Dynamically stratified Monte Carlo forecasting
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Suarez, Max; Schemm, Jae-Kyung; Epstein, Edward
1992-01-01
A new method for performing Monte Carlo forecasts is introduced. The method, called dynamic stratification, selects initial perturbations based on a stratification of the error distribution. A simple implementation is presented in which the error distribution used for the stratification is estimated from a linear model derived from a large ensemble of 12-h forecasts with the full dynamic model. The stratification thus obtained is used to choose a small subsample of initial states with which to perform the dynamical Monte Carlo forecasts. Several test cases are studied using a simple two-level general circulation model with uncertain initial conditions. It is found that the method provides substantial reductions in the sampling error of the forecast mean and variance when compared to the more traditional approach of choosing the initial perturbations at random. The degree of improvement, however, is sensitive to the nature of the initial error distribution and to the base state. In practice the method may be viable only if the computational burden involved in obtaining an adequate estimate of the error distribution is shared with the data-assimilation procedure.
Markov Chain Monte Carlo from Lagrangian Dynamics
Lan, Shiwei; Stathopoulos, Vasileios; Shahbaba, Babak; Girolami, Mark
2014-01-01
Hamiltonian Monte Carlo (HMC) improves the computational e ciency of the Metropolis-Hastings algorithm by reducing its random walk behavior. Riemannian HMC (RHMC) further improves the performance of HMC by exploiting the geometric properties of the parameter space. However, the geometric integrator used for RHMC involves implicit equations that require fixed-point iterations. In some cases, the computational overhead for solving implicit equations undermines RHMC's benefits. In an attempt to circumvent this problem, we propose an explicit integrator that replaces the momentum variable in RHMC by velocity. We show that the resulting transformation is equivalent to transforming Riemannian Hamiltonian dynamics to Lagrangian dynamics. Experimental results suggests that our method improves RHMC's overall computational e ciency in the cases considered. All computer programs and data sets are available online (http://www.ics.uci.edu/~babaks/Site/Codes.html) in order to allow replication of the results reported in this paper. PMID:26240515
Accelerated Monte Carlo by Embedded Cluster Dynamics
NASA Astrophysics Data System (ADS)
Brower, R. C.; Gross, N. A.; Moriarty, K. J. M.
1991-07-01
We present an overview of the new methods for embedding Ising spins in continuous fields to achieve accelerated cluster Monte Carlo algorithms. The methods of Brower and Tamayo and Wolff are summarized and variations are suggested for the O( N) models based on multiple embedded Z2 spin components and/or correlated projections. Topological features are discussed for the XY model and numerical simulations presented for d=2, d=3 and mean field theory lattices.
Pattern Recognition for a Flight Dynamics Monte Carlo Simulation
NASA Technical Reports Server (NTRS)
Restrepo, Carolina; Hurtado, John E.
2011-01-01
The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.
Bias in Dynamic Monte Carlo Alpha Calculations
Sweezy, Jeremy Ed; Nolen, Steven Douglas; Adams, Terry R.; Trahan, Travis John
2015-02-06
A 1/N bias in the estimate of the neutron time-constant (commonly denoted as α) has been seen in dynamic neutronic calculations performed with MCATK. In this paper we show that the bias is most likely caused by taking the logarithm of a stochastic quantity. We also investigate the known bias due to the particle population control method used in MCATK. We conclude that this bias due to the particle population control method is negligible compared to other sources of bias.
Relaxation dynamics in small clusters: A modified Monte Carlo approach
Pal, Barnana
2008-02-01
Relaxation dynamics in two-dimensional atomic clusters consisting of mono-atomic particles interacting through Lennard-Jones (L-J) potential has been investigated using Monte Carlo simulation. A modification of the conventional Metropolis algorithm is proposed to introduce realistic thermal motion of the particles moving in the interacting L-J potential field. The proposed algorithm leads to a quick equilibration from the nonequilibrium cluster configuration in a certain temperature regime, where the relaxation time ({tau}), measured in terms of Monte Carlo Steps (MCS) per particle, vary inversely with the square root of system temperature ({radical}T) and pressure (P); {tau} {proportional_to} (P{radical}T){sup -1}. From this a realistic correlation between MCS and time has been predicted.
Monte Carlo Study of Real Time Dynamics on the Lattice
NASA Astrophysics Data System (ADS)
Alexandru, Andrei; Başar, Gökçe; Bedaque, Paulo F.; Vartak, Sohan; Warrington, Neill C.
2016-08-01
Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from a highly oscillatory phase of the path integral. In this Letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and, in principle, applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.
Dynamic Monte Carlo description of thermal desorption processes
NASA Astrophysics Data System (ADS)
Weinketz, Sieghard
1994-07-01
The applicability of the dynamic Monte Carlo method of Fichthorn and Weinberg, in which the time evolution of a system is described in terms of the absolute number of different microscopic possible events and their associated transition rates, is discussed for the case of thermal desorption simulations. It is shown that the definition of the time increment at each successful event leads naturally to the macroscopic differential equation of desorption, in the case of simple first- and second-order processes in which the only possible events are desorption and diffusion. This equivalence is numerically demonstrated for a second-order case. In the sequence, the equivalence of this method with the Monte Carlo method of Sales and Zgrablich for more complex desorption processes, allowing for lateral interactions between adsorbates, is shown, even though the dynamic Monte Carlo method does not bear their limitation of a rapid surface diffusion condition, thus being able to describe a more complex ``kinetics'' of surface reactive processes, and therefore be applied to a wider class of phenomena, such as surface catalysis.
Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations
O'Brien, M; Taylor, J; Procassini, R
2004-12-22
The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; ...
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.
2010-10-20
The "Monte Carlo Benchmark" (MCB) is intended to model the computatiional performance of Monte Carlo algorithms on parallel architectures. It models the solution of a simple heuristic transport equation using a Monte Carlo technique. The MCB employs typical features of Monte Carlo algorithms such as particle creation, particle tracking, tallying particle information, and particle destruction. Particles are also traded among processors using MPI calls.
Thermally activated repolarization of antiferromagnetic particles: Monte Carlo dynamics
NASA Astrophysics Data System (ADS)
Soloviev, S. V.; Popkov, A. F.; Knizhnik, A. A.; Iskandarova, I. M.
2017-02-01
Based on the equation of motion of an antiferromagnetic moment, taking into account a random field of thermal fluctuations, we propose a Monte Carlo (MC) scheme for the numerical simulation of the evolutionary dynamics of an antiferromagnetic particle, corresponding to the Langevin dynamics in the Kramers theory for the two-well potential. Conditions for the selection of the sphere of fluctuations of random deviations of the antiferromagnetic vector at an MC time step are found. A good agreement with the theory of Kramers thermal relaxation is demonstrated for varying temperatures and heights of energy barrier over a wide range of integration time steps in an overdamped regime. Based on the developed scheme, we performed illustrative calculations of the temperature drift of the exchange bias under the fast annealing of a ferromagnet-antiferromagnet structure, taking into account the random variation of anisotropy directions in antiferromagnetic grains and their sizes. The proposed approach offers promise for modeling magnetic sensors and spintronic memory devices containing heterostructures with antiferromagnetic layers.
Surface reconstruction in reactive dynamics: A kinetic Monte Carlo approach
NASA Astrophysics Data System (ADS)
Noussiou, V. K.; Provata, A.
2007-07-01
The oscillatory CO oxidation reaction on the restructuring surface of Pt(1 0 0) is studied through a mesoscopic kinetic Monte Carlo (KMC) approach. The present model is an extension of the standard ZGB model with specific attention to the emergence of oscillations in surface reactions. A square and a purely hexagonal lattice are used as substrates on which the CO oxidation reaction steps take place. The dynamics of the reaction on the two substrates exhibit the ZGB kinetic phase transitions, at different kinetic parameter values for each substrate. Surface reconstruction is modelled through switching between the two lattice types. Oscillations are produced in those parametric areas where the steady state concentrations on the two substrates are considerably different. The parametric area where notable oscillations are observed is narrow, but is greatly enhanced when different sticking coefficients of oxygen are taken into account. CO diffusion introduced microscopically to the model on the hexagonal lattice shifts the kinetic transition points and increases considerably the time needed to reach the steady state.
Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations
Radak, Brian K.; Roux, Benoît
2016-10-07
Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance. An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Lastly, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.
Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations
Radak, Brian K.; Roux, Benoît
2016-10-07
Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance.more » An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Lastly, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.« less
Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Radak, Brian K.; Roux, Benoît
2016-10-01
Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance. An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Finally, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.
Monte Carlo-based simulation of dynamic jaws tomotherapy
Sterpin, E.; Chen, Y.; Chen, Q.; Lu, W.; Mackie, T. R.; Vynckier, S.
2011-09-15
Purpose: Original TomoTherapy systems may involve a trade-off between conformity and treatment speed, the user being limited to three slice widths (1.0, 2.5, and 5.0 cm). This could be overcome by allowing the jaws to define arbitrary fields, including very small slice widths (<1 cm), which are challenging for a beam model. The aim of this work was to incorporate the dynamic jaws feature into a Monte Carlo (MC) model called TomoPen, based on the MC code PENELOPE, previously validated for the original TomoTherapy system. Methods: To keep the general structure of TomoPen and its efficiency, the simulation strategy introduces several techniques: (1) weight modifiers to account for any jaw settings using only the 5 cm phase-space file; (2) a simplified MC based model called FastStatic to compute the modifiers faster than pure MC; (3) actual simulation of dynamic jaws. Weight modifiers computed with both FastStatic and pure MC were compared. Dynamic jaws simulations were compared with the convolution/superposition (C/S) of TomoTherapy in the ''cheese'' phantom for a plan with two targets longitudinally separated by a gap of 3 cm. Optimization was performed in two modes: asymmetric jaws-constant couch speed (''running start stop,'' RSS) and symmetric jaws-variable couch speed (''symmetric running start stop,'' SRSS). Measurements with EDR2 films were also performed for RSS for the formal validation of TomoPen with dynamic jaws. Results: Weight modifiers computed with FastStatic were equivalent to pure MC within statistical uncertainties (0.5% for three standard deviations). Excellent agreement was achieved between TomoPen and C/S for both asymmetric jaw opening/constant couch speed and symmetric jaw opening/variable couch speed, with deviations well within 2%/2 mm. For RSS procedure, agreement between C/S and measurements was within 2%/2 mm for 95% of the points and 3%/3 mm for 98% of the points, where dose is greater than 30% of the prescription dose (gamma analysis
Kalos, M.
2006-05-09
The Monte Carlo example programs VARHATOM and DMCATOM are two small, simple FORTRAN programs that illustrate the use of the Monte Carlo Mathematical technique for calculating the ground state energy of the hydrogen atom.
Inchworm Monte Carlo for exact non-adiabatic dynamics. I. Theory and algorithms
NASA Astrophysics Data System (ADS)
Chen, Hsing-Ta; Cohen, Guy; Reichman, David R.
2017-02-01
In this paper, we provide a detailed description of the inchworm Monte Carlo formalism for the exact study of real-time non-adiabatic dynamics. This method optimally recycles Monte Carlo information from earlier times to greatly suppress the dynamical sign problem. Using the example of the spin-boson model, we formulate the inchworm expansion in two distinct ways: The first with respect to an expansion in the system-bath coupling and the second as an expansion in the diabatic coupling. The latter approach motivates the development of a cumulant version of the inchworm Monte Carlo method, which has the benefit of improved scaling. This paper deals completely with methodology, while Paper II provides a comprehensive comparison of the performance of the inchworm Monte Carlo algorithms to other exact methodologies as well as a discussion of the relative advantages and disadvantages of each.
NASA Astrophysics Data System (ADS)
Chen, Hsing-Ta; Cohen, Guy; Reichman, David R.
2017-02-01
In this second paper of a two part series, we present extensive benchmark results for two different inchworm Monte Carlo expansions for the spin-boson model. Our results are compared to previously developed numerically exact approaches for this problem. A detailed discussion of convergence and error propagation is presented. Our results and analysis allow for an understanding of the benefits and drawbacks of inchworm Monte Carlo compared to other approaches for exact real-time non-adiabatic quantum dynamics.
Monte Carlo and event-driven dynamics of Brownian particles with orientational degrees of freedom.
Romano, Flavio; De Michele, Cristiano; Marenduzzo, Davide; Sanz, Eduardo
2011-09-28
Recently, a simple scaling argument was introduced that allows us to map, with some precautions, Brownian and Monte Carlo dynamics for spherical particles. Here, we extend the scaling to study systems that have orientational degrees of freedom and carefully asses its validity over a wide region of temperature and density. Our work allows us to devise a Brownian Monte Carlo algorithm that produces, to a good approximation, physically meaningful trajectories with a minimum programming effort, although at the expense of some sampling efficiency.
Brown, F.B.; Sutton, T.M.
1996-02-01
This report is composed of the lecture notes from the first half of a 32-hour graduate-level course on Monte Carlo methods offered at KAPL. These notes, prepared by two of the principle developers of KAPL`s RACER Monte Carlo code, cover the fundamental theory, concepts, and practices for Monte Carlo analysis. In particular, a thorough grounding in the basic fundamentals of Monte Carlo methods is presented, including random number generation, random sampling, the Monte Carlo approach to solving transport problems, computational geometry, collision physics, tallies, and eigenvalue calculations. Furthermore, modern computational algorithms for vector and parallel approaches to Monte Carlo calculations are covered in detail, including fundamental parallel and vector concepts, the event-based algorithm, master/slave schemes, parallel scaling laws, and portability issues.
A Glauber Monte Carlo Approach to Stock Market Dynamics
NASA Astrophysics Data System (ADS)
Castiglione, Filippo; Stauffer, Dietrich; Pandey, Ras
2001-03-01
A computer simulation model is used to study the evolution of stock price and the distribution of price fluctuation. Effects of trading momentum and price resistance are considered by a Glauber Monte Carlo approach. The price resistance is described by an elastic energy Ee = e \\cdot x \\cdot |x| while the momentum bias Ep = - b \\cdot y, where, x = (p(t) - p(0))/x_m, y = (p(t+1) - p(t))/ym with the stock price at time t, p(t), and xm and ym are the maximum absolute values up to the current time step. e and b are elastic and momentum bias coefficients. Trades are executed via the herding percolation model with the number (n_s) of trading groups depend on the size of the group, i.e., ns = N/s^τ where N is the size of the market and τ = 2.5. Probability to buy (a/2) and sell (a/2) or remain inactive (1-a) depends on the activity a with the execution probability to buy Wb = e^-E/ [1 + e^-E] and sell with 1-W_b. The distribution of price fluctuation (P(y)) shows a long time tail with a power-law, P(y) ~ y^-μ, μ ~= 4 at e = 1.0, b = 5. The volatility auto-correlation function (c(τ)) shows a reasonable behavior (positive) over several iterations.
Estimating the parameters of dynamical systems from Big Data using Sequential Monte Carlo samplers
NASA Astrophysics Data System (ADS)
Green, P. L.; Maskell, S.
2017-09-01
In this paper the authors present a method which facilitates computationally efficient parameter estimation of dynamical systems from a continuously growing set of measurement data. It is shown that the proposed method, which utilises Sequential Monte Carlo samplers, is guaranteed to be fully parallelisable (in contrast to Markov chain Monte Carlo methods) and can be applied to a wide variety of scenarios within structural dynamics. Its ability to allow convergence of one's parameter estimates, as more data is analysed, sets it apart from other sequential methods (such as the particle filter).
General purpose dynamic Monte Carlo with continuous energy for transient analysis
Sjenitzer, B. L.; Hoogenboom, J. E.
2012-07-01
For safety assessments transient analysis is an important tool. It can predict maximum temperatures during regular reactor operation or during an accident scenario. Despite the fact that this kind of analysis is very important, the state of the art still uses rather crude methods, like diffusion theory and point-kinetics. For reference calculations it is preferable to use the Monte Carlo method. In this paper the dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli4. Also, the method is extended for use with continuous energy. The first results of Dynamic Tripoli demonstrate that this kind of calculation is indeed accurate and the results are achieved in a reasonable amount of time. With the method implemented in Tripoli it is now possible to do an exact transient calculation in arbitrary geometry. (authors)
NASA Astrophysics Data System (ADS)
Guan, Fada
Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.
Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review
Paquet, Eric; Viktor, Herna L.
2015-01-01
Macromolecular structures, such as neuraminidases, hemagglutinins, and monoclonal antibodies, are not rigid entities. Rather, they are characterised by their flexibility, which is the result of the interaction and collective motion of their constituent atoms. This conformational diversity has a significant impact on their physicochemical and biological properties. Among these are their structural stability, the transport of ions through the M2 channel, drug resistance, macromolecular docking, binding energy, and rational epitope design. To assess these properties and to calculate the associated thermodynamical observables, the conformational space must be efficiently sampled and the dynamic of the constituent atoms must be simulated. This paper presents algorithms and techniques that address the abovementioned issues. To this end, a computational review of molecular dynamics, Monte Carlo simulations, Langevin dynamics, and free energy calculation is presented. The exposition is made from first principles to promote a better understanding of the potentialities, limitations, applications, and interrelations of these computational methods. PMID:25785262
Molecular dynamics and dynamic Monte-Carlo simulation of irradiation damage with focused ion beams
NASA Astrophysics Data System (ADS)
Ohya, Kaoru
2017-03-01
The focused ion beam (FIB) has become an important tool for micro- and nanostructuring of samples such as milling, deposition and imaging. However, this leads to damage of the surface on the nanometer scale from implanted projectile ions and recoiled material atoms. It is therefore important to investigate each kind of damage quantitatively. We present a dynamic Monte-Carlo (MC) simulation code to simulate the morphological and compositional changes of a multilayered sample under ion irradiation and a molecular dynamics (MD) simulation code to simulate dose-dependent changes in the backscattering-ion (BSI)/secondary-electron (SE) yields of a crystalline sample. Recent progress in the codes for research to simulate the surface morphology and Mo/Si layers intermixing in an EUV lithography mask irradiated with FIBs, and the crystalline orientation effect on BSI and SE yields relating to the channeling contrast in scanning ion microscopes, is also presented.
Kalos, M. H.; Pederiva, F.
1998-12-01
We review the fundamental challenge of fermion Monte Carlo for continuous systems, the "sign problem". We seek that eigenfunction of the many-body Schriodinger equation that is antisymmetric under interchange of the coordinates of pairs of particles. We describe methods that depend upon the use of correlated dynamics for pairs of correlated walkers that carry opposite signs. There is an algorithmic symmetry between such walkers that must be broken to create a method that is both exact and as effective as for symmetric functions, In our new method, it is broken by using different "guiding" functions for walkers of opposite signs, and a geometric correlation between steps of their walks, With a specific process of cancellation of the walkers, overlaps with antisymmetric test functions are preserved. Finally, we describe the progress in treating free-fermion systems and a fermion fluid with 14 ^{3}He atoms.
Hybrid Monte Carlo/Molecular Dynamics Simulation of a Refractory Metal High Entropy Alloy
NASA Astrophysics Data System (ADS)
Widom, Michael; Huhn, W. P.; Maiti, S.; Steurer, W.
2014-01-01
The high entropy alloy containing refractory metals Mo-Nb-Ta-W has a body-centered cubic structure, which is not surprising given the complete mutual solubility in BCC solid solutions of all pairs of the constituent elements. However, first principles total energy calculations for the binaries reveal a set of distinct energy minimizing structures implying the likelihood of chemically ordered low-temperature phases. We apply a hybrid Monte Carlo and molecular dynamics method to evaluate the temperature-dependent chemical order. Monte Carlo species swaps allow for equilibration of the structure that cannot be achieved by conventional molecular dynamics. At 300 K (27 °C), a cesium-chloride ordering emerges between mixed (Nb,Ta) sites and mixed (Mo,W) sites. This order is lost at elevated temperatures.
NASA Astrophysics Data System (ADS)
Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.
2015-08-01
We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.
Tringe, J. W.; Ileri, N.; Levie, H. W.; ...
2015-08-01
We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage.more » Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.« less
NASA Astrophysics Data System (ADS)
Liang, Faming; Cheon, Sooyoung
2009-12-01
The problem of simulating from distributions with intractable normalizing constants has received much attention in the recent literature. In this paper, we propose a new MCMC algorithm, the so-called Monte Carlo dynamically weighted importance sampler, for tickling this problem. The new algorithm is illustrated with the spatial autologistic models. The novelty of our algorithm is that it allows for the use of Monte Carlo estimates in MCMC simulations, while still leaving the target distribution invariant under the criterion of dynamically weighted importance sampling. Unlike the auxiliary variable MCMC algorithms, the new algorithm removes the need of perfect sampling, and thus can be applied to a wide range of problems for which perfect sampling is not available or very expensive. The new algorithm can also be used for simulating from the incomplete posterior distribution for the missing data problem.
Cluster Monte Carlo dynamics for the antiferromagnetic Ising model on a triangular lattice
NASA Astrophysics Data System (ADS)
Zhang, G. M.; Yang, C. Z.
1994-11-01
Within the general cluster framework of Kandel, Ben-Av, and Domany, we develop a cluster algorithm for Monte Carlo simulations of the antiferromagnetic Ising model on a triangular lattice. The algorithm does not suffer from problems of metastability and is extremely efficient even at T=0, which allows us to extract the static exponent η=0.5 as well as the effective dynamical critical exponent of the algorithm z=0.64+/-0.02.
Moroni, Saverio; Blinov, Nicholas; Roy, Pierre-Nicholas
2004-08-22
Dynamical and structural properties of small (4)He(N)-N(2)O complexes have been analyzed using ground-state and finite-temperature Monte Carlo simulations. The effective rotational constants resulting from the ground-state calculations are in excellent agreement with the results of a recent spectroscopic study [Y. Xu et al., Phys. Rev. Lett. 91, 163401 (2003)]. After an initial decrease for cluster sizes up to N=8, the rotational constant increases, signaling a transition from a molecular complex to a quantum-solvated system. Such a turnaround is not present in the rotational constants extracted from the finite-temperature Monte Carlo calculations, performed for Boltzmann statistics, thus highlighting the importance of exchange effects to explain the decoupling between a solvated dopant and the helium motion.
Raga: Monte Carlo simulations of gravitational dynamics of non-spherical stellar systems
NASA Astrophysics Data System (ADS)
Vasiliev, Eugene
2014-11-01
Raga (Relaxation in Any Geometry) is a Monte Carlo simulation method for gravitational dynamics of non-spherical stellar systems. It is based on the SMILE software (ascl:1308.001) for orbit analysis. It can simulate stellar systems with a much smaller number of particles N than the number of stars in the actual system, represent an arbitrary non-spherical potential with a basis-set or spline spherical-harmonic expansion with the coefficients of expansion computed from particle trajectories, and compute particle trajectories independently and in parallel using a high-accuracy adaptive-timestep integrator. Raga can also model two-body relaxation by local (position-dependent) velocity diffusion coefficients (as in Spitzer's Monte Carlo formulation) and adjust the magnitude of relaxation to the actual number of stars in the target system, and model the effect of a central massive black hole.
Monte Carlo Study of Real Time Dynamics on the Lattice.
Alexandru, Andrei; Başar, Gökçe; Bedaque, Paulo F; Vartak, Sohan; Warrington, Neill C
2016-08-19
Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from a highly oscillatory phase of the path integral. In this Letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and, in principle, applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.
Monte Carlo Reliability Analysis.
1987-10-01
to Stochastic Processes , Prentice-Hall, Englewood Cliffs, NJ, 1975. (5) R. E. Barlow and F. Proscham, Statistical TheorX of Reliability and Life...Lewis and Z. Tu, "Monte Carlo Reliability Modeling by Inhomogeneous ,Markov Processes, Reliab. Engr. 16, 277-296 (1986). (4) E. Cinlar, Introduction
Nature of time in Monte Carlo processes
NASA Astrophysics Data System (ADS)
Choi, M. Y.; Huberman, B. A.
1984-03-01
We show that the asymptotic behavior of Monte Carlo simulations of many-body systems is much more complex than that produced by continuous dynamics regardless of the updating process. Therefore the nature of time in Monte Carlo processes is discrete enough so as to produce dynamics which is different from that generated by the familiar master equation.
Rotational dynamics of CO solvated in small He clusters: a quantum Monte Carlo study.
Cazzato, Paolo; Paolini, Stefano; Moroni, Saverio; Baroni, Stefano
2004-05-15
The rotational dynamics of CO single molecules solvated in small He clusters (CO @ HeN) has been studied using reptation quantum Monte Carlo simulations for cluster sizes up to N = 30. Our results are in good agreement with the rotovibrational features of the infrared spectrum recently determined for this system and provide a deep insight into the relation between the structure of the cluster and its dynamics. Simulations for large N also provide a prediction of the effective moment of inertia of CO in the He nanodroplet regime, which has not been measured so far.
Event-driven Monte Carlo: Exact dynamics at all time scales for discrete-variable models
NASA Astrophysics Data System (ADS)
Mendoza-Coto, Alejandro; Díaz-Méndez, Rogelio; Pupillo, Guido
2016-06-01
We present an algorithm for the simulation of the exact real-time dynamics of classical many-body systems with discrete energy levels. In the same spirit of kinetic Monte Carlo methods, a stochastic solution of the master equation is found, with no need to define any other phase-space construction. However, unlike existing methods, the present algorithm does not assume any particular statistical distribution to perform moves or to advance the time, and thus is a unique tool for the numerical exploration of fast and ultra-fast dynamical regimes. By decomposing the problem in a set of two-level subsystems, we find a natural variable step size, that is well defined from the normalization condition of the transition probabilities between the levels. We successfully test the algorithm with known exact solutions for non-equilibrium dynamics and equilibrium thermodynamical properties of Ising-spin models in one and two dimensions, and compare to standard implementations of kinetic Monte Carlo methods. The present algorithm is directly applicable to the study of the real-time dynamics of a large class of classical Markovian chains, and particularly to short-time situations where the exact evolution is relevant.
A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.
Im, W; Seefeld, S; Roux, B
2000-01-01
A computational algorithm based on Grand Canonical Monte Carlo (GCMC) and Brownian Dynamics (BD) is described to simulate the movement of ions in membrane channels. The proposed algorithm, GCMC/BD, allows the simulation of ion channels with a realistic implementation of boundary conditions of concentration and transmembrane potential. The method is consistent with a statistical mechanical formulation of the equilibrium properties of ion channels (; Biophys. J. 77:139-153). The GCMC/BD algorithm is illustrated with simulations of simple test systems and of the OmpF porin of Escherichia coli. The approach provides a framework for simulating ion permeation in the context of detailed microscopic models. PMID:10920012
Vectorization of a Monte Carlo simulation scheme for nonequilibrium gas dynamics
NASA Technical Reports Server (NTRS)
Boyd, Iain D.
1991-01-01
Significant improvement has been obtained in the numerical performance of a Monte Carlo scheme for the analysis of nonequilibrium gas dynamics through an implementation of the algorithm which takes advantage of vector hardware, as presently demonstrated through application to three different problems. These are (1) a 1D standing-shock wave; (2) the flow of an expanding gas through an axisymmetric nozzle; and (3) the hypersonic flow of Ar gas over a 3D wedge. Problem (3) is illustrative of the greatly increased number of molecules which the simulation may involve, thanks to improved algorithm performance.
Development of a dynamic simulation mode in Serpent 2 Monte Carlo code
Leppaenen, J.
2013-07-01
This paper presents a dynamic neutron transport mode, currently being implemented in the Serpent 2 Monte Carlo code for the purpose of simulating short reactivity transients with temperature feedback. The transport routine is introduced and validated by comparison to MCNP5 calculations. The method is also tested in combination with an internal temperature feedback module, which forms the inner part of a multi-physics coupling scheme in Serpent 2. The demo case for the coupled calculation is a reactivity-initiated accident (RIA) in PWR fuel. (authors)
Wollaber, Allan Benton
2016-06-16
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
Monte Carlo eikonal scattering
NASA Astrophysics Data System (ADS)
Gibbs, W. R.; Dedonder, J. P.
2012-08-01
Background: The eikonal approximation is commonly used to calculate heavy-ion elastic scattering. However, the full evaluation has only been done (without the use of Monte Carlo techniques or additional approximations) for α-α scattering.Purpose: Develop, improve, and test the Monte Carlo eikonal method for elastic scattering over a wide range of nuclei, energies, and angles.Method: Monte Carlo evaluation is used to calculate heavy-ion elastic scattering for heavy nuclei including the center-of-mass correction introduced in this paper and the Coulomb interaction in terms of a partial-wave expansion. A technique for the efficient expansion of the Glauber amplitude in partial waves is developed.Results: Angular distributions are presented for a number of nuclear pairs over a wide energy range using nucleon-nucleon scattering parameters taken from phase-shift analyses and densities from independent sources. We present the first calculations of the Glauber amplitude, without further approximation, and with realistic densities for nuclei heavier than helium. These densities respect the center-of-mass constraints. The Coulomb interaction is included in these calculations.Conclusion: The center-of-mass and Coulomb corrections are essential. Angular distributions can be predicted only up to certain critical angles which vary with the nuclear pairs and the energy, but we point out that all critical angles correspond to a momentum transfer near 1 fm-1.
A new Monte Carlo method for dynamical evolution of non-spherical stellar systems
NASA Astrophysics Data System (ADS)
Vasiliev, Eugene
2015-01-01
We have developed a novel Monte Carlo method for simulating the dynamical evolution of stellar systems in arbitrary geometry. The orbits of stars are followed in a smooth potential represented by a basis-set expansion and perturbed after each timestep using local velocity diffusion coefficients from the standard two-body relaxation theory. The potential and diffusion coefficients are updated after an interval of time that is a small fraction of the relaxation time, but may be longer than the dynamical time. Thus, our approach is a bridge between the Spitzer's formulation of the Monte Carlo method and the temporally smoothed self-consistent field method. The primary advantages are the ability to follow the secular evolution of shape of the stellar system, and the possibility of scaling the amount of two-body relaxation to the necessary value, unrelated to the actual number of particles in the simulation. Possible future applications of this approach in galaxy dynamics include the problem of consumption of stars by a massive black hole in a non-spherical galactic nucleus, evolution of binary supermassive black holes, and the influence of chaos on the shape of galaxies, while for globular clusters it may be used for studying the influence of rotation.
Dynamic Monte Carlo modeling of exciton dissociation in organic donor-acceptor solar cells.
Heiber, Michael C; Dhinojwala, Ali
2012-07-07
A general dynamic Monte Carlo model for exciton dissociation at a donor-acceptor interface that includes exciton delocalization and hot charge separation is developed to model the experimental behavior observed for the poly(3-hexylthiophene):fullerene system and predict the theoretical performance of future materials systems. The presence of delocalized excitons and the direct formation of separated charge pairs has been recently measured by transient photo-induced absorption experiments and has been proposed to facilitate charge separation. The excess energy of the exciton dissociation process has also been observed to have a strong correlation with the charge separation yield for a series of thiophene based polymer:fullerene systems, suggesting that a hot charge separation process is also occurring. Hot charge separation has been previously theorized as a cause for highly efficient charge separation. However, a detailed model for this process has not been implemented and tested. Here, both conceptual models are implemented into a dynamic Monte Carlo simulation and tested using a simple bilayer donor-acceptor system. We find that exciton delocalization can account for a significant reduction in geminate recombination when compared to the traditional, bound polaron pair model. In addition, the hot charge separation process could further reduce the geminate recombination, but only if the hot charge mobility is several orders of magnitude larger than the standard charge mobility.
Dynamic measurements and uncertainty estimation of clinical thermometers using Monte Carlo method
NASA Astrophysics Data System (ADS)
Ogorevc, Jaka; Bojkovski, Jovan; Pušnik, Igor; Drnovšek, Janko
2016-09-01
Clinical thermometers in intensive care units are used for the continuous measurement of body temperature. This study describes a procedure for dynamic measurement uncertainty evaluation in order to examine the requirements for clinical thermometer dynamic properties in standards and recommendations. In this study thermistors were used as temperature sensors, transient temperature measurements were performed in water and air and the measurement data were processed for the investigation of thermometer dynamic properties. The thermometers were mathematically modelled. A Monte Carlo method was implemented for dynamic measurement uncertainty evaluation. The measurement uncertainty was analysed for static and dynamic conditions. Results showed that dynamic uncertainty is much larger than steady-state uncertainty. The results of dynamic uncertainty analysis were applied on an example of clinical measurements and were compared to current requirements in ISO standard for clinical thermometers. It can be concluded that there was no need for dynamic evaluation of clinical thermometers for continuous measurement, while dynamic measurement uncertainty was within the demands of target uncertainty. Whereas in the case of intermittent predictive thermometers, the thermometer dynamic properties had a significant impact on the measurement result. Estimation of dynamic uncertainty is crucial for the assurance of traceable and comparable measurements.
A Monte Carlo study of the dynamics of G-protein activation.
Mahama, P A; Linderman, J J
1994-01-01
To link quantitatively the cell surface binding of ligand to receptor with the production of cellular responses, it may be necessary to explore early events in signal transduction such as G-protein activation. Two different model frameworks relating receptor/ligand binding to G-protein activation are examined. In the first framework, a simple ordinary differential equation model is used to describe receptor/ligand binding and G-protein activation. In the second framework, the events leading to G-protein activation are simulated using a dynamic Monte Carlo model. In both models, reactions between ligand-bound receptors and G-proteins are assumed to be diffusion-limited. The Monte Carlo model predicts two regimes of G-protein activation, depending upon whether the lifetime of a receptor/ligand complex is long or short compared with the time needed for diffusional encounters of complexes and G-proteins. When the lifetime of a complex is relatively short compared with the diffusion time, the movement of ligand among free receptors by binding and unbinding ("switching") significantly enhances G-protein activation. Receptor antagonists dramatically reduce G-protein activation and, thus, signal transduction in this case, and significant clustering of active G-proteins near receptor/ligand complexes results. The simple ordinary differential equation model poorly predicts G-protein activation for this situation. In the alternative case, when diffusion is relatively fast, ligand movement among receptors is less important and the simple ordinary differential equation model and Monte Carlo model results are similar. In this case, there is little clustering of active G-proteins near receptor/ligand complexes. Results also indicate that as the GTPase activity of the alpha-subunit decreases, the steady-state level of alpha-GTP increases, although temporal sensitivity is compromised. PMID:7811949
Johannesson, G; Chow, F K; Glascoe, L; Glaser, R E; Hanley, W G; Kosovic, B; Krnjajic, M; Larsen, S C; Lundquist, J K; Mirin, A A; Nitao, J J; Sugiyama, G A
2005-11-16
Atmospheric releases of hazardous materials are highly effective means to impact large populations. We propose an atmospheric event reconstruction framework that couples observed data and predictive computer-intensive dispersion models via Bayesian methodology. Due to the complexity of the model framework, a sampling-based approach is taken for posterior inference that combines Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) strategies.
