upper-bank dunes. The present study suggests that the persistent occurrence of single, stratified to cross-stratified mud drapes, which reflect dynamic mud deposition during the ebb phase, and the dominance of flood-directed cross-beds are diagnostic features of tidal bundles in the intertidal zone of unbarred, open-coast macrotidal environments. A proposed model for mud drape deposition provides a new perspective on the origin of tidal bundles together with useful criteria for reconstructing the paleo-depositional setting.
Effect of subseabed salt domes on Tidal Residual currents in the Persian Gulf
NASA Astrophysics Data System (ADS)
Mashayekh Poul, Hossein; Backhaus, Jan; Dehghani, Ali; Huebner, Udo
2016-05-01
Geological studies in the Persian Gulf (PG) have revealed the existence of subseabed salt-domes. With suitable filtering of a high-resolution PG seabed topography, it is seen that the domes leave their signature in the seabed, i.e., numerous hills and valleys with amplitudes of several tens of meters and radii from a few up to tens of kilometers. It was suspected that the "shark skin" of the PG seabed may affect the tidal residual flow. The interaction of tidal dynamics and these obstacles was investigated in a nonlinear hydrodynamic numerical tidal model of the PG. The model was first used to characterize flow patterns of residual currents generated by a tidal wave passing over symmetric, elongated and tilted obstacles. Thereafter it was applied to the entire PG. The model was forced at its open boundary by the four dominant tidal constituents residing in the PG. Each tidal constituent was simulated separately. Results, i.e., tidal residual currents in the PG, as depicted by Lagrangian trajectories reveal a stationary flow that is very rich in eddies. Each eddy can be identified with a topographic obstacle. This confirms that the tidal residual flow field is strongly influenced by the nonlinear interaction of the tidal wave with the bottom relief which, in turn, is deformed by salt-domes beneath the seabed. Different areas of maximum residual current velocities are identified for major tidal constituents. The pattern of trajectories indicates the presence of two main cyclonic gyres and several adjacent gyres rotating in opposite directions and a strong coastal current in the northern PG.
Theoretical aspects of tidal and planetary wave propagation at thermospheric heights
NASA Technical Reports Server (NTRS)
Volland, H.; Mayr, H. G.
1977-01-01
A simple semiquantitative model is presented which allows analytic solutions of tidal and planetary wave propagation at thermospheric heights. This model is based on perturbation approximation and mode separation. The effects of viscosity and heat conduction are parameterized by Rayleigh friction and Newtonian cooling. Because of this simplicity, one gains a clear physical insight into basic features of atmospheric wave propagation. In particular, we discuss the meridional structures of pressure and horizontal wind (the solutions of Laplace's equation) and their modification due to dissipative effects at thermospheric heights. Furthermore, we solve the equations governing the height structure of the wave modes and arrive at a very simple asymptotic solution valid in the upper part of the thermosphere. That 'system transfer function' of the thermosphere allows one to estimate immediately the reaction of the thermospheric wave mode parameters such as pressure, temperature, and winds to an external heat source of arbitrary temporal and spatial distribution. Finally, the diffusion effects of the minor constituents due to the global wind circulation are discussed, and some results of numerical calculations are presented.
NASA Astrophysics Data System (ADS)
Singer, S. Fred
A coherent account is presented here based on the hypothesis that the moon formed separately in a heliocentric orbit similar to the earth's and was later captured by the earth. The adoption of this hypothesis, together with the observed depletion of iron in the moon, sets some important constraints on the condensation and agglomeration phenomena in the primeval solar nebula that led to the formation of planetesimals, and ultimately to planets. Capture of the moon also defines a severe heating event whereby the earth's kinetic energy of rotation is largely dissipated internally by the mechanism of tidal friction. From this melting event dates the geologic, atmospheric, and oceanic history of the earth. An attempt is made to account for the unique development of the earth, especially in relation to Mars and Venus, its neighboring planets. A capture origin of the moon that employs a 'push-pull' tidal theory does not strain the laws of physics, involves a minimum of ad hoc assumptions, and has a probability that is commensurate with the evidence of the existence of a unique moon.
The Fate of Exoplanets and the Red Giant Rapid Rotator Connection
NASA Astrophysics Data System (ADS)
Carlberg, Joleen K.; Majewski, Steven R.; Arras, Phil; Smith, Verne V.; Cunha, Katia; Bizyaev, Dmitry
2011-03-01
We have computed the fate of exoplanet companions around main sequence stars to explore the frequency of planet ingestion by their host stars during the red giant branch evolution. Using published properties of exoplanetary systems combined with stellar evolution models and Zahn's theory of tidal friction, we modeled the tidal decay of the planets' orbits as their host stars evolve. Most planets currently orbiting within 2 AU of their star are expected to be ingested by the end of their stars' red giant branch ascent. Our models confirm that many transiting planets are sufficiently close to their parent star that they will be accreted during the main sequence lifetime of the star. We also find that planet accretion may play an important role in explaining the mysterious red giant rapid rotators, although appropriate planetary systems do not seem to be plentiful enough to account for all such rapid rotators. We compare our modeled rapid rotators and surviving planetary systems to their real-life counterparts and discuss the implications of this work to the broader field of exoplanets.
