Computational Methods for Structural Mechanics and Dynamics
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.
Jiang, Yu; Zhang, Xiaogang; Zhang, Chao; Li, Zhixiong; Sheng, Chenxing
2017-04-01
Numerical modeling has been recognized as the dispensable tools for mechanical fault mechanism analysis. Techniques, ranging from macro to nano levels, include the finite element modeling boundary element modeling, modular dynamic modeling, nano dynamic modeling and so forth. This work firstly reviewed the progress on the fault mechanism analysis for gear transmissions from the tribological and dynamic aspects. Literature review indicates that the tribological and dynamic properties were separately investigated to explore the fault mechanism in gear transmissions. However, very limited work has been done to address the links between the tribological and dynamic properties and scarce researches have been done for coal cutting machines. For this reason, the tribo-dynamic coupled model was introduced to bridge the gap between the tribological and dynamic models in fault mechanism analysis for gear transmissions in coal cutting machines. The modular dynamic modeling and nano dynamic modeling techniques are expected to establish the links between the tribological and dynamic models. Possible future research directions using the tribo dynamic coupled model were summarized to provide potential references for researchers in the field.
Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi
2015-01-01
This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.
NASA Astrophysics Data System (ADS)
Belleri, Basayya K.; Kerur, Shravankumar B.
2018-04-01
A computer-oriented procedure for solving the dynamic force analysis problem for general planar mechanisms is presented. This paper provides position analysis, velocity analysis, acceleration analysis and force analysis of six bar mechanism with variable topology approach. Six bar mechanism is constructed by joining two simple four bar mechanisms. Initially the position, velocity and acceleration analysis of first four bar mechanism are determined by using the input parameters. The outputs (angular displacement, velocity and acceleration of rocker)of first four bar mechanism are used as input parameter for the second four bar mechanism and the position, velocity, acceleration and forces are analyzed. With out-put parameters of second four-bar mechanism the force analysis of first four-bar mechanism is carried out.
Synthesis and Physical Properties of Poly(Perfluoroalkylether)Urethanes
1989-05-30
Differential scanning calorimetry and dynamic mechanical analysis showed that the incorporation of PFEG into the soft segment phase slightly enhanced...for all the polymers, using electron spectroscopy for chemical analysis (ESCA). The dynamic contact angle results indicate that the polymer surfaces...these polymers were evaluated by a variety of techniques. Differential scanning calorimetry and dynamic mechanical analysis showed that the
Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk
2004-01-01
In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...
Analysis and control of the vibration of doubly fed wind turbine
NASA Astrophysics Data System (ADS)
Yu, Manye; Lin, Ying
2017-01-01
The fault phenomena of the violent vibration of certain doubly-fed wind turbine were researched comprehensively, and the dynamic characteristics, load and fault conditions of the system were discussed. Firstly, the structural dynamics analysis of wind turbine is made, and the dynamics mold is built. Secondly, the vibration testing of wind turbine is done with the German test and analysis systems BBM. Thirdly, signal should be analyzed and dealt with. Based on the experiment, spectrum analysis of the motor dynamic balance can be made by using signal processing toolbox of MATLAB software, and the analysis conclusions show that the vibration of wind turbine is caused by dynamic imbalance. The results show that integrating mechanical system dynamics theory with advanced test technology can solve the vibration problem more successfully, which is important in vibration diagnosis of mechanical equipment.
Dynamic Analysis of Hammer Mechanism "Twin Hammer" of Impact Wrench
NASA Astrophysics Data System (ADS)
Konečný, M.; Slavík, J.
This paper describes function of the hammer mechanism "Twin hammer" the impact wrench, calculation of dynamic forces exerted on the mechanism and determining the contact pressures between the parts of the mechanism. The modelling of parts was performed in system Pro ENGINEER—standard. The simulation and finding dynamic forces was performed in advanced module Pro ENGINEER—mechanism design and finding contacts pressures in modul Pro ENGENEER—mechanica.
Dynamic analysis of news streams: institutional versus environmental effects.
Dooley, Kevin; Corman, Steven
2004-07-01
Many societal phenomena are studied through analysis of their representation in media-related texts, such as news articles. The dynamics of such data reflect the phenomenon's underlying generative mechanism. Media artifacts are assumed to mirror the social activity occurring in the environment, thus observed dynamics are assumed to reflect environmental dynamics. The institutional mechanics of media production also affect the observed dynamics however. In this study we examine the extent to which institutional versus environmental effects explain the observed dynamics of media content, in particular focusing on semi-continuous "news streams". We examine the dynamics of news streams produced by the electronic news organization Reuters, immediately following the events of September 11, 2001. We find that many of the observed dynamics appear institutionally generated. We conclude with methodological suggestions concerning the dynamic analysis of media content.
Computer aided analysis and optimization of mechanical system dynamics
NASA Technical Reports Server (NTRS)
Haug, E. J.
1984-01-01
The purpose is to outline a computational approach to spatial dynamics of mechanical systems that substantially enlarges the scope of consideration to include flexible bodies, feedback control, hydraulics, and related interdisciplinary effects. Design sensitivity analysis and optimization is the ultimate goal. The approach to computer generation and solution of the system dynamic equations and graphical methods for creating animations as output is outlined.
NASA Workshop on Computational Structural Mechanics 1987, part 3
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Computational Structural Mechanics (CSM) topics are explored. Algorithms and software for nonlinear structural dynamics, concurrent algorithms for transient finite element analysis, computational methods and software systems for dynamics and control of large space structures, and the use of multi-grid for structural analysis are discussed.
Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations
NASA Astrophysics Data System (ADS)
Zhang, Yu; Jiang, Jack J.
2008-09-01
Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.
Current Results and Proposed Activities in Microgravity Fluid Dynamics
NASA Technical Reports Server (NTRS)
Polezhaev, V. I.
1996-01-01
The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.
[Research progress on mechanical performance evaluation of artificial intervertebral disc].
Li, Rui; Wang, Song; Liao, Zhenhua; Liu, Weiqiang
2018-03-01
The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.
NONLINEAR SYSTEMS, LINEAR SYSTEMS, SUBROUTINES , SOIL MECHANICS, INTERFACES, DYNAMICS, LOADS(FORCES), FORCE(MECHANICS), DAMPING, ACCELERATION, ELASTIC...PROPERTIES, PLASTIC PROPERTIES, CRACKS , REINFORCING MATERIALS , COMPOSITE MATERIALS , FAILURE(MECHANICS), MECHANICAL PROPERTIES, INSTRUCTION MANUALS, DIGITAL COMPUTERS...STRESSES, *COMPUTER PROGRAMS), (*STRUCTURES, STRESSES), (*DATA PROCESSING, STRUCTURAL PROPERTIES), SOILS , STRAIN(MECHANICS), MATHEMATICAL MODELS
NASA Astrophysics Data System (ADS)
Xue, Peng; Fu, Guicui
2017-03-01
The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.
Mechanical, Thermal and Dynamic Mechanical Properties of PP/GF/xGnP Nanocomposites
NASA Astrophysics Data System (ADS)
Ashenai Ghasemi, F.; Ghorbani, A.; Ghasemi, I.
2017-03-01
The mechanical, thermal, and dynamic mechanical properties of ternary nanocomposites based on polypropylene, short glass fibers, and exfoliated graphene nanoplatelets were studied. To investigate the mechanical properties, uniaxial tensile and Charpy impact tests were carried out. To study the crystallinity of the compositions, a DSC test was performed. A dynamic mechanical analysis was used to characterize the storage modulus and loss factor (tan δ). The morphology of the composites was studied by a scanning electron microscope (SEM). The results obtained are presented in tables and graphics.
Osculating Keplerian Elements for Highly Non-Keplerian Orbits
2017-03-27
1.52133 2 McInnes, C. R., “The Existence and Stability of Families of Displacement Two-Body Orbits”, Celestial Mechanics and Dynamical Astronomy , Vol...j.actaastro.2011.08.012 5 Xu, M. and Xu, S., “Nonlinear dynamical analysis for displaced orbits above a planet”, Celestial Mechanics and Dynamical Astronomy ...Celestial Mechanics and Dynamical Astronomy , Vol. 110, No. 3, 2011, pp. 199-215. doi: 10.1007/s10569-011-9351-5 7 Macdonald, M., McKay, R. J., Vasile, M
NASA Astrophysics Data System (ADS)
Hsia, H.-M.; Chou, Y.-L.; Longman, R. W.
1983-07-01
The topics considered are related to measurements and controls in physical systems, the control of large scale and distributed parameter systems, chemical engineering systems, aerospace science and technology, thermodynamics and fluid mechanics, and computer applications. Subjects in structural dynamics are discussed, taking into account finite element approximations in transient analysis, buckling finite element analysis of flat plates, dynamic analysis of viscoelastic structures, the transient analysis of large frame structures by simple models, large amplitude vibration of an initially stressed thick plate, nonlinear aeroelasticity, a sensitivity analysis of a combined beam-spring-mass structure, and the optimal design and aeroelastic investigation of segmented windmill rotor blades. Attention is also given to dynamics and control of mechanical and civil engineering systems, composites, and topics in materials. For individual items see A83-44002 to A83-44061
Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.
Her, Shiuh-Chuan; Lin, Kuan-Yu
2017-06-16
To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)-reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.
Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa; Williams, Robert
2004-01-01
This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.
Can, Hatice Kaplan; Kavlak, Serap; ParviziKhosroshahi, Shahed; Güner, Ali
2018-03-01
Dextran-coated iron oxide nanoparticles (DIONPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging (MRI) contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. This paper reports the experimental detail for preparation, characterization and investigation of thermal and dynamical mechanical characteristics of the dextran-coated Fe 3 O 4 magnetic nanoparticles. In our work, DIONPs were prepared in a 1:2 ratio of Fe(II) and Fe(III) salt in the HCl solution with NaOH at given temperature. The obtained dextran-coated iron-oxide nanoparticles structure-property correlation was characterized by spectroscopic methods; attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and XRD. Coating dextran on the iron-oxide proof of important peaks can be seen from the ATR-FTIR. Dramatic crystallinity increment can be observed from the XRD pattern of the iron-oxide dextran nanoparticles. The thermal analysis was examined by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Dynamical mechanical properties of dextran nanoparticles were analysed by dynamic mechanical analysis (DMA). Thermal stability of the iron oxide dextran nanoparticles is higher than that of the dextran.
Application of the GRC Stirling Convertor System Dynamic Model
NASA Technical Reports Server (NTRS)
Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G. (Technical Monitor)
2004-01-01
The GRC Stirling Convertor System Dynamic Model (SDM) has been developed to simulate dynamic performance of power systems incorporating free-piston Stirling convertors. This paper discusses its use in evaluating system dynamics and other systems concerns. Detailed examples are provided showing the use of the model in evaluation of off-nominal operating conditions. The many degrees of freedom in both the mechanical and electrical domains inherent in the Stirling convertor and the nonlinear dynamics make simulation an attractive analysis tool in conjunction with classical analysis. Application of SDM in studying the relationship of the size of the resonant circuit quality factor (commonly referred to as Q) in the various resonant mechanical and electrical sub-systems is discussed.
Comparisons of Kinematics and Dynamics Simulation Software Tools
NASA Technical Reports Server (NTRS)
Shiue, Yeu-Sheng Paul
2002-01-01
Kinematic and dynamic analyses for moving bodies are essential to system engineers and designers in the process of design and validations. 3D visualization and motion simulation plus finite element analysis (FEA) give engineers a better way to present ideas and results. Marshall Space Flight Center (MSFC) system engineering researchers are currently using IGRIP from DELMIA Inc. as a kinematic simulation tool for discrete bodies motion simulations. Although IGRIP is an excellent tool for kinematic simulation with some dynamic analysis capabilities in robotic control, explorations of other alternatives with more powerful dynamic analysis and FEA capabilities are necessary. Kinematics analysis will only examine the displacement, velocity, and acceleration of the mechanism without considering effects from masses of components. With dynamic analysis and FEA, effects such as the forces or torques at the joint due to mass and inertia of components can be identified. With keen market competition, ALGOR Mechanical Event Simulation (MES), MSC visualNastran 4D, Unigraphics Motion+, and Pro/MECHANICA were chosen for explorations. In this study, comparisons between software tools were presented in terms of following categories: graphical user interface (GUI), import capability, tutorial availability, ease of use, kinematic simulation capability, dynamic simulation capability, FEA capability, graphical output, technical support, and cost. Propulsion Test Article (PTA) with Fastrac engine model exported from IGRIP and an office chair mechanism were used as examples for simulations.
Dynamic simulation of road vehicle door window regulator mechanism of cross arm type
NASA Astrophysics Data System (ADS)
Miklos, I. Zs; Miklos, C.; Alic, C.
2017-01-01
The paper presents issues related to the dynamic simulation of a motor-drive operating mechanism of cross arm type, for the manipulation of road vehicle door windows, using Autodesk Inventor Professional software. The dynamic simulation of the mechanism involves a 3D modelling, kinematic coupling, drive motion parameters and external loads, as well as the graphically view of the kinematic and kinetostatic results for the various elements and kinematic couplings of the mechanism, under real operating conditions. Also, based on the results, the analysis of the mechanism components has been carried out using the finite element method.
Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton
2003-01-01
Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.
1996-01-01
Recent developments on layerwise mechanics for the analysis of composite laminates and structures with piezoelectric actuators and sensors are reviewed. The mechanics implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite structures. The corresponding finite-element implementations for the static and dynamic analysis of smart piezoelectric composite structures are also summarized. Select application illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local dynamic response of thin and/or thick laminated piezoelectric plates.
NASA Technical Reports Server (NTRS)
Gallo, C.; Kasuba, R.; Pintz, A.; Spring, J.
1986-01-01
The dynamic analysis of a horizontal axis fixed pitch wind turbine generator (WTG) rated at 56 kW is discussed. A mechanical Continuously Variable Transmission (CVT) was incorporated in the drive train to provide variable speed operation capability. One goal of the dynamic analysis was to determine if variable speed operation, by means of a mechanical CVT, is capable of capturing the transient power in the WTG/wind environment. Another goal was to determine the extent of power regulation possible with CVT operation.
Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms
NASA Technical Reports Server (NTRS)
Lee, Jeh Won
1991-01-01
The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.
Lotrecchiano, Gaetano R
2013-08-01
Since the concept of team science gained recognition among biomedical researchers, social scientists have been challenged with investigating evidence of team mechanisms and functional dynamics within transdisciplinary teams. Identification of these mechanisms has lacked substantial research using grounded theory models to adequately describe their dynamical qualities. Research trends continue to favor the measurement of teams by isolating occurrences of production over relational mechanistic team tendencies. This study uses a social constructionist-grounded multilevel mixed methods approach to identify social dynamics and mechanisms within a transdisciplinary team. A National Institutes of Health-funded research team served as a sample. Data from observations, interviews, and focus groups were qualitatively coded to generate micro/meso level analyses. Social mechanisms operative within this biomedical scientific team were identified. Dynamics that support such mechanisms were documented and explored. Through theoretical and emergent coding, four social mechanisms dominated in the analysis-change, kinship, tension, and heritage. Each contains relational social dynamics. This micro/meso level study suggests such mechanisms and dynamics are key features of team science and as such can inform problems of integration, praxis, and engagement in teams. © 2013 Wiley Periodicals, Inc.
Dynamics of mechanical feedback-type hydraulic servomotors under inertia loads
NASA Technical Reports Server (NTRS)
Gold, Harold; Otto, Edward W; Ransom, Victor L
1953-01-01
An analysis of the dynamics of mechanical feedback-type hydraulic servomotors under inertia loads is developed and experimental verification is presented. The analysis, which is developed in terms of two physical parameters, yields direct expressions for the following dynamic responses: (1) the transient response to a step input and the maximum cylinder pressure during the transient and (2) the variation of amplitude attenuation and phase shift with the frequency of a sinusoidally varying input. The validity of the analysis is demonstrated by means of recorded transient and frequency responses obtained on two servomotors. The calculated responses are in close agreement with the measured responses. The relations presented are readily applicable to the design as well as to the analysis of hydraulic servomotors.
Study on stainless steel electrode based on dynamic aluminum liquid corrosion mechanism.
Hou, Hua; Yang, Ruifeng
2009-01-01
Scanning electrion microscope (SEM) was performed for investigations on the corrosion mechanism of stainless steel electrode in dynamic melting aluminum liquid. Microstructures and composition analysis was made by electron probe analysis (EPA) combined with metallic phase analysis. It can be concluded that the corrosion process is mainly composed of physical corrosion (flowing and scouring corrosion) and chemical corrosion (forming FeAl and Fe2Al5) and the two mechanisms usually exist simultaneously. The corrosion interface thickness is about 10 μm, which is different to usual interface width of hundreds μm in the static melting Al with iron matrix.
Elastocapillary Instability in Mitochondrial Fission
NASA Astrophysics Data System (ADS)
Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien
2015-08-01
Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.
Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.
1996-01-01
Laminate and structural mechanics for the analysis of laminated composite plate structures with piezoelectric actuators and sensors are presented. The theories implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite laminates. Finite-element formulations are developed for the quasi-static and dynamic analysis of smart composite structures containing piezoelectric layers. Comparisons with an exact solution illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local response of thin and/or thick laminated piezoelectric plates. Additional correlations and numerical applications demonstrate the unique capabilities of the mechanics in analyzing the static and free-vibration response of composite plates with distributed piezoelectric actuators and sensors.
Inelastic and Dynamic Fracture and Stress Analyses
NASA Technical Reports Server (NTRS)
Atluri, S. N.
1984-01-01
Large deformation inelastic stress analysis and inelastic and dynamic crack propagation research work is summarized. The salient topics of interest in engine structure analysis that are discussed herein include: (1) a path-independent integral (T) in inelastic fracture mechanics, (2) analysis of dynamic crack propagation, (3) generalization of constitutive relations of inelasticity for finite deformations , (4) complementary energy approaches in inelastic analyses, and (5) objectivity of time integration schemes in inelastic stress analysis.
Application of wave mechanics theory to fluid dynamics problems: Fundamentals
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.
Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation
NASA Technical Reports Server (NTRS)
Herring, Helen
2003-01-01
Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.
Dynamic mechanical analysis of waste tyre rubber filled brake friction composite materials
NASA Astrophysics Data System (ADS)
Rathi, Mukesh Kumar; Singh, Tej; Chauhan, Ranchan
2018-05-01
In this research work, the dynamic mechanical properties of waste tyre rubber filled friction composites were studied. Four friction composites with varying amount of waste rubber (0, 4, 8, 12 wt.%) and barium sulphate (38, 42, 46, 50 wt.%) were designed and fabricated as per industrial norms. Dynamic mechanical analysis has been carried out to characterize the storage modulus, loss modulus and damping factor of the fabricated friction composite. Experimental results indicated that storage modulus decreases with increasing waste rubber content up to particular loading (4 wt.%), and after that it increases with further loading. The loss modulus of the composites increases steadily with increasing waste rubber content whereas, damping factor remain maximum for 12 wt.% waste rubber filled friction composites.
Analysis of passive damping in thick composite structures
NASA Technical Reports Server (NTRS)
Saravanos, D. A.
1993-01-01
Computational mechanics for the prediction of damping and other dynamic characteristics in composite structures of general thicknesses and laminations are presented. Discrete layer damping mechanics that account for the representation of interlaminar shear effects in the material are summarized. Finite element based structural mechanics for the analysis of damping are described, and a specialty finite element is developed. Applications illustrate the quality of the discrete layer damping mechanics in predicting the damped dynamic characteristics of composite structures with thicker sections and/or laminate configurations that induce interlaminar shear. The results also illustrate and quantify the significance of interlaminar shear damping in such composite structures.
Dynamics of individual perceptual decisions
Clark, Torin K.; Lu, Yue M.; Karmali, Faisal
2015-01-01
Perceptual decision making is fundamental to a broad range of fields including neurophysiology, economics, medicine, advertising, law, etc. Although recent findings have yielded major advances in our understanding of perceptual decision making, decision making as a function of time and frequency (i.e., decision-making dynamics) is not well understood. To limit the review length, we focus most of this review on human findings. Animal findings, which are extensively reviewed elsewhere, are included when beneficial or necessary. We attempt to put these various findings and data sets, which can appear to be unrelated in the absence of a formal dynamic analysis, into context using published models. Specifically, by adding appropriate dynamic mechanisms (e.g., high-pass filters) to existing models, it appears that a number of otherwise seemingly disparate findings from the literature might be explained. One hypothesis that arises through this dynamic analysis is that decision making includes phasic (high pass) neural mechanisms, an evidence accumulator and/or some sort of midtrial decision-making mechanism (e.g., peak detector and/or decision boundary). PMID:26467513
RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS
Purcell, Braden A.; Palmeri, Thomas J.
2016-01-01
Accumulator models explain decision-making as an accumulation of evidence to a response threshold. Specific model parameters are associated with specific model mechanisms, such as the time when accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms determine both the within-trial dynamics of evidence accumulation and the predicted behavior. Cognitive modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary when a model is fitted to observed behavior. The recent identification of neural activity with evidence accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics. To understand what kinds of inferences can be made about decision-making mechanisms based on measures of neural dynamics, we measured simulated accumulator model dynamics while systematically varying model parameters. In some cases, decision- making mechanisms can be directly inferred from dynamics, allowing us to distinguish between models that make identical behavioral predictions. In other cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural dynamics provides the most powerful approach to understand decision-making and likely other aspects of cognition and perception. PMID:28392584
NASA Astrophysics Data System (ADS)
Awwaluddin, Muhammad; Kristedjo, K.; Handono, Khairul; Ahmad, H.
2018-02-01
This analysis is conducted to determine the effects of static and dynamic loads of the structure of mechanical system of Ultrasonic Scanner i.e., arm, column, and connection systems for inservice inspection of research reactors. The analysis is performed using the finite element method with 520 N static load. The correction factor of dynamic loads used is the Gerber mean stress correction (stress life). The results of the analysis show that the value of maximum equivalent von Mises stress is 1.3698E8 Pa for static loading and value of the maximum equivalent alternating stress is 1.4758E7 Pa for dynamic loading. These values are below the upper limit allowed according to ASTM A240 standards i.e. 2.05E8 Pa. The result analysis of fatigue life cycle are at least 1E6 cycle, so it can be concluded that the structure is in the high life cycle category.
NASA Astrophysics Data System (ADS)
Pereira, Manuel S.; Ambrosio, Jorge A. C.
1993-07-01
During the last few years, major scientific progress has been achieved in fields related to computer aided analysis of multibody systems. In view of this progress and recent developments of computer hardware and general purpose software, there is a need to access the current state of art and results from different schools of thought, with the objective of focussing trends in future research. Going back to 1983 when an important NATO-NSF-ARO Advanced Study Institute on Computer Aided Analysis and Optimization of Mechanical Systems was held at the University of Iowa, one may notice that less then 10 years ago the state of art was mainly dwelling on rigid body dynamics. The interest in the dynamic simulation of mechanical systems has steadily increased in recent years coming mainly from the aerospace and automative industries. The development of multibody system analysis formulations have been more recently motivated with the need to include several features such as: real-time simulation capabilities, highly non-linear control devices, work space path planing, active control of machine flexibilities and reliability and accuracy in the analysis results. The need for accurate and efficient analysis tools for design of large and lightweight mechanical systems has driven many research groups in the challenging problem of flexible systems with an increasing interaction with finite element methodologies. Basic approaches to mechanical systems dynamic analysis have recently been presented in several new text books. These publications demonstrate that both recursive and absolute methods still have their proponents to resolve the redundancy encountered in most mechanical systems.
NASA Technical Reports Server (NTRS)
Brown, R. A.
1986-01-01
This research program focuses on analysis of the transport mechanisms in solidification processes, especially one of interest to the Microgravity Sciences and Applications Program of NASA. Research during the last year has focused on analysis of the dynamics of the floating zone process for growth of small-scale crystals, on studies of the effect of applied magnetic fields on convection and solute segregation in directional solidification, and on the dynamics of microscopic cell formation in two-dimensional solidification of binary alloys. Significant findings are given.
Visualizing Hyolaryngeal Mechanics in Swallowing Using Dynamic MRI
Pearson, William G.; Zumwalt, Ann C.
2013-01-01
Introduction Coordinates of anatomical landmarks are captured using dynamic MRI to explore whether a proposed two-sling mechanism underlies hyolaryngeal elevation in pharyngeal swallowing. A principal components analysis (PCA) is applied to coordinates to determine the covariant function of the proposed mechanism. Methods Dynamic MRI (dMRI) data were acquired from eleven healthy subjects during a repeated swallows task. Coordinates mapping the proposed mechanism are collected from each dynamic (frame) of a dynamic MRI swallowing series of a randomly selected subject in order to demonstrate shape changes in a single subject. Coordinates representing minimum and maximum hyolaryngeal elevation of all 11 subjects were also mapped to demonstrate shape changes of the system among all subjects. MophoJ software was used to perform PCA and determine vectors of shape change (eigenvectors) for elements of the two-sling mechanism of hyolaryngeal elevation. Results For both single subject and group PCAs, hyolaryngeal elevation accounted for the first principal component of variation. For the single subject PCA, the first principal component accounted for 81.5% of the variance. For the between subjects PCA, the first principal component accounted for 58.5% of the variance. Eigenvectors and shape changes associated with this first principal component are reported. Discussion Eigenvectors indicate that two-muscle slings and associated skeletal elements function as components of a covariant mechanism to elevate the hyolaryngeal complex. Morphological analysis is useful to model shape changes in the two-sling mechanism of hyolaryngeal elevation. PMID:25090608
Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA
NASA Astrophysics Data System (ADS)
Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji
2018-01-01
A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.
Motion interference analysis and optimal control of an electronic controlled bamboo-dance mechanism
NASA Astrophysics Data System (ADS)
Liu, Xiaohong; Xu, Liang; Hu, Xiaobin
2017-08-01
An electric bamboo-dance mechanism was designed and developed to realize mechanism of automation and mechanization. For coherent and fluent motion, ANSYS finite element analysis was applied on movement interference. Static structural method was used for analyzing dynamic deflection and deformation of the slender rod, while modal analysis was applied on frequency analysis to avoid second deformation caused by resonance. Therefore, the deformation in vertical and horizontal direction was explored and reasonable optimization was taken to avoid interference.
USDA-ARS?s Scientific Manuscript database
This study investigated the viscoelastic characteristics of tomato skins subjected to conventional hot lye peeling and emerging infrared-dry peeling by using dynamic mechanical analysis (DMA). Three DMA testing modes, including temperature ramp, frequency sweep, and creep behavior test, were conduct...
Measuring Clearance Mechanics Based on Dynamic Leg Length
ERIC Educational Resources Information Center
Khamis, Sam; Danino, Barry; Hayek, Shlomo; Carmeli, Eli
2018-01-01
The aim of this study was to quantify clearance mechanics during gait. Seventeen children diagnosed with hemiplegic cerebral palsy underwent a three-dimensional gait analysis evaluation. Dynamic leg lengths were measured from the hip joint center to the heel, to the ankle joint center and to the forefoot throughout the gait cycle. Significant…
Compendium of Abstracts on Statistical Applications in Geotechnical Engineering.
1983-09-01
research in the application of probabilistic and statistical methods to soil mechanics, rock mechanics, and engineering geology problems have grown markedly...probability, statistics, soil mechanics, rock mechanics, and engineering geology. 2. The purpose of this report is to make available to the U. S...Deformation Dynamic Response Analysis Seepage, Soil Permeability and Piping Earthquake Engineering, Seismology, Settlement and Heave Seismic Risk Analysis
Dynamic stability and bifurcation analysis in fractional thermodynamics
NASA Astrophysics Data System (ADS)
Béda, Péter B.
2018-02-01
In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.
Shake, Rattle, and Roll: Nonlinear Dynamics in Mechanical Engineering
NASA Astrophysics Data System (ADS)
Shaw, Steven
1997-03-01
This presentation will focus on three mechanical engineering applications in which methods from nonlinear dynamics have been applied with success. Each topic will be briefly surveyed by outlining the development of a mathematical model, providing a description of the analysis tools employed, and showing the main results obtained. The applications are: vibration reduction in internal combustion engines, impact dynamics of mechanical components, and the dynamics of ship capsize. The first topic demonstrates a novel arrangement of dynamic absorbers that can be used for attenuating torsional vibrations in rotating machinery. The operation of this device takes advantage of a purely nonlinear system response that results from a period doubling bifurcation. This configuration is more effective than existing absorbers and it cannot be imagined by using naive extensions of linear vibration theory. The second topic deals with the dynamics of mechanical systems in which components make intermittent contact with each another. Such dynamics are often the source of undesirable noise and wear in machinery and can be extremely complicated. Results obtained from simple predictive models and some application areas will be presented for these impacting systems. The final topic deals with the gross motions of seagoing vessels and their stability against capsize. Existing safety regulations for ship stability are based on purely static measures, whereas capsize is an inherently nonlinear dynamic event. An overview will be given that considers some basic modeling issues, dynamic analysis techniques (based on the concept of chaotic phase-space transport), and the resulting predictive tools that have been developed for this class of problems.
Kasahara, Kota; Kinoshita, Kengo
2016-01-01
Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.
2015-09-23
Round Robin Propellant Testing for Development of AOP-4717 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 0 Air Force Dynamic Mechanical Analysis of NATO Round Robin ...the clamps are tight at the coldest temperature. • Long tests such as the frequency sweep sequences prescribed in this round robin may be
NASA Technical Reports Server (NTRS)
Herring, Helen M.
2008-01-01
Various solid polymers, polymer-based composites, and closed-cell polymer foam are being characterized to determine their mechanical properties, using low-load test methods. The residual mechanical properties of these materials after environmental exposure or extreme usage conditions determines their value in aerospace structural applications. In this experimental study, four separate polymers were evaluated to measure their individual mechanical responses after thermal aging and moisture exposure by dynamic mechanical analysis. A ceramic gap filler, used in the gaps between the tiles on the Space Shuttle, was also tested, using dynamic mechanical analysis to determine material property limits during flight. Closed-cell polymer foam, used for the Space Shuttle External Tank insulation, was tested under low load levels to evaluate how the foam's mechanical properties are affected by various loading and unloading scenarios.
Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins
NASA Astrophysics Data System (ADS)
Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team
The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.
Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism
NASA Astrophysics Data System (ADS)
Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian
2013-09-01
It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.
Tribute to the contribution of Gerard Lallenment to structural dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Los Alamos National Laboratory
The Society for Experimental Mechanics and the International Modal Analysis Conference recognize the remarkable contribution to experimental mechanics, mechanical engineering and structural dynamics of Professor Gerard Lallement, from the University of Franche-Comte, France. A special session is organized during the IMAC-XX to outline the many achievements of Gerard Lallement in the fields of modal analysis, structural system identification, the theory and practice of structural modification, component mode synthesis and finite element model updating. The purpose of this publication is not to provide an exhaustive account of Gerard Lallement's contribution to structural dynamics. Numerous references are provided that should help themore » interested reader learn more about the many aspects of his work. Instead, the significance of this work is illustrated by discussing the role of structural dynamics in industrial applications and its future challenges. The technical aspects of Gerard Lallement's work are illustrated with a discussion of structural modification, modeling error localization and model updating.« less
NASA Technical Reports Server (NTRS)
Lee, Jeh Won
1990-01-01
The objective is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equation of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to higher order. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. Elastic motion is expressed by the assumed mode method. Mode shape functions of each link are chosen using the load interfaced component mode synthesis. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model.
Dynamic analysis of six-bar mechanical press for deep drawing
NASA Astrophysics Data System (ADS)
Mitsi, S.; Tsiafis, I.; Bouzakis, K. D.
2017-02-01
This paper analyzes the dynamical behavior of a six-bar linkage used in mechanical presses for metal forming such as deep drawing. In the under study mechanism, a four-bar linkage is connected to a slider through an articulated binary link. The motion of the six-bar linkage is studied by kinematic analysis developing an analytical method. Furthermore, using an iterative method and d’ Alembert’s principle, the joint forces and drive moment are evaluated considering joint frictions. The simulation results obtained with a MATLAB program are validated by comparing the theoretical values of the input moment with the ones obtained from the conservation of energy law.
NASA Astrophysics Data System (ADS)
Miao, Xiaodan; Han, Feng
2017-04-01
The low voltage switch has widely application especially in the hostile environment such as large vibration and shock conditions. In order to ensure the validity of the switch in the hostile environment, it is necessary to predict its mechanical characteristic. In traditional method, the complex and expensive testing system is build up to verify its validity. This paper presented a method based on finite element analysis to predict the dynamic mechanical characteristic of the switch by using ANSYS software. This simulation could provide the basis for the design and optimization of the switch to shorten the design process to improve the product efficiency.
Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis
NASA Astrophysics Data System (ADS)
Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea
2017-07-01
The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.
USDA-ARS?s Scientific Manuscript database
The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...
Thermal and dynamic mechanical properties of hydroxypropyl cellulose films
Timothy G. Rials; Wolfgang G. Glasser
1988-01-01
Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) were used to characterize the morphology of slovent cast hydroxypropyl cellulose (HPC) films. DSC results were indicative of a semicrystalline material with a melt of 220°C and a glass transition at 19°C (T1), although an additional event was suggested by a...
NASA Technical Reports Server (NTRS)
Saravanos, D. A.
1993-01-01
The development of novel composite mechanics for the analysis of damping in composite laminates and structures and the more significant results of this effort are summarized. Laminate mechanics based on piecewise continuous in-plane displacement fields are described that can represent both intralaminar stresses and interlaminar shear stresses and the associated effects on the stiffness and damping characteristics of a composite laminate. Among other features, the mechanics can accurately model the static and damped dynamic response of either thin or thick composite laminates, as well as, specialty laminates with embedded compliant damping layers. The discrete laminate damping theory is further incorporated into structural analysis methods. In this context, an exact semi-analytical method for the simulation of the damped dynamic response of composite plates was developed. A finite element based method and a specialty four-node plate element were also developed for the analysis of composite structures of variable shape and boundary conditions. Numerous evaluations and applications demonstrate the quality and superiority of the mechanics in predicting the damped dynamic characteristics of composite structures. Finally, additional development was focused on the development of optimal tailoring methods for the design of thick composite structures based on the developed analytical capability. Applications on composite plates illustrated the influence of composite mechanics in the optimal design of composites and the potential for significant deviations in the resultant designs when more simplified (classical) laminate theories are used.
Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.
A Mitrou, Nicholas G; Cupples, William A
2014-01-01
Renal autoregulation maintains stable renal blood flow in the face of constantly fluctuating blood pressure. Autoregulation is also the only mechanism that protects the delicate glomerular capillaries when blood pressure increases. In order to understand autoregulation, the renal blood flow response to changing blood pressure is studied. The steadystate response of blood flow is informative, but limits investigation of the individual mechanisms of autoregulation. The dynamics of autoregulation can be probed with transfer function analysis. The frequency-domain analysis of autoregulation allows investigators to probe the relative activity of each mechanism of autoregulation. We discuss the methodology and interpretation of transfer function analysis. Autoregulation is routinely studied in the rat, of which there are many inbred strains. There are multiple strains of rat that are either selected or inbred as models of human pathology. We discuss relevant characteristics of Brown Norway, Spontaneously hypertensive, Dahl, and Fawn-Hooded hypertensive rats and explore differences among these strains in blood pressure, dynamic autoregulation, and susceptibility to hypertensive renal injury. Finally we show that the use of transfer function analysis in these rat strains has contributed to our understanding of the physiology and pathophysiology of autoregulation and hypertensive renal disease.Interestingly all these strains demonstrate effective tubuloglomerular feedback suggesting that this mechanism is not sufficient for effective autoregulation. In contrast, obligatory or conditional failure of the myogenic mechanism suggests that this component is both necessary and sufficient for autoregulation.
Modeling and parameter identification of impulse response matrix of mechanical systems
NASA Astrophysics Data System (ADS)
Bordatchev, Evgueni V.
1998-12-01
A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the static stiffness due to dynamic testing over the time of 10- 15 minutes. As a practical example, the dynamic properties in view of the impulse and frequency response matrices of the lathe spindle are obtained, identified and investigated. The developed approach for modeling and parameter identification appears promising for a wide range o industrial applications; for example, rotary systems.
Bifurcation analysis of an automatic dynamic balancing mechanism for eccentric rotors
NASA Astrophysics Data System (ADS)
Green, K.; Champneys, A. R.; Lieven, N. J.
2006-04-01
We present a nonlinear bifurcation analysis of the dynamics of an automatic dynamic balancing mechanism for rotating machines. The principle of operation is to deploy two or more masses that are free to travel around a race at a fixed distance from the hub and, subsequently, balance any eccentricity in the rotor. Mathematically, we start from a Lagrangian description of the system. It is then shown how under isotropic conditions a change of coordinates into a rotating frame turns the problem into a regular autonomous dynamical system, amenable to a full nonlinear bifurcation analysis. Using numerical continuation techniques, curves are traced of steady states, limit cycles and their bifurcations as parameters are varied. These results are augmented by simulations of the system trajectories in phase space. Taking the case of a balancer with two free masses, broad trends are revealed on the existence of a stable, dynamically balanced steady-state solution for specific rotation speeds and eccentricities. However, the analysis also reveals other potentially attracting states—non-trivial steady states, limit cycles, and chaotic motion—which are not in balance. The transient effects which lead to these competing states, which in some cases coexist, are investigated.
Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism
NASA Technical Reports Server (NTRS)
Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.
2008-01-01
Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses of the Door Drive Mechanism (DDM). For a similar analysis, the traditional approach would be to construct a full finite element model of the mechanism. The purpose of this paper is to describe an alternative approach that models the flexibility of the DDM using a lumped parameter approximation to capture the compliance of individual parts within the drive linkage. This approach allows for rapid construction of a dynamic model in a time-critical setting, while still retaining the appropriate equivalent stiffness of each linkage component. As a validation of these equivalent stiffnesses, finite element analysis (FEA) was used to iteratively update the model towards convergence. Following this analysis, deflections recovered from the dynamic model can be used to calculate stress and classify each component s deformation as either elastic or plastic. Based on the modeling assumptions used in this analysis and the maximum input forcing condition, two components in the DDM show a factor of safety less than or equal to 0.5. However, to accurately evaluate the induced stresses, additional mechanism rigging information would be necessary to characterize the input forcing conditions. This information would also allow for the classification of stresses as either elastic or plastic.
Dynamics and allostery of the ionotropic glutamate receptors and the ligand binding domain.
Tobi, Dror
2016-02-01
The dynamics of the ligand-binding domain (LBD) and the intact ionotropic glutamate receptor (iGluR) were studied using Gaussian Network Model (GNM) analysis. The dynamics of LBDs with various allosteric modulators is compared using a novel method of multiple alignment of GNM modes of motion. The analysis reveals that allosteric effectors change the dynamics of amino acids at the upper lobe interface of the LBD dimer as well as at the hinge region between the upper- and lower- lobes. For the intact glutamate receptor the analysis show that the clamshell-like movement of the LBD upper and lower lobes is coupled to the bending of the trans-membrane domain (TMD) helices which may open the channel pore. The results offer a new insight on the mechanism of action of allosteric modulators on the iGluR and support the notion of TMD helices bending as a possible mechanism for channel opening. In addition, the study validates the methodology of multiple GNM modes alignment as a useful tool to study allosteric effect and its relation to proteins dynamics. © 2015 Wiley Periodicals, Inc.
Nonlinear Dynamics and Control of Flexible Structures
1991-03-01
of which might be used for space applications. This project was a collaborative one involving structural, electrical and mechanical engineers and...methods for vibration analysis and new models to analyze chaotic dynamics in nonlinear structures with large deformations and friction forces. Finally... electrical and mechanical engineers and resulted in nine doctoral dissertations and two masters theses wholly or partially supported by this grant
Dynamic mechanical analysis and organization/storage of data for polymetric materials
NASA Technical Reports Server (NTRS)
Rosenberg, M.; Buckley, W.