Monte Carlo fluorescence microtomography
NASA Astrophysics Data System (ADS)
Cong, Alexander X.; Hofmann, Matthias C.; Cong, Wenxiang; Xu, Yong; Wang, Ge
2011-07-01
Fluorescence microscopy allows real-time monitoring of optical molecular probes for disease characterization, drug development, and tissue regeneration. However, when a biological sample is thicker than 1 mm, intense scattering of light would significantly degrade the spatial resolution of fluorescence microscopy. In this paper, we develop a fluorescence microtomography technique that utilizes the Monte Carlo method to image fluorescence reporters in thick biological samples. This approach is based on an l0-regularized tomography model and provides an excellent solution. Our studies on biomimetic tissue scaffolds have demonstrated that the proposed approach is capable of localizing and quantifying the distribution of optical molecular probe accurately and reliably.
LMC: Logarithmantic Monte Carlo
NASA Astrophysics Data System (ADS)
Mantz, Adam B.
2017-06-01
LMC is a Markov Chain Monte Carlo engine in Python that implements adaptive Metropolis-Hastings and slice sampling, as well as the affine-invariant method of Goodman & Weare, in a flexible framework. It can be used for simple problems, but the main use case is problems where expensive likelihood evaluations are provided by less flexible third-party software, which benefit from parallelization across many nodes at the sampling level. The parallel/adaptive methods use communication through MPI, or alternatively by writing/reading files, and mostly follow the approaches pioneered by CosmoMC (ascl:1106.025).
Dynamic load balancing for petascale quantum Monte Carlo applications: The Alias method
Sudheer, C. D.; Krishnan, S.; Srinivasan, A.; Kent, P. R. C.
2013-02-01
Diffusion Monte Carlo is the most accurate widely used Quantum Monte Carlo method for the electronic structure of materials, but it requires frequent load balancing or population redistribution steps to maintain efficiency and avoid accumulation of systematic errors on parallel machines. The load balancing step can be a significant factor affecting performance, and will become more important as the number of processing elements increases. We propose a new dynamic load balancing algorithm, the Alias Method, and evaluate it theoretically and empirically. An important feature of the new algorithm is that the load can be perfectly balanced with each process receiving at most one message. It is also optimal in the maximum size of messages received by any process. We also optimize its implementation to reduce network contention, a process facilitated by the low messaging requirement of the algorithm. Empirical results on the petaflop Cray XT Jaguar supercomputer at ORNL showing up to 30% improvement in performance on 120,000 cores. The load balancing algorithm may be straightforwardly implemented in existing codes. The algorithm may also be employed by any method with many near identical computational tasks that requires load balancing.
Dynamic load balancing for petascale quantum Monte Carlo applications: The Alias method
NASA Astrophysics Data System (ADS)
Sudheer, C. D.; Krishnan, S.; Srinivasan, A.; Kent, P. R. C.
2013-02-01
Diffusion Monte Carlo is a highly accurate Quantum Monte Carlo method for electronic structure calculations of materials, but it requires frequent load balancing or population redistribution steps to maintain efficiency on parallel machines. This step can be a significant factor affecting performance, and will become more important as the number of processing elements increases. We propose a new dynamic load balancing algorithm, the Alias Method, and evaluate it theoretically and empirically. An important feature of the new algorithm is that the load can be perfectly balanced with each process receiving at most one message. It is also optimal in the maximum size of messages received by any process. We also optimize its implementation to reduce network contention, a process facilitated by the low messaging requirement of the algorithm: a simple renumbering of the MPI ranks based on proximity and a space filling curve significantly improves the MPI Allgather performance. Empirical results on the petaflop Cray XT Jaguar supercomputer at ORNL show up to 30% improvement in performance on 120,000 cores. The load balancing algorithm may be straightforwardly implemented in existing codes. The algorithm may also be employed by any method with many near identical computational tasks that require load balancing.
Dynamic Monte Carlo rate constants for magnetic Hamiltonians coupled to a phonon bath
NASA Astrophysics Data System (ADS)
Solomon, Lazarus; Novotny, Mark
2007-03-01
For quantitative comparisons between experimental time- dependent measurements and dynamic Monte Carlo simulations, a relation between the time constant in the simulation and real time is necessary. We calculate the transition rate for spin S system using the lattice frame method for a rigid spin cluster in an elastic medium [1]. We compare this with the transition rate for an Ising spin 12 system using the quantum- mechanical density-matrix method [2] with the results of ref [1,3]. These transition probabilities are different from those of either the Glauber or the Metropolis dynamics, and reflect the properties of the bosonic bath. Comparison with recent experiments [4] will be discussed. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling (PRB 72, 2006) [2] K. Park, M. A. Novotny, and P. A. Rikvold (PRE 66, 2002) [3] K Saito, S. Takesue, and S. Miyashita, (PRE 61, 2002) [4] T. Meunier et al (Condensed Matter, 2006)
Semiclassical Monte-Carlo approach for modelling non-adiabatic dynamics in extended molecules
Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2013-01-01
Modelling of non-adiabatic dynamics in extended molecular systems and solids is a next frontier of atomistic electronic structure theory. The underlying numerical algorithms should operate only with a few quantities (that can be efficiently obtained from quantum chemistry), provide a controlled approximation (which can be systematically improved) and capture important phenomena such as branching (multiple products), detailed balance and evolution of electronic coherences. Here we propose a new algorithm based on Monte-Carlo sampling of classical trajectories, which satisfies the above requirements and provides a general framework for existing surface hopping methods for non-adiabatic dynamics simulations. In particular, our algorithm can be viewed as a post-processing technique for analysing numerical results obtained from the conventional surface hopping approaches. Presented numerical tests for several model problems demonstrate efficiency and accuracy of the new method. PMID:23864100
Chen, Yunjie; Roux, Benoît
2015-01-14
A family of hybrid simulation methods that combines the advantages of Monte Carlo (MC) with the strengths of classical molecular dynamics (MD) consists in carrying out short non-equilibrium MD (neMD) trajectories to generate new configurations that are subsequently accepted or rejected via an MC process. In the simplest case where a deterministic dynamic propagator is used to generate the neMD trajectories, the familiar Metropolis acceptance criterion based on the change in the total energy ΔE, min[1, exp{-βΔE}], guarantees that the hybrid algorithm will yield the equilibrium Boltzmann distribution. However, the functional form of the acceptance probability is more complex when the non-equilibrium switching process is generated via a non-deterministic stochastic dissipative propagator coupled to a heat bath. Here, we clarify the conditions under which the Metropolis criterion remains valid to rigorously yield a proper equilibrium Boltzmann distribution within hybrid neMD-MC algorithm.
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
Christov, Ivan P.
2016-08-15
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.
Ultrafast dynamics in ferrimagnetic materials with a quantum Monte Carlo atomistic model
NASA Astrophysics Data System (ADS)
Morandi, O.; Hervieux, P.-A.
2017-07-01
We investigate the ultrafast dynamics of the atomic angular momentum in ferrimagnets irradiated by laser pulses. Our study is based on a quantum atomistic approach and the particle dynamics is performed using a Monte Carlo technique. We focus on microscopic mechanisms that lead to the dissipation of the total angular momentum in a rare earth-transition metal (RE-TM) alloy in which the two sublattices have opposite spin orientation. We describe the coherent transfer of atomic angular momentum between the spin and the orbital momentum. The orbital momentum quenching induced by the lattice field and the Elliott-Yafet collision mechanism are also included. The simulations show that the observed ultrafast magnetization quenching may be explained at a microscopical level by the combined effects of the coherent spin transfer between the RE and the TM sublattices along with the quenching of the localized orbital angular momentum induced by the lattice field.
A Variable Coefficient Method for Accurate Monte Carlo Simulation of Dynamic Asset Price
NASA Astrophysics Data System (ADS)
Li, Yiming; Hung, Chih-Young; Yu, Shao-Ming; Chiang, Su-Yun; Chiang, Yi-Hui; Cheng, Hui-Wen
2007-07-01
In this work, we propose an adaptive Monte Carlo (MC) simulation technique to compute the sample paths for the dynamical asset price. In contrast to conventional MC simulation with constant drift and volatility (μ,σ), our MC simulation is performed with variable coefficient methods for (μ,σ) in the solution scheme, where the explored dynamic asset pricing model starts from the formulation of geometric Brownian motion. With the method of simultaneously updated (μ,σ), more than 5,000 runs of MC simulation are performed to fulfills basic accuracy of the large-scale computation and suppresses statistical variance. Daily changes of stock market index in Taiwan and Japan are investigated and analyzed.
NASA Astrophysics Data System (ADS)
Inoue, Jun-Ichi
2011-03-01
We analytically derive deterministic equations of order parameters such as spontaneous magnetization in infinite-range quantum spin systems obeying quantum Monte Carlo dynamics. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. We discuss several possible applications of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we argue the ground state searching for infinite-range random spin systems via quantum adiabatic evolution. We were financially supported by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science, No. 22500195.
Compressible generalized hybrid Monte Carlo
NASA Astrophysics Data System (ADS)
Fang, Youhan; Sanz-Serna, J. M.; Skeel, Robert D.
2014-05-01
One of the most demanding calculations is to generate random samples from a specified probability distribution (usually with an unknown normalizing prefactor) in a high-dimensional configuration space. One often has to resort to using a Markov chain Monte Carlo method, which converges only in the limit to the prescribed distribution. Such methods typically inch through configuration space step by step, with acceptance of a step based on a Metropolis(-Hastings) criterion. An acceptance rate of 100% is possible in principle by embedding configuration space in a higher dimensional phase space and using ordinary differential equations. In practice, numerical integrators must be used, lowering the acceptance rate. This is the essence of hybrid Monte Carlo methods. Presented is a general framework for constructing such methods under relaxed conditions: the only geometric property needed is (weakened) reversibility; volume preservation is not needed. The possibilities are illustrated by deriving a couple of explicit hybrid Monte Carlo methods, one based on barrier-lowering variable-metric dynamics and another based on isokinetic dynamics.
Replica exchange Monte Carlo simulations of the ising spin glass: Static and dynamic properties
NASA Astrophysics Data System (ADS)
Yucesoy, Burcu
Spin glasses have been the subject of intense study and considerable controversy for decades, and the low-temperature phase of short-range spin glasses is still poorly understood. Our main goal is to improve our understanding in this area and find an answer to the following question: Are there only a single pair or a countable infinity of pure states in the low temperature phase of the EA spin glass? To that aim we first start by introducing spin glasses and provide a brief history of their research, then proceed to describe our method of simulation, the parallel tempering Monte Carlo algorithm. Next, we present the results of a large-scale numerical study of the equilibrium three-dimensional Edwards-Anderson Ising spin glass with Gaussian disorder. In order to understand how the parallel tempering algorithm works, we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the parallel tempering Monte Carlo method. We examine the correlation between static and dynamic observables for ˜ 5000 disorder realizations and up to 1000 spins down to temperatures at 20% of the critical temperature, and our results show that autocorrelation times are directly correlated with the roughness of the free-energy landscape. In the following chapters, the three- and four-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses are studied again via large scale Monte Carlo simulations at low temperatures, deep within the spin glass phase. Performing a careful statistical analysis of several thousand independent disorder realizations and using an observable that detects peaks in the overlap distribution, we show that the Sherrington-Kirkpatrick and Edwards-Anderson models have a distinctly different low-temperature behavior. We arrive to the following conclusion: The structure of the spin-glass overlap distribution for the Edwards-Anderson model suggests that its low-temperature phase has only a
COOL: A code for dynamic Monte Carlo simulation of molecular dynamics
NASA Astrophysics Data System (ADS)
Barletta, Paolo
2011-02-01
COOL is a program to simulate evaporative and sympathetic cooling for a mixture of two gases co-trapped in a harmonic potential. The collisions involved are assumed to be exclusively elastic, and losses are due to evaporation from the trap. Each particle is followed individually in its trajectory, consequently properties such as spatial densities or energy distributions can be readily evaluated. The code can be used sequentially, by employing one output as input for another run. The code can be easily generalised to describe more complicated processes, such as the inclusion of inelastic collisions, or the possible presence of more than two species in the trap. Program summaryProgram title: COOL Catalogue identifier: AEHJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1 111 674 No. of bytes in distributed program, including test data, etc.: 18 618 045 Distribution format: tar.gz Programming language: C++ Computer: Desktop Operating system: Linux RAM: 500 Mbytes Classification: 16.7, 23 Nature of problem: Simulation of the sympathetic process occurring for two molecular gases co-trapped in a deep optical trap. Solution method: The Direct Simulation Monte Carlo method exploits the decoupling, over a short time period, of the inter-particle interaction from the trapping potential. The particle dynamics is thus exclusively driven by the external optical field. The rare interparticle collisions are considered with an acceptance/rejection mechanism, that is by comparing a random number to the collisional probability defined in terms of the inter-particle cross section and centre-of-mass energy. All particles in the trap are individually simulated so that at each time step a number of useful quantities, such as
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.
Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Dynamical evolution of the Oort cloud. I. A Monte Carlo simulation. II. A theoretical approach
Remy, F.; Mignard, F.
1985-07-01
A Monte Carlo model is used to trace the dynamical evolution of the Oort cloud of comets to its ultimate end. After a review of previous simulations, the necessity of considering perturbations of the aphelion distance because of passing stars, the density of passing stars, and the three-body problem of sun-star-comet is discussed. For convenience, the solar gravitation is assumed to be zero as a star passes. It is also assumed that the initial cometary distribution had a perihelion near the orbits of Uranus-Neptune. Six orbital elements are calculated to obtain orbital distributions for the population in the Oort cloud. The cloud is estimated to contain 10 trillion comets, which would satisfy the present apparition rate of new comets. 34 references.
Pb/Cu (100) surface superstructures: Monte Carlo and molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Tan, S.; Ghazali, A.; L´vy, J. C. S.
1997-12-01
Monte Carlo simulations with simple pair potentials of the Lennard-Jones type enable us to show the stability of the three experimentally known superstructures of Pb/Cu (100) at different lead submonolayer coverages: c(4 × 4)atθ = 3/8,c(2 × 2)atθ = 0.5 and c(5√2 × √2)R45° at θ = 0.6. In addition, numerous details of these superstructures, including interatomic distances, surface alloying, corrugation and weak modulation are obtained numerically in quantitative and qualitative accord with the experimentally observed and measured data. By molecular dynamics the melting of these structures is studied from the temperature dependence of the Pb-atom average energy and diffusion coefficient, with evidence for a first-order transition for every superstructure. The dispersion of surface phonons is also derived.
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Schierz, Philipp; Zierenberg, Johannes; Janke, Wolfhard
2015-10-07
Molecular Dynamics (MD) and Monte Carlo (MC) simulations are the most popular simulation techniques for many-particle systems. Although they are often applied to similar systems, it is unclear to which extent one has to expect quantitative agreement of the two simulation techniques. In this work, we present a quantitative comparison of MD and MC simulations in the microcanonical ensemble. For three test examples, we study first- and second-order phase transitions with a focus on liquid-gas like transitions. We present MD analysis techniques to compensate for conservation law effects due to linear and angular momentum conservation. Additionally, we apply the weighted histogram analysis method to microcanonical histograms reweighted from MD simulations. By this means, we are able to estimate the density of states from many microcanonical simulations at various total energies. This further allows us to compute estimates of canonical expectation values.
NASA Astrophysics Data System (ADS)
Dhiman, Isha; Gupta, Arvind Kumar
2016-03-01
This work is devoted to the development of a novel theoretical approach, named hybrid approach, to handle a localized bottleneck in a symmetrically coupled two-channel totally asymmetric simple exclusion process with Langmuir kinetics. The hybrid approach is combined with singular perturbation technique to get steady-state phase diagrams and density profiles. We have thoroughly examined the role played by the strength of bottleneck, binding constant and lane-changing rate in the system dynamics. The appearances of bottleneck-induced shock, a bottleneck phase and Meissner phase are explained. Further, the critical values of bottleneck rate are identified, which signify the changes in the topology of phase diagram. It is also found that an increase in lane-changing rate as well as unequal attachment, detachment rates weaken the bottleneck effect. Our theoretical arguments are in good agreement with extensively performed Monte Carlo simulations.
Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Warm Dense Matter
NASA Astrophysics Data System (ADS)
Militzer, Burkhard; Driver, Kevin
2011-10-01
We analyze the applicability of two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), to study the regime of warm dense matter. We discuss the advantages as well as the limitations of each method and propose directions for future development. Results for dense, liquid helium, where both methods have been applied, demonstrate the range of each method's applicability. Comparison of the equations of state from simulations with analytical theories and free energy models show that DFT is useful for temperatures below 100000 K and then PIMC provides accurate results for all higher temperatures. We characterize the structure of the liquid in terms of pair correlation functions and study the closure of the band gap with increasing density and temperature. Finally, we discuss simulations of heavier elements and demonstrate the reliability are both methods in such cases with preliminary results.
Semiclassical Monte Carlo: a first principles approach to non-adiabatic molecular dynamics.
White, Alexander J; Gorshkov, Vyacheslav N; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry
2014-11-14
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.
Marcus, Ryan C.
2012-07-25
MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.
Booth, George H; Chan, Garnet Kin-Lic
2012-11-21
In this communication, we propose a method for obtaining isolated excited states within the full configuration interaction quantum Monte Carlo framework. This method allows for stable sampling with respect to collapse to lower energy states and requires no uncontrolled approximations. In contrast with most previous methods to extract excited state information from quantum Monte Carlo methods, this results from a modification to the underlying propagator, and does not require explicit orthogonalization, analytic continuation, transient estimators, or restriction of the Hilbert space via a trial wavefunction. Furthermore, we show that the propagator can directly yield frequency-domain correlation functions and spectral functions such as the density of states which are difficult to obtain within a traditional quantum Monte Carlo framework. We demonstrate this approach with pilot applications to the neon atom and beryllium dimer.
Mouhat, Félix; Sorella, Sandro; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Casula, Michele
2017-06-13
We introduce a novel approach for a fully quantum description of coupled electron-ion systems from first principles. It combines the variational quantum Monte Carlo solution of the electronic part with the path integral formalism for the quantum nuclear dynamics. On the one hand, the path integral molecular dynamics includes nuclear quantum effects by adding a set of fictitious classical particles (beads) aimed at reproducing nuclear quantum fluctuations via a harmonic kinetic term. On the other hand, variational quantum Monte Carlo can provide Born-Oppenheimer potential energy surfaces with a precision comparable to the most-advanced post-Hartree-Fock approaches, and with a favorable scaling with the system size. In order to cope with the intrinsic noise due to the stochastic nature of quantum Monte Carlo methods, we generalize the path integral molecular dynamics using a Langevin thermostat correlated according to the covariance matrix of quantum Monte Carlo nuclear forces. The variational parameters of the quantum Monte Carlo wave function are evolved during the nuclear dynamics, such that the Born-Oppenheimer potential energy surface is unbiased. Statistical errors on the wave function parameters are reduced by resorting to bead grouping average, which we show to be accurate and well-controlled. Our general algorithm relies on a Trotter breakup between the dynamics driven by ionic forces and the one set by the harmonic interbead couplings. The latter is exactly integrated, even in the presence of the Langevin thermostat, thanks to the mapping onto an Ornstein-Uhlenbeck process. This framework turns out to be also very efficient in the case of noiseless (deterministic) ionic forces. The new implementation is validated on the Zundel ion (H5O2(+)) by direct comparison with standard path integral Langevin dynamics calculations made with a coupled cluster potential energy surface. Nuclear quantum effects are confirmed to be dominant over thermal effects well beyond
Kiselev, Vladimir Yu; Leda, Marcin; Lobanov, Alexey I; Marenduzzo, Davide; Goryachev, Andrew B
2011-10-21
Biological membranes are complex environments whose physico-chemical properties are of utmost importance for the understanding of many crucial biological processes. Much attention has been given in the literature to the description of membranes along the z-axis perpendicular to the membrane. Here, we instead consider the lateral dynamics of lipids and peripheral proteins due to their electrostatic interaction. Previously, we constructed a Monte Carlo automaton capable of simulating mutual diffusive dynamics of charged lipids and associated positively charged peptides. Here, we derive and numerically analyze a system of Poisson-Boltzmann-Nernst-Planck (PBNP) equations that provide a mean-field approximation compatible with our Monte Carlo model. The thorough comparison between the mean-field PBNP equations and Monte Carlo simulations demonstrates that both the approaches are in a good qualitative agreement in all tested scenarios. We find that the two methods quantitatively deviate when the local charge density is high, presumably because the Poisson-Boltzmann formalism is applicable in the so-called weak coupling limit, whose validity is restricted to low charge densities. Nevertheless, we conclude that the mean-field PBNP approach provides a good approximation for the considerably more detailed Monte Carlo model at only a fraction of the associated computational cost and allows simulation of the membrane lateral dynamics on the space and time scales relevant for the realistic biological problems. © 2011 American Institute of Physics
Ali, Fawaz; Waller, Ed
2014-10-01
There are numerous scenarios where radioactive particulates can be displaced by external forces. For example, the detonation of a radiological dispersal device in an urban environment will result in the release of radioactive particulates that in turn can be resuspended into the breathing space by external forces such as wind flow in the vicinity of the detonation. A need exists to quantify the internal (due to inhalation) and external radiation doses that are delivered to bystanders; however, current state-of-the-art codes are unable to calculate accurately radiation doses that arise from the resuspension of radioactive particulates in complex topographies. To address this gap, a coupled computational fluid dynamics and Monte Carlo radiation transport approach has been developed. With the aid of particulate injections, the computational fluid dynamics simulation models characterize the resuspension of particulates in a complex urban geometry due to air-flow. The spatial and temporal distributions of these particulates are then used by the Monte Carlo radiation transport simulation to calculate the radiation doses delivered to various points within the simulated domain. A particular resuspension scenario has been modeled using this coupled framework, and the calculated internal (due to inhalation) and external radiation doses have been deemed reasonable. GAMBIT and FLUENT comprise the software suite used to perform the Computational Fluid Dynamics simulations, and Monte Carlo N-Particle eXtended is used to perform the Monte Carlo Radiation Transport simulations.
Solution of deterministic-stochastic epidemic models by dynamical Monte Carlo method
NASA Astrophysics Data System (ADS)
Aièllo, O. E.; Haas, V. J.; daSilva, M. A. A.; Caliri, A.
2000-07-01
This work is concerned with dynamical Monte Carlo (MC) method and its application to models originally formulated in a continuous-deterministic approach. Specifically, a susceptible-infected-removed-susceptible (SIRS) model is used in order to analyze aspects of the dynamical MC algorithm and achieve its applications in epidemic contexts. We first examine two known approaches to the dynamical interpretation of the MC method and follow with the application of one of them in the SIRS model. The working method chosen is based on the Poisson process where hierarchy of events, properly calculated waiting time between events, and independence of the events simulated, are the basic requirements. To verify the consistence of the method, some preliminary MC results are compared against exact steady-state solutions and other general numerical results (provided by Runge-Kutta method): good agreement is found. Finally, a space-dependent extension of the SIRS model is introduced and treated by MC. The results are interpreted under and in accordance with aspects of the herd-immunity concept.
Dyer, Oliver T; Ball, Robin C
2017-03-28
We develop a new algorithm for the Brownian dynamics of soft matter systems that evolves time by spatially correlated Monte Carlo moves. The algorithm uses vector wavelets as its basic moves and produces hydrodynamics in the low Reynolds number regime propagated according to the Oseen tensor. When small moves are removed, the correlations closely approximate the Rotne-Prager tensor, itself widely used to correct for deficiencies in Oseen. We also include plane wave moves to provide the longest range correlations, which we detail for both infinite and periodic systems. The computational cost of the algorithm scales competitively with the number of particles simulated, N, scaling as N In N in homogeneous systems and as N in dilute systems. In comparisons to established lattice Boltzmann and Brownian dynamics algorithms, the wavelet method was found to be only a factor of order 1 times more expensive than the cheaper lattice Boltzmann algorithm in marginally semi-dilute simulations, while it is significantly faster than both algorithms at large N in dilute simulations. We also validate the algorithm by checking that it reproduces the correct dynamics and equilibrium properties of simple single polymer systems, as well as verifying the effect of periodicity on the mobility tensor.
Quantum Gibbs ensemble Monte Carlo
Fantoni, Riccardo; Moroni, Saverio
2014-09-21
We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects, our scheme is viable even for systems with strong quantum delocalization in the degenerate regime of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of {sup 4}He in two dimensions.
Quantum Monte Carlo for Molecules.
1984-11-01
AD-A148 159 QUANTUM MONTE CARLO FOR MOLECULES(U) CALIFORNIA UNIV Y BERKELEY LAWRENCE BERKELEY LAB W A LESTER ET AL. Si NOV 84 NOSUi4-83-F-Oifi...ORG. REPORT NUMBER 00 QUANTUM MONTE CARLO FOR MOLECULES ’Ids 7. AUTHOR(e) S. CONTRACT Or GRANT NUMER(e) William A. Lester, Jr. and Peter J. Reynolds...unlimited. ..’.- • p. . ° 18I- SUPPLEMENTARY NOTES IS. KEY WORDS (Cent/Rue an "Worse aide If noeesean d entlt by block fmamabr) Quantum Monte Carlo importance
Wormhole Hamiltonian Monte Carlo
Lan, Shiwei; Streets, Jeffrey; Shahbaba, Babak
2015-01-01
In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, especially when the dimension is high and the modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties of the target distribution to create wormholes connecting modes in order to facilitate moving between them. Further, our proposed method uses the regeneration technique in order to adapt the algorithm by identifying new modes and updating the network of wormholes without affecting the stationary distribution. To find new modes, as opposed to redis-covering those previously identified, we employ a novel mode searching algorithm that explores a residual energy function obtained by subtracting an approximate Gaussian mixture density (based on previously discovered modes) from the target density function. PMID:25861551
Wormhole Hamiltonian Monte Carlo.
Lan, Shiwei; Streets, Jeffrey; Shahbaba, Babak
2014-07-31
In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, especially when the dimension is high and the modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties of the target distribution to create wormholes connecting modes in order to facilitate moving between them. Further, our proposed method uses the regeneration technique in order to adapt the algorithm by identifying new modes and updating the network of wormholes without affecting the stationary distribution. To find new modes, as opposed to redis-covering those previously identified, we employ a novel mode searching algorithm that explores a residual energy function obtained by subtracting an approximate Gaussian mixture density (based on previously discovered modes) from the target density function.
NASA Astrophysics Data System (ADS)
Fasnacht, Marc
We develop adaptive Monte Carlo methods for the calculation of the free energy as a function of a parameter of interest. The methods presented are particularly well-suited for systems with complex energy landscapes, where standard sampling techniques have difficulties. The Adaptive Histogram Method uses a biasing potential derived from histograms recorded during the simulation to achieve uniform sampling in the parameter of interest. The Adaptive Integration method directly calculates an estimate of the free energy from the average derivative of the Hamiltonian with respect to the parameter of interest and uses it as a biasing potential. We compare both methods to a state of the art method, and demonstrate that they compare favorably for the calculation of potentials of mean force of dense Lennard-Jones fluids. We use the Adaptive Integration Method to calculate accurate potentials of mean force for different types of simple particles in a Lennard-Jones fluid. Our approach allows us to separate the contributions of the solvent to the potential of mean force from the effect of the direct interaction between the particles. With contributions of the solvent determined, we can find the potential of mean force directly for any other direct interaction without additional simulations. We also test the accuracy of the Adaptive Integration Method on a thermodynamic cycle, which allows us to perform a consistency check between potentials of mean force and chemical potentials calculated using the Adaptive Integration Method. The results demonstrate a high degree of consistency of the method.
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Perez, Danny; Junghans, Christoph
2014-03-01
We show direct formal relationships between the Wang-Landau iteration [PRL 86, 2050 (2001)], metadynamics [PNAS 99, 12562 (2002)] and statistical temperature molecular dynamics [PRL 97, 050601 (2006)], the major Monte Carlo and molecular dynamics work horses for sampling from a generalized, multicanonical ensemble. We aim at helping to consolidate the developments in the different areas by indicating how methodological advancements can be transferred in a straightforward way, avoiding the parallel, largely independent, developments tracks observed in the past.
Meli, Massimiliano; Morra, Giulia; Colombo, Giorgio
2008-01-01
The early stages of peptide aggregation are currently not accessible by experimental techniques at atomic resolution. In this article, we address this problem through the application of a mixed simulation scheme in which a preliminary coarse-grained Monte Carlo analysis of the free-energy landscape is used to identify representative conformations of the aggregates and subsequent all-atom molecular dynamics simulations are used to analyze in detail possible pathways for the stabilization of oligomers. This protocol was applied to systems consisting of multiple copies of the model peptide GNNQQNY, whose detailed structures in the aggregated state have been recently solved in another study. The analysis of the various trajectories provides dynamical and structural insight into the details of aggregation. In particular, the simulations suggest a hierarchical mechanism characterized by the initial formation of stable parallel β-sheet dimers and identify the formation of the polar zipper motif as a fundamental feature for the stabilization of initial oligomers. Simulation results are consistent with experimentally derived observations and provide an atomically detailed view of the putative initial stages of fibril formation. PMID:18263661
Infectious Disease Dynamics Inferred from Genetic Data via Sequential Monte Carlo.
Smith, R A; Ionides, E L; King, A A
2017-04-08
Genetic sequences from pathogens can provide information about infectious disease dynamics that may supplement or replace information from other epidemiological observations. Most currently available methods first estimate phylogenetic trees from sequence data, then estimate a transmission model conditional on these phylogenies. Outside limited classes of models, existing methods are unable to enforce logical consistency between the model of transmission and that underlying the phylogenetic reconstruction. Such conicts in assumptions can lead to bias in the resulting inferences. Here, we develop a general, statistically efficient, plug-and-play method to jointly estimate both disease transmission and phylogeny using genetic data and, if desired, other epidemiological observations. This method explicitly connects the model of transmission and the model of phylogeny so as to avoid the aforementioned inconsistency.We demonstrate the feasibility of our approach through simulation and apply it to estimate stage-specific infectiousness in a subepidemic of HIV in Detroit, Michigan. In a supplement, we prove that our approach is a valid sequential Monte Carlo algorithm. While we focus on how these methods may be applied to population-level models of infectious disease, their scope is more general. These methods may be applied in other biological systems where one seeks to infer population dynamics from genetic sequences, and they may also find application for evolutionary models with phenotypic rather than genotypic data.
Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît
2016-01-01
A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826
An Event-Driven Hybrid Molecular Dynamics and Direct Simulation Monte Carlo Algorithm
Donev, A; Garcia, A L; Alder, B J
2007-07-30
A novel algorithm is developed for the simulation of polymer chains suspended in a solvent. The polymers are represented as chains of hard spheres tethered by square wells and interact with the solvent particles with hard core potentials. The algorithm uses event-driven molecular dynamics (MD) for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in event-driven algorithms, rather, the momentum and energy exchange in the solvent is determined stochastically using the Direct Simulation Monte Carlo (DSMC) method. The coupling between the solvent and the solute is consistently represented at the particle level, however, unlike full MD simulations of both the solvent and the solute, the spatial structure of the solvent is ignored. The algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard wall subjected to uniform shear. The algorithm closely reproduces full MD simulations with two orders of magnitude greater efficiency. Results do not confirm the existence of periodic (cycling) motion of the polymer chain.
NASA Astrophysics Data System (ADS)
Kanjilal, Oindrila; Manohar, C. S.
2017-07-01
The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Mühlbacher, Lothar; Ankerhold, Joachim
2005-05-01
Electron transfer (ET) across molecular chains including an impurity is studied based on a recently improved real-time path-integral Monte Carlo (PIMC) approach [L. Mühlbacher, J. Ankerhold, and C. Escher, J. Chem. Phys. 121 12696 (2004)]. The reduced electronic dynamics is studied for various bridge lengths and defect site energies. By determining intersite hopping rates from PIMC simulations up to moderate times, the relaxation process in the extreme long-time limit is captured within a sequential transfer model. The total transfer rate is extracted and shown to be enhanced for certain defect site energies. Superexchange turns out to be relevant for extreme gap energies only and then gives rise to different dynamical signatures for high- and low-lying defects. Further, it is revealed that the entire bridge compound approaches a steady state on a much shorter time scale than that related to the total transfer. This allows for a simplified description of ET along donor-bridge-acceptor systems in the long-time range.
COOL: A code for Dynamic Monte Carlo Simulation of molecular dynamics
NASA Astrophysics Data System (ADS)
Barletta, Paolo
2012-02-01
Cool is a program to simulate evaporative and sympathetic cooling for a mixture of two gases co-trapped in an harmonic potential. The collisions involved are assumed to be exclusively elastic, and losses are due to evaporation from the trap. Each particle is followed individually in its trajectory, consequently properties such as spatial densities or energy distributions can be readily evaluated. The code can be used sequentially, by employing one output as input for another run. The code can be easily generalised to describe more complicated processes, such as the inclusion of inelastic collisions, or the possible presence of more than two species in the trap. New version program summaryProgram title: COOL Catalogue identifier: AEHJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1 097 733 No. of bytes in distributed program, including test data, etc.: 18 425 722 Distribution format: tar.gz Programming language: C++ Computer: Desktop Operating system: Linux RAM: 500 Mbytes Classification: 16.7, 23 Catalogue identifier of previous version: AEHJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 388 Does the new version supersede the previous version?: Yes Nature of problem: Simulation of the sympathetic process occurring for two molecular gases co-trapped in a deep optical trap. Solution method: The Direct Simulation Monte Carlo method exploits the decoupling, over a short time period, of the inter-particle interaction from the trapping potential. The particle dynamics is thus exclusively driven by the external optical field. The rare inter-particle collisions are considered with an acceptance/rejection mechanism, that is, by comparing a random number to the collisional probability
Isotropic Monte Carlo Grain Growth
Mason, J.
2013-04-25
IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.
NASA Astrophysics Data System (ADS)
Pandey, R. B.; Jacobs, D. J.; Farmer, B. L.
2017-05-01
The effect of preferential binding of solute molecules within an aqueous solution on the structure and dynamics of the histone H3.1 protein is examined by a coarse-grained Monte Carlo simulation. The knowledge-based residue-residue and hydropathy-index-based residue-solvent interactions are used as input to analyze a number of local and global physical quantities as a function of the residue-solvent interaction strength (f). Results from simulations that treat the aqueous solution as a homogeneous effective solvent medium are compared to when positional fluctuations of the solute molecules are explicitly considered. While the radius of gyration (Rg) of the protein exhibits a non-monotonic dependence on solvent interaction over a wide range of f within an effective medium, an abrupt collapse in Rg occurs in a narrow range of f when solute molecules rapidly bind to a preferential set of sites on the protein. The structure factor S(q) of the protein with wave vector (q) becomes oscillatory in the collapsed state, which reflects segmental correlations caused by spatial fluctuations in solute-protein binding. Spatial fluctuations in solute binding also modify the effective dimension (D) of the protein in fibrous (D ˜ 1.3), random-coil (D ˜ 1.75), and globular (D ˜ 3) conformational ensembles as the interaction strength increases, which differ from an effective medium with respect to the magnitude of D and the length scale.