Dynamic evolution of interface roughness during friction and wear processes.
Kubiak, K J; Bigerelle, M; Mathia, T G; Dubois, A; Dubar, L
2014-01-01
Dynamic evolution of surface roughness and influence of initial roughness (S(a) = 0.282-6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 µm. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro, and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch, etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts. © Wiley Periodicals, Inc.
Catalog of worldwide tidal bore occurrences and characteristics
Bartsch-Winkler, S.; Lynch, David K.
1988-01-01
Documentation of tidal bore phenomena occurring throughout the world aids in defining the typical geographical setting of tidal bores and enables prediction of their occurrence in remote areas. Tidal bores are naturally occurring, tidally generated, solitary, moving water waves up to 6 meters in height that form upstream in estuaries with semidiurnal or nearly semidiurnal tide ranges exceeding 4 meters. Estuarine settings that have tidal bores typically include meandering fluvial systems with shallow gradients. Bores are well defined, having amplitudes greater than wind- or turbulence-caused waves, and may be undular or breaking. Formation of a bore is dependent on depth and velocity of the incoming tide and river outflow. Bores may occur in series (in several channels) or in succession (marking each tidal pulse). Tidal bores propagate up tidal estuaries a greater distance than the width of the estuary and most occur within 100 kilometers upstream of the estuary mouth. Because they are dynamic, bores cause difficulties in some shipping ports and are targets for eradication. Tidal bores are known to occur, or to have occurred in the recent past, in at least 67 localities in 16 countries at all latitudes, including every continent except Antarctica. Parts of Argentina, Canada, Central America, China, Mozambique, Madagascar, Northern Europe, North and South Korea, the United Kingdom, and the U.S.S.R. probably have additional undiscovered or unreported tidal bores. In Turnagain Arm estuary in Alaska, bores cause an abrupt increase in salinity, suspended sediment, surface character, and bottom pressure, a decrease in illumination of the water column, and a change in water temperature. Tidal bores occurring in Turnagain Arm, Alaska, have the
Multi-source micro-friction identification for a class of cable-driven robots with passive backbone
NASA Astrophysics Data System (ADS)
Tjahjowidodo, Tegoeh; Zhu, Ke; Dailey, Wayne; Burdet, Etienne; Campolo, Domenico
2016-12-01
This paper analyses the dynamics of cable-driven robots with a passive backbone and develops techniques for their dynamic identification, which are tested on the H-Man, a planar cabled differential transmission robot for haptic interaction. The mechanism is optimized for human-robot interaction by accounting for the cost-benefit-ratio of the system, specifically by eliminating the necessity of an external force sensor to reduce the overall cost. As a consequence, this requires an effective dynamic model for accurate force feedback applications which include friction behavior in the system. We first consider the significance of friction in both the actuator and backbone spaces. Subsequently, we study the required complexity of the stiction model for the application. Different models representing different levels of complexity are investigated, ranging from the conventional approach of Coulomb to an advanced model which includes hysteresis. The results demonstrate each model's ability to capture the dynamic behavior of the system. In general, it is concluded that there is a trade-off between model accuracy and the model cost.
The contact condition influence on stability and energy efficiency of quadruped robot
NASA Astrophysics Data System (ADS)
Lei, Jingtao; Wang, Tianmiao; Gao, Feng
2008-10-01
Quadruped robot has attribute of serial and parallel manipulator with multi-loop mechanism, with more DOF of each leg and intermittent contact with ground during walking, the trot gait of quadruped robot belongs to dynamic waking, compared to the crawl gait, the walking speed is higher, but the robot becomes unstable, it is difficult to keep dynamically stable walking. In this paper, we mainly analyze the condition for the quadruped robot to realize dynamically stable walking, establish centroid orbit equation based on ZMP (Zero Moment Point) stability theory, on the other hand , we study contact impact and friction influence on stability and energy efficiency. Because of the periodic contact between foots and ground, the contact impact and friction are considered to establish spring-damp nonlinear dynamics model. Robot need to be controlled to meet ZMP stability condition and contact constraint condition. Based on the virtual prototyping model, we study control algorithm considering contact condition, the contact compensator and friction compensator are adopted. The contact force and the influence of different contact conditions on the energy efficiency during whole gait cycle are obtained.