1982-01-01
Dynamic mechanical analysis was performed on a variety of temperature resistant polymers and composite resin matrices. Data on glass transition temperatures and degree of cure attained were derived. In addition a laboratory based computer system was installed and data base set up to allow entry of composite data. The laboratory CPU termed TYCHO is based on a DEC PDP 11/44 CPU with a Datatrieve relational data base. The function of TYCHO is integration of chemical laboratory analytical instrumentation and storage of chemical structures for modeling of new polymeric structures and compounds
NASA Technical Reports Server (NTRS)
Bales, K. S.
1983-01-01
The objectives, expected results, approach, and milestones for research projects of the IPAD Project Office and the impact dynamics, structural mechanics, and structural dynamics branches of the Structures and Dynamics Division are presented. Research facilities are described. Topics covered include computer aided design; general aviation/transport crash dynamics; aircraft ground performance; composite structures; failure analysis, space vehicle dynamics; and large space structures.
NASA Astrophysics Data System (ADS)
Chen, Shu-Peng; He, Ling-Yun
2010-04-01
Based on Partition Function and Multifractal Spectrum Analysis, we investigated the nonlinear dynamical mechanisms in China’s agricultural futures markets, namely, Dalian Commodity Exchange (DCE for short) and Zhengzhou Commodity Exchange (ZCE for short), where nearly all agricultural futures contracts are traded in the two markets. Firstly, we found nontrivial multifractal spectra, which are the empirical evidence of the existence of multifractal features, in 4 representative futures markets in China, that is, Hard Winter wheat (HW for short) and Strong Gluten wheat (SG for short) futures markets from ZCE and Soy Meal (SM for short) futures and Soy Bean No.1 (SB for short) futures markets from DCE. Secondly, by shuffling the original time series, we destroyed the underlying nonlinear temporal correlation; thus, we identified that long-range correlation mechanism constitutes major contributions in the formation in the multifractals of the markets. Thirdly, by tracking the evolution of left- and right-half spectra, we found that there exist critical points, between which there are different behaviors, in the left-half spectra for large price fluctuations; but for the right-hand spectra for small price fluctuations, the width of those increases slowly as the delay t increases in the long run. Finally, the dynamics of large fluctuations is significantly different from that of the small ones, which implies that there exist different underlying mechanisms in the formation of multifractality in the markets. Our main contributions focus on that we not only provided empirical evidence of the existence of multifractal features in China agricultural commodity futures markets; but also we pioneered in investigating the sources of the multifractality in China’s agricultural futures markets in current literature; furthermore, we investigated the nonlinear dynamical mechanisms based on spectrum analysis, which offers us insights into the underlying dynamical mechanisms in China’s agricultural futures markets.
A Flight Prediction for Performance of the SWAS Solar Array Deployment Mechanism
NASA Technical Reports Server (NTRS)
Seniderman, Gary; Daniel, Walter K.
1999-01-01
The focus of this paper is a comparison of ground-based solar array deployment tests with the on-orbit deployment. The discussion includes a summary of the mechanisms involved and the correlation of a dynamics model with ground based test results. Some of the unique characteristics of the mechanisms are explained through the analysis of force and angle data acquired from the test deployments. The correlated dynamics model is then used to predict the performance of the system in its flight application.
Process Improvement Through Tool Integration in Aero-Mechanical Design
NASA Technical Reports Server (NTRS)
Briggs, Clark
2010-01-01
Emerging capabilities in commercial design tools promise to significantly improve the multi-disciplinary and inter-disciplinary design and analysis coverage for aerospace mechanical engineers. This paper explores the analysis process for two example problems of a wing and flap mechanical drive system and an aircraft landing gear door panel. The examples begin with the design solid models and include various analysis disciplines such as structural stress and aerodynamic loads. Analytical methods include CFD, multi-body dynamics with flexible bodies and structural analysis. Elements of analysis data management, data visualization and collaboration are also included.
NASA Astrophysics Data System (ADS)
Medvigy, D.; Khanna, J.
2016-12-01
The Amazon rainforest has been under deforestation for more than four decades. Recent investigation of the regional hydroclimatic impacts of the past three decades of deforestation has revealed a strong scale-dependence of the atmospheric response to land use change. Contemporary deforestation, affecting spatial scales of a few hundreds of kilometers, has resulted in a spatial redistribution of the local dry season rainfall, with downwind and upwind deforested regions receiving respectively 30% more and 30% less rainfall from the area mean. This phenomenon is attributable to a `dynamical' response of the boundary layer air to a reduction in surface roughness due to deforestation, apparent in both satellite and numerically simulated data. This response is starkly different from a spatially uniform increase in non-precipitating cloudiness triggered by small scale clearings, prevalent in the early phases of deforestation. This study investigates the `generalizability' of the dynamical mechanism to understand its impacts on a continually deforested Amazonia. In particular, we investigate the spatiotemporal variability of the dynamical mechanism. The nature of this investigation demands long time series and large spatial converge datasets of the hydroclimate. As such, satellite imagery of clouds (GridSat) and precipitation (PERSIANN and TRMM) has proven particularly useful in facilitating this analysis. The analysis is further complemented by a reanalysis product (ERA-interim) and numerical simulations (using a variable resolution GCM). Results indicate the presence of the dynamical mechanism during local dry and transition seasons effecting the mean precipitation during this period. Its effect on the transition season precipitation can be important for the local dry season length. The dynamical mechanism also occurs in atmospheric conditions which are otherwise less conducive to thermally triggered convection. Hence, this mechanism, which effects the seasons most important for regional ecology, emerges as a possibly impactful convective triggering mechanism. This study provides context for thinking about the climate of a future, more patchily deforested Amazonia that is more favorable to the dynamical mechanism.
Stress and strain analysis from dynamic loads of mechanical hand using finite element method
NASA Astrophysics Data System (ADS)
Hasanuddin, Iskandar; Husaini; Syahril Anwar, M.; Yudha, B. Z. Sandy; Akhyar, Hasan
2018-05-01
This research discusses the distribution of stress and strain due to the dynamic loads of mechanical hand. The stress and strain that occur on mechanical hand are the main concern for comparing the value of finite element analysis (FEA) and calculating for its material properties. The stress and strain analysis are done with a loading condition. The given loading condition is dynamic. The loading input condition in the simulation of using hydraulic hand dynamometer is from the grip strength measurement of ten samples. The form of the given loading to the mechanical hand is the increment value with a maximum of 708 N/m2 within 1 minute. The amount of maximum stress (von Mises) simulation is 1.731 x 105 Pa, and the amount of maximum strain is 7.441 x 10-7. The amount of maximum reaction force is 5.864 x 10-2 N, while the amount of maximum displacement that occurs on the distal part is 1.223 x 10 m. Based on the analysis, the maximum stress and strain were found both to occur at the extension part. The result of this study has shown that the stress and strain still occur far below from the yield strength and the shear strength from the material AISI 1010. It can be concluded that the mechanical hand is durable for the given loading and can hold an object with a minimum diameter of 45 mm.
NASA Astrophysics Data System (ADS)
Isella, Giorgio Carlo
A method for a comprehensive approach to analysis of the dynamics of an actively controlled combustion chamber, with detailed analysis of the combustion models for the case of a solid rocket propellant, is presented here. The objective is to model the system as interconnected blocks describing the dynamics of the chamber, combustion and control. The analytical framework for the analysis of the dynamics of a combustion chamber is based on spatial averaging, as introduced by Culick. Combustion dynamics are analyzed for the case of a solid propellant. Quasi-steady theory is extended to include the dynamics of the gas-phase and also of a surface layer. The models are constructed so that they produce a combustion response function for the solid propellant that can be immediately introduced in the our analytical framework. The principal objective mechanisms responsible for the large sensitivity, observed experimentally, of propellant response to small variations. We show that velocity coupling, and not pressure coupling, has the potential to be the mechanism responsible for that high sensitivity. We also discuss the effect of particulate modeling on the global dynamics of the chamber and revisit the interpretation of the intrinsic stability limit for burning of solid propellants. Active control is also considered. Particular attention is devoted to the effect of time delay (between sensing and actuation); several methods to compensate for it are discussed, with numerical examples based on the approximate analysis produced by our framework. Experimental results are presented for the case of a Dump Combustor. The combustor exhibits an unstable burning mode, defined through the measurement of the pressure trace and shadowgraph imaging. The transition between stable and unstable modes of operation is characterized by the presence of hysteresis, also observed in other experimental works, and hence not a special characteristic of this combustor. Control is introduced in the form of pulsed secondary fuel. We show the capability of forcing the transition from unstable to stable burning, hence extending the stable operating regime of the combustor. The transition, characterized by the use of a shadowgraph movie sequence, is attributed to a combined fluid-mechanic and combustion mechanism.
Dynamic performance and mechanical model analysis of a shear thickening fluid damper
NASA Astrophysics Data System (ADS)
Zhao, Qian; He, Yonghui; Yao, Hongliang; Wen, Bangchun
2018-07-01
This paper presents an experimental study of the dynamic performance of a self-developed shear thickening fluid (STF) damper and its mechanical model was proposed by nonlinear fitting. First, STF samples with different mass fraction and dispersion medium were fabricated by nano fumed silica and polyethylene glycol, and its rheological properties were investigated by a rheometer. Second, a smart STF damper was developed and manufactured. Its dynamic properties were experimentally investigated by establishing a vibration test bench, and results indicated that the STF damper can output variable damping force by controlling the loading frequency, loading amplitude and fluid gap. Third, the Bouc–Wen model was proposed to address the dynamic properties of STF damper, and mechanical model analysis was carried out by comparing several fitting functions. It verified that the Bouc–Wen hysteresis model can be better used to describe the nonlinear stiffness, nonlinear damping and rate-dependence characteristics of the STF damper. All these investigations can offer an effective guidance for further theoretical and application study of the smart STF damper in energy dissipation fields.
Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.
Carrion-Vazquez, M; Oberhauser, A F; Fisher, T E; Marszalek, P E; Li, H; Fernandez, J M
2000-01-01
Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).
Development of a simulation model for dynamic derailment analysis of high-speed trains
NASA Astrophysics Data System (ADS)
Ling, Liang; Xiao, Xin-Biao; Jin, Xue-Song
2014-12-01
The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world. The basic safety requirement is to prevent the derailment. The root causes of the dynamic derailment of high-speed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments. Numerical simulation using an advanced train-track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains. This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis. The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections. The ballast track model consists of rails, fastenings, sleepers, ballasts, and roadbed, which are modeled by Euler beams, nonlinear spring-damper elements, equivalent ballast bodies, and continuous viscoelastic elements, in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams. The commonly used derailment safety assessment criteria around the world are embedded in the simulation model. The train-track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track, in which the derailment mechanism and train running posture during the dynamic derailment process were analyzed in detail. The effects of train and track modelling on dynamic derailment analysis were also discussed. The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis. The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations.
Johnson, Quentin R; Lindsay, Richard J; Shen, Tongye
2018-02-21
A computational method which extracts the dominant motions from an ensemble of biomolecular conformations via a correlation analysis of residue-residue contacts is presented. The algorithm first renders the structural information into contact matrices, then constructs the collective modes based on the correlated dynamics of a selected set of dynamic contacts. Associated programs can bridge the results for further visualization using graphics software. The aim of this method is to provide an analysis of conformations of biopolymers from the contact viewpoint. It may assist a systematical uncovering of conformational switching mechanisms existing in proteins and biopolymer systems in general by statistical analysis of simulation snapshots. In contrast to conventional correlation analyses of Cartesian coordinates (such as distance covariance analysis and Cartesian principal component analysis), this program also provides an alternative way to locate essential collective motions in general. Herein, we detail the algorithm in a stepwise manner and comment on the importance of the method as applied to decoding allosteric mechanisms. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Time-dependent inertia analysis of vehicle mechanisms
NASA Astrophysics Data System (ADS)
Salmon, James Lee
Two methods for performing transient inertia analysis of vehicle hardware systems are developed in this dissertation. The analysis techniques can be used to predict the response of vehicle mechanism systems to the accelerations associated with vehicle impacts. General analytical methods for evaluating translational or rotational system dynamics are generated and evaluated for various system characteristics. The utility of the derived techniques are demonstrated by applying the generalized methods to two vehicle systems. Time dependent acceleration measured during a vehicle to vehicle impact are used as input to perform a dynamic analysis of an automobile liftgate latch and outside door handle. Generalized Lagrange equations for a non-conservative system are used to formulate a second order nonlinear differential equation defining the response of the components to the transient input. The differential equation is solved by employing the fourth order Runge-Kutta method. The events are then analyzed using commercially available two dimensional rigid body dynamic analysis software. The results of the two analytical techniques are compared to experimental data generated by high speed film analysis of tests of the two components performed on a high G acceleration sled at Ford Motor Company.
Dynamic simulation of train derailments
DOT National Transportation Integrated Search
2006-11-05
This paper describes a planar rigid-body model to examine the gross motions of rail cars in a train derailment. The model is implemented using a commercial software package called ADAMS (Automatic Dynamic Analysis of Mechanical Systems). The results ...
Ni, Duan; Song, Kun; Zhang, Jian; Lu, Shaoyong
2017-10-26
Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras-NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras.
Song, Kun; Zhang, Jian; Lu, Shaoyong
2017-01-01
Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras–NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras. PMID:29072601
Falconi, M; Oteri, F; Eliseo, T; Cicero, D O; Desideri, A
2008-08-01
The structural dynamics of the DNA binding domains of the human papillomavirus strain 16 and the bovine papillomavirus strain 1, complexed with their DNA targets, has been investigated by modeling, molecular dynamics simulations, and nuclear magnetic resonance analysis. The simulations underline different dynamical features of the protein scaffolds and a different mechanical interaction of the two proteins with DNA. The two protein structures, although very similar, show differences in the relative mobility of secondary structure elements. Protein structural analyses, principal component analysis, and geometrical and energetic DNA analyses indicate that the two transcription factors utilize a different strategy in DNA recognition and deformation. Results show that the protein indirect DNA readout is not only addressable to the DNA molecule flexibility but it is finely tuned by the mechanical and dynamical properties of the protein scaffold involved in the interaction.
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich
2005-10-01
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
Kumar, Neelesh
2014-10-01
Finite element analysis has been universally employed for the stress and strain analysis in lower extremity prosthetics. The socket adapter was the principal subject of interest due to its importance in deciding the knee motion range. This article focused on the static and dynamic stress analysis of the designed hybrid adapter developed by the authors. A standard mechanical design validation approach using von Mises was followed. Four materials were considered for the analysis, namely, carbon fiber, oil-filled nylon, Al-6061, and mild steel. The paper analyses the static and dynamic stress on designed hybrid adapter which incorporates features of conventional male and female socket adapters. The finite element analysis was carried out for possible different angles of knee flexion simulating static and dynamic gait situation. Research was carried out on available design of socket adapter. Mechanical design of hybrid adapter was conceptualized and a CAD model was generated using Inventor modelling software. Static and dynamic stress analysis was carried out on different materials for optimization. The finite element analysis was carried out on the software Autodesk Inventor Professional Ver. 2011. The peak value of von Mises stress occurred in the neck region of the adapter and in the lower face region at rod eye-adapter junction in static and dynamic analyses, respectively. Oil-filled nylon was found to be the best material among the four with respect to strength, weight, and cost. Research investigations on newer materials for development of improved prosthesis will immensely benefit the amputees. The study analyze the static and dynamic stress on the knee joint adapter to provide better material used for hybrid design of adapter. © The International Society for Prosthetics and Orthotics 2013.
Quantum versus classical dynamics in the optical centrifuge
NASA Astrophysics Data System (ADS)
Armon, Tsafrir; Friedland, Lazar
2017-09-01
The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.
Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang
The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.
Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites
Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang; ...
2017-11-17
The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.
Effect of Heliox on Respiratory Outcomes during Rigid Bronchoscopy in Term Lambs.
Sowder, Justin C; Dahl, Mar Janna; Zuspan, Kaitlin R; Albertine, Kurt H; Null, Donald M; Barneck, Mitchell D; Grimmer, J Fredrik
2018-03-01
Objective To (1) compare physiologic changes during rigid bronchoscopy during spontaneous and mechanical ventilation and (2) evaluate the efficacy of a helium-oxygen (heliox) gas mixture as compared with room air during rigid bronchoscopy. Study Design Crossover animal study evaluating physiologic parameters during rigid bronchoscopy. Outcomes were compared with predicted computational fluid analysis. Setting Simulated ventilation via computational fluid dynamics analysis and term lambs undergoing rigid bronchoscopy. Methods Respiratory and physiologic outcomes were analyzed in a lamb model simulating bronchoscopy during foreign body aspiration to compare heliox with room air. The main outcome measures were blood oxygen saturation, heart rate, blood pressure, partial pressure of oxygen, and partial pressure of carbon dioxide. Computational fluid dynamics analysis was performed with SOLIDWORKS within a rigid pediatric bronchoscope during simulated ventilation comparing heliox with room air. Results For room air, lambs desaturated within 3 minutes during mechanical ventilation versus normal oxygen saturation during spontaneous ventilation ( P = .01). No improvement in respiratory outcomes was seen between heliox and room air during mechanical ventilation. Computational fluid dynamics analysis demonstrates increased turbulence within size 3.5 bronchoscopes when comparing heliox and room air. Meaningful comparisons could not be made due to the intolerance of the lambs to heliox in vivo. Conclusion During mechanical ventilation on room air, lambs desaturate more quickly during rigid bronchoscopy on settings that should be adequate. Heliox does not improve ventilation during rigid bronchoscopy.
Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding
NASA Astrophysics Data System (ADS)
Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling
2018-03-01
In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.
Kelley, Laura C.; Wang, Zheng; Hagedorn, Elliott J.; Wang, Lin; Shen, Wanqing; Lei, Shijun; Johnson, Sam A.; Sherwood, David R.
2018-01-01
Cell invasion through basement membrane (BM) barriers is crucial during development, leukocyte trafficking, and for the spread of cancer. Despite its importance in normal and diseased states, the mechanisms that direct invasion are poorly understood, in large part because of the inability to visualize dynamic cell-basement membrane interactions in vivo. This protocol describes multi-channel time-lapse confocal imaging of anchor cell invasion in live C. elegans. Methods presented include outline slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min), and quantitative analysis (variable timing). Images acquired enable direct measurement of invasive dynamics including invadopodia formation, cell membrane protrusions, and BM removal. This protocol can be combined with genetic analysis, molecular activity probes, and optogenetic approaches to uncover molecular mechanisms underlying cell invasion. These methods can also be readily adapted for real-time analysis of cell migration, basement membrane turnover, and cell membrane dynamics by any worm laboratory. PMID:28880279
Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis
Prerau, Michael J.; Brown, Ritchie E.; Bianchi, Matt T.; Ellenbogen, Jeffrey M.; Purdon, Patrick L.
2016-01-01
During sleep, cortical and subcortical structures within the brain engage in highly structured oscillatory dynamics that can be observed in the electroencephalogram (EEG). The ability to accurately describe changes in sleep state from these oscillations has thus been a major goal of sleep medicine. While numerous studies over the past 50 years have shown sleep to be a continuous, multifocal, dynamic process, long-standing clinical practice categorizes sleep EEG into discrete stages through visual inspection of 30-s epochs. By representing sleep as a coarsely discretized progression of stages, vital neurophysiological information on the dynamic interplay between sleep and arousal is lost. However, by using principled time-frequency spectral analysis methods, the rich dynamics of the sleep EEG are immediately visible—elegantly depicted and quantified at time scales ranging from a full night down to individual microevents. In this paper, we review the neurophysiology of sleep through this lens of dynamic spectral analysis. We begin by reviewing spectral estimation techniques traditionally used in sleep EEG analysis and introduce multitaper spectral analysis, a method that makes EEG spectral estimates clearer and more accurate than traditional approaches. Through the lens of the multitaper spectrogram, we review the oscillations and mechanisms underlying the traditional sleep stages. In doing so, we will demonstrate how multitaper spectral analysis makes the oscillatory structure of traditional sleep states instantaneously visible, closely paralleling the traditional hypnogram, but with a richness of information that suggests novel insights into the neural mechanisms of sleep, as well as novel clinical and research applications. PMID:27927806
NASA Astrophysics Data System (ADS)
Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao
2017-12-01
Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings and controlling manufacturing process parameters for the opening mechanism. Several optimization objectives such as x/y/z accelerations for various measuring points and dynamic reaction forces of mounting brackets, and a few constraints including manufacturing process were taken into account in the optimization models, which were solved by utilizing the multi-objective genetic algorithm (NSGA-II). The vibration characteristics of the optimized opening mechanism are superior to those of the original design. In addition, the numerical forecast results are in good agreement with the test results of the prototype.
NASA Astrophysics Data System (ADS)
Adak, Nitai Chandra; Chhetri, Suman; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas
2018-03-01
The Carbon fiber (CF)/epoxy composites are being used in the automotive and aerospace industries owing to their high specific mechanical strength to weight ratio compared to the other conventional metal and alloys. However, the low interfacial adhesion between fiber and polymer matrix results the inter-laminar fracture of the composites. Effects of different carbonaceous nanomaterials i.e., carbon nanotubes (CNT), graphene nanosheets (GNPs), graphene oxide (GO) etc. on the static mechanical properties of the composites were investigated in detail. Only a few works focused on the improvement of the dynamic mechanical of the CF/epoxy composites. Herein, the effect of thermally reduced grapheme oxide (TRGO) on the dynamic mechanical properties of the CF/epoxy composites was investigated. At first, GO was synthesized using modified Hummers method and then reduced the synthesized GO inside a vacuum oven at 800 °C for 5 min. The prepared TRGO was dispersed in the epoxy resin to modify the epoxy matrix. Then, a number of TRGO/CF/epoxy laminates were manufactured incorporating different wt% of TRGO by vacuum assisted resin transfer molding (VARTM) technique. The developed laminates were cured at room temperature for 24 h and then post cured at 120 °C for 2 h. The dynamic mechanical analyzer (DMA 8000 Perkin Elmer) was used to examine the dynamic mechanical properties of the TRGO/CF/epoxy composites according to ASTM D7028. The dimension of the specimen was 44×10×2.4 mm3 for the DMA test. This test was carried out under flexural loading mode (duel cantilever) at a frequency of 1 Hz and amplitude of 50 μm. The temperature was ramped from 30 to 200 °C with a heating rate of 5 °C min-1. The dynamic mechanical analysis of the 0.2 wt% TRGO incorporated CF/epoxy composites showed ~ 96% enhancement in storage modulus and ~ 12 °C increments in glass transition temperature (Tg) compared to the base CF/epoxy composites. The fiber-matrix interaction was studied by Cole-Cole plot analysis. It proved the homogeneous dispersion of the epoxy resin and TRGO. The homogeneous dispersion of the TRGO in the epoxy matrix increased the overall enhancement of the dynamic mechanical properties of the hybrid composites.
Dynamics Modelling of Transmission Gear Rattle and Analysis on Influence Factors
NASA Astrophysics Data System (ADS)
He, Xiaona; Zhang, Honghui
2018-02-01
Based on the vibration dynamics modeling for the single stage gear of transmission system, this paper is to understand the mechanism of transmission rattle. The dynamic model response using MATLAB and Runge-Kutta algorithm is analyzed, and the ways for reducing the rattle noise of the automotive transmission is summarized.
Abraham, Jiji; Thomas, Jince; Kalarikkal, Nandakumar; George, Soney C; Thomas, Sabu
2018-02-01
Well-dispersed, robust, mechanicaly long-term stable functionalized multiwalled carbon nanotube (f-MWCNT)-styrene butadiene rubber (SBR) nanocomposites were fabricated via a melt mixing route with the assistance of ionic liquid as a dispersing agent. The mechanical properties of f-MWCNT/SBR vulcanizates were compared over a range of loadings, and it was found that the network morphology was highly favorable for mechanical performance with enlarged stiffness. A comparative investigation of composite models found that modified Kelly-Tyson theory gave an excellent fit to tensile strength data of the composites considering the effect of the interphase between polymer and f-MWCNT. Dynamic mechanical analysis highlighted the mechanical reinforcement due to the improved filler-polymer interactions which were the consequence of proper dispersion of the nanotubes in the SBR matrix. Effectiveness of filler, entanglement density, and adhesion factor were evaluated to get an in depth understanding of the reinforcing mechanism of modified MWCNT. The amount of polymer chains immobilized by the filler surface computed from dynamic mechanical analysis further supports a substantial boost up in mechanics. The Cole-Cole plot shows an imperfect semicircular curve representing the heterogeneity of the system and moderately worthy filler polymer bonding. The combined results of structural characterizatrion by Raman spectroscopy, cure characteristics, mechanical properties, and scanning and transmission electron microscopy (SEM, TEM) confirm the role of ionic liquid modified MWCNT as a reinforcing agent in the present system.
Space Station Common Berthing Mechanism, a multi-body simulation application
NASA Technical Reports Server (NTRS)
Searle, Ian
1993-01-01
This paper discusses an application of multi-body dynamic analysis conducted at the Boeing Company in connection with the Space Station (SS) Common Berthing Mechanism (CBM). After introducing the hardware and analytical objectives we will focus on some of the day-to-day computational issues associated with this type of analysis.
Dynamic fracture mechanics analysis for an edge delamination crack
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Doyle, James F.
1994-01-01
A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.
NASA Astrophysics Data System (ADS)
Lazutkin, G. V.; Davydov, D. P.; Boyarov, K. V.; Volkova, T. V.
2018-01-01
The results of the mechanical characteristic experimental studies are presented for the shock absorbers of DKU type with the elastic elements of the bell shape made of MR material and obtained by the cold pressing of mutually crossing wire spirals with their inclusion in the array of reinforcing wire harnesses. The design analysis and the technology of MR production based on the methods of similarity theory and dimensional analysis revealed the dimensionless determined and determining parameters of elastic frictional, dynamic and strength characteristics under the static and dynamic loading of vibration isolators. The main similarity criteria of mechanical characteristics for vibration isolators and their graphical and analytical representation are determined, taking into account the coefficients of these (affine) transformations of the hysteresis loop family field.
Theoretical and software considerations for nonlinear dynamic analysis
NASA Technical Reports Server (NTRS)
Schmidt, R. J.; Dodds, R. H., Jr.
1983-01-01
In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.
Analysis of dynamics and fit of diving suits
NASA Astrophysics Data System (ADS)
Mahnic Naglic, M.; Petrak, S.; Gersak, J.; Rolich, T.
2017-10-01
Paper presents research on dynamical behaviour and fit analysis of customised diving suits. Diving suits models are developed using the 3D flattening method, which enables the construction of a garment model directly on the 3D computer body model and separation of discrete 3D surfaces as well as transformation into 2D cutting parts. 3D body scanning of male and female test subjects was performed with the purpose of body measurements analysis in static and dynamic postures and processed body models were used for construction and simulation of diving suits prototypes. All necessary parameters, for 3D simulation were applied on obtained cutting parts, as well as parameters values for mechanical properties of neoprene material. Developed computer diving suits prototypes were used for stretch analysis on areas relevant for body dimensional changes according to dynamic anthropometrics. Garment pressures against the body in static and dynamic conditions was also analysed. Garments patterns for which the computer prototype verification was conducted were used for real prototype production. Real prototypes were also used for stretch and pressure analysis in static and dynamic conditions. Based on the obtained results, correlation analysis between body changes in dynamic positions and dynamic stress, determined on computer and real prototypes, was performed.
Potential applications of computational fluid dynamics to biofluid analysis
NASA Technical Reports Server (NTRS)
Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.; Kwak, D.
1988-01-01
Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis.
NASA Astrophysics Data System (ADS)
Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas
2018-03-01
This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.
Physicochemical, mechanical and thermal properties of chitosan films with and without sorbitol.
Liu, Mei; Zhou, Yibin; Zhang, Yang; Yu, Chen; Cao, Shengnan
2014-09-01
The effect of sorbitol on the physicochemical, mechanical and thermal properties of chitosan films with different degrees of deacetylation (DD; i.e., DD85% and DD95%) was investigated. The thickness, moisture content (MC), water solubility (WS) and water-vapor permeability (WVP) of the films were evaluated. Sorbitol addition reduced MC, increased WS and significantly (p<0.01) reduced WVP of both film types. DD95% films had lower MC and WVP, and higher WS than DD85% films. Static (thermomechanical analysis) and dynamic (dynamic mechanical analysis) tests indicated that sorbitol increased the strain and decreased stress for both DD films, but DD95% could sustain higher strain and DD85% could sustain higher stress. Thermogravimetrics analysis and differential scanning calorimetry showed that sorbitol elicited a lower degradation temperature for both films, and that DD95% films exhibited higher thermal stability than DD85% films. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Othman, M. N. K., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Hazry, D., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my
2014-12-04
This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors andmore » the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.« less
NASA Astrophysics Data System (ADS)
Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.
2014-12-01
This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.
Development of a theoretical framework for analyzing cerebrospinal fluid dynamics
Cohen, Benjamin; Voorhees, Abram; Vedel, Søren; Wei, Timothy
2009-01-01
Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis. PMID:19772652
NASA Astrophysics Data System (ADS)
Fei, Cheng-Wei; Bai, Guang-Chen
2014-12-01
To improve the computational precision and efficiency of probabilistic design for mechanical dynamic assembly like the blade-tip radial running clearance (BTRRC) of gas turbine, a distribution collaborative probabilistic design method-based support vector machine of regression (SR)(called as DCSRM) is proposed by integrating distribution collaborative response surface method and support vector machine regression model. The mathematical model of DCSRM is established and the probabilistic design idea of DCSRM is introduced. The dynamic assembly probabilistic design of aeroengine high-pressure turbine (HPT) BTRRC is accomplished to verify the proposed DCSRM. The analysis results reveal that the optimal static blade-tip clearance of HPT is gained for designing BTRRC, and improving the performance and reliability of aeroengine. The comparison of methods shows that the DCSRM has high computational accuracy and high computational efficiency in BTRRC probabilistic analysis. The present research offers an effective way for the reliability design of mechanical dynamic assembly and enriches mechanical reliability theory and method.
Saha, Tanumoy; Rathmann, Isabel; Galic, Milos
2017-07-11
Filopodia are dynamic, finger-like cellular protrusions associated with migration and cell-cell communication. In order to better understand the complex signaling mechanisms underlying filopodial initiation, elongation and subsequent stabilization or retraction, it is crucial to determine the spatio-temporal protein activity in these dynamic structures. To analyze protein function in filopodia, we recently developed a semi-automated tracking algorithm that adapts to filopodial shape-changes, thus allowing parallel analysis of protrusion dynamics and relative protein concentration along the whole filopodial length. Here, we present a detailed step-by-step protocol for optimized cell handling, image acquisition and software analysis. We further provide instructions for the use of optional features during image analysis and data representation, as well as troubleshooting guidelines for all critical steps along the way. Finally, we also include a comparison of the described image analysis software with other programs available for filopodia quantification. Together, the presented protocol provides a framework for accurate analysis of protein dynamics in filopodial protrusions using image analysis software.
Flight Dynamics Analysis Branch End of Fiscal Year 1999 Report
NASA Technical Reports Server (NTRS)
Stengle, Thomas; Flores-Amaya, Felipe
1999-01-01
This document summarizes the major activities and accomplishments carried out by the Goddard Space Flight Center (GSFC)'s Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in Fiscal Year (FY) 1999. The document is intended to serve as both an introduction to the type of support carried out by the FDAB (Flight Dynamics Analysis Branch), as well as a concise reference summarizing key analysis results and mission experience derived from the various mission support roles assumed over the past year. The major accomplishments in the FDAB in FY99 were: 1) Provided flight dynamics support to the Lunar Prospector and TRIANA missions among a variety of spacecraft missions; 2) Sponsored the Flight Mechanics Symposium; 3) Supported the Consultative Committee for Space Data Systems (CCSDS) workshops; 4) Performed numerous analyses and studies for future missions; 5) Started the Flight Dynamics Analysis Branch Lab for in-house mission analysis and support; and 6) Complied with all requirements in support of GSFC IS09000 certification.
Mechanical Systems Technology Branch Research Summary, 1985-1992
1993-09-01
the author or co-author of over 20 technical papers describing experimental and analytical research in the fields of gear and transmission dynamics ...Conference, Scottsdale, AZ, Sept. 13-16, 1992. Kahraman A., Ozguven, H.N., Houser D.R., and Zakrajsek, JJ.: Dynamic Analysis of Geared Rotors by Finite...18 Gear Noise Rig-Facility Design and Installation .................................. 20 Gear Dynamics
NASA Astrophysics Data System (ADS)
Zhang, Xiaofei; Ye, Xuan; Li, Xide
2016-08-01
In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.
Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites
2016-06-08
conjugated polymers and composites by analysis of the structural determinants of the mechanical properties. We developed coarse-grained molecular...dynamics simulations that predicted the mechanical properties of conjugated polymers and polymer -fullerene composites. We elucidated the mechanical...We also determined the effect of cyclic stretching on the microstructure and mechanical properties of conjugated polymers . We used many of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthrie, George Drake Jr.; Pawar, Rajesh J.; Carey, James William
2017-07-28
This report analyzes the dynamics and mechanisms of the interactions of carbonated brine with hydrated Portland cement. The analysis is based on a recent set of comprehensive reactive-transport simulations, and it relies heavily on the synthesis of the body of work on wellbore integrity that we have conducted for the Carbon Storage Program over the past decade.
NASA Astrophysics Data System (ADS)
Mert, Burak; Aytac, Zeynep; Tascioglu, Yigit; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team
2014-11-01
This study deals with the design of a power regulation mechanism for a Hydroelectric Power Plant (HEPP) model turbine test system which is designed to test Francis type hydroturbines up to 2 MW power with varying head and flow(discharge) values. Unlike the tailor made regulation mechanisms of full-sized, functional HEPPs; the design for the test system must be easily adapted to various turbines that are to be tested. In order to achieve this adaptability, a dynamic simulation model is constructed in MATLAB/Simulink SimMechanics. This model acquires geometric data and hydraulic loading data of the regulation system from Autodesk Inventor CAD models and Computational Fluid Dynamics (CFD) analysis respectively. The dynamic model is explained and case studies of two different HEPPs are performed for validation. CFD aided design of the turbine guide vanes, which is used as input for the dynamic model, is also presented. This research is financially supported by Turkish Ministry of Development.
Coupling functions: Universal insights into dynamical interaction mechanisms
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav; Pereira, Tiago; McClintock, Peter V. E.; Stefanovska, Aneta
2017-10-01
The dynamical systems found in nature are rarely isolated. Instead they interact and influence each other. The coupling functions that connect them contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs. A coherent and comprehensive review is presented encompassing the rapid progress made recently in the analysis, understanding, and applications of coupling functions. The basic concepts and characteristics of coupling functions are presented through demonstrative examples of different domains, revealing the mechanisms and emphasizing their multivariate nature. The theory of coupling functions is discussed through gradually increasing complexity from strong and weak interactions to globally coupled systems and networks. A variety of methods that have been developed for the detection and reconstruction of coupling functions from measured data is described. These methods are based on different statistical techniques for dynamical inference. Stemming from physics, such methods are being applied in diverse areas of science and technology, including chemistry, biology, physiology, neuroscience, social sciences, mechanics, and secure communications. This breadth of application illustrates the universality of coupling functions for studying the interaction mechanisms of coupled dynamical systems.
Analysis of dynamic properties for a composite robotic arm at intermediate strain rate
NASA Astrophysics Data System (ADS)
Lin, Jin-Chein
The dynamic mechanical properties of any structure are governed by the storage moduli representing the stiffness and loss moduli representing the internal damping capacity. The dynamic mechanical behavior of a graphite epoxy composite laminate in flexural vibration has been investigated. This study presents the results of a theoretical and experimental effort to determine the dynamic properties of multilaminate composites. The effects of fiber orientation and vibration frequency for both unidirectional tape and Kevlar fabric were studied both analytically and experimentally. Measurement of storage and loss moduli were presented for laminated double cantilever beams of fiber reinforced composite with frequency range from 8 to 1230 Hz (up to 5th mode).
QENS investigation of filled rubbers
NASA Astrophysics Data System (ADS)
Triolo, A.; Lo Celso, F.; Negroni, F.; Arrighi, V.; Qian, H.; Lechner, R. E.; Desmedt, A.; Pieper, J.; Frick, B.; Triolo, R.
The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface.
NASA Astrophysics Data System (ADS)
Love, Corey T.
2011-03-01
Static and dynamic thermomechanical analysis was performed with a dynamic mechanical analyzer (DMA) to identify thermal and mechanical transitions for commercially available polymer separators under mechanical loading. Clear transitions in deformation mode were observed at elevated temperatures. These transitions identified the onset of separator "shutdown" which occurred at temperatures below the polymer melting point. Mechanical loading direction was critical to the overall integrity of the separator. Anisotropic separators (Celgard 2320, 2400 and 2500) were mechanically limited when pulled in tensile in the transverse direction. The anisotropy of these separators is a result of the dry technique used to manufacture the micro-porous membranes. Separators prepared using the wet technique (Entek Gold LP) behaved more uniformly, or biaxially, where all mechanical properties were nearly identical within the separator plane. The information provided by the DMA can also be useful for predicting the long-term durability of polymer separators in lithium-ion batteries exposed to electrolyte (solvent and salt), thermal fluctuations and electrochemical cycling. Small losses in mechanical integrity were observed for separators exposed to the various immersion environments over the 4-week immersion time.
Improving the Performance of Heat Insulation Polyurethane Foams by Silica Nanoparticles
NASA Astrophysics Data System (ADS)
Nikje, M. M. Alavi; Garmarudi, A. Bagheri; Haghshenas, M.; Mazaheri, Z.
Heat insulation polyurethane foam materials were doped by silica nano particles, to investigate the probable improving effects. In order to achieve the best dispersion condition and compatibility of silica nanoparticles in the polymer matrix a modification step was performed by 3-aminopropyltriethoxysilane (APTS) as coupling agent. Then, thermal and mechanical properties of polyurethane rigid foam were investigated. Thermal and mechanical properties were studied by tensile machine, thermogravimetric analysis and dynamic mechanical analysis.
Cai, Yi; Liu, Hao; Chen, Haifeng
2018-03-01
The human immunodeficiency virus (HIV) is a retrovirus which infects T lymphocyte of human body and causes immunodeficiency. Reverse transcriptase inhibitors (RTIs) can inhibit some functions of RT, preventing virus synthesis (double-stranded DNA), so that HIV virus replication can be reduced. Experimental results indicate a series of benzimidazole-based inhibitors which target HIV RT-associated RNase to inhibit the reverse transcription of HIV virus. However, the allosteric mechanism is still unclear. Here, molecular dynamics simulations and dynamics fluctuation network analysis were used to reveal the binding mode between the inhibitors and RT-associated RNase. The most active molecule has more hydrophobic and electrostatic interactions than the less active inhibitor. Dynamics correlation network analysis indicates that the most active inhibitor perturbs the network of RT-associated RNase and decreases the correlation of nodes. 3D-QSAR model suggests that two robust and reliable models were constructed and validated by independent test set. 3D-QSAR model also shows that bulky negatively charged or hydrophilic substituent is favorable to bioactivity. These results reveal the allosteric mechanism of quinoline inhibitors and help to improve the bioactivity. © 2017 John Wiley & Sons A/S.
Session 6: Dynamic Modeling and Systems Analysis
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Chapman, Jeffryes; May, Ryan
2013-01-01
These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators
Peck, Jonathan H; Sing, David C; Nagaraja, Srinidhi; Peck, Deepa G; Lotz, Jeffrey C; Dmitriev, Anton E
2017-03-21
Cervical intervertebral body fusion devices (IBFDs) are utilized to provide stability while fusion occurs in patients with cervical pathology. For a manufacturer to market a new cervical IBFD in the United States, substantial equivalence to a cervical IBFD previously cleared by FDA must be established through the 510(k) regulatory pathway. Mechanical performance data are typically provided as part of the 510(k) process for IBFDs. We reviewed all Traditional 510(k) submissions for cervical IBFDs deemed substantially equivalent and cleared for marketing from 2007 through 2014. To reduce sources of variability in test methods and results, analysis was restricted to cervical IBFD designs without integrated fixation, coatings, or expandable features. Mechanical testing reports were analyzed and results were aggregated for seven commonly performed tests (static and dynamic axial compression, compression-shear, and torsion testing per ASTM F2077, and subsidence testing per ASTM F2267), and percentile distributions of performance measurements were calculated. Eighty-three (83) submissions met the criteria for inclusion in this analysis. The median device yield strength was 10,117N for static axial compression, 3680N for static compression-shear, and 8.6Nm for static torsion. Median runout load was 2600N for dynamic axial compression, 1400N for dynamic compression-shear, and ±1.5Nm for dynamic torsion. In subsidence testing, median block stiffness (Kp) was 424N/mm. The mechanical performance data presented here will aid in the development of future cervical IBFDs by providing a means for comparison for design verification purposes. Published by Elsevier Ltd.