Molecular dynamics and Monte Carlo simulations for protein–ligand binding and inhibitor design☆
Cole, Daniel J.; Tirado-Rives, Julian; Jorgensen, William L.
2014-01-01
Background Non-nucleoside inhibitors of HIV reverse transcriptase are an important component of treatment against HIV infection. Novel inhibitors are sought that increase potency against variants that contain the Tyr181Cys mutation. Methods Molecular dynamics based free energy perturbation simulations have been run to study factors that contribute to protein–ligand binding, and the results are compared with those from previous Monte Carlo based simulations and activity data. Results Predictions of protein–ligand binding modes are very consistent for the two simulation methods, which are attributed to the use of an enhanced sampling protocol. The Tyr181Cys binding pocket supports large, hydrophobic substituents, which is in good agreement with experiment. Conclusions Although some discrepancies exist between the results of the two simulation methods and experiment, free energy perturbation simulations can be used to rapidly test small molecules for gains in binding affinity. General significance Free energy perturbation methods show promise in providing fast, reliable and accurate data that can be used to complement experiment in lead optimization projects. This article is part of a Special Issue entitled “Recent developments of molecular dynamics”. PMID:25196360
Sütay, Berkay; Yurtsever, Mine
2017-05-01
Weak interactions of graphene surface with reactive molecular impurities are the subject of many studies since noncovalent functionalization of surface via molecular doping is a powerful tool for tuning the electronic properties of graphene layers. In this work, the adsorption of diatomic halogen gas molecules, F2, Cl2, Br2, I2 onto bilayer and multilayer pristine graphene surfaces were studied comparatively by Monte Carlo (MC) and molecular dynamics (MD) simulation techniques in canonical ensemble. The adsorption sites, adsorption capacity, coverage factors, adsorption isotherms, and adsorption kinetics were investigated and the adsorption energies were calculated for all adsorbates. Graphene was modeled as a two-dimensional layer of 200 carbon atoms in a honeycomb arrangement. The COMPASS force field was used in the simulations. The adsorption isotherms were obtained and fitted to Langmuir model. The kinetics of adsorption was studied and found to be first order. Both the monolayer and the multilayer adsorption of halogen molecules showed that van der Waals volumes of halogen molecules and also their polarizabilities display a competitive role in the saturation capacity and the strength of surface interactions.
NASA Astrophysics Data System (ADS)
Danielson, Thomas; Sutton, Jonathan E.; Hin, Céline; Savara, Aditya
2017-10-01
Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of "KMC stiffness" (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps/CPU time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order to achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events-allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm is designed for use in achieving and simulating steady-state conditions in KMC simulations. As shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.
NASA Astrophysics Data System (ADS)
Li, Yuan; Ma, Yu; Li, Juan; Jiang, Xiaoming; Hu, Wenbing
2012-03-01
We report dynamic Monte Carlo simulations of microphase separated diblock copolymers, to investigate how crystallization of one species could accelerate the subsequent crystallization of another species. Although the lattice copolymer model brings a boundary constraint to the long periods of microdomains, the single-molecular-level force balance between two blocks and its change can be revealed in this simple approach. We found two contrastable acceleration mechanisms: (1) the metastable lamellar crystals of one species become thicker at higher crystallization temperatures, sacrificing its microphase interfacial area to make a larger coil-stretching of another amorphous species and hence to accelerate subsequent crystallization of the latter with a more favorable conformation. (2) While in the case allowing chain-sliding in the crystal, the equilibrated lamellar crystals of one species become thinner at higher temperatures, sacrificing its thermal stability to gain a higher conformational entropy of another amorphous species and hence to accelerate subsequent crystallization of the latter with a stronger tension at the block junction. Parallel situations of experiments have been discussed.
A Kushner-Stratonovich Monte Carlo filter applied to nonlinear dynamical system identification
NASA Astrophysics Data System (ADS)
Sarkar, S.; Chowdhury, S. R.; Venugopal, M.; Vasu, R. M.; Roy, D.
2014-03-01
A Monte Carlo filter, based on the idea of averaging over characteristics and fashioned after a particle-based time-discretized approximation to the Kushner-Stratonovich (KS) nonlinear filtering equation, is proposed. A key aspect of the new filter is the gain-like additive update, designed to approximate the innovation integral in the KS equation and implemented through an annealing-type iterative procedure, which is aimed at rendering the innovation (observation-prediction mismatch) for a given time-step to a zero-mean Brownian increment corresponding to the measurement noise. This may be contrasted with the weight-based multiplicative updates in most particle filters that are known to precipitate the numerical problem of weight collapse within a finite-ensemble setting. A study to estimate the a-priori error bounds in the proposed scheme is undertaken. The numerical evidence, presently gathered from the assessed performance of the proposed and a few other competing filters on a class of nonlinear dynamic system identification and target tracking problems, is suggestive of the remarkably improved convergence and accuracy of the new filter.
Bousige, Colin; Boţan, Alexandru; Coasne, Benoît; Ulm, Franz-Josef; Pellenq, Roland J.-M.
2015-03-21
We report an efficient atom-scale reconstruction method that consists of combining the Hybrid Reverse Monte Carlo algorithm (HRMC) with Molecular Dynamics (MD) in the framework of a simulated annealing technique. In the spirit of the experimentally constrained molecular relaxation technique [Biswas et al., Phys. Rev. B 69, 195207 (2004)], this modified procedure offers a refined strategy in the field of reconstruction techniques, with special interest for heterogeneous and disordered solids such as amorphous porous materials. While the HRMC method generates physical structures, thanks to the use of energy penalties, the combination with MD makes the method at least one order of magnitude faster than HRMC simulations to obtain structures of similar quality. Furthermore, in order to ensure the transferability of this technique, we provide rational arguments to select the various input parameters such as the relative weight ω of the energy penalty with respect to the structure optimization. By applying the method to disordered porous carbons, we show that adsorption properties provide data to test the global texture of the reconstructed sample but are only weakly sensitive to the presence of defects. In contrast, the vibrational properties such as the phonon density of states are found to be very sensitive to the local structure of the sample.
A dynamic Monte Carlo study of anomalous current voltage behaviour in organic solar cells
Feron, K. Fell, C. J.; Zhou, X.; Belcher, W. J.; Dastoor, P. C.
2014-12-07
We present a dynamic Monte Carlo (DMC) study of s-shaped current-voltage (I-V) behaviour in organic solar cells. This anomalous behaviour causes a substantial decrease in fill factor and thus power conversion efficiency. We show that this s-shaped behaviour is induced by charge traps that are located at the electrode interface rather than in the bulk of the active layer, and that the anomaly becomes more pronounced with increasing trap depth or density. Furthermore, the s-shape anomaly is correlated with interface recombination, but not bulk recombination, thus highlighting the importance of controlling the electrode interface. While thermal annealing is known to remove the s-shape anomaly, the reason has been not clear, since these treatments induce multiple simultaneous changes to the organic solar cell structure. The DMC modelling indicates that it is the removal of aluminium clusters at the electrode, which act as charge traps, that removes the anomalous I-V behaviour. Finally, this work shows that the s-shape becomes less pronounced with increasing electron-hole recombination rate; suggesting that efficient organic photovoltaic material systems are more susceptible to these electrode interface effects.
NASA Astrophysics Data System (ADS)
Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.
2017-10-01
The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.
Monte Carlo studies of folding, dynamics, and stability in alpha-helices.
Shental-Bechor, Dalit; Kirca, Safak; Ben-Tal, Nir; Haliloglu, Turkan
2005-04-01
Folding simulations of polyalanine peptides were carried out using an off-lattice Monte Carlo simulation technique. The peptide was represented as a chain of residues, each of which contains two interaction sites: one corresponding to the C(alpha) atom and the other to the side chain. A statistical potential was used to describe the interaction between these sites. The preferred conformations of the peptide chain on the energy surface, starting from several initial conditions, were searched by perturbations on its generalized coordinates with the Metropolis criterion. We observed that, at low temperatures, the effective energy was low and the helix content high. The calculated helix propagation (s) and nucleation (sigma) parameters of the Zimm-Bragg model were in reasonable agreement with the empirical data. Exploration of the energy surface of the alanine-based peptides (AAQAA)(3) and AAAAA(AAARA)(3)A demonstrated that their behavior is similar to that of polyalanine, in regard to their effective energy, helix content, and the temperature-dependence of their helicity. In contrast, stable secondary structures were not observed for (Gly)(20) at similar temperatures, which is consistent with the nonfolder nature of this peptide. The fluctuations in the slowest dynamics mode, which describe the elastic behavior of the chain, showed that as the temperature decreases, the polyalanine peptides become stiffer and retain conformations with higher helix content. Clustering of conformations during the folding phase implied that polyalanine folds into a helix through fewer numbers of intermediate conformations as the temperature decreases.
Danielson, Thomas; Sutton, Jonathan E.; Hin, Céline; ...
2017-06-09
Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of “KMC stiffness” (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps / cpu-time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order tomore » achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events -- allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm designed for use in achieving and simulating steady-state conditions in KMC simulations. Lastly, as shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.« less
Path integral Monte Carlo and density functional molecular dynamics simulations of hot, dense helium
NASA Astrophysics Data System (ADS)
Militzer, B.
2009-04-01
Two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), are applied to study hot, dense helium in the density-temperature range of 0.387-5.35gcm-3 and 500K-1.28×108K . One coherent equation of state is derived by combining DFT-MD data at lower temperatures with PIMC results at higher temperatures. Good agreement between both techniques is found in an intermediate-temperature range. For the highest temperatures, the PIMC results converge to the Debye-Hückel limiting law. In order to derive the entropy, a thermodynamically consistent free-energy fit is used that reproduces the internal energies and pressure derived from the first-principles simulations. The equation of state is presented in the form of a table as well as a fit and is compared with different free-energy models. Pair-correlation functions and the electronic density of states are discussed. Shock Hugoniot curves are compared with recent laser shock-wave experiments.
Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics
Yang, Qian; Sing-Long, Carlos A.; Reed, Evan J.
2017-06-19
Here, we propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. Conversely, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our methodmore » on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. Furthermore, we describe a framework in this work that paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.« less
Davis, Mitchell A.; Dunn, Andrew K.
2015-01-01
Few methods exist that can accurately handle dynamic light scattering in the regime between single and highly multiple scattering. We demonstrate dynamic light scattering Monte Carlo (DLS-MC), a numerical method by which the electric field autocorrelation function may be calculated for arbitrary geometries if the optical properties and particle motion are known or assumed. DLS-MC requires no assumptions regarding the number of scattering events, the final form of the autocorrelation function, or the degree of correlation between scattering events. Furthermore, the method is capable of rapidly determining the effect of particle motion changes on the autocorrelation function in heterogeneous samples. We experimentally validated the method and demonstrated that the simulations match both the expected form and the experimental results. We also demonstrate the perturbation capabilities of the method by calculating the autocorrelation function of flow in a representation of mouse microvasculature and determining the sensitivity to flow changes as a function of depth. PMID:26191723
Monte Carlo calculation of dynamical properties of the two-dimensional Hubbard model
NASA Technical Reports Server (NTRS)
White, S. R.; Scalapino, D. J.; Sugar, R. L.; Bickers, N. E.
1989-01-01
A new method is introduced for analytically continuing imaginary-time data from quantum Monte Carlo calculations to the real-frequency axis. The method is based on a least-squares-fitting procedure with constraints of positivity and smoothness on the real-frequency quantities. Results are shown for the single-particle spectral-weight function and density of states for the half-filled, two-dimensional Hubbard model.
Monte Carlo calculation of dynamical properties of the two-dimensional Hubbard model
NASA Technical Reports Server (NTRS)
White, S. R.; Scalapino, D. J.; Sugar, R. L.; Bickers, N. E.
1989-01-01
A new method is introduced for analytically continuing imaginary-time data from quantum Monte Carlo calculations to the real-frequency axis. The method is based on a least-squares-fitting procedure with constraints of positivity and smoothness on the real-frequency quantities. Results are shown for the single-particle spectral-weight function and density of states for the half-filled, two-dimensional Hubbard model.
Quantum Monte Carlo for Molecules.
1986-12-01
AD-Ml?? Ml SITNEt MNOTE CARLO FOR OLEC ILES U) CALIFORNIA INEZY 1/ BERWLEY LRIWENCE BERKELEY LAB NI A LESTER ET AL UKLff~j~~lD61 DEC 66 MSW14-6 .3...SUMMARY REPORT 4. PERFORMING ORG. REPORT NUMBER S QUANTUM MONTE CARLO FOR MOLECULES ___ IU . AUTHOR(@) S. CONTRACT OR GRANT NUMSKR(.) S William A...DISTRIGUTION STATIEMEN4T (at the abstract entered in Block 20. it different from Report) - Quantum Monte Carlo importance functions molchuiner eqaio
NASA Technical Reports Server (NTRS)
Lim, J. T.; Gold, H. J.; Wilkerson, G. G.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1989-01-01
We describe the application of a strategy for conducting a sensitivity analysis for a complex dynamic model. The procedure involves preliminary screening of parameter sensitivities by numerical estimation of linear sensitivity coefficients, followed by generation of a response surface based on Monte Carlo simulation. Application is to a physiological model of the vegetative growth of soybean plants. The analysis provides insights as to the relative importance of certain physiological processes in controlling plant growth. Advantages and disadvantages of the strategy are discussed.
NASA Astrophysics Data System (ADS)
Williamson, Alan Scott
Dynamic Abnormal Grain Growth (DAGG) is a type of abnormal grain growth discovered in Molybdenum that occurs during dynamic straining at medium homologous temperatures. Specifics about DAGG initiation and propagation are dependent on the processing conditions experienced by the material. The mechanism responsible for DAGG has yet to be identified. Proposed is a theory is for explaining DAGG, through the nucleation and growth of a sparse number of recrystallized grains DAGG is achieved. These recrystallized grains could grow abnormally using their strain energy driving force advantage. This theory is investigated numerically by modeling dynamic recrystallization using the Monte Carlo Potts method. Dynamic recrystallization is modeled using a combination of dynamic straining, nucleation of recrystallized grains and grain growth. Dynamic recrystallization is studied to answer whether sparse recrystallization is possible, if sparse recrystallization can cause abnormal grain growth and under what conditions sparse recrystallization is accomplished. Viable sparse recrystallization can be achieved and will cause DAGG-like behavior through the nucleation and rapid growth of a single recrystallized grain. The conditions to achieve sparse recrystallization are examined using the relationship recrystallization has with strain energy and microstructure parameters. Results show that a critical strain energy is needed to allow viable nucleation of recrystallized grains. The value of the critical strain energy is the equivalent of 6 grain boundary segments of non-dimensional (n.d.) energy. The inclusion of external solid-vapor surfaces can reduce the critical strain energy to 5 n.d. Strain energy also directly influences the rate of nucleation. By minimizing strain energy, while keeping it is above the critical value, nucleation can be suppressed enough to allow sparse recrystallization. The microstructure will also influence recrystallization. The grain size of the
Monte Carlo simulation of a single ring among linear chains: structural and dynamic heterogeneity.
Yang, Yong-Biao; Sun, Zhao-Yan; Fu, Cui-Liu; An, Li-Jia; Wang, Zhen-Gang
2010-08-14
We perform lattice Monte Carlo simulation using the bond-fluctuation model to examine the conformation and dynamic properties of a single small flexible ring polymer in the matrix of linear chains as functions of the degree of polymerization of the linear chains. The average conformation properties as gauged by the mean-square radius of gyration and asphericity parameter are insensitive to the chain length for all the chain lengths examined (30, 100, 300, and 1000). However, in the longer chain (300 and 1000) samples, there is an increased spread in the distribution of the value of these quantities, suggesting structural heterogeneity. The center-of-mass diffusion of the ring shows a rapid decrease with increasing chain length followed by a more gradual change for the two longer chain systems. In these longer chain systems, a wide spread in the value of the apparent self-diffusion coefficient is also observed, as well as qualitatively different square displacement trajectories among the different samples, suggesting heterogeneity in the dynamics. A primitive path analysis reveals that in these long chain systems, the ring can exist in topologically distinct states with respect to threading by the linear chains. Threading by the linear chain can dramatically slow down and in some cases stall the diffusive motion of the ring. We argue that the life times for these topological conformers can be longer than the disentanglement time of the linear chain matrix, so that the ring exhibits nonergodic behavior on time scales less or comparable to the life time of these conformers. Our results suggest a picture of the ring diffusion as one where the diffusion path consists of distinctive segments, each corresponding to a different conformer, with slow interconversion between the different conformers.
Monte Carlo simulation of a single ring among linear chains: Structural and dynamic heterogeneity
NASA Astrophysics Data System (ADS)
Yang, Yong-Biao; Sun, Zhao-Yan; Fu, Cui-Liu; An, Li-Jia; Wang, Zhen-Gang
2010-08-01
We perform lattice Monte Carlo simulation using the bond-fluctuation model to examine the conformation and dynamic properties of a single small flexible ring polymer in the matrix of linear chains as functions of the degree of polymerization of the linear chains. The average conformation properties as gauged by the mean-square radius of gyration and asphericity parameter are insensitive to the chain length for all the chain lengths examined (30, 100, 300, and 1000). However, in the longer chain (300 and 1000) samples, there is an increased spread in the distribution of the value of these quantities, suggesting structural heterogeneity. The center-of-mass diffusion of the ring shows a rapid decrease with increasing chain length followed by a more gradual change for the two longer chain systems. In these longer chain systems, a wide spread in the value of the apparent self-diffusion coefficient is also observed, as well as qualitatively different square displacement trajectories among the different samples, suggesting heterogeneity in the dynamics. A primitive path analysis reveals that in these long chain systems, the ring can exist in topologically distinct states with respect to threading by the linear chains. Threading by the linear chain can dramatically slow down and in some cases stall the diffusive motion of the ring. We argue that the life times for these topological conformers can be longer than the disentanglement time of the linear chain matrix, so that the ring exhibits nonergodic behavior on time scales less or comparable to the life time of these conformers. Our results suggest a picture of the ring diffusion as one where the diffusion path consists of distinctive segments, each corresponding to a different conformer, with slow interconversion between the different conformers.
NASA Astrophysics Data System (ADS)
Gereben, Orsolya; Pusztai, László
2013-10-01
The liquid structure of tetrachloroethene has been investigated on the basis of measured neutron and X-ray scattering structure factors, applying molecular dynamics simulations and reverse Monte Carlo (RMC) modeling with flexible molecules and interatomic potentials. As no complete all-atom force field parameter set could be found for this planar molecule, the closest matching all-atom Optimized Potentials for Liquid Simulations (OPLS-AA) intra-molecular parameter set was improved by equilibrium bond length and angle parameters coming from electron diffraction experiments [I. L. Karle and J. Karle, J. Chem. Phys. 20, 63 (1952)]. In addition, four different intra-molecular charge distribution sets were tried, so in total, eight different molecular dynamics simulations were performed. The best parameter set was selected by calculating the mean square difference between the calculated total structure factors and the corresponding experimental data. The best parameter set proved to be the one that uses the electron diffraction based intra-molecular parameters and the charges qC = 0.1 and qCl = -0.05. The structure was further successfully refined by applying RMC computer modeling with flexible molecules that were kept together by interatomic potentials. Correlation functions concerning the orientation of molecular axes and planes were also determined. They reveal that the molecules closest to each other exclusively prefer the parallel orientation of both the molecular axes and planes. Molecules forming the first maximum of the center-center distribution have a preference for <30° and >60° axis orientation and >60° molecular plane arrangement. A second coordination sphere at ˜11 Å and a very small third one at ˜16 Å can be found as well, without preference for any axis or plane orientation.
NASA Astrophysics Data System (ADS)
Crifo, J.-F.; Loukianov, G. A.; Rodionov, A. V.; Zakharov, V. V.
2005-07-01
This paper describes the first computations of dust distributions in the vicinity of an active cometary nucleus, using a multidimensional Direct Simulation Monte Carlo Method (DSMC). The physical model is simplistic: spherical grains of a broad range of sizes are liberated by H 2O sublimation from a selection of nonrotating sunlit spherical nuclei, and submitted to the nucleus gravity, the gas drag, and the solar radiation pressure. The results are compared to those obtained by the previously described Dust Multi-Fluid Method (DMF) and demonstrate an excellent agreement in the regions where the DMF is usable. Most importantly, the DSMC allows the discovery of hitherto unsuspected dust coma properties in those cases which cannot be treated by the DMF. This leads to a thorough reconsideration of the properties of the near-nucleus dust dynamics. In particular, the results show that (1) none of the three forces considered here can be neglected a priori, in particular not the radiation pressure; (2) hitherto unsuspected new families of grain trajectories exist, for instance trajectories leading from the nightside surface to the dayside coma; (3) a wealth of balistic-like trajectories leading from one point of the surface to another point exist; on the dayside, such trajectories lead to the formation of "mini-volcanoes." The present model and results are discussed carefully. It is shown that (1) the neglected forces (inertia associated with a nucleus rotation, solar tidal force) are, in general, not negligible everywhere, and (2) when allowing for these additional forces, a time-dependent model will, in general, have to be used. The future steps of development of the model are outlined.
SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy
Chibani, O; Price, R; Ma, C; Eldib, A; Mora, G
2014-06-01
Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.
Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations
Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi
2016-01-01
Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation. PMID:27227775
Constant-pH Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulation Method.
Chen, Yunjie; Roux, Benoît
2015-08-11
A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys. 2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD-MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD-MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems.
Chen, Yunjie; Roux, Benoît
2014-09-21
Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct
Dynamical Models for NGC 6503 Using a Markov Chain Monte Carlo Technique
NASA Astrophysics Data System (ADS)
Puglielli, David; Widrow, Lawrence M.; Courteau, Stéphane
2010-06-01
We use Bayesian statistics and Markov chain Monte Carlo (MCMC) techniques to construct dynamical models for the spiral galaxy NGC 6503. The constraints include surface brightness (SB) profiles which display a Freeman Type II structure; H I and ionized gas rotation curves; the stellar rotation, which is nearly coincident with the ionized gas curve; and the line of sight stellar dispersion, which displays a σ-drop at the center. The galaxy models consist of a Sérsic bulge, an exponential disk with an optional inner truncation and a cosmologically motivated dark halo. The Bayesian/MCMC technique yields the joint posterior probability distribution function for the input parameters, allowing constraints on model parameters such as the halo cusp strength, structural parameters for the disk and bulge, and mass-to-light ratios. We examine several interpretations of the data: the Type II SB profile may be due to dust extinction, to an inner truncated disk, or to a ring of bright stars, and we test separate fits to the gas and stellar rotation curves to determine if the gas traces the gravitational potential. We test each of these scenarios for bar stability, ruling out dust extinction. We also find that the gas likely does not trace the gravitational potential, since the predicted stellar rotation curve, which includes asymmetric drift, is then inconsistent with the observed stellar rotation curve. The disk is well fit by an inner-truncated profile, but the possibility of ring formation by a bar to reproduce the Type II profile is also a realistic model. We further find that the halo must have a cuspy profile with γ >~ 1; the bulge has a lower M/L than the disk, suggesting a star-forming component in the center of the galaxy; and the bulge, as expected for this late-type galaxy, has a low Sérsic index with nb ~ 1-2, suggesting a formation history dominated by secular evolution.
Direct Simulation Monte Carlo for astrophysical flows - II. Ram-pressure dynamics
NASA Astrophysics Data System (ADS)
Weinberg, Martin D.
2014-03-01
We use the Direct Simulation Monte Carlo method combined with an N-body code to study the dynamics of the interaction between a gas-rich spiral galaxy and intracluster or intragroup medium, often known as the ram pressure scenario. The advantage of this gas kinetic approach over traditional hydrodynamics is explicit treatment of the interface between the hot and cold, dense and rarefied media typical of astrophysical flows and the explicit conservation of energy and momentum and the interface. This approach yields some new physical insight. Owing to the shock and backward wave that forms at the point intracluster medium (ICM)-interstellar medium (ISM) contact, ICM gas is compressed, heated and slowed. The shock morphology is Mach disc like. In the outer galaxy, the hot turbulent post-shock gas flows around the galaxy disc while heating and ablating the initially cool disc gas. The outer gas and angular momentum are lost to the flow. In the inner galaxy, the hot gas pressurizes the neutral ISM gas causing a strong two-phase instability. As a result, the momentum of the wind is no longer impulsively communicated to the cold gas as assumed in the Gunn-Gott formula, but oozes through the porous disc, transferring its linear momentum to the disc en masse. The escaping gas mixture has a net positive angular momentum and forms a slowly rotating sheath. The shear flow caused by the post-shock ICM flowing through the porous multiphase ISM creates a strong Kelvin-Helmholtz instability in the disc that results in Cartwheel-like ring and spoke morphology.
NASA Astrophysics Data System (ADS)
Syuhada, Ibnu; Rosikhin, Ahmad; Marimpul, Rinaldo; Noor, Fatimah A.; Winata, Toto
2017-02-01
This study concerns hybrid Monte Carlo and molecular dynamics (MD/MC) methods involving a recipe for creating nickel carbide that can be applied to the graphene growth process. The time-stamped force-bias Monte Carlo (tfMC) method was used for taking care of the bond switching (BS) rate due to the concentration of carbon atoms in the nickel catalyst. It was found that the hybrid MD/MC method promotes the nickel carbide system to vibrational bond switching. This study also revealed that carbon atoms in metal catalyst are not spread randomly but rather prefer to gather in groups. This phenomenon is not caused by the BS rate only, but also by cohesive–adhesive competition between carbon and nickel atoms.
NASA Astrophysics Data System (ADS)
Andricioaei, Ioan; Straub, John E.
1997-12-01
Generalized Monte Carlo and molecular dynamics algorithms which provide enhanced sampling of the phase space in the calculation of equilibrium thermodynamic properties is presented. The algorithm samples trial moves from a generalized statistical distribution derived from a modification of the Gibbs-Shannon entropy proposed by Tsallis. Results for a one-dimensional model potential demonstrate that the algorithm leads to a greatly enhanced rate of barrier crossing and convergence in the calculation of equilibrium averages. Comparison is made with standard Metropolis Monte Carlo and the J-walking algorithm of Franz, Freeman and Doll. Application to a 13-atom Lennard-Jones cluster demonstrates the ease with which the algorithm may be applied to complex molecular systems.
Challenges of Monte Carlo Transport
Long, Alex Roberts
2016-06-10
These are slides from a presentation for Parallel Summer School at Los Alamos National Laboratory. Solving discretized partial differential equations (PDEs) of interest can require a large number of computations. We can identify concurrency to allow parallel solution of discrete PDEs. Simulated particles histories can be used to solve the Boltzmann transport equation. Particle histories are independent in neutral particle transport, making them amenable to parallel computation. Physical parameters and method type determine the data dependencies of particle histories. Data requirements shape parallel algorithms for Monte Carlo. Then, Parallel Computational Physics and Parallel Monte Carlo are discussed and, finally, the results are given. The mesh passing method greatly simplifies the IMC implementation and allows simple load-balancing. Using MPI windows and passive, one-sided RMA further simplifies the implementation by removing target synchronization. The author is very interested in implementations of PGAS that may allow further optimization for one-sided, read-only memory access (e.g. Open SHMEM). The MPICH_RMA_OVER_DMAPP option and library is required to make one-sided messaging scale on Trinitite - Moonlight scales poorly. Interconnect specific libraries or functions are likely necessary to ensure performance. BRANSON has been used to directly compare the current standard method to a proposed method on idealized problems. The mesh passing algorithm performs well on problems that are designed to show the scalability of the particle passing method. BRANSON can now run load-imbalanced, dynamic problems. Potential avenues of improvement in the mesh passing algorithm will be implemented and explored. A suite of test problems that stress DD methods will elucidate a possible path forward for production codes.
Monte-Carlo particle dynamics in a variable specific impulse magnetoplasma rocket
Ilin, A.V.; Diaz, F.R.C.; Squire, J.P.
1999-01-01
The self-consistent mathematical model in a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is examined. Of particular importance is the effect of a magnetic nozzle in enhancing the axial momentum of the exhaust. Also, different geometries and rocket symmetries are considered. The magnetic configuration is modeled with an adaptable mesh, which increases accuracy without compromising the speed of the simulation. The single particle trajectories are integrated with an adaptive time-scheme, which can quickly solve extensive Monte-Carlo simulations for systems of hundred thousands of particles in a reasonable time (1--2 hours) and without the need for a powerful supercomputer.
Monte Carlo simulations of hole dynamics in SiGe/Si terahertz quantum-cascade structures
NASA Astrophysics Data System (ADS)
Ikonić, Z.; Kelsall, R. W.; Harrison, P.
2004-06-01
A detailed analysis of hole transport in cascaded p - Si/SiGe quantum well structures is performed using ensemble Monte Carlo simulations. The hole subband structure is calculated using the 6×6 k·p model, and then used to find carrier relaxation rates due to the alloy disorder, acoustic and optical phonon scattering. The simulation accounts for the in-plane k -space anisotropy of both the hole subband structure and the scattering rates. Results are presented for prototype terahertz Si/SiGe quantum cascade structures.
Proton Upset Monte Carlo Simulation
NASA Technical Reports Server (NTRS)
O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.
2009-01-01
The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.
The Rational Hybrid Monte Carlo algorithm
NASA Astrophysics Data System (ADS)
Clark, Michael
2006-12-01
The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.
Multilevel sequential Monte Carlo samplers
Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan
2016-08-24
Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level h_{L}. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levels ${\\infty}$ >h_{0}>h_{1 }...>h_{L}. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.
Multilevel sequential Monte Carlo samplers
Beskos, Alexandros; Jasra, Ajay; Law, Kody; ...
2016-08-24
Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levelsmore » $${\\infty}$$ >h0>h1 ...>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.« less
Multilevel sequential Monte Carlo samplers
Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan
2016-08-24
Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level h_{L}. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levels ${\\infty}$ >h_{0}>h_{1 }...>h_{L}. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.
Monte Carlo Particle Lists: MCPL
NASA Astrophysics Data System (ADS)
Kittelmann, T.; Klinkby, E.; Knudsen, E. B.; Willendrup, P.; Cai, X. X.; Kanaki, K.
2017-09-01
A binary format with lists of particle state information, for interchanging particles between various Monte Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the scientific community, along with converters and plugins for several popular simulation packages.
Mayawala, Kapil; Vlachos, Dionisios G; Edwards, Jeremy S
2006-06-01
Bimolecular reactions in the plasma membrane, such as receptor dimerization, are a key signaling step for many signaling systems. For receptors to dimerize, they must first diffuse until a collision happens, upon which a dimerization reaction may occur. Therefore, study of the dynamics of cell signaling on the membrane may require the use of a spatial modeling framework. Despite the availability of spatial simulation methods, e.g., stochastic spatial Monte Carlo (MC) simulation and partial differential equation (PDE) based approaches, many biological models invoke well-mixed assumptions without completely evaluating the importance of spatial organization. Whether one is to utilize a spatial or non-spatial simulation framework is therefore an important decision. In order to evaluate the importance of spatial effects a priori, i.e., without performing simulations, we have assessed the applicability of a dimensionless number, known as second Damköhler number (Da), defined here as the ratio of time scales of collision and reaction, for 2-dimensional bimolecular reactions. Our study shows that dimerization reactions in the plasma membrane with Da approximately >0.1 (tested in the receptor density range of 10(2)-10(5)/microm(2)) require spatial modeling. We also evaluated the effective reaction rate constants of MC and simple deterministic PDEs. Our simulations show that the effective reaction rate constant decreases with time due to time dependent changes in the spatial distribution of receptors. As a result, the effective reaction rate constant of simple PDEs can differ from that of MC by up to two orders of magnitude. Furthermore, we show that the fluctuations in the number of copies of signaling proteins (noise) may also depend on the diffusion properties of the system. Finally, we used the spatial MC model to explore the effect of plasma membrane heterogeneities, such as receptor localization and reduced diffusivity, on the dimerization rate. Interestingly, our
Suitable Candidates for Monte Carlo Solutions.
ERIC Educational Resources Information Center
Lewis, Jerome L.
1998-01-01
Discusses Monte Carlo methods, powerful and useful techniques that rely on random numbers to solve deterministic problems whose solutions may be too difficult to obtain using conventional mathematics. Reviews two excellent candidates for the application of Monte Carlo methods. (ASK)
A Classroom Note on Monte Carlo Integration.
ERIC Educational Resources Information Center
Kolpas, Sid
1998-01-01
The Monte Carlo method provides approximate solutions to a variety of mathematical problems by performing random sampling simulations with a computer. Presents a program written in Quick BASIC simulating the steps of the Monte Carlo method. (ASK)
Applications of Monte Carlo Methods in Calculus.
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Gordon, Florence S.
1990-01-01
Discusses the application of probabilistic ideas, especially Monte Carlo simulation, to calculus. Describes some applications using the Monte Carlo method: Riemann sums; maximizing and minimizing a function; mean value theorems; and testing conjectures. (YP)
NASA Astrophysics Data System (ADS)
Monceau, Pascal; Hsiao, Pai-Yi
2002-09-01
We study the Wolff cluster size distributions obtained from Monte Carlo simulations of the Ising phase transition on Sierpinski fractals with Hausdorff dimensions Df between 2 and 3. These distributions are shown to be invariant when going from an iteration step of the fractal to the next under a scaling of the cluster sizes involving the exponent (β/ν)+(γ/ν). Moreover, the decay of the autocorrelation functions at the critical points enables us to calculate the Wolff dynamical critical exponents z for three different values of Df. The Wolff algorithm is more efficient in reducing the critical slowing down when Df is lowered.
Monte Carlo Simulation for Perusal and Practice.
ERIC Educational Resources Information Center
Brooks, Gordon P.; Barcikowski, Robert S.; Robey, Randall R.
The meaningful investigation of many problems in statistics can be solved through Monte Carlo methods. Monte Carlo studies can help solve problems that are mathematically intractable through the analysis of random samples from populations whose characteristics are known to the researcher. Using Monte Carlo simulation, the values of a statistic are…
GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA
NASA Astrophysics Data System (ADS)
Spiechowicz, J.; Kostur, M.; Machura, L.