NASA Astrophysics Data System (ADS)
Gong, Yongmei; Zwinger, Thomas; Åström, Jan; Gladstone, Rupert; Schellenberger, Thomas; Altena, Bas; Moore, John
2017-04-01
The outlet glacier at Basin 3, Austfonna ice-cap entered its active surge phase in autumn 2012. We assess the evolution of the basal friction during the surge through inverse modelling of basal friction coefficients using recent velocity observation from 2012 to 2014 in a continuum ice dynamic model Elmer/ice. The obtained basal friction coefficient distributions at different time instances are further used as a boundary condition in a discrete element model (HiDEM) that is capable of computing fracturing of ice. The inverted basal friction coefficient evolution shows a gradual 'unplugging' of the stagnant frontal area and northwards and inland expansion of the fast flowing region in the southern basin. The validation between the modeled crevasses distribution and the satellite observation in August 2013 shows a good agreement in shear zones inland and at the frontal area. Crevasse distributions of the summer before and after the glacier reached its maximum velocity in January 2013 (August 2012 and August 2014, respectively) are also evaluated. Previous studies suggest the triggering and development of the surge are linked to surface melt water penetrating through ice to form an efficient basal hydrology system thereby triggering a hydro- thermodynamic feedback. This preliminary offline coupling between a continuum ice dynamic model and a discrete element model will give a hint on future model development of linking supra-glacial to sub-glacial hydrology system.
ETS and tidal stressing: Fault weakening after main slip pulse
NASA Astrophysics Data System (ADS)
Houston, H.
2013-12-01
Time-varying stresses from solid Earth tides and ocean loading influence slow slip (Hawthorne and Rubin, 2010) and, consequently, the frequency of occurrence and intensity of tremor during ETS episodes (Rubinstein et al., 2008). This relationship can illuminate changes in the mechanical response of the rupture surfaces(s) during slip in ETS. I compare the influence of tidal loading when and after the propagating ETS slip front (estimated by tremor density in time) ruptures the fault at a given spot. Using estimates of slip fronts that I derived from tremor locations, I divide ETS tremor into two groups: that occurring within a day of the start of the inferred slip front and that occurring over several days thereafter. The tremor catalog used contains 50K waveform cross-correlation locations of tremor in 7 large ETS in northern Cascadia between 2005 and 2012. I calculate normal, shear and volumetric stresses due to the Earth and ocean tides at numerous locations on the inferred rupture plane of the ETS following the method of Hawthorne and Rubin (2010). The Coulomb stress increment at each tremor time and location is compared with tremor occurrence for the two groups of tremor. Unreasonable results appear if the effective frictional coefficient mu > 0.2, and results are most 'reasonable' when mu is very near or equal to zero. Following passage of the main slip pulse, tremor generation is notably more sensitive to tidal stressing. One kPa of encouraging tidal Coulomb stress boosts the occurrence of tremor after the main slip pulse by about 50% above the average value, while the same amount of discouraging stress decreases the occurrence of such tremor by a similar factor. The greater the encouraging or discouraging stress, the greater the effect. In contrast, tremor in the main slip pulse is much less affected by positive or negative tidal stresses. I interpret the greater sensitivity to tidal stressing of the tremor after the main slip pulse as a measure of the weakening of the fault plane following its initial rupture. Considering up- and down-dip sensitivities to tidal stress, tremor generation on the up-dip region is affected roughly 50% more by both positive and negative tidal stresses than tremor down-dip. Furthermore, for the down-dip tremor, there is less contrast in sensitivity to stress between the tremor at the main slip front and the later tremor, i.e., the fault downdip is both less sensitive to tidal stress and weakens less due to the rupture. These results are consistent with the timing and geometry of Rapid Tremor Reversals, which also indicate weakening of the fault after the main slip front has passed through a region (Houston et al., 2011). RTRs occur on updip parts of the fault, after the main slip front, and at times of encouraging tidal stress (Thomas et al., 2013).
Estimation method of finger tapping dynamics using simple magnetic detection system
NASA Astrophysics Data System (ADS)
Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo
2010-05-01
We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.
Estimation method of finger tapping dynamics using simple magnetic detection system.
Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo
2010-05-01
We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.
Long-Period Tidal Variations in the Length of Day
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Erofeeva, Svetlana Y.
2014-01-01
A new model of long-period tidal variations in length of day is developed. The model comprises 80 spectral lines with periods between 18.6 years and 4.7 days, and it consistently includes effects of mantle anelasticity and dynamic ocean tides for all lines. The anelastic properties followWahr and Bergen; experimental confirmation for their results now exists at the fortnightly period, but there remains uncertainty when extrapolating to the longest periods. The ocean modeling builds on recent work with the fortnightly constituent, which suggests that oceanic tidal angular momentum can be reliably predicted at these periods without data assimilation. This is a critical property when modeling most long-period tides, for which little observational data exist. Dynamic ocean effects are quite pronounced at shortest periods as out-of-phase rotation components become nearly as large as in-phase components. The model is tested against a 20 year time series of space geodetic measurements of length of day. The current international standard model is shown to leave significant residual tidal energy, and the new model is found to mostly eliminate that energy, with especially large variance reduction for constituents Sa, Ssa, Mf, and Mt.