Distributed collaborative response surface method for mechanical dynamic assembly reliability design
NASA Astrophysics Data System (ADS)
Bai, Guangchen; Fei, Chengwei
2013-11-01
Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40˜4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.
NASA Astrophysics Data System (ADS)
Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan
2017-10-01
The optimization designs and dynamic analysis on the driving mechanism of flapping-wing air vehicles on base of flapping trajectory patterns is carried out in this study. Three different driving mechanisms which are spatial double crank-rocker, plane five-bar and gear-double slider, are systematically optimized and analysed by using the Mat lab and Adams software. After a series debugging on the parameter, the comparatively ideal flapping trajectories are obtained by the simulation of Adams. Present results indicate that different drive mechanisms output different flapping trajectories and have their unique characteristic. The spatial double crank-rocker mechanism can only output the arc flapping trajectory and it has the advantages of small volume, high flexibility and efficient space utilization. Both planar five-bar mechanism and gear-double slider mechanism can output the oval, figure of eight and double eight flapping trajectories. Nevertheless, the gear-double slider mechanism has the advantage of convenient parameter setting and better performance in output double eight flapping trajectory. This study can provide theoretical basis and helpful reference for the design of the drive mechanisms of flapping-wing air vehicles with different output flapping trajectories.
Human seizures couple across spatial scales through travelling wave dynamics
NASA Astrophysics Data System (ADS)
Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.
2017-04-01
Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.
Single-Molecule Probing the Energy Landscape of Enzymatic Reaction and Non-Covalent Interactions
NASA Astrophysics Data System (ADS)
Lu, H. Peter; Hu, Dehong; Chen, Yu; Vorpagel, Erich R.
2002-03-01
We have applied single-molecule spectroscopy under physiological conditions to study the mechanisms and dynamics of T4 lysozyme enzymatic reactions, characterizing mode-specific protein conformational dynamics. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time. The overall reaction rates were found to vary widely from molecule-to-molecule, and the initial non-specific binding of the enzyme to the substrate was seen to dominate this inhomogeneity. The reaction steps subsequent to the initial binding were found to have homogeneous rates. Molecular dynamics simulation has been applied to elucidate the mechanism and intermediate states of the single-molecule enzymatic reaction. Combining the analysis of single-molecule experimental trajectories, MD simulation trajectories, and statistical modeling, we have revealed the nature of multiple intermediate states involved in the active enzyme-substrate complex formation and the associated conformational change mechanism and dynamics.
Autoinhibitory mechanisms of ERG studied by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Lu, Yan; Salsbury, Freddie R.
2015-01-01
ERG, an ETS-family transcription factor, acts as a regulator of differentiation of early hematopoietic cells. It contains an autoinhibitory domain, which negatively regulates DNA-binding. The mechanism of autoinhibitory is still illusive. To understand the mechanism, we study the dynamical properties of ERG protein by molecular dynamics simulations. These simulations suggest that DNA binding autoinhibition associates with the internal dynamics of ERG. Specifically, we find that (1), The N-C terminal correlation in the inhibited ERG is larger than that in uninhibited ERG that contributes to the autoinhibition of DNA-binding. (2), DNA-binding changes the property of the N-C terminal correlation from being anti-correlated to correlated, that is, changing the relative direction of the correlated motions and (3), For the Ets-domain specifically, the inhibited and uninhibited forms exhibit essentially the same dynamics, but the binding of the DNA decreases the fluctuation of the Ets-domain. We also find from PCA analysis that the three systems, even with quite different dynamics, do have highly similar free energy surfaces, indicating that they share similar conformations.
The human operator transfer function: Identification of the limb mechanics subsystem
NASA Technical Reports Server (NTRS)
Jones, Lynette A.; Hunter, Ian W.
1991-01-01
The objective of our research is to decompose the performance of the human operator in terms of the subsystems that determine the operator's responses in order to establish how the dynamics of these component subsystems influence the operator's performance. In the present experiment, the dynamic stiffness of the human elbow joint was measured at rest and under different levels of biceps muscle activation; this work forms part of the analysis of the limb mechanics subsystem.
Flight Mechanics/Estimation Theory Symposium, 1992
NASA Technical Reports Server (NTRS)
Stengle, Thomas H. (Editor)
1993-01-01
This conference publication includes 40 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 5-7, 1992. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.
Flight Mechanics/Estimation Theory Symposium 1996
NASA Technical Reports Server (NTRS)
Greatorex, Scott (Editor)
1996-01-01
This conference publication includes 34 papers and abstracts presented at the Flight Mechanics/ Estimation Theory Symposium on May 14-16, 1996. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.
Flight Mechanics/Estimation Theory Symposium, 1994
NASA Technical Reports Server (NTRS)
Hartman, Kathy R. (Editor)
1994-01-01
This conference publication includes 41 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 17-19, 1994. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.
Flight Mechanics/Estimation Theory Symposium, 1990
NASA Technical Reports Server (NTRS)
Stengle, Thomas (Editor)
1990-01-01
This conference publication includes 32 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 22-25, 1990. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium features technical papers on a wide range of issues related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.
Flight Mechanics/Estimation Theory Symposium 1995
NASA Technical Reports Server (NTRS)
Hartman, Kathy R. (Editor)
1995-01-01
This conference publication includes 41 papers and abstracts presented at the Flight Mechanics/ Estimation Theory Symposium on May 16-18, 1995. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.
Sensitivity analysis of reactive ecological dynamics.
Verdy, Ariane; Caswell, Hal
2008-08-01
Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors.
Zafra Ruano, Ana; Cilia, Elisa; Couceiro, José R; Ruiz Sanz, Javier; Schymkowitz, Joost; Rousseau, Frederic; Luque, Irene; Lenaerts, Tom
2016-05-01
Src Homology 3 domains are ubiquitous small interaction modules known to act as docking sites and regulatory elements in a wide range of proteins. Prior experimental NMR work on the SH3 domain of Src showed that ligand binding induces long-range dynamic changes consistent with an induced fit mechanism. The identification of the residues that participate in this mechanism produces a chart that allows for the exploration of the regulatory role of such domains in the activity of the encompassing protein. Here we show that a computational approach focusing on the changes in side chain dynamics through ligand binding identifies equivalent long-range effects in the Src SH3 domain. Mutation of a subset of the predicted residues elicits long-range effects on the binding energetics, emphasizing the relevance of these positions in the definition of intramolecular cooperative networks of signal transduction in this domain. We find further support for this mechanism through the analysis of seven other publically available SH3 domain structures of which the sequences represent diverse SH3 classes. By comparing the eight predictions, we find that, in addition to a dynamic pathway that is relatively conserved throughout all SH3 domains, there are dynamic aspects specific to each domain and homologous subgroups. Our work shows for the first time from a structural perspective, which transduction mechanisms are common between a subset of closely related and distal SH3 domains, while at the same time highlighting the differences in signal transduction that make each family member unique. These results resolve the missing link between structural predictions of dynamic changes and the domain sectors recently identified for SH3 domains through sequence analysis.
From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors
Ruiz Sanz, Javier; Schymkowitz, Joost; Rousseau, Frederic
2016-01-01
Src Homology 3 domains are ubiquitous small interaction modules known to act as docking sites and regulatory elements in a wide range of proteins. Prior experimental NMR work on the SH3 domain of Src showed that ligand binding induces long-range dynamic changes consistent with an induced fit mechanism. The identification of the residues that participate in this mechanism produces a chart that allows for the exploration of the regulatory role of such domains in the activity of the encompassing protein. Here we show that a computational approach focusing on the changes in side chain dynamics through ligand binding identifies equivalent long-range effects in the Src SH3 domain. Mutation of a subset of the predicted residues elicits long-range effects on the binding energetics, emphasizing the relevance of these positions in the definition of intramolecular cooperative networks of signal transduction in this domain. We find further support for this mechanism through the analysis of seven other publically available SH3 domain structures of which the sequences represent diverse SH3 classes. By comparing the eight predictions, we find that, in addition to a dynamic pathway that is relatively conserved throughout all SH3 domains, there are dynamic aspects specific to each domain and homologous subgroups. Our work shows for the first time from a structural perspective, which transduction mechanisms are common between a subset of closely related and distal SH3 domains, while at the same time highlighting the differences in signal transduction that make each family member unique. These results resolve the missing link between structural predictions of dynamic changes and the domain sectors recently identified for SH3 domains through sequence analysis. PMID:27213566
Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin
2017-01-01
Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials. PMID:29084152
Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin
2017-10-30
Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.
NASA Technical Reports Server (NTRS)
Kleis, Stanley J.; Truong, Tuan; Goodwin, Thomas J,
2004-01-01
This report is a documentation of a fluid dynamic analysis of the proposed Automated Static Culture System (ASCS) cell module mixing protocol. The report consists of a review of some basic fluid dynamics principles appropriate for the mixing of a patch of high oxygen content media into the surrounding media which is initially depleted of oxygen, followed by a computational fluid dynamics (CFD) study of this process for the proposed protocol over a range of the governing parameters. The time histories of oxygen concentration distributions and mechanical shear levels generated are used to characterize the mixing process for different parameter values.
Mechanical relaxations of a Cu60Zr40 metallic glass studied by using a dynamic mechanical analysis
NASA Astrophysics Data System (ADS)
Jeong, H. T.; Park, C. O.
2013-03-01
The mechanical relaxation behaviors of a Cu60Zr40 metallic glass were investigated by using isothermal multi-frequency dynamic mechanical measurements. From the spectra of the elastic moduli, master curves were constructed using the time-temperature superposition principle. The temperature dependence of the shift factor was found to follow the Arrhenius relationship in two temperature regions, one below and the other above the glass transition temperature ( T g ), and the activation energies for low-temperature relaxation and viscous flow were 32.7 kJ/mol and 307.1 kJ/mol, respectively. The decoupling of these two relaxations, shown in the temperature dependent plot of the shift factor, manifests the dynamic glass transition temperature region of the Cu60Zr40 metallic glass. From the temperature dependence of the shift factor, the fragility index of this alloy was also estimated.
Mechanism of extracellular ion exchange and binding-site occlusion in the sodium-calcium exchanger
Lee, ChangKeun; Huang, Yihe; Faraldo-Gómez, José D.; Jiang, Youxing
2016-01-01
Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3Na+:1Ca2+ exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. These calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport. PMID:27183196
Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger
Liao, Jun; Marinelli, Fabrizio; Lee, Changkeun; ...
2016-05-16
Na +/Ca 2+ exchangers utilize the Na + electrochemical gradient across the plasma membrane to extrude intracellular Ca 2+, and play a central role in Ca 2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na +, Ca 2+ or Sr 2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3:1Na +/Ca 2+ exchange stoichiometry, and reveals the conformational changes at the onset ofmore » the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. Lastly, these calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na +/Ca 2+ antiport.« less
Zou, Yi; Wang, Fang; Wang, Yan; Guo, Wenjie; Zhang, Yihua; Xu, Qiang; Lai, Yisheng
2017-05-05
Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as an attractive target for cancer immunotherapy. To rationalize the detailed interactions between IDO1 and its inhibitors at the atomic level, an integrated computational approach by combining molecular mechanics and quantum mechanics methods was employed in this report. Specifically, the binding modes of 20 inhibitors was initially investigated using the induced fit docking (IFD) protocol, which outperformed other two docking protocols in terms of correctly predicting ligand conformations. Secondly, molecular dynamics (MD) simulations and MM/PBSA free energy calculations were employed to determine the dynamic binding process and crucial residues were confirmed through close contact analysis, hydrogen-bond analysis and binding free energy decomposition calculations. Subsequent quantum mechanics and nonbonding interaction analysis were carried out to provide in-depth explanations on the critical role of those key residues, and Arg231 and 7-propionate of the heme group were major contributors to ligand binding, which lowed a great amount of interaction energy. We anticipate that these findings will be valuable for enzymatic studies and rational drug design. Copyright © 2017. Published by Elsevier Masson SAS.
Finite element modeling of truss structures with frequency-dependent material damping
NASA Technical Reports Server (NTRS)
Lesieutre, George A.
1991-01-01
A physically motivated modelling technique for structural dynamic analysis that accommodates frequency dependent material damping was developed. Key features of the technique are the introduction of augmenting thermodynamic fields (AFT) to interact with the usual mechanical displacement field, and the treatment of the resulting coupled governing equations using finite element analysis methods. The AFT method is fully compatible with current structural finite element analysis techniques. The method is demonstrated in the dynamic analysis of a 10-bay planar truss structure, a structure representative of those contemplated for use in future space systems.
Structures and Dynamics Division research and technology plans, FY 1982
NASA Technical Reports Server (NTRS)
Bales, K. S.
1982-01-01
Computational devices to improve efficiency for structural calculations are assessed. The potential of large arrays of microprocessors operating in parallel for finite element analysis is defined, and the impact of specialized computer hardware on static, dynamic, thermal analysis in the optimization of structural analysis and design calculations is determined. General aviation aircraft crashworthiness and occupant survivability is also considered. Mechanics technology required for design coefficient, fault tolerant advanced composite aircraft components subject to combined loads, impact, postbuckling effects and local discontinuities are developed.
A nanobiosensor for dynamic single cell analysis during microvascular self-organization.
Wang, S; Sun, J; Zhang, D D; Wong, P K
2016-10-14
The formation of microvascular networks plays essential roles in regenerative medicine and tissue engineering. Nevertheless, the self-organization mechanisms underlying the dynamic morphogenic process are poorly understood due to a paucity of effective tools for mapping the spatiotemporal dynamics of single cell behaviors. By establishing a single cell nanobiosensor along with live cell imaging, we perform dynamic single cell analysis of the morphology, displacement, and gene expression during microvascular self-organization. Dynamic single cell analysis reveals that endothelial cells self-organize into subpopulations with specialized phenotypes to form microvascular networks and identifies the involvement of Notch1-Dll4 signaling in regulating the cell subpopulations. The cell phenotype correlates with the initial Dll4 mRNA expression level and each subpopulation displays a unique dynamic Dll4 mRNA expression profile. Pharmacological perturbations and RNA interference of Notch1-Dll4 signaling modulate the cell subpopulations and modify the morphology of the microvascular network. Taken together, a nanobiosensor enables a dynamic single cell analysis approach underscoring the importance of Notch1-Dll4 signaling in microvascular self-organization.
Dynamic analysis of multirigid-body system based on the Gauss principle
NASA Astrophysics Data System (ADS)
Lilov, L.; Lorer, M.
Two different approaches can be used for solving the basic dynamic problem in the case of a multirigid body system. The first approach is based on the derivation of the nonlinear equations of motion of the mechanical system, while the second approach is concerned with the direct derivation of the unknown accelerations. Using the Gauss principle, the accelerations can be determined by using the condition for the minimum of a functional. The present investigation is concerned with an algorithm for a dynamical study of a multibody system on the basis of the Gauss principle. The system may contain an arbitrary number of closed loops. The main purpose of the proposed algorithm is the investigation of the dynamics of industrial manipulators, robots, and similar mechanisms.
Blanco, Mario R.; Martin, Joshua S.; Kahlscheuer, Matthew L.; Krishnan, Ramya; Abelson, John; Laederach, Alain; Walter, Nils G.
2016-01-01
The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood, a challenge that persists for many biomolecular machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel framework for interpreting complex single molecule behaviors that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular machines. PMID:26414013
Camouflage during movement in the European cuttlefish (Sepia officinalis).
Josef, Noam; Berenshtein, Igal; Fiorito, Graziano; Sykes, António V; Shashar, Nadav
2015-11-01
A moving object is considered conspicuous because of the movement itself. When moving from one background to another, even dynamic camouflage experts such as cephalopods should sacrifice their extraordinary camouflage. Therefore, minimizing detection at this stage is crucial and highly beneficial. In this study, we describe a background-matching mechanism during movement, which aids the cuttlefish to downplay its presence throughout movement. In situ behavioural experiments using video and image analysis, revealed a delayed, sigmoidal, colour-changing mechanism during movement of Sepia officinalis across uniform black and grey backgrounds. This is a first important step in understanding dynamic camouflage during movement, and this new behavioural mechanism may be incorporated and applied to any dynamic camouflaging animal or man-made system on the move. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Le Rouzic, J.; Delobelle, P.; Vairac, P.; Cretin, B.
2009-10-01
In this article the dynamic mechanical characterization of PDMS and SU8 resin using dynamic mechanical analysis, nanoindentation and the scanning microdeformation microscope have been presented. The methods are hereby explained, extended for viscoelastic behaviours, and their compatibility underlined. The storage and loss moduli of these polymers over a wide range of frequencies (from 0.01 Hz to somekHz) have been measured. These techniques are shown fairly matching and the two different viscoelastic behaviours of these two polymers have been exhibited. Indeed, PDMS shows moduli which still increase at 5kHz whereas SU8 ones decrease much sooner. From a material point of view, the Havriliak and Negami model to estimate instantaneous, relaxed moduli and time constant of these materials has been identified.
Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins
NASA Astrophysics Data System (ADS)
Jian, Yiren; Zhao, Yunjie; Zeng, Chen
The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.
Nano- and micro-electromechanical switch dynamics
NASA Astrophysics Data System (ADS)
Pulskamp, Jeffrey S.; Proie, Robert M.; Polcawich, Ronald G.
2013-01-01
This paper reports theoretical analysis and experimental results on the dynamics of piezoelectric MEMS mechanical logic relays. The multiple degree of freedom analytical model, based on modal decomposition, utilizes modal parameters obtained from finite element analysis and an analytical model of piezoelectric actuation. The model accounts for exact device geometry, damping, drive waveform variables, and high electric field piezoelectric nonlinearity. The piezoelectrically excited modal force is calculated directly and provides insight into design optimization for switching speed. The model accurately predicts the propagation delay dependence on actuation voltage of mechanically distinct relay designs. The model explains the observed discrepancies in switching speed of these devices relative to single degree of freedom switching speed models and suggests the strong potential for improved switching speed performance in relays designed for mechanical logic and RF circuits through the exploitation of higher order vibrational modes.
NASA Astrophysics Data System (ADS)
Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling
2018-03-01
Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Uma S.; Wackerbauer, Renate; Polyakov, Igor V.
The goal of this research was to apply fractional and non-linear analysis techniques in order to develop a more complete characterization of climate change and variability for the oceanic, sea ice and atmospheric components of the Earth System. This research applied two measures of dynamical characteristics of time series, the R/S method of calculating the Hurst exponent and Renyi entropy, to observational and modeled climate data in order to evaluate how well climate models capture the long-term dynamics evident in observations. Fractional diffusion analysis was applied to ARGO ocean buoy data to quantify ocean transport. Self organized maps were appliedmore » to North Pacific sea level pressure and analyzed in ways to improve seasonal predictability for Alaska fire weather. This body of research shows that these methods can be used to evaluate climate models and shed light on climate mechanisms (i.e., understanding why something happens). With further research, these methods show promise for improving seasonal to longer time scale forecasts of climate.« less
Flight Mechanics/Estimation Theory Symposium 1988
NASA Technical Reports Server (NTRS)
Stengle, Thomas (Editor)
1988-01-01
This conference publication includes 28 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 10 to 11, 1988. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium features technical papers on a wide range of issue related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.
Cao, Xiaodong; Xu, Chuanhui; Liu, Yuhong; Chen, Yukun
2013-01-30
A series of carboxylated styrene-butadiene rubber (XSBR)/cellulose nanocrystals (CNs) latex composites were successfully prepared. The vulcanization process, morphology, dynamic viscoelastic behavior, dynamic mechanical property, thermal and mechanical performance of the XSBR/CNs composites were investigated in detail. The results revealed that CNs were dispersed uniformly in the XSBR matrix and formed a strong filler-filler network. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (T(g)) of XSBR matrix was shifted from 48.45 to 50.64 °C with 3 phr CNs, but decreased from 50.64 to 46.28 °C when further increasing CNs content up to 15 phr. The composites exhibited a significant enhancement in tensile strength (from 16.9 to 24.1 MPa) and tear strength (from 43.5 to 65.2 MPa) with loading CNs from 0 to 15 phr. In addition, the thermo-gravimetric analysis (TGA) showed that the temperature at 5% weight loss of the XSBR/CNs composites decreased slightly with an increase of the CNs content. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Gas Evolution Dynamics in Godunov-Type Schemes and Analysis of Numerical Shock Instability
NASA Technical Reports Server (NTRS)
Xu, Kun
1999-01-01
In this paper we are going to study the gas evolution dynamics of the exact and approximate Riemann solvers, e.g., the Flux Vector Splitting (FVS) and the Flux Difference Splitting (FDS) schemes. Since the FVS scheme and the Kinetic Flux Vector Splitting (KFVS) scheme have the same physical mechanism and similar flux function, based on the analysis of the discretized KFVS scheme the weakness and advantage of the FVS scheme are closely observed. The subtle dissipative mechanism of the Godunov method in the 2D case is also analyzed, and the physical reason for shock instability, i.e., carbuncle phenomena and odd-even decoupling, is presented.
The Mechanism of Covalent Bonding: Analysis within the Huckel Model of Electronic Structure
ERIC Educational Resources Information Center
Nordholm, Sture; Back, Andreas; Backsay, George B.
2007-01-01
The commonly used Huckel model of electronic structure is employed to study the mechanisms of covalent bonding, a quantum effect related to electron dynamics. The model also explains the conjugation and aromaticity of planar hydrocarbon molecules completely.
Multifunctional structural lithium ion batteries for electrical energy storage applications
NASA Astrophysics Data System (ADS)
Javaid, Atif; Zeshan Ali, Muhammad
2018-05-01
Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.
NASA Astrophysics Data System (ADS)
Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.
2016-08-01
Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.
Vehicle systems: coupled and interactive dynamics analysis
NASA Astrophysics Data System (ADS)
Vantsevich, Vladimir V.
2014-11-01
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.
Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi
2017-07-21
In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.
Research on the energy and ecological efficiency of mechanical equipment remanufacturing systems
NASA Astrophysics Data System (ADS)
Shi, Junli; Cheng, Jinshi; Ma, Qinyi; Wang, Yajun
2017-08-01
According to the characteristics of mechanical equipment remanufacturing system, the dynamic performance of energy consumption and emission is explored, the equipment energy efficiency and emission analysis model is established firstly, and then energy and ecological efficiency analysis method of the remanufacturing system is put forward, at last, the energy and ecological efficiency of WD615.87 automotive diesel engine remanufacturing system as an example is analyzed, the way of energy efficiency improvementnt and environmental friendly mechanism of remanufacturing process is put forward.
Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid
2015-05-07
Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.
Power Analysis of an Automated Dynamic Cone Penetrometer
2015-09-01
temperature and b) as a function of load current at 21 °C ..3 Fig. 4 K33 stepper motor candidate in the standard NEMA 34 package .........5 Fig. 5 Analytical...will be assessed. Fig. 4 K33 stepper motor candidate in the standard NEMA 34 package 3. Analyses Analysis of the mechanical system begins with the...DCP dynamic cone penetrometer EMF electromotive force NEMA National Electrical Manufacturers Association 20 1 DEFENSE TECH INFO CTR
Mechanical performance of hemp fiber polypropylene composites at different operating temperatures
Mehdi Tajvidi; Nazanin Motie; Ghonche Rassam; Robert H. Falk; Colin Felton
2010-01-01
In order to quantify the effect of temperature on the mechanical properties of hemp fiber polypropylene composites, formulations containing 25% and 40% (by weight) hemp fiber were produced and tested at three representative temperatures of 256, 296, and 336 K. Flexural, tensile, and impact tests, as well as dynamic mechanical analysis, were performed and the reduction...
Characterizing and modeling the dynamics of online popularity.
Ratkiewicz, Jacob; Fortunato, Santo; Flammini, Alessandro; Menczer, Filippo; Vespignani, Alessandro
2010-10-08
Online popularity has an enormous impact on opinions, culture, policy, and profits. We provide a quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive model systems: the Wikipedia and an entire country's Web space. We find that the dynamics of popularity are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed distributions of magnitude and interevent time. We propose a minimal model combining the classic preferential popularity increase mechanism with the occurrence of random popularity shifts due to exogenous factors. The model recovers the critical features observed in the empirical analysis of the systems analyzed here, highlighting the key factors needed in the description of popularity dynamics.
Modeling and design of a pre-stressed piezoelectric stack actuator
NASA Astrophysics Data System (ADS)
Jiang, Shiping; Cheng, Lei
2017-07-01
To provide a method for designing a pre-stressed PSA with high-performance, it is very meaningful to model the dynamic characteristics of the pre-stressed PSA accurately. A novel model, which considers both the electric side and the mechanical side of the PSA as distributed systems, is put forward to describe the dynamics characteristics of the PSA and the pre-stressed PSA. The role of the pre-stressed mechanism is derived and analyzed by extended transfer matrix method, and then the principle of design of the pre-stressed mechanism is obtained. The theoretical analysis is in accordance with the experimental results.
NASA Technical Reports Server (NTRS)
Rios, J.
1982-01-01
The settling behavior of the liquid and gaseous phases of a fluid in a propellant and in a zero-g environment, when such settling is induced through the use of a dynamic device, in this particular case, a helical screw was studied. Particular emphasis was given to: (1) the description of a fluid mechanics model which seems applicable to the system under consideration, (2) a First Law of Thermodynamics analysis of the system, and (3) a discussion of applicable scaling rules.
Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers.
Matos, Lia; Mücke, Oliver D; Chen, Jian; Kärtner, Franz X
2006-03-20
We investigate the carrier-envelope phase dynamics of octave-spanning Ti:sapphire lasers and perform a complete noise analysis of the carrier-envelope phase stabilization. We model the effect of the laser dynamics on the residual carrier-envelope phase noise by deriving a transfer function representation of the octave-spanning frequency comb. The modelled phase noise and the experimental results show excellent agreement. This greatly enhances our capability of predicting the dependence of the residual carrier-envelope phase noise on the feedback loop filter, the carrier-envelope frequency control mechanism and the pump laser used.
Analysis of hydraulic steering system of tracked all-terrain vehicles' articulated mechanism
NASA Astrophysics Data System (ADS)
Meng, Zhongliang; Zang, Hao
2018-04-01
As for the researches on the dynamic characteristics of tracked all-terrain vehicles' articulated mechanism, the hydraulic feature of their steering system needs researching more, apart from the study on mechanical models. According to the maximum pressure required by the steering system of tracked all-terrain vehicle and the principle of the steering system, this paper conducts an analysis of the hydraulic steering system of the articulated mechanism. Based on the structure principle of the steering gear, a simulation model of the tracked all-terrain vehicle turning left is built. When building the simulation model of the steering gear, it makes a simulation analysis, taking the tracked all-terrain vehicle turning left as an example.
Vibration waveform effects on dynamic stabilization of ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Lucchio, L. Di; Rodriguez Prieto, G.
2011-08-15
An analysis of dynamic stabilization of Rayleigh-Taylor instability in an ablation front is performed by considering a general square wave for modulating the vertical acceleration of the front. Such a kind of modulation allows for clarifying the role of thermal conduction in the mechanism of dynamic stabilization. In addition, the study of the effect of different modulations by varying the duration and amplitude of the square wave in each half-period provides insight on the optimum performance of dynamic stabilization.
The role of shear and tensile failure in dynamically triggered landslides
Gipprich, T.L.; Snieder, R.K.; Jibson, R.W.; Kimman, W.
2008-01-01
Dynamic stresses generated by earthquakes can trigger landslides. Current methods of landslide analysis such as pseudo-static analysis and Newmark's method focus on the effects of earthquake accelerations on the landslide mass to characterize dynamic landslide behaviour. One limitation of these methods is their use Mohr-Coulomb failure criteria, which only accounts for shear failure, but the role of tensile failure is not accounted for. We develop a limit-equilibrium model to investigate the dynamic stresses generated by a given ground motion due to a plane wave and use this model to assess the role of shear and tensile failure in the initiation of slope instability. We do so by incorporating a modified Griffith failure envelope, which combines shear and tensile failure into a single criterion. Tests of dynamic stresses in both homogeneous and layered slopes demonstrate that two modes of failure exist, tensile failure in the uppermost meters of a slope and shear failure at greater depth. Further, we derive equations that express the dynamic stress in the near-surface in the acceleration measured at the surface. These equations are used to approximately define the depth range for each mechanism of failure. The depths at which these failure mechanisms occur suggest that shear and tensile failure might collaborate in generating slope failure. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
Signal analysis techniques for incipient failure detection in turbomachinery
NASA Technical Reports Server (NTRS)
Coffin, T.
1985-01-01
Signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery were developed, implemented and evaluated. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques were implemented on a computer and applied to dynamic signals. A laboratory evaluation of the methods with respect to signal detection capability is described. Plans for further technique evaluation and data base development to characterize turbopump incipient failure modes from Space Shuttle main engine (SSME) hot firing measurements are outlined.
Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie
2017-01-01
In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing. PMID:28772860
ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents
NASA Astrophysics Data System (ADS)
Ding, Rui
Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.
Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie
2017-05-04
In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing.
Rodriguez-Horta, Edwin; Estevez-Rams, Ernesto; Lora-Serrano, Raimundo; Neder, Reinhard
2017-09-01
This is the second contribution in a series of papers dealing with dynamical models in equilibrium theories of polytypism. A Hamiltonian introduced by Ahmad & Khan [Phys. Status Solidi B (2000), 218, 425-430] avoids the unphysical assignment of interaction terms to fictitious entities given by spins in the Hägg coding of the stacking arrangement. In this paper an analysis of polytype generation and disorder in close-packed structures is made for such a Hamiltonian. Results are compared with a previous analysis using the Ising model. Computational mechanics is the framework under which the analysis is performed. The competing effects of disorder and structure, as given by entropy density and excess entropy, respectively, are discussed. It is argued that the Ahmad & Khan model is simpler and predicts a larger set of polytypes than previous treatments.
NASA Astrophysics Data System (ADS)
Simniceanu, Loreta; Mihaela, Bogdan; Otat, Victor; Trotea, Mario
2017-10-01
This paper proposes a plan mechanical model for the vehicles with two axles, taking into account the lateral deflection of the tire. For this mechanical model are determined two mathematical models under the nonlinear differential equations systems form without taking into account the action of the driver and taking into account. The analysis of driver-vehicle system consists in the mathematical description of vehicle dynamics, coupled with the possibilities and limits of the human factor. Description seeks to emphasize the significant influence of the driver in handling and stability analyzes of vehicles and vehicle-driver system stability until the advent of skidding. These mathematical models are seen as very useful tools to analyzing the vehicles stability. The paper analyzes the influence of some parameters of the vehicle on its behavior in terms of stability of dynamic systems.
NASA Technical Reports Server (NTRS)
Bulluck, J. W.; Rushing, R. A.
1995-01-01
During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Bojanowski, C.; Shen, J.
2012-04-09
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of October through December 2011.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Bojanowski, C.; Shen, J.
2012-06-28
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of January through March 2012.« less
Dynamic piezoresistive response of hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Gbaguidi, Audrey; Anees, Muhammad; Namilae, Sirish; Kim, Daewon
2017-04-01
Hybrid nanocomposites with carbon nanotubes and graphitic platelets as fillers are known to exhibit remarkable electrical and mechanical properties with many potential strain and damage sensing applications. In this work, we fabricate hybrid nanocomposites with carbon nanotube sheet and coarse graphite platelets as fillers with epoxy matrix. We then examine the electromechanical behavior of these nanocomposites under dynamic loading. The electrical resistivity responses of the nanocomposites are measured in frequency range of 1 Hz to 50 Hz with different levels of induced strains. Axial cycling loading is applied using a uniaxial electrodynamic shaker, and transverse loading is applied on end-clamped specimen using modified speakers. In addition, a dynamic mechanical analysis of nanocomposite specimen is performed to characterize the thermal and dynamic behavior of the nanocomposite. Our results indicate that these hybrid nanocomposites exhibit a distinct piezoresistive response under a wide range of dynamic loading conditions, which can be beneficial for potential sensing applications.
[The role of plastic shock absorbers in dental implantation].
Szücs, A; Divinyi, T; Belina, K; Vörös, G
1999-01-01
The mechanical behaviour of different plastics (PE, PP, PI, PA, ABS, POM) was examined by static and dynamic loading. Detection of microdeformations and photoelastic stress analysis served as the examination method. According to the results, polyethylene is unsuitable, however the other plastics, with clauses, are suitable as shock absorbers. Apart from the mechanical investigation photoelastic stress analysis also revealed the benefit of osseointegration in force transmission to the bone.
Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...
NASA Astrophysics Data System (ADS)
Kirchner, M.; Schubert, P.; Schmidtbleicher, D.; Haas, C. T.
2012-10-01
The analysis of postural control has a long history. Traditionally, the amount of body sway is solely used as an index of postural stability. Although this leads to some extent to an effective evaluation of balance performance, the control mechanisms involved have not yet been fully understood. The concept of nonlinear dynamics suggests that variability in the motor output is not randomness but structure, providing the stimulus to reveal the functionality of postural sway. The present work evaluates sway dynamics by means of COP excursions in a quiet standing task versus a dual-task condition in three different test times (30, 60, 300 s). Besides the application of traditional methods-which estimate the overall size of sway-the temporal pattern of body sway was quantified via wavelet transform, multiscale entropy and fractal analysis. We found higher sensitivity of the structural parameters to modulations of postural control strategies and partly an improved evaluation of sway dynamics in longer recordings. It could be shown that postural control modifications take place on different timescales corresponding to the interplay of the sensory systems. A continued application of nonlinear analysis can help to better understand postural control mechanisms.
Transient chaos and crisis phenomena in butterfly valves driven by solenoid actuators
NASA Astrophysics Data System (ADS)
Naseradinmousavi, Peiman; Nataraj, C.
2012-11-01
Chilled water systems used in the industry and on board ships are critical for safe and reliable operation. It is hence important to understand the fundamental physics of these systems. This paper focuses in particular on a critical part of the automation system, namely, actuators and valves that are used in so-called "smart valve" systems. The system is strongly nonlinear, and necessitates a nonlinear dynamic analysis to be able to predict all critical phenomena that affect effective operation and efficient design. The derived mathematical model includes electromagnetics, fluid mechanics, and mechanical dynamics. Nondimensionalization has been carried out in order to reduce the large number of parameters to a few critical independent sets to help carry out a broad parametric analysis. The system stability analysis is then carried out with the aid of the tools from nonlinear dynamic analysis. This reveals that the system is unstable in a certain region of the parameter space. The system is also shown to exhibit crisis and transient chaotic responses; this is characterized using Lyapunov exponents and power spectra. Knowledge and avoidance of these dangerous regimes is necessary for successful and safe operation.
Nanoscopic Dynamic Mechanical Properties of Intertubular and Peritubular Dentin
Ryou, Heon; Romberg, Elaine; Pashley, David H.; Tay, Franklin R.; Arola, Dwayne
2011-01-01
An experimental evaluation of intertubular and peritubular dentin was performed using nanoindentation and Dynamic Mechanical Analysis (DMA). The objective of the investigation was to evaluate the differences in dynamic mechanical behavior of these two constituents and to assess if their response is frequency dependent. Specimens of hydrated coronal dentin were evaluated by DMA using single indents over a range in parametric conditions and using scanning probe microscopy. The complex (E*), storage (E’) and loss moduli (E”) of the intertubular and peritubular dentin were evaluated as a function of the dynamic loading frequency and static load in the fully hydrated condition. The mean complex E* (19.6 GPa) and storage E’ (19.2 GPa) moduli of the intertubular dentin were significantly lower than those quantities of peritubular dentin (E* = 31.1 GPa, p< 0.05; E’ = 30.3 GPa, p< 0.05). There was no significant influence of dynamic loading frequency on these measures. Though there was no significant difference in the loss modulus (E”) between the two materials (p> 0.05), both constituents exhibited a significant increase in E” with dynamic load frequency and reduction in the quasi-static component of indentation load. The largest difference in dynamic behavior of the two tissues was noted at small quasi-static indentation loads and the highest frequency. PMID:22340680
Aero-Thermo-Dynamic Mass Analysis
NASA Astrophysics Data System (ADS)
Shiba, Kota; Yoshikawa, Genki
2016-07-01
Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.
Structural dynamics of shroudless, hollow fan blades with composite in-lays
NASA Technical Reports Server (NTRS)
Aiello, R. A.; Hirschbein, M. S.; Chamis, C. C.
1982-01-01
Structural and dynamic analyses are presented for a shroudless, hollow titanium fan blade proposed for future use in aircraft turbine engines. The blade was modeled and analyzed using the composite blade structural analysis computer program (COBSTRAN); an integrated program consisting of mesh generators, composite mechanics codes, NASTRAN, and pre- and post-processors. Vibration and impact analyses are presented. The vibration analysis was conducted with COBSTRAN. Results show the effect of the centrifugal force field on frequencies, twist, and blade camber. Bird impact analysis was performed with the multi-mode blade impact computer program. This program uses the geometric model and modal analysis from the COBSTRAN vibration analysis to determine the gross impact response of the fan blades to bird strikes. The structural performance of this blade is also compared to a blade of similar design but with composite in-lays on the outer surface. Results show that the composite in-lays can be selected (designed) to substantially modify the mechanical performance of the shroudless, hollow fan blade.
Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi
2015-01-01
It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri
2014-01-01
A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.
Modeling, Analysis, and Optimization Issues for Large Space Structures.
1983-02-01
There are numerous opportunities - provided by new advances in computer hardware, firmware, software , CAD/CAM systems, computational algorithms and...Institute Department of Mechanical Engineering Dept. of Civil Engineering & Mechanics Troy, NY 12181 Drexel University Philadelphia, PA 19104 Dr...Mechanical Engineering Hampton, VA 23665 Washington, DC 20059 Dr. K. T. Alfriend Mr. Siva S. Banda Department of the Navy Flight Dynamics LaboratoryNaval
Dynamic analysis of a geared rotor system considering a slant crack on the shaft
NASA Astrophysics Data System (ADS)
Han, Qinkai; Zhao, Jingshan; Chu, Fulei
2012-12-01
The vibration problems associated with geared systems have been the focus of research in recent years. As the torque is mainly transmitted by the geared system, a slant crack is more likely to appear on the gear shaft. Due to the slant crack and its breathing mechanism, the dynamic behavior of cracked geared system would differ distinctly with that of uncracked system. Relatively less work is reported on slant crack in the geared rotor system during the past research. Thus, the dynamic analysis of a geared rotor-bearing system with a breathing slant crack is performed in the paper. The finite element model of a geared rotor with slant crack is presented. Based on fracture mechanics, the flexibility matrix for the slant crack is derived that accounts for the additional stress intensity factors. Three methods for whirling analysis, parametric instability analysis and steady-state response analysis are introduced. Then, by taking a widely used one-stage geared rotor-bearing system as an example, the whirling frequencies of the equivalent time-invariant system, two types of instability regions and steady-state response under the excitations of unbalance forces and tooth transmission errors, are computed numerically. The effects of crack depth, position and type (transverse or slant) on the system dynamic behaviors are considered in the discussion. The comparative study with slant cracked geared rotor is carried out to explore distinctive features in their modal, parametric instability and frequency response behaviors.
High performance light-colored nitrile-butadiene rubber nanocomposites.