2015-06-01
This work presents an updated and extended guide on methods of a proper acceleration of the Monte Carlo integration of stochastic differential equations with the commonly available NVIDIA Graphics Processing Units using the CUDA programming environment. We outline the general aspects of the scientific computing on graphics cards and demonstrate them with two models of a well known phenomenon of the noise induced transport of Brownian motors in periodic structures. As a source of fluctuations in the considered systems we selected the three most commonly occurring noises: the Gaussian white noise, the white Poissonian noise and the dichotomous process also known as a random telegraph signal. The detailed discussion on various aspects of the applied numerical schemes is also presented. The measured speedup can be of the astonishing order of about 3000 when compared to a typical CPU. This number significantly expands the range of problems solvable by use of stochastic simulations, allowing even an interactive research in some cases.
NASA Astrophysics Data System (ADS)
Castiglione, F.; Pandey, R. B.; Stauffer, D.
2001-01-01
A Monte Carlo computer simulation model is presented to study the evolution of stock price and the distribution of price fluctuation. The resistance is described by an elastic energy Ee= e· x2 resulting from the price deviation x from an initial value and the momentum trading by the potential energy Ep=- b· y in a price gradient y field. The distribution of price fluctuation ( P( y)) is symmetric and shows a long time tail compatible over some range with a power-law, P( y)∼ y- μ with μ≃4 at e=1.0, b=5 . The volatility auto-correlation function ( c( τ)) is positive for several iterations.
NASA Technical Reports Server (NTRS)
Haviland, J. K.
1974-01-01
The results are reported of two unrelated studies. The first was an investigation of the formulation of the equations for non-uniform unsteady flows, by perturbation of an irrotational flow to obtain the linear Green's equation. The resulting integral equation was found to contain a kernel which could be expressed as the solution of the adjoint flow equation, a linear equation for small perturbations, but with non-constant coefficients determined by the steady flow conditions. It is believed that the non-uniform flow effects may prove important in transonic flutter, and that in such cases, the use of doublet type solutions of the wave equation would then prove to be erroneous. The second task covered an initial investigation into the use of the Monte Carlo method for solution of acoustical field problems. Computed results are given for a rectangular room problem, and for a problem involving a circular duct with a source located at the closed end.
Luo, Ye; Zen, Andrea; Sorella, Sandro
2014-11-21
We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.
Luo, Ye Sorella, Sandro; Zen, Andrea
2014-11-21
We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.
González, W; Lallena, A M; Alfonso, R
2011-06-07
Micro-multileaf collimators are devices that are added to LINAC heads for stereotactic radiosurgery. In this work, the performance of an Elekta Precise LINAC with a dynamic micro-multileaf collimator manufactured by 3D-line has been studied. Monte Carlo simulations based on PENELOPE code and measurements with three different detectors (PTW Semiflex 31010 chamber, PTW PinPoint 31016 chamber and PTW Diode 60008) have been carried out. Simulations were tuned by reproducing the experimental TPR(20, 10) quality index, providing a nice description of both the PDD curve and the transverse profiles at the two depths measured. The geometry of the micro-multileaf collimator was tested by calculating the transmission through it, and it was needed to significantly reduce the leaf separation indicated by the manufacturer to reproduce the experimental results. An approximate simulation in which the transport of the particles traversing the dynamic micro-multileaf collimator was described in a simplified way was analyzed, providing good agreement with the full simulations. With the MC model fixed, output factors for various field sizes were calculated and compared to the experimental ones, obtaining good agreement. Percentage depth doses (PDDs) and transverse profiles at two depths measured with the diode for small fields were well reproduced by the simulation, while the measurements performed with the PinPoint chamber showed differences in the PDDs, at large depths, and transverse profiles, at the penumbra. Monte Carlo simulations and Semiflex and diode measurements, performed for a 7.0 cm × 7.0 cm field, were in nice agreement, while those obtained with the PinPoint chamber showed differences that increased with the depth in water. At the phantom entrance, all measurements showed non-negligible differences that made Monte Carlo a good option to estimate the absorbed dose in this region.
NASA Astrophysics Data System (ADS)
González, W.; Lallena, A. M.; Alfonso, R.
2011-06-01
Micro-multileaf collimators are devices that are added to LINAC heads for stereotactic radiosurgery. In this work, the performance of an Elekta Precise LINAC with a dynamic micro-multileaf collimator manufactured by 3D-line has been studied. Monte Carlo simulations based on PENELOPE code and measurements with three different detectors (PTW Semiflex 31010 chamber, PTW PinPoint 31016 chamber and PTW Diode 60008) have been carried out. Simulations were tuned by reproducing the experimental TPR20, 10 quality index, providing a nice description of both the PDD curve and the transverse profiles at the two depths measured. The geometry of the micro-multileaf collimator was tested by calculating the transmission through it, and it was needed to significantly reduce the leaf separation indicated by the manufacturer to reproduce the experimental results. An approximate simulation in which the transport of the particles traversing the dynamic micro-multileaf collimator was described in a simplified way was analyzed, providing good agreement with the full simulations. With the MC model fixed, output factors for various field sizes were calculated and compared to the experimental ones, obtaining good agreement. Percentage depth doses (PDDs) and transverse profiles at two depths measured with the diode for small fields were well reproduced by the simulation, while the measurements performed with the PinPoint chamber showed differences in the PDDs, at large depths, and transverse profiles, at the penumbra. Monte Carlo simulations and Semiflex and diode measurements, performed for a 7.0 cm × 7.0 cm field, were in nice agreement, while those obtained with the PinPoint chamber showed differences that increased with the depth in water. At the phantom entrance, all measurements showed non-negligible differences that made Monte Carlo a good option to estimate the absorbed dose in this region.
Gartner, Thomas E; Epps, Thomas H; Jayaraman, Arthi
2016-11-08
We describe an extension of the Gibbs ensemble molecular dynamics (GEMD) method for studying phase equilibria. Our modifications to GEMD allow for direct control over particle transfer between phases and improve the method's numerical stability. Additionally, we found that the modified GEMD approach had advantages in computational efficiency in comparison to a hybrid Monte Carlo (MC)/MD Gibbs ensemble scheme in the context of the single component Lennard-Jones fluid. We note that this increase in computational efficiency does not compromise the close agreement of phase equilibrium results between the two methods. However, numerical instabilities in the GEMD scheme hamper GEMD's use near the critical point. We propose that the computationally efficient GEMD simulations can be used to map out the majority of the phase window, with hybrid MC/MD used as a follow up for conditions under which GEMD may be unstable (e.g., near-critical behavior). In this manner, we can capitalize on the contrasting strengths of these two methods to enable the efficient study of phase equilibria for systems that present challenges for a purely stochastic GEMC method, such as dense or low temperature systems, and/or those with complex molecular topologies.
Zimmerman, G.B.
1997-06-24
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ion and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burns nd burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
Womersley, J. . Dept. of Physics)
1992-10-01
The D0 detector at the Fermilab Tevatron began its first data taking run in May 1992. For analysis of the expected 25 pb[sup [minus]1] data sample, roughly half a million simulated events will be needed. The GEANT-based Monte Carlo program used to generate these events is described, together with comparisons to test beam data. Some novel techniques used to speed up execution and simplify geometrical input are described.
Monte Carlo methods on advanced computer architectures
Martin, W.R.
1991-12-31
Monte Carlo methods describe a wide class of computational methods that utilize random numbers to perform a statistical simulation of a physical problem, which itself need not be a stochastic process. For example, Monte Carlo can be used to evaluate definite integrals, which are not stochastic processes, or may be used to simulate the transport of electrons in a space vehicle, which is a stochastic process. The name Monte Carlo came about during the Manhattan Project to describe the new mathematical methods being developed which had some similarity to the games of chance played in the casinos of Monte Carlo. Particle transport Monte Carlo is just one application of Monte Carlo methods, and will be the subject of this review paper. Other applications of Monte Carlo, such as reliability studies, classical queueing theory, molecular structure, the study of phase transitions, or quantum chromodynamics calculations for basic research in particle physics, are not included in this review. The reference by Kalos is an introduction to general Monte Carlo methods and references to other applications of Monte Carlo can be found in this excellent book. For the remainder of this paper, the term Monte Carlo will be synonymous to particle transport Monte Carlo, unless otherwise noted. 60 refs., 14 figs., 4 tabs.
NASA Astrophysics Data System (ADS)
Rota, R.; Casulleras, J.; Mazzanti, F.; Boronat, J.
2015-03-01
We present a method based on the path integral Monte Carlo formalism for the calculation of ground-state time correlation functions in quantum systems. The key point of the method is the consideration of time as a complex variable whose phase δ acts as an adjustable parameter. By using high-order approximations for the quantum propagator, it is possible to obtain Monte Carlo data all the way from purely imaginary time to δ values near the limit of real time. As a consequence, it is possible to infer accurately the spectral functions using simple inversion algorithms. We test this approach in the calculation of the dynamic structure function S(q, ω) of two one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω) can be exactly calculated. We notice a clear improvement in the calculation of the dynamic response with respect to the common approach based on the inverse Laplace transform of the imaginary-time correlation function.
Rota, R; Casulleras, J; Mazzanti, F; Boronat, J
2015-03-21
We present a method based on the path integral Monte Carlo formalism for the calculation of ground-state time correlation functions in quantum systems. The key point of the method is the consideration of time as a complex variable whose phase δ acts as an adjustable parameter. By using high-order approximations for the quantum propagator, it is possible to obtain Monte Carlo data all the way from purely imaginary time to δ values near the limit of real time. As a consequence, it is possible to infer accurately the spectral functions using simple inversion algorithms. We test this approach in the calculation of the dynamic structure function S(q, ω) of two one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω) can be exactly calculated. We notice a clear improvement in the calculation of the dynamic response with respect to the common approach based on the inverse Laplace transform of the imaginary-time correlation function.
Monte Carlo simulation of the short-time behaviour of the dynamic XY-model
NASA Astrophysics Data System (ADS)
Okano, K.; Schülke, L.; Yamagishi, K.; Zheng, B.
1997-07-01
Dynamic relaxation of the XY-model quenched from a high temperature state to the critical temperature or below is investigated with Monte Carlo methods. When a non-zero initial magnetization is given, in the short-time regime of the dynamic evolution the critical initial increase of the magnetization is observed. The dynamic exponent 0305-4470/30/13/009/img7 is directly determined. The results show that the exponent 0305-4470/30/13/009/img7 varies with respect to the temperature. Furthermore, it is demonstrated that this initial increase of the magnetization is universal, i.e. independent of the microscopic details of the initial configurations and the algorithms.
NASA Astrophysics Data System (ADS)
Pandey, Ras; Ruskin, Heather; Mannion, Rachel
2001-03-01
Using a direct Monte Carlo method we study the population dynamics of cells, i.e., macrophages (N_M), helper T-cells (N_H), cytotoxic cells (N_C), and antigens (N_V), with an HIV immune response model. Cells interact with eact other with a set of rules based on known HIV response. Cells can be mobile with a probability P_mob with a local motility-bias and viruses can mutate with a probability P_mut. Computer simulations are performed on cubic lattices with a number of independent runs. Population of cellular elements with the Monte Carlo time steps are monitored at a function of mutation at two extreme values of mobility, P_mob = 0, 1. We find that, in absence of mobility (P_mob = 0), the helper T-cells grow nonmonotonically before reaching saturation while the viral population grows monotonically to a constant value. On the other hand, cellular mobility (P_mob=1) enhances the viral growth and reduces the stimulative T-cell growth. The relative magnitude of the steady-state density of helper cell and viral infected cells determine the level of infection. Viral population dominates over the helper T-Cells above a critical mutation threshold (p_c) while helper T-Cells dominates below p_c. Nature of transition depends on mobility.
NASA Astrophysics Data System (ADS)
Jehan, Musarrat
The response of a dynamic system is random. There is randomness in both the applied loads and the strength of the system. Therefore, to account for the uncertainty, the safety of the system must be quantified using its probability of survival (reliability). Monte Carlo Simulation (MCS) is a widely used method for probabilistic analysis because of its robustness. However, a challenge in reliability assessment using MCS is that the high computational cost limits the accuracy of MCS. Haftka et al. [2010] developed an improved sampling technique for reliability assessment called separable Monte Carlo (SMC) that can significantly increase the accuracy of estimation without increasing the cost of sampling. However, this method was applied to time-invariant problems involving two random variables only. This dissertation extends SMC to random vibration problems with multiple random variables. This research also develops a novel method for estimation of the standard deviation of the probability of failure of a structure under static or random vibration. The method is demonstrated on quarter car models and a wind turbine. The proposed method is validated using repeated standard MCS.
Applications of Maxent to quantum Monte Carlo
Silver, R.N.; Sivia, D.S.; Gubernatis, J.E. ); Jarrell, M. . Dept. of Physics)
1990-01-01
We consider the application of maximum entropy methods to the analysis of data produced by computer simulations. The focus is the calculation of the dynamical properties of quantum many-body systems by Monte Carlo methods, which is termed the Analytical Continuation Problem.'' For the Anderson model of dilute magnetic impurities in metals, we obtain spectral functions and transport coefficients which obey Kondo Universality.'' 24 refs., 7 figs.
NASA Astrophysics Data System (ADS)
Chern, Shyh-Shi; Cárdenas, Alfredo E.; Coalson, Rob D.
2001-10-01
Three-dimensional dynamic Monte Carlo simulations of polymer translocation through a cylindrical hole in a planar slab under the influence of an external driving force are performed. The driving force is intended to emulate the effect of a static electric field applied in an electrolytic solution containing charged monomer particles, as is relevant to the translocation of certain biopolymers through protein channel pores embedded in cell membranes. The time evolution of the probability distribution of the translocation coordinate (the number of monomers that have passed through the pore) is extracted from three-dimensional (3-D) simulations over a range of polymer chain lengths. These distributions are compared to the predictions of a 1-D Smoluchowski equation model of the translocation coordinate dynamics. Good agreement is found, with the effective diffusion constant for the 1-D Smoluchowski model being nearly independent of chain length.
NASA Astrophysics Data System (ADS)
Kamibayashi, Yuki; Miura, Shinichi
2016-08-01
In the present study, variational path integral molecular dynamics and associated hybrid Monte Carlo (HMC) methods have been developed on the basis of a fourth order approximation of a density operator. To reveal various parameter dependence of physical quantities, we analytically solve one dimensional harmonic oscillators by the variational path integral; as a byproduct, we obtain the analytical expression of the discretized density matrix using the fourth order approximation for the oscillators. Then, we apply our methods to realistic systems like a water molecule and a para-hydrogen cluster. In the HMC, we adopt two level description to avoid the time consuming Hessian evaluation. For the systems examined in this paper, the HMC method is found to be about three times more efficient than the molecular dynamics method if appropriate HMC parameters are adopted; the advantage of the HMC method is suggested to be more evident for systems described by many body interaction.
Semistochastic Projector Monte Carlo Method
NASA Astrophysics Data System (ADS)
Petruzielo, F. R.; Holmes, A. A.; Changlani, Hitesh J.; Nightingale, M. P.; Umrigar, C. J.
2012-12-01
We introduce a semistochastic implementation of the power method to compute, for very large matrices, the dominant eigenvalue and expectation values involving the corresponding eigenvector. The method is semistochastic in that the matrix multiplication is partially implemented numerically exactly and partially stochastically with respect to expectation values only. Compared to a fully stochastic method, the semistochastic approach significantly reduces the computational time required to obtain the eigenvalue to a specified statistical uncertainty. This is demonstrated by the application of the semistochastic quantum Monte Carlo method to systems with a sign problem: the fermion Hubbard model and the carbon dimer.
Commissioning of 6 MV medical linac for dynamic MLC-based IMRT on Monte Carlo code GEANT4.
Okamoto, Hiroyuki; Fujita, Yukio; Sakama, Kyoko; Saitoh, Hidetoshi; Kanai, Tatsuaki; Itami, Jun; Kohno, Toshiyuki
2014-07-01
Monte Carlo simulation is the most accurate tool for calculating dose distributions. In particular, the Electron Gamma shower computer code has been widely used for multi-purpose research in radiotherapy, but Monte Carlo GEANT4 (GEometry ANd Tracking) is rare for radiotherapy with photon beams and needs to be verified further under various irradiation conditions, particularly multi-leaf collimator-based intensity-modulated radiation therapy (MLC-based IMRT). In this study, GEANT4 was used for modeling of a 6 MV linac for dynamic MLC-based IMRT. To verify the modeling of our linac, we compared the calculated data with the measured depth-dose for a 10 × 10 cm(2) field and the measured dose profile for a 35 × 35 cm(2) field. Moreover, 120 MLCs were modeled on the GEANT4. Five tests of MLC modeling were performed: (I) MLC transmission, (II) MLC transmission profile including intra- and inter-leaf leakage, (III) tongue-and-groove leakage, (IV) a simple field with different field sizes by use of MLC and (V) a dynamic MLC-based IMRT field. For all tests, the calculations were compared with measurements of an ionization chamber and radiographic film. The calculations agreed with the measurements: MLC transmissions by calculations and measurements were 1.76 ± 0.01 and 1.87 ± 0.01 %, respectively. In gamma evaluation method (3 %/3 mm), the pass rates of the (IV) and (V) tests were 98.5 and 97.0 %, respectively. Furthermore, tongue-and-groove leakage could be calculated by GEANT4, and it agreed with the film measurements. The procedure of commissioning of dynamic MLC-based IMRT for GEANT4 is proposed in this study.
Monte Carlo Simulations of Small Benzene Clusters: Structure, Dynamics, Diffusion and Phase Changes.
NASA Astrophysics Data System (ADS)
Dulles, Frederic John
The structure, melting, and in some cases, the freezing transitions of benzene clusters containing 7, 12, 13, 14, 19, 55, and 128 molecules, were investigated by isothermal Metropolis Monte Carlo simulations, using a potential function developed by Shi. Analyses included caloric curves, pair correlation functions, and indices of translational and rotational self-diffusion based on a simple random-walk model that eliminated the dependence on the arbitrary MC step-size. The relative utility of different procedures for calculating the Lindemann index (delta) for melting was investigated. Transitions analogous to melting and freezing occurred over a range of temperatures. Clusters of benzene, like those of argon, exhibit special stability at the magic number 13. Solid-like clusters with 19 and fewer molecules had poly-tetrahedral structures related to the icosahedral framework of the 13-molecule cluster. The structure of the 13-molecule cluster differed from published structures based on different and probably less accurate potential functions. The low temperature form possessed six energetically equivalent isomers. Benzene cluster's melting points decreased linearly with the inverse of the clusters' radii which permitted estimations of the solid-liquid interfacial free energy and the bulk melting point implict in the Shi potential. Vibrational and librational motions of the molecules in solid-like clusters were found to be freer than in the bulk. Both in-plane and out-of-plane rotational diffusion began at lower temperatures than translational diffusion with in -plane motion being the least constrained. Surfaces began to melt before the interiors. Upon cooling, liquid-like clusters 19-molecules and smaller in size readily relaxed into their solid-like stable low temperature forms while the molten 128-molecule cluster remained amorphous. The structures and melting behavior of benzene clusters were compared with those of argon and TeF_6 clusters, and found to be more
A Monte Carlo Approach to Population Dynamics of Cell in an HIV Immune Response Model
NASA Astrophysics Data System (ADS)
Mannion, Rachel; Ruskin, Heather; Pandey, Ras
2000-03-01
A direct Monte Carlo method is used to study the growth and decay of celluar elements, macrophages (N_H), helper T-cells (N_H), cytotoxic cells (N_C), and antigens (N_V), with an HIV immune response model. A set of rule-based logical interactions among the cells are considered. Cells divide and decay on a discrete lattice as a result of immune mechanism implemented via the inter- and intra-cellular interactions. Viral mutation is considered probabilistically (P_mut). Cells are mobile with their local motility-bias and the overall mobility is controlled by cellular mobility (P_mob). Computer simulations are performed on different lattice sizes with a number of independent runs for each parameter for averaging. Cellular mobility (P_mob=1) enhances the viral growth and reduces the stimulative T-cell growth. As a function of viral mutation rate, the interplay between the steady- state density of helper T-cells (ρ_H) and the viruses (ρ_V), leads to interesting predictions regarding the degree of infection including AIDS. For example, below a mutation threshold, (P_mut <= P_c), while the relative T-cell count (- Δ0 = ρ_H-ρV > 0) is not as alarming, above the threshold, viral population increasingly dominates as a function of the mutation rate with the onset of a continuous transition Δ ρ0 ∝ (P_mut - P_c)^β β ~= 0.574 ± 0.016 as P_mut → Pc in absence cellular mobility.
Edison, John R; Monson, Peter A
2013-06-21
This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)]. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.
Lee, Kyoung O; Holmes, Thomas W; Calderon, Adan F; Gardner, Robin P
2012-05-01
Using a Monte Carlo (MC) simulation, random walks were used for pebble tracking in a two-dimensional geometry in the presence of a biased gravity field. We investigated the effect of viscosity damping in the presence of random Gaussian fluctuations. The particle tracks were generated by Molecular Dynamics (MD) simulation for a Pebble Bed Reactor. The MD simulations were conducted in the interaction of noncohesive Hertz-Mindlin theory where the random walk MC simulation has a correlation with the MD simulation. This treatment can easily be extended to include the generation of transient gamma-ray spectra from a single pebble that contains a radioactive tracer. Then the inverse analysis thereof could be made to determine the uncertainty of the realistic measurement of transient positions of that pebble by any given radiation detection system designed for that purpose.
Pasini, J M; Cordero, P
2001-04-01
We study a one-dimensional granular gas of pointlike particles not subject to gravity between two walls at temperatures T(left) and T(right). The system exhibits two distinct regimes, depending on the normalized temperature difference Delta=(T(right)-T(left))/(T(right)+T(left)): one completely fluidized and one in which a cluster coexists with the fluidized gas. When Delta is above a certain threshold, cluster formation is fully inhibited, obtaining a completely fluidized state. The mechanism that produces these two phases is explained. In the fluidized state the velocity distribution function exhibits peculiar non-Gaussian features. For this state, comparison between integration of the Boltzmann equation using the direct-simulation Monte Carlo method and results stemming from microscopic Newtonian molecular dynamics gives good coincidence, establishing that the non-Gaussian features observed do not arise from the onset of correlations.
NASA Astrophysics Data System (ADS)
Kai, Takeshi; Yokoya, Akinari; Ukai, Masatoshi; Fujii, Kentaro; Watanabe, Ritsuko
2015-10-01
The thermalization length and spatial distribution of electrons in liquid water were simulated for initial electron energies ranging from 0.1 eV to 100 keV using a dynamic Monte Carlo code. The results showed that electrons were decelerated for thermalization over a longer time period than was previously predicted. This long thermalization time significantly contributed to the series of processes from initial ionization to hydration. We further studied the particular deceleration process of electrons at an incident energy of 1 eV, focusing on the temporal evolution of total track length, mean traveling distance, and energy distributions of decelerating electrons. The initial prehydration time and thermalization periods were estimated to be approximately 50 and 220 fs, respectively, indicating that the initial prehydration began before or contemporaneously with the thermal equilibrium. Based on these results, the prehydrated electrons were suggested to play an important role during multiple DNA damage induction.
NASA Astrophysics Data System (ADS)
Tsirkunov, Yu. M.; Romanyuk, D. A.
2016-07-01
A dusty gas flow through two, moving and immovable, cascades of airfoils (blades) is studied numerically. In the mathematical model of two-phase gas-particle flow, the carrier gas is treated as a continuum and it is described by the Navier-Stokes equations (pseudo-DNS (direct numerical simulation) approach) or the Reynolds averaged Navier-Stokes (RANS) equations (unsteady RANS approach) with the Menter k-ω shear stress transport (SST) turbulence model. The governing equations in both cases are solved by computational fluid dynamics (CFD) methods. The dispersed phase is treated as a discrete set of solid particles, the behavior of which is described by the generalized kinetic Boltzmann equation. The effects of gas-particle interaction, interparticle collisions, and particle scattering in particle-blade collisions are taken into account. The direct simulation Monte Carlo (DSMC) method is used for computational simulation of the dispersed phase flow. The effects of interparticle collisions and particle scattering are discussed.
NASA Astrophysics Data System (ADS)
Pasini, José Miguel; Cordero, Patricio
2001-04-01
We study a one-dimensional granular gas of pointlike particles not subject to gravity between two walls at temperatures Tleft and Tright. The system exhibits two distinct regimes, depending on the normalized temperature difference Δ=(Tright- Tleft)/(Tright+Tleft): one completely fluidized and one in which a cluster coexists with the fluidized gas. When Δ is above a certain threshold, cluster formation is fully inhibited, obtaining a completely fluidized state. The mechanism that produces these two phases is explained. In the fluidized state the velocity distribution function exhibits peculiar non-Gaussian features. For this state, comparison between integration of the Boltzmann equation using the direct-simulation Monte Carlo method and results stemming from microscopic Newtonian molecular dynamics gives good coincidence, establishing that the non-Gaussian features observed do not arise from the onset of correlations.
Multidimensional stochastic approximation Monte Carlo
NASA Astrophysics Data System (ADS)
Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .
Single scatter electron Monte Carlo
Svatos, M.M.
1997-03-01
A single scatter electron Monte Carlo code (SSMC), CREEP, has been written which bridges the gap between existing transport methods and modeling real physical processes. CREEP simulates ionization, elastic and bremsstrahlung events individually. Excitation events are treated with an excitation-only stopping power. The detailed nature of these simulations allows for calculation of backscatter and transmission coefficients, backscattered energy spectra, stopping powers, energy deposits, depth dose, and a variety of other associated quantities. Although computationally intense, the code relies on relatively few mathematical assumptions, unlike other charged particle Monte Carlo methods such as the commonly-used condensed history method. CREEP relies on sampling the Lawrence Livermore Evaluated Electron Data Library (EEDL) which has data for all elements with an atomic number between 1 and 100, over an energy range from approximately several eV (or the binding energy of the material) to 100 GeV. Compounds and mixtures may also be used by combining the appropriate element data via Bragg additivity.
NASA Astrophysics Data System (ADS)
Alcaraz, Olga; Trullàs, Joaquim; Tahara, Shuta; Kawakita, Yukinobu; Takeda, Shin'ichi
2016-09-01
The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å-1 related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.
NASA Astrophysics Data System (ADS)
Cepeda, Jose; Luna, Byron Quan; Nadim, Farrokh
2013-04-01
An essential component of a quantitative landslide hazard assessment is establishing the extent of the endangered area. This task requires accurate prediction of the run-out behaviour of a landslide, which includes the estimation of the run-out distance, run-out width, velocities, pressures, and depth of the moving mass and the final configuration of the deposits. One approach to run-out modelling is to reproduce accurately the dynamics of the propagation processes. A number of dynamic numerical models are able to compute the movement of the flow over irregular topographic terrains (3-D) controlled by a complex interaction between mechanical properties that may vary in space and time. Given the number of unknown parameters and the fact that most of the rheological parameters cannot be measured in the laboratory or field, the parametrization of run-out models is very difficult in practice. For this reason, the application of run-out models is mostly used for back-analysis of past events and very few studies have attempted to achieve forward predictions. Consequently all models are based on simplified descriptions that attempt to reproduce the general features of the failed mass motion through the use of parameters (mostly controlling shear stresses at the base of the moving mass) which account for aspects not explicitly described or oversimplified. The uncertainties involved in the run-out process have to be approached in a stochastic manner. It is of significant importance to develop methods for quantifying and properly handling the uncertainties in dynamic run-out models, in order to allow a more comprehensive approach to quantitative risk assessment. A method was developed to compute the variation in run-out intensities by using a dynamic run-out model (MassMov2D) and a probabilistic framework based on a Monte Carlo simulation in order to analyze the effect of the uncertainty of input parameters. The probability density functions of the rheological parameters
NASA Astrophysics Data System (ADS)
Korniss, G.; Novotny, M. A.; Rikvold, P. A.; Toroczkai, Z.
2001-06-01
Modeling and simulation of the evolution of natural and artificial complex systems are of fundamental importance in both science and engineering. In a large class of systems the underlying dynamic is inherently asynchronous. Examples of such systems include magnetization dynamics in condensed matter, cellular communication networks, and the spread of epidemics. Constructing a parallel scheme for simulating the time evolution of these systems, in which the local changes in the configuration are asynchronous, leads to at least two difficult questions. First, to put it simply, "How to design parallel algorithms for non-parallel dynamics?". Second, if there is a faithful parallel algorithm for the problem, "Is it scalable?". We describe novel parallel Monte Carlo algorithms for asynchronous systems with both the computation and the measurement part being asymptotically scalable. In particular, we discuss the intimate connection [1] between algorithmic scalability and non-equilibrium surface growth phenomena, which has led us to the engineering and fine-tuning of fully scalable massively parallel schemes. Supported by NSF, NERSC-DOE, CSIT-FSU, and RPI. [1] G. Korniss et.al, Phys. Rev. Lett. 84, 1351 (2000).
NASA Astrophysics Data System (ADS)
Byun, Hye Suk; El-Naggar, Mohamed Y.; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2017-10-01
Kinetic Monte Carlo (KMC) simulations are used to study long-time dynamics of a wide variety of systems. Unfortunately, the conventional KMC algorithm is not scalable to larger systems, since its time scale is inversely proportional to the simulated system size. A promising approach to resolving this issue is the synchronous parallel KMC (SPKMC) algorithm, which makes the time scale size-independent. This paper introduces a formal derivation of the SPKMC algorithm based on local transition-state and time-dependent Hartree approximations, as well as its scalable parallel implementation based on a dual linked-list cell method. The resulting algorithm has achieved a weak-scaling parallel efficiency of 0.935 on 1024 Intel Xeon processors for simulating biological electron transfer dynamics in a 4.2 billion-heme system, as well as decent strong-scaling parallel efficiency. The parallel code has been used to simulate a lattice of cytochrome complexes on a bacterial-membrane nanowire, and it is broadly applicable to other problems such as computational synthesis of new materials.
Wu, D; He, X T; Yu, W; Fritzsche, S
2017-02-01
A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.
NASA Astrophysics Data System (ADS)
Wu, D.; He, X. T.; Yu, W.; Fritzsche, S.
2017-02-01
A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.
Exploring Energy Landscapes with Monte Carlo Methods
NASA Astrophysics Data System (ADS)
Wales, David J.; Hernández-Rojas, Javier
2003-11-01
The potential energy surface of an atomic or molecular system can be transformed into a set of catchment basins for the local minima. Monte Carlo methods can be applied to explore the resulting landscape and search for the global potential minimum or calculate thermodynamic and dynamic properties. For example, the kinetic Monte Carlo (KMC) approach has been used to study the structure and dynamics of a supercooled binary Lennard-Jones liquid, which is a popular model glass former. The KMC technique allows us to explore the potential energy surface without suffering an exponential slowing down at low temperature. In agreement with previous studies we observe a distinct change in behaviour close to the dynamical transition temperature of mode-coupling theory. Below this temperature the number of different local minima visited by the system for the same number of KMC steps decreases by more than an order of magnitude. The mean number of atoms involved in each jump between local minima and the average distance they move also decreases significantly, and new features appear in the partial structure factor. At higher temperature the probability distribution for the magnitude of the atomic displacement per KMC step exhibits an exponential decay, which is only weakly temperature dependent.
Ahmad, Munir; Deng, Jun; Lund, Molly W; Chen, Zhe; Kimmett, James; Moran, Meena S; Nath, Ravinder
2009-01-21
The goal of this work is to present a systematic Monte Carlo validation study on the clinical implementation of the enhanced dynamic wedges (EDWs) into the Pinnacle(3) (Philips Medical Systems, Fitchburg, WI) treatment planning system (TPS) and QA procedures for patient plan verification treated with EDWs. Modeling of EDW beams in the Pinnacle(3) TPS, which employs a collapsed-cone convolution superposition (CCCS) dose model, was based on a combination of measured open-beam data and the 'Golden Segmented Treatment Table' (GSTT) provided by Varian for each photon beam energy. To validate EDW models, dose profiles of 6 and 10 MV photon beams from a Clinac 2100 C/D were measured in virtual water at depths from near-surface to 30 cm for a wide range of field sizes and wedge angles using the Profiler 2 (Sun Nuclear Corporation, Melbourne, FL) diode array system. The EDW output factors (EDWOFs) for square fields from 4 to 20 cm wide were measured in virtual water using a small-volume Farmer-type ionization chamber placed at a depth of 10 cm on the central axis. Furthermore, the 6 and 10 MV photon beams emerging from the treatment head of Clinac 2100 C/D were fully modeled and the central-axis depth doses, the off-axis dose profiles and the output factors in water for open and dynamically wedged fields were calculated using the Monte Carlo (MC) package EGS4. Our results have shown that (1) both the central-axis depth doses and the off-axis dose profiles of various EDWs computed with the CCCS dose model and MC simulations showed good agreement with the measurements to within 2%/2 mm; (2) measured EDWOFs used for monitor-unit calculation in Pinnacle(3) TPS agreed well with the CCCS and MC predictions within 2%; (3) all the EDW fields satisfied our validation criteria of 1% relative dose difference and 2 mm distance-to-agreement (DTA) with 99-100% passing rate in routine patient treatment plan verification using MapCheck 2D diode array.
NASA Astrophysics Data System (ADS)
Ahmad, Munir; Deng, Jun; Lund, Molly W.; Chen, Zhe; Kimmett, James; Moran, Meena S.; Nath, Ravinder
2009-01-01
The goal of this work is to present a systematic Monte Carlo validation study on the clinical implementation of the enhanced dynamic wedges (EDWs) into the Pinnacle3 (Philips Medical Systems, Fitchburg, WI) treatment planning system (TPS) and QA procedures for patient plan verification treated with EDWs. Modeling of EDW beams in the Pinnacle3 TPS, which employs a collapsed-cone convolution superposition (CCCS) dose model, was based on a combination of measured open-beam data and the 'Golden Segmented Treatment Table' (GSTT) provided by Varian for each photon beam energy. To validate EDW models, dose profiles of 6 and 10 MV photon beams from a Clinac 2100 C/D were measured in virtual water at depths from near-surface to 30 cm for a wide range of field sizes and wedge angles using the Profiler 2 (Sun Nuclear Corporation, Melbourne, FL) diode array system. The EDW output factors (EDWOFs) for square fields from 4 to 20 cm wide were measured in virtual water using a small-volume Farmer-type ionization chamber placed at a depth of 10 cm on the central axis. Furthermore, the 6 and 10 MV photon beams emerging from the treatment head of Clinac 2100 C/D were fully modeled and the central-axis depth doses, the off-axis dose profiles and the output factors in water for open and dynamically wedged fields were calculated using the Monte Carlo (MC) package EGS4. Our results have shown that (1) both the central-axis depth doses and the off-axis dose profiles of various EDWs computed with the CCCS dose model and MC simulations showed good agreement with the measurements to within 2%/2 mm; (2) measured EDWOFs used for monitor-unit calculation in Pinnacle3 TPS agreed well with the CCCS and MC predictions within 2%; (3) all the EDW fields satisfied our validation criteria of 1% relative dose difference and 2 mm distance-to-agreement (DTA) with 99-100% passing rate in routine patient treatment plan verification using MapCheck 2D diode array.