Dynamic weakening is limited by granular dynamics
NASA Astrophysics Data System (ADS)
Kuwano, O.; Hatano, T.
2011-12-01
Earthquakes are the result of the frictional instability of faults containing fine rock powders called gouge derived from attrition in past fault motions. Understanding the frictional instability of granular matter in terms of constitutive laws is thus important. Because of the importance of granular matter for industries and engineering, the friction of granular matter has been studied in the field of solid earth science and other fields, such as statistical physics. In solid earth science, the rate- and state-dependent friction law was established by laboratory experiments at a very low sliding velocity (μm/s to mm/s). Recent experiments conducted at sub-seismic to seismic sliding velocities (mm/s to m/s), however, show that frictional properties are much richer than those predicted by the rate- and state-dependent friction law. One of the most important findings in such experiments is the remarkable weakening due to mechano-chemical effects by frictional heating [Tullis, 2007]. In statistical physics, another empirical law holds for much faster deformation than the former, showing positive shear-rate dependence. Until Recently, friction of granular matter has been investigated independently in the fields of solid earth science and statistical physics, and thus the relation between these distinct constitutive laws is not clear. Recently, some experimental studies have been reported to connect the achievements in these two fields. For example, a laboratory experiment on dry glass beads under very low normal stress (0.02 to 0.05 MPa) in which the frictional heat is negligible reveals the transition from velocity-weakening friction at low sliding velocities to velocity-strengthening friction at high sliding velocities [Kuwano et al., 2011]. Importantly, the velocity-strengthening nature at high sliding velocities is quantitatively the same as those observed in simulations. The inelastic deformation of the grains therefore plays a vital role at high sliding velocities. In this study, we report a friction experiment under higher pressure (0.1 to 0.9 MPa), in which the frictional heat is significant. To clarify the effect of frictional heat in high-speed friction systematically, we investigated both the pressure and the velocity dependence of the friction coefficient over a wide range of sliding velocities ranging from aseismic to seismic slip velocities. We observed considerable weakening, described well by a flash-heating theory, above the sliding velocity of 1 cm/s regardless of pressure. At higher velocities, the velocity strengthening behavior replaced the velocity weakening behavior. This strengthening at higher velocities agrees with data from numerical simulations on sheared granular matter and is therefore described in terms of energy dissipation due to the inelastic deformation of grains. We propose a unified steady-state friction law that well describes the velocity and pressure dependence of the steady-state friction coefficient.
Secular changes of LOD associated with a growth of the inner core
NASA Astrophysics Data System (ADS)
Denis, C.; Rybicki, K. R.; Varga, P.
2006-05-01
From recent estimates of the age of the inner core based on the theory of thermal evolution of the core, we estimate that nowadays the growth of the inner core may perhaps contribute to the observed overall secular increase of LOD caused mainly by tidal friction (i.e., 1.72 ms per century) by a relative decrease of 2 to 7 μs per century. Another, albeit much less plausible, hypothesis is that crystallization of the inner core does not produce any change of LOD, but makes the inner core rotate differentially with respect to the outer core and mantle.
Atmospheric tides on Venus. III - The planetary boundary layer
NASA Technical Reports Server (NTRS)
Dobrovolskis, A. R.
1983-01-01
Diurnal solar heating of Venus' surface produces variable temperatures, winds, and pressure gradients within a shallow layer at the bottom of the atmosphere. The corresponding asymmetric mass distribution experiences a tidal torque tending to maintain Venus' slow retrograde rotation. It is shown that including viscosity in the boundary layer does not materially affect the balance of torques. On the other hand, friction between the air and ground can reduce the predicted wind speeds from about 5 to about 1 m/sec in the lower atmosphere, more consistent with the observations from Venus landers and descent probes. Implications for aeolian activity on Venus' surface and for future missions are discussed.
NASA Astrophysics Data System (ADS)
Eggleton, Peter P.
The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.
A Dynamic Nutrient Budget of Subsystem Interactions in a Salt Marsh Estuary
NASA Astrophysics Data System (ADS)
Childers, Daniel L.; McKellar, Henry N.; Dame, Richard F.; Sklar, Fred H.; Blood, Elizabeth R.