Lei, Yanda; Guo, Baochun; Chen, Feng; Zhu, Lixin; Zhou, Wenyou; Jia, Demin
2011-12-01
High mechanical performance nitrile-butadiene rubber (NBR) with light color was fabricated by the method of in situ formation of zinc disorbate (ZDS) or magnesium disorbate (MDS). The in situ formed ZDS and its polymerization via internal mixing was confirmed by X-ray diffaraction. The mechanical properties, ageing resistance, morphology and the dynamic mechanical analysis were fully studied. It was found that with increasing loading of metallic disorbate both the curing rate and the ionic crosslink density was largely increased. The modulus, tensile strength and tear strength were largely increased. With a comparison between internal mixing and opening mixing, the mechanical performance for the former one was obviously better than the latter one. The high performance was ascribed to the finely dispersion nano domains with irregular shape and obscure interfacial structures. Except for the NBR vulcanizate with a high loading of MDS, the others' ageing resistance with incorporation of these two metallic disorbate was found to be good. Dynamic mechanical analysis (DMA) showed that, with increasing loading of metallic disorbate, the highly increased storage modulus above -20 degrees C, the up-shifted glass transition temperature (Tg) and the reduced mechanical loss were ascribed to strengthened interfacial interactions.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Zhang, Hong; Gao, You
2017-01-01
Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.
NASA Astrophysics Data System (ADS)
Fein, Howard
2003-09-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under dynamic stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of jet engine turbine, rotor, vane, and compressor structures has always required advanced instrumentation for data collection in either simulated flight operation test or computer-based modeling and simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data in a noninvasive, noncontact environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced jet engine turbine and compressor rotor structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy of mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of turbine rotor and compressor structures for high stress applications. Aircraft engine applications in particular most consider operational environments where extremes in vibration and impulsive as well as continuous mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of turbine rotor components. Holographic techniques are nondestructive, real-time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as critical operational parameters of turbine structural components or unit turbine components fabricated from advanced and exotic new materials or using new fabrication methods. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects.
Computational Nanotechnology of Materials, Devices, and Machines: Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Kwak, Dolhan (Technical Monitor)
2000-01-01
The mechanics and chemistry of carbon nanotubes have relevance for their numerous electronic applications. Mechanical deformations such as bending and twisting affect the nanotube's conductive properties, and at the same time they possess high strength and elasticity. Two principal techniques were utilized including the analysis of large scale classical molecular dynamics on a shared memory architecture machine and a quantum molecular dynamics methodology. In carbon based electronics, nanotubes are used as molecular wires with topological defects which are mediated through various means. Nanotubes can be connected to form junctions.
A two-scale model for dynamic damage evolution
NASA Astrophysics Data System (ADS)
Keita, Oumar; Dascalu, Cristian; François, Bertrand
2014-03-01
This paper presents a new micro-mechanical damage model accounting for inertial effect. The two-scale damage model is fully deduced from small-scale descriptions of dynamic micro-crack propagation under tensile loading (mode I). An appropriate micro-mechanical energy analysis is combined with homogenization based on asymptotic developments in order to obtain the macroscopic evolution law for damage. Numerical simulations are presented in order to illustrate the ability of the model to describe known behaviors like size effects for the structural response, strain-rate sensitivity, brittle-ductile transition and wave dispersion.
AMTD - Advanced Mirror Technology Development in Mechanical Stability
NASA Technical Reports Server (NTRS)
Knight, J. Brent
2015-01-01
Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.
Dynamic airway pressure-time curve profile (Stress Index): a systematic review.
Terragni, Pierpaolo; Bussone, Guido; Mascia, Luciana
2016-01-01
The assessment of respiratory mechanics at the bedside is necessary in order to identify the most protective ventilatory strategy. Indeed in the last 20 years, adverse effects of positive ventilation to the lung structures have led to a reappraisal of the objectives of mechanical ventilation. The ventilator setting requires repeated readjustment over the period of mechanical ventilation dependency and careful respiratory monitoring to minimize the risks, preventing further injury and permitting the lung and airways healing. Among the different methods that have been proposed and validated, the analysis of dynamic P-t curve (named Stress Index, SI) represents an adequate tool available at the bedside, repeatable and, therefore, able to identify the amount of overdistension occurring in the daily clinical practice, when modifying positive end-expiratory pressure. In this review we will analyze the evidence that supports respiratory mechanics assessment at the bedside and the application of the dynamic P/t curve profile (SI) to optimize protective ventilation in patients with acute respiratory failure.
NASA Technical Reports Server (NTRS)
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
Suppressing disease spreading by using information diffusion on multiplex networks.
Wang, Wei; Liu, Quan-Hui; Cai, Shi-Min; Tang, Ming; Braunstein, Lidia A; Stanley, H Eugene
2016-07-06
Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.
Computed Tomography Studies of Lung Mechanics
Simon, Brett A.; Christensen, Gary E.; Low, Daniel A.; Reinhardt, Joseph M.
2005-01-01
The study of lung mechanics has progressed from global descriptions of lung pressure and volume relationships to the high-resolution, three-dimensional, quantitative measurement of dynamic regional mechanical properties and displacements. X-ray computed tomography (CT) imaging is ideally suited to the study of regional lung mechanics in intact subjects because of its high spatial and temporal resolution, correlation of functional data with anatomic detail, increasing volumetric data acquisition, and the unique relationship between CT density and lung air content. This review presents an overview of CT measurement principles and limitations for the study of regional mechanics, reviews some of the early work that set the stage for modern imaging approaches and impacted the understanding and management of patients with acute lung injury, and presents evolving novel approaches for the analysis and application of dynamic volumetric lung image data. PMID:16352757
Shi, Ze; Castro, Carlos E; Arya, Gaurav
2017-05-23
Structural DNA nanotechnology, the assembly of rigid 3D structures of complex yet precise geometries, has recently been used to design dynamic, mechanically compliant nanostructures with tunable equilibrium conformations and conformational distributions. Here we use coarse-grained molecular dynamics simulations to provide insights into the conformational dynamics of a set of mechanically compliant DNA nanostructures-DNA hinges that use single-stranded DNA "springs" to tune the equilibrium conformation of a layered double-stranded DNA "joint" connecting two stiff "arms" constructed from DNA helix bundles. The simulations reproduce the experimentally measured equilibrium angles between hinge arms for a range of hinge designs. The hinges are found to be structurally stable, except for some fraying of the open ends of the DNA helices comprising the hinge arms and some loss of base-pairing interactions in the joint regions coinciding with the crossover junctions, especially in hinges designed to exhibit a small bending angle that exhibit large local stresses resulting in strong kinks in their joints. Principal component analysis reveals that while the hinge dynamics are dominated by bending motion, some twisting and sliding of hinge arms relative to each other also exists. Forced deformation of the hinges reveals distinct bending mechanisms for hinges with short, inextensible springs versus those with longer, more extensible springs. Lastly, we introduce an approach for rapidly predicting equilibrium hinge angles from individual force-deformation behaviors of its single- and double-stranded DNA components. Taken together, these results demonstrate that coarse-grained modeling is a promising approach for designing, predicting, and studying the dynamics of compliant DNA nanostructures, where conformational fluctuations become important, multiple deformation mechanisms exist, and continuum approaches may not yield accurate properties.
Chakraborty, Srirupa; Zheng, Wenjun
2015-01-27
We have employed molecular dynamics (MD) simulation to investigate, with atomic details, the structural dynamics and energetics of three major ATPase states (ADP, APO, and ATP state) of a human kinesin-1 monomer in complex with a tubulin dimer. Starting from a recently solved crystal structure of ATP-like kinesin-tubulin complex by the Knossow lab, we have used flexible fitting of cryo-electron-microscopy maps to construct new structural models of the kinesin-tubulin complex in APO and ATP state, and then conducted extensive MD simulations (total 400 ns for each state), followed by flexibility analysis, principal component analysis, hydrogen bond analysis, and binding free energy analysis. Our modeling and simulation have revealed key nucleotide-dependent changes in the structure and flexibility of the nucleotide-binding pocket (featuring a highly flexible and open switch I in APO state) and the tubulin-binding site, and allosterically coupled motions driving the APO to ATP transition. In addition, our binding free energy analysis has identified a set of key residues involved in kinesin-tubulin binding. On the basis of our simulation, we have attempted to address several outstanding issues in kinesin study, including the possible roles of β-sheet twist and neck linker docking in regulating nucleotide release and binding, the structural mechanism of ADP release, and possible extension and shortening of α4 helix during the ATPase cycle. This study has provided a comprehensive structural and dynamic picture of kinesin's major ATPase states, and offered promising targets for future mutational and functional studies to investigate the molecular mechanism of kinesin motors.
On 3-D inelastic analysis methods for hot section components (base program)
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.
1986-01-01
A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.
A locomotive-track coupled vertical dynamics model with gear transmissions
NASA Astrophysics Data System (ADS)
Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun
2017-02-01
A gear transmission system is a key element in a locomotive for the transmission of traction or braking forces between the motor and the wheel-rail interface. Its dynamic performance has a direct effect on the operational reliability of the locomotive and its components. This paper proposes a comprehensive locomotive-track coupled vertical dynamics model, in which the locomotive is driven by axle-hung motors. In this coupled dynamics model, the dynamic interactions between the gear transmission system and the other components, e.g. motor and wheelset, are considered based on the detailed analysis of its structural properties and working mechanism. Thus, the mechanical transmission system for power delivery from the motor to the wheelset via gear transmission is coupled with a traditional locomotive-track dynamics system via the wheel-rail contact interface and the gear mesh interface. This developed dynamics model enables investigations of the dynamic performance of the entire dynamics system under the excitations from the wheel-rail contact interface and/or the gear mesh interface. Dynamic interactions are demonstrated by numerical simulations using this dynamics model. The results indicate that both of the excitations from the wheel-rail contact interface and the gear mesh interface have a significant effect on the dynamic responses of the components in this coupled dynamics system.
Moroni, L; de Wijn, J R; van Blitterswijk, C A
2006-03-01
One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds. Pores were varied in size and shape, by changing fibre diameter, spacing and orientation, and layer thickness. With increasing porosity, dynamic mechanical analysis (DMA) revealed a decrease in elastic properties such as dynamic stiffness and equilibrium modulus, and an increase of the viscous parameters like damping factor and creep unrecovered strain. Furthermore, the Poisson's ratio was measured, and the shear modulus computed from it. Scaffolds showed an adaptable degree of compressibility between sponges and incompressible materials. As comparison, bovine cartilage was tested and its properties fell in the fabricated scaffolds range. This investigation showed that viscoelastic properties of 3DF scaffolds could be modulated to accomplish mechanical requirements for tailored tissue engineered applications.
Sierra/Solid Mechanics 4.48 User's Guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merewether, Mark Thomas; Crane, Nathan K; de Frias, Gabriel Jose
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutionsmore » of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.« less
Modeling Selection and Extinction Mechanisms of Biological Systems
NASA Astrophysics Data System (ADS)
Amirjanov, Adil
In this paper, the behavior of a genetic algorithm is modeled to enhance its applicability as a modeling tool of biological systems. A new description model for selection mechanism is introduced which operates on a portion of individuals of population. The extinction and recolonization mechanism is modeled, and solving the dynamics analytically shows that the genetic drift in the population with extinction/recolonization is doubled. The mathematical analysis of the interaction between selection and extinction/recolonization processes is carried out to assess the dynamics of motion of the macroscopic statistical properties of population. Computer simulations confirm that the theoretical predictions of described models are in good approximations. A mathematical model of GA dynamics was also examined, which describes the anti-predator vigilance in an animal group with respect to a known analytical solution of the problem, and showed a good agreement between them to find the evolutionarily stable strategies.
NASA Astrophysics Data System (ADS)
Zaoutsos, S. P.; Zilidou, M. C.
2017-12-01
In the current study dynamic mechanical analysis (DMA) is performed in CFRPs that have been exposed for certain periods of time to extreme low temperatures. Through experimental data arising from respective DMA tests the influence of low temperature exposure (-40 °C) on the dynamic mechanical properties is studied. DMA tests were conducted in CFRP specimens in three point bending mode at both frequency and thermal scans in order to determine the viscoelastic response of the material in low temperatures. All experimental tests were run both for aged and pristine materials for comparison purposes. The results occurred reveal that there is deterioration both on transition temperature (Tg) and storage modulus values while there is also a moderate increase in the damping ability of the tested material as expressed by the factor tanδ as the period of exposure to low temperature increases.
NASA Astrophysics Data System (ADS)
Shen, Yu; Wen, Cuie; Yang, Xincheng; Pang, Yanzhao; Sun, Lele; Tao, Jingmei; Gong, Yulan; Zhu, Xinkun
2015-12-01
The purpose of this paper is to investigate the effect of dynamic recovery on the mechanical properties of copper (Cu) during surface mechanical attrition treatment (SMAT) at both room temperature (RT) and cryogenic temperature (CT). Copper sheets were processed by SMAT at RT and at CT for 5, 15, and 30 min, respectively. The Cu samples after SMAT at RT for 30 min exhibited better ductility but lower strength than the samples after SMAT at CT for 30 min due to dynamic recovery. X-ray diffraction analysis indicated that decreasing temperature during SMAT led to an increase in the twin and dislocation densities. In addition, a thicker gradient structure layer with finer grains was obtained in the SMAT-processed Cu samples at CT than at RT. The results indicated that SMAT at CT can effectively suppress the occurring of dynamic recovery and produce ultrahigh strength pure copper without seriously sacrificing its ductility.
Michelmann, Sebastian; Bowman, Howard; Hanslmayr, Simon
2016-01-01
Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz) power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans. PMID:27494601
A dynamical system that describes vein graft adaptation and failure.
Garbey, Marc; Berceli, Scott A
2013-11-07
Adaptation of vein bypass grafts to the mechanical stresses imposed by the arterial circulation is thought to be the primary determinant for lesion development, yet an understanding of how the various forces dictate local wall remodeling is lacking. We develop a dynamical system that summarizes the complex interplay between the mechanical environment and cell/matrix kinetics, ultimately dictating changes in the vein graft architecture. Based on a systematic mapping of the parameter space, three general remodeling response patterns are observed: (1) shear stabilized intimal thickening, (2) tension induced wall thinning and lumen expansion, and (3) tension stabilized wall thickening. Notable is our observation that the integration of multiple feedback mechanisms leads to a variety of non-linear responses that would be unanticipated by an analysis of each system component independently. This dynamic analysis supports the clinical observation that the majority of vein grafts proceed along an adaptive trajectory, where grafts dilate and mildly thicken in response to the increased tension and shear, but a small portion of the grafts demonstrate a maladaptive phenotype, where progressive inward remodeling and accentuated wall thickening lead to graft failure. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
The wave attenuation mechanism of the periodic local resonant metamaterial
NASA Astrophysics Data System (ADS)
Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying
2018-01-01
This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.
Transient and chaotic low-energy transfers in a system with bistable nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romeo, F., E-mail: francesco.romeo@uniroma1.it; Manevitch, L. I.; Bergman, L. A.
2015-05-15
The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to a lightweight mass by means of a spring with both cubic nonlinear and negative linear components is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator, excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynamics evolves solely in-well. The description of the former dissipative phenomenon is provided in a two-dimensionalmore » projection of the phase space, where transitions between in-well and cross-well oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the second mechanism is described in terms of secondary limiting phase trajectories of the nonlinear attachment under certain resonance conditions. The analytical treatment of the two aformentioned low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully validate our analytical predictions.« less
The curving calculation of a mechanical device attached to a multi-storey car park
NASA Astrophysics Data System (ADS)
Muscalagiu, C. G.; Muscalagiu, I.; Muscalagiu, D. M.
2017-01-01
Study bunk storage systems for motor vehicles developed much lately due to high demand for parking in congested city centers. In this paper we propose to study mechanism drive bunk platforms for dynamic request. This paper aims to improve the response mechanism on a platform behavior self during operation of the system and identify hot spots. In this paper we propose to analyze the deformations of the superposed platform in the points of application of the exterior forces produced by the weight of the vehicle in a dynamic way. This paper aims to automate the necessary computation for the analysis of the deformations of the superposed platform using Netlogo language.
NASA Technical Reports Server (NTRS)
Fornes, R. E.; Gilbert, R. D.; Memory, J. D.
1986-01-01
The epoxy resin system formed by tetraglycidyl 4,4'-diamino diphenyl methane (TGDDM) and 4,4'-diamino diphenyl sulfone (DDS) was characterized by dynamic mechanical analysis and differential scanning calorimetry. Dynamic mechanical properties of graphite fiber epoxy composite specimens formulated with two different adhesive systems (NARMCO 5208, NARMCO 5209) were determined. The specimens were exposed to varying dose levels of ionizing radiation (0.5 MeV electrons) with a maximum absorbed dose of 10,000 Mrads. Following irradiation, property measurements were made to assess the influence of radiation on the epoxy and composite specimens. The results established that ionizing radiation has a limited effect on the properties of epoxy and composite specimens.
Development and Integration of Control System Models
NASA Technical Reports Server (NTRS)
Kim, Young K.
1998-01-01
The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.
Hamiltonian dynamics for complex food webs
NASA Astrophysics Data System (ADS)
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.
Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús
2015-01-01
Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2. Copyright © 2015 Elsevier Inc. All rights reserved.
Traffic Flow Density Distribution Based on FEM
NASA Astrophysics Data System (ADS)
Ma, Jing; Cui, Jianming
In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.
Tu, Jing; Li, Jiao Jiao; Shan, Zhi Jie; Zhai, Hong Lin
2017-01-01
The non-nucleoside drugs have been developed to treat HBV infection owing to their increased efficacy and lesser side effects, in which heteroaryldihydropyrimidines (HAPs) have been identified as effective inhibitors of HBV capsid. In this paper, the binding mechanism of HAPs targeting on HBV capsid protein was explored through three-dimensional quantitative structure-activity relationship, molecular dynamics and binding free energy decompositions. The obtained models of comparative molecular field analysis and comparative molecular similarity indices analysis enable the sufficient interpretation of structure-activity relationship of HAPs-HBV. The binding free energy analysis correlates with the experimental data. The computational results disclose that the non-polar contribution is the major driving force and Y132A mutation enhances the binding affinity for inhibitor 2 bound to HBV. The hydrogen bond interactions between the inhibitors and Trp102 help to stabilize the conformation of HAPs-HBV. The study provides insight into the binding mechanism of HAPs-HBV and would be useful for the rational design and modification of new lead compounds of HAP drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Variational Identification of Markovian Transition States
NASA Astrophysics Data System (ADS)
Martini, Linda; Kells, Adam; Covino, Roberto; Hummer, Gerhard; Buchete, Nicolae-Viorel; Rosta, Edina
2017-07-01
We present a method that enables the identification and analysis of conformational Markovian transition states from atomistic or coarse-grained molecular dynamics (MD) trajectories. Our algorithm is presented by using both analytical models and examples from MD simulations of the benchmark system helix-forming peptide Ala5 , and of larger, biomedically important systems: the 15-lipoxygenase-2 enzyme (15-LOX-2), the epidermal growth factor receptor (EGFR) protein, and the Mga2 fungal transcription factor. The analysis of 15-LOX-2 uses data generated exclusively from biased umbrella sampling simulations carried out at the hybrid ab initio density functional theory (DFT) quantum mechanics/molecular mechanics (QM/MM) level of theory. In all cases, our method automatically identifies the corresponding transition states and metastable conformations in a variationally optimal way, with the input of a set of relevant coordinates, by accurately reproducing the intrinsic slowest relaxation rate of each system. Our approach offers a general yet easy-to-implement analysis method that provides unique insight into the molecular mechanism and the rare but crucial (i.e., rate-limiting) transition states occurring along conformational transition paths in complex dynamical systems such as molecular trajectories.
Mechatronics by Analogy and Application to Legged Locomotion
NASA Astrophysics Data System (ADS)
Ragusila, Victor
A new design methodology for mechatronic systems, dubbed as Mechatronics by Analogy (MbA), is introduced and applied to designing a leg mechanism. The new methodology argues that by establishing a similarity relation between a complex system and a number of simpler models it is possible to design the former using the analysis and synthesis means developed for the latter. The methodology provides a framework for concurrent engineering of complex systems while maintaining the transparency of the system behaviour through making formal analogies between the system and those with more tractable dynamics. The application of the MbA methodology to the design of a monopod robot leg, called the Linkage Leg, is also studied. A series of simulations show that the dynamic behaviour of the Linkage Leg is similar to that of a combination of a double pendulum and a spring-loaded inverted pendulum, based on which the system kinematic, dynamic, and control parameters can be designed concurrently. The first stage of Mechatronics by Analogy is a method of extracting significant features of system dynamics through simpler models. The goal is to determine a set of simpler mechanisms with similar dynamic behaviour to that of the original system in various phases of its motion. A modular bond-graph representation of the system is determined, and subsequently simplified using two simplification algorithms. The first algorithm determines the relevant dynamic elements of the system for each phase of motion, and the second algorithm finds the simple mechanism described by the remaining dynamic elements. In addition to greatly simplifying the controller for the system, using simpler mechanisms with similar behaviour provides a greater insight into the dynamics of the system. This is seen in the second stage of the new methodology, which concurrently optimizes the simpler mechanisms together with a control system based on their dynamics. Once the optimal configuration of the simpler system is determined, the original mechanism is optimized such that its dynamic behaviour is analogous. It is shown that, if this analogy is achieved, the control system designed based on the simpler mechanisms can be directly implemented to the more complex system, and their dynamic behaviours are close enough for the system performance to be effectively the same. Finally it is shown that, for the employed objective of fast legged locomotion, the proposed methodology achieves a better design than Reduction-by-Feedback, a competing methodology that uses control layers to simplify the dynamics of the system.
Neuroimaging of Human Balance Control: A Systematic Review
Wittenberg, Ellen; Thompson, Jessica; Nam, Chang S.; Franz, Jason R.
2017-01-01
This review examined 83 articles using neuroimaging modalities to investigate the neural correlates underlying static and dynamic human balance control, with aims to support future mobile neuroimaging research in the balance control domain. Furthermore, this review analyzed the mobility of the neuroimaging hardware and research paradigms as well as the analytical methodology to identify and remove movement artifact in the acquired brain signal. We found that the majority of static balance control tasks utilized mechanical perturbations to invoke feet-in-place responses (27 out of 38 studies), while cognitive dual-task conditions were commonly used to challenge balance in dynamic balance control tasks (20 out of 32 studies). While frequency analysis and event related potential characteristics supported enhanced brain activation during static balance control, that in dynamic balance control studies was supported by spatial and frequency analysis. Twenty-three of the 50 studies utilizing EEG utilized independent component analysis to remove movement artifacts from the acquired brain signals. Lastly, only eight studies used truly mobile neuroimaging hardware systems. This review provides evidence to support an increase in brain activation in balance control tasks, regardless of mechanical, cognitive, or sensory challenges. Furthermore, the current body of literature demonstrates the use of advanced signal processing methodologies to analyze brain activity during movement. However, the static nature of neuroimaging hardware and conventional balance control paradigms prevent full mobility and limit our knowledge of neural mechanisms underlying balance control. PMID:28443007
Impact resistance of fiber composites - Energy-absorbing mechanisms and environmental effects
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1985-01-01
Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.
Impact resistance of fiber composites: Energy absorbing mechanisms and environmental effects
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1983-01-01
Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.
Experimental analysis and constitutive modelling of steel of A-IIIN strength class
NASA Astrophysics Data System (ADS)
Kruszka, Leopold; Janiszewski, Jacek
2015-09-01
Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.
NASA Astrophysics Data System (ADS)
Ramani, R.; Alam, S.
2015-06-01
High performance polymer blend of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) was examined for their free volume behaviour using positron annihilation lifetime spectroscopy and dynamic mechanical thermal analysis methods. The fractional free volume obtained from PALS shows a negative deviation from linear additivity rule implying good miscibility between PEEK and PEI. The dynamic modulus and loss tangent were obtained for the blends at three different frequencies 1, 10 and 100 Hz at temperatures close to and above their glass transition temperature. Applying Time-Temperature-Superposition (TTS) principle to the DMTA results, master curves were obtained at a reference temperature To and the WLF coefficients c01 and c02 were evaluated. Both the methods give similar results for the dependence of fractional free volume on PEI content in this blend. The results reveal that free volume plays an important role in determining the visco-elastic properties in miscible polymer blends.
Hong, Do-Kwan; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun; Ahn, Chan-Woo
2014-01-01
The objective of the present study was to deal with the rotordynamics of the rotor of an ultra-high speed PM type synchronous motor-generator for a 500 W rated micro gas turbine generator. This paper introduces dynamic analysis, and experiments on the motor-generator. The focus is placed on an analytical approach considering the mechanical dynamic problems. It is essential to deal with dynamic stability at ultra-high speeds. Unbalance response analysis is performed by calculating the unbalance with and without balancing using a balancing machine. Critical speed analysis is performed to determine the operating speed with sufficient separation margin. The unbalance response analysis is compared with the experimental results considering the balancing grade (ISO 1940-1) and predicted vibration displacement with and without balancing. Based on these results, a high-speed motor-generator was successfully developed. PMID:25177804
TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics.
Hou, Yue; Konen, Jessica; Brat, Daniel J; Marcus, Adam I; Cooper, Lee A D
2018-05-08
Spheroid cultures derived from explanted cancer specimens are an increasingly utilized resource for studying complex biological processes like tumor cell invasion and metastasis, representing an important bridge between the simplicity and practicality of 2-dimensional monolayer cultures and the complexity and realism of in vivo animal models. Temporal imaging of spheroids can capture the dynamics of cell behaviors and microenvironments, and when combined with quantitative image analysis methods, enables deep interrogation of biological mechanisms. This paper presents a comprehensive open-source software framework for Temporal Analysis of Spheroid Imaging (TASI) that allows investigators to objectively characterize spheroid growth and invasion dynamics. TASI performs spatiotemporal segmentation of spheroid cultures, extraction of features describing spheroid morpho-phenotypes, mathematical modeling of spheroid dynamics, and statistical comparisons of experimental conditions. We demonstrate the utility of this tool in an analysis of non-small cell lung cancer spheroids that exhibit variability in metastatic and proliferative behaviors.
Radiation from quantum weakly dynamical horizons in loop quantum gravity.
Pranzetti, Daniele
2012-07-06
We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable.
Ma, Da; Tang, Liang; Pan, Yan-Huan
2007-12-01
Three-dimensional finite method was used to analyze stress and strain distributions of periodontal ligament of abutments under dynamic loads. Finite element analysis was performed on the model under dynamic loads with vertical and oblique directions. The stress and strain distributions and stress-time curves were analyzed to study the biomechanical behavior of periodontal ligament of abutments. The stress and strain distributions of periodontal ligament under dynamic load were same with the static load. But the maximum stress and strain decreased apparently. The rate of change was between 60%-75%. The periodontal ligament had time-dependent mechanical behaviors. Some level of residual stress in periodontal ligament was left after one mastication period. The stress-free time under oblique load was shorter than that of vertical load. The maximum stress and strain decrease apparently under dynamic loads. The periodontal ligament has time-dependent mechanical behaviors during one mastication. There is some level of residual stress left after one mastication period. The level of residual stress is related to the magnitude and the direction of loads. The direction of applied loads is one important factor that affected the stress distribution and accumulation and release of abutment periodontal ligament.
Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures
de la Fuente, Ildefonso Martínez
2010-01-01
One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Kulak, R.F.; Bojanowski, C.
2011-08-26
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of April through June 2011.« less
A model for oscillations and pattern formation in protoplasmic droplets of Physarum polycephalum
NASA Astrophysics Data System (ADS)
Radszuweit, M.; Engel, H.; Bär, M.
2010-12-01
A mechano-chemical model for the spatiotemporal dynamics of free calcium and the thickness in protoplasmic droplets of the true slime mold Physarum polycephalum is derived starting from a physiologically detailed description of intracellular calcium oscillations proposed by Smith and Saldana (Biopys. J. 61, 368 (1992)). First, we have modified the Smith-Saldana model for the temporal calcium dynamics in order to reproduce the experimentally observed phase relation between calcium and mechanical tension oscillations. Then, we formulate a model for spatiotemporal dynamics by adding spatial coupling in the form of calcium diffusion and advection due to calcium-dependent mechanical contraction. In another step, the resulting reaction-diffusion model with mechanical coupling is simplified to a reaction-diffusion model with global coupling that approximates the mechanical part. We perform a bifurcation analysis of the local dynamics and observe a Hopf bifurcation upon increase of a biochemical activity parameter. The corresponding reaction-diffusion model with global coupling shows regular and chaotic spatiotemporal behaviour for parameters with oscillatory dynamics. In addition, we show that the global coupling leads to a long-wavelength instability even for parameters where the local dynamics possesses a stable spatially homogeneous steady state. This instability causes standing waves with a wavelength of twice the system size in one dimension. Simulations of the model in two dimensions are found to exhibit defect-mediated turbulence as well as various types of spiral wave patterns in qualitative agreement with earlier experimental observation by Takagi and Ueda (Physica D, 237, 420 (2008)).
Mechanical Engineering at KSC: 'How I spend My Hours from 9 to 5 and Draw a Paycheck'
NASA Technical Reports Server (NTRS)
Randazzo, John; Steinrock. Todd (Technical Monitor)
2003-01-01
This viewgraph presentation provides an overview of a senior mechanical engineer's role in designing and testing sensors to fly aboard the shuttle Discovery during STS-95 and STS-98. Topics covered include: software development tools, computation fluid dynamics, structural analysis, housing design, and systems integration.
USDA-ARS?s Scientific Manuscript database
Thin casein films for food packaging applications possess good strength and low oxygen permeability but low water-resistance and elasticity. Customizing the mechanical properties of the films to target specific behaviors depending on temperature and humidity changes would enable a variety of commerc...
Dynamic mechanical thermal analysis of hypromellose 2910 free films.
Cespi, Marco; Bonacucina, Giulia; Mencarelli, Giovanna; Casettari, Luca; Palmieri, Giovanni Filippo
2011-10-01
It is common practice to coat oral solid dosage forms with polymeric materials for controlled release purposes or for practical and aesthetic reasons. Good knowledge of thermo-mechanical film properties or their variation as a function of polymer grade, type and amount of additives or preparation method is of prime importance in developing solid dosage forms. This work focused on the dynamic mechanical thermal characteristics of free films of hypromellose 2910 (also known as HPMC), prepared using three grades of this polymer from two different manufacturers, in order to assess whether polymer chain length or origin affects the mechanical or thermo-mechanical properties of the final films. Hypromellose free films were obtained by casting their aqueous solutions prepared at a specific concentrations in order to obtain the same viscosity for each. The films were stored at room temperature until dried and then examined using a dynamic mechanical analyser. The results of the frequency scans showed no significant differences in the mechanical moduli E' and E″ of the different samples when analysed at room temperature; however, the grade of the polymer affected material transitions during the heating process. Glass transition temperature, apparent activation energy and fragility parameters depended on polymer chain length, while the material brand showed little impact on film performance. Copyright © 2011 Elsevier B.V. All rights reserved.
Computational analysis of nonlinearities within dynamics of cable-based driving systems
NASA Astrophysics Data System (ADS)
Anghelache, G. D.; Nastac, S.
2017-08-01
This paper deals with computational nonlinear dynamics of mechanical systems containing some flexural parts within the actuating scheme, and, especially, the situations of the cable-based driving systems were treated. It was supposed both functional nonlinearities and the real characteristic of the power supply, in order to obtain a realistically computer simulation model being able to provide very feasible results regarding the system dynamics. It was taken into account the transitory and stable regimes during a regular exploitation cycle. The authors present a particular case of a lift system, supposed to be representatively for the objective of this study. The simulations were made based on the values of the essential parameters acquired from the experimental tests and/or the regular practice in the field. The results analysis and the final discussions reveal the correlated dynamic aspects within the mechanical parts, the driving system, and the power supply, whole of these supplying potential sources of particular resonances, within some transitory phases of the working cycle, and which can affect structural and functional dynamics. In addition, it was underlines the influences of computational hypotheses on the both quantitative and qualitative behaviour of the system. Obviously, the most significant consequence of this theoretical and computational research consist by developing an unitary and feasible model, useful to dignify the nonlinear dynamic effects into the systems with cable-based driving scheme, and hereby to help an optimization of the exploitation regime including a dynamics control measures.
The brain as a dynamic physical system.
McKenna, T M; McMullen, T A; Shlesinger, M F
1994-06-01
The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.
Astephen, J L; Deluzio, K J
2005-02-01
Osteoarthritis of the knee is related to many correlated mechanical factors that can be measured with gait analysis. Gait analysis results in large data sets. The analysis of these data is difficult due to the correlated, multidimensional nature of the measures. A multidimensional model that uses two multivariate statistical techniques, principal component analysis and discriminant analysis, was used to discriminate between the gait patterns of the normal subject group and the osteoarthritis subject group. Nine time varying gait measures and eight discrete measures were included in the analysis. All interrelationships between and within the measures were retained in the analysis. The multidimensional analysis technique successfully separated the gait patterns of normal and knee osteoarthritis subjects with a misclassification error rate of <6%. The most discriminatory feature described a static and dynamic alignment factor. The second most discriminatory feature described a gait pattern change during the loading response phase of the gait cycle. The interrelationships between gait measures and between the time instants of the gait cycle can provide insight into the mechanical mechanisms of pathologies such as knee osteoarthritis. These results suggest that changes in frontal plane loading and alignment and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis gait patterns. Subsequent investigations earlier in the disease process may suggest the importance of these factors to the progression of knee osteoarthritis.
Stetz, Gabrielle; Verkhivker, Gennady M
2016-08-22
Although molecular mechanisms of allosteric regulation in the Hsp70 chaperones have been extensively studied at both structural and functional levels, the current understanding of allosteric inhibition of chaperone activities by small molecules is still lacking. In the current study, using a battery of computational approaches, we probed allosteric inhibition mechanisms of E. coli Hsp70 (DnaK) and human Hsp70 proteins by small molecule inhibitors PET-16 and novolactone. Molecular dynamics simulations and binding free energy analysis were combined with network-based modeling of residue interactions and allosteric communications to systematically characterize and compare molecular signatures of the apo form, substrate-bound, and inhibitor-bound chaperone complexes. The results suggested a mechanism by which the allosteric inhibitors may leverage binding energy hotspots in the interaction networks to stabilize a specific conformational state and impair the interdomain allosteric control. Using the network-based centrality analysis and community detection, we demonstrated that substrate binding may strengthen the connectivity of local interaction communities, leading to a dense interaction network that can promote an efficient allosteric communication. In contrast, binding of PET-16 to DnaK may induce significant dynamic changes and lead to a fractured interaction network and impaired allosteric communications in the DnaK complex. By using a mechanistic-based analysis of distance fluctuation maps and allosteric propensities of protein residues, we determined that the allosteric network in the PET-16 complex may be small and localized due to the reduced communication and low cooperativity of the substrate binding loops, which may promote the higher rates of substrate dissociation and the decreased substrate affinity. In comparison with the significant effect of PET-16, binding of novolactone to HSPA1A may cause only moderate network changes and preserve allosteric coupling between the allosteric pocket and the substrate binding region. The impact of novolactone on the conformational dynamics and allosteric communications in the HSPA1A complex was comparable to the substrate effect, which is consistent with the experimental evidence that PET-16, but not novolactone binding, can significantly decrease substrate affinity. We argue that the unique dynamic and network signatures of PET-16 and novolactone may be linked with the experimentally observed functional effects of these inhibitors on allosteric regulation and substrate binding.
NASA Astrophysics Data System (ADS)
Fein, Howard
1999-03-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as operational parameters of structural components fabricated from advanced and exotic materials. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects. Deriving such information can be crucial to the determination of mechanical configurations and designs, as well as critical operational parameters of structural components fabricated from advanced and exotic materials.
Acoustic emission: A useful tool for damage evaluation in composite materials
NASA Astrophysics Data System (ADS)
Mouzakis, Dionysios E.; Dimogianopoulos, Dimitrios G.
2018-02-01
High performance composites for aviation-related structures are prone to constant aging by environmental agents. Previous data from our work reported on the stiffening behaviour of glass fibre polyester composites used in the manufacturing of wind turbine blades. Airplanes from such composites are already on service nowadays. This justifies the detailed study of the exposure of high performance materials to environmental conditions such as varying temperature, humidity, ultraviolet radiation, in order to assess the impact of these important aging factors on their mechanical behaviour. The dramatic changes in the dynamic mechanical response of polymer matrix carbon fibre composites upon exposure to acceleration aging has been assessed in the present study. In order to assess the synergistic effect action of temperature and humidity on composites subjected to changes of temperature from -35 to +40 °C and humidity variations from <10% to 95% RH (non-condensing) specimens were stored in a climatic chamber for 60 days. Conditions were cycled, as if actual flight cycles of 3-4 hours per flight, were to be simulated. Dynamic mechanical analysis tests were performed in three point bending mode. Scanning of frequency and temperature were performed in order to determine both the viscoelastic response as well as the time-dependent behaviour of the aged materials. All tests were run both for aged and pristine materials for comparison purposes. Three point bending testing was performed in both static as well as in Dynamic mechanical analysis, for a range of temperatures and frequencies. Acoustic Emission damage detection was also performed during the three point bending test both in static and dynamic mode. The aged materials had gained in dynamic stiffness. In addition, that, the gain in the storage moduli, was accompanied by a decrease in the material damping ability, as determined by the tanδ parameter. In the final stages of the study, impact testing was performed on both pristine and aged specimens. The experimentally recorded force/time signals were utilized for concluding on the specimens' condition, by means of signal based damage detection methodologies. Effort was invested in utilizing signal analysis in order to get comparative aging-related information on the tested specimens in order to ultimately validate results of mechanical testing.
NASA Astrophysics Data System (ADS)
Silberschmidt, Vadim V.
2013-07-01
Intensification of manufacturing processes and expansion of usability envelopes of modern components and structures in many cases result in dynamic loading regimes that cannot be resented adequately employing quasi-static formulations of respective problems of solid mechanics. Specific features of dynamic deformation, damage and fracture processes are linked to various factors, most important among them being: a transient character of load application; complex scenarios of propagation, attenuation and reflection of stress waves in real materials, components and structures; strain-rate sensitivity of materials properties; various thermo-mechanical regimes. All these factors make both experimental characterisation and theoretical (analytical and numerical) analysis of dynamic deformation and fracture rather challenging; for instance, besides dealing with a spatial realisation of these processes, their evolution with time should be also accounted for. To meet these challenges, an International Symposium on Dynamic Deformation and Fracture of Advanced Materials D2FAM 2013 was held on 9-11 September 2013 in Loughborough, UK. Its aim was to bring together specialists in mechanics of materials, applied mathematics, physics, continuum mechanics, materials science as well as various areas of engineering to discuss advances in experimental and theoretical analysis, and numerical simulations of dynamic mechanical phenomena. Some 50 papers presented at the Symposium by researchers from 12 countries covered various topics including: high-strain-rate loading and deformation; dynamic fracture; impact and blast loading; high-speed penetration; impact fatigue; damping properties of advanced materials; thermomechanics of dynamic loading; stress waves in micro-structured materials; simulation of failure mechanisms and damage accumulation; processes in materials under dynamic loading; a response of components and structures to harsh environment. The materials discussed at D2FAM 2013 ranged from traditional ones such as metals, alloys, polymers and composites to advanced and emerging materials, such as foams, cellular materials and metallic glasses, as well as bio-materials. Within the framework of the Symposium, a Special Session 'Parametric Resonance, Vibro-impact and Related Phenomena' was organised by partners of the FP7 IAPP project PARM-2: 'Vibro-impact machines based on parametric resonance: Concepts, mathematical modelling, experimental verification and implementation.' The Session focused on the topics, directly related to the project: excitation, stabilization, control and applications of parametric resonance (PR); multiple degrees of freedom of PR-excited systems; basic principles of PR-based macro and micro tools; design and technological aspects of PR-based machines; vibro-assisted machining; fatigue under high-amplitude vibro-impact conditions and corresponding optimal design; localisation near defects in dynamic response of elastic lattices and structures; dispersive waves and dynamic fracture in non-uniform lattice systems; thermally induced surface-breaking cracks, etc. This issue presents a selection of research papers presented at the International Symposium on Dynamic Deformation and Fracture of Advanced Materials D2FAM 2013. The Symposium Organisers would like to acknowledge its sponsors: Institute of Physics, International Centre of Vibro-Impact Systems and Marie Curie Action: Industry-Academia Partnerships and Pathways of the Seventh Framework Programme (FP7) of the European Commission (PARM-2 consortium). The PARM-2 consortium sponsored twenty scholarships for early-stage researchers to participate in this Symposium.