A Monte Carlo approach to water management
NASA Astrophysics Data System (ADS)
Koutsoyiannis, D.
2012-04-01
Common methods for making optimal decisions in water management problems are insufficient. Linear programming methods are inappropriate because hydrosystems are nonlinear with respect to their dynamics, operation constraints and objectives. Dynamic programming methods are inappropriate because water management problems cannot be divided into sequential stages. Also, these deterministic methods cannot properly deal with the uncertainty of future conditions (inflows, demands, etc.). Even stochastic extensions of these methods (e.g. linear-quadratic-Gaussian control) necessitate such drastic oversimplifications of hydrosystems that may make the obtained results irrelevant to the real world problems. However, a Monte Carlo approach is feasible and can form a general methodology applicable to any type of hydrosystem. This methodology uses stochastic simulation to generate system inputs, either unconditional or conditioned on a prediction, if available, and represents the operation of the entire system through a simulation model as faithful as possible, without demanding a specific mathematical form that would imply oversimplifications. Such representation fully respects the physical constraints, while at the same time it evaluates the system operation constraints and objectives in probabilistic terms, and derives their distribution functions and statistics through Monte Carlo simulation. As the performance criteria of a hydrosystem operation will generally be highly nonlinear and highly nonconvex functions of the control variables, a second Monte Carlo procedure, implementing stochastic optimization, is necessary to optimize system performance and evaluate the control variables of the system. The latter is facilitated if the entire representation is parsimonious, i.e. if the number of control variables is kept at a minimum by involving a suitable system parameterization. The approach is illustrated through three examples for (a) a hypothetical system of two reservoirs
Monte Carlo Shower Counter Studies
NASA Technical Reports Server (NTRS)
Snyder, H. David
1991-01-01
Activities and accomplishments related to the Monte Carlo shower counter studies are summarized. A tape of the VMS version of the GEANT software was obtained and installed on the central computer at Gallaudet University. Due to difficulties encountered in updating this VMS version, a decision was made to switch to the UNIX version of the package. This version was installed and used to generate the set of data files currently accessed by various analysis programs. The GEANT software was used to write files of data for positron and proton showers. Showers were simulated for a detector consisting of 50 alternating layers of lead and scintillator. Each file consisted of 1000 events at each of the following energies: 0.1, 0.5, 2.0, 10, 44, and 200 GeV. Data analysis activities related to clustering, chi square, and likelihood analyses are summarized. Source code for the GEANT user subprograms and data analysis programs are provided along with example data plots.
NASA Astrophysics Data System (ADS)
Wang, Lecheng; Xie, Daiqian
2012-08-01
We report finite temperature quantum mechanical simulations of structural and dynamical properties of ArN-CO2 clusters using a path integral Monte Carlo algorithm. The simulations are based on a newly developed analytical Ar-CO2 interaction potential obtained by fitting ab initio results to an anisotropic two-dimensional Morse/Long-range function. The calculated distributions of argon atoms around the CO2 molecule in ArN-CO2 clusters with different sizes are consistent to the previous studies of the configurations of the clusters. A first-order perturbation theory is used to quantitatively predict the CO2 vibrational frequency shift in different clusters. The first-solvation shell is completed at N = 17. Interestingly, our simulations for larger ArN-CO2 clusters showed several different structures of the argon shell around the doped CO2 molecule. The observed two distinct peaks (2338.8 and 2344.5 cm-1) in the υ3 band of CO2 may be due to the different arrangements of argon atoms around the dopant molecule.
Goujon, Florent; Malfreyt, Patrice; Simon, Jean-Marc; Boutin, Anne; Rousseau, Bernard; Fuchs, Alain H
2004-12-22
The Monte Carlo (MC) and molecular dynamics (MD) methodologies are now well established for computing equilibrium properties in homogeneous fluids. This is not yet the case for the direct simulation of two-phase systems, which exhibit nonuniformity of the density distribution across the interface. We have performed direct MC and MD simulations of the liquid-gas interface of n-pentane using a standard force-field model. We obtained density and pressure components profiles along the direction normal to the interface that can be very different, depending on the truncation and long range correction strategies. We discuss the influence on predicted properties of different potential truncation schemes implemented in both MC and MD simulations. We show that the MD and MC profiles can be made in agreement by using a Lennard-Jones potential truncated via a polynomial function that makes the first and second derivatives of the potential continuous at the cutoff distance. In this case however, the predicted thermodynamic properties (phase envelope, surface tension) deviate from experiments, because of the changes made in the potential. A further readjustment of the potential parameters is needed if one wants to use this method. We conclude that a straightforward use of bulk phase force fields in MD simulations may lead to some physical inconsistencies when computing interfacial properties. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Chuang, Ching-Cheng; Chen, Chung-Ming; Lee, Chia-Yen; Tsai, Jui-che; Lu, Chih-Wei; Sun, Chia-Wei
2010-02-01
The scattering and absorption properties of human breast are very important for cancer diagnosis based on diffuse optical tomography (DOT). In this study, the dynamics of photon migration in three-dimensional human breast model with various source-detector separations is simulated based on a Monte Carlo algorithm. The three-dimensional human breast structure is obtained from in vivo MRI image. The breast model consists of skin, fatty tissue, glandular tissue, sternum and ribcage. The backscattered diffuse photons from each layer in breast are recorded by marking the deepest layer which every photon can reach. The experimental results indicate that the re-emitted photons contain more information from deep tissue regions with the source-detector separations because of the strong dependence to the resolution and sensitivity in DOT imaging. The geometric position of the source-detector separations were optimized in this study. The different sizes of breast tumor were modeled to analysis of optical image characterizations. Finally, the tumor images from different deep information were obtained with temporal profiles.
NASA Astrophysics Data System (ADS)
Khelashvili, George A.; Scott, H. L.
2004-05-01
We have carried out atomic level molecular dynamics and Monte Carlo simulations of hydrated 18:0 sphingomyelin (SM)-cholesterol (CHOL) bilayers at temperatures of 20 and 50 °C. The simulated systems each contained 266 SM, 122 CHOL, and 11861 water molecules. Each simulation was run for 10 ns under semi-isotropic pressure boundary conditions. The particle-mesh Ewald method was used for long-range electrostatic interactions. Properties of the systems were calculated over the final 3 ns. We compare the properties of 20 and 50 °C bilayer systems with each other, with experimental data, and with experimental and simulated properties of pure SM bilayers and dipalmitoyl phospatidyl choline (DPPC)-CHOL bilayers. The simulations reveal an overall similarity of both systems, despite the 30 °C temperature difference which brackets the pure SM main phase transition. The area per molecule, lipid chain order parameter profiles, atom distributions, and electron density profiles are all very similar for the two simulated systems. Consistent with simulations from our lab and others, we find strong intramolecular hydrogen bonding in SM molecules between the phosphate ester oxygen and the hydroxyl hydrogen atoms. We also find that cholesterol hydroxyl groups tend to form hydrogen bonds primarily with SM carbonyl, methyl, and amide moieties and to a lesser extent methyl and hydroxyl oxygens.
Prasad, Manish; Conforti, Patrick F; Garrison, Barbara J
2007-08-28
The coarse grained chemical reaction model is enhanced to build a molecular dynamics (MD) simulation framework with an embedded Monte Carlo (MC) based reaction scheme. The MC scheme utilizes predetermined reaction chemistry, energetics, and rate kinetics of materials to incorporate chemical reactions occurring in a substrate into the MD simulation. The kinetics information is utilized to set the probabilities for the types of reactions to perform based on radical survival times and reaction rates. Implementing a reaction involves changing the reactants species types which alters their interaction potentials and thus produces the required energy change. We discuss the application of this method to study the initiation of ultraviolet laser ablation in poly(methyl methacrylate). The use of this scheme enables the modeling of all possible photoexcitation pathways in the polymer. It also permits a direct study of the role of thermal, mechanical, and chemical processes that can set off ablation. We demonstrate that the role of laser induced heating, thermomechanical stresses, pressure wave formation and relaxation, and thermochemical decomposition of the polymer substrate can be investigated directly by suitably choosing the potential energy and chemical reaction energy landscape. The results highlight the usefulness of such a modeling approach by showing that various processes in polymer ablation are intricately linked leading to the transformation of the substrate and its ejection. The method, in principle, can be utilized to study systems where chemical reactions are expected to play a dominant role or interact strongly with other physical processes.
Li, Yu; Zhang, Meiyun; Long, Shibing; Teng, Jiao; Liu, Qi; Lv, Hangbing; Miranda, Enrique; Suñé, Jordi; Liu, Ming
2017-09-11
In resistive random access memories, modeling conductive filament growing dynamics is important to understand the switching mechanism and variability. In this paper, a universal Monte Carlo simulator is developed based on a cell switching model and a tunneling-based transport model. Driven by external electric field, the growing process of the nanoscale filament occurring in the gap region is actually dominated by cells' conductive/insulating switching, modeled through a phenomenological physics-based probability function. The electric transport through the partially formed CF is considered as current tunneling in the framework of the Quantum Point Contact model, and the potential barrier is modulated during cells' evolution. To demonstrate the validity and universality of our simulator, various operation schemes are simulated, with the simulated I - V characteristics well explaining experimental observations. Furthermore, the statistical analyses of simulation results in terms of Weibull distribution and conductance evolution also nicely track previous experimental results. Representing a simulation scale that links atomic-scale simulations to compact modeling, our simulator has the advantage of being much faster comparing with other atomic-scale models. Meanwhile, our simulator shows good universality since it can be applied to various operation signals, and also to different electrodes and dielectric layers dominated by different switching mechanisms.
Stoller, Roger E; Golubov, Stanislav I; Becquart, C. S.; Domain, C.
2006-09-01
The multiscale modeling scheme encompasses models from the atomistic to the continuum scale. Phenomena at the mesoscale are typically simulated using reaction rate theory (RT), Monte Carlo (MC), or phase field models. These mesoscale models are appropriate for application to problems that involve intermediate length scales ( m to >mm), and timescales from diffusion (~ s) to long-term microstructural evolution (~years). Phenomena at this scale have the most direct impact on mechanical properties in structural materials of interest to nuclear energy systems, and are also the most accessible to direct comparison between the results of simulations and experiments. Recent advances in computational power have substantially expanded the range of application for MC models. Although the RT and MC models can be used simulate the same phenomena, many of the details are handled quite differently in the two approaches. A direct comparison of the RT and MC descriptions has been made in the domain of point defect cluster dynamics modeling, which is relevant to both the nucleation and evolution of radiation-induced defect structures. The relative merits and limitations of the two approaches are discussed, and the predictions of the two approaches are compared for specific irradiation conditions.
NASA Astrophysics Data System (ADS)
Mühlbacher, Lothar; Ankerhold, Joachim; Escher, Charlotte
2004-12-01
An improved real-time quantum Monte Carlo procedure is presented and applied to describe the electronic transfer dynamics along molecular chains. The model consists of discrete electronic sites coupled to a thermal environment which is integrated out exactly within the path integral formulation. The approach is numerically exact and its results reduce to known analytical findings (Marcus theory, golden rule) in proper limits. Special attention is paid to the role of superexchange and sequential hopping at lower temperatures in symmetric donor-bridge-acceptor systems. In contrast to previous approximate studies, superexchange turns out to play a significant role only for extremely high-lying bridges where the transfer is basically frozen or for extremely low temperatures where for weaker dissipation a description in terms of rate constants is no longer feasible. For bridges with increasing length an algebraic decrease of the yield is found for short as well as for long bridges. The approach can be extended to electronic systems with more complicated topologies including impurities and in presence of external time-dependent forces.
NASA Astrophysics Data System (ADS)
Edison, John R.; Monson, Peter A.
2013-06-01
This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)], 10.1063/1.2837287. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.
Watanabe, Hiroshi; Yukawa, Satoshi; Novotny, M A; Ito, Nobuyasu
2006-08-01
We construct asymptotic arguments for the relative efficiency of rejection-free Monte Carlo (MC) methods compared to the standard MC method. We find that the efficiency is proportional to exp(constbeta) in the Ising, sqrt[beta] in the classical XY, and beta in the classical Heisenberg spin systems with inverse temperature beta, regardless of the dimension. The efficiency in hard particle systems is also obtained, and found to be proportional to (rho(cp)-rho)(-d) with the closest packing density rho(cp), density rho, and dimension d of the systems. We construct and implement a rejection-free Monte Carlo method for the hard-disk system. The RFMC has a greater computational efficiency at high densities, and the density dependence of the efficiency is as predicted by our arguments.
Analytical Applications of Monte Carlo Techniques.
ERIC Educational Resources Information Center
Guell, Oscar A.; Holcombe, James A.
1990-01-01
Described are analytical applications of the theory of random processes, in particular solutions obtained by using statistical procedures known as Monte Carlo techniques. Supercomputer simulations, sampling, integration, ensemble, annealing, and explicit simulation are discussed. (CW)
Improved Monte Carlo Renormalization Group Method
DOE R&D Accomplishments Database
Gupta, R.; Wilson, K. G.; Umrigar, C.
1985-01-01
An extensive program to analyze critical systems using an Improved Monte Carlo Renormalization Group Method (IMCRG) being undertaken at LANL and Cornell is described. Here we first briefly review the method and then list some of the topics being investigated.
Extra Chance Generalized Hybrid Monte Carlo
NASA Astrophysics Data System (ADS)
Campos, Cédric M.; Sanz-Serna, J. M.
2015-01-01
We study a method, Extra Chance Generalized Hybrid Monte Carlo, to avoid rejections in the Hybrid Monte Carlo method and related algorithms. In the spirit of delayed rejection, whenever a rejection would occur, extra work is done to find a fresh proposal that, hopefully, may be accepted. We present experiments that clearly indicate that the additional work per sample carried out in the extra chance approach clearly pays in terms of the quality of the samples generated.
Error in Monte Carlo, quasi-error in Quasi-Monte Carlo
NASA Astrophysics Data System (ADS)
Kleiss, Ronald; Lazopoulos, Achilleas
2006-07-01
While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the absence of a reliable way to estimate that error. The standard Monte Carlo error estimator relies on the assumption that the points are generated independently of each other and, therefore, fails to account for the error improvement advertised by the Quasi-Monte Carlo method. We advocate the construction of an estimator of stochastic nature, based on the ensemble of pointsets with a particular discrepancy value. We investigate the consequences of this choice and give some first empirical results on the suggested estimators.
Monte Carlo docking with ubiquitin.
Cummings, M. D.; Hart, T. N.; Read, R. J.
1995-01-01
The development of general strategies for the performance of docking simulations is prerequisite to the exploitation of this powerful computational method. Comprehensive strategies can only be derived from docking experiences with a diverse array of biological systems, and we have chosen the ubiquitin/diubiquitin system as a learning tool for this process. Using our multiple-start Monte Carlo docking method, we have reconstructed the known structure of diubiquitin from its two halves as well as from two copies of the uncomplexed monomer. For both of these cases, our relatively simple potential function ranked the correct solution among the lowest energy configurations. In the experiments involving the ubiquitin monomer, various structural modifications were made to compensate for the lack of flexibility and for the lack of a covalent bond in the modeled interaction. Potentially flexible regions could be identified using available biochemical and structural information. A systematic conformational search ruled out the possibility that the required covalent bond could be formed in one family of low-energy configurations, which was distant from the observed dimer configuration. A variety of analyses was performed on the low-energy dockings obtained in the experiment involving structurally modified ubiquitin. Characterization of the size and chemical nature of the interface surfaces was a powerful adjunct to our potential function, enabling us to distinguish more accurately between correct and incorrect dockings. Calculations with the structure of tetraubiquitin indicated that the dimer configuration in this molecule is much less favorable than that observed in the diubiquitin structure, for a simple monomer-monomer pair. Based on the analysis of our results, we draw conclusions regarding some of the approximations involved in our simulations, the use of diverse chemical and biochemical information in experimental design and the analysis of docking results, as well as
Solano, Carlos J F; Pothula, Karunakar R; Prajapati, Jigneshkumar D; De Biase, Pablo M; Noskov, Sergei Yu; Kleinekathöfer, Ulrich
2016-05-10
All-atom molecular dynamics simulations have a long history of applications studying ion and substrate permeation across biological and artificial pores. While offering unprecedented insights into the underpinning transport processes, MD simulations are limited in time-scales and ability to simulate physiological membrane potentials or asymmetric salt solutions and require substantial computational power. While several approaches to circumvent all of these limitations were developed, Brownian dynamics simulations remain an attractive option to the field. The main limitation, however, is an apparent lack of protein flexibility important for the accurate description of permeation events. In the present contribution, we report an extension of the Brownian dynamics scheme which includes conformational dynamics. To achieve this goal, the dynamics of amino-acid residues was incorporated into the many-body potential of mean force and into the Langevin equations of motion. The developed software solution, called BROMOCEA, was applied to ion transport through OmpC as a test case. Compared to fully atomistic simulations, the results show a clear improvement in the ratio of permeating anions and cations. The present tests strongly indicate that pore flexibility can enhance permeation properties which will become even more important in future applications to substrate translocation.
Quantum Monte Carlo methods for nuclear physics
NASA Astrophysics Data System (ADS)
Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.
2015-07-01
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Quantum Monte Carlo methods for nuclear physics
Carlson, J.; Gandolfi, S.; Pederiva, F.; ...
2015-09-09
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Quantum Monte Carlo methods for nuclear physics
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; ...
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Quantum Monte Carlo methods for nuclear physics
Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.
2015-09-09
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Quantum Monte Carlo methods for nuclear physics
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
THE MCNPX MONTE CARLO RADIATION TRANSPORT CODE
WATERS, LAURIE S.; MCKINNEY, GREGG W.; DURKEE, JOE W.; FENSIN, MICHAEL L.; JAMES, MICHAEL R.; JOHNS, RUSSELL C.; PELOWITZ, DENISE B.
2007-01-10
MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4B, and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics; particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development.
Dynamical Monte Carlo Simulations of 3-D Galactic Systems in Axisymmetric and Triaxial Potentials
NASA Astrophysics Data System (ADS)
Taani, Ali; Vallejo, Juan C.
2017-06-01
We describe the dynamical behavior of isolated old ( ⩾ 1Gyr) objects-like Neutron Stars (NSs). These objects are evolved under smooth, time-independent, gravitational potentials, axisymmetric and with a triaxial dark halo. We analysed the geometry of the dynamics and applied the Poincaré section for comparing the influence of different birth velocities. The inspection of the maximal asymptotic Lyapunov (λ) exponent shows that dynamical behaviors of the selected orbits are nearly the same as the regular orbits with 2-DOF, both in axisymmetric and triaxial when (ϕ, qz )= (0,0). Conversely, a few chaotic trajectories are found with a rotated triaxial halo when (ϕ, qz )= (90, 1.5). The tube orbits preserve direction of their circulation around either the long or short axis as appeared in the triaxial potential, even when every initial condition leads to different orientations. The Poincaré section shows that there are 2-D invariant tori and invariant curves (islands) around stable periodic orbits that bound to the surface of 3-D tori. The regularity of several prototypical orbits offer the means to identify the phase-space regions with localized motions and to determine their environment in different models, because they can occupy significant parts of phase-space depending on the potential. This is of particular importance in Galactic Dynamics.
Monte Carlo analysis: error of extrapolated thermal conductivity from molecular dynamics simulations
Liu, Xiang-Yang; Andersson, Anders David
2016-11-07
In this short report, we give an analysis of the extrapolated thermal conductivity of UO2 from earlier molecular dynamics (MD) simulations [1]. Because almost all material properties are functions of temperature, e.g. fission gas release, the fuel thermal conductivity is the most important parameter from a model sensitivity perspective [2]. Thus, it is useful to perform such analysis.
Monte Carlos studies of critical and dynamic phenomena in mixed bond Ising model
NASA Astrophysics Data System (ADS)
Santos-Filho, J. B.; Moreno, N. O.; de Albuquerque, Douglas F.
2010-11-01
The phase transition of a random mixed-bond Ising ferromagnet on a cubic lattice model is studied both numerically and analytically. In this work, we use the Metropolis and Wolff algorithm with histogram technique and finite size scaling theory to simulate the dynamics of the system. We obtained the thermodynamic quantities such as magnetization, susceptibility, and specific heat. Our results were compared with those obtained using a new technique in effective field theory that employs similar probability distribution within the framework of two-site clusters.
Monte Carlo simulations of the short time dynamics of a first-order irreversible phase transition
NASA Astrophysics Data System (ADS)
Albano, Ezequiel V.
2001-09-01
The ZGB model (Ziff-Gulari-Barshad, Phys. Rev. Lett. 56 (1986) 2553) for the catalytic oxidation of carbon monoxide has a single parameter given by the normalized partial pressure of CO molecules ( PCO). For PCO⩾ PCOCoex≃0.52583 the surface of the catalyst becomes irreversibly covered by CO molecules and the system cannot escape from this state. However, for PCO slightly below PCOCoex the system reaches an active stationary state. So, just at PCOCoex a sharp first-order irreversible phase transition is observed. It is shown that a study of the short time dynamics of the ZGB model allows to obtain a fairly accurate evaluation of the upper spinodal point given by PCOUsp≃0.52675(5). This figure is in excellent agreement with extensive simulations performed using the constant coverage ensemble.
Electronic structure quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Bajdich, Michal; Mitas, Lubos
2009-04-01
Quantum Monte Carlo (QMC) is an advanced simulation methodology for studies of manybody quantum systems. The QMC approaches combine analytical insights with stochastic computational techniques for efficient solution of several classes of important many-body problems such as the stationary Schrödinger equation. QMC methods of various flavors have been applied to a great variety of systems spanning continuous and lattice quantum models, molecular and condensed systems, BEC-BCS ultracold condensates, nuclei, etc. In this review, we focus on the electronic structure QMC, i.e., methods relevant for systems described by the electron-ion Hamiltonians. Some of the key QMC achievements include direct treatment of electron correlation, accuracy in predicting energy differences and favorable scaling in the system size. Calculations of atoms, molecules, clusters and solids have demonstrated QMC applicability to real systems with hundreds of electrons while providing 90-95% of the correlation energy and energy differences typically within a few percent of experiments. Advances in accuracy beyond these limits are hampered by the so-called fixed-node approximation which is used to circumvent the notorious fermion sign problem. Many-body nodes of fermion states and their properties have therefore become one of the important topics for further progress in predictive power and efficiency of QMC calculations. Some of our recent results on the wave function nodes and related nodal domain topologies will be briefly reviewed. This includes analysis of few-electron systems and descriptions of exact and approximate nodes using transformations and projections of the highly-dimensional nodal hypersurfaces into the 3D space. Studies of fermion nodes offer new insights into topological properties of eigenstates such as explicit demonstrations that generic fermionic ground states exhibit the minimal number of two nodal domains. Recently proposed trial wave functions based on Pfaffians with
Azcoiti, V.; Laliena, V.; Luo, X.Q.; Piedrafita, C.E. ); Di Carlo, G.; Galante, A.; Grillo, A.F. ); Fernandez, L.A. ); Vladikas, A. , Sezione di Roma I, Universita di Roma I, La Sapienza, Piazzale Aldo Moro 2, 00185 Roma )
1993-07-01
We present a comprehensive exposition of a method for performing numerical simulations of lattice gauge theories with dynamical fermions. Its main aspects have been presented elsewhere. This work is a systematic study of the feasibility of the method, which amounts to separating the evaluation of the fermionic determinant from the generation of gauge configurations through a microcanonical process. The main advantage consists in the fact that the parts of the simulation which are most computer intensive must not be repeated when varying the parameters of the theory. Moreover, we achieve good control over critical slowing down, since the configurations over which the determinant is measured are always very well decorrelated; in addition, the actual implementation of the method allows us to perform simulations at exactly zero fermion mass. We relate the numerical feasibility of this approach to an expansion in the number of flavors; the criteria for its convergence are analyzed both theoretically and in connection with physical problems. On more speculative grounds, we argue that the origin of the applicability of the method stems from the nonlocality of the theory under consideration.
Parallel tempering Monte Carlo in LAMMPS.
Rintoul, Mark Daniel; Plimpton, Steven James; Sears, Mark P.
2003-11-01
We present here the details of the implementation of the parallel tempering Monte Carlo technique into a LAMMPS, a heavily used massively parallel molecular dynamics code at Sandia. This technique allows for many replicas of a system to be run at different simulation temperatures. At various points in the simulation, configurations can be swapped between different temperature environments and then continued. This allows for large regions of energy space to be sampled very quickly, and allows for minimum energy configurations to emerge in very complex systems, such as large biomolecular systems. By including this algorithm into an existing code, we immediately gain all of the previous work that had been put into LAMMPS, and allow this technique to quickly be available to the entire Sandia and international LAMMPS community. Finally, we present an example of this code applied to folding a small protein.
Membranes with Fluctuating Topology: Monte Carlo Simulations
NASA Astrophysics Data System (ADS)
Gompper, G.; Kroll, D. M.
1998-09-01
Much of the phase behavior observed in self-assembling amphiphilic systems can be understood in the context of ensembles of random surfaces. In this article, it is shown that Monte Carlo simulations of dynamically triangulated surfaces of fluctuating topology can be used to determine the structure and thermal behavior of sponge phases, as well as the sponge-to-lamellar transition in these systems. The effect of the saddle-splay modulus, κ¯, on the phase behavior is studied systematically for the first time. Our data provide strong evidence for a positive logarithmic renormalization of κ¯ this result is consistent with the lamellar-to-sponge transition observed in experiments for decreasing amphiphile concentration.
Monte Carlo simulation of a dynamical fermion problem: The light q sup 2 q sup 2 system
Grondin, G. . Dept. of Physics Oak Ridge National Lab., TN )
1991-01-01
We present results from a Guided Random Walk Monte Carlo simulation of the light q{sup 2}{bar q}{sup 2} system in a Coulomb-plus-linear quark potential model using an Intel iPSC/860 hypercube. A solvable model problem is first considered, after which we study the full q{sup 2}{bar q}{sup 2} system in (J,I) = (2,2) and (2,0) sectors. We find evidence for no bound states below the vector-vector threshold in these systems. 17 refs., 6 figs.
NASA Astrophysics Data System (ADS)
Kalinko, Aleksandr; Bauer, Matthias; Timoshenko, Janis; Kuzmin, Alexei
2016-11-01
Classical molecular dynamics (MD) and reverse Monte Carlo methods coupled with ab initio multiple-scattering extended x-ray absorption fine structure (EXAFS) calculations were used for modeling of scheelite-type AWO4 (A = Ca, Sr, Ba) W L 3-edge EXAFS spectra. The two theoretical approaches are complementary and allowed us to perform analysis of full EXAFS spectra. Both methods reproduce well the structure and dynamics of tungstates in the outer coordination shells, however the classical MD simulations underestimate the W-O bond MSRD due to a neglect of quantum zero-point-motion. The thermal vibration amplitudes, correlation effects and anisotropy of the tungstate structure were also estimated.
NASA Astrophysics Data System (ADS)
Lísal, Martin; Brennan, John K.; Smith, William R.
2009-03-01
We present an alternative formulation of the reaction ensemble dissipative particle dynamics (RxDPD) method [M. Lísal, J. K. Brennan, and W. R. Smith, J. Chem. Phys. 125, 16490 (2006)], a mesoscale simulation technique for studying polymer systems in reaction equilibrium. The RxDPD method combines elements of dissipative particle dynamics (DPD) and reaction ensemble Monte Carlo (RxMC), and is primarily targeted for the prediction of the system composition, thermodynamic properties, and phase behavior of reaction equilibrium polymer systems. The alternative formulation of the RxDPD method is demonstrated by considering a supramolecular diblock copolymer (SDC) melt in which two homopolymers, An and Bm, can reversibly bond at terminal binding sites to form a diblock copolymer, AnBm. We consider the effect of the terminal binding sites and the chemical incompatibility between A- and B-segments on the phase behavior. Both effects are found to strongly influence the resulting phase behavior. Due to the reversible nature of the binding, the SDC melt can be treated as the reaction equilibrium system An+Bm⇌AnBm. To simulate the An+Bm⇌AnBm melt, the system contains, in addition to full An, Bm, and AnBm polymers, two fractional polymers: one fractional polymer either fAn or fBm, and one fractional polymer fAnBm, which have fractional particles at the ends of the polymer chains. These fractional particles are coupled to the system via a coupling parameter. The time evolution of the system is governed by the DPD equations of motion, accompanied by random changes in the coupling parameter. Random changes in the coupling parameter mimic forward and reverse reaction steps as in the RxMC approach, and they are accepted with a probability derived from the expanded ensemble grand canonical partition function. Unlike the original RxDPD method that considers coupling of entire fractional polymers to the system, the expanded ensemble framework allows a stepwise coupling, thus
NASA Astrophysics Data System (ADS)
Gauthier, Michel G.
with a very wide range of polymer lengths. We thus propose a new Monte Carlo method based on a one-dimensional random-walk representation of the translocation problem that can easily be used to study chain lengths as large as 10' monomers. This model works in conjunction with an exact calculation technique to compute the key results of the translocation events such as the probability to occur and the average time duration. It is used to validate previous and make new theoretical predictions about translocation dynamics as the polymer and channel lengths are varied. It is also applied to the study of chain heterogeneity effects.
Quantum speedup of Monte Carlo methods
Montanaro, Ashley
2015-01-01
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. PMID:26528079
Self-learning Monte Carlo method
NASA Astrophysics Data System (ADS)
Liu, Junwei; Qi, Yang; Meng, Zi Yang; Fu, Liang
2017-01-01
Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of a general and efficient update algorithm for large size systems close to the phase transition, for which local updates perform badly. In this Rapid Communication, we propose a general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. We demonstrate the efficiency of SLMC in a spin model at the phase transition point, achieving a 10-20 times speedup.
Adiabatic optimization versus diffusion Monte Carlo methods
NASA Astrophysics Data System (ADS)
Jarret, Michael; Jordan, Stephen P.; Lackey, Brad
2016-10-01
Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k -SAT at k =2 ,3 ,4 .
Quantum speedup of Monte Carlo methods.
Montanaro, Ashley
2015-09-08
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
Shell model the Monte Carlo way
Ormand, W.E.
1995-03-01
The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined.
NASA Astrophysics Data System (ADS)
Vatansever, Erol
2017-05-01
By means of Monte Carlo simulation method with Metropolis algorithm, we elucidate the thermal and magnetic phase transition behaviors of a ferrimagnetic core/shell nanocubic system driven by a time dependent magnetic field. The particle core is composed of ferromagnetic spins, and it is surrounded by an antiferromagnetic shell. At the interface of the core/shell particle, we use antiferromagnetic spin-spin coupling. We simulate the nanoparticle using classical Heisenberg spins. After a detailed analysis, our Monte Carlo simulation results suggest that present system exhibits unusual and interesting magnetic behaviors. For example, at the relatively lower temperature regions, an increment in the amplitude of the external field destroys the antiferromagnetism in the shell part of the nanoparticle, leading to a ground state with ferromagnetic character. Moreover, particular attention has been dedicated to the hysteresis behaviors of the system. For the first time, we show that frequency dispersions can be categorized into three groups for a fixed temperature for finite core/shell systems, as in the case of the conventional bulk systems under the influence of an oscillating magnetic field.
Geodesic Monte Carlo on Embedded Manifolds
Byrne, Simon; Girolami, Mark
2013-01-01
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024
Monte Carlo simulation of neutron scattering instruments
Seeger, P.A.
1995-12-31
A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width.
Parallel Markov chain Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Ren, Ruichao; Orkoulas, G.
2007-06-01
With strict detailed balance, parallel Monte Carlo simulation through domain decomposition cannot be validated with conventional Markov chain theory, which describes an intrinsically serial stochastic process. In this work, the parallel version of Markov chain theory and its role in accelerating Monte Carlo simulations via cluster computing is explored. It is shown that sequential updating is the key to improving efficiency in parallel simulations through domain decomposition. A parallel scheme is proposed to reduce interprocessor communication or synchronization, which slows down parallel simulation with increasing number of processors. Parallel simulation results for the two-dimensional lattice gas model show substantial reduction of simulation time for systems of moderate and large size.
Parallel Markov chain Monte Carlo simulations.
Ren, Ruichao; Orkoulas, G
2007-06-07
With strict detailed balance, parallel Monte Carlo simulation through domain decomposition cannot be validated with conventional Markov chain theory, which describes an intrinsically serial stochastic process. In this work, the parallel version of Markov chain theory and its role in accelerating Monte Carlo simulations via cluster computing is explored. It is shown that sequential updating is the key to improving efficiency in parallel simulations through domain decomposition. A parallel scheme is proposed to reduce interprocessor communication or synchronization, which slows down parallel simulation with increasing number of processors. Parallel simulation results for the two-dimensional lattice gas model show substantial reduction of simulation time for systems of moderate and large size.
Interaction picture density matrix quantum Monte Carlo
Malone, Fionn D. Lee, D. K. K.; Foulkes, W. M. C.; Blunt, N. S.; Shepherd, James J.; Spencer, J. S.
2015-07-28
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.
Monte Carlo inversion of seismic data
NASA Technical Reports Server (NTRS)
Wiggins, R. A.
1972-01-01
The analytic solution to the linear inverse problem provides estimates of the uncertainty of the solution in terms of standard deviations of corrections to a particular solution, resolution of parameter adjustments, and information distribution among the observations. It is shown that Monte Carlo inversion, when properly executed, can provide all the same kinds of information for nonlinear problems. Proper execution requires a relatively uniform sampling of all possible models. The expense of performing Monte Carlo inversion generally requires strategies to improve the probability of finding passing models. Such strategies can lead to a very strong bias in the distribution of models examined unless great care is taken in their application.
NASA Astrophysics Data System (ADS)
Kastinen, D.; Kero, J.