1993-02-01
In tidal salt marsh estuaries, the different habitats of the ecosystem interact primarily through the tidal creek water column. These interactions include nutrient and materials exchanges with the salt marsh, oyster reefs, creek bottoms, and adjacent uplands. Nutrient budgets are often used to synthesize these kinds of subsystem exchange data, and are usually based on annual totals without accounting for nutrient variability at finer temporal resolutions. In this paper, we present a dynamic budget of carbon (C), nitrogen (N), and phosphorus (P) for the North Inlet estuary, South Carolina that synthesizes subsystem flux data in a new way. We have developed a dynamic budget that uses a tidal hydrology model to generate daily areas of inundated intertidal habitat (i.e. vegetated marsh and oyster reef) from tidal heights calculated hourly and combines them with flux data to determine a net daily input to, or removal from, the water column. Daily surpluses or deficits of each nutrient were compared with daily rates of change in observed tidally-averaged nutrient concentrations. Particular emphasis was placed on evaluating budget output from the intertidal subsystems. We compared our total annual budgets to values from syntheses of two North Inlet flux studies. Although areas of marsh inundated were 150-200 times greater than areas of oyster reef inundated, interactions per unit volume of estuarine water column were comparable in magnitude for soluble reactive P (SRP), particulate organic C (POC), and dissolved organic C (DOC). The marsh dominated the ammonium (NH +4) and nitrate + nitrite (NN) exchanges in the summer but the NH +4 and POC output were particularly sensitive to changes in oyster reef area. Winter and spring DOC release by the marsh coincided closely (in timing and magnitude) with the peak in DOC concentrations observed in the North Inlet estuary, suggesting that forest stream inputs of DOC are not nearly as important as has been hypothesized. Comparison of our budget predictions to a previous synthesis of the same subsytem flux data confirmed the power of using tidal hydrology to estimate subsystem interactions between sampling times. These comparisons also emphasized the importance of (1) water column processes to NH +4 dynamics (2) subtidal benthic fluxes to DOC dynamics, and (3) external inputs to NN dynamics. By incorporating our best current knowledge of estuary-wide subsystem areas, the dynamic budget also allowed us to link subsystem flux data to the results of a study quantifying exchanges between the estuary and the coastal ocean. That comparison indicated the shortcomings of any site-specific extrapolation to whole-system conclusions where a homogeneous ecosystem must be assumed. We used the differences between our total annual C, N, and P budgets and reported exports of those constituents from the system to generate hypotheses and suggest future research efforts both at North Inlet and southeastern salt marsh estuaries in general.
Steady-state and dynamic analysis of a jet engine, gas lubricated shaft seal
NASA Technical Reports Server (NTRS)
Shapiro, W.; Colsher, R.
1974-01-01
Dynamic response of a gas-lubricated, jet-engine main shaft seal was analytically established as a function of collar misalignment and secondary seal friction. Response was obtained by a forward integration-in-time (time-transient) scheme, which traces a time history of seal motions in all its degrees of freedom. Results were summarized in the form of a seal tracking map which indicated regions of acceptable collar misalignments and secondary seal friction. Methodology, results and interpretations are comprehensively described.
Haley, Jeffrey C; Lodge, Timothy P
2005-06-15
The tracer diffusion coefficient of unentangled poly(ethylene oxide) (PEO, M=1000 gmol) in a matrix of poly(methyl methacrylate) (PMMA, M=10 000 gmol) has been measured over a temperature range from 125 to 220 degrees C with forced Rayleigh scattering. The dynamic viscosities of blends of two different high molecular weight PEO tracers (M=440 000 and 900 000 gmol) in the same PMMA matrix were also measured at temperatures ranging from 160 to 220 degrees C; failure of time-temperature superposition was observed for these systems. The monomeric friction factors for the PEO tracers were extracted from the diffusion coefficients and the rheological relaxation times using the Rouse model. The friction factors determined by diffusion and rheology were in good agreement, even though the molecular weights of the tracers differed by about three orders of magnitude. The PEO monomeric friction factors were compared with literature data for PEO segmental relaxation times measured directly with NMR. The monomeric friction factors of the PEO tracer in the PMMA matrix were found to be from two to six orders of magnitude greater than anticipated based on direct measurements of segmental dynamics. Additionally, the PEO tracer terminal dynamics are a much stronger function of temperature than the corresponding PEO segmental dynamics. These results indicate that the fastest PEO Rouse mode, inferred from diffusion and rheology, is completely separated from the bond reorientation of PEO detected by NMR. This result is unlike other blend systems in which global and local motions have been compared.
Füchsel, Gernot; Schimka, Selina; Saalfrank, Peter
2013-09-12
The role of electronic friction and, more generally, of nonadiabatic effects during dynamical processes at the gas/metal surface interface is still a matter of discussion. In particular, it is not clear if electronic nonadiabaticity has an effect under "mild" conditions, when molecules in low rovibrational states interact with a metal surface. In this paper, we investigate the role of electronic friction on the dissociative sticking and (inelastic) scattering of vibrationally and rotationally cold H2 molecules at a Ru(0001) surface theoretically. For this purpose, classical molecular dynamics with electronic friction (MDEF) calculations are performed and compared to MD simulations without friction. The two H atoms move on a six-dimensional potential energy surface generated from gradient-corrected density functional theory (DFT), that is, all molecular degrees of freedom are accounted for. Electronic friction is included via atomic friction coefficients obtained from an embedded atom, free electron gas (FEG) model, with embedding densities taken from gradient-corrected DFT. We find that within this model, dissociative sticking probabilities as a function of impact kinetic energies and impact angles are hardly affected by nonadiabatic effects. If one accounts for a possibly enhanced electronic friction near the dissociation barrier, on the other hand, reduced sticking probabilities are observed, in particular, at high impact energies. Further, there is always an influence on inelastic scattering, in particular, as far as the translational and internal energy distribution of the reflected molecules is concerned. Additionally, our results shed light on the role played by the velocity distribution of the incident molecular beam for adsorption probabilities, where, in particular, at higher impact energies, large effects are found.
Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel
NASA Astrophysics Data System (ADS)
Aghalari, Alireza; Shahravi, Morteza
2017-12-01
The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.
Gas-induced friction and diffusion of rigid rotors
NASA Astrophysics Data System (ADS)
Martinetz, Lukas; Hornberger, Klaus; Stickler, Benjamin A.
2018-05-01
We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.
Diurnal and Tidal Variation of Temperature and Salinity in the Ponta Rasa Mangrove Swamp, Mozambique
NASA Astrophysics Data System (ADS)
Hoguane, A. M.; Hill, A. E.; Simpson, J. H.; Bowers, D. G.
1999-08-01
Measurements of hydrographic conditions in the Ponta Rasa tidal mangrove swamp, Inhaca Island, Mozambique were made in August-October 1994 during the winter dry season. The Ponta Rasa swamp/creek is tidally choked on account of the narrow channel that connects it to Maputo Bay and at neap tides, a sill prevents bay water entering the creek system altogether. Temperature variation in the swamp (15-25 °C) was predominantly diurnal with an additional signal due to the tidal advection of bay waters. There is no river discharge into Ponta Rasa and during the observation period, there was no significant rainfall. The mean salinity in the swamp ( c. 38) was controlled by evaporation and transpiration by mangroves and an overall evapotranspiration rate of 0·5 cm day -1was estimated from a steady salt balance. Salinity variation ( c. 2) was predominantly due to semi-diurnal tidal advection of lower salinity Maputo Bay water into the swamp/creek. A model which incorporates tidal dynamics coupled to heat and salt balance equations reproduces many of the observed features of the system.
NASA Astrophysics Data System (ADS)
Dai, L.; Sorkin, V.; Zhang, Y. W.
2017-04-01
We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.
Time-lapse nanoscopy of friction in the non-Amontons and non-Coulomb regime.
Ishida, Tadashi; Sato, Takaaki; Ishikawa, Takahiro; Oguma, Masatsugu; Itamura, Noriaki; Goda, Keisuke; Sasaki, Naruo; Fujita, Hiroyuki
2015-03-11
Originally discovered by Leonard da Vinci in the 15th century, the force of friction is directly proportional to the applied load (known as Amontons' first law of friction). Furthermore, kinetic friction is independent of the sliding speed (known as Coulomb's law of friction). These empirical laws break down at high normal pressure (due to plastic deformation) and low sliding speed (in the transition regime between static friction and kinetic friction). An important example of this phenomenon is friction between the asperities of tectonic plates on the Earth. Despite its significance, little is known about the detailed mechanism of friction in this regime due to the lack of experimental methods. Here we demonstrate in situ time-lapse nanoscopy of friction between asperities sliding at ultralow speed (∼0.01 nm/s) under high normal pressure (∼GPa). This is made possible by compressing and rubbing a pair of nanometer-scale crystalline silicon anvils with electrostatic microactuators and monitoring its dynamical evolution with a transmission electron microscope. Our analysis of the time-lapse movie indicates that superplastic behavior is induced by decrystallization, plastic deformation, and atomic diffusion at the asperity-asperity interface. The results hold great promise for a better understanding of quasi-static friction under high pressure for geoscience, materials science, and nanotechnology.
Saltmarsh pool and tidal creek morphodynamics: Dynamic equilibrium of northern latitude saltmarshes?
NASA Astrophysics Data System (ADS)
Wilson, Carol A.; Hughes, Zoe J.; FitzGerald, Duncan M.; Hopkinson, Charles S.; Valentine, Vinton; Kolker, Alexander S.