EB-Family Proteins: Functions and Microtubule Interaction Mechanisms.
Mustyatsa, V V; Boyakhchyan, A V; Ataullakhanov, F I; Gudimchuk, N B
2017-07-01
Microtubules are polymers of tubulin protein, one of the key components of cytoskeleton. They are polar filaments whose plus-ends usually oriented toward the cell periphery are more dynamic than their minus-ends, which face the center of the cell. In cells, microtubules are organized into a network that is being constantly rebuilt and renovated due to stochastic switching of its individual filaments from growth to shrinkage and back. Because of these dynamics and their mechanical properties, microtubules take part in various essential processes, from intracellular transport to search and capture of chromosomes during mitosis. Microtubule dynamics are regulated by many proteins that are located on the plus-ends of these filaments. One of the most important and abundant groups of plus-end-interacting proteins are EB-family proteins, which autonomously recognize structures of the microtubule growing plus-ends, modulate their dynamics, and recruit multiple partner proteins with diverse functions onto the microtubule plus-ends. In this review, we summarize the published data about the properties and functions of EB-proteins, focusing on analysis of their mechanism of interaction with the microtubule growing ends.
NASA Astrophysics Data System (ADS)
Bai, Qifeng; Yao, Xiaojun
2016-02-01
Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1.
Social Insects: A Model System for Network Dynamics
NASA Astrophysics Data System (ADS)
Charbonneau, Daniel; Blonder, Benjamin; Dornhaus, Anna
Social insect colonies (ants, bees, wasps, and termites) show sophisticated collective problem-solving in the face of variable constraints. Individuals exchange information and materials such as food. The resulting network structure and dynamics can inform us about the mechanisms by which the insects achieve particular collective behaviors and these can be transposed to man-made and social networks. We discuss how network analysis can answer important questions about social insects, such as how effective task allocation or information flow is realized. We put forward the idea that network analysis methods are under-utilized in social insect research, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account. To illustrate this, we present an example of network tasks performed by ant workers, linked by instances of workers switching from one task to another. We show how temporal network analysis can propose and test new hypotheses on mechanisms of task allocation, and how adding temporal elements to static networks can drastically change results. We discuss the benefits of using social insects as models for complex systems in general. There are multiple opportunities emergent technologies and analysis methods in facilitating research on social insect network. The potential for interdisciplinary work could significantly advance diverse fields such as behavioral ecology, computer sciences, and engineering.
Size of the Dynamic Bead in Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agapov, Alexander L; Sokolov, Alexei P
2010-01-01
Presented analysis of neutron, mechanical, and MD simulation data available in the literature demonstrates that the dynamic bead size (the smallest subchain that still exhibits the Rouse-like dynamics) in most of the polymers is significantly larger than the traditionally defined Kuhn segment. Moreover, our analysis emphasizes that even the static bead size (e.g., chain statistics) disagrees with the Kuhn segment length. We demonstrate that the deficiency of the Kuhn segment definition is based on the assumption of a chain being completely extended inside a single bead. The analysis suggests that representation of a real polymer chain by the bead-and-spring modelmore » with a single parameter C cannot be correct. One needs more parameters to reflect correctly details of the chain structure in the bead-and-spring model.« less
Low-cost digital dynamic visualization system
NASA Astrophysics Data System (ADS)
Asundi, Anand K.; Sajan, M. R.
1995-05-01
High speed photographic systems like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording systems requiring time consuming and tedious wet processing of the films. Currently digital cameras are replacing to certain extent the conventional cameras for static experiments. Recently, there is lot of interest in developing and modifying CCD architectures and recording arrangements for dynamic scene analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration (TDI) mode for digitally recording dynamic scenes. Applications in solid as well as fluid impact problems are presented.
ERIC Educational Resources Information Center
Ingerman, Ake; Berge, Maria; Booth, Shirley
2009-01-01
In this paper, we analyse learning dynamics in the context of physics group work of the kind increasingly found in engineering education. We apply a phenomenographic perspective on learning, seeing the notion of variation as the basic mechanism of learning. Empirically, we base our analysis on data from first year engineering students discussing…
Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load
NASA Technical Reports Server (NTRS)
Kankam, M. David; Rauch, Jeffrey S.
1994-01-01
This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.
NASA Astrophysics Data System (ADS)
Problems in applied mathematics and mechanics are addressed in reviews and reports. Areas covered are vibration and stability, elastic and plastic mechanics, fluid mechanics, the numerical treatment of differential equations (general theory and finite-element methods in particular), optimization, decision theory, stochastics, actuarial mathematics, applied analysis and mathematical physics, and numerical analysis. Included are major lectures on separated flows, the transition regime of rarefied-gas dynamics, recent results in nonlinear elasticity, fluid-elastic vibration, the new computer arithmetic, and unsteady wave propagation in layered elastic bodies.
A forward model-based validation of cardiovascular system identification
NASA Technical Reports Server (NTRS)
Mukkamala, R.; Cohen, R. J.
2001-01-01
We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.
NASA Astrophysics Data System (ADS)
Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng
2016-04-01
Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition.
Fractal analysis of GPS time series for early detection of disastrous seismic events
NASA Astrophysics Data System (ADS)
Filatov, Denis M.; Lyubushin, Alexey A.
2017-03-01
A new method of fractal analysis of time series for estimating the chaoticity of behaviour of open stochastic dynamical systems is developed. The method is a modification of the conventional detrended fluctuation analysis (DFA) technique. We start from analysing both methods from the physical point of view and demonstrate the difference between them which results in a higher accuracy of the new method compared to the conventional DFA. Then, applying the developed method to estimate the measure of chaoticity of a real dynamical system - the Earth's crust, we reveal that the latter exhibits two distinct mechanisms of transition to a critical state: while the first mechanism has already been known due to numerous studies of other dynamical systems, the second one is new and has not previously been described. Using GPS time series, we demonstrate efficiency of the developed method in identification of critical states of the Earth's crust. Finally we employ the method to solve a practically important task: we show how the developed measure of chaoticity can be used for early detection of disastrous seismic events and provide a detailed discussion of the numerical results, which are shown to be consistent with outcomes of other researches on the topic.
NASA Astrophysics Data System (ADS)
Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.
2017-07-01
To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.
NASA Astrophysics Data System (ADS)
Farinha, Maria Luísa Braga; Azevedo, Nuno Monteiro; Candeias, Mariline
2017-02-01
The explicit formulation of a small displacement model for the coupled hydro-mechanical analysis of concrete gravity dam foundations based on joint finite elements is presented. The proposed coupled model requires a thorough pre-processing stage in order to ensure that the interaction between the various blocks which represent both the rock mass foundation and the dam is always edge to edge. The mechanical part of the model, though limited to small displacements, has the advantage of allowing an accurate representation of the stress distribution along the interfaces, such as rock mass joints. The hydraulic part and the mechanical part of the model are fully compatible. The coupled model is validated using a real case of a dam in operation, by comparison of the results with those obtained with a large displacement discrete model. It is shown that it is possible to assess the sliding stability of concrete gravity dams using small displacement models under both static and dynamic conditions.
Modeling of dielectric elastomer as electromechanical resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bo, E-mail: liboxjtu@mail.xjtu.edu.cn; Liu, Lei; Chen, Hualing
Dielectric elastomers (DEs) feature nonlinear dynamics resulting from an electromechanical coupling. Under alternating voltage, the DE resonates with tunable performances. We present an analysis of the nonlinear dynamics of a DE as electromechanical resonator (DEER) configured as a pure shear actuator. A theoretical model is developed to characterize the complex performance under different boundary conditions. Physical mechanisms are presented and discussed. Chaotic behavior is also predicted, illustrating instabilities in the dynamics. The results provide a guide to the design and application of DEER in haptic devices.
Yildirim, Necmettin; Aktas, Mehmet Emin; Ozcan, Seyma Nur; Akbas, Esra; Ay, Ahmet
2017-01-01
Cells maintain cellular homeostasis employing different regulatory mechanisms to respond external stimuli. We study two groups of signal-dependent transcriptional regulatory mechanisms. In the first group, we assume that repressor and activator proteins compete for binding to the same regulatory site on DNA (competitive mechanisms). In the second group, they can bind to different regulatory regions in a noncompetitive fashion (noncompetitive mechanisms). For both competitive and noncompetitive mechanisms, we studied the gene expression dynamics by increasing the repressor or decreasing the activator abundance (inhibition mechanisms), or by decreasing the repressor or increasing the activator abundance (activation mechanisms). We employed delay differential equation models. Our simulation results show that the competitive and noncompetitive inhibition mechanisms exhibit comparable repression effectiveness. However, response time is fastest in the noncompetitive inhibition mechanism due to increased repressor abundance, and slowest in the competitive inhibition mechanism by increased repressor level. The competitive and noncompetitive inhibition mechanisms through decreased activator abundance show comparable and moderate response times, while the competitive and noncompetitive activation mechanisms by increased activator protein level display more effective and faster response. Our study exemplifies the importance of mathematical modeling and computer simulation in the analysis of gene expression dynamics.
Asymmetric correlations in the ozone concentration dynamics of the Mexico City Metropolitan Area
NASA Astrophysics Data System (ADS)
Meraz, M.; Alvarez-Ramirez, J.; Echeverria, J. C.
2017-04-01
Mexico City is a megalopolis with severe pollution problems caused by vehicles and industrial activity. This condition imposes important risks to human health and economic activity. Based on hourly-sampled data during the last decade, in a recent work (Meraz et al., 2015) we showed that the pollutant dynamics in Mexico City exhibits long-term and scale-dependent persistence effects resulting from the combination of pollutants generation by vehicles and removal by advection mechanisms. In this work, we analyzed the dynamics of ozone, a key component reflecting the degree of atmospheric contamination, to determine if its long-term correlations are asymmetric in relation to the actual concentration trend (increasing or decreasing). The analysis is conducted with detrended fluctuation analysis. The results showed that the average ozone dynamics is uncorrelated when the concentration is increasing. In contrast, the ozone dynamics shows long-term anti-persistence effects when the concentration is decreasing.
Understanding healthcare innovation systems: the Stockholm region case.
Larisch, Lisa-Marie; Amer-Wåhlin, Isis; Hidefjäll, Patrik
2016-11-21
Purpose There is an increasing interest in understanding how innovation processes can address current challenges in healthcare. The purpose of this paper is to analyze the wider socio-economic context and conditions for such innovation processes in the Stockholm region, using the functional dynamics approach to innovation systems (ISs). Design/methodology/approach The analysis is based on triangulation using data from 16 in-depth interviews, two workshops, and additional documents. Using the functional dynamics approach, critical structural and functional components of the healthcare IS were analyzed. Findings The analysis revealed several mechanisms blocking innovation processes such as fragmentation, lack of clear leadership, as well as insufficient involvement of patients and healthcare professionals. Furthermore, innovation is expected to occur linearly as a result of research. Restrictive rules for collaboration with industry, reimbursement, and procurement mechanisms limit entrepreneurial experimentation, commercialization, and spread of innovations. Research limitations/implications In this study, the authors analyzed how certain functions of the functional dynamics approach to ISs related to each other. The authors grouped knowledge creation, resource mobilization, and legitimacy as they jointly constitute conditions for needs articulation and entrepreneurial experimentation. The economic effects of entrepreneurial experimentation and needs articulation are mainly determined by the stage of market formation and existence of positive externalities. Social implications Stronger user involvement; a joint innovation strategy for healthcare, academia, and industry; and institutional reform are necessary to remove blocking mechanisms that today prevent innovation from occurring. Originality/value This study is the first to provide an analysis of the system of innovation in healthcare using a functional dynamics approach, which has evolved as a tool for public policy making. A better understanding of ISs in general, and in healthcare in particular, may provide the basis for designing and evaluating innovation policy.
Evol and ProDy for bridging protein sequence evolution and structural dynamics
Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R.; Bahar, Ivet
2014-01-01
Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. Availability and implementation: ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/. Contact: bahar@pitt.edu PMID:24849577
Dynamics of Mechanical Signal Transmission through Prestressed Stress Fibers
Hwang, Yongyun; Barakat, Abdul I.
2012-01-01
Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows temporally oscillatory signals in the physiological frequency range to travel a long distance without significant decay due to material viscosity and/or cytosolic drag. PMID:22514731
Mano, J F; Vaz, C M; Mendes, S C; Reis, R L; Cunha, A M
1999-12-01
It has been shown that blends of starch with a poly(ethylene-vinyl-alcohol) copolymer, EVOH, designated as SEVA-C, present an interesting combination of mechanical, degradation and biocompatible properties, specially when filled with hydroxyapatite (HA). Consequently, they may find a range of applications in the biomaterials field. This work evaluated the influence of HA fillers and of blowing agents (used to produce porous architectures) over the viscoelastic properties of SEVA-C polymers, as seen by dynamic mechanical analysis (DMA), in order to speculate on their performances when withstanding cyclic loading in the body. The composite materials presented a promising performance under dynamic mechanical solicitation conditions. Two relaxations were found being attributed to the starch and EVOH phases. The EVOH relaxation process may be very useful in vivo improving the implants performance under cyclic loading. DMA results also showed that it is possible to produce SEVA-C compact surface/porous core architectures with a mechanical performance similar to that of SEVA-C dense materials. This may allow for the use of these materials as bone replacements or scaffolds that must withstand loads when implanted. Copyright 1999 Kluwer Academic Publishers
Molecular dynamics simulations and novel drug discovery.
Liu, Xuewei; Shi, Danfeng; Zhou, Shuangyan; Liu, Hongli; Liu, Huanxiang; Yao, Xiaojun
2018-01-01
Molecular dynamics (MD) simulations can provide not only plentiful dynamical structural information on biomacromolecules but also a wealth of energetic information about protein and ligand interactions. Such information is very important to understanding the structure-function relationship of the target and the essence of protein-ligand interactions and to guiding the drug discovery and design process. Thus, MD simulations have been applied widely and successfully in each step of modern drug discovery. Areas covered: In this review, the authors review the applications of MD simulations in novel drug discovery, including the pathogenic mechanisms of amyloidosis diseases, virtual screening and the interaction mechanisms between drugs and targets. Expert opinion: MD simulations have been used widely in investigating the pathogenic mechanisms of diseases caused by protein misfolding, in virtual screening, and in investigating drug resistance mechanisms caused by mutations of the target. These issues are very difficult to solve by experimental methods alone. Thus, in the future, MD simulations will have wider application with the further improvement of computational capacity and the development of better sampling methods and more accurate force fields together with more efficient analysis methods.
NASA Astrophysics Data System (ADS)
Almesallmy, Mohammed
Methodologies are developed for dynamic analysis of mechanical systems with emphasis on inertial propulsion systems. This work adopted the Lagrangian methodology. Lagrangian methodology is the most efficient classical computational technique, which we call Equations of Motion Code (EOMC). The EOMC is applied to several simple dynamic mechanical systems for easier understanding of the method and to aid other investigators in developing equations of motion of any dynamic system. In addition, it is applied to a rigid multibody system, such as Thomson IPS [Thomson 1986]. Furthermore, a simple symbolic algorithm is developed using Maple software, which can be used to convert any nonlinear n-order ordinary differential equation (ODE) systems into 1st-order ODE system in ready format to be used in Matlab software. A side issue, but equally important, we have started corresponding with the U.S. Patent office to persuade them that patent applications, claiming gross linear motion based on inertial propulsion systems should be automatically rejected. The precedent is rejection of patent applications involving perpetual motion machines.
Glatt, Vaida; Bartnikowski, Nicole; Quirk, Nicholas; Schuetz, Michael; Evans, Christopher
2016-01-01
Background: Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. Methods: Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 μg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (μCT), histological analysis, and mechanical testing. Results: In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. Conclusions: These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. Clinical Relevance: Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation. PMID:27098327
Miscibility and thermal behavior of poly (ε-caprolactone)/long-chain ester of cellulose blends
Yuzhi Xu; Chunpeng Wang; Nicole M. Stark; Zhiyong Cai; Fuxiang Chu
2012-01-01
The long-chain cellulose ester (LCCE) cellulose laurate, poly(ε-caprolactone) (PCL) and their blends were characterized by tensile strength, Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). The compatibility of the blends was...
Executive summary: Mod-1 wind turbine generator analysis and design report
NASA Technical Reports Server (NTRS)
1979-01-01
Activities leading to the detail design of a wind turbine generator having a nominal rating of 1.8 megawatts are reported. Topics covered include (1) system description; (2) structural dynamics; (3) stability analysis; (4) mechanical subassemblies design; (5) power generation subsystem; and (6) control and instrumentation subsystem.
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1980-01-01
Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.
NASA Astrophysics Data System (ADS)
Bai, Zheng Feng; Zhao, Ji Jun; Chen, Jun; Zhao, Yang
2018-03-01
In the dynamic analysis of satellite antenna dual-axis driving mechanism, it is usually assumed that the joints are ideal or perfect without clearances. However, in reality, clearances in joints are unavoidable due to assemblage, manufacturing errors and wear. When clearance is introduced to the mechanism, it will lead to poor dynamic performances and undesirable vibrations due to impact forces in clearance joint. In this paper, a design optimization method is presented to reduce the undesirable vibrations of satellite antenna considering clearance joints in dual-axis driving mechanism. The contact force model in clearance joint is established using a nonlinear spring-damper model and the friction effect is considered using a modified Coulomb friction model. Firstly, the effects of clearances on dynamic responses of satellite antenna are investigated. Then the optimization method for dynamic design of the dual-axis driving mechanism with clearance is presented. The objective of the optimization is to minimize the maximum absolute vibration peak of antenna acceleration by reducing the impact forces in clearance joint. The main consideration here is to optimize the contact parameters of the joint elements. The contact stiffness coefficient, damping coefficient and the dynamic friction coefficient for clearance joint elements are taken as the optimization variables. A Generalized Reduced Gradient (GRG) algorithm is used to solve this highly nonlinear optimization problem for dual-axis driving mechanism with clearance joints. The results show that the acceleration peaks of satellite antenna and contact forces in clearance joints are reduced obviously after design optimization, which contributes to a better performance of the satellite antenna. Also, the application and limitation of the proposed optimization method are discussed.
Turbine blade forced response prediction using FREPS
NASA Technical Reports Server (NTRS)
Murthy, Durbha, V.; Morel, Michael R.
1993-01-01
This paper describes a software system called FREPS (Forced REsponse Prediction System) that integrates structural dynamic, steady and unsteady aerodynamic analyses to efficiently predict the forced response dynamic stresses in axial flow turbomachinery blades due to aerodynamic and mechanical excitations. A flutter analysis capability is also incorporated into the system. The FREPS system performs aeroelastic analysis by modeling the motion of the blade in terms of its normal modes. The structural dynamic analysis is performed by a finite element code such as MSC/NASTRAN. The steady aerodynamic analysis is based on nonlinear potential theory and the unsteady aerodynamic analyses is based on the linearization of the non-uniform potential flow mean. The program description and presentation of the capabilities are reported herein. The effectiveness of the FREPS package is demonstrated on the High Pressure Oxygen Turbopump turbine of the Space Shuttle Main Engine. Both flutter and forced response analyses are performed and typical results are illustrated.
Flight Mechanics Symposium 1997
NASA Technical Reports Server (NTRS)
Walls, Donna M. (Editor)
1997-01-01
This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium. This symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.
Math modeling and computer mechanization for real time simulation of rotary-wing aircraft
NASA Technical Reports Server (NTRS)
Howe, R. M.
1979-01-01
Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.
Evaluation of physical changes in wood during colonization by Ceriporiopsis submervispora
Chris Hunt; Alex Wiedenhoeft; Eric Horn; Carl Houtman
2001-01-01
Mechanical, chemical, and light microscopic methods were used to observe wood cell wall changes during colonization by Ceriporiopsis submervispora. Maximum crushing load, dynamic mechanical analysis (DMA), and quantitative Simonâs staining were found to be the most useful methods for tracking biopulping action. MOE and loss modulus trended downward within 2 days of...
USDA-ARS?s Scientific Manuscript database
Bast fibers grow in the bark layer of many plants, and have been used for textiles and cordage for over 6000 years. Bast fibers of kenaf (Hibiscus cannabinus L.) are retted by three methods and a comparative assessment of available reactive groups on the fiber surface and mechanical properties are ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kuangcai
The goal of this study is to help with future data analysis and experiment designs in rotational dynamics research using DIC-based SPORT technique. Most of the current studies using DIC-based SPORT techniques are technical demonstrations. Understanding the mechanisms behind the observed rotational behaviors of the imaging probes should be the focus of the future SPORT studies. More efforts are still needed in the development of new imaging probes, particle tracking methods, instrumentations, and advanced data analysis methods to further extend the potential of DIC-based SPORT technique.
Bio-Inspired Metallo-Supramolecular Polymers for Combined Mechanical Properties
2010-01-01
3 4 5 6 0 50 100 150 200 Temp (°C) H ea t F lo w (m W ) Figure 8. DSC trace of polymer 7. 1H NMR analysis indicated complete reaction of the...static and dynamic mechanical analysis methods. 11 5. References 1. Guan, Z. Polymer International 2007, 56, 467. 2. Oberhauser, A. F ...Hansma, P. K.; Carrion-Vazques, M.; Fernandez, J. M. Proc. Natl. Acad. Sci. USA 2001, 98, 468. 3. Reif, M. Gautel, M.; Oesterhelt, F .; Fernandez, J
Mingus Discontinuous Multiphysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pat Notz, Dan Turner
Mingus provides hybrid coupled local/non-local mechanics analysis capabilities that extend several traditional methods to applications with inherent discontinuities. Its primary features include adaptations of solid mechanics, fluid dynamics and digital image correlation that naturally accommodate dijointed data or irregular solution fields by assimilating a variety of discretizations (such as control volume finite elements, peridynamics and meshless control point clouds). The goal of this software is to provide an analysis framework form multiphysics engineering problems with an integrated image correlation capability that can be used for experimental validation and model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Kulak, R.F.; Bojanowski, C.
2011-12-09
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFCHR wind engineering laboratory, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of July through September 2011.« less
NASA Astrophysics Data System (ADS)
Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen
2015-03-01
The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.
Development of Nonlinear Flight Mechanical Model of High Aspect Ratio Light Utility Aircraft
NASA Astrophysics Data System (ADS)
Bahri, S.; Sasongko, R. A.
2018-04-01
The implementation of Flight Control Law (FCL) for Aircraft Electronic Flight Control System (EFCS) aims to reduce pilot workload, while can also enhance the control performance during missions that require long endurance flight and high accuracy maneuver. In the development of FCL, a quantitative representation of the aircraft dynamics is needed for describing the aircraft dynamics characteristic and for becoming the basis of the FCL design. Hence, a 6 Degree of Freedom nonlinear model of a light utility aircraft dynamics, also called the nonlinear Flight Mechanical Model (FMM), is constructed. This paper shows the construction of FMM from mathematical formulation, the architecture design of FMM, the trimming process and simulations. The verification of FMM is done by analysis of aircraft behaviour in selected trimmed conditions.
Chen, Gang; Song, Yongduan; Guan, Yanfeng
2018-03-01
This brief investigates the finite-time consensus tracking control problem for networked uncertain mechanical systems on digraphs. A new terminal sliding-mode-based cooperative control scheme is developed to guarantee that the tracking errors converge to an arbitrarily small bound around zero in finite time. All the networked systems can have different dynamics and all the dynamics are unknown. A neural network is used at each node to approximate the local unknown dynamics. The control schemes are implemented in a fully distributed manner. The proposed control method eliminates some limitations in the existing terminal sliding-mode-based consensus control methods and extends the existing analysis methods to the case of directed graphs. Simulation results on networked robot manipulators are provided to show the effectiveness of the proposed control algorithms.
TRITIUM EFFECTS ON DYNAMIC MECHANICAL PROPERTIES OF POLYMERIC MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E
2008-11-12
Dynamic mechanical analysis has been used to characterize the effects of tritium gas (initially 1 atm. pressure, ambient temperature) exposure over times up to 2.3 years on several thermoplastics-ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), and Vespel{reg_sign} polyimide, and on several formulations of elastomers based on ethylene propylene diene monomer (EPDM). Tritium exposure stiffened the elastic modulus of UHMW-PE up to about 1 year and then softened it, and reduced the viscous response monotonically with time. PTFE initially stiffened, however the samples became too weak to handle after nine months exposure. The dynamic properties of Vespel{reg_sign} were not affected. Themore » glass transition temperature of the EPDM formulations increased approximately 4 C. following three months tritium exposure.« less
Dynamic analysis of propulsion mechanism directly driven by wave energy for marine mobile buoy
NASA Astrophysics Data System (ADS)
Yu, Zhenjiang; Zheng, Zhongqiang; Yang, Xiaoguang; Chang, Zongyu
2016-07-01
Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science. Great progress has been made, however the technology in this area is far from maturity in theory and faced with many difficulties in application. A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB, especially with consideration of hydrodynamic force. The principle of wave-driven propulsion mechanism is briefly introduced. To set a theory foundation for study on the MMB, a dynamic model of the propulsion mechanism of the MMB is obtained. The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations. A simplified form of the motion equations is reached by omitting terms with high order small values. The relationship among the heave motion of the buoy, stiffness of the elastic components, and the forward speed can be obtained by using these simplified equations. The dynamic analysis show the following: The angle of displacement of foil is fairly small with the biggest value around 0.3 rad; The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy; The relationship among heaven motion, stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle, therefore, the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant. The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.
Kim, Yong Joon; Jo, Sungkil; Moon, Daruchi; Joo, Youngcheol; Choi, Kyung Seek
2014-05-01
To comprehend the mechanism of focal chorioretinal damage by analysis of the pressure distribution and dynamic pressure induced by infused air during fluid-air exchange. A precise simulation featuring a model eye and a fluid circuit was designed to analyze fluid-air exchange. The pressure distribution, flow velocity, and dynamic pressure induced by infusion of air into an air-filled eye were analyzed using an approach based on fluid dynamics. The size of the port and the infusion pressure were varied during simulated iterations. We simulated infusion of an air-filled eye with balanced salt solution (BSS) to better understand the mechanism of chorioretinal damage induced by infused air. Infused air was projected straight toward a point on the retina contralateral to the infusion port (the "vulnerable point"). The highest pressure was evident at the vulnerable point, and the lowest pressure was recorded on most retinal areas. Simulations using greater infusion pressure and a port of larger size were associated with elevations in dynamic pressure and the pressure gradient. The pressure gradients were 2.8 and 5.1 mm Hg, respectively, when infusion pressures of 30 and 50 mm Hg were delivered through a 20-gauge port. The pressure gradient associated with BSS infusion was greater than that created by air, but lasted for only a moment. Our simulation explains the mechanism of focal chorioretinal damage in numerical terms. Infused air induces a prolonged increase in focal pressure on the vulnerable point, and this may be responsible for visual field defects arising after fluid-air exchange. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.
Flame and Blast Resistant Materials for Force Protection
2012-06-29
4.0 V, respectively. Thermogravimetric analysis (TGA) tests were conducted on a TA instruments SDT Q600 from room temperature (~25 °C) to 700 °C...Incorporated TEM transmission electron microscopy TGA thermogravimetric analysis TGA/FTIR thermogravimetric analysis coupled to infrared spectroscopy...5935, 13 November 2012 250 °C. Transitions were investigated during the second heating and cooling cycles. Dynamic mechanical analysis (DMA) was
On the foundations of general relativistic celestial mechanics
NASA Astrophysics Data System (ADS)
Battista, Emmanuele; Esposito, Giampiero; Dell'Agnello, Simone
2017-09-01
Towards the end of nineteenth century, Celestial Mechanics provided the most powerful tools to test Newtonian gravity in the solar system and also led to the discovery of chaos in modern science. Nowadays, in light of general relativity, Celestial Mechanics leads to a new perspective on the motion of satellites and planets. The reader is here introduced to the modern formulation of the problem of motion, following what the leaders in the field have been teaching since the nineties, in particular, the use of a global chart for the overall dynamics of N bodies and N local charts describing the internal dynamics of each body. The next logical step studies in detail how to split the N-body problem into two sub-problems concerning the internal and external dynamics, how to achieve the effacement properties that would allow a decoupling of the two sub-problems, how to define external-potential-effacing coordinates and how to generalize the Newtonian multipole and tidal moments. The review paper ends with an assessment of the nonlocal equations of motion obtained within such a framework, a description of the modifications induced by general relativity on the theoretical analysis of the Newtonian three-body problem, and a mention of the potentialities of the analysis of solar-system metric data carried out with the Planetary Ephemeris Program.
Meng, Zhenyu; Kubar, Tomas; Mu, Yuguang; Shao, Fangwei
2018-05-08
Charge transport (CT) through biomolecules is of high significance in the research fields of biology, nanotechnology, and molecular devices. Inspired by our previous work that showed the binding of ionic liquid (IL) facilitated charge transport in duplex DNA, in silico simulation is a useful means to understand the microscopic mechanism of the facilitation phenomenon. Here molecular dynamics simulations (MD) of duplex DNA in water and hydrated ionic liquids were employed to explore the helical parameters. Principal component analysis was further applied to capture the subtle conformational changes of helical DNA upon different environmental impacts. Sequentially, CT rates were calculated by a QM/MM simulation of the flickering resonance model based upon MD trajectories. Herein, MD simulation illustrated that the binding of ionic liquids can restrain dynamic conformation and lower the on-site energy of the DNA base. Confined movement among the adjacent base pairs was highly related to the increase of electronic coupling among base pairs, which may lead DNA to a CT facilitated state. Sequentially combining MD and QM/MM analysis, the rational correlations among the binding modes, the conformational changes, and CT rates illustrated the facilitation effects from hydrated IL on DNA CT and supported a conformational-gating mechanism.
Dixit, Anshuman; Verkhivker, Gennady M.
2009-01-01
Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases. PMID:19714203
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis Schmitt; Daniel Olsen
2005-09-30
Three methods were utilized to analyze key components of slow-speed, large-bore, natural gas integral engines. These three methods included the application of computational fluid dynamics (CFD), dynamic modal analysis using finite element analysis (FEA), and a stress analysis method also using FEA. The CFD analysis focuses primarily on the fuel mixing in the combustion chamber of a TLA engine. Results indicate a significant increase in the homogeneity of the air and fuel using high-pressure fuel injection (HPFI) instead of standard low-pressure mechanical gas admission valve (MGAV). A modal analysis of three engine crankshafts (TLA-6, HBA-6, and GMV-10) is developed andmore » presented. Results indicate that each crankshaft has a natural frequency and corresponding speed that is well away from the typical engine operating speed. A frame stress analysis method is also developed and presented. Two different crankcases are examined. A TLA-6 crankcase is modeled and a stress analysis is performed. The method of dynamic load determination, model setup, and the results from the stress analysis are discussed. Preliminary results indicate a 10%-15% maximum increase in frame stress due to a 20% increase in HP. However, the high stress regions were localized. A new hydraulically actuated mechanical fuel valve is also developed and presented. This valve provides equivalent high-energy (supersonic) fuel injection comparable to a HPFI system, at 1/5th of the natural gas fuel pressure. This valve was developed in cooperation with the Dresser-Rand Corporation.« less
Development of test methodology for dynamic mechanical analysis instrumentation
NASA Technical Reports Server (NTRS)
Allen, V. R.
1982-01-01
Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic.
Lu, Fei; Gao, Xinpei; Xie, Shuting; Sun, Nan; Zheng, Liqiang
2014-10-21
Chemically modified Nafion composite membranes were successfully fabricated using five kinds of protic ionic liquids (PILs) with different cations, 1-butylammonium methanesulfonate (BA-MS), tributylammonium methanesulfonate (TBA-MS), 2,4,6-trimethylphenylammonium methanesulfonate (TMA-MS), butane-1,4-diammonium methanesulfonate (BDA-MS), and N-(2-aminoethyl)ethane-1,2-diammonium methanesulfonate (DETA-MS). The PIL incorporated Nafion composite membranes were characterized by impedance spectroscopy, small-angle X-ray scattering (SAXS), dynamic-mechanical analysis (DMA) and thermogravimetric analysis (TGA). In general, the Nafion/PIL composite membranes exhibit a significant increase in the ionic conductivities than Nafion under anhydrous conditions. The interactions between the Nafion ionomer and different geometric cations of PILs were also discussed by the comparison of nanostructures, dynamic-mechanical properties and thermal stabilities of the Nafion/PIL composite membranes.
Delamination and debonding of materials
NASA Technical Reports Server (NTRS)
Johnson, W. S. (Editor)
1985-01-01
The general topics consist of stress analysis, mechanical behavior, and fractography/NDI of composite laminates. Papers are presented on a dynamic hybrid finite-element analysis for interfacial cracks in composites, energy release rate during delamination crack growth in composite laminates, matrix deformation and fracture in graphite-reinforced epoxies, and the role of delamination and damage development on the strength of thick notched laminates. In addition, consideration is given to a new ply model for interlaminar stress analysis, a fracture mechanics approach for designing adhesively bonded joints, the analysis of local delaminations and their influence on composite laminate behavior, and moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy.
A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion
Charles, James P.; Cappellari, Ornella; Hutchinson, John R.
2018-01-01
Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU) mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations. PMID:29868576
2017-03-23
Dynamical Astronomy , vol. 90, no. January 2004, pp. 165–178, 2004. [Online]. Available: https://www.researchgate.net/publication/ 225231299 On The...Celestial Mechanics and Dynamical Astronomy , vol. 32, no. 1, pp. 53–71, 1984. [Online]. Available: https://engineering.purdue.edu/people/kathleen.howell
Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point
ERIC Educational Resources Information Center
Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf
2011-01-01
An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…
CSM solutions of rotating blade dynamics using integrating matrices
NASA Technical Reports Server (NTRS)
Lakin, William D.
1992-01-01
The dynamic behavior of flexible rotating beams continues to receive considerable research attention as it constitutes a fundamental problem in applied mechanics. Further, beams comprise parts of many rotating structures of engineering significance. A topic of particular interest at the present time involves the development of techniques for obtaining the behavior in both space and time of a rotor acted upon by a simple airload loading. Most current work on problems of this type use solution techniques based on normal modes. It is certainly true that normal modes cannot be disregarded, as knowledge of natural blade frequencies is always important. However, the present work has considered a computational structural mechanics (CSM) approach to rotor blade dynamics problems in which the physical properties of the rotor blade provide input for a direct numerical solution of the relevant boundary-and-initial-value problem. Analysis of the dynamics of a given rotor system may require solution of the governing equations over a long time interval corresponding to many revolutions of the loaded flexible blade. For this reason, most of the common techniques in computational mechanics, which treat the space-time behavior concurrently, cannot be applied to the rotor dynamics problem without a large expenditure of computational resources. By contrast, the integrating matrix technique of computational mechanics has the ability to consistently incorporate boundary conditions and 'remove' dependence on a space variable. For problems involving both space and time, this feature of the integrating matrix approach thus can generate a 'splitting' which forms the basis of an efficient CSM method for numerical solution of rotor dynamics problems.
Interactive visualization of vegetation dynamics
Reed, B.C.; Swets, D.; Bard, L.; Brown, J.; Rowland, James
2001-01-01
Satellite imagery provides a mechanism for observing seasonal dynamics of the landscape that have implications for near real-time monitoring of agriculture, forest, and range resources. This study illustrates a technique for visualizing timely information on key events during the growing season (e.g., onset, peak, duration, and end of growing season), as well as the status of the current growing season with respect to the recent historical average. Using time-series analysis of normalized difference vegetation index (NDVI) data from the advanced very high resolution radiometer (AVHRR) satellite sensor, seasonal dynamics can be derived. We have developed a set of Java-based visualization and analysis tools to make comparisons between the seasonal dynamics of the current year with those from the past twelve years. In addition, the visualization tools allow the user to query underlying databases such as land cover or administrative boundaries to analyze the seasonal dynamics of areas of their own interest. The Java-based tools (data exploration and visualization analysis or DEVA) use a Web-based client-server model for processing the data. The resulting visualization and analysis, available via the Internet, is of value to those responsible for land management decisions, resource allocation, and at-risk population targeting.
NASA Astrophysics Data System (ADS)
Zhu, Yueying; Alexandre Wang, Qiuping; Li, Wei; Cai, Xu
2017-09-01
The formation of continuous opinion dynamics is investigated based on a virtual gambling mechanism where agents fight for a limited resource. We propose a model with agents holding opinions between -1 and 1. Agents are segregated into two cliques according to the sign of their opinions. Local communication happens only when the opinion distance between corresponding agents is no larger than a pre-defined confidence threshold. Theoretical analysis regarding special cases provides a deep understanding of the roles of both the resource allocation parameter and confidence threshold in the formation of opinion dynamics. For a sparse network, the evolution of opinion dynamics is negligible in the region of low confidence threshold when the mindless agents are absent. Numerical results also imply that, in the presence of economic agents, high confidence threshold is required for apparent clustering of agents in opinion. Moreover, a consensus state is generated only when the following three conditions are satisfied simultaneously: mindless agents are absent, the resource is concentrated in one clique, and confidence threshold tends to a critical value(=1.25+2/ka ; k_a>8/3 , the average number of friends of individual agents). For fixed a confidence threshold and resource allocation parameter, the most chaotic steady state of the dynamics happens when the fraction of mindless agents is about 0.7. It is also demonstrated that economic agents are more likely to win at gambling, compared to mindless ones. Finally, the importance of three involved parameters in establishing the uncertainty of model response is quantified in terms of Latin hypercube sampling-based sensitivity analysis.
On the relationship between the dynamic behavior and nanoscale staggered structure of the bone
NASA Astrophysics Data System (ADS)
Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei
2015-05-01
Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.
Quantitative theory of driven nonlinear brain dynamics.
Roberts, J A; Robinson, P A
2012-09-01
Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.
Yang, Li-Quan; Sang, Peng; Tao, Yan; Fu, Yun-Xin; Zhang, Ke-Qin; Xie, Yue-Hui; Liu, Shu-Qun
2013-01-01
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein's dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth. PMID:23527883
Yang, Li-Quan; Sang, Peng; Tao, Yan; Fu, Yun-Xin; Zhang, Ke-Qin; Xie, Yue-Hui; Liu, Shu-Qun
2014-01-01
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure-function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca(2+) removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca(2+) removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein-ligand binding, including the concept of the free energy landscape (FEL) of the protein-solvent system, how the ruggedness and variability of FEL determine protein's dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.
Internal Fluid Dynamics and Frequency Scaling of Sweeping Jet Fluidic Oscillators
NASA Astrophysics Data System (ADS)
Seo, Jung Hee; Salazar, Erik; Mittal, Rajat
2017-11-01
Sweeping jet fluidic oscillators (SJFOs) are devices that produce a spatially oscillating jet solely based on intrinsic flow instability mechanisms without any moving parts. Recently, SJFOs have emerged as effective actuators for flow control, but the internal fluid dynamics of the device that drives the oscillatory flow mechanism is not yet fully understood. In the current study, the internal fluid dynamics of the fluidic oscillator with feedback channels has been investigated by employing incompressible flow simulations. The study is focused on the oscillation mechanisms and scaling laws that underpin the jet oscillation. Based on the simulation results, simple phenomenological models that connect the jet deflection to the feedback flow are developed. Several geometric modifications are considered in order to explore the characteristic length scales and phase relationships associated with the jet oscillation and to assess the proposed phenomenological model. A scaling law for the jet oscillation frequency is proposed based on the detailed analysis. This research is supported by AFOSR Grant FA9550-14-1-0289 monitored by Dr. Douglas Smith.
NASA Astrophysics Data System (ADS)
Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing; Walker, Paul D.