2017-09-01
We present the current status and first results from a Monte Carlo-type simulation toolbox for Solar System small body dynamics. We also present fundamental methods for evaluating the results of this type of simulations using convergence criteria. The calculations consider a body in the Solar System with a mass loss mechanism that generates smaller particles. In our application the body, or parent body, is a comet and the mass loss mechanism is a sublimation process. In order to study mass propagation from parent bodies to Earth, we use the toolbox to sample the uncertainty distributions of relevant comet parameters and to find the resulting Earth influx distributions. The initial distributions considered represent orbital elements, sublimation distance, cometary and meteoroid densities, comet and meteoroid sizes and cometary surface activity. Simulations include perturbations from all major planets, radiation pressure and the Poynting-Robertson effect. In this paper we present the results of an initial software validation performed by producing synthetic versions of the 1933, 1946, 2011 and 2012 October Draconids meteor outbursts and comparing them with observational data and previous models. The synthetic meteor showers were generated by ejecting and propagating material from the recognized parent body of the October Draconids; the comet 21P/Giacobini-Zinner. Material was ejected during 17 perihelion passages between 1866 and 1972. Each perihelion passage was sampled with 50 clones of the parent body, all producing meteoroid streams. The clones were drawn from a multidimensional Gaussian distribution on the orbital elements, with distribution variances proportional to observational uncertainties. In the simulations, each clone ejected 8000 particles. Each particle was assigned an individual weight proportional to the mass loss it represented. This generated a total of 6.7 million test particles, out of which 43 thousand entered the Earth's Hill sphere during 1900
Luó, Xióngbiāo; Feuerstein, Marco; Kitasaka, Takayuki; Mori, Kensaku
2012-05-01
Accurate and robust estimates of camera position and orientation in a bronchoscope are required for navigation. Fusion of pre-interventional information (e.g., CT, MRI, or US) and intra-interventional information (e.g., bronchoscopic video) were incorporated into a navigation system to provide physicians with an augmented reality environment for bronchoscopic interventions. Two approaches were used to predict bronchoscope movements by incorporating sequential Monte Carlo (SMC) simulation including (1) image-based tracking techniques and (2) electromagnetic tracking (EMT) methods. SMC simulation was introduced to model ambiguities or uncertainties that occurred in image- and EMT-based bronchoscope tracking. Scale invariant feature transform (SIFT) features were employed to overcome the limitations of image-based motion tracking methods. Validation was performed on five phantom and ten human case datasets acquired in the supine position. For dynamic phantom validation, the EMT-SMC simulation method improved the tracking performance of the successfully registered bronchoscopic video frames by 12.7% compared with a hybrid-based method. In comparisons between tracking results and ground truth, the accuracy of the EMT-SMC simulation method was 1.51 mm (positional error) and 5.44° (orientation error). During patient assessment, the SIFT-SMC simulation scheme was more stable or robust than a previous image-based approach for bronchoscope motion estimation, showing 23.6% improvement of successfully tracked frames. Comparing the estimates of our method to ground truth, the position and orientation errors are 3.72 mm and 10.2°, while those of our previous image-based method were at least 7.77 mm and 19.3°. The computational times of our EMT- and SIFT-SMC simulation methods were 0.9 and 1.2 s per frame, respectively. The SMC simulation method was developed to model ambiguities that occur in bronchoscope tracking. This method more stably and accurately predicts the
Gliksman, N R; Skibbens, R V; Salmon, E D
1993-01-01
Microtubules (MTs) in newt mitotic spindles grow faster than MTs in the interphase cytoplasmic microtubule complex (CMTC), yet spindle MTs do not have the long lengths or lifetimes of the CMTC microtubules. Because MTs undergo dynamic instability, it is likely that changes in the durations of growth or shortening are responsible for this anomaly. We have used a Monte Carlo computer simulation to examine how changes in the number of MTs and changes in the catastrophe and rescue frequencies of dynamic instability may be responsible for the cell cycle dependent changes in MT characteristics. We used the computer simulations to model interphase-like or mitotic-like MT populations on the basis of the dynamic instability parameters available from newt lung epithelial cells in vivo. We started with parameters that produced MT populations similar to the interphase newt lung cell CMTC. In the simulation, increasing the number of MTs and either increasing the frequency of catastrophe or decreasing the frequency of rescue reproduced the changes in MT dynamics measured in vivo between interphase and mitosis. Images PMID:8298190
Optimization of the Fixed Node Energy in Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Lin, Chang; Ceperley, David
1998-03-01
Good wave functions play an important role in Fixed-Node Quantum Monte Carlo simulations. Typical wave function optimization methods minimize the energy or variance within Variational Monte Carlo. We present a method to minimize the fixed node energy directly in Diffusion Monte Carlo(DMC). The fixed node energy, together with its derivatives with respect to the variational parameters in the wave function, is calculated. The derivative information is used to dynamically optimize variational parameters during a single DMC run using the Stochastic Gradient Approximation (SGA) method. We give results for the Be atom with a single variational parameter, and the Li2 molecule, with multiple parameters. (One of the Authors, C.L. would like to thank Claudia Filippi for providing a good Li2 wave function and many valuable discussions.)
Zen, Andrea; Coccia, Emanuele; Luo, Ye; Sorella, Sandro; Guidoni, Leonardo
2014-03-11
Diradical molecules are essential species involved in many organic and inorganic chemical reactions. The computational study of their electronic structure is often challenging, because a reliable description of the correlation, and in particular of the static one, requires multireference techniques. The Jastrow correlated antisymmetrized geminal power (JAGP) is a compact and efficient wave function ansatz, based on the valence-bond representation, which can be used within quantum Monte Carlo (QMC) approaches. The AGP part can be rewritten in terms of molecular orbitals, obtaining a multideterminant expansion with zero-seniority number. In the present work we demonstrate the capability of the JAGP ansatz to correctly describe the electronic structure of two diradical prototypes: the orthogonally twisted ethylene, C2H4, and the methylene, CH2, representing respectively a homosymmetric and heterosymmetric system. In the orthogonally twisted ethylene, we find a degeneracy of π and π* molecular orbitals, as correctly predicted by multireference procedures, and our best estimates of the twisting barrier, using respectively the variational Monte Carlo (VMC) and the lattice regularized diffusion Monte Carlo (LRDMC) methods, are 71.9(1) and 70.2(2) kcal/mol, in very good agreement with the high-level MR-CISD+Q value, 69.2 kcal/mol. In the methylene we estimate an adiabatic triplet-singlet (X̃(3)B1-ã(1)A1) energy gap of 8.32(7) and 8.64(6) kcal/mol, using respectively VMC and LRDMC, consistently with the experimental-derived finding for Te, 9.363 kcal/mol. On the other hand, we show that the simple ansatz of a Jastrow correlated single determinant (JSD) wave function is unable to provide an accurate description of the electronic structure in these diradical molecules, both at variational level (VMC torsional barrier of C2H4 of 99.3(2) kcal/mol, triplet-singlet energy gap of CH2 of 13.45(10) kcal/mol) and, more remarkably, in the fixed-nodes projection schemes (LRDMC
NASA Technical Reports Server (NTRS)
Gann, R. C.; Chakravarty, S.; Chester, G. V.
1978-01-01
Monte Carlo simulation, lattice dynamics in the harmonic approximation, and solution of the hypernetted chain equation were used to study the classical two-dimensional one component plasma. The system consists of a single species of charged particles immersed in a uniform neutralizing background. The particles interact via a l/r potential, where r is the two dimensional separation. Equations of state were calculated for both the liquid and solid phases. Results of calculation of the thermodynamic functions and one and two particle correlation functions are presented.
Maier, Thomas A; Alvarez, Gonzalo; Summers, Michael Stuart; Schulthess, Thomas C
2010-01-01
Using dynamic cluster quantum Monte Carlo simulations, we study the superconducting behavior of a 1=8 doped two-dimensional Hubbard model with imposed unidirectional stripelike charge-density-wave modulation. We find a significant increase of the pairing correlations and critical temperature relative to the homogeneous system when the modulation length scale is sufficiently large. With a separable form of the irreducible particle-particle vertex, we show that optimized superconductivity is obtained for a moderate modulation strength due to a delicate balance between the modulation enhanced pairing interaction, and a concomitant suppression of the bare particle-particle excitations by a modulation reduction of the quasiparticle weight.
Scalable Domain Decomposed Monte Carlo Particle Transport
O'Brien, Matthew Joseph
2013-12-05
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.
Monte Carlo studies of uranium calorimetry
Brau, J.; Hargis, H.J.; Gabriel, T.A.; Bishop, B.L.
1985-01-01
Detailed Monte Carlo calculations of uranium calorimetry are presented which reveal a significant difference in the responses of liquid argon and plastic scintillator in uranium calorimeters. Due to saturation effects, neutrons from the uranium are found to contribute only weakly to the liquid argon signal. Electromagnetic sampling inefficiencies are significant and contribute substantially to compensation in both systems. 17 references.
A comparison of Monte Carlo generators
Golan, Tomasz
2015-05-15
A comparison of GENIE, NEUT, NUANCE, and NuWro Monte Carlo neutrino event generators is presented using a set of four observables: protons multiplicity, total visible energy, most energetic proton momentum, and π{sup +} two-dimensional energy vs cosine distribution.
Structural Reliability and Monte Carlo Simulation.
ERIC Educational Resources Information Center
Laumakis, P. J.; Harlow, G.
2002-01-01
Analyzes a simple boom structure and assesses its reliability using elementary engineering mechanics. Demonstrates the power and utility of Monte-Carlo simulation by showing that such a simulation can be implemented more readily with results that compare favorably to the theoretical calculations. (Author/MM)
Search and Rescue Monte Carlo Simulation.
1985-03-01
confidence interval ) of the number of lives saved. A single page output and computer graphic present the information to the user in an easily understood...format. The confidence interval can be reduced by making additional runs of this Monte Carlo model. (Author)
Monte Carlo methods in genetic analysis
Lin, Shili
1996-12-31
Many genetic analyses require computation of probabilities and likelihoods of pedigree data. With more and more genetic marker data deriving from new DNA technologies becoming available to researchers, exact computations are often formidable with standard statistical methods and computational algorithms. The desire to utilize as much available data as possible, coupled with complexities of realistic genetic models, push traditional approaches to their limits. These methods encounter severe methodological and computational challenges, even with the aid of advanced computing technology. Monte Carlo methods are therefore increasingly being explored as practical techniques for estimating these probabilities and likelihoods. This paper reviews the basic elements of the Markov chain Monte Carlo method and the method of sequential imputation, with an emphasis upon their applicability to genetic analysis. Three areas of applications are presented to demonstrate the versatility of Markov chain Monte Carlo for different types of genetic problems. A multilocus linkage analysis example is also presented to illustrate the sequential imputation method. Finally, important statistical issues of Markov chain Monte Carlo and sequential imputation, some of which are unique to genetic data, are discussed, and current solutions are outlined. 72 refs.
Monte Carlo Simulation of Counting Experiments.
ERIC Educational Resources Information Center
Ogden, Philip M.
A computer program to perform a Monte Carlo simulation of counting experiments was written. The program was based on a mathematical derivation which started with counts in a time interval. The time interval was subdivided to form a binomial distribution with no two counts in the same subinterval. Then the number of subintervals was extended to…
Monte Carlo algorithms for Brownian phylogenetic models.
Horvilleur, Benjamin; Lartillot, Nicolas
2014-11-01
Brownian models have been introduced in phylogenetics for describing variation in substitution rates through time, with applications to molecular dating or to the comparative analysis of variation in substitution patterns among lineages. Thus far, however, the Monte Carlo implementations of these models have relied on crude approximations, in which the Brownian process is sampled only at the internal nodes of the phylogeny or at the midpoints along each branch, and the unknown trajectory between these sampled points is summarized by simple branchwise average substitution rates. A more accurate Monte Carlo approach is introduced, explicitly sampling a fine-grained discretization of the trajectory of the (potentially multivariate) Brownian process along the phylogeny. Generic Monte Carlo resampling algorithms are proposed for updating the Brownian paths along and across branches. Specific computational strategies are developed for efficient integration of the finite-time substitution probabilities across branches induced by the Brownian trajectory. The mixing properties and the computational complexity of the resulting Markov chain Monte Carlo sampler scale reasonably with the discretization level, allowing practical applications with up to a few hundred discretization points along the entire depth of the tree. The method can be generalized to other Markovian stochastic processes, making it possible to implement a wide range of time-dependent substitution models with well-controlled computational precision. The program is freely available at www.phylobayes.org. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Monte Carlo algorithms for Brownian phylogenetic models
Horvilleur, Benjamin; Lartillot, Nicolas
2014-01-01
Motivation: Brownian models have been introduced in phylogenetics for describing variation in substitution rates through time, with applications to molecular dating or to the comparative analysis of variation in substitution patterns among lineages. Thus far, however, the Monte Carlo implementations of these models have relied on crude approximations, in which the Brownian process is sampled only at the internal nodes of the phylogeny or at the midpoints along each branch, and the unknown trajectory between these sampled points is summarized by simple branchwise average substitution rates. Results: A more accurate Monte Carlo approach is introduced, explicitly sampling a fine-grained discretization of the trajectory of the (potentially multivariate) Brownian process along the phylogeny. Generic Monte Carlo resampling algorithms are proposed for updating the Brownian paths along and across branches. Specific computational strategies are developed for efficient integration of the finite-time substitution probabilities across branches induced by the Brownian trajectory. The mixing properties and the computational complexity of the resulting Markov chain Monte Carlo sampler scale reasonably with the discretization level, allowing practical applications with up to a few hundred discretization points along the entire depth of the tree. The method can be generalized to other Markovian stochastic processes, making it possible to implement a wide range of time-dependent substitution models with well-controlled computational precision. Availability: The program is freely available at www.phylobayes.org Contact: nicolas.lartillot@univ-lyon1.fr PMID:25053744
Monte Carlo studies of ARA detector optimization
NASA Astrophysics Data System (ADS)
Stockham, Jessica
2013-04-01
The Askaryan Radio Array (ARA) is a neutrino detector deployed in the Antarctic ice sheet near the South Pole. The array is designed to detect ultra high energy neutrinos in the range of 0.1-10 EeV. Detector optimization is studied using Monte Carlo simulations.
Structure and dynamics of Ebola virus matrix protein VP40 by a coarse-grained Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Pandey, Ras; Farmer, Barry
Ebola virus matrix protein VP40 (consisting of 326 residues) plays a critical role in viral assembly and its functions such as regulation of viral transcription, packaging, and budding of mature virions into the plasma membrane of infected cells. How does the protein VP40 go through structural evolution during the viral life cycle remains an open question? Using a coarse-grained Monte Carlo simulation we investigate the structural evolution of VP40 as a function of temperature with the input of a knowledge-based residue-residue interaction. A number local and global physical quantities (e.g. mobility profile, contact map, radius of gyration, structure factor) are analyzed with our large-scale simulations. Our preliminary data show that the structure of the protein evolves through different state with well-defined morphologies which can be identified and quantified via a detailed analysis of structure factor.
Harnessing graphical structure in Markov chain Monte Carlo learning
Stolorz, P.E.; Chew P.C.
1996-12-31
The Monte Carlo method is recognized as a useful tool in learning and probabilistic inference methods common to many datamining problems. Generalized Hidden Markov Models and Bayes nets are especially popular applications. However, the presence of multiple modes in many relevant integrands and summands often renders the method slow and cumbersome. Recent mean field alternatives designed to speed things up have been inspired by experience gleaned from physics. The current work adopts an approach very similar to this in spirit, but focusses instead upon dynamic programming notions as a basis for producing systematic Monte Carlo improvements. The idea is to approximate a given model by a dynamic programming-style decomposition, which then forms a scaffold upon which to build successively more accurate Monte Carlo approximations. Dynamic programming ideas alone fail to account for non-local structure, while standard Monte Carlo methods essentially ignore all structure. However, suitably-crafted hybrids can successfully exploit the strengths of each method, resulting in algorithms that combine speed with accuracy. The approach relies on the presence of significant {open_quotes}local{close_quotes} information in the problem at hand. This turns out to be a plausible assumption for many important applications. Example calculations are presented, and the overall strengths and weaknesses of the approach are discussed.
Markov Chain Monte Carlo and Irreversibility
NASA Astrophysics Data System (ADS)
Ottobre, Michela
2016-06-01
Markov Chain Monte Carlo (MCMC) methods are statistical methods designed to sample from a given measure π by constructing a Markov chain that has π as invariant measure and that converges to π. Most MCMC algorithms make use of chains that satisfy the detailed balance condition with respect to π; such chains are therefore reversible. On the other hand, recent work [18, 21, 28, 29] has stressed several advantages of using irreversible processes for sampling. Roughly speaking, irreversible diffusions converge to equilibrium faster (and lead to smaller asymptotic variance as well). In this paper we discuss some of the recent progress in the study of nonreversible MCMC methods. In particular: i) we explain some of the difficulties that arise in the analysis of nonreversible processes and we discuss some analytical methods to approach the study of continuous-time irreversible diffusions; ii) most of the rigorous results on irreversible diffusions are available for continuous-time processes; however, for computational purposes one needs to discretize such dynamics. It is well known that the resulting discretized chain will not, in general, retain all the good properties of the process that it is obtained from. In particular, if we want to preserve the invariance of the target measure, the chain might no longer be reversible. Therefore iii) we conclude by presenting an MCMC algorithm, the SOL-HMC algorithm [23], which results from a nonreversible discretization of a nonreversible dynamics.
MontePython: Implementing Quantum Monte Carlo using Python
NASA Astrophysics Data System (ADS)
Nilsen, Jon Kristian
2007-11-01
We present a cross-language C++/Python program for simulations of quantum mechanical systems with the use of Quantum Monte Carlo (QMC) methods. We describe a system for which to apply QMC, the algorithms of variational Monte Carlo and diffusion Monte Carlo and we describe how to implement theses methods in pure C++ and C++/Python. Furthermore we check the efficiency of the implementations in serial and parallel cases to show that the overhead using Python can be negligible. Program summaryProgram title: MontePython Catalogue identifier: ADZP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 49 519 No. of bytes in distributed program, including test data, etc.: 114 484 Distribution format: tar.gz Programming language: C++, Python Computer: PC, IBM RS6000/320, HP, ALPHA Operating system: LINUX Has the code been vectorised or parallelized?: Yes, parallelized with MPI Number of processors used: 1-96 RAM: Depends on physical system to be simulated Classification: 7.6; 16.1 Nature of problem: Investigating ab initio quantum mechanical systems, specifically Bose-Einstein condensation in dilute gases of 87Rb Solution method: Quantum Monte Carlo Running time: 225 min with 20 particles (with 4800 walkers moved in 1750 time steps) on 1 AMD Opteron TM Processor 2218 processor; Production run for, e.g., 200 particles takes around 24 hours on 32 such processors.
Multiple-time-stepping generalized hybrid Monte Carlo methods
Escribano, Bruno; Akhmatskaya, Elena; Reich, Sebastian; Azpiroz, Jon M.
2015-01-01
Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.
Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations.
Hokr, Brett H; Bixler, Joel N; Elpers, Gabriel; Zollars, Byron; Thomas, Robert J; Yakovlev, Vladislav V; Scully, Marlan O
2015-04-06
Monte Carlo techniques are the gold standard for studying light propagation in turbid media. Traditional Monte Carlo techniques are unable to include wave effects, such as diffraction; thus, these methods are unsuitable for exploring focusing geometries where a significant ballistic component remains at the focal plane. Here, a method is presented for accurately simulating photon propagation at the focal plane, in the context of a traditional Monte Carlo simulation. This is accomplished by propagating ballistic photons along trajectories predicted by Gaussian optics until they undergo an initial scattering event, after which, they are propagated through the medium by a traditional Monte Carlo technique. Solving a known problem by building upon an existing Monte Carlo implementation allows this method to be easily implemented in a wide variety of existing Monte Carlo simulations, greatly improving the accuracy of those models for studying dynamics in a focusing geometry.
Atomistic Monte Carlo Simulation of Lipid Membranes
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC) local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC). We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol. PMID:24469314
Classical Trajectory and Monte Carlo Techniques
NASA Astrophysics Data System (ADS)
Olson, Ronald
The classical trajectory Monte Carlo (CTMC) method originated with Hirschfelder, who studied the H + D2 exchange reaction using a mechanical calculator [58.1]. With the availability of computers, the CTMC method was actively applied to a large number of chemical systems to determine reaction rates, and final state vibrational and rotational populations (see, e.g., Karplus et al. [58.2]). For atomic physics problems, a major step was introduced by Abrines and Percival [58.3] who employed Kepler's equations and the Bohr-Sommerfield model for atomic hydrogen to investigate electron capture and ionization for intermediate velocity collisions of H+ + H. An excellent description is given by Percival and Richards [58.4]. The CTMC method has a wide range of applicability to strongly-coupled systems, such as collisions by multiply-charged ions [58.5]. In such systems, perturbation methods fail, and basis set limitations of coupled-channel molecular- and atomic-orbital techniques have difficulty in representing the multitude of activeexcitation, electron capture, and ionization channels. Vector- and parallel-processors now allow increasingly detailed study of the dynamics of the heavy projectile and target, along with the active electrons.
Monte Carlo Particle Transport: Algorithm and Performance Overview
Gentile, N; Procassini, R; Scott, H
2005-06-02
Monte Carlo methods are frequently used for neutron and radiation transport. These methods have several advantages, such as relative ease of programming and dealing with complex meshes. Disadvantages include long run times and statistical noise. Monte Carlo photon transport calculations also often suffer from inaccuracies in matter temperature due to the lack of implicitness. In this paper we discuss the Monte Carlo algorithm as it is applied to neutron and photon transport, detail the differences between neutron and photon Monte Carlo, and give an overview of the ways the numerical method has been modified to deal with issues that arise in photon Monte Carlo simulations.
Status of Monte Carlo at Los Alamos
Thompson, W.L.; Cashwell, E.D.; Godfrey, T.N.K.; Schrandt, R.G.; Deutsch, O.L.; Booth, T.E.
1980-05-01
Four papers were presented by Group X-6 on April 22, 1980, at the Oak Ridge Radiation Shielding Information Center (RSIC) Seminar-Workshop on Theory and Applications of Monte Carlo Methods. These papers are combined into one report for convenience and because they are related to each other. The first paper (by Thompson and Cashwell) is a general survey about X-6 and MCNP and is an introduction to the other three papers. It can also serve as a resume of X-6. The second paper (by Godfrey) explains some of the details of geometry specification in MCNP. The third paper (by Cashwell and Schrandt) illustrates calculating flux at a point with MCNP; in particular, the once-more-collided flux estimator is demonstrated. Finally, the fourth paper (by Thompson, Deutsch, and Booth) is a tutorial on some variance-reduction techniques. It should be required for a fledging Monte Carlo practitioner.
Monte Carlo study of vibrational relaxation processes
NASA Technical Reports Server (NTRS)
Boyd, Iain D.
1991-01-01
A new model is proposed for the computation of vibrational nonequilibrium in the direct simulation Monte Carlo method (DSMC). This model permits level to level vibrational transitions for the first time in a Monte Carlo flowfield simulation. The model follows the Landau-Teller theory for a harmonic oscillator in which the rates of transition are related to an experimental correlation for the vibrational relaxation time. The usual method for simulating such processes in the DSMC technique applies a constant exchange probability to each collision and the vibrational energy is treated as a continuum. A comparison of these two methods is made for the flow of nitrogen over a wedge. Significant differences exist for the vibrational temperatures computed. These arise as a consequence of the incorrect application of a constant exchange probability in the old method. It is found that the numerical performances of the two vibrational relaxation models are equal.
Status of Monte Carlo at Los Alamos
Thompson, W.L.; Cashwell, E.D.
1980-01-01
At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time.
An enhanced Monte Carlo outlier detection method.
Zhang, Liangxiao; Li, Peiwu; Mao, Jin; Ma, Fei; Ding, Xiaoxia; Zhang, Qi
2015-09-30
Outlier detection is crucial in building a highly predictive model. In this study, we proposed an enhanced Monte Carlo outlier detection method by establishing cross-prediction models based on determinate normal samples and analyzing the distribution of prediction errors individually for dubious samples. One simulated and three real datasets were used to illustrate and validate the performance of our method, and the results indicated that this method outperformed Monte Carlo outlier detection in outlier diagnosis. After these outliers were removed, the value of validation by Kovats retention indices and the root mean square error of prediction decreased from 3.195 to 1.655, and the average cross-validation prediction error decreased from 2.0341 to 1.2780. This method helps establish a good model by eliminating outliers. © 2015 Wiley Periodicals, Inc.
Monte Carlo Methods in the Physical Sciences
Kalos, M H
2007-06-06
I will review the role that Monte Carlo methods play in the physical sciences. They are very widely used for a number of reasons: they permit the rapid and faithful transformation of a natural or model stochastic process into a computer code. They are powerful numerical methods for treating the many-dimensional problems that derive from important physical systems. Finally, many of the methods naturally permit the use of modern parallel computers in efficient ways. In the presentation, I will emphasize four aspects of the computations: whether or not the computation derives from a natural or model stochastic process; whether the system under study is highly idealized or realistic; whether the Monte Carlo methodology is straightforward or mathematically sophisticated; and finally, the scientific role of the computation.
Fission Matrix Capability for MCNP Monte Carlo
NASA Astrophysics Data System (ADS)
Brown, Forrest; Carney, Sean; Kiedrowski, Brian; Martin, William
2014-06-01
We describe recent experience and results from implementing a fission matrix capability into the MCNP Monte Carlo code. The fission matrix can be used to provide estimates of the fundamental mode fission distribution, the dominance ratio, the eigenvalue spectrum, and higher mode forward and adjoint eigenfunctions of the fission neutron source distribution. It can also be used to accelerate the convergence of the power method iterations and to provide basis functions for higher-order perturbation theory. The higher-mode fission sources can be used in MCNP to determine higher-mode forward fluxes and tallies, and work is underway to provide higher-mode adjoint-weighted fluxes and tallies. Past difficulties and limitations of the fission matrix approach are overcome with a new sparse representation of the matrix, permitting much larger and more accurate fission matrix representations. The new fission matrix capabilities provide a significant advance in the state-of-the-art for Monte Carlo criticality calculations.
Monte-Carlo Opening Books for Amazons
NASA Astrophysics Data System (ADS)
Kloetzer, Julien
Automatically creating opening books is a natural step towards the building of strong game-playing programs, especially when there is little available knowledge about the game. However, while recent popular Monte-Carlo Tree-Search programs showed strong results for various games, we show here that programs based on such methods cannot efficiently use opening books created using algorithms based on minimax. To overcome this issue, we propose to use an MCTS-based technique, Meta-MCTS, to create such opening books. This method, while requiring some tuning to arrive at the best opening book possible, shows promising results to create an opening book for the game of the Amazons, even if this is at the cost of removing its Monte-Carlo part.
Monte Carlo results for the hydrogen Hugoniot.
Bezkrovniy, V; Filinov, V S; Kremp, D; Bonitz, M; Schlanges, M; Kraeft, W D; Levashov, P R; Fortov, V E
2004-11-01
We propose a theoretical Hugoniot relation obtained by combining results for the equation of state from the direct path integral Monte Carlo technique (DPIMC) and those from reaction ensemble Monte Carlo (REMC) simulations. The main idea of this proposal is based on the fact that the DPMIC technique provides first-principle results for a wide range of densities and temperatures including the region of partially ionized plasmas. On the other hand, for lower temperatures where the formation of molecules becomes dominant, DPIMC simulations become cumbersome and inefficient. For this region it is possible to use accurate REMC simulations where bound states (molecules) are treated on the Born-Oppenheimer level. The remaining interaction is then reduced to the scattering between neutral particles which is reliably treated classically by applying effective potentials. The resulting Hugoniot is located between the experimental values of Knudson et al. [Phys. Rev. Lett. 87, 225501 (2001)] and Collins et al. [Science 281, 1178 (1998)].
Quantum Monte Carlo applied to solids
Shulenburger, Luke; Mattsson, Thomas R.
2013-12-01
We apply diffusion quantum Monte Carlo to a broad set of solids, benchmarking the method by comparing bulk structural properties (equilibrium volume and bulk modulus) to experiment and density functional theory (DFT) based theories. The test set includes materials with many different types of binding including ionic, metallic, covalent, and van der Waals. We show that, on average, the accuracy is comparable to or better than that of DFT when using the new generation of functionals, including one hybrid functional and two dispersion corrected functionals. The excellent performance of quantum Monte Carlo on solids is promising for its application to heterogeneous systems and high-pressure/high-density conditions. Important to the results here is the application of a consistent procedure with regards to the several approximations that are made, such as finite-size corrections and pseudopotential approximations. This test set allows for any improvements in these methods to be judged in a systematic way.
Inhomogeneous Monte Carlo simulations of dermoscopic spectroscopy
NASA Astrophysics Data System (ADS)
Gareau, Daniel S.; Li, Ting; Jacques, Steven; Krueger, James
2012-03-01
Clinical skin-lesion diagnosis uses dermoscopy: 10X epiluminescence microscopy. Skin appearance ranges from black to white with shades of blue, red, gray and orange. Color is an important diagnostic criteria for diseases including melanoma. Melanin and blood content and distribution impact the diffuse spectral remittance (300-1000nm). Skin layers: immersion medium, stratum corneum, spinous epidermis, basal epidermis and dermis as well as laterally asymmetric features (eg. melanocytic invasion) were modeled in an inhomogeneous Monte Carlo model.
Monte Carlo simulation of Alaska wolf survival
NASA Astrophysics Data System (ADS)
Feingold, S. J.
1996-02-01
Alaskan wolves live in a harsh climate and are hunted intensively. Penna's biological aging code, using Monte Carlo methods, has been adapted to simulate wolf survival. It was run on the case in which hunting causes the disruption of wolves' social structure. Social disruption was shown to increase the number of deaths occurring at a given level of hunting. For high levels of social disruption, the population did not survive.
Monte Carlo Simulation of Plumes Spectral Emission
2005-06-07
Table 1 Calculatio n series phN , %ε Figure 1 105 11.0 2 2 106 4.9 3 3 107 0.6 5 The relative error ε was calculated with respect to the mean...is presented in Table 2. Table 2 Monte-Carlo Simulation of Plumes Spectral Emission 19 Calculatio n series phN , %ε Figure 1 5×103 0.475 6
Monte Carlo approach to Estrada index
NASA Astrophysics Data System (ADS)
Gutman, Ivan; Radenković, Slavko; Graovac, Ante; Plavšić, Dejan
2007-09-01
Let G be a graph on n vertices, and let λ1, λ2, …, λn be its eigenvalues. The Estrada index of G is a recently introduced molecular structure descriptor, defined as EE=∑i=1ne. Using a Monte Carlo approach, and treating the graph eigenvalues as random variables, we deduce approximate expressions for EE, in terms of the number of vertices and number of edges, of very high accuracy.
Recovering intrinsic fluorescence by Monte Carlo modeling.
Müller, Manfred; Hendriks, Benno H W
2013-02-01
We present a novel way to recover intrinsic fluorescence in turbid media based on Monte Carlo generated look-up tables and making use of a diffuse reflectance measurement taken at the same location. The method has been validated on various phantoms with known intrinsic fluorescence and is benchmarked against photon-migration methods. This new method combines more flexibility in the probe design with fast reconstruction and showed similar reconstruction accuracy as found in other reconstruction methods.
Monte Carlo simulation of Touschek effect.
Xiao, A.; Borland, M.; Accelerator Systems Division
2010-07-30
We present a Monte Carlo method implementation in the code elegant for simulating Touschek scattering effects in a linac beam. The local scattering rate and the distribution of scattered electrons can be obtained from the code either for a Gaussian-distributed beam or for a general beam whose distribution function is given. In addition, scattered electrons can be tracked through the beam line and the local beam-loss rate and beam halo information recorded.
A separable shadow Hamiltonian hybrid Monte Carlo method
NASA Astrophysics Data System (ADS)
Sweet, Christopher R.; Hampton, Scott S.; Skeel, Robert D.; Izaguirre, Jesús A.
2009-11-01
Hybrid Monte Carlo (HMC) is a rigorous sampling method that uses molecular dynamics (MD) as a global Monte Carlo move. The acceptance rate of HMC decays exponentially with system size. The shadow hybrid Monte Carlo (SHMC) was previously introduced to reduce this performance degradation by sampling instead from the shadow Hamiltonian defined for MD when using a symplectic integrator. SHMC's performance is limited by the need to generate momenta for the MD step from a nonseparable shadow Hamiltonian. We introduce the separable shadow Hamiltonian hybrid Monte Carlo (S2HMC) method based on a formulation of the leapfrog/Verlet integrator that corresponds to a separable shadow Hamiltonian, which allows efficient generation of momenta. S2HMC gives the acceptance rate of a fourth order integrator at the cost of a second-order integrator. Through numerical experiments we show that S2HMC consistently gives a speedup greater than two over HMC for systems with more than 4000 atoms for the same variance. By comparison, SHMC gave a maximum speedup of only 1.6 over HMC. S2HMC has the additional advantage of not requiring any user parameters beyond those of HMC. S2HMC is available in the program PROTOMOL 2.1. A Python version, adequate for didactic purposes, is also in MDL (http://mdlab.sourceforge.net/s2hmc).
A separable shadow Hamiltonian hybrid Monte Carlo method.
Sweet, Christopher R; Hampton, Scott S; Skeel, Robert D; Izaguirre, Jesús A
2009-11-07
Hybrid Monte Carlo (HMC) is a rigorous sampling method that uses molecular dynamics (MD) as a global Monte Carlo move. The acceptance rate of HMC decays exponentially with system size. The shadow hybrid Monte Carlo (SHMC) was previously introduced to reduce this performance degradation by sampling instead from the shadow Hamiltonian defined for MD when using a symplectic integrator. SHMC's performance is limited by the need to generate momenta for the MD step from a nonseparable shadow Hamiltonian. We introduce the separable shadow Hamiltonian hybrid Monte Carlo (S2HMC) method based on a formulation of the leapfrog/Verlet integrator that corresponds to a separable shadow Hamiltonian, which allows efficient generation of momenta. S2HMC gives the acceptance rate of a fourth order integrator at the cost of a second-order integrator. Through numerical experiments we show that S2HMC consistently gives a speedup greater than two over HMC for systems with more than 4000 atoms for the same variance. By comparison, SHMC gave a maximum speedup of only 1.6 over HMC. S2HMC has the additional advantage of not requiring any user parameters beyond those of HMC. S2HMC is available in the program PROTOMOL 2.1. A Python version, adequate for didactic purposes, is also in MDL (http://mdlab.sourceforge.net/s2hmc).
Nonequilibrium Candidate Monte Carlo Simulations with Configurational Freezing Schemes.