2014-05-01
Many saltmarsh platforms in New England and other northern climates (e.g. Canada, northern Europe) exhibit poor drainage, creating waterlogged regions where short-form Spartina alterniflora dominates and stagnant pools that experience tidal exchange only during spring tides and storm-induced flooding events. The processes related to pool formation and tidal creek incision (via headward erosion) that may eventually drain these features are poorly understood, however it has been suggested that an increase in pool occurrence in recent decades is due to waterlogging stress from sea-level rise. We present evidence here that saltmarshes in Plum Island Estuary of Massachusetts are keeping pace with sea-level rise, and that the recent increase in saltmarsh pool area coincides with changes in drainage density from a legacy of anthropogenic ditching (reversion to natural drainage conditions). Gradients, in addition to elevation and hydroperiod, are critical for saltmarsh pool formation. Additionally, elevation and vegetative changes associated with pool formation, creek incision, subsequent drainage of pools, and recolonization by S. alterniflora are quantified. Pool and creek dynamics were found to be cyclic in nature, and represent platform elevation in dynamic equilibrium with sea level whereby saltmarsh elevation may be lowered (due to degradation of organic matter and formation of a pool), however may be regained on short timescales (101-2 yr) with creek incision into pools and restoration of tidal exchange. Rapid vertical accretion is associated with sedimentation and S. alterniflora plant recolonization.
Spin-orbit evolution of Mercury revisited
NASA Astrophysics Data System (ADS)
Noyelles, Benoît; Frouard, Julien; Makarov, Valeri V.; Efroimsky, Michael
2014-10-01
Although it is accepted that the significant eccentricity of Mercury (0.206) favours entrapment into the 3:2 spin-orbit resonance, open are the questions of how and when the capture took place. A recent work by Makarov (Makarov, V.V. [2012]. Astrophys. J., 752, 73) has proven that trapping into this state is certain for eccentricities larger than 0.2, provided we use a realistic tidal model based on the Darwin-Kaula expansion of the tidal torque. While in Ibid. a Mercury-like planet had its eccentricity fixed, we take into account its evolution. To that end, a family of possible histories of the eccentricity is generated, based on synthetic time evolution consistent with the expected statistics of the distribution of eccentricity. We employ a model of tidal friction, which takes into account both the rheology and self-gravitation of the planet. As opposed to the commonly used constant time lag (CTL) and constant phase lag (CPL) models, the physics-based tidal model changes dramatically the statistics of the possible final spin states. First, we discover that after only one encounter with the spin-orbit 3:2 resonance this resonance becomes the most probable end-state. Second, if a capture into this (or any other) resonance takes place, the capture becomes final, several crossings of the same state being forbidden by our model. Third, within our model the trapping of Mercury happens much faster than previously believed: for most histories, 10-20 Myr are sufficient. Fourth, even a weak laminar friction between the solid mantle and a molten core would most likely result in a capture in the 2:1 or even higher resonance, which is confirmed both semi-analytically and by limited numerical simulations. So the principal novelty of our paper is that the 3:2 end-state is more ancient than the same end-state obtained when the constant time lag model is employed. The swift capture justifies our treatment of Mercury as a homogeneous, unstratified body whose liquid core had not yet formed by the time of trapping. We also provide a critical analysis of the hypothesis by Wieczorek et al. (Wieczorek, M.A., Correia, A.C.M., Le Feuvre, M., Laskar, J., Rambaux, N. [2012]. Nat. Geosci., 5, 18-21) that the early Mercury might had been retrograde, whereafter it synchronised its spin and then accelerated it to the 3:2 resonance. Accurate processing of the available data on cratering does not support that hypothesis, while the employment of a realistic rheology invalidates a key element of the hypothesis, an intermediate pseudosynchronous state needed to spin-up to the 3:2 resonance.
NASA Astrophysics Data System (ADS)
Ballard, Patrick; Charles, Alexandre
2018-03-01
In the end of the seventies, Schatzman and Moreau undertook to revisit the venerable dynamics of rigid bodies with contact and dry friction in the light of more recent mathematics. One claimed objective was to reach, for the first time, a mathematically consistent formulation of an initial value problem associated with the dynamics. The purpose of this article is to make a review of the today state-of-art concerning not only the formulation, but also the issues of existence and uniqueness of solution. xml:lang="fr"
NASA Astrophysics Data System (ADS)
Ghosh, Shankar; Merin, A. P.; Bhattacharya, S.; Nitsure, Nitin
2018-04-01
We present a geometric framework to deal with mechanical systems which have unilateral constraints, and are subject to damping/friction, which cannot be treated within usual classical mechanics. In this new framework, the dynamical evolution of the system takes place on a multidimensional curvilinear polyhedron, and energetics near the corners of the polyhedron leads to qualitative behaviour such as stable entrapment and bifurcation. We illustrate this by an experiment in which dumbbells, placed inside a tilted hollow cylindrical drum that rotates slowly around its axis, climb uphill by forming dynamically stable pairs, seemingly against the pull of gravity.
Steady-state and dynamic performance of a gas-lubricated seal
NASA Technical Reports Server (NTRS)
Colsher, R.; Shapiro, W.
1972-01-01
Steady-state and dynamic performance of a gas-lubricated, self-acting face seal was determined using numerical methods based on a variable grid, finite-difference, time-transient procedure. Results were obtained for a gas turbine main shaft seal operating at 206.9 newton per square centimeter (300 psi) sealed air pressure and 152.4 meters per second (500 ft/sec) sliding velocity. Analysis of the seal dynamics revealed that the response of the seal nosepiece to runout of the seat face is markedly affected by secondary seal friction and by nosepiece inertia. The nosepiece response was determined for various levels of secondary seal friction and seat face runout magnitudes.