2017-02-01
This paper proposes an uncertain modelling and computational method to analyze dynamic responses of rigid-flexible multibody systems (or mechanisms) with random geometry and material properties. Firstly, the deterministic model for the rigid-flexible multibody system is built with the absolute node coordinate formula (ANCF), in which the flexible parts are modeled by using ANCF elements, while the rigid parts are described by ANCF reference nodes (ANCF-RNs). Secondly, uncertainty for the geometry of rigid parts is expressed as uniform random variables, while the uncertainty for the material properties of flexible parts is modeled as a continuous random field, which is further discretized to Gaussian random variables using a series expansion method. Finally, a non-intrusive numerical method is developed to solve the dynamic equations of systems involving both types of random variables, which systematically integrates the deterministic generalized-α solver with Latin Hypercube sampling (LHS) and Polynomial Chaos (PC) expansion. The benchmark slider-crank mechanism is used as a numerical example to demonstrate the characteristics of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
2017-10-31
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Evaluation and Analysis of F-16XL Wind Tunnel Data From Static and Dynamic Tests
NASA Technical Reports Server (NTRS)
Kim, Sungwan; Murphy, Patrick C.; Klein, Vladislav
2004-01-01
A series of wind tunnel tests were conducted in the NASA Langley Research Center as part of an ongoing effort to develop and test mathematical models for aircraft rigid-body aerodynamics in nonlinear unsteady flight regimes. Analysis of measurement accuracy, especially for nonlinear dynamic systems that may exhibit complicated behaviors, is an essential component of this ongoing effort. In this report, tools for harmonic analysis of dynamic data and assessing measurement accuracy are presented. A linear aerodynamic model is assumed that is appropriate for conventional forced-oscillation experiments, although more general models can be used with these tools. Application of the tools to experimental data is demonstrated and results indicate the levels of uncertainty in output measurements that can arise from experimental setup, calibration procedures, mechanical limitations, and input errors.
Overview of the DAEDALOS project
NASA Astrophysics Data System (ADS)
Bisagni, Chiara
2015-10-01
The "Dynamics in Aircraft Engineering Design and Analysis for Light Optimized Structures" (DAEDALOS) project aimed to develop methods and procedures to determine dynamic loads by considering the effects of dynamic buckling, material damping and mechanical hysteresis during aircraft service. Advanced analysis and design principles were assessed with the scope of partly removing the uncertainty and the conservatism of today's design and certification procedures. To reach these objectives a DAEDALOS aircraft model representing a mid-size business jet was developed. Analysis and in-depth investigation of the dynamic response were carried out on full finite element models and on hybrid models. Material damping was experimentally evaluated, and different methods for damping evaluation were developed, implemented in finite element codes and experimentally validated. They include a strain energy method, a quasi-linear viscoelastic material model, and a generalized Maxwell viscous material damping. Panels and shells representative of typical components of the DAEDALOS aircraft model were experimentally tested subjected to static as well as dynamic loads. Composite and metallic components of the aircraft model were investigated to evaluate the benefit in terms of weight saving.
Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load
NASA Astrophysics Data System (ADS)
Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.
2017-10-01
The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.
Dynamic photoelasticity by TDI imaging
NASA Astrophysics Data System (ADS)
Asundi, Anand K.; Sajan, M. R.
2001-06-01
High speed photographic system like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for the recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording system requiring time consuming and tedious wet processing of the films. Digital cameras are replacing the conventional cameras, to certain extent in static experiments. Recently, there is lots of interest in development and modifying CCD architectures and recording arrangements for dynamic scenes analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration mode for digitally recording dynamic photoelastic stress patterns. Applications in strobe and streak photoelastic pattern recording and system limitations will be explained in the paper.
Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading
NASA Astrophysics Data System (ADS)
Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva
2012-02-01
This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R2 = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.
Dynamics of Sleep Stage Transitions in Health and Disease
NASA Astrophysics Data System (ADS)
Kishi, Akifumi; Struzik, Zbigniew R.; Natelson, Benjamin H.; Togo, Fumiharu; Yamamoto, Yoshiharu
2007-07-01
Sleep dynamics emerges from complex interactions between neuronal populations in many brain regions. Annotated sleep stages from electroencephalography (EEG) recordings could potentially provide a non-invasive way to obtain valuable insights into the mechanisms of these interactions, and ultimately into the very nature of sleep regulation. However, to date, sleep stage analysis has been restricted, only very recently expanding the scope of the traditional descriptive statistics to more dynamical concepts of the duration of and transitions between vigilance states and temporal evaluation of transition probabilities among different stages. Physiological and/or pathological implications of the dynamics of sleep stage transitions have, to date, not been investigated. Here, we study detailed duration and transition statistics among sleep stages in healthy humans and patients with chronic fatigue syndrome, known to be associated with disturbed sleep. We find that the durations of waking and non-REM sleep, in particular deep sleep (Stages III and IV), during the nighttime, follow a power-law probability distribution function, while REM sleep durations follow an exponential function, suggestive of complex underlying mechanisms governing the onset of light sleep. We also find a substantial number of REM to non-REM transitions in humans, while this transition is reported to be virtually non-existent in rats. Interestingly, the probability of this REM to non-REM transition is significantly lower in the patients than in controls, resulting in a significantly greater REM to awake, together with Stage I to awake, transition probability. This might potentially account for the reported poor sleep quality in the patients because the normal continuation of sleep after either the lightest or REM sleep is disrupted. We conclude that the dynamical transition analysis of sleep stages is useful for elucidating yet-to-be-determined human sleep regulation mechanisms with a pathophysiological implication.
Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading.
Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva
2012-02-01
This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R(2) = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.
Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD.
Chauve, T; Montagnat, M; Barou, F; Hidas, K; Tommasi, A; Mainprice, D
2017-02-13
Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=-5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the 'parent' ones suggests the possibility of 'spontaneous' nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).
Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD
Barou, F.; Hidas, K.; Tommasi, A.; Mainprice, D.
2017-01-01
Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=−5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the ‘parent’ ones suggests the possibility of ‘spontaneous’ nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025294
Jiang, Xukai; Li, Wen; Chen, Guanjun; Wang, Lushan
2017-02-27
The temperature dependence of enzyme catalysis is highly debated. Specifically, how high temperatures induce enzyme inactivation has broad implications for both fundamental and applied science. Here, we explored the mechanism of the reversible thermal inactivation in glycoside hydrolase family 12 (GH12) using comparative molecular dynamics simulations. First, we investigated the distribution of structural flexibility over the enzyme and found that the active site was the general thermal-sensitive region in GH12 cellulases. The dynamic perturbation of the active site before enzyme denaturation was explored through principal-component analysis, which indicated that variations in the collective motion and conformational ensemble of the active site may precisely correspond to enzyme transition from its active form to the inactive form. Furthermore, the degree of dynamic perturbation of the active site was found to be negatively correlated with the melting temperatures of GH12 enzymes, further proving the importance of the dynamic stability of the active site. Additionally, analysis of the residue-interaction network revealed that the active site in thermophilic enzyme was capable of forming additional contacts with other amino acids than those observed in the mesophilic enzyme. These interactions are likely the key mechanisms underlying the differences in rigidity of the active site. These findings provide further biophysical insights into the reversible thermal inactivation of enzymes and potential applications in future protein engineering.
Stetz, Gabrielle; Verkhivker, Gennady M
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.
Stetz, Gabrielle; Verkhivker, Gennady M.
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones. PMID:26619280
NASA Technical Reports Server (NTRS)
Harik, Vasyl Michael; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Ranges of validity for the continuum-beam model, the length-scale effects and continuum assumptions are analyzed in the framework of scaling analysis of NT structure. Two coupled criteria for the applicability of the continuum model are presented. Scaling analysis of NT buckling and geometric parameters (e.g., diameter and length) is carried out to determine the key non-dimensional parameters that control the buckling strains and modes of NT buckling. A model applicability map, which represents two classes of NTs, is constructed in the space of non-dimensional parameters. In an analogy with continuum mechanics, a mechanical law of geometric similitude is presented for two classes of beam-like NTs having different geometries. Expressions for the critical buckling loads and strains are tailored for the distinct groups of NTs and compared with the data provided by the molecular dynamics simulations. Implications for molecular dynamics simulations and the NT-based scanning probes are discussed.
Brown, Bryan L; Downing, Amy L; Leibold, Mathew A
2016-08-01
Compensatory dynamics are an important suite of mechanisms that can stabilize community and ecosystem attributes in systems subject to environmental fluctuations. However, few experimental investigations of compensatory dynamics have addressed these mechanisms in systems of real-world complexity, and existing evidence relies heavily on correlative analyses, retrospective examination, and experiments in simple systems. We investigated the potential for compensatory dynamics to stabilize plankton communities in plankton mesocosm systems of real-world complexity. We employed four types of perturbations including two types of nutrient pulses, shading, and acidification. To quantify how communities responded to these perturbations, we used a measure of community-wide synchrony combined with spectral analysis that allowed us to assess timescale-specific community dynamics, for example, whether dynamics were synchronous at some timescales but compensatory at others. The 150-d experiment produced 32-point time series of all zooplankton taxa in the mesocosms. We then used those time series to evaluate total zooplankton biomass as an aggregate property and to evaluate community dynamics. For three of our four perturbation types, total zooplankton biomass was significantly less variable in systems with environmental variation than in constant environments. For the same three perturbation types, community-wide synchrony was much lower in fluctuating environments than in the constant environment, particularly at longer timescales (periods ≈ 60 d). Additionally, there were strong negative correlations between population temporal variances and the level of community-wide synchrony. Taken together, these results strongly imply that compensatory interactions between species stabilized total biomass in response to perturbations. Diversity did not differ significantly across either treatments or perturbation types, thus ruling out several classes of mechanisms driven by changes in diversity. We also used several pieces of secondary evidence to evaluate the particular mechanism behind compensatory responses since a wide variety of mechanisms are hypothesized to produce compensatory dynamics. We concluded that fluctuation dependent endogenous cycles that occur as a consequence of consumer-resource interactions in competitive communities were the most likely explanation for the compensatory dynamics observed in our experiment. As with our previous work, scale-dependent dynamics were also a key to understanding compensatory dynamics in these experimental communities. © 2016 by the Ecological Society of America.
Analysis of coherent dynamical processes through computer vision
NASA Astrophysics Data System (ADS)
Hack, M. J. Philipp
2016-11-01
Visualizations of turbulent boundary layers show an abundance of characteristic arc-shaped structures whose apparent similarity suggests a common origin in a coherent dynamical process. While the structures have been likened to the hairpin vortices observed in the late stages of transitional flow, a consistent description of the underlying mechanism has remained elusive. Detailed studies are complicated by the chaotic nature of turbulence which modulates each manifestation of the process and which renders the isolation of individual structures a challenging task. The present study applies methods from the field of computer vision to capture the time evolution of turbulent flow features and explore the associated physical mechanisms. The algorithm uses morphological operations to condense the structure of the turbulent flow field into a graph described by nodes and links. The low-dimensional geometric information is stored in a database and allows the identification and analysis of equivalent dynamical processes across multiple scales. The framework is not limited to turbulent boundary layers and can also be applied to different types of flows as well as problems from other fields of science.
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations
Yoo, Jejoong; Aksimentiev, Aleksei
2013-01-01
The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.
Yoo, Jejoong; Aksimentiev, Aleksei
2013-12-10
The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.
CL-20/DNB co-crystal based PBX with PEG: molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Zhang, Jiang; Gao, Pei; Xiao, Ji Jun; Zhao, Feng; Xiao, He Ming
2016-12-01
Molecular dynamics simulation was carried out for CL-20/DNB co-crystal based PBX (polymer-bonded explosive) blended with polymer PEG (polyethylene glycol). In this paper, the miscibility of the PBX models is investigated through the calculated binding energy. Pair correlation function (PCF) analysis is applied to study the interaction of the interface structures in the PBX models. The mechanical properties of PBXs are also discussed to understand the change of the mechanical properties after adding the polymer. Moreover, the calculated diffusion coefficients of the interfacial explosive molecules are used to discuss the dispersal ability of CL-20 and DNB molecules in the interface layer.
Morphology and viscoelastic properties of sealing materials based on EPDM rubber.
Milić, J; Aroguz, A; Budinski-Simendić, J; Radicević, R; Prendzov, S
2008-12-01
In this applicative study, the ratio of active and inactive filler loadings was the prime factor for determining the dynamic-mechanical behaviour of ethylene-propylene-diene monomer rubbers. Scanning electron microscopy was used to study the structure of reinforced dense and microcellular elastomeric materials. The effects of filler and blowing agent content on the morphology of composites were investigated. Microcellular samples cured in salt bath show smaller cells and uniform cell size compared with samples cured in hot air. Dynamic-mechanical thermal analysis showed appreciable changes in the viscoelastic properties by increasing active filler content, which could enable tailoring the material properties to suit sealing applications.
Nonplanar KdV and KP equations for quantum electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Dutta, Debjit
2015-12-01
Nonlinear quantum ion-acoustic waves with the effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the standard reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation for ion-acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave are studied analytically. It is found that the dynamics of ion-acoustic solitary waves (IASWs) is governed by a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE). The results could help in a theoretical analysis of astrophysical and laser produced plasmas.
KvN mechanics approach to the time-dependent frequency harmonic oscillator.
Ramos-Prieto, Irán; Urzúa-Pineda, Alejandro R; Soto-Eguibar, Francisco; Moya-Cessa, Héctor M
2018-05-30
Using the Ermakov-Lewis invariants appearing in KvN mechanics, the time-dependent frequency harmonic oscillator is studied. The analysis builds upon the operational dynamical model, from which it is possible to infer quantum or classical dynamics; thus, the mathematical structure governing the evolution will be the same in both cases. The Liouville operator associated with the time-dependent frequency harmonic oscillator can be transformed using an Ermakov-Lewis invariant, which is also time dependent and commutes with itself at any time. Finally, because the solution of the Ermakov equation is involved in the evolution of the classical state vector, we explore some analytical and numerical solutions.
Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette
2015-04-01
The effects of polymerization kinetics and chemical miscibility on the crosslinking structure and mechanical properties of polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid photopolymerization are determined. A three-component initiator system is used and the monomer system contains methacrylates and epoxides. The photopolymerization kinetics is monitored in situ by Fourier transform infrared-attenuated total reflectance. The crosslinking structure is studied by modulated differential scanning calorimetry and dynamic mechanical analysis. X-ray microcomputed tomography is used to evaluate microphase separation. The mechanical properties of polymers formed by hybrid formed by free-radical polymerization. These investigations mark the first time that the benefits of the chain transfer reaction between epoxy and hydroxyl groups of methacrylate, on the crosslinking network and microphase separation during hybrid visible-light initiated photopolymerization, have been determined.
Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics.
Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin
2010-03-02
Molecular dynamics simulations are used to investigate the mechanisms of molecular transference, pattern formation, and mechanical behavior in the dip-pen nanolithography (DPN) process. The effects of deposition temperature were studied using molecular trajectories, the meniscus characteristic, surface absorbed energy, and pattern formation analysis. At the first transferred stage (at the initial indentation depth), the conformation of SAM molecules lies almost on the substrate surface. The molecules start to stand on the substrate due to the pull and drag forces at the second transferred stage (after the tip is pulled up). According to the absorbed energy behavior, the second transferred stage has larger transferred amounts and the transfer rate is strongly related to temperature. When molecules were deposited at low temperature (e.g., room temperature), the pattern shape was more highly concentrated. The pattern shape at high temperatures expanded and the area increased because of good molecular diffusion.
Re-designing a mechanism for higher speed: A case history from textile machinery
NASA Astrophysics Data System (ADS)
Douglas, S. S.; Rooney, G. T.
The generation of general mechanism design software which is the formulation of suitable objective functions is discussed. There is a consistent drive towards higher speeds in the development of industrial sewing machines. This led to experimental analyses of dynamic performance and to a search for improved design methods. The experimental work highlighted the need for smoothness of motion at high speed, component inertias, and frame structural stiffness. Smoothness is associated with transmission properties and harmonic analysis. These are added to other design requirements of synchronization, mechanism size, and function. Some of the mechanism trains in overedte sewing machines are shown. All these trains are designed by digital optimization. The design software combines analysis of the sewing machine mechanisms, formulation of objectives innumerical terms, and suitable mathematical optimization ttechniques.
Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers.
Trovatti, Eliane; Carvalho, Antonio J F; Ribeiro, Sidney J L; Gandini, Alessandro
2013-08-12
Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings.
Casting Control of Floating-films into Ribbon-shape Structure by modified Dynamic FTM
NASA Astrophysics Data System (ADS)
Tripathi, A.; Pandey, M.; Nagamatsu, S.; Pandey, S. S.; Hayase, S.; Takashima, W.
2017-11-01
We have developed a new method to obtain Ribbon-shaped floating films via dynamic casting of floating-film and transfer method (dynamic-FTM). Dynamic-FTM is a unique method to prepare oriented thin-film of conjugated polymers (CPs) which is quick and easy. This method has several advantages as compared to the other conventional casting procedure to prepare oriented CP films. In the conventional dynamic FTM appearance of large scale circular orientation poses difficulty not only for practical applications but also hinders the detailed analysis of the orientation mechanism. In this present work, pros and cons of this newly proposed ribbon-shaped floating-film have been discussed in detail from those of the conventional floating-film prepared by dynamic-FTM.
Transient/structural analysis of a combustor under explosive loads
NASA Technical Reports Server (NTRS)
Gregory, Peyton B.; Holland, Anne D.
1992-01-01
The 8-Foot High Temperature Tunnel (HTT) at NASA Langley Research Center is a combustion-driven blow-down wind tunnel. A major potential failure mode that was considered during the combustor redesign was the possibility of a deflagration and/or detonation in the combustor. If a main burner flame-out were to occur, then unburned fuel gases could accumulate and, if reignited, an explosion could occur. An analysis has been performed to determine the safe operating limits of the combustor under transient explosive loads. The failure criteria was defined and the failure mechanisms were determined for both peak pressures and differential pressure loadings. An overview of the gas dynamics analysis was given. A finite element model was constructed to evaluate 13 transient load cases. The sensitivity of the structure to the frequency content of the transient loading was assessed. In addition, two closed form dynamic analyses were conducted to verify the finite element analysis. It was determined that the differential pressure load or thrust load was the critical load mechanism and that the nozzle is the weak link in the combustor system.
A statistical mechanics approach to autopoietic immune networks
NASA Astrophysics Data System (ADS)
Barra, Adriano; Agliari, Elena
2010-07-01
In this work we aim to bridge theoretical immunology and disordered statistical mechanics. We introduce a model for the behavior of B-cells which naturally merges the clonal selection theory and the autopoietic network theory as a whole. From the analysis of its features we recover several basic phenomena such as low-dose tolerance, dynamical memory of antigens and self/non-self discrimination.
Live dynamic analysis of mouse embryonic cardiogenesis with functional optical coherence tomography
NASA Astrophysics Data System (ADS)
Lopez, Andrew L.; Wang, Shang; Larina, Irina V.
2018-02-01
Hemodynamic load, contractile forces, and tissue elasticity are regulators of cardiac development and contribute to the mechanical homeostasis of the developing vertebrate heart. Congenital heart disease (CHD) is a prevalent condition in the United States that affects 8 in 1000 live births[1], and has been linked to disrupted cardiac biomechanics[2-4]. Therefore, it is important to understand how these forces integrate and regulate vertebrate cardiac development to inform clinical strategies to treat CHD early on by reintroducing proper mechanical load or modulating downstream factors that rely on mechanical signalling. Toward investigation of biomechanical regulation of mammalian cardiovascular dynamics and development, our methodology combines live mouse embryo culture protocols, state-of-the-art structural and functional Optical Coherence Tomography (OCT), second harmonic generation (SHG) microscopy, and computational analysis. Using these approaches, we assess functional aspects of the developing heart and characterize how they coincide with a determinant of tissue stiffness and main constituent of the extracellular matrix (ECM)—type I collagen. This work is bringing us closer to understanding how cardiac biomechanics change temporally and spatially during normal development, and how it regulates ECM to maintain mechanical homeostasis for proper function.
Pattern dynamics of the reaction-diffusion immune system.
Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie
2018-01-01
In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.
Dynamical ocean-atmospheric drivers of floods and droughts
NASA Astrophysics Data System (ADS)
Perdigão, Rui A. P.; Hall, Julia
2014-05-01
The present study contributes to a better depiction and understanding of the "facial expression" of the Earth in terms of dynamical ocean-atmospheric processes associated to both floods and droughts. For this purpose, the study focuses on nonlinear dynamical and statistical analysis of ocean-atmospheric mechanisms contributing to hydrological extremes, broadening the analytical hydro-meteorological perspective of floods and hydrological droughts to driving mechanisms and feedbacks at the global scale. In doing so, the analysis of the climate-related causality of hydrological extremes is not limited to the synoptic situation in the region where the events take place. Rather, it goes further in the train of causality, peering into dynamical interactions between planetary-scale ocean and atmospheric processes that drive weather regimes and influence the antecedent and event conditions associated to hydrological extremes. In order to illustrate the approach, dynamical ocean-atmospheric drivers are investigated for a selection of floods and droughts. Despite occurring in different regions with different timings, common underlying mechanisms are identified for both kinds of hydrological extremes. For instance, several analysed events are seen to have resulted from a large-scale atmospheric situation consisting on standing planetary waves encircling the northern hemisphere. These correspond to wider vortices locked in phase, resulting in wider and more persistent synoptic weather patterns, i.e. with larger spatial and temporal coherence. A standing train of anticyclones and depressions thus encircled the mid and upper latitudes of the northern hemisphere. The stationary regime of planetary waves occurs when the mean eastward zonal flow decreases up to a point in which it no longer exceeds the westward phase propagation of the Rossby waves produced by the latitude-varying Coriolis effect. The ocean-atmospheric causes for this behaviour and consequences on hydrological extremes are investigated and the findings supported with spatiotemporal geostatistical analysis and nonlinear geophysical models. Overall, the study provides a three-fold contribution to the research on hydrological extremes: Firstly, it improves their physical attribution by better understanding the dynamical reasons behind the meteorological drivers. Secondly, it brings out fundamental early warning signs for potential hydrological extremes, by bringing out global ocean-atmospheric features that manifest themselves much earlier than the regional weather patterns. Thirdly, it provides tools for addressing and understanding hydrological regime changes at wider spatiotemporal scales, by providing links to planetary-scale dynamical processes that play a crucial role in multi-decadal global climate variability.
An adaptive molecular timer in p53-meidated cell fate decision
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Peng; Wang, Ping; Liu, Feng; Wang, Wei
The tumor suppressor p53 decides cellular outcomes in the DNA damage response. It is intriguing to explore the link between p53 dynamics and cell fates. We developed a theoretical model of p53 signaling network to clarify the mechanism of cell fate decision mediated by its dynamics. We found that the interplay between p53-Mdm2 negative feedback loop and p53-PTEN-Mdm2 positive feedback loop shapes p53 dynamics. Depending on the intensity of DNA damage, p53 shows three modes of dynamics: persistent pulses, two-phase dynamics with pulses followed by sustained high levels and straightforward high levels. Especially, p53 shows two-phase dynamics upon moderated damage and the required number of p53 pulses before apoptosis induction decreases with increasing DNA damage. Our results suggested there exists an adaptive molecular timer that determines whether and when the apoptosis switch should be triggered. We clarified the mechanism behind the switching of p53 dynamical modes by bifurcation analysis. Moreover, we reproduced the experimental results that drug additions alter p53 pulses to sustained p53 activation and leads to senescence. Our work may advance the understanding the significance of p53 dynamics in tumor suppression. This work was supported by National Natural Science Foundation of China (Nos. 11175084, 11204126 and 31361163003).
Computational Methods for Structural Mechanics and Dynamics, part 1
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
The structural analysis methods research has several goals. One goal is to develop analysis methods that are general. This goal of generality leads naturally to finite-element methods, but the research will also include other structural analysis methods. Another goal is that the methods be amenable to error analysis; that is, given a physical problem and a mathematical model of that problem, an analyst would like to know the probable error in predicting a given response quantity. The ultimate objective is to specify the error tolerances and to use automated logic to adjust the mathematical model or solution strategy to obtain that accuracy. A third goal is to develop structural analysis methods that can exploit parallel processing computers. The structural analysis methods research will focus initially on three types of problems: local/global nonlinear stress analysis, nonlinear transient dynamics, and tire modeling.
Glyakina, Anna V; Likhachev, Ilya V; Balabaev, Nikolay K; Galzitskaya, Oxana V
2015-03-01
This article is the first to study the mechanical properties of the immunoglobulin-binding domain of protein L (referred to as protein L) and its mutants at the atomic level. In the structure of protein L, each amino acid residue (except for alanines and glycines) was replaced sequentially by alanine. Thus, 49 mutants of protein L were obtained. The proteins were stretched at their termini at constant velocity using molecular dynamics simulations in water, i.e. by forced unfolding. 19 out of 49 mutations resulted in a large decrease of mechanical protein stability. These amino acids were affecting either the secondary structure (11 mutations) or loop structures (8 mutations) of protein L. Analysis of mechanical unfolding of the generated protein that has the same topology as protein L but consists of only alanines and glycines allows us to suggest that the mechanical stability of proteins, and specifically protein L, is determined by interactions between certain amino acid residues, although the unfolding pathway depends on the protein topology. This insight can now be used to modulate the mechanical properties of proteins and their unfolding pathways in the desired direction for using them in various biochips, biosensors and biomaterials for medicine, industry, and household purposes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite
NASA Technical Reports Server (NTRS)
Gullahorn, G. E.
1985-01-01
Work performed as part of an investigation of noise affecting instrumentation in a tethered subsatellite, was studied. The following specific topics were addressed during the reporting period: a method for stabilizing the subsatellite against the rotational effects of atmospheric perturbation was developed; a variety of analytic studies of tether dynamics aimed at elucidating dynamic noise processes were performed; a novel mechanism for coupling longitudinal and latitudinal oscillations of the tether was discovered, and random vibration analysis for modeling the tethered subsatellite under atmospheric perturbation were studied.
Substructured multibody molecular dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James
2006-11-01
We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.
Assessment of bruising in fruits using dynamic speckle
NASA Astrophysics Data System (ADS)
Pajuelo, Myriam; Baldwin-Olguin, Guillermo; Rabal, Hector J.; Arizaga, Ricardo A.; Trivi, Marcelo
2001-08-01
When a rough surface changes, its optical properties change also and the scattered light shows intensity fluctuations named dynamic speckle. Fruits, even hard peel ones, shows a speckle activity that can be related to maturity, turgor, damage, aging, and mechanical properties. Many techniques have been sued to study these properties, most of them destructive ones. We present an application of dynamical speckle to the study of impact on apples and the analysis of bruises produced by them. The aim is to correlate physical properties of apples with quality factors.
Fluid Dynamic Analysis of Volcanic Tremor,
1982-10-01
information regarding the fluid system Fiske (1969) Kilauea volcano : The 1967-68 summit configuration, tremor magnitudes and source loca- eruption...Koyanagi (1981) Deep volcanic tremor logicalSociety of America, vol. 40, p. 175-194. and magma ascent mechanism under Kilauea , Hawaii . Omori, F...dynamics Seismology Tremors Volcanoes 40 M\\ TlACT (amhue ai revers if5 neeeeiy md ide~Wify by block number) Low-frequency (< 10 Hz) volcanic earthquakes
Chemisorption and Diffusion of H on a Graphene Sheet and Single-Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Dzegilenko, Fedor; Menon, Madhu
2000-01-01
Recent experiments on hydrogen storage in single wall nanotubes and nanotube bundles have reported large fractional weight of stored molecular hydrogen which are not in agreement with theoretical estimates based of simulation of hydrogen storage by physisorption mechanisms. Hydrogen storage in catalytically doped nanotube bundles indicate that atomic H might undergo chemisorption changing the basic nature of the storage mechanism under investigation by many groups. Using a generalized tight-binding molecular dynamics (GTBMD) method for reactive C-H dynamics, we investigate chemisorption and diffusion of atomic H on graphene sheet and C nanotubes. Effective potential energy surfaces (EPS) for chemisorption and diffusion are calculated for graphene sheet and nanotubes of different curvatures. Analysis of the activation barriers and quantum rate constants, computed via wave-packet dynamics method, will be discussed in this presentation.
Behavior dynamics: One perspective
Marr, M. Jackson
1992-01-01
Behavior dynamics is a field devoted to analytic descriptions of behavior change. A principal source of both models and methods for these descriptions is found in physics. This approach is an extension of a long conceptual association between behavior analysis and physics. A theme common to both is the role of molar versus molecular events in description and prediction. Similarities and differences in how these events are treated are discussed. Two examples are presented that illustrate possible correspondence between mechanical and behavioral systems. The first demonstrates the use of a mechanical model to describe the molar properties of behavior under changing reinforcement conditions. The second, dealing with some features of concurrent schedules, focuses on the possible utility of nonlinear dynamical systems to the description of both molar and molecular behavioral events as the outcome of a deterministic, but chaotic, process. PMID:16812655
Zhang, Yubo
2015-12-01
N-linked glycosylation of Fc at N297 plays an important role in its effector function, aberrance of which would cause disease pathogenesis. Here, we performed all-atom molecular dynamics simulations to explore the effects of Fc glycosylation on its dynamics behaviors. Firstly, equilibrium simulations suggested that Fc deglycosylation was able to induce residual flexibility in its CH2 domain. Besides, the free energy landscape revealed three minimum energy wells in deglycosylated Fc, representing its "open", "semi-closed" and "closed" states. However, we could only observe the "open" state of glycosylated Fc. Supportively, principal component analysis emphasized the prominent motion of delyclosylated Fc and dynamically depicted how it changed from the "open" state to its "closed" state. Secondly, we studied the recognition mechanism of the Fc binding to its partners. Energy decomposition analysis identified key residues of Fc to recognize its two partners P13 and P34. Evidently, electrostatic potential surfaces showed that electrostatic attraction helped to stabilize the interaction between Fc and its partners. Also, relative binding free energies explained different binding affinities in Fc-P13 and Fc-P34. Collectively, these results together provided the structural basis for understanding conformational changes of deglycosylated Fc and the recognition mechanism of the Fc binding to its partners.
Revealing time bunching effect in single-molecule enzyme conformational dynamics.
Lu, H Peter
2011-04-21
In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a cross correlation analysis can be applied for each specific segment to obtain a detailed fluctuation dynamics analysis.
Dixit, Anshuman; Verkhivker, Gennady M.
2012-01-01
Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based “conformational selection” of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be a rather general functional requirement encoded across molecular chaperones. The obtained insights may be useful in guiding discovery of allosteric Hsp90 inhibitors targeting protein interfaces with co-chaperones and protein binding clients. PMID:22624053
NASA Astrophysics Data System (ADS)
Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor
2015-02-01
The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.
NASA Astrophysics Data System (ADS)
Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team
As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.
Dynamic properties of ceramic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, D.E.
1995-02-01
The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis ofmore » shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.« less
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
Li, Yuzhan; Pruitt, Cole; Rios, Orlando; ...
2015-04-10
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuzhan; Pruitt, Cole; Rios, Orlando
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Multi-scale modeling of irradiation effects in spallation neutron source materials
NASA Astrophysics Data System (ADS)
Yoshiie, T.; Ito, T.; Iwase, H.; Kaneko, Y.; Kawai, M.; Kishida, I.; Kunieda, S.; Sato, K.; Shimakawa, S.; Shimizu, F.; Hashimoto, S.; Hashimoto, N.; Fukahori, T.; Watanabe, Y.; Xu, Q.; Ishino, S.
2011-07-01
Changes in mechanical property of Ni under irradiation by 3 GeV protons were estimated by multi-scale modeling. The code consisted of four parts. The first part was based on the Particle and Heavy-Ion Transport code System (PHITS) code for nuclear reactions, and modeled the interactions between high energy protons and nuclei in the target. The second part covered atomic collisions by particles without nuclear reactions. Because the energy of the particles was high, subcascade analysis was employed. The direct formation of clusters and the number of mobile defects were estimated using molecular dynamics (MD) and kinetic Monte-Carlo (kMC) methods in each subcascade. The third part considered damage structural evolutions estimated by reaction kinetic analysis. The fourth part involved the estimation of mechanical property change using three-dimensional discrete dislocation dynamics (DDD). Using the above four part code, stress-strain curves for high energy proton irradiated Ni were obtained.
EBSD characterization of low temperature deformation mechanisms in modern alloys
NASA Astrophysics Data System (ADS)
Kozmel, Thomas S., II
For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermos-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel, 4140 steel, and Ti-6Al-4V. In both 9310 and 4140 steel, the distribution of carbides throughout the microstructure affected the ability of the material to dynamically recrystallize and determined the size of the dynamically recrystallized grains. Processing the materials at lower temperatures and higher strain rates resulted in finer dynamically recrystallized grains. Microstructural process models that can be used to estimate the resulting microstructure based on the processing parameters were developed for both 9310 and 4140 steel. Heat treatment studies performed on 9310 steel showed that the sub-micron grain size obtained during deformation could not be retained due to the low equilibrium volume fraction of carbides. Commercially available aluminum alloys were investigated to explain their high strain rate deformation behavior. Alloys such as 2139, 2519, 5083, and 7039 exhibit strain softening after an ultimate strength is reached, followed by a rapid degradation of mechanical properties after a critical strain level has been reached. Microstructural analysis showed that the formation of shear bands typically preceded this rapid degradation in properties. Shear band boundary misorientations increased as a function of equivalent strain in all cases. Precipitation behavior was found to greatly influence the microstructural response of the alloys. Additionally, precipitation strengthened alloys were found to exhibit similar flow stress behavior, whereas solid solution strengthened alloys exhibited lower flow stresses but higher ductility during dynamic loading. Schmid factor maps demonstrated that shear band formation behavior was influenced by texturing in these alloys.
Dynamic Compression of Chondrocyte-Agarose Constructs Reveals New Candidate Mechanosensitive Genes
Bougault, Carole; Aubert-Foucher, Elisabeth; Paumier, Anne; Perrier-Groult, Emeline; Huot, Ludovic; Hot, David; Duterque-Coquillaud, Martine; Mallein-Gerin, Frédéric
2012-01-01
Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces. PMID:22615857
Keller, T S; Colloca, C J; Fuhr, A W
1999-02-01
To determine the dynamic force-time and force-frequency characteristics of the Activator Adjusting Instrument and to validate its effectiveness as a mechanical impedance measurement device; in addition, to refine or optimize the force-frequency characteristics of the Activator Adjusting Instrument to provide enhanced dynamic structural measurement reliability and accuracy. An idealized test structure consisting of a rectangular steel beam with a static stiffness similar to that of the human thoracolumbar spine was used for validation of a method to determine the dynamic mechanical response of the spine. The Activator Adjusting Instrument equipped with a load cell and accelerometer was used to measure forces and accelerations during mechanical excitation of the steel beam. Driving point and transfer mechanical impedance and resonant frequency of the beam were determined by use of a frequency spectrum analysis for different force settings, stylus masses, and stylus tips. Results were compared with beam theory and transfer impedance measurements obtained by use of a commercial electronic PCB impact hammer. The Activator Adjusting Instrument imparted a very complex dynamic impact comprising an initial high force (116 to 140 N), short duration pulse (<0.1 ms) followed by several lower force (30 to 100 N), longer duration impulses (1 to 5 ms). The force profile was highly reproducible in terms of the peak impulse forces delivered to the beam structure (<8% variance). Spectrum analysis of the Activator Adjusting Instrument impulse indicated that the Activator Adjusting Instrument has a variable force spectrum and delivers its peak energy at a frequency of 20 Hz. Added masses and different durometer stylus tips had very little influence on the Activator Adjusting Instrument force spectrum. The resonant frequency of the beam was accurately predicted by both the Activator Adjusting Instrument and electronic PCB impact hammer, but variations in the magnitude of the driving point impedance at the resonant frequency were high (67%) compared with the transfer impedance measurements obtained with the electronic PCB impact hammer, which had a more uniform force spectrum and was more repeatable (<10% variation). The addition of a preload-control frame to the Activator Adjusting Instrument improved the characteristics of the force frequency spectrum and repeatability of the driving point impedance measurements. These findings indicate that the Activator Adjusting Instrument combined with an integral load cell and accelerometer was able to obtain an accurate description of a steel beam with readily identifiable geometric and dynamic mechanical properties. These findings support the rationale for using the device to assess the dynamic mechanical behavior of the vertebral column. Such information would be useful for SMT and may ultimately be used to evaluate the [corrected] biomechanical effectiveness of various manipulative, surgical, and rehabilitative spinal procedures.
Attard, Phil
2005-04-15
The concept of second entropy is introduced for the dynamic transitions between macrostates. It is used to develop a theory for fluctuations in velocity, and is exemplified by deriving Onsager reciprocal relations for Brownian motion. The cases of free, driven, and pinned Brownian particles are treated in turn, and Stokes' law is derived. The second entropy analysis is applied to the general case of thermodynamic fluctuations, and the Onsager reciprocal relations for these are derived using the method. The Green-Kubo formulas for the transport coefficients emerge from the analysis, as do Langevin dynamics.
NASA Astrophysics Data System (ADS)
Karakatsanis, L. P.; Iliopoulos, A. C.; Pavlos, E. G.; Pavlos, G. P.
2018-02-01
In this paper, we perform statistical analysis of time series deriving from Earth's climate. The time series are concerned with Geopotential Height (GH) and correspond to temporal and spatial components of the global distribution of month average values, during the period (1948-2012). The analysis is based on Tsallis non-extensive statistical mechanics and in particular on the estimation of Tsallis' q-triplet, namely {qstat, qsens, qrel}, the reconstructed phase space and the estimation of correlation dimension and the Hurst exponent of rescaled range analysis (R/S). The deviation of Tsallis q-triplet from unity indicates non-Gaussian (Tsallis q-Gaussian) non-extensive character with heavy tails probability density functions (PDFs), multifractal behavior and long range dependences for all timeseries considered. Also noticeable differences of the q-triplet estimation found in the timeseries at distinct local or temporal regions. Moreover, in the reconstructive phase space revealed a lower-dimensional fractal set in the GH dynamical phase space (strong self-organization) and the estimation of Hurst exponent indicated multifractality, non-Gaussianity and persistence. The analysis is giving significant information identifying and characterizing the dynamical characteristics of the earth's climate.
Analysis of the Temperature and Strain-Rate Dependences of Strain Hardening
NASA Astrophysics Data System (ADS)
Kreyca, Johannes; Kozeschnik, Ernst
2018-01-01
A classical constitutive modeling-based Ansatz for the impact of thermal activation on the stress-strain response of metallic materials is compared with the state parameter-based Kocks-Mecking model. The predicted functional dependencies suggest that, in the first approach, only the dislocation storage mechanism is a thermally activated process, whereas, in the second approach, only the mechanism of dynamic recovery is. In contradiction to each of these individual approaches, our analysis and comparison with experimental evidence shows that thermal activation contributes both to dislocation generation and annihilation.
Electroactive polymer gels based on epoxy resin
NASA Astrophysics Data System (ADS)
Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.
2007-04-01
Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.
Application of the ADAMS program to deployable space truss structures
NASA Technical Reports Server (NTRS)
Calleson, R. E.
1985-01-01
The need for a computer program to perform kinematic and dynamic analyses of large truss structures while deploying from a packaged configuration in space led to the evaluation of several existing programs. ADAMS (automatic dynamic analysis of mechanical systems), a generalized program from performing the dynamic simulation of mechanical systems undergoing large displacements, is applied to two concepts of deployable space antenna units. One concept is a one cube folding unit of Martin Marietta's Box Truss Antenna and the other is a tetrahedral truss unit of a Tetrahedral Truss Antenna. Adequate evaluation of dynamic forces during member latch-up into the deployed configuration is not yet available from the present version of ADAMS since it is limited to the assembly of rigid bodies. Included is a method for estimating the maximum bending stress in a surface member at latch-up. Results include member displacement and velocity responses during extension and an example of member bending stresses at latch-up.