Giovannelli, Edoardo; Gellini, Cristina; Pietraperzia, Giangaetano; Cardini, Gianni; Chelli, Riccardo
2014-10-14
Nonequilibrium Candidate Monte Carlo simulation [Nilmeier et al., Proc. Natl. Acad. Sci. U.S.A. 2011, 108, E1009-E1018] is a tool devised to design Monte Carlo moves with high acceptance probabilities that connect uncorrelated configurations. Such moves are generated through nonequilibrium driven dynamics, producing candidate configurations accepted with a Monte Carlo-like criterion that preserves the equilibrium distribution. The probability of accepting a candidate configuration as the next sample in the Markov chain basically depends on the work performed on the system during the nonequilibrium trajectory and increases with decreasing such a work. It is thus strategically relevant to find ways of producing nonequilibrium moves with low work, namely moves where dissipation is as low as possible. This is the goal of our methodology, in which we combine Nonequilibrium Candidate Monte Carlo with Configurational Freezing schemes developed by Nicolini et al. (J. Chem. Theory Comput. 2011, 7, 582-593). The idea is to limit the configurational sampling to particles of a well-established region of the simulation sample, namely the region where dissipation occurs, while leaving fixed the other particles. This allows to make the system relaxation faster around the region perturbed by the finite-time switching move and hence to reduce the dissipated work, eventually enhancing the probability of accepting the generated move. Our combined approach enhances significantly configurational sampling, as shown by the case of a bistable dimer immersed in a dense fluid.
Projector Quantum Monte Carlo Method for Nonlinear Wave Functions
NASA Astrophysics Data System (ADS)
Schwarz, Lauretta R.; Alavi, A.; Booth, George H.
2017-04-01
We reformulate the projected imaginary-time evolution of the full configuration interaction quantum Monte Carlo method in terms of a Lagrangian minimization. This naturally leads to the admission of polynomial complex wave function parametrizations, circumventing the exponential scaling of the approach. While previously these functions have traditionally inhabited the domain of variational Monte Carlo approaches, we consider recent developments for the identification of deep-learning neural networks to optimize this Lagrangian, which can be written as a modification of the propagator for the wave function dynamics. We demonstrate this approach with a form of tensor network state, and use it to find solutions to the strongly correlated Hubbard model, as well as its application to a fully periodic ab initio graphene sheet. The number of variables which can be simultaneously optimized greatly exceeds alternative formulations of variational Monte Carlo methods, allowing for systematic improvability of the wave function flexibility towards exactness for a number of different forms, while blurring the line between traditional variational and projector quantum Monte Carlo approaches.
Path Integral Monte Carlo Methods for Fermions
NASA Astrophysics Data System (ADS)
Ethan, Ethan; Dubois, Jonathan; Ceperley, David
2014-03-01
In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.
Numerical reproducibility for implicit Monte Carlo simulations
Cleveland, M.; Brunner, T.; Gentile, N.
2013-07-01
We describe and compare different approaches for achieving numerical reproducibility in photon Monte Carlo simulations. Reproducibility is desirable for code verification, testing, and debugging. Parallelism creates a unique problem for achieving reproducibility in Monte Carlo simulations because it changes the order in which values are summed. This is a numerical problem because double precision arithmetic is not associative. In [1], a way of eliminating this roundoff error using integer tallies was described. This approach successfully achieves reproducibility at the cost of lost accuracy by rounding double precision numbers to fewer significant digits. This integer approach, and other extended reproducibility techniques, are described and compared in this work. Increased precision alone is not enough to ensure reproducibility of photon Monte Carlo simulations. A non-arbitrary precision approaches required a varying degree of rounding to achieve reproducibility. For the problems investigated in this work double precision global accuracy was achievable by using 100 bits of precision or greater on all unordered sums which where subsequently rounded to double precision at the end of every time-step. (authors)
Teaching Ionic Solvation Structure with a Monte Carlo Liquid Simulation Program
ERIC Educational Resources Information Center
Serrano, Agostinho; Santos, Flavia M. T.; Greca, Ileana M.
2004-01-01
The use of molecular dynamics and Monte Carlo methods has provided efficient means to stimulate the behavior of molecular liquids and solutions. A Monte Carlo simulation program is used to compute the structure of liquid water and of water as a solvent to Na(super +), Cl(super -), and Ar on a personal computer to show that it is easily feasible to…
Teaching Ionic Solvation Structure with a Monte Carlo Liquid Simulation Program
ERIC Educational Resources Information Center
Serrano, Agostinho; Santos, Flavia M. T.; Greca, Ileana M.
2004-01-01
The use of molecular dynamics and Monte Carlo methods has provided efficient means to stimulate the behavior of molecular liquids and solutions. A Monte Carlo simulation program is used to compute the structure of liquid water and of water as a solvent to Na(super +), Cl(super -), and Ar on a personal computer to show that it is easily feasible to…
Monte Carlo approach to tissue-cell populations
NASA Astrophysics Data System (ADS)
Drasdo, D.; Kree, R.; McCaskill, J. S.
1995-12-01
We describe a stochastic dynamics of tissue cells with special emphasis on epithelial cells and fibro- blasts and fibrocytes of the connective tissue. Pattern formation and growth characteristics of such cell populations in culture are investigated numerically by Monte Carlo simulations for quasi-two-dimensional systems of cells. A number of quantitative predictions are obtained which may be confronted with experimental results. Furthermore we introduce several biologically motivated variants of our basic model and briefly discuss the simulation of two dimensional analogs of two complex processes in tissues: the growth of a sarcoma across an epithelial boundary and the wound healing of a skin cut. As compared to other approaches, we find the Monte Carlo approach to tissue growth and structure to be particularly simple and flexible. It allows for a hierarchy of models reaching from global description of birth-death processes to very specific features of intracellular dynamics. (c) 1995 The American Physical Society
Díez, A; Largo, J; Solana, J R
2006-08-21
Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.
da Silva, Roberto; Drugowich de Felício, José Roberto; Martinez, Alexandre Souto
2012-06-01
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature β. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q=1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q≠1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
An Overview of the Monte Carlo Application ToolKit (MCATK)
Trahan, Travis John
2016-01-07
MCATK is a C++ component-based Monte Carlo neutron-gamma transport software library designed to build specialized applications and designed to provide new functionality in existing general-purpose Monte Carlo codes like MCNP; it was developed with Agile software engineering methodologies under the motivation to reduce costs. The characteristics of MCATK can be summarized as follows: MCATK physics – continuous energy neutron-gamma transport with multi-temperature treatment, static eigenvalue (k and α) algorithms, time-dependent algorithm, fission chain algorithms; MCATK geometry – mesh geometries, solid body geometries. MCATK provides verified, unit-tested Monte Carlo components, flexibility in Monte Carlo applications development, and numerous tools such as geometry and cross section plotters. Recent work has involved deterministic and Monte Carlo analysis of stochastic systems. Static and dynamic analysis is discussed, and the results of a dynamic test problem are given.
Monte Carlo Volcano Seismic Moment Tensors
NASA Astrophysics Data System (ADS)
Waite, G. P.; Brill, K. A.; Lanza, F.
2015-12-01
Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.
Four decades of implicit Monte Carlo
Wollaber, Allan B.
2016-02-23
In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate forms of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.
Four decades of implicit Monte Carlo
Wollaber, Allan B.
2016-02-23
In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less
Xu Donghua; Wirth, Brian D.; Li Meimei; Kirk, Marquis A.
2012-09-03
Understanding materials degradation under intense irradiation is important for the development of next generation nuclear power plants. Here we demonstrate that defect microstructural evolution in molybdenum nanofoils in situ irradiated and observed on a transmission electron microscope can be reproduced with high fidelity using an object kinetic Monte Carlo (OKMC) simulation technique. Main characteristics of defect evolution predicted by OKMC, namely, defect density and size distribution as functions of foil thickness, ion fluence and flux, are in excellent agreement with those obtained from the in situ experiments and from previous continuum-based cluster dynamics modeling. The combination of advanced in situ experiments and high performance computer simulation/modeling is a unique tool to validate physical assumptions/mechanisms regarding materials response to irradiation, and to achieve the predictive power for materials stability and safety in nuclear facilities.
NASA Astrophysics Data System (ADS)
Zheng, Bo-Xiao; Kretchmer, Joshua S.; Shi, Hao; Zhang, Shiwei; Chan, Garnet Kin-Lic
2017-01-01
We investigate the cluster size convergence of the energy and observables using two forms of density matrix embedding theory (DMET): the original cluster form (CDMET) and a new formulation motivated by the dynamical cluster approximation (DCA-DMET). Both methods are applied to the half-filled one- and two-dimensional Hubbard models using a sign-problem free auxiliary-field quantum Monte Carlo impurity solver, which allows for the treatment of large impurity clusters of up to 100 sites. While CDMET is more accurate at smaller impurity cluster sizes, DCA-DMET exhibits faster asymptotic convergence towards the thermodynamic limit. We use our two formulations to produce new accurate estimates for the energy and local moment of the two-dimensional Hubbard model for U /t =2 ,4 ,6 . These results compare favorably with the best data available in the literature, and help resolve earlier uncertainties in the moment for U /t =2 .
Ramya, L; Gautham, N
2012-03-01
We report here a comparative study of the molecular conformational energy landscape generated using the mutually orthogonal Latin squares (MOLS) method, molecular dynamics (MD), and Monte Carlo (MC) simulation. The MOLS method, as described earlier from our laboratory, uses an experimental design technique to rapidly and exhaustively sample the low energy conformations of a molecule. MD and MC simulations have been used to perform similar tasks. In the comparison reported here, the three methods were applied to a pair of neuropeptides, namely Met- and Leu-enkephalin. A set of 1500 conformations of these enkephalins were generated using these methods with CHARMM22 force field, and the resulting samples were analyzed to determine the extent and nature of coverage of the conformational space. The results indicate that the MOLS method samples a larger number of possible conformations and identifies conformations closer to the experimental structures than the MD and MC simulations. Copyright © 2011 Wiley Periodicals, Inc.
Quantum Monte Carlo for vibrating molecules
Brown, W.R. |
1996-08-01
Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H{sub 2}O and C{sub 3} vibrational states, using 7 PES`s, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H{sub 2}O and C{sub 3}. In order to construct accurate trial wavefunctions for C{sub 3}, the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C{sub 3} the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C{sub 3} PES`s suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies.
Status of Monte-Carlo Event Generators
Hoeche, Stefan; /SLAC
2011-08-11
Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.
Monte Carlo simulation of intercalated carbon nanotubes.
Mykhailenko, Oleksiy; Matsui, Denis; Prylutskyy, Yuriy; Le Normand, Francois; Eklund, Peter; Scharff, Peter
2007-01-01
Monte Carlo simulations of the single- and double-walled carbon nanotubes (CNT) intercalated with different metals have been carried out. The interrelation between the length of a CNT, the number and type of metal atoms has also been established. This research is aimed at studying intercalated systems based on CNTs and d-metals such as Fe and Co. Factors influencing the stability of these composites have been determined theoretically by the Monte Carlo method with the Tersoff potential. The modeling of CNTs intercalated with metals by the Monte Carlo method has proved that there is a correlation between the length of a CNT and the number of endo-atoms of specific type. Thus, in the case of a metallic CNT (9,0) with length 17 bands (3.60 nm), in contrast to Co atoms, Fe atoms are extruded out of the CNT if the number of atoms in the CNT is not less than eight. Thus, this paper shows that a CNT of a certain size can be intercalated with no more than eight Fe atoms. The systems investigated are stabilized by coordination of 3d-atoms close to the CNT wall with a radius-vector of (0.18-0.20) nm. Another characteristic feature is that, within the temperature range of (400-700) K, small systems exhibit ground-state stabilization which is not characteristic of the higher ones. The behavior of Fe and Co endo-atoms between the walls of a double-walled carbon nanotube (DW CNT) is explained by a dominating van der Waals interaction between the Co atoms themselves, which is not true for the Fe atoms.
Monte Carlo study of disorder in HMTA
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Welberry, T. R.
2001-12-01
We investigate disordered solids by automated fitting of a Monte Carlo simulation of a crystal to observed single-crystal diffuse X-ray scattering. This method has been extended to the study of crystals of relatively large organic molecules by using a z-matrix to describe the molecules. This allows exploration of motions within molecules. We refer to the correlated thermal motion observed in benzil, and to the occupational and thermal disorder in the 1:1 adduct of hexamethylenetetramine and azelaic acid, HMTA. The technique is capable of giving insight into modes of vibration within molecules and correlated motions between molecules.
Marcus, Ryan C.
2012-07-24
Overview of this presentation is (1) Exascale computing - different technologies, getting there; (2) high-performance proof-of-concept MCMini - features and results; and (3) OpenCL toolkit - Oatmeal (OpenCL Automatic Memory Allocation Library) - purpose and features. Despite driver issues, OpenCL seems like a good, hardware agnostic tool. MCMini demonstrates the possibility for GPGPU-based Monte Carlo methods - it shows great scaling for HPC application and algorithmic equivalence. Oatmeal provides a flexible framework to aid in the development of scientific OpenCL codes.
Monte Carlo radiation transport¶llelism
Cox, L. J.; Post, S. E.
2002-01-01
This talk summarizes the main aspects of the LANL ASCI Eolus project and its major unclassified code project, MCNP. The MCNP code provide a state-of-the-art Monte Carlo radiation transport to approximately 3000 users world-wide. Almost all hardware platforms are supported because we strictly adhere to the FORTRAN-90/95 standard. For parallel processing, MCNP uses a mixture of OpenMp combined with either MPI or PVM (shared and distributed memory). This talk summarizes our experiences on various platforms using MPI with and without OpenMP. These platforms include PC-Windows, Intel-LINUX, BlueMountain, Frost, ASCI-Q and others.
Markov chain Monte Carlo without likelihoods.
Marjoram, Paul; Molitor, John; Plagnol, Vincent; Tavare, Simon
2003-12-23
Many stochastic simulation approaches for generating observations from a posterior distribution depend on knowing a likelihood function. However, for many complex probability models, such likelihoods are either impossible or computationally prohibitive to obtain. Here we present a Markov chain Monte Carlo method for generating observations from a posterior distribution without the use of likelihoods. It can also be used in frequentist applications, in particular for maximum-likelihood estimation. The approach is illustrated by an example of ancestral inference in population genetics. A number of open problems are highlighted in the discussion.
Monte Carlo methods to calculate impact probabilities
NASA Astrophysics Data System (ADS)
Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.
2014-09-01
Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward
Discovering correlated fermions using quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Wagner, Lucas K.; Ceperley, David M.
2016-09-01
It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior.
Quantum Monte Carlo calculations for light nuclei
Wiringa, R.B.
1997-10-01
Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 have been made using a realistic Hamiltonian that fits NN scattering data. Results for more than two dozen different (J{sup {pi}}, T) p-shell states, not counting isobaric analogs, have been obtained. The known excitation spectra of all the nuclei are reproduced reasonably well. Density and momentum distributions and various electromagnetic moments and form factors have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.
Quantum Monte Carlo calculations for light nuclei.
Wiringa, R. B.
1998-10-23
Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 40 different (J{pi}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.
MBR Monte Carlo Simulation in PYTHIA8
NASA Astrophysics Data System (ADS)
Ciesielski, R.
We present the MBR (Minimum Bias Rockefeller) Monte Carlo simulation of (anti)proton-proton interactions and its implementation in the PYTHIA8 event generator. We discuss the total, elastic, and total-inelastic cross sections, and three contributions from diffraction dissociation processes that contribute to the latter: single diffraction, double diffraction, and central diffraction or double-Pomeron exchange. The event generation follows a renormalized-Regge-theory model, successfully tested using CDF data. Based on the MBR-enhanced PYTHIA8 simulation, we present cross-section predictions for the LHC and beyond, up to collision energies of 50 TeV.
Monte Carlo procedure for protein design
NASA Astrophysics Data System (ADS)
Irbäck, Anders; Peterson, Carsten; Potthast, Frank; Sandelin, Erik
1998-11-01
A method for sequence optimization in protein models is presented. The approach, which has inherited its basic philosophy from recent work by Deutsch and Kurosky [Phys. Rev. Lett. 76, 323 (1996)] by maximizing conditional probabilities rather than minimizing energy functions, is based upon a different and very efficient multisequence Monte Carlo scheme. By construction, the method ensures that the designed sequences represent good folders thermodynamically. A bootstrap procedure for the sequence space search is devised making very large chains feasible. The algorithm is successfully explored on the two-dimensional HP model [K. F. Lau and K. A. Dill, Macromolecules 32, 3986 (1989)] with chain lengths N=16, 18, and 32.
Monte Carlo algorithm for free energy calculation.
Bi, Sheng; Tong, Ning-Hua
2015-07-01
We propose a Monte Carlo algorithm for the free energy calculation based on configuration space sampling. An upward or downward temperature scan can be used to produce F(T). We implement this algorithm for the Ising model on a square lattice and triangular lattice. Comparison with the exact free energy shows an excellent agreement. We analyze the properties of this algorithm and compare it with the Wang-Landau algorithm, which samples in energy space. This method is applicable to general classical statistical models. The possibility of extending it to quantum systems is discussed.
Introduction to Cluster Monte Carlo Algorithms
NASA Astrophysics Data System (ADS)
Luijten, E.
This chapter provides an introduction to cluster Monte Carlo algorithms for classical statistical-mechanical systems. A brief review of the conventional Metropolis algorithm is given, followed by a detailed discussion of the lattice cluster algorithm developed by Swendsen and Wang and the single-cluster variant introduced by Wolff. For continuum systems, the geometric cluster algorithm of Dress and Krauth is described. It is shown how their geometric approach can be generalized to incorporate particle interactions beyond hardcore repulsions, thus forging a connection between the lattice and continuum approaches. Several illustrative examples are discussed.
Cluster hybrid Monte Carlo simulation algorithms.
Plascak, J A; Ferrenberg, Alan M; Landau, D P
2002-06-01
We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not immediately obvious (such as the spin-3/2 Ising model) can substantially reduce the statistical errors of the simulations. A further advantage of these methods is that systematic errors introduced by the use of imperfect random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.
Cluster hybrid Monte Carlo simulation algorithms
NASA Astrophysics Data System (ADS)
Plascak, J. A.; Ferrenberg, Alan M.; Landau, D. P.
2002-06-01
We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not immediately obvious (such as the spin-3/2 Ising model) can substantially reduce the statistical errors of the simulations. A further advantage of these methods is that systematic errors introduced by the use of imperfect random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.
Quantum Monte Carlo calculations for light nuclei
Wiringa, R.B.
1998-08-01
Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 30 different (j{sup {prime}}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.
Monte Carlo simulation for the transport beamline
NASA Astrophysics Data System (ADS)
Romano, F.; Attili, A.; Cirrone, G. A. P.; Carpinelli, M.; Cuttone, G.; Jia, S. B.; Marchetto, F.; Russo, G.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Varisano, A.
2013-07-01
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.
State-of-the-art Monte Carlo 1988
Soran, P.D.
1988-06-28
Particle transport calculations in highly dimensional and physically complex geometries, such as detector calibration, radiation shielding, space reactors, and oil-well logging, generally require Monte Carlo transport techniques. Monte Carlo particle transport can be performed on a variety of computers ranging from APOLLOs to VAXs. Some of the hardware and software developments, which now permit Monte Carlo methods to be routinely used, are reviewed in this paper. The development of inexpensive, large, fast computer memory, coupled with fast central processing units, permits Monte Carlo calculations to be performed on workstations, minicomputers, and supercomputers. The Monte Carlo renaissance is further aided by innovations in computer architecture and software development. Advances in vectorization and parallelization architecture have resulted in the development of new algorithms which have greatly reduced processing times. Finally, the renewed interest in Monte Carlo has spawned new variance reduction techniques which are being implemented in large computer codes. 45 refs.
Minimising biases in full configuration interaction quantum Monte Carlo.
Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W
2015-03-14
We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and hence compute the stationary distribution. These solutions are used to quantify the dependence of the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a system with only two determinants, it still reveals a population control bias inherent to the FCIQMC algorithm. We investigate the effect of simulation parameters on the population control bias for the neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight ing scheme to remove the bias caused by population control commonly used in diffusion Monte Carlo [Umrigar et al., J. Chem. Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing step.
Monte Carlo Methods for Bridging the Timescale Gap
NASA Astrophysics Data System (ADS)
Wilding, Nigel; Landau, David P.
We identify the origin, and elucidate the character of the extended time-scales that plague computer simulation studies of first and second order phase transitions. A brief survey is provided of a number of new and existing techniques that attempt to circumvent these problems. Attention is then focused on two novel methods with which we have particular experience: “Wang-Landau sampling” and Phase Switch Monte Carlo. Detailed case studies are made of the application of the Wang-Landau approach to calculate the density of states of the 2D Ising model and the Edwards-Anderson spin glass. The principles and operation of Phase Switch Monte Carlo are described and its utility in tackling ‘difficult’ first order phase transitions is illustrated via a case study of hard-sphere freezing. We conclude with a brief overview of promising new methods for the improvement of deterministic, spin dynamics simulations.
Cluster Monte Carlo methods for the FePt Hamiltonian
NASA Astrophysics Data System (ADS)
Lyberatos, A.; Parker, G. J.
2016-02-01
Cluster Monte Carlo methods for the classical spin Hamiltonian of FePt with long range exchange interactions are presented. We use a combination of the Swendsen-Wang (or Wolff) and Metropolis algorithms that satisfies the detailed balance condition and ergodicity. The algorithms are tested by calculating the temperature dependence of the magnetization, susceptibility and heat capacity of L10-FePt nanoparticles in a range including the critical region. The cluster models yield numerical results in good agreement within statistical error with the standard single-spin flipping Monte Carlo method. The variation of the spin autocorrelation time with grain size is used to deduce the dynamic exponent of the algorithms. Our cluster models do not provide a more accurate estimate of the magnetic properties at equilibrium.
Monte Carlo Methodology Serves Up a Software Success
NASA Technical Reports Server (NTRS)
2003-01-01
Widely used for the modeling of gas flows through the computation of the motion and collisions of representative molecules, the Direct Simulation Monte Carlo method has become the gold standard for producing research and engineering predictions in the field of rarefied gas dynamics. Direct Simulation Monte Carlo was first introduced in the early 1960s by Dr. Graeme Bird, a professor at the University of Sydney, Australia. It has since proved to be a valuable tool to the aerospace and defense industries in providing design and operational support data, as well as flight data analysis. In 2002, NASA brought to the forefront a software product that maintains the same basic physics formulation of Dr. Bird's method, but provides effective modeling of complex, three-dimensional, real vehicle simulations and parallel processing capabilities to handle additional computational requirements, especially in areas where computational fluid dynamics (CFD) is not applicable. NASA's Direct Simulation Monte Carlo Analysis Code (DAC) software package is now considered the Agency s premier high-fidelity simulation tool for predicting vehicle aerodynamics and aerothermodynamic environments in rarified, or low-density, gas flows.
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
Monte Carlo modeling of spatial coherence: free-space diffraction
Fischer, David G.; Prahl, Scott A.; Duncan, Donald D.
2008-01-01
We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions. PMID:18830335
Leng, Yongsheng; Xiang, Yuan; Lei, Yajie; Rao, Qi
2013-08-21
Grand canonical Monte Carlo (GCMC) and liquid-vapor molecular dynamics (LVMD) simulations are performed to investigate the squeezing and phase transition of a simple liquid argon film confined between two solid surfaces. Simulation results show that the LVMD simulation is capable of capturing the major thermodynamic equilibrium states of the confined film, as predicted by the GCMC simulations. Moreover, the LVMD simulations reveal the non-equilibrium squeeze out dynamics of the confined film. The study shows that the solvation force hysteresis, observed in many surface force experiments, is attributed to two major effects. The first is related to the unstable jumps during the laying transitions of the confined film, in which the gradient of force profile is larger than the driving spring constant. The second effect is related to the squeeze out dynamics of the confined film even though the first effect is absent. In general, these two dynamic processes are non-equilibrium in nature and involve significant energy dissipations, resulting in the force hysteresis.
Mile, Viktória; Gereben, Orsolya; Kohara, Shinji; Pusztai, László
2012-08-16
A detailed study of the microscopic structure of two electrolyte solutions, cesium fluoride (CsF) and cesium iodide (CsI) in water, is presented. For revealing the influence of salt concentration on the structure, CsF solutions at concentrations of 15.1 and 32.3 mol % and CsI solutions at concentrations of 1.0 and 3.9 mol % are investigated. For each concentration, we combine total scattering structure factors from neutron and X-ray diffraction and 10 partial radial distribution functions from molecular dynamics simulations in one single structural model, generated by reverse Monte Carlo modeling. For the present solutions we show that the level of consistency between simulations that use simple pair potentials and experimental structure factors is at least semiquantitative for even the extremely highly concentrated CsF solutions. Remaining inconsistencies seem to be caused primarily by water-water distribution functions, whereas slightly problematic parts appear on the ion-oxygen partials, too. As a final result, we obtained particle configurations from reverse Monte Carlo modeling that were in quantitative agreement with both sets of diffraction data and most of the MD simulated partial radial distribution functions. From the particle coordinates, distributions of the number of first neighbors as well as angular correlation functions were calculated. The average number of water molecules around cations in both materials decreases from about 8.0 to about 5.1 as concentration increases, whereas the same quantity for the anions (X) changes from about 5.3 to about 3.7 in the case of CsF and from about 6.2 to about 4.0 in the case of CsI. The average angle of X···H-O particle arrangements, characteristic of anion-water hydrogen bonds, is closer to 180° than that found for O···H-O arrangements (water-water hydrogen bonds) at higher concentrations.
Monte Carlo simulations within avalanche rescue
NASA Astrophysics Data System (ADS)
Reiweger, Ingrid; Genswein, Manuel; Schweizer, Jürg
2016-04-01
Refining concepts for avalanche rescue involves calculating suitable settings for rescue strategies such as an adequate probing depth for probe line searches or an optimal time for performing resuscitation for a recovered avalanche victim in case of additional burials. In the latter case, treatment decisions have to be made in the context of triage. However, given the low number of incidents it is rarely possible to derive quantitative criteria based on historical statistics in the context of evidence-based medicine. For these rare, but complex rescue scenarios, most of the associated concepts, theories, and processes involve a number of unknown "random" parameters which have to be estimated in order to calculate anything quantitatively. An obvious approach for incorporating a number of random variables and their distributions into a calculation is to perform a Monte Carlo (MC) simulation. We here present Monte Carlo simulations for calculating the most suitable probing depth for probe line searches depending on search area and an optimal resuscitation time in case of multiple avalanche burials. The MC approach reveals, e.g., new optimized values for the duration of resuscitation that differ from previous, mainly case-based assumptions.
Quantum Monte Carlo for atoms and molecules
Barnett, R.N.
1989-11-01
The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H{sub 2}, LiH, Li{sub 2}, and H{sub 2}O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li{sub 2}, and H{sub 2}O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions.
CosmoMC: Cosmological MonteCarlo
NASA Astrophysics Data System (ADS)
Lewis, Antony; Bridle, Sarah
2011-06-01
We present a fast Markov Chain Monte-Carlo exploration of cosmological parameter space. We perform a joint analysis of results from recent CMB experiments and provide parameter constraints, including sigma_8, from the CMB independent of other data. We next combine data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae Ia and big-bang nucleosynthesis. The Monte Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and 9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include constraints on the neutrino mass (m_nu < 0.3eV), equation of state of the dark energy, and the tensor amplitude, as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of appendices we describe the many uses of importance sampling, including computing results from new data and accuracy correction of results generated from an approximate method. We also discuss the different ways of converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and consistency, and describe the use of analytic marginalization over normalization parameters.
Geometrical Monte Carlo simulation of atmospheric turbulence
NASA Astrophysics Data System (ADS)
Yuksel, Demet; Yuksel, Heba
2013-09-01
Atmospheric turbulence has a significant impact on the quality of a laser beam propagating through the atmosphere over long distances. Turbulence causes intensity scintillation and beam wander from propagation through turbulent eddies of varying sizes and refractive index. This can severely impair the operation of target designation and Free-Space Optical (FSO) communications systems. In addition, experimenting on an FSO communication system is rather tedious and difficult. The interferences of plentiful elements affect the result and cause the experimental outcomes to have bigger error variance margins than they are supposed to have. Especially when we go into the stronger turbulence regimes the simulation and analysis of the turbulence induced beams require delicate attention. We propose a new geometrical model to assess the phase shift of a laser beam propagating through turbulence. The atmosphere along the laser beam propagation path will be modeled as a spatial distribution of spherical bubbles with refractive index discontinuity calculated from a Gaussian distribution with the mean value being the index of air. For each statistical representation of the atmosphere, the path of rays will be analyzed using geometrical optics. These Monte Carlo techniques will assess the phase shift as a summation of the phases that arrive at the same point at the receiver. Accordingly, there would be dark and bright spots at the receiver that give an idea regarding the intensity pattern without having to solve the wave equation. The Monte Carlo analysis will be compared with the predictions of wave theory.
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; ...
2014-05-29
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods.more » We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.
2014-05-29
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε^{–2}) or (ε^{–2}(lnε)^{2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε^{–3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10^{–5}. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Discrete range clustering using Monte Carlo methods
NASA Technical Reports Server (NTRS)
Chatterji, G. B.; Sridhar, B.
1993-01-01
For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.
Scalable Domain Decomposed Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
O'Brien, Matthew Joseph
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M.S.; Ricketson, L.F.; Dimits, A.M.; Caflisch, R.E.; Cohen, B.I.
2014-10-01
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε{sup −2}) or O(ε{sup −2}(lnε){sup 2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε{sup −3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10{sup −5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Calculating Pi Using the Monte Carlo Method
NASA Astrophysics Data System (ADS)
Williamson, Timothy
2013-11-01
During the summer of 2012, I had the opportunity to participate in a research experience for teachers at the center for sustainable energy at Notre Dame University (RET @ cSEND) working with Professor John LoSecco on the problem of using antineutrino detection to accurately determine the fuel makeup and operating power of nuclear reactors. During full power operation, a reactor may produce 1021 antineutrinos per second with approximately 100 per day being detected. While becoming familiar with the design and operation of the detectors, and how total antineutrino flux could be obtained from such a small sample, I read about a simulation program called Monte Carlo. Further investigation led me to the Monte Carlo method page of Wikipedia2 where I saw an example of approximating pi using this simulation. Other examples where this method was applied were typically done with computer simulations2 or purely mathematical.3 It is my belief that this method may be easily related to the students by performing the simple activity of sprinkling rice on an arc drawn in a square. The activity that follows was inspired by those simulations and was used by my AP Physics class last year with very good results.
Parallel and Portable Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.
1997-08-01
We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.
Quantum Monte Carlo Endstation for Petascale Computing
Lubos Mitas
2011-01-26
NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlo code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in 13
Finding organic vapors - a Monte Carlo approach
NASA Astrophysics Data System (ADS)
Vuollekoski, Henri; Boy, Michael; Kerminen, Veli-Matti; Kulmala, Markku
2010-05-01
drawbacks in accuracy, the inability to find diurnal variation and the lack of size resolution. Here, we aim to shed some light onto the problem by applying an ad hoc Monte Carlo algorithm to a well established aerosol dynamical model, the University of Helsinki Multicomponent Aerosol model (UHMA). By performing a side-by-side comparison with measurement data within the algorithm, this approach has the significant advantage of decreasing the amount of manual labor. But more importantly, by basing the comparison on particle number size distribution data - a quantity that can be quite reliably measured - the accuracy of the results is good.
Graphics Processing Unit Accelerated Hirsch-Fye Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Moore, Conrad; Abu Asal, Sameer; Rajagoplan, Kaushik; Poliakoff, David; Caprino, Joseph; Tomko, Karen; Thakur, Bhupender; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark
2012-02-01
In Dynamical Mean Field Theory and its cluster extensions, such as the Dynamic Cluster Algorithm, the bottleneck of the algorithm is solving the self-consistency equations with an impurity solver. Hirsch-Fye Quantum Monte Carlo is one of the most commonly used impurity and cluster solvers. This work implements optimizations of the algorithm, such as enabling large data re-use, suitable for the Graphics Processing Unit (GPU) architecture. The GPU's sheer number of concurrent parallel computations and large bandwidth to many shared memories takes advantage of the inherent parallelism in the Green function update and measurement routines, and can substantially improve the efficiency of the Hirsch-Fye impurity solver.
Chemical accuracy from quantum Monte Carlo for the benzene dimer
Azadi, Sam; Cohen, R. E.
2015-09-14
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.
Monte Carlo simulations of electron transport in strongly attaching gases
NASA Astrophysics Data System (ADS)
Petrovic, Zoran; Miric, Jasmina; Simonovic, Ilija; Bosnjakovic, Danko; Dujko, Sasa
2016-09-01
Extensive loss of electrons in strongly attaching gases imposes significant difficulties in Monte Carlo simulations at low electric field strengths. In order to compensate for such losses, some kind of rescaling procedures must be used. In this work, we discuss two rescaling procedures for Monte Carlo simulations of electron transport in strongly attaching gases: (1) discrete rescaling, and (2) continuous rescaling. The discrete rescaling procedure is based on duplication of electrons randomly chosen from the remaining swarm at certain discrete time steps. The continuous rescaling procedure employs a dynamically defined fictitious ionization process with the constant collision frequency chosen to be equal to the attachment collision frequency. These procedures should not in any way modify the distribution function. Monte Carlo calculations of transport coefficients for electrons in SF6 and CF3I are performed in a wide range of electric field strengths. However, special emphasis is placed upon the analysis of transport phenomena in the limit of lower electric fields where the transport properties are strongly affected by electron attachment. Two important phenomena arise: (1) the reduction of the mean energy with increasing E/N for electrons in SF6, and (2) the occurrence of negative differential conductivity in the bulk drift velocity of electrons in both SF6 and CF3I.
Chemical accuracy from quantum Monte Carlo for the benzene dimer.
Azadi, Sam; Cohen, R E
2015-09-14
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.
Monte Carlo Studies of the Fcc Ising Model.
NASA Astrophysics Data System (ADS)
Polgreen, Thomas Lee
Monte Carlo simulations are performed on the antiferromagnetic fcc Ising model which is relevant to the binary alloy CuAu. The model exhibits a first-order ordering transition as a function of temperature. The lattice free energy of the model is determined for all temperatures. By matching free energies of the ordered and disordered phases, the transition temperature is determined to be T(,t) = 1.736 J where J is the coupling constant of the model. The free energy as determined by series expansion and the Kikuchi cluster variation method is compared with the Monte Carlo results. These methods work well for the ordered phase, but not for the disordered phase. A determination of the pair correlation in the disordered phase along the {100} direction indicates a correlation length of (DBLTURN) 2.5a at the phase transition. The correlation length exhibits mean-field-like temperature dependence. The Cowley-Warren short range order parameters are determined as a function of temperature for the first twelve nearest-neighbor shells of this model. The Monte Carlo results are used to determine the free parameter in a mean-field-like class of theories described by Clapp and Moss. The ability of these theories to predict ratios between pair potentials is tested with these results. In addition, evidence of a region of heterophase fluctuations is presented in agreement with x-ray diffuse scattering measurements on Cu(,3)Au. The growth of order following a rapid quench from disorder is studied by means of a dynamic Monte Carlo simulation. The results compare favorably with the Landau theory proposed by Chan for temperatures near the first-order phase transition. For lower temperatures, the results are in agreement with the theories of Lifshitz and Allen and Chan. In the intermediate temperature range, our extension of Chan's theory is able to explain our simulation results and recent experimental results.