NASA Astrophysics Data System (ADS)
Amjadian, Mohsen; Agrawal, Anil K.
2018-01-01
Friction is considered as one of the most reliable mechanisms of energy dissipation that has been utilized extensively in passive damping devices to mitigate vibration of civil engineering structures subjected to extreme natural hazards such as earthquakes and windstorms. However, passive friction dampers are well-known for having a highly nonlinear hysteretic behavior caused by stick-slip motion at low velocities, a phenomenon that is inherent in friction and increases the acceleration response of the structure under control unfavorably. The authors have recently proposed the theoretical concept of a new type of damping device termed as "Passive Electromagnetic Eddy Current Friction Damper" (PEMECFD) in which an eddy current damping mechanism was utilized not only to decrease the undesirable effects of stick-slip motion, but also to increase the energy dissipation capacity of the damping device as a whole. That study was focused on demonstration of the theoretical performance of the proposed damping device through numerical simulations. This paper further investigates the influence of eddy current damping on energy dissipation due to friction through modeling, design, and testing of a proof-of-concept prototype damper. The design of this damper has been improved over the design in the previous study. The normal force in this damper is produced by the repulsive magnetic force between two cuboidal permanent magnets (PMs) magnetized in the direction normal to the direction of the motion. The eddy current damping force is generated because of the motion of the two PMs and two additional PMs relative to a copper plate in their vicinity. The dynamic models for the force-displacement relationship of the prototype damper are based on LuGre friction model, electromagnetic theory, and inertial effects of the prototype damper. The parameters of the dynamic models have been identified through a series of characterization tests on the prototype damper under harmonic excitations of different frequencies in the laboratory. Finally, the identified dynamic models have been validated by subjecting the prototype damper to two different random excitations. The results indicate that the proposed dynamic models are capable of representing force-displacement behavior of the new type of passive damping device for a wide range of operating conditions.
NASA Astrophysics Data System (ADS)
Lucking, Greg; Stark, Nina; Lippmann, Thomas; Smyth, Stephen
2017-10-01
Tidal estuaries feature spatially and temporally varying sediment dynamics and characteristics. Particularly, the variability of geotechnical sediment parameters is still poorly understood, limiting the prediction of long-term sediment stability and dynamics. This paper presents results from an in situ investigation of surficial sediments (≤50 cm) in a tidal estuary in New Hampshire (USA), using a portable free fall penetrometer. The aim is to investigate variations in sediment strength and pore pressure behavior with regard to sediment type and seabed morphology. The study also provides a detailed analysis of high velocity impact pore pressure data to derive information about sediment type and permeability. The penetrometer was deployed 227 times, and the findings are correlated to 78 sediment samples. Differences in sediment strength and type were found when transitioning from tidal flats to the deeper channels. Finer-grained sediments located predominantly on the tidal flats appeared well consolidated with noticeable and spatially consistent sediment strength (reflected in an estimate of quasi-static bearing capacity qsbcmax 10 kPa). Sediments with higher sand content (>75%) showed more variations in strength relating to differences in gradation, and likely represent loose and poorly consolidated sands (qsbcmax 10-55 kPa). The rate at which the recorded excess pore pressures approached equilibrium after penetration was classified and related to sediment type. The data indicate that the development of excess pore pressures upon impact and during penetration may provide additional insight into the nature and layering of bed material, such as identifying a desiccated or over-consolidated dilative surficial layer. In summary, with varying sediment grain size distributions, bulk densities and morphology, sediment strength and pore pressure behavior can vary significantly within a tidal estuary.
Role of friction in vertically oscillated granular materials
NASA Astrophysics Data System (ADS)
Moon, Sung Joon; Swift, J. B.; Swinney, Harry L.
2002-11-01
We use a previously validated molecular dynamics simulation of vertically oscillated granular layers to study how the contact friction affects standing wave patterns. Our collision model follows Walton(O. R. Walton, in Particulate Two-Phase Flow), edited by M. C. Roco (Butterworth-Heinemann, Boston, 1993), p. 884.: Dissipation in the normal component of colliding velocity is characterized by the normal coefficient of restitution e (0<= e < 1), and interaction in the tangential component by the tangential coefficient of restitution β = β(μ,e,Φ), where -1<= β <= β_0, μ is the static coefficient of friction on the surface of grains, Φ is the collision angle, and β0 corresponds to the crossover between static and sliding friction. We varied the above parameters independently for the grain-grain collisions and for the grain-wall collisions. The grain-grain friction changes the phase diagram of patterns significantly, and the patterns become fuzzy as the friction is decreased. The grain-wall friction is necessary to stabilize the patterns.