Chonkaew, Wunpen; Minghvanish, Withawat; Kungliean, Ulchulee; Rochanawipart, Nutthaya; Brostow, Witold
2011-03-01
Two silane coupling agents were used for hydrolysis-condensation reaction modification of nanosilica surfaces. The surface characteristics were analyzed using Fourier transform infrared spectroscopy (FTIR). The vulcanization kinetics of natural rubber (NR) + silica composites was studied and compared to behavior of the neat NR using differential scanning calorimetry (DSC) in the dynamic scan mode. Dynamic mechanical analysis (DMA) was performed to evaluate the effects of the surface modification. Activation energy E(a) values for the reaction are obtained. The presence of silica, modified or otherwise, inhibits the vulcanization reaction of NR. The neat silica containing system has the lowest cure rate index and the highest activation energy for the vulcanization reaction. The coupling agent with longer chains causes more swelling and moves the glass transition temperature T(g) downwards. Below the glass transition region, silica causes a lowering of the dynamic storage modulus G', a result of hindering the cure reaction. Above the glass transition, silica-again modified or otherwise-provides the expected reinforcement effect.
Electronic Delocalization, Vibrational Dynamics and Energy Transfer in Organic Chromophores
Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian; ...
2017-06-12
The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less
Window Glasses: State and Prospects
NASA Astrophysics Data System (ADS)
Maiorov, V. A.
2018-04-01
Analysis and generalization of the results of investigations devoted to the improvement of optical properties have been carried out, and descriptions of a structure and a reaction mechanism of available and promising window glasses with solar radiation are presented. All devices are divided into groups with static constant and dynamic regulated spectral characteristics. The group of static glasses includes heat-protective and spectrally selective glasses with low-emissivity coatings and infrared filters with dispersed plasmonic nanoparticles. Electrochromic glasses, nanostructured dynamic infrared filters, and glasses with separated regulation of the transmission of visible-light and near-infrared radiation are dynamic devices. It is noted that the use of mesoporous films made of plasmonic nanoparticles open up especially wide possibilities. Their application allows one to realize a dynamic separated regulation of the transmission of visible light and nearinfrared radiation in which, under the gradual increase in the electric potential on the glass, mechanisms of plasmon and polaron reduction of solar radiation gradually change the glass' condition from light warm to light cold and then to dark cold consecutively.
Mechanism of failure of the Cabrol procedure: A computational fluid dynamic analysis.
Poullis, M; Pullan, M
2015-12-01
Sudden failure of the Cabrol graft is common and frequently fatal. We utilised the technique of computational fluid dynamic (CFD) analysis to evaluate the mechanism of failure and potentially improve on the design of the Cabrol procedure. CFD analysis of the classic Cabrol procedure and a number of its variants was performed. Results from this analysis was utilised to generate further improved geometric options for the Cabrol procedure. These were also subjected to CFD analysis. All current Cabrol and variations of the Cabrol procedure are predicated by CFD analysis to be prone to graft thrombosis, secondary to stasis around the right coronary artery button. The right coronary artery flow characteristics were found to be the dominant reason for Cabrol graft failure. A simple modification of the Cabrol geometry is predicated to virtually eliminate any areas of blood stasis, and graft failure. Modification of the Cabrol graft geometry, due to CFD analysis may help reduce the incidence of graft thrombosis. A C shaped Cabrol graft with the right coronary button anastomosed to its side along its course from the aorta to the left coronary button is predicted to have the least thrombotic tendency. Clinical correlation is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones
Higgs, Matthew H; Spain, William J
2011-01-01
Abstract Previous studies showed that cortical pyramidal neurones (PNs) have a dynamic spike threshold that functions as a high-pass filter, enhancing spike timing in response to high-frequency input. While it is commonly assumed that Na+ channel inactivation is the primary mechanism of threshold accommodation, the possible role of K+ channel activation in fast threshold changes has not been well characterized. The present study tested the hypothesis that low-voltage activated Kv1 channels affect threshold dynamics in layer 2–3 PNs, using α-dendrotoxin (DTX) or 4-aminopyridine (4-AP) to block these conductances. We found that Kv1 blockade reduced the dynamic changes of spike threshold in response to a variety of stimuli, including stimulus-evoked synaptic input, current steps and ramps of varied duration, and noise. Analysis of the responses to noise showed that Kv1 channels increased the coherence of spike output with high-frequency components of the stimulus. A simple model demonstrates that a dynamic spike threshold can account for this effect. Our results show that the Kv1 conductance is a major mechanism that contributes to the dynamic spike threshold and precise spike timing of cortical PNs. PMID:21911608
A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends.
Akrami, Marzieh; Ghasemi, Ismaeil; Azizi, Hamed; Karrabi, Mohammad; Seyedabadi, Mohammad
2016-06-25
In this study, a new compatibilizer was synthesized to improve the compatibility of the poly(lactic acid)/thermoplastic starch blends. The compatibilizer was based on maleic anhydride grafted polyethylene glycol grafted starch (mPEG-g-St), and was characterized using Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis (DMTA) and back titration techniques. The results indicated successful accomplishment of the designed reactions and formation of a starch cored structure with many connections to m-PEG chains. To assess the performance of synthesized compatibilizer, several PLA/TPS blends were prepared using an internal mixer. Consequently, their morphology, dynamic-mechanical behavior, crystallization and mechanical properties were studied. The compatibilizer enhanced interfacial adhesion, possibly due to interaction between free end carboxylic acid groups of compatibilizer and active groups of TPS and PLA phases. In addition, biodegradability of the samples was evaluated by various methods consisting of weight loss, FTIR-ATR analysis and morphology. The results revealed no considerable effect of compatibilizer on biodegradability of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao
2017-02-13
Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiF x . The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition.
Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao
2017-01-01
Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiFx. The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition. PMID:28772534
NASA Astrophysics Data System (ADS)
Urquiza, Eugenio
This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an iterative design process which will lead to a design with a reduced pressure drop, increased thermal effectiveness, and improved mechanical performance as it relates to creep deformation and transient thermal stresses.
Dynamic modelling and experimental validation of three wheeled tilting vehicles
NASA Astrophysics Data System (ADS)
Amati, Nicola; Festini, Andrea; Pelizza, Luigi; Tonoli, Andrea
2011-06-01
The present paper describes the study of the stability in the straight running of a three-wheeled tilting vehicle for urban and sub-urban mobility. The analysis was carried out by developing a multibody model in the Matlab/SimulinkSimMechanics environment. An Adams-Motorcycle model and an equivalent analytical model were developed for the cross-validation and for highlighting the similarities with the lateral dynamics of motorcycles. Field tests were carried out to validate the model and identify some critical parameters, such as the damping on the steering system. The stability analysis demonstrates that the lateral dynamic motions are characterised by vibration modes that are similar to that of a motorcycle. Additionally, it shows that the wobble mode is significantly affected by the castor trail, whereas it is only slightly affected by the dynamics of the front suspension. For the present case study, the frame compliance also has no influence on the weave and wobble.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.
NASA Astrophysics Data System (ADS)
Honarmand, M.; Moradi, M.
2018-06-01
In this paper, by using scaled boundary finite element method (SBFM), a perfect nanographene sheet or cracked ones were simulated for the first time. In this analysis, the atomic carbon bonds were modeled by simple bar elements with circular cross-sections. Despite of molecular dynamics (MD), the results obtained from SBFM analysis are quite acceptable for zero degree cracks. For all angles except zero, Griffith criterion can be applied for the relation between critical stress and crack length. Finally, despite the simplifications used in nanographene analysis, obtained results can simulate the mechanical behavior with high accuracy compared with experimental and MD ones.
NASA Astrophysics Data System (ADS)
Mendes, Odim; Oliveira Domingues, Margarete; Echer, Ezequiel; Hajra, Rajkumar; Everton Menconi, Varlei
2017-08-01
Considering the magnetic reconnection and the viscous interaction as the fundamental mechanisms for transfer particles and energy into the magnetosphere, we study the dynamical characteristics of auroral electrojet (AE) index during high-intensity, long-duration continuous auroral activity (HILDCAA) events, using a long-term geomagnetic database (1975-2012), and other distinct interplanetary conditions (geomagnetically quiet intervals, co-rotating interaction regions (CIRs)/high-speed streams (HSSs) not followed by HILDCAAs, and events of AE comprised in global intense geomagnetic disturbances). It is worth noting that we also study active but non-HILDCAA intervals. Examining the geomagnetic AE index, we apply a dynamics analysis composed of the phase space, the recurrence plot (RP), and the recurrence quantification analysis (RQA) methods. As a result, the quantification finds two distinct clusterings of the dynamical behaviours occurring in the interplanetary medium: one regarding a geomagnetically quiet condition regime and the other regarding an interplanetary activity regime. Furthermore, the HILDCAAs seem unique events regarding a visible, intense manifestations of interplanetary Alfvénic waves; however, they are similar to the other kinds of conditions regarding a dynamical signature (based on RQA), because it is involved in the same complex mechanism of generating geomagnetic disturbances. Also, by characterizing the proper conditions of transitions from quiescent conditions to weaker geomagnetic disturbances inside the magnetosphere and ionosphere system, the RQA method indicates clearly the two fundamental dynamics (geomagnetically quiet intervals and HILDCAA events) to be evaluated with magneto-hydrodynamics simulations to understand better the critical processes related to energy and particle transfer into the magnetosphere-ionosphere system. Finally, with this work, we have also reinforced the potential applicability of the RQA method for characterizing nonlinear geomagnetic processes related to the magnetic reconnection and the viscous interaction affecting the magnetosphere.
DARKDROID: Exposing the Dark Side of Android Marketplaces
2016-06-01
Moreover, our approaches can detect apps containing both intentional and unintentional vulnerabilities, such as unsafe code loading mechanisms and...Security, Static Analysis, Dynamic Analysis, Malware Detection , Vulnerability Scanning 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...applications in a DoD context. ................... 1 1.2.2 Develop sophisticated whole-system static analyses to detect malicious Android applications
The College Football Student-Athlete's Academic Experience: Network Analysis and Model Development
ERIC Educational Resources Information Center
Young, Kyle McLendon
2010-01-01
A grounded theory research study employing network analysis as a means of facilitating the latter stages of the coding process was conducted at a selective university that competes at the highest level of college football. The purpose of the study was to develop a better understanding of how interactive dynamics and controlling mechanisms, such as…
ERIC Educational Resources Information Center
Zhang, Jingjing; Skryabin, Maxim; Song, Xiongwei
2016-01-01
This study attempts to make inferences about the mechanisms that drive network change over time. It adopts simulation investigation for empirical network analysis to examine the patterns and evolution of relationships formed in the context of a massive open online course (MOOC) discussion forum. Four network effects--"homophily,"…
Are crude oil markets multifractal? Evidence from MF-DFA and MF-SSA perspectives
NASA Astrophysics Data System (ADS)
He, Ling-Yun; Chen, Shu-Peng
2010-08-01
In this article, we investigated the multifractality and its underlying formation mechanisms in international crude oil markets, namely, Brent and WTI, which are the most important oil pricing benchmarks globally. We attempt to find the answers to the following questions: (1) Are those different markets multifractal? (2) What are the dynamical causes for multifractality in those markets (if any)? To answer these questions, we applied both multifractal detrended fluctuation analysis (MF-DFA) and multifractal singular spectrum analysis (MF-SSA) based on the partition function, two widely used multifractality detecting methods. We found that both markets exhibit multifractal properties by means of these methods. Furthermore, in order to identify the underlying formation mechanisms of multifractal features, we destroyed the underlying nonlinear temporal correlation by shuffling the original time series; thus, we identified that the causes of the multifractality are influenced mainly by a nonlinear temporal correlation mechanism instead of a non-Gaussian distribution. At last, by tracking the evolution of left- and right-half multifractal spectra, we found that the dynamics of the large price fluctuations is significantly different from that of the small ones. Our main contribution is that we not only provided empirical evidence of the existence of multifractality in the markets, but also the sources of multifractality and plausible explanations to current literature; furthermore, we investigated the different dynamical price behaviors influenced by large and small price fluctuations.
Long, Wu-Jian; Wei, Jing-Jie; Ma, Hongyan; Xing, Feng
2017-11-24
This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM) atomic force microscope (AFM), and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM)/backscattered mode (BSEM) showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP) testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content.
Wei, Jing-Jie; Xing, Feng
2017-01-01
This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM) atomic force microscope (AFM), and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM)/backscattered mode (BSEM) showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP) testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content. PMID:29186810
A novel hybrid actuation mechanism based XY nanopositioning stage with totally decoupled kinematics
NASA Astrophysics Data System (ADS)
Zhu, Wu-Le; Zhu, Zhiwei; Guo, Ping; Ju, Bing-Feng
2018-01-01
This paper reports the design, analysis and testing of a parallel two degree-of-freedom piezo-actuated compliant stage for XY nanopositioning by introducing an innovative hybrid actuation mechanism. It mainly features the combination of two Scott-Russell and a half-bridge mechanisms for double-stage displacement amplification as well as moving direction modulation. By adopting the leaf-type double parallelogram (LTDP) structures at both input and output ends of the hybrid mechanism, the lateral stiffness and dynamic characteristics are significantly improved while the parasitic motions are greatly eliminated. The XY nanopositioning stage is constructed with two orthogonally configured hybrid mechanisms along with the LTDP mechanisms for totally decoupled kinematics at both input and output ends. An analytical model was established to describe the complete elastic deformation behavior of the stage, with further verification through the finite element simulation. Finally, experiments were implemented to comprehensively evaluate both the static and dynamic performances of the proposed stage. Closed-loop control of the piezoelectric actuators (PEA) by integrating strain gauges was also conducted to effectively eliminate the nonlinear hysteresis of the stage.
The 58th Shock and Vibration Symposium, volume 1
NASA Technical Reports Server (NTRS)
Pilkey, Walter D. (Compiler); Pilkey, Barbara F. (Compiler)
1987-01-01
The proceedings of the 58th Shock and Vibration Symposium, held in Huntsville, Alabama, October 13 to 15, 1987 are given. Mechanical shock, dynamic analysis, space shuttle main engine vibration, isolation and damping, and analytical methods are discussed.
The use of DMA to characterize the aging of asphalt binders.
DOT National Transportation Integrated Search
2010-06-01
This report presents issues associated with long-term aging of polymer modified asphalt cements (PMACs) as : reflected by dynamic mechanical analysis (DMA) data. In this study a standard SBS (styrene-butadiene-styrene block : copolymer) polymer modif...
Dynamic Information and Library Processing.
ERIC Educational Resources Information Center
Salton, Gerard
This book provides an introduction to automated information services: collection, analysis, classification, storage, retrieval, transmission, and dissemination. An introductory chapter is followed by an overview of mechanized processes for acquisitions, cataloging, and circulation. Automatic indexing and abstracting methods are covered, followed…
Dynamic mechanical analysis of fiber reinforced composites
NASA Technical Reports Server (NTRS)
Reed, K. E.
1979-01-01
Dynamic mechanical and thermal properties were determined for unidirectional epoxy/glass composites at various fiber orientation angles. Resonant frequency and relative logarithmic decrement were measured as functions of temperature. In low angle and longitudinal specimens a transition was observed above the resin glass transition temperature which was manifested mechanically as an additional damping peak and thermally as a change in the coefficient of thermal expansion. The new transition was attributed to a heterogeneous resin matrix induced by the fiber. The temperature span of the glass-rubber relaxation was found to broaden with decreasing orientation angle, reflecting the growth of fiber contribution and exhibiting behavior similar to that of Young's modulus. The change in resonant frequency through the glass transition was greatest for samples of intermediate fiber angle, demonstrating behavior similar to that of the longitudinal shear modulus.
Domozych, David S.; Fujimoto, Chelsea; LaRue, Therese
2013-01-01
Polar expansion is a widespread phenomenon in plants spanning all taxonomic groups from the Charophycean Green Algae to pollen tubes in Angiosperms and Gymnosperms. Current data strongly suggests that many common features are shared amongst cells displaying polar growth mechanics including changes to the structural features of localized regions of the cell wall, mobilization of targeted secretion mechanisms, employment of the actin cytoskeleton for directing secretion and in many cases, endocytosis and coordinated interaction of multiple signal transduction mechanisms prompted by external biotic and abiotic cues. The products of polar expansion perform diverse functions including delivery of male gametes to the egg, absorption, anchorage, adhesion and photo-absorption efficacy. A comparative analysis of polar expansion dynamics is provided with special emphasis on those found in early divergent plants. PMID:27137370
Dynamic Mechanical Properties of Bio-Polymer Graphite Thin Films
NASA Astrophysics Data System (ADS)
Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Munirah Abdullah, Nur; Abdullah, M. F. L.
2017-08-01
Waste cooking oil is used as the main substances in producing graphite biopolymer thin films. Biopolymer is produce from the reaction of bio-monomer and cross linker with the ratio of 2:1 and addition of graphite with an increment of 2% through a slip casting method. The morphological surface properties of the samples are observed by using Scanning Electron Microscope (SEM). It is shown that the graphite particle is well mixed and homogenously dispersed in biopolymer matrix. Meanwhile, the mechanical response of materials by monitoring the change in the material properties in terms of frequency and temperature of the samples were determined using Dynamic Mechanical Analysis (DMA). The calculated cross-linked density of biopolymer composites revealed the increment of graphite particle loading at 8% gives highest results with 260.012 x 103 M/m3.
Study on the performance of the articulated mechanism of tracked all-terrain vehicle
NASA Astrophysics Data System (ADS)
Meng, Zhongliang; Zang, Hao
2018-04-01
Tracked all-terrain vehicle consists of two vehicle bodies featured by superior performance, the running system which can meet the all-terrain requirement, the unique steering system, power system and the vehicle body protection system. This paper focuses on the study of the five freely articulated steering system of crawler-type all-terrain engineering vehicle. The study on the dynamic characteristics of the articulated steering system can't do without the dynamic analysis of the whole vehicle. Therefore, it first studies the overall model of the tracked all-terrain vehicle, and then based on the critical states where the overall model is situated under different road conditions, mathematical models of the articulated mechanism are built under different operating conditions and also the load bearing condition of the articulated mechanism is deduced.
Data Reduction and Analysis of Pioneer Venus Orbital Ion Mass Spectrometer
NASA Technical Reports Server (NTRS)
Cloutier, Paul A.
1996-01-01
Research was carried out on developing a flow field interaction model for both the dayside and nightside ionosphere of Venus. Specific topics related to the dayside ionosphere included: (1) wave particle mechanisms at the ionopause, (2) structure and dynamics of the Venus ionopause and Ionosphere, and (3) flows and fields in the Venus Ionosphere. The structure and dynamics of ion troughs was also studied in the nightside ionosphere of Venus.
Analysis of dynamic properties for a composite laminated beam at intermediate strain rate
NASA Astrophysics Data System (ADS)
Lin, J. C.; Pendleton, R. L.; Dolan, D. F.
The dynamic mechanical behavior of a graphite epoxy composite laminate in flexural vibration has been investigated. The effects of fiber orientation and vibration frequency for both unidirectional tape and Kevlar fabric were studied both analytically and experimentally. Measurement of storage and loss moduli were presented for laminated double cantilever beams of fiber reinforced composite with frequency range from 8 to 1230 Hz (up to 5th mode).
Dependent Lifelengths Induced by Dynamic Environments
1988-02-14
item has not failed at any time r, our assessment of the failure rate will increase since we expect that the dominant failure mechanism is governed ...of a dynamic environment on the system over a finite range [ 0, T’ ) can be captured through a polynomial environental factor function j7(r). We...Vol. 7, pp. 295- 306. Singpurwalla, N.D. (1988). Foundational issues in reliability and risk analysis. SIAM Review. To app.!ar. 85
2017-12-01
reverse dynamization. This was supplemented by finite element analysis and the use of a strain gauge. This aim was successfully completed, with the...testing deformation results for model validation. Development of a Finite Element (FE) model was conducted through ANSYS 16 to help characterize...Fixators were characterized through mechanical testing by sawbone and ovine cadaver tibiae samples, and data was used to validate a finite element
Chaotic Motions in the Dynamics of Space Tethered Systems. 1. Analysis of the Problem
NASA Astrophysics Data System (ADS)
Pirozhenko, A. V.
The determined-chaos phenomenon in the dynamics of space tethered systems is analyzed. A model problem, the essence of stochastic regimes of motion in the oscillation of masses in the internal degrees of freedom is formulated. A number of calculus approaches to the phenomenon is considered and the supposition is made that it is impossible to define the essence of the phenomenon by the mathematical methods traditional for mechanics.
Numerical Analysis of the Dynamics of Nonlinear Solids and Structures
2008-08-01
to arrive to a new numerical scheme that exhibits rigorously the dissipative character of the so-called canonical free en - ergy characteristic of...UCLA), February 14 2006. 5. "Numerical Integration of the Nonlinear Dynamics of Elastoplastic Solids," keynote lecture , 3rd European Conference on...Computational Mechanics (ECCM 3), Lisbon, Portugal, June 5-9 2006. 6. "Energy-Momentum Schemes for Finite Strain Plasticity," keynote lecture , 7th
Dynamics of flexible bodies in tree topology - A computer oriented approach
NASA Technical Reports Server (NTRS)
Singh, R. P.; Vandervoort, R. J.; Likins, P. W.
1984-01-01
An approach suited for automatic generation of the equations of motion for large mechanical systems (i.e., large space structures, mechanisms, robots, etc.) is presented. The system topology is restricted to a tree configuration. The tree is defined as an arbitrary set of rigid and flexible bodies connected by hinges characterizing relative translations and rotations of two adjoining bodies. The equations of motion are derived via Kane's method. The resulting equation set is of minimum dimension. Dynamical equations are imbedded in a computer program called TREETOPS. Extensive control simulation capability is built in the TREETOPS program. The simulation is driven by an interactive set-up program resulting in an easy to use analysis tool.
NASA Astrophysics Data System (ADS)
Wolszczak, Piotr; Łygas, Krystian; Litak, Grzegorz
2018-07-01
This study investigates dynamic responses of a nonlinear vibration energy harvester. The nonlinear mechanical resonator consists of a flexible beam moving like an inverted pendulum between amplitude limiters. It is coupled with a piezoelectric converter, and excited kinematically. Consequently, the mechanical energy input is converted into the electrical power output on the loading resistor included in an electric circuit attached to the piezoelectric electrodes. The curvature of beam mode shapes as well as deflection of the whole beam are examined using a high speed camera. The visual identification results are compared with the voltage output generated by the piezoelectric element for corresponding frequency sweeps and analyzed by the Hilbert transform.
Research on dynamic routing mechanisms in wireless sensor networks.
Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y
2014-01-01
WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network.
Characterizing popularity dynamics of online videos
NASA Astrophysics Data System (ADS)
Ren, Zhuo-Ming; Shi, Yu-Qiang; Liao, Hao
2016-07-01
Online popularity has a major impact on videos, music, news and other contexts in online systems. Characterizing online popularity dynamics is nature to explain the observed properties in terms of the already acquired popularity of each individual. In this paper, we provide a quantitative, large scale, temporal analysis of the popularity dynamics in two online video-provided websites, namely MovieLens and Netflix. The two collected data sets contain over 100 million records and even span a decade. We characterize that the popularity dynamics of online videos evolve over time, and find that the dynamics of the online video popularity can be characterized by the burst behaviors, typically occurring in the early life span of a video, and later restricting to the classic preferential popularity increase mechanism.
Evol and ProDy for bridging protein sequence evolution and structural dynamics.
Bakan, Ahmet; Dutta, Anindita; Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R; Bahar, Ivet
2014-09-15
Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Fang, Jiansong; Wu, Ping; Yang, Ranyao; Gao, Li; Li, Chao; Wang, Dongmei; Wu, Song; Liu, Ai-Lin; Du, Guan-Hua
2014-12-01
In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔE ele+ΔG GB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.
Dynamical and Microrheological Analysis of Amyloplasts in the Plant Root Gravity-Sensing Cells
NASA Astrophysics Data System (ADS)
Zheng, Zhongyu; Zou, Junjie; Li, Hanhai; Xue, Shan; Le, Jie; Wang, Yuren
2015-11-01
Gravitropism in plants is one of the most controversial issues. In the most wildly accepted starch-statolith hypothesis the sedimentation movement of amyloplasts in the gravisensing columella cells primarily triggers the asymmetric distribution of auxin which leads to the differential growth of the plant root. It has been gradually recognized that the inhomogeneous structures in statocytes arising from intracellular components such as cytoskeletons significantly affect the complex movements of amyloplasts and the final gravimorphogenesis. In this letter, we implement a diffusive dynamics measurement and inplanta microrheological analysis of amyloplasts in the wild-type plants and actin cytoskeleton mutants for the first time. We found that the intracellular environment of columella cells exhibits the spatial heterogeneity and the cage-confinement on amyloplasts which is the typically characteristics in colloidal suspensions. By comparing the distinct diffusive dynamics of amyloplasts in different types of plants with the behaviors of colloidal systems in different states, we quantitatively characterized the influence of the actin organization dominated intracellular envoronments on the amyloplast movements. Furthermore, the cage-confinement strength was measured by calculating the spatial fluctuation of local apparent viscosity within the columella cells. Finally, a linear association between the initial mechanical stimulation in the columella cells the subsequent intercellular signal transduction and the final gravity response was observed and a possible gravity sensing mechanism was suggested. It suggests the existence of a potential gravity-sensing mechanism that dictates a linear frustration effect of the actin cytoskeleton on the conversion of the mechanical stimulation of amyloplasts into gravitropic signals.
Dehury, Budheswar; Maharana, Jitendra; Sahoo, Bikash Ranjan; Sahu, Jagajjit; Sen, Priyabrata; Modi, Mahendra Kumar; Barooah, Madhumita
2015-04-01
The avirulence gene avrxa5 of bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) recognized by the resistant rice lines having corresponding resistance (xa5) gene in a gene-for-gene manner. We used a combinatorial approach involving protein-protein docking, molecular dynamics (MD) simulations and binding free energy calculations to gain novel insights into the gene-for-gene mechanism that governs the direct interaction of R-Avr protein. From the best three binding poses predicted by molecular docking, MD simulations were performed to explore the dynamic binding mechanism of xa5 and avrxa5. Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) techniques were employed to calculate the binding free energy and to uncover the thriving force behind the molecular recognition of avrxa5 by eukaryotic transcription factor xa5. Binding free energy analysis revealed van der Waals term as the most constructive component that favors the xa5 and avrxa5 interaction. In addition, hydrogen bonds (H-bonds) and essential electrostatic interactions analysis highlighted amino acid residues Lys54/Asp870, Lys56/Ala868, Lys56/Ala866, Lys56/Glu871, Ile59/His862, Gly61/Phe858, His62/Arg841, His62/Leu856, Ser101/Ala872 and Ser105/Asp870 plays pivotal role for the energetically stability of the R-Avr complex. Insights gained from the present study are expected to unveil the molecular mechanisms that define the transcriptional activator mediated transcriptome modification in host plants. Copyright © 2015 Elsevier Inc. All rights reserved.
Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.
Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong
2016-04-04
A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.
NASA Astrophysics Data System (ADS)
Bouskill, N. J.; Riley, W. J.; Tang, J.
2014-08-01
Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the atmosphere. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the above and belowground high-latitude ecosystem responses to warming and nitrogen addition, and identified mechanisms absent, or poorly parameterized in CLM4.5. While the two model versions predicted similar trajectories for soil carbon stocks following both types of perturbation, other variables (e.g., belowground respiration) differed from the observations in both magnitude and direction, indicating the underlying mechanisms are inadequate for representing high-latitude ecosystems. The observational synthesis attribute these differences to missing representations of microbial dynamics, characterization of above and belowground functional processes, and nutrient competition. We use the observational meta-analyses to discuss potential approaches to improving the current models (e.g., the inclusion of dynamic vegetation or different microbial functional guilds), however, we also raise a cautionary note on the selection of data sets and experiments to be included in a meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average =72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which preclude a rigorous evaluation of the model responses to nitrogen perturbation. Overall, we demonstrate here that elucidating ecological mechanisms via meta-analysis can identify deficiencies in both ecosystem models and empirical experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouskill, N. J.; Riley, W. J.; Tang, J.
2014-08-18
Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the atmosphere. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the above and belowground high-latitude ecosystem responses to warming and nitrogen addition, and identified mechanisms absent, or poorly parameterized in CLM4.5. While the two model versions predicted similar trajectories for soil carbon stocks following both types of perturbation, other variables (e.g., belowground respiration) differedmore » from the observations in both magnitude and direction, indicating the underlying mechanisms are inadequate for representing high-latitude ecosystems. The observational synthesis attribute these differences to missing representations of microbial dynamics, characterization of above and belowground functional processes, and nutrient competition. We use the observational meta-analyses to discuss potential approaches to improving the current models (e.g., the inclusion of dynamic vegetation or different microbial functional guilds), however, we also raise a cautionary note on the selection of data sets and experiments to be included in a meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average =72 kg ha -1 yr -1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which preclude a rigorous evaluation of the model responses to nitrogen perturbation. Overall, we demonstrate here that elucidating ecological mechanisms via meta-analysis can identify deficiencies in both ecosystem models and empirical experiments.« less
Baltoumas, Fotis A; Theodoropoulou, Margarita C; Hamodrakas, Stavros J
2016-06-01
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.
NASA Astrophysics Data System (ADS)
Baltoumas, Fotis A.; Theodoropoulou, Margarita C.; Hamodrakas, Stavros J.
2016-06-01
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.
Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong
2014-09-01
To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.
Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.
Sun, Yuanxi; Ge, Wenjie; Zheng, Jia; Dong, Dianbiao
2015-11-01
This paper presents the mechanical design, dynamics analysis and ankle trajectory analysis of a prosthetic knee joint using the geared five-bar mechanism. Compared with traditional four-bar or six-bar mechanisms, the geared five-bar mechanism is better at performing diverse movements and is easy to control. This prosthetic knee joint with the geared five-bar mechanism is capable of fine-tuning its relative instantaneous center of rotation and ankle trajectory. The centrode of this prosthetic knee joint, which is mechanically optimized according to the centrode of human knee joint, is better in the bionic performance than that of a prosthetic knee joint using the four-bar mechanism. Additionally, the stability control of this prosthetic knee joint during the swing and stance phase is achieved by a motor. By adjusting the gear ratio of this prosthetic knee joint, the ankle trajectories of both unilateral and bilateral amputees show less deviations from expected than that of the four-bar knee joint.
Nonlinear dynamics of global atmospheric and Earth-system processes
NASA Technical Reports Server (NTRS)
Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel
1990-01-01
Researchers are continuing their studies of the nonlinear dynamics of global weather systems. Sensitivity analyses of large-scale dynamical models of the atmosphere (i.e., general circulation models i.e., GCM's) were performed to establish the role of satellite-signatures of soil moisture, sea surface temperature, snow cover, and sea ice as crucial boundary conditions determining global weather variability. To complete their study of the bimodality of the planetary wave states, they are using the dynamical systems approach to construct a low-order theoretical explanation of this phenomenon. This work should have important implications for extended range forecasting of low-frequency oscillations, elucidating the mechanisms for the transitions between the two wave modes. Researchers are using the methods of jump analysis and attractor dimension analysis to examine the long-term satellite records of significant variables (e.g., long wave radiation, and cloud amount), to explore the nature of mode transitions in the atmosphere, and to determine the minimum number of equations needed to describe the main weather variations with a low-order dynamical system. Where feasible they will continue to explore the applicability of the methods of complex dynamical systems analysis to the study of the global earth-system from an integrative viewpoint involving the roles of geochemical cycling and the interactive behavior of the atmosphere, hydrosphere, and biosphere.
NASA Astrophysics Data System (ADS)
Karnes, John J.; Benjamin, Ilan
2018-01-01
Molecular dynamics simulations are used to study the dissolution of water into an adjacent, immiscible organic liquid phase. Equilibrium thermodynamic and structural properties are calculated during the transfer of water molecule(s) across the interface using umbrella sampling. The net free energy of transfer agrees reasonably well with experimental solubility values. We find that water molecules "prefer" to transfer into the adjacent phase one-at-a-time, without co-transfer of the hydration shell, as in the case of evaporation. To study the dynamics and mechanism of transfer of water to liquid nitrobenzene, we collected over 400 independent dissolution events. Analysis of these trajectories suggests that the transfer of water is facilitated by interfacial protrusions of the water phase into the organic phase, where one water molecule at the tip of the protrusion enters the organic phase by the breakup of a single hydrogen bond.
Yuan, Daosheng; Chen, Kunling; Xu, Chuanhui; Chen, Zhonghua; Chen, Yukun
2014-11-26
In this study, blends of entirely biosourced polymers, namely polylactide (PLA) and natural rubber (NR), were prepared through dynamic vulcanization using dicumyl peroxide (DCP), sulphur (S) and phenolic resin (2402) as curing agents, respectively. The crosslinked NR phase was found to be a continuous structure in all the prepared blends. The molecular weight changes of PLA were studied by gel permeation chromatography. Interfacial compatibilization between PLA and NR was investigated using Fourier transform infrared spectroscopy and scanning electron microscopy. The thermal properties of blends were evaluated by differential scanning calorimetry and thermogravimetric analysis instrument. It was found that the molecular weight of PLA and interfacial compatibilizaion between PLA and NR showed a significant influence on the mechanical and thermal properties of blends. The PLA/NR blend (60/40 w/w) by DCP-induced dynamic vulcanization owned the finest mechanical properties and thermal stability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zeng, Yuanyuan; Sreenan, Cormac J; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.
NASA Astrophysics Data System (ADS)
Yakhno, T. A.; Yakhno, V. G.
2017-03-01
The instant coffee model has been taken to study self-sustained oscillations in liquid dispersive media using dynamic self-organization processes in drying droplets that stay sessile on a solid wetted substrate. The width of the formed ring and the dynamics of mechanical properties of the drying sediment and the way they fluctuated over 11 h of the experiment have been measured. Analysis has shown a high degree of correlation between these indicators. This dynamics reflects processes that develop in the examined liquid medium. The possible mechanism of self-sustained oscillations, which is related to the aggregation-disaggregation of the colloidal phase and fluctuations of the interphase tension, has been discussed. The practical significance of this work is that fluctuation processes in liquid dispersive media need to be taken into account as a natural source of systematic measurement error.
Calcium dynamics and signaling in vascular regulation: computational models
Tsoukias, Nikolaos Michael
2013-01-01
Calcium is a universal signaling molecule with a central role in a number of vascular functions including in the regulation of tone and blood flow. Experimentation has provided insights into signaling pathways that lead to or affected by Ca2+ mobilization in the vasculature. Mathematical modeling offers a systematic approach to the analysis of these mechanisms and can serve as a tool for data interpretation and for guiding new experimental studies. Comprehensive models of calcium dynamics are well advanced for some systems such as the heart. This review summarizes the progress that has been made in modeling Ca2+ dynamics and signaling in vascular cells. Model simulations show how Ca2+ signaling emerges as a result of complex, nonlinear interactions that cannot be properly analyzed using only a reductionist's approach. A strategy of integrative modeling in the vasculature is outlined that will allow linking macroscale pathophysiological responses to the underlying cellular mechanisms. PMID:21061306
Peled, Yair; Motil, Avi; Kressel, Iddo; Tur, Moshe
2013-05-06
We report a Brillouin-based fully distributed and dynamic monitoring of the strain induced by a propagating mechanical wave along a 20 m long composite strip, to which surface a single-mode optical fiber was glued. Employing a simplified version of the Slope-Assisted Brillouin Optical Time Domain Analysis (SA-BOTDA) technique, the whole length of the strip was interrogated every 10 ms (strip sampling rate of 100 Hz) with a spatial resolution of the order of 1m. A dynamic spatially and temporally continuous map of the strain was obtained, whose temporal behavior at four discrete locations was verified against co-located fiber Bragg gratings. With a trade-off among sampling rate, range and signal to noise ratio, kHz sampling rates and hundreds of meters of range can be obtained with resolution down to a few centimeters.
Climatic and density influences on recruitment in an irruptive population of Roosevelt elk
Starns, Heath D.; Ricca, Mark A.; Duarte, Adam; Weckerly, Floyd W.
2014-01-01
Current paradigms of ungulate population ecology recognize that density-dependent and independent mechanisms are not always mutually exclusive. Long-term data sets are necessary to assess the relative strength of each mechanism, especially when populations display irruptive dynamics. Using an 18-year time series of population abundances of Roosevelt elk (Cervus elaphus roosevelti) inhabiting Redwood National Park in northwestern California we assessed the influence of population size and climatic variation on elk recruitment and whether irruptive dynamics occurred. An information-theoretic model selection analysis indicated that abundance lagged 2 years and neither climatic factors nor a mix of abundance and climatic factors influenced elk recruitment. However, density-dependent recruitment differed between when the population was declining and when the population increased and then stabilized at an abundance lower than at the start of the decline. The population displayed irruptive dynamics.
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo
2004-07-01
A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic soft iron pad and a superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite membrane of the actuator is the hybrid mechanism that we proposed previously. This membrane actuator is designed for a new synthetic jet actuator package that will be used for active flow control technology on airplane wings. Based on the FEM results, the new membrane actuator system was assembled and its static and dynamic performance was experimentally evaluated including the dynamic magnetic response of the hybrid magnet.
Zeng, Yuanyuan; Sreenan, Cormac J.; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work. PMID:22163774
NASA Astrophysics Data System (ADS)
Nikolai Aljuri, A.; Bursac, Nenad; Marini, Robert; Cohen, Richard J.
2001-08-01
Prolonged exposure to microgravity in space flight missions (days) impairs the mechanisms responsible for defense of arterial blood pressure (ABP) and cardiac output (CO) against orthostatic stress in the post-flight period. The mechanisms responsible for the observed orthostatic intolerance are not yet completely understood. Additionally, effective counter measures to attenuate this pathophysiological response are not available. The aim of this study was to investigate the ability of our proposed system identification method to predict closed-loop dynamic changes in TPR induced by changes in mean arterial pressure (MAP) and right atrial pressure (RAP). For this purpose we designed and employed a novel experimental animal model for the examination of arterial and cardiopulmonary baroreceptors in the dynamic closed-loop control of total peripheral resistance (TPR), and applied system identification to the analysis of beat-to-beat fluctuations in the measured signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian
The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less
Glatt, Vaida; Bartnikowski, Nicole; Quirk, Nicholas; Schuetz, Michael; Evans, Christopher
2016-04-20
Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 μg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (μCT), histological analysis, and mechanical testing. In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Chesarone-Cataldo, Melissa; Guérin, Christophe; Yu, Jerry H.; Wedlich-Soldner, Roland; Blanchoin, Laurent; Goode, Bruce L.
2011-01-01
Summary Formins are a conserved family of proteins with robust effects in promoting actin nucleation and elongation. However, the mechanisms restraining formin activities in cells to generate actin networks with particular dynamics and architectures are not well understood. In S. cerevisiae, formins assemble actin cables, which serve as tracks for myosin-dependent intracellular transport. Here, we show that the kinesin-like myosin passenger-protein Smy1 interacts with the FH2 domain of the formin Bnr1 to decrease rates of actin filament elongation, which is distinct from the formin displacement activity of Bud14. In vivo analysis of smy1Δ mutants demonstrates that this ‘damper’ mechanism is critical for maintaining proper actin cable architecture, dynamics, and function. We directly observe Smy1–3GFP being transported by myosin V and transiently pausing at the neck in a manner dependent on Bnr1. These observations suggest that Smy1 is part of a negative feedback mechanism that detects cable length and prevents overgrowth. PMID:21839918
Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan
1995-01-01
Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.
Dynamic calibration of a wheelchair dynamometer.
DiGiovine, C P; Cooper, R A; Boninger, M L
2001-01-01
The inertia and resistance of a wheelchair dynamometer must be determined in order to compare the results of one study to another, independent of the type of device used. The purpose of this study was to describe and implement a dynamic calibration test for characterizing the electro-mechanical properties of a dynamometer. The inertia, the viscous friction, the kinetic friction, the motor back-electromotive force constant, and the motor constant were calculated using three different methods. The methodology based on a dynamic calibration test along with a nonlinear regression analysis produced the best results. The coefficient of determination comparing the dynamometer model output to the measured angular velocity and torque was 0.999 for a ramp input and 0.989 for a sinusoidal input. The inertia and resistance were determined for the rollers and the wheelchair wheels. The calculation of the electro-mechanical parameters allows for the complete description of the propulsive torque produced by an individual, given only the angular velocity and acceleration. The measurement of the electro-mechanical properties of the dynamometer as well as the wheelchair/human system provides the information necessary to simulate real-world conditions.
Dynamics of Intact MexAB-OprM Efflux Pump: Focusing on the MexA-OprM Interface
Lopez, Cesar A.; Travers, Timothy; Pos, Klaas M.; ...
2017-11-28
Antibiotic efflux is one of the most critical mechanisms leading to bacterial multidrug resistance. Antibiotics are effluxed out of the bacterial cell by a tripartite efflux pump, a complex machinery comprised of outer membrane, periplasmic adaptor, and inner membrane protein components. Understanding the mechanism of efflux pump assembly and its dynamics could facilitate discovery of novel approaches to counteract antibiotic resistance in bacteria. We built here an intact atomistic model of the Pseudomonas aeruginosa MexAB-OprM pump in a Gram-negative membrane model that contained both inner and outer membranes separated by a periplasmic space. All-atom molecular dynamics (MD) simulations confirm thatmore » the fully assembled pump is stable in the microsecond timescale. Using a combination of all-atom and coarse-grained MD simulations and sequence covariation analysis, we characterized the interface between MexA and OprM in the context of the entire efflux pump. These analyses suggest a plausible mechanism by which OprM is activated via opening of its periplasmic aperture through a concerted interaction with MexA.« less
Dynamics of Intact MexAB-OprM Efflux Pump: Focusing on the MexA-OprM Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Cesar A.; Travers, Timothy; Pos, Klaas M.
Antibiotic efflux is one of the most critical mechanisms leading to bacterial multidrug resistance. Antibiotics are effluxed out of the bacterial cell by a tripartite efflux pump, a complex machinery comprised of outer membrane, periplasmic adaptor, and inner membrane protein components. Understanding the mechanism of efflux pump assembly and its dynamics could facilitate discovery of novel approaches to counteract antibiotic resistance in bacteria. We built here an intact atomistic model of the Pseudomonas aeruginosa MexAB-OprM pump in a Gram-negative membrane model that contained both inner and outer membranes separated by a periplasmic space. All-atom molecular dynamics (MD) simulations confirm thatmore » the fully assembled pump is stable in the microsecond timescale. Using a combination of all-atom and coarse-grained MD simulations and sequence covariation analysis, we characterized the interface between MexA and OprM in the context of the entire efflux pump. These analyses suggest a plausible mechanism by which OprM is activated via opening of its periplasmic aperture through a concerted interaction with MexA.« less
Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering
Šmít, Daniel; Fouquet, Coralie; Pincet, Frédéric; Zapotocky, Martin; Trembleau, Alain
2017-01-01
While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behavior that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation. DOI: http://dx.doi.org/10.7554/eLife.19907.001 PMID:28422009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Shaohua; School of Automation, Chongqing University, Chongqing 400044; Sun, Quanping
This paper addresses chaos control of the micro-electro- mechanical resonator by using adaptive dynamic surface technology with extended state observer. To reveal the mechanism of the micro- electro-mechanical resonator, the phase diagrams and corresponding time histories are given to research the nonlinear dynamics and chaotic behavior, and Homoclinic and heteroclinic chaos which relate closely with the appearance of chaos are presented based on the potential function. To eliminate the effect of chaos, an adaptive dynamic surface control scheme with extended state observer is designed to convert random motion into regular motion without precise system model parameters and measured variables. Puttingmore » tracking differentiator into chaos controller solves the ‘explosion of complexity’ of backstepping and poor precision of the first-order filters. Meanwhile, to obtain high performance, a neural network with adaptive law is employed to approximate unknown nonlinear function in the process of controller design. The boundedness of all the signals of the closed-loop system is proved in theoretical analysis. Finally, numerical simulations are executed and extensive results illustrate effectiveness and robustness of the proposed scheme.« less
Shape Mode Analysis Exposes Movement Patterns in Biology: Flagella and Flatworms as Case Studies
Werner, Steffen; Rink, Jochen C.; Riedel-Kruse, Ingmar H.; Friedrich, Benjamin M.
2014-01-01
We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way. PMID:25426857
Dynamic Aftershock Triggering Correlated with Cyclic Loading in the Slip Direction
NASA Astrophysics Data System (ADS)
Hardebeck, J.
2014-12-01
Dynamic stress changes have been shown to contribute to aftershock triggering, but the physical triggering mechanisms are not fully understood. Some proposed mechanisms are based on dynamic stress loading of the target fault in a direction that encourages earthquake slip (e.g. dynamic Coulomb stress triggering), while other mechanisms are based on fault weakening due to shaking. If dynamic stress loading in the fault slip direction plays a role in aftershock triggering, we would expect to see a relationship between the dynamic stress orientations and the aftershock focal mechanisms. Alternatively, if dynamic stress change triggering functions only through a fault weakening mechanism that is independent of the slip direction of the target fault, no such relationship is expected. I study aftershock sequences of 4 M≥6.7 mainshocks in southern California, and find a small but significant relationship between modeled dynamic stress direction and aftershock focal mechanisms. The mainshock dynamic stress changes have two observed impacts: changing the focal mechanisms in a given location to favor those aligned with the dynamic stress change, and changing the spatial distribution of seismicity to favor locations where the dynamic stress change aligns with the background stress. The aftershock focal mechanisms are significantly more aligned with the dynamic stress changes than the preshock mechanisms for only the first 0.5-1 year following most mainshocks, although for at least 10 years following Hector Mine. Dynamic stress effects on focal mechanisms are best observed at long periods (30-60 sec). Dynamic stress effects are only observed when using metrics based on repeated stress cycling in the same direction, for example considering the dominant stress orientation over the full time series, and not for the peak dynamic stress. These results imply that dynamic aftershock triggering operates at least in part through cyclic loading in the direction of fault slip, although non-directional fault weakening may be important as well. This suggests that the orientation of the dynamic stresses, as well as their amplitude, should be considered in the development of physics-based aftershock forecasting models.
Crystal Growth and Fluid Mechanics Problems in Directional Solidification
NASA Technical Reports Server (NTRS)
Tanveer, Saleh A.; Baker, Gregory R.; Foster, Michael R.
2001-01-01
Our work in directional solidification has been in the following areas: (1) Dynamics of dendrites including rigorous mathematical analysis of the resulting equations; (2) Examination of the near-structurally unstable features of the mathematically related Hele-Shaw dynamics; (3) Numerical studies of steady temperature distribution in a vertical Bridgman device; (4) Numerical study of transient effects in a vertical Bridgman device; (5) Asymptotic treatment of quasi-steady operation of a vertical Bridgman furnace for large Rayleigh numbers and small Biot number in 3D; and (6) Understanding of Mullins-Sererka transition in a Bridgman device with fluid dynamics is accounted for.
Nonlinear dynamics, fractals, cardiac physiology and sudden death
NASA Technical Reports Server (NTRS)
Goldberger, Ary L.
1987-01-01
The authors propose a diametrically opposite viewpoint to the generally accepted tendency of equating healthy function with order and disease with chaos. With regard to the question of sudden cardiac death and chaos, it is suggested that certain features of dynamical chaos related to fractal structure and fractal dynamics may be important organizing principles in normal physiology and that certain pathologies, including ventricular fibrillation, represent a class of 'pathological periodicities'. Some laboratory work bearing on the relation of nonlinear analysis to physiological and pathophysiological data is briefly reviewed, with tentative theories and models described in reference to the mechanism of ventricular fibrillation.
Analysis of tasks for dynamic man/machine load balancing in advanced helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, C.C.
1987-10-01
This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.
NASA Technical Reports Server (NTRS)
Dubowsky, Steven
1989-01-01
An approach is described to modeling the flexibility effects in spatial mechanisms and manipulator systems. The method is based on finite element representations of the individual links in the system. However, it should be noted that conventional finite element methods and software packages will not handle the highly nonlinear dynamic behavior of these systems which results form their changing geometry. In order to design high-performance lightweight systems and their control systems, good models of their dynamic behavior which include the effects of flexibility are required.
You, Hongzhi; Wang, Da-Hui
2017-01-01
Neural networks configured with winner-take-all (WTA) competition and N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed with various dynamic characteristics of attractors underlying many cognitive functions. This paper presents a novel method for neuromorphic implementation of a two-variable WTA circuit with NMDARs aimed at implementing decision-making, working memory and hysteresis in visual perceptions. The method proposed is a dynamical system approach of circuit synthesis based on a biophysically plausible WTA model. Notably, slow and non-linear temporal dynamics of NMDAR-mediated synapses was generated. Circuit simulations in Cadence reproduced ramping neural activities observed in electrophysiological recordings in experiments of decision-making, the sustained activities observed in the prefrontal cortex during working memory, and classical hysteresis behavior during visual discrimination tasks. Furthermore, theoretical analysis of the dynamical system approach illuminated the underlying mechanisms of decision-making, memory capacity and hysteresis loops. The consistence between the circuit simulations and theoretical analysis demonstrated that the WTA circuit with NMDARs was able to capture the attractor dynamics underlying these cognitive functions. Their physical implementations as elementary modules are promising for assembly into integrated neuromorphic cognitive systems. PMID:28223913
You, Hongzhi; Wang, Da-Hui
2017-01-01
Neural networks configured with winner-take-all (WTA) competition and N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed with various dynamic characteristics of attractors underlying many cognitive functions. This paper presents a novel method for neuromorphic implementation of a two-variable WTA circuit with NMDARs aimed at implementing decision-making, working memory and hysteresis in visual perceptions. The method proposed is a dynamical system approach of circuit synthesis based on a biophysically plausible WTA model. Notably, slow and non-linear temporal dynamics of NMDAR-mediated synapses was generated. Circuit simulations in Cadence reproduced ramping neural activities observed in electrophysiological recordings in experiments of decision-making, the sustained activities observed in the prefrontal cortex during working memory, and classical hysteresis behavior during visual discrimination tasks. Furthermore, theoretical analysis of the dynamical system approach illuminated the underlying mechanisms of decision-making, memory capacity and hysteresis loops. The consistence between the circuit simulations and theoretical analysis demonstrated that the WTA circuit with NMDARs was able to capture the attractor dynamics underlying these cognitive functions. Their physical implementations as elementary modules are promising for assembly into integrated neuromorphic cognitive systems.
Topics in Modeling of Cochlear Dynamics: Computation, Response and Stability Analysis
NASA Astrophysics Data System (ADS)
Filo, Maurice G.
This thesis touches upon several topics in cochlear modeling. Throughout the literature, mathematical models of the cochlea vary according to the degree of biological realism to be incorporated. This thesis casts the cochlear model as a continuous space-time dynamical system using operator language. This framework encompasses a wider class of cochlear models and makes the dynamics more transparent and easier to analyze before applying any numerical method to discretize space. In fact, several numerical methods are investigated to study the computational efficiency of the finite dimensional realizations in space. Furthermore, we study the effects of the active gain perturbations on the stability of the linearized dynamics. The stability analysis is used to explain possible mechanisms underlying spontaneous otoacoustic emissions and tinnitus. Dynamic Mode Decomposition (DMD) is introduced as a useful tool to analyze the response of nonlinear cochlear models. Cochlear response features are illustrated using DMD which has the advantage of explicitly revealing the spatial modes of vibrations occurring in the Basilar Membrane (BM). Finally, we address the dynamic estimation problem of BM vibrations using Extended Kalman Filters (EKF). Due to the limitations of noninvasive sensing schemes, such algorithms are inevitable to estimate the dynamic behavior of a living cochlea.
Large Angle Transient Dynamics (LATDYN) user's manual
NASA Technical Reports Server (NTRS)
Abrahamson, A. Louis; Chang, Che-Wei; Powell, Michael G.; Wu, Shih-Chin; Bingel, Bradford D.; Theophilos, Paula M.
1991-01-01
A computer code for modeling the large angle transient dynamics (LATDYN) of structures was developed to investigate techniques for analyzing flexible deformation and control/structure interaction problems associated with large angular motions of spacecraft. This type of analysis is beyond the routine capability of conventional analytical tools without simplifying assumptions. In some instances, the motion may be sufficiently slow and the spacecraft (or component) sufficiently rigid to simplify analyses of dynamics and controls by making pseudo-static and/or rigid body assumptions. The LATDYN introduces a new approach to the problem by combining finite element structural analysis, multi-body dynamics, and control system analysis in a single tool. It includes a type of finite element that can deform and rotate through large angles at the same time, and which can be connected to other finite elements either rigidly or through mechanical joints. The LATDYN also provides symbolic capabilities for modeling control systems which are interfaced directly with the finite element structural model. Thus, the nonlinear equations representing the structural model are integrated along with the equations representing sensors, processing, and controls as a coupled system.
Dynamic Energy Loss Characteristics in the Native Aortic Valve
NASA Astrophysics Data System (ADS)
Hwai Yap, Choon; Dasi, Laksmi P.; Yoganathan, Ajit P.
2009-11-01
Aortic Valve (AV) stenosis if untreated leads to heart failure. From a mechanics standpoint, heart failure implies failure to generate sufficient mechanical power to overcome energy losses in the circulation. Thus energy efficiency-based measures are direct measures of AV disease severity, which unfortunately is not used in current clinical measures of stenosis severity. We present an analysis of the dynamic rate of energy dissipation through the AV from direct high temporal resolution measurements of flow and pressure drop across the AV in a pulsatile left heart setup. Porcine AV was used and measurements at various conditions were acquired: varying stroke volumes; heart rates; and stenosis levels. Energy dissipation waveform has a distinctive pattern of being skewed towards late systole, attributed to the explosive growth of flow instabilities from adverse pressure gradient. Increasing heart rate and stroke volume increases energy dissipation, but does not alter the normalized shape of the dissipation temporal profile. Stenosis increases energy dissipation and also alters the normalized shape of dissipation waveform with significantly more losses during late acceleration phase. Since stenosis produces a departure from the signature dissipation waveform shape, dynamic energy dissipation analysis can be extended into a clinical tool for AV evaluation.
Ye, Jianfeng; Liang, Junyu; Wang, Liang; Markou, Giorgos
2018-07-01
To understand the mechanism of enhanced nitrogen removal by photo-sequencing batch reactors (photo-SBRs), which incorporated microalgal photosynthetic oxygenation into the aerobic phases of a conventional cycle, this study performed comprehensive analysis of one-cycle dynamics. Under a low aeration intensity (about 0.02 vvm), a photo-SBR, illuminated with light at 92.27 μ·mol·m -2 ·s -1 , could remove 99.45% COD, 99.93% NH 4 + -N, 90.39% TN, and 95.17% TP, while the control SBR could only remove 98.36% COD, 83.51% NH 4 + -N, 78.96% TN, and 97.75% TP, for a synthetic domestic sewage. The specific oxygen production rate (SOPR) of microalgae in the photo-SBR could reach 6.63 fmol O 2 ·cell -1 ·h -1 . One-cycle dynamics shows that the enhanced nitrogen removal by photo-SBRs is related to photosynthetic oxygenation, resulting in strengthened nitrification, instead of direct nutrient uptake by microalgae. A too high light or aeration intensity could deteriorate anoxic conditions and thus adversely affect the removal of TN and TP in photo-SBRs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.
2018-04-01
Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.
Unraveling protein catalysis through neutron diffraction
NASA Astrophysics Data System (ADS)
Myles, Dean
Neutron scattering and diffraction are exquisitely sensitive to the location, concentration and dynamics of hydrogen atoms in materials and provide a powerful tool for the characterization of structure-function and interfacial relationships in biological systems. Modern neutron scattering facilities offer access to a sophisticated, non-destructive suite of instruments for biophysical characterization that provide spatial and dynamic information spanning from Angstroms to microns and from picoseconds to microseconds, respectively. Applications range from atomic-resolution analysis of individual hydrogen atoms in enzymes, through to multi-scale analysis of hierarchical structures and assemblies in biological complexes, membranes and in living cells. Here we describe how the precise location of protein and water hydrogen atoms using neutron diffraction provides a more complete description of the atomic and electronic structures of proteins, enabling key questions concerning enzyme reaction mechanisms, molecular recognition and binding and protein-water interactions to be addressed. Current work is focused on understanding how molecular structure and dynamics control function in photosynthetic, cell signaling and DNA repair proteins. We will highlight recent studies that provide detailed understanding of the physiochemical mechanisms through which proteins recognize ligands and catalyze reactions, and help to define and understand the key principles involved.
Kinematic and Dynamic Analysis of High-Speed Intermittent-Motion Mechanisms.
1984-01-16
intermittent-motion mechanisms which -"have potential application to the high-speed automatic weapon system , and an investigation on the workspace of a robotic...manipulator system . The problems of this investigation belong to a selected group of unsolved or partially solved problems which are relevant and...design of high-speed machinery and automated manufacturing systems . Accession For IiTIS GRA&I DTIC TAB Unamounced 0 Justificatio By_, Distribut ion
Dynamic Crushing Response of Closed-cell Aluminium Foam at Variable Strain Rates
NASA Astrophysics Data System (ADS)
Islam, M. A.; Kader, M. A.; Escobedo, J. P.; Hazell, P. J.; Appleby-Thomas, G. J.; Quadir, M. Z.
2015-06-01
The impact response of aluminium foams is essential for assessing their crashworthiness and energy absorption capacity for potential applications. The dynamic compactions of closed-cell aluminium foams (CYMAT) have been tested at variable strain rates. Microstructural characterization has also been carried out. The low strain rate impact test has been carried out using drop weight experiments while the high strain compaction test has been carried out via plate impact experiments. The post impacted samples have been examined using optical and electron microscopy to observe the microstructural changes during dynamic loading. This combination of dynamic deformation during impact and post impact microstructural analysis helped to evaluate the pore collapse mechanism and impact energy absorption characteristics.
NASA Astrophysics Data System (ADS)
Liu, Yingyi; Yuan, Haiwen; Zhang, Qingjie; Chen, Degui; Yuan, Haibin
The dynamic characteristics are the key issues in the optimum design of a permanent magnetic actuator (PMA). A new approach to forecast the dynamic characteristics of the multilink PMA is proposed. By carrying out further developments of ADAMS and ANSOFT, a mathematic calculation model describing the coupling of mechanical movement, electric circuit and magnetic field considering eddy current effect, is constructed. With this model, the dynamic characteristics of the multilink PMA are calculated and compared with the experimental results. Factors that affect the opening time of the multilink PMA are analyzed with the model as well. The method is capable of providing a reference for the design of the PMA.
Mechanical properties of kenaf composites using dynamic mechanical analysis
NASA Astrophysics Data System (ADS)
Loveless, Thomas A.
Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.
Analysis of Functional Coupling: Mitochondrial Creatine Kinase and Adenine Nucleotide Translocase
Vendelin, Marko; Lemba, Maris; Saks, Valdur A.
2004-01-01
The mechanism of functional coupling between mitochondrial creatine kinase (MiCK) and adenine nucleotide translocase (ANT) in isolated heart mitochondria is analyzed. Two alternative mechanisms are studied: 1), dynamic compartmentation of ATP and ADP, which assumes the differences in concentrations of the substrates between intermembrane space and surrounding solution due to some diffusion restriction and 2), direct transfer of the substrates between MiCK and ANT. The mathematical models based on these possible mechanisms were composed and simulation results were compared with the available experimental data. The first model, based on a dynamic compartmentation mechanism, was not sufficient to reproduce the measured values of apparent dissociation constants of MiCK reaction coupled to oxidative phosphorylation. The second model, which assumes the direct transfer of substrates between MiCK and ANT, is shown to be in good agreement with experiments—i.e., the second model reproduced the measured constants and the estimated ADP flux, entering mitochondria after the MiCK reaction. This model is thermodynamically consistent, utilizing the free energy profiles of reactions. The analysis revealed the minimal changes in the free energy profile of the MiCK-ANT interaction required to reproduce the experimental data. A possible free energy profile of the coupled MiCK-ANT system is presented. PMID:15240503
Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder
Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin
2017-01-01
Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced (p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications. PMID:29186047
Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder.
Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin
2017-11-29
Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced ( p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.
Exactly Solvable Models in Many-Body Theory
NASA Astrophysics Data System (ADS)
March, N. H.; Angilella, G. G. N.
2016-06-01
This book is an introduction to wave dynamics as they apply to earthquakes, among the scariest, most unpredictable, and deadliest natural phenomena on Earth. Since studying seismic activity is essentially a study of wave dynamics, this text starts with a discussion of types and representations, including wave-generation mechanics, superposition, and spectral analysis. Simple harmonic motion is used to analyze the mechanisms of wave propagation, and driven and damped systems are used to model the decay rates of various modal frequencies in different media. Direct correlation to earthquakes in California, Mexico, and Japan is used to illustrate key issues, and actual data from an event in California is presented and analyzed. Our Earth is a dynamic and changing planet, and seismic activity is the result. Hundreds of waves at different frequencies, modes, and amplitudes travel through a variety of different media, from solid rock to molten metals. Each media responds differently to each mode; consequently the result is an enormously complicated dynamic behavior. Earthquakes should serve well as a complimentary text for an upper-school course covering waves and wave mechanics, including sound and acoustics and basic geology. The mathematical requirement includes trigonometry and series summations, which should be accessible to most upper-school and college students. Animation, sound files, and videos help illustrate major topics.
LeVine, Michael V.; Weinstein, Harel
2014-01-01
Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT) analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i)-channels for long-distance information sharing between functional sites, and (ii)-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD) trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems. PMID:24785005
Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.
Zhang, Luyan; Liang, Yi; Li, Fali; Sun, Hongbin; Peng, Wenjing; Du, Peishan; Si, Yajing; Song, Limeng; Yu, Liang; Xu, Peng
2017-01-01
The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.
Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.
Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-01-02
Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.
Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation
Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-01-01
ABSTRACT Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model. PMID:27690290
Order parameter analysis of synchronization transitions on star networks
NASA Astrophysics Data System (ADS)
Chen, Hong-Bin; Sun, Yu-Ting; Gao, Jian; Xu, Can; Zheng, Zhi-Gang
2017-12-01
The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe-Strogatz transformation, Ott-Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.
NASA Astrophysics Data System (ADS)
Benedito, Adolfo; Buezas, Ignacio; Giménez, Enrique; Galindo, Begoña
2010-06-01
The dispersion of multi-walled carbon nanotubes in thermoplastic polyurethanes has been done in co-rotative twin screw extruder through a melt blending process. A specific experimental design was prepared taking into account different compounding parameters such as feeding, temperature profile, screw speed, screw design, and carbon nanotube loading. The obtained samples were characterized by thermogravimetric analysis (TGA), light transmission microscopy, dynamic rheometry, and dynamic mechanical analysis. The objective of this work has been to study the dispersion quality of the carbon nanotubes and the effect of different compounding parameters to optimize them for industrial scale-up to final applications.
Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi
2017-05-05
Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.
Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin
2015-01-01
At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 signaling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signaling to dynamically regulate the density of leader cells during collective cell migration. PMID:25766473
Coupling of Fast and Slow Modes in the Reaction Pathway of the Minimal Hammerhead Ribozyme Cleavage
Radhakrishnan, Ravi
2007-01-01
By employing classical molecular dynamics, correlation analysis of coupling between slow and fast dynamical modes, and free energy (umbrella) sampling using classical as well as mixed quantum mechanics molecular mechanics force fields, we uncover a possible pathway for phosphoryl transfer in the self-cleaving reaction of the minimal hammerhead ribozyme. The significance of this pathway is that it initiates from the minimal hammerhead crystal structure and describes the reaction landscape as a conformational rearrangement followed by a covalent transformation. The delineated mechanism is catalyzed by two metal (Mg2+) ions, proceeds via an in-line-attack by CYT 17 O2′ on the scissile phosphorous (ADE 1.1 P), and is therefore consistent with the experimentally observed inversion configuration. According to the delineated mechanism, the coupling between slow modes involving the hammerhead backbone with fast modes in the cleavage site appears to be crucial for setting up the in-line nucleophilic attack. PMID:17545240
NASA Astrophysics Data System (ADS)
Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi
2017-05-01
Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.
Mast, Fred D.; Ratushny, Alexander V.
2014-01-01
Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology. PMID:25225336
Dynamic evolution and biogenesis of small RNAs during sex reversal.
Liu, Jie; Luo, Majing; Sheng, Yue; Hong, Qiang; Cheng, Hanhua; Zhou, Rongjia
2015-05-06
Understanding origin, evolution and functions of small RNA (sRNA) genes has been a great challenge in the past decade. Molecular mechanisms underlying sexual reversal in vertebrates, particularly sRNAs involved in this process, are largely unknown. By deep-sequencing of small RNA transcriptomes in combination with genomic analysis, we identified a large amount of piRNAs and miRNAs including over 1,000 novel miRNAs, which were differentially expressed during gonad reversal from ovary to testis via ovotesis. Biogenesis and expressions of miRNAs were dynamically changed during the reversal. Notably, phylogenetic analysis revealed dynamic expansions of miRNAs in vertebrates and an evolutionary trajectory of conserved miR-17-92 cluster in the Eukarya. We showed that the miR-17-92 cluster in vertebrates was generated through multiple duplications from ancestor miR-92 in invertebrates Tetranychus urticae and Daphnia pulex from the Chelicerata around 580 Mya. Moreover, we identified the sexual regulator Dmrt1 as a direct target of the members miR-19a and -19b in the cluster. These data suggested dynamic biogenesis and expressions of small RNAs during sex reversal and revealed multiple expansions and evolutionary trajectory of miRNAs from invertebrates to vertebrates, which implicate small RNAs in sexual reversal and provide new insight into evolutionary and molecular mechanisms underlying sexual reversal.
Static and dynamic stability of pneumatic vibration isolators and systems of isolators
NASA Astrophysics Data System (ADS)
Ryaboy, Vyacheslav M.
2014-01-01
Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.
Cumulative (Dis)Advantage and the Matthew Effect in Life-Course Analysis
Bask, Miia; Bask, Mikael
2015-01-01
To foster a deeper understanding of the mechanisms behind inequality in society, it is crucial to work with well-defined concepts associated with such mechanisms. The aim of this paper is to define cumulative (dis)advantage and the Matthew effect. We argue that cumulative (dis)advantage is an intra-individual micro-level phenomenon, that the Matthew effect is an inter-individual macro-level phenomenon and that an appropriate measure of the Matthew effect focuses on the mechanism or dynamic process that generates inequality. The Matthew mechanism is, therefore, a better name for the phenomenon, where we provide a novel measure of the mechanism, including a proof-of-principle analysis using disposable personal income data. Finally, because socio-economic theory should be able to explain cumulative (dis)advantage and the Matthew mechanism when they are detected in data, we discuss the types of models that may explain the phenomena. We argue that interactions-based models in the literature traditions of analytical sociology and statistical mechanics serve this purpose. PMID:26606386
Acoustic emission from a growing crack
NASA Technical Reports Server (NTRS)
Jacobs, Laurence J.
1989-01-01
An analytical method is being developed to determine the signature of an acoustic emission waveform from a growing crack and the results of this analysis are compared to experimentally obtained values. Within the assumptions of linear elastic fracture mechanics, a two dimensional model is developed to examine a semi-infinite crack that, after propagating with a constant velocity, suddenly stops. The analytical model employs an integral equation method for the analysis of problems of dynamic fracture mechanics. The experimental procedure uses an interferometric apparatus that makes very localized absolute measurements with very high fidelity and without acoustically loading the specimen.
Analytical Ultrasonics in Materials Research and Testing
NASA Technical Reports Server (NTRS)
Vary, A.
1986-01-01
Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.
Direct Observation of Markovian Behavior of the Mechanical Unfolding of Individual Proteins
Cao, Yi; Kuske, Rachel; Li, Hongbin
2008-01-01
Single-molecule force-clamp spectroscopy is a valuable tool to analyze unfolding kinetics of proteins. Previous force-clamp spectroscopy experiments have demonstrated that the mechanical unfolding of ubiquitin deviates from the generally assumed Markovian behavior and involves the features of glassy dynamics. Here we use single molecule force-clamp spectroscopy to study the unfolding kinetics of a computationally designed fast-folding mutant of the small protein GB1, which shares a similar β-grasp fold as ubiquitin. By treating the mechanical unfolding of polyproteins as the superposition of multiple identical Poisson processes, we developed a simple stochastic analysis approach to analyze the dwell time distribution of individual unfolding events in polyprotein unfolding trajectories. Our results unambiguously demonstrate that the mechanical unfolding of NuG2 fulfills all criteria of a memoryless Markovian process. This result, in contrast with the complex mechanical unfolding behaviors observed for ubiquitin, serves as a direct experimental demonstration of the Markovian behavior for the mechanical unfolding of a protein and reveals the complexity of the unfolding dynamics among structurally similar proteins. Furthermore, we extended our method into a robust and efficient pseudo-dwell-time analysis method, which allows one to make full use of all the unfolding events obtained in force-clamp experiments without categorizing the unfolding events. This method enabled us to measure the key parameters characterizing the mechanical unfolding energy landscape of NuG2 with improved precision. We anticipate that the methods demonstrated here will find broad applications in single-molecule force-clamp spectroscopy studies for a wide range of proteins. PMID:18375518
Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; Gotfryd, Kamil; Khelashvili, George; Gether, Ulrik; Loland, Claus J.; Javitch, Jonathan A.; Noskov, Sergei; Weinstein, Harel; Shi, Lei
2015-01-01
Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na+ binding and transport (i.e. replacing Na+ with Li+ or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na+ cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na+ dependence. Thus, the detailed AIN generated from our method is shown to connect Na+ binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na+ binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function. PMID:25869126
Emergence of bursts and communities in evolving weighted networks.
Jo, Hang-Hyun; Pan, Raj Kumar; Kaski, Kimmo
2011-01-01
Understanding the patterns of human dynamics and social interaction and the way they lead to the formation of an organized and functional society are important issues especially for techno-social development. Addressing these issues of social networks has recently become possible through large scale data analysis of mobile phone call records, which has revealed the existence of modular or community structure with many links between nodes of the same community and relatively few links between nodes of different communities. The weights of links, e.g., the number of calls between two users, and the network topology are found correlated such that intra-community links are stronger compared to the weak inter-community links. This feature is known as Granovetter's "The strength of weak ties" hypothesis. In addition to this inhomogeneous community structure, the temporal patterns of human dynamics turn out to be inhomogeneous or bursty, characterized by the heavy tailed distribution of time interval between two consecutive events, i.e., inter-event time. In this paper, we study how the community structure and the bursty dynamics emerge together in a simple evolving weighted network model. The principal mechanisms behind these patterns are social interaction by cyclic closure, i.e., links to friends of friends and the focal closure, links to individuals sharing similar attributes or interests, and human dynamics by task handling process. These three mechanisms have been implemented as a network model with local attachment, global attachment, and priority-based queuing processes. By comprehensive numerical simulations we show that the interplay of these mechanisms leads to the emergence of heavy tailed inter-event time distribution and the evolution of Granovetter-type community structure. Moreover, the numerical results are found to be in qualitative agreement with empirical analysis results from mobile phone call dataset.
Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; ...
2015-04-13
Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na +-dependent reuptake of released neurotransmitters. Previous studies suggested that Na +-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. Here we describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT,more » two different perturbations disrupting Na+ binding and transport ( i.e. replacing Na + with Li + or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na + cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na + dependence. Furthermore, the detailed AIN generated from our method is shown to connect Na + binding with global conformational changes that are critical for the transport mechanism. Lastly, that the AIN between the Na + binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jianbo
The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s{sup −1} and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationshipmore » between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.« less
Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo
2014-01-01
The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers. PMID:25502697
Ghasaban, S; Atai, M; Imani, M; Zandi, M; Shokrgozar, M-A
2011-11-01
The study investigates the photo-polymerization shrinkage behavior, dynamic mechanical properties, and biocompatibility of cyanoacrylate bioadhesives containing POSS nanostructures and TMPTMA as crosslinking agents. Adhesives containing 2-octyl cyanoacrylate (2-OCA) and different percentages of POSS nanostructures and TMPTMA as crosslinking agents were prepared. The 1-phenyl-1, 2-propanedione (PPD) was incorporated as photo-initiator into the adhesive in 1.5, 3, and 4 wt %. The shrinkage strain of the specimens was measured using bonded-disk technique. Shrinkage strain, shrinkage strain rate, maximum and time at maximum shrinkage strain rate were measured and compared. Mechanical properties of the adhesives were also studied using dynamic mechanical thermal analysis (DMTA). Biocompatibility of the adhesives was examined by MTT method. The results showed that shrinkage strain increased with increasing the initiator concentration up to 3 wt % in POSS-containing and 1.5 wt % in TMPTMA-containing specimens and plateaued out at higher concentrations. By increasing the crosslinking agent, shrinkage strain, and shrinkage strain rate increased and the time at maximum shrinkage strain rate decreased. The study indicates that the incorporation of crosslinking agents into the cyanoacrylate adhesives resulted in improved mechanical properties. Preliminary MTT studies also revealed better biocompatibility profile for the adhesives containing crosslinking agents comparing to the neat specimens. Copyright © 2011 Wiley Periodicals, Inc.
Wavelet Analysis for Molecular Dynamics
2015-06-01
Research Directorate, ARL Jaydeep P Bardhan Dept. of Mechanical and Industrial Engineering, Northeastern University Boston, MA Ahmed E Ismail Dept. of...Rinderspacher, Jaydeep P Bardhan , and Ahmed E Ismail ARL-MR-0891 Approved for public release; distribution is unlimited. October 2013–September 2014 US Army
NASA Astrophysics Data System (ADS)
Wang, Yi-Ming; Chen, Chung-Hsien
2012-10-01
In industry, many applications of planar mechanisms such as slider-crank mechanisms have been found in thousands of devices. Typically due to the effect of inertia, these elastic links are subject to axial and transverse periodic forces. Vibrations of these mechanisms are the main source of noise and fatigue that lead to short useful life and failure. Hence, avoiding the occurrence of large amplitude vibration of such systems is of great importance. Recently, the use of specified materials, which are periodically embedded into structures, to satisfy designing requirement has been the subject of many interests. Therefore, the objective of this paper is to present analytical and numerical methodologies to study the dynamics of a slider-crank mechanism with an axially periodic array non-homogeneous coupler; the proposed passive system is introduced to reduce the region of parametric resonance of the mechanism. The Fourier-series based approach and Newtonian mechanics are employed in the analysis. An attention is given to the influence produced by the in-homogeneity of materials of the periodic array to the primary region of dynamic instability of the system. Result of present study indicates that under the same operational condition, the commensurability between the natural frequency of the mechanism and the excitation frequency can be weakened by varying the material properties of the periodic array. The in-homogeneity of materials of the periodic array can be treated as a tuning parameter of the natural frequency of the slider-crank mechanism. With proper choice of the material properties and thickness of the embedded laminas of the periodic array, the occurrence of parametric resonance can be suppressed such that the growth of small amplitude vibration into large motion regime is attenuated.
Woloszyk, Anna; Holsten Dircksen, Sabrina; Bostanci, Nagihan; Müller, Ralph; Hofmann, Sandra; Mitsiadis, Thimios A
2014-01-01
Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone regeneration in mechanically loaded tissues is required.
Nonlinear Analysis of Squeeze Film Dampers Applied to Gas Turbine Helicopter Engines.
1980-11-01
calculate the stability (complex roots) of a multi-level gas turbine with aero- dynamic excitation. This program has been applied to the space shuttle...such phenomena as oil film whirl. This paper devlops an analysis technique incorporating modal analysis and fast Fourier transform tech- niques to...USING A SQUEEZE FILM BEARING By M. A. Simpson Research Engineer L. E. Barrett Reserach Assistant Professor Department of Mechanical and Aerospace
NASA Technical Reports Server (NTRS)
Book, W. J.
1974-01-01
The Flexible Manipulator Analysis Program (FMAP) is a collection of FORTRAN coding to allow easy analysis of the flexible dynamics of mechanical arms. The user specifies the arm configuration and parameters and any or all of several frequency domain analyses to be performed, while the time domain impulse response is obtained by inverse Fourier transformation of the frequency response. A detailed explanation of how to use FMAP is provided.
A Mechanical Power Flow Capability for the Finite Element Code NASTRAN
1989-07-01
perimental methods. statistical energy analysis , the finite element method, and a finite element analog-,y using heat conduction equations. Experimental...weights and inertias of the transducers attached to an experimental structure may produce accuracy problems. Statistical energy analysis (SEA) is a...405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Sistems, The M.I.T. Press, (1975). 9. Mickol, J.D., and R.J. Bernhard, "An
Unraveling the role of protein dynamics in dihydrofolate reductase catalysis
Luk, Louis Y. P.; Javier Ruiz-Pernía, J.; Dawson, William M.; Roca, Maite; Loveridge, E. Joel; Glowacki, David R.; Harvey, Jeremy N.; Mulholland, Adrian J.; Tuñón, Iñaki; Moliner, Vicent; Allemann, Rudolf K.
2013-01-01
Protein dynamics have controversially been proposed to be at the heart of enzyme catalysis, but identification and analysis of dynamical effects in enzyme-catalyzed reactions have proved very challenging. Here, we tackle this question by comparing an enzyme with its heavy (15N, 13C, 2H substituted) counterpart, providing a subtle probe of dynamics. The crucial hydride transfer step of the reaction (the chemical step) occurs more slowly in the heavy enzyme. A combination of experimental results, quantum mechanics/molecular mechanics simulations, and theoretical analyses identify the origins of the observed differences in reactivity. The generally slightly slower reaction in the heavy enzyme reflects differences in environmental coupling to the hydride transfer step. Importantly, the barrier and contribution of quantum tunneling are not affected, indicating no significant role for “promoting motions” in driving tunneling or modulating the barrier. The chemical step is slower in the heavy enzyme because protein motions coupled to the reaction coordinate are slower. The fact that the heavy enzyme is only slightly less active than its light counterpart shows that protein dynamics have a small, but measurable, effect on the chemical reaction rate. PMID:24065822
Dynamic Simulation Research on Chain Drive Mechanism of Corn Seeder Based on ADAMS
NASA Astrophysics Data System (ADS)
Wang, Y. B.; Jia, H. P.
2017-12-01
In order to reduce the damage to the chain and improve the seeding quality of the seeding machine, the corn seeder has the characteristics of the seeding quality and some technical indexes in the work of the corn seeding machine. The dynamic analysis of the chain drive mechanism is carried out by using the dynamic virtual prototype. In this paper, the speed of the corn planter is 5km/h, and the speed of the simulated knuckle is 0.1~0.9s. The velocity is 0.12m/s, which is equal to the chain speed when the seeder is running normally. Of the dynamic simulation of the movement and the actual situation is basically consistent with the apparent speed of the drive wheel has changed the acceleration and additional dynamic load, the chain drive has a very serious damage, and the maximum load value of 47.28N, in order to reduce the damage to the chain, As far as possible so that the sowing machine in the work to maintain a reasonable uniform speed, to avoid a greater acceleration, the corn sowing machine drive the design of a certain reference.
PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM
NASA Astrophysics Data System (ADS)
Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.
2018-02-01
This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.
In-plane free vibration analysis of cable arch structure
NASA Astrophysics Data System (ADS)
Zhao, Yueyu; Kang, Houjun
2008-05-01
Cable-stayed arch bridge is a new type of composite bridge, which utilizes the mechanical characters of cable and arch. Based on the supporting members of cable-stayed arch bridge and of erection of arch bridge using of the cantilever construction method with tiebacks, we propose a novel mechanical model of cable-arch structure. In this model, the equations governing vibrations of the cable-arch are derived according to Hamilton's principle for dynamic problems in elastic body under equilibrium state. Then, the program of solving the dynamic governing equations is ultimately established by the transfer matrix method for free vibration of uniform and variable cross-section, and the internal characteristics of the cable-arch are investigated. After analyzing step by step, the research results approve that the program is accurate; meanwhile, the mechanical model and method are both valuable and significant not only in theoretical research and calculation but also in design of engineering.