Theory and Applications of Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Deible, Michael John
With the development of peta-scale computers and exa-scale only a few years away, the quantum Monte Carlo (QMC) method, with favorable scaling and inherent parrallelizability, is poised to increase its impact on the electronic structure community. The most widely used variation of QMC is the diffusion Monte Carlo (DMC) method. The accuracy of the DMC method is only limited by the trial wave function that it employs. The effect of the trial wave function is studied here by initially developing correlation-consistent Gaussian basis sets for use in DMC calculations. These basis sets give a low variance in variance Monte Carlo calculations and improved convergence in DMC. The orbital type used in the trial wave function is then investigated, and it is shown that Brueckner orbitals result in a DMC energy comparable to a DMC energy with orbitals from density functional theory and significantly lower than orbitals from Hartree-Fock theory. Three large weakly interacting systems are then studied; a water-16 isomer, a methane clathrate, and a carbon dioxide clathrate. The DMC method is seen to be in good agreement with MP2 calculations and provides reliable benchmarks. Several strongly correlated systems are then studied. An H4 model system that allows for a fine tuning of the multi-configurational character of the wave function shows when the accuracy of the DMC method with a single Slater-determinant trial function begins to deviate from multi-reference benchmarks. The weakly interacting face-to-face ethylene dimer is studied with and without a rotation around the pi bond, which is used to increase the multi-configurational nature of the wave function. This test shows that the effect of a multi-configurational wave function in weakly interacting systems causes DMC with a single Slater-determinant to be unable to achieve sub-chemical accuracy. The beryllium dimer is studied, and it is shown that a very large determinant expansion is required for DMC to predict a binding
Monte Carlo-Minimization and Monte Carlo Recursion Approaches to Structure and Free Energy.
NASA Astrophysics Data System (ADS)
Li, Zhenqin
1990-08-01
Biological systems are intrinsically "complex", involving many degrees of freedom, heterogeneity, and strong interactions among components. For the simplest of biological substances, e.g., biomolecules, which obey the laws of thermodynamics, we may attempt a statistical mechanical investigational approach. Even for these simplest many -body systems, assuming microscopic interactions are completely known, current computational methods in characterizing the overall structure and free energy face the fundamental challenge of an exponential amount of computation, with the rise in the number of degrees of freedom. As an attempt to surmount such problems, two computational procedures, the Monte Carlo-minimization and Monte Carlo recursion methods, have been developed as general approaches to the determination of structure and free energy of a complex thermodynamic system. We describe, in Chapter 2, the Monte Carlo-minimization method, which attempts to simulate natural protein folding processes and to overcome the multiple-minima problem. The Monte Carlo-minimization procedure has been applied to a pentapeptide, Met-enkephalin, leading consistently to the lowest energy structure, which is most likely to be the global minimum structure for Met-enkephalin in the absence of water, given the ECEPP energy parameters. In Chapter 3 of this thesis, we develop a Monte Carlo recursion method to compute the free energy of a given physical system with known interactions, which has been applied to a 32-particle Lennard-Jones fluid. In Chapter 4, we describe an efficient implementation of the recursion procedure, for the computation of the free energy of liquid water, with both MCY and TIP4P potential parameters for water. As a further demonstration of the power of the recursion method for calculating free energy, a general formalism of cluster formation from monatomic vapor is developed in Chapter 5. The Gibbs free energy of constrained clusters can be computed efficiently using the
Monte Carlo simulation of classical spin models with chaotic billiards.
Suzuki, Hideyuki
2013-11-01
It has recently been shown that the computing abilities of Boltzmann machines, or Ising spin-glass models, can be implemented by chaotic billiard dynamics without any use of random numbers. In this paper, we further numerically investigate the capabilities of the chaotic billiard dynamics as a deterministic alternative to random Monte Carlo methods by applying it to classical spin models in statistical physics. First, we verify that the billiard dynamics can yield samples that converge to the true distribution of the Ising model on a small lattice, and we show that it appears to have the same convergence rate as random Monte Carlo sampling. Second, we apply the billiard dynamics to finite-size scaling analysis of the critical behavior of the Ising model and show that the phase-transition point and the critical exponents are correctly obtained. Third, we extend the billiard dynamics to spins that take more than two states and show that it can be applied successfully to the Potts model. We also discuss the possibility of extensions to continuous-valued models such as the XY model.
Monte Carlo simulation of classical spin models with chaotic billiards
NASA Astrophysics Data System (ADS)
Suzuki, Hideyuki
2013-11-01
It has recently been shown that the computing abilities of Boltzmann machines, or Ising spin-glass models, can be implemented by chaotic billiard dynamics without any use of random numbers. In this paper, we further numerically investigate the capabilities of the chaotic billiard dynamics as a deterministic alternative to random Monte Carlo methods by applying it to classical spin models in statistical physics. First, we verify that the billiard dynamics can yield samples that converge to the true distribution of the Ising model on a small lattice, and we show that it appears to have the same convergence rate as random Monte Carlo sampling. Second, we apply the billiard dynamics to finite-size scaling analysis of the critical behavior of the Ising model and show that the phase-transition point and the critical exponents are correctly obtained. Third, we extend the billiard dynamics to spins that take more than two states and show that it can be applied successfully to the Potts model. We also discuss the possibility of extensions to continuous-valued models such as the XY model.
Monte Carlo Simulation of Endlinking Oligomers
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Young, Jennifer A.
1998-01-01
This report describes initial efforts to model the endlinking reaction of phenylethynyl-terminated oligomers. Several different molecular weights were simulated using the Bond Fluctuation Monte Carlo technique on a 20 x 20 x 20 unit lattice with periodic boundary conditions. After a monodisperse "melt" was equilibrated, chain ends were linked whenever they came within the allowed bond distance. Ends remained reactive throughout, so that multiple links were permitted. Even under these very liberal crosslinking assumptions, geometrical factors limited the degree of crosslinking. Average crosslink functionalities were 2.3 to 2.6; surprisingly, they did not depend strongly on the chain length. These results agreed well with the degrees of crosslinking inferred from experiment in a cured phenylethynyl-terminated polyimide oligomer.
Parallel implicit Monte Carlo in C++
Urbatsch, T.J.; Evans, T.M.
1998-12-31
The authors are developing a parallel C++ Implicit Monte Carlo code in the Draco framework. As a background and motivation for the parallelization strategy, they first present three basic parallelization schemes. They use three hypothetical examples, mimicking the memory constraints of the real world, to examine characteristics of the basic schemes. Next, they present a two-step scheme proposed by Lawrence Livermore National Laboratory (LLNL). The two-step parallelization scheme they develop is based upon LLNL`s two-step scheme. The two-step scheme appears to have greater potential compared to the basic schemes and LLNL`s two-step scheme. Lastly, they explain the code design and describe how the functionality of C++ and the Draco framework assist the development of a parallel code.
Lunar Regolith Albedos Using Monte Carlos
NASA Technical Reports Server (NTRS)
Wilson, T. L.; Andersen, V.; Pinsky, L. S.
2003-01-01
The analysis of planetary regoliths for their backscatter albedos produced by cosmic rays (CRs) is important for space exploration and its potential contributions to science investigations in fundamental physics and astrophysics. Albedos affect all such experiments and the personnel that operate them. Groups have analyzed the production rates of various particles and elemental species by planetary surfaces when bombarded with Galactic CR fluxes, both theoretically and by means of various transport codes, some of which have emphasized neutrons. Here we report on the preliminary results of our current Monte Carlo investigation into the production of charged particles, neutrons, and neutrinos by the lunar surface using FLUKA. In contrast to previous work, the effects of charm are now included.
Monte Carlo simulations of medical imaging modalities
Estes, G.P.
1998-09-01
Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computer power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.
Monte Carlo modeling and meteor showers
NASA Technical Reports Server (NTRS)
Kulikova, N. V.
1987-01-01
Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.
Exploring theory space with Monte Carlo reweighting
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; ...
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists andmore » experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less
Monte-Carlo Simulation Balancing in Practice
NASA Astrophysics Data System (ADS)
Huang, Shih-Chieh; Coulom, Rémi; Lin, Shun-Shii
Simulation balancing is a new technique to tune parameters of a playout policy for a Monte-Carlo game-playing program. So far, this algorithm had only been tested in a very artificial setting: it was limited to 5×5 and 6×6 Go, and required a stronger external program that served as a supervisor. In this paper, the effectiveness of simulation balancing is demonstrated in a more realistic setting. A state-of-the-art program, Erica, learned an improved playout policy on the 9×9 board, without requiring any external expert to provide position evaluations. The evaluations were collected by letting the program analyze positions by itself. The previous version of Erica learned pattern weights with the minorization-maximization algorithm. Thanks to simulation balancing, its playing strength was improved from a winning rate of 69% to 78% against Fuego 0.4.
Accuracy control in Monte Carlo radiative calculations
NASA Technical Reports Server (NTRS)
Almazan, P. Planas
1993-01-01
The general accuracy law that rules the Monte Carlo, ray-tracing algorithms used commonly for the calculation of the radiative entities in the thermal analysis of spacecraft are presented. These entities involve transfer of radiative energy either from a single source to a target (e.g., the configuration factors). or from several sources to a target (e.g., the absorbed heat fluxes). In fact, the former is just a particular case of the latter. The accuracy model is later applied to the calculation of some specific radiative entities. Furthermore, some issues related to the implementation of such a model in a software tool are discussed. Although only the relative error is considered through the discussion, similar results can be derived for the absolute error.
Monte Carlo applications to acoustical field solutions
NASA Technical Reports Server (NTRS)
Haviland, J. K.; Thanedar, B. D.
1973-01-01
The Monte Carlo technique is proposed for the determination of the acoustical pressure-time history at chosen points in a partial enclosure, the central idea of this technique being the tracing of acoustical rays. A statistical model is formulated and an algorithm for pressure is developed, the conformity of which is examined by two approaches and is shown to give the known results. The concepts that are developed are applied to the determination of the transient field due to a sound source in a homogeneous medium in a rectangular enclosure with perfect reflecting walls, and the results are compared with those presented by Mintzer based on the Laplace transform approach, as well as with a normal mode solution.
Hybrid algorithms in quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Kim, Jeongnim; Esler, Kenneth P.; McMinis, Jeremy; Morales, Miguel A.; Clark, Bryan K.; Shulenburger, Luke; Ceperley, David M.
2012-12-01
With advances in algorithms and growing computing powers, quantum Monte Carlo (QMC) methods have become a leading contender for high accuracy calculations for the electronic structure of realistic systems. The performance gain on recent HPC systems is largely driven by increasing parallelism: the number of compute cores of a SMP and the number of SMPs have been going up, as the Top500 list attests. However, the available memory as well as the communication and memory bandwidth per element has not kept pace with the increasing parallelism. This severely limits the applicability of QMC and the problem size it can handle. OpenMP/MPI hybrid programming provides applications with simple but effective solutions to overcome efficiency and scalability bottlenecks on large-scale clusters based on multi/many-core SMPs. We discuss the design and implementation of hybrid methods in QMCPACK and analyze its performance on current HPC platforms characterized by various memory and communication hierarchies.
Noncovalent Interactions by Quantum Monte Carlo.
Dubecký, Matúš; Mitas, Lubos; Jurečka, Petr
2016-05-11
Quantum Monte Carlo (QMC) is a family of stochastic methods for solving quantum many-body problems such as the stationary Schrödinger equation. The review introduces basic notions of electronic structure QMC based on random walks in real space as well as its advances and adaptations to systems with noncovalent interactions. Specific issues such as fixed-node error cancellation, construction of trial wave functions, and efficiency considerations that allow for benchmark quality QMC energy differences are described in detail. Comprehensive overview of articles covers QMC applications to systems with noncovalent interactions over the last three decades. The current status of QMC with regard to efficiency, applicability, and usability by nonexperts together with further considerations about QMC developments, limitations, and unsolved challenges are discussed as well.
Monte Carlo Studies of Protein Aggregation
NASA Astrophysics Data System (ADS)
Jónsson, Sigurður Ægir; Staneva, Iskra; Mohanty, Sandipan; Irbäck, Anders
The disease-linked amyloid β (Aβ) and α-synuclein (αS) proteins are both fibril-forming and natively unfolded in free monomeric form. Here, we discuss two recent studies, where we used extensive implicit solvent all-atom Monte Carlo (MC) simulations to elucidate the conformational ensembles sampled by these proteins. For αS, we somewhat unexpectedly observed two distinct phases, separated by a clear free-energy barrier. The presence of the barrier makes αS, with 140 residues, a challenge to simulate. By using a two-step simulation procedure based on flat-histogram techniques, it was possible to alleviate this problem. The barrier may in part explain why fibril formation is much slower for αS than it is for Aβ
Green's function Monte Carlo in nuclear physics
Carlson, J.
1990-01-01
We review the status of Green's Function Monte Carlo (GFMC) methods as applied to problems in nuclear physics. New methods have been developed to handle the spin and isospin degrees of freedom that are a vital part of any realistic nuclear physics problem, whether at the level of quarks or nucleons. We discuss these methods and then summarize results obtained recently for light nuclei, including ground state energies, three-body forces, charge form factors and the coulomb sum. As an illustration of the applicability of GFMC to quark models, we also consider the possible existence of bound exotic multi-quark states within the framework of flux-tube quark models. 44 refs., 8 figs., 1 tab.
Resist develop prediction by Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Sohn, Dong-Soo; Jeon, Kyoung-Ah; Sohn, Young-Soo; Oh, Hye-Keun
2002-07-01
Various resist develop models have been suggested to express the phenomena from the pioneering work of Dill's model in 1975 to the recent Shipley's enhanced notch model. The statistical Monte Carlo method can be applied to the process such as development and post exposure bake. The motions of developer during development process were traced by using this method. We have considered that the surface edge roughness of the resist depends on the weight percentage of protected and de-protected polymer in the resist. The results are well agreed with other papers. This study can be helpful for the developing of new photoresist and developer that can be used to pattern the device features smaller than 100 nm.
Vectorization of Monte Carlo particle transport
Burns, P.J.; Christon, M.; Schweitzer, R.; Lubeck, O.M.; Wasserman, H.J.; Simmons, M.L.; Pryor, D.V. . Computer Center; Los Alamos National Lab., NM; Supercomputing Research Center, Bowie, MD )
1989-01-01
Fully vectorized versions of the Los Alamos National Laboratory benchmark code Gamteb, a Monte Carlo photon transport algorithm, were developed for the Cyber 205/ETA-10 and Cray X-MP/Y-MP architectures. Single-processor performance measurements of the vector and scalar implementations were modeled in a modified Amdahl's Law that accounts for additional data motion in the vector code. The performance and implementation strategy of the vector codes are related to architectural features of each machine. Speedups between fifteen and eighteen for Cyber 205/ETA-10 architectures, and about nine for CRAY X-MP/Y-MP architectures are observed. The best single processor execution time for the problem was 0.33 seconds on the ETA-10G, and 0.42 seconds on the CRAY Y-MP. 32 refs., 12 figs., 1 tab.
Monte Carlo calculation for microplanar beam radiography.
Company, F Z; Allen, B J; Mino, C
2000-09-01
In radiography the scattered radiation from the off-target region decreases the contrast of the target image. We propose that a bundle of collimated, closely spaced, microplanar beams can reduce the scattered radiation and eliminate the effect of secondary electron dose, thus increasing the image dose contrast in the detector. The lateral and depth dose distributions of 20-200 keV microplanar beams are investigated using the EGS4 Monte Carlo code to calculate the depth doses and dose profiles in a 6 cm x 6 cm x 6 cm tissue phantom. The maximum dose on the primary beam axis (peak) and the minimum inter-beam scattered dose (valley) are compared at different photon energies and the optimum energy range for microbeam radiography is found. Results show that a bundle of closely spaced microplanar beams can give superior contrast imaging to a single macrobeam of the same overall area.
Nuclear reactions in Monte Carlo codes.
Ferrari, A; Sala, P R
2002-01-01
The physics foundations of hadronic interactions as implemented in most Monte Carlo codes are presented together with a few practical examples. The description of the relevant physics is presented schematically split into the major steps in order to stress the different approaches required for the full understanding of nuclear reactions at intermediate and high energies. Due to the complexity of the problem, only a few semi-qualitative arguments are developed in this paper. The description will be necessarily schematic and somewhat incomplete, but hopefully it will be useful for a first introduction into this topic. Examples are shown mostly for the high energy regime, where all mechanisms mentioned in the paper are at work and to which perhaps most of the readers are less accustomed. Examples for lower energies can be found in the references.
Geometric Monte Carlo and black Janus geometries
NASA Astrophysics Data System (ADS)
Bak, Dongsu; Kim, Chanju; Kim, Kyung Kiu; Min, Hyunsoo; Song, Jeong-Pil
2017-04-01
We describe an application of the Monte Carlo method to the Janus deformation of the black brane background. We present numerical results for three and five dimensional black Janus geometries with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can handle an arbitrary geometry under various boundary conditions in the presence of source fields.
Chemical application of diffusion quantum Monte Carlo
NASA Technical Reports Server (NTRS)
Reynolds, P. J.; Lester, W. A., Jr.
1984-01-01
The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.
Exploring theory space with Monte Carlo reweighting
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.
Quantum Monte Carlo using a Stochastic Poisson Solver
Das, D; Martin, R M; Kalos, M H
2005-05-06
Quantum Monte Carlo (QMC) is an extremely powerful method to treat many-body systems. Usually quantum Monte Carlo has been applied in cases where the interaction potential has a simple analytic form, like the 1/r Coulomb potential. However, in a complicated environment as in a semiconductor heterostructure, the evaluation of the interaction itself becomes a non-trivial problem. Obtaining the potential from any grid-based finite-difference method, for every walker and every step is unfeasible. We demonstrate an alternative approach of solving the Poisson equation by a classical Monte Carlo within the overall quantum Monte Carlo scheme. We have developed a modified ''Walk On Spheres'' algorithm using Green's function techniques, which can efficiently account for the interaction energy of walker configurations, typical of quantum Monte Carlo algorithms. This stochastically obtained potential can be easily incorporated within popular quantum Monte Carlo techniques like variational Monte Carlo (VMC) or diffusion Monte Carlo (DMC). We demonstrate the validity of this method by studying a simple problem, the polarization of a helium atom in the electric field of an infinite capacitor.
The Monte Carlo Method. Popular Lectures in Mathematics.
ERIC Educational Resources Information Center
Sobol', I. M.
The Monte Carlo Method is a method of approximately solving mathematical and physical problems by the simulation of random quantities. The principal goal of this booklet is to suggest to specialists in all areas that they will encounter problems which can be solved by the Monte Carlo Method. Part I of the booklet discusses the simulation of random…
Economic Risk Analysis: Using Analytical and Monte Carlo Techniques.
ERIC Educational Resources Information Center
O'Donnell, Brendan R.; Hickner, Michael A.; Barna, Bruce A.
2002-01-01
Describes the development and instructional use of a Microsoft Excel spreadsheet template that facilitates analytical and Monte Carlo risk analysis of investment decisions. Discusses a variety of risk assessment methods followed by applications of the analytical and Monte Carlo methods. Uses a case study to illustrate use of the spreadsheet tool…
A Primer in Monte Carlo Integration Using Mathcad
ERIC Educational Resources Information Center
Hoyer, Chad E.; Kegerreis, Jeb S.
2013-01-01
The essentials of Monte Carlo integration are presented for use in an upper-level physical chemistry setting. A Mathcad document that aids in the dissemination and utilization of this information is described and is available in the Supporting Information. A brief outline of Monte Carlo integration is given, along with ideas and pedagogy for…
Monte Carlo Test Assembly for Item Pool Analysis and Extension
ERIC Educational Resources Information Center
Belov, Dmitry I.; Armstrong, Ronald D.
2005-01-01
A new test assembly algorithm based on a Monte Carlo random search is presented in this article. A major advantage of the Monte Carlo test assembly over other approaches (integer programming or enumerative heuristics) is that it performs a uniform sampling from the item pool, which provides every feasible item combination (test) with an equal…
A Primer in Monte Carlo Integration Using Mathcad
ERIC Educational Resources Information Center
Hoyer, Chad E.; Kegerreis, Jeb S.
2013-01-01
The essentials of Monte Carlo integration are presented for use in an upper-level physical chemistry setting. A Mathcad document that aids in the dissemination and utilization of this information is described and is available in the Supporting Information. A brief outline of Monte Carlo integration is given, along with ideas and pedagogy for…
Monte Carlo scatter correction for SPECT
NASA Astrophysics Data System (ADS)
Liu, Zemei
The goal of this dissertation is to present a quantitatively accurate and computationally fast scatter correction method that is robust and easily accessible for routine applications in SPECT imaging. A Monte Carlo based scatter estimation method is investigated and developed further. The Monte Carlo simulation program SIMIND (Simulating Medical Imaging Nuclear Detectors), was specifically developed to simulate clinical SPECT systems. The SIMIND scatter estimation (SSE) method was developed further using a multithreading technique to distribute the scatter estimation task across multiple threads running concurrently on multi-core CPU's to accelerate the scatter estimation process. An analytical collimator that ensures less noise was used during SSE. The research includes the addition to SIMIND of charge transport modeling in cadmium zinc telluride (CZT) detectors. Phenomena associated with radiation-induced charge transport including charge trapping, charge diffusion, charge sharing between neighboring detector pixels, as well as uncertainties in the detection process are addressed. Experimental measurements and simulation studies were designed for scintillation crystal based SPECT and CZT based SPECT systems to verify and evaluate the expanded SSE method. Jaszczak Deluxe and Anthropomorphic Torso Phantoms (Data Spectrum Corporation, Hillsborough, NC, USA) were used for experimental measurements and digital versions of the same phantoms employed during simulations to mimic experimental acquisitions. This study design enabled easy comparison of experimental and simulated data. The results have consistently shown that the SSE method performed similarly or better than the triple energy window (TEW) and effective scatter source estimation (ESSE) methods for experiments on all the clinical SPECT systems. The SSE method is proven to be a viable method for scatter estimation for routine clinical use.
Accelerated GPU based SPECT Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-01
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency
Parton shower Monte Carlo event generators
NASA Astrophysics Data System (ADS)
Webber, Bryan
2011-12-01
A parton shower Monte Carlo event generator is a computer program designed to simulate the final states of high-energy collisions in full detail down to the level of individual stable particles. The aim is to generate a large number of simulated collision events, each consisting of a list of final-state particles and their momenta, such that the probability to produce an event with a given list is proportional (approximately) to the probability that the corresponding actual event is produced in the real world. The Monte Carlo method makes use of pseudorandom numbers to simulate the event-to-event fluctuations intrinsic to quantum processes. The simulation normally begins with a hard subprocess, shown as a black blob in Figure 1, in which constituents of the colliding particles interact at a high momentum scale to produce a few outgoing fundamental objects: Standard Model quarks, leptons and/or gauge or Higgs bosons, or hypothetical particles of some new theory. The partons (quarks and gluons) involved, as well as any new particles with colour, radiate virtual gluons, which can themselves emit further gluons or produce quark-antiquark pairs, leading to the formation of parton showers (brown). During parton showering the interaction scale falls and the strong interaction coupling rises, eventually triggering the process of hadronization (yellow), in which the partons are bound into colourless hadrons. On the same scale, the initial-state partons in hadronic collisions are confined in the incoming hadrons. In hadron-hadron collisions, the other constituent partons of the incoming hadrons undergo multiple interactions which produce the underlying event (green). Many of the produced hadrons are unstable, so the final stage of event generation is the simulation of the hadron decays.
Accelerated GPU based SPECT Monte Carlo simulations.
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-07
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational
Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge
2014-07-14
The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.
NASA Astrophysics Data System (ADS)
Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael
2013-05-01
In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.
Brolin, Gustav; Gleisner, Katarina Sjögreen; Ljungberg, Michael
2013-05-21
In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for (99m)Tc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.
NASA Astrophysics Data System (ADS)
Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge
2014-07-01
The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.
Fission Matrix Capability for MCNP Monte Carlo
Carney, Sean E.; Brown, Forrest B.; Kiedrowski, Brian C.; Martin, William R.
2012-09-05
In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a
Effect of statistical uncertainties on Monte Carlo treatment planning
NASA Astrophysics Data System (ADS)
Ma, C.-M.; Li, J. S.; Jiang, S. B.; Pawlicki, T.; Xiong, W.; Qin, L. H.; Yang, J.
2005-03-01
This paper reviews the effect of statistical uncertainties on radiotherapy treatment planning using Monte Carlo simulations. We discuss issues related to the statistical analysis of Monte Carlo dose calculations for realistic clinical beams using various variance reduction or time saving techniques. We discuss the effect of statistical uncertainties on dose prescription and monitor unit calculation for conventional treatment and intensity-modulated radiotherapy (IMRT) based on Monte Carlo simulations. We show the effect of statistical uncertainties on beamlet dose calculation and plan optimization for IMRT and other advanced treatment techniques such as modulated electron radiotherapy (MERT). We provide practical guidelines for the clinical implementation of Monte Carlo treatment planning and show realistic examples of Monte Carlo based IMRT and MERT plans.
Vectorized Monte Carlo methods for reactor lattice analysis
NASA Technical Reports Server (NTRS)
Brown, F. B.
1984-01-01
Some of the new computational methods and equivalent mathematical representations of physics models used in the MCV code, a vectorized continuous-enery Monte Carlo code for use on the CYBER-205 computer are discussed. While the principal application of MCV is the neutronics analysis of repeating reactor lattices, the new methods used in MCV should be generally useful for vectorizing Monte Carlo for other applications. For background, a brief overview of the vector processing features of the CYBER-205 is included, followed by a discussion of the fundamentals of Monte Carlo vectorization. The physics models used in the MCV vectorized Monte Carlo code are then summarized. The new methods used in scattering analysis are presented along with details of several key, highly specialized computational routines. Finally, speedups relative to CDC-7600 scalar Monte Carlo are discussed.
Reconstruction of Monte Carlo replicas from Hessian parton distributions
NASA Astrophysics Data System (ADS)
Hou, Tie-Jiun; Gao, Jun; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Stump, Daniel; Wang, Bo-Ting; Xie, Ke Ping; Dulat, Sayipjamal; Pumplin, Jon; Yuan, C. P.
2017-03-01
We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A correction is proposed to address a bias in asymmetric uncertainties introduced by the Taylor series approximation. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.
Analysis of real-time networks with monte carlo methods
NASA Astrophysics Data System (ADS)
Mauclair, C.; Durrieu, G.
2013-12-01
Communication networks in embedded systems are ever more large and complex. A better understanding of the dynamics of these networks is necessary to use them at best and lower costs. Todays tools are able to compute upper bounds of end-to-end delays that a packet being sent through the network could suffer. However, in the case of asynchronous networks, those worst end-to-end delay (WEED) cases are rarely observed in practice or through simulations due to the scarce situations that lead to worst case scenarios. A novel approach based on Monte Carlo methods is suggested to study the effects of the asynchrony on the performances.
Monte Carlo studies of model Langmuir monolayers
NASA Astrophysics Data System (ADS)
Opps, S. B.; Yang, B.; Gray, C. G.; Sullivan, D. E.
2001-04-01
This paper examines some of the basic properties of a model Langmuir monolayer, consisting of surfactant molecules deposited onto a water subphase. The surfactants are modeled as rigid rods composed of a head and tail segment of diameters σhh and σtt, respectively. The tails consist of nt~4-7 effective monomers representing methylene groups. These rigid rods interact via site-site Lennard-Jones potentials with different interaction parameters for the tail-tail, head-tail, and head-head interactions. In a previous paper, we studied the ground-state properties of this system using a Landau approach. In the present paper, Monte Carlo simulations were performed in the canonical ensemble to elucidate the finite-temperature behavior of this system. Simulation techniques, incorporating a system of dynamic filters, allow us to decrease CPU time with negligible statistical error. This paper focuses on several of the key parameters, such as density, head-tail diameter mismatch, and chain length, responsible for driving transitions from uniformly tilted to untilted phases and between different tilt-ordered phases. Upon varying the density of the system, with σhh=σtt, we observe a transition from a tilted (NNN)-condensed phase to an untilted-liquid phase and, upon comparison with recent experiments with fatty acid-alcohol and fatty acid-ester mixtures [M. C. Shih, M. K. Durbin, A. Malik, P. Zschack, and P. Dutta, J. Chem. Phys. 101, 9132 (1994); E. Teer, C. M. Knobler, C. Lautz, S. Wurlitzer, J. Kildae, and T. M. Fischer, J. Chem. Phys. 106, 1913 (1997)], we identify this as the L'2/Ov-L1 phase boundary. By varying the head-tail diameter ratio, we observe a decrease in Tc with increasing mismatch. However, as the chain length was increased we observed that the transition temperatures increased and differences in Tc due to head-tail diameter mismatch were diminished. In most of the present research, the water was treated as a hard surface, whereby the surfactants are only
Monte Carlo studies of model Langmuir monolayers.
Opps, S B; Yang, B; Gray, C G; Sullivan, D E
2001-04-01
This paper examines some of the basic properties of a model Langmuir monolayer, consisting of surfactant molecules deposited onto a water subphase. The surfactants are modeled as rigid rods composed of a head and tail segment of diameters sigma(hh) and sigma(tt), respectively. The tails consist of n(t) approximately 4-7 effective monomers representing methylene groups. These rigid rods interact via site-site Lennard-Jones potentials with different interaction parameters for the tail-tail, head-tail, and head-head interactions. In a previous paper, we studied the ground-state properties of this system using a Landau approach. In the present paper, Monte Carlo simulations were performed in the canonical ensemble to elucidate the finite-temperature behavior of this system. Simulation techniques, incorporating a system of dynamic filters, allow us to decrease CPU time with negligible statistical error. This paper focuses on several of the key parameters, such as density, head-tail diameter mismatch, and chain length, responsible for driving transitions from uniformly tilted to untilted phases and between different tilt-ordered phases. Upon varying the density of the system, with sigma(hh)=sigma(tt), we observe a transition from a tilted (NNN)-condensed phase to an untilted-liquid phase and, upon comparison with recent experiments with fatty acid-alcohol and fatty acid-ester mixtures [M. C. Shih, M. K. Durbin, A. Malik, P. Zschack, and P. Dutta, J. Chem. Phys. 101, 9132 (1994); E. Teer, C. M. Knobler, C. Lautz, S. Wurlitzer, J. Kildae, and T. M. Fischer, J. Chem. Phys. 106, 1913 (1997)], we identify this as the L'(2)/Ov-L1 phase boundary. By varying the head-tail diameter ratio, we observe a decrease in T(c) with increasing mismatch. However, as the chain length was increased we observed that the transition temperatures increased and differences in T(c) due to head-tail diameter mismatch were diminished. In most of the present research, the water was treated as a hard
NASA Astrophysics Data System (ADS)
Massa, Charly; Yu, Zicheng; Blaauw, Maarten; Loisel, Julie
2014-05-01
EOF (Empirical Orthogonal Functions) analysis is a common tool for exploring the spatiotemporal modes of instrumental climate data. Although rarely applied to paleo proxy records, the EOF method is an efficient tool for the detection and analysis of broad-scale patterns of centennial to millennial-scale climate variability. But most paleoclimate records are not annually resolved and have inherent chronological uncertainties that may be problematic using ordinary EOF. Anchukaitis et al. (2012) provided a major step forward in paleo proxy data analysis by adapting EOF to time-uncertain paleoclimate proxy records (Monte-Carlo EOF). However, additional problems may arise for analyzing flux-based paleo parameters, such as peat C accumulation rates, which are strongly dependent to age-depth modeling, that is, small uncertainties in ages may lead to large differences in accumulation rates. Here we present a new approach that combines Bayesian age modeling and Monte-Carlo EOF to analyze flux-based paleo-datasets by thoroughly addressing both chronological and flux measurement uncertainties. This approach, implemented as a suit of linked R functions, overcomes a number of technical challenges, such as the effective handling of large datasets, the reduction of computational requirements for calculating hundreds of thousands of iterations, standardization issues, and EOF computation of gappy data. As a case study we explored the recently published Holocene circum-Arctic peatland database with >100 sites (Loisel et al. in press) to investigate the spatiotemporal patterns and climate controls of peat C accumulation. The approach can be used for other flux-based proxies, such as charcoal influx, erosion rates or atmospheric depositions. Our preliminary results reveal different temporal patterns of C accumulation in major peatland regions, as controlled by various regional climate histories and other bioclimatic factors. For instance, peatlands in continental vs. oceanic settings
Roos, M.; Bansmann, J.; Behm, R. J.; Zhang, D.; Deutschmann, O.
2010-09-07
The transport and distribution of reaction products above catalytically active Pt microstructures was studied by spatially resolved scanning mass spectrometry (SMS) in combination with Monte Carlo simulation and fluid dynamics calculations, using the oxidation of CO as test reaction. The spatial gas distribution above the Pt fields was measured via a thin quartz capillary connected to a mass spectrometer. Measurements were performed in two different pressure regimes, being characteristic for ballistic mass transfer and diffusion involving multiple collisions for the motion of CO{sub 2} product molecules between the sample and the capillary tip, and using differently sized and shaped Pt microstructures. The tip height dependent lateral resolution of the SMS measurements as well as contributions from shadowing effects, due to the mass transport limitations between capillary tip and sample surface at close separations, were evaluated and analyzed. The data allow to define measurement and reaction conditions where effects induced by the capillary tip can be neglected (''minimal invasive measurements'') and provide a basis for the evaluation of catalyst activities on microstructured model systems, e.g., for catalyst screening or studies of transport effects.
NASA Astrophysics Data System (ADS)
Nedea, S. V.; Frijns, A. J. H.; van Steenhoven, A. A.; Markvoort, A. J.; Hilbers, P. A. J.
2005-05-01
We present a hybrid method to study the properties of hard-sphere gas molecules confined between two hard walls of a microchannel. The coupling between Molecular Dynamics(MD) and Monte Carlo(MC) simulations is introduced in order to combine the advantages of the MD and MC simulations, by performing MD near the boundaries for the accuracy of the interactions with the wall, and MC in the bulk because of the low computational cost. The effect of different gas densities, starting from a rarefied gas (reduced density η=πna3/6=0.001, where n=number density, a=molecular diameter) to a dense hard-sphere gas (η=0.25), is investigated. We characterize the influence of different η's and size of molecules on the equilibrium properties of the gas in a microchannel. The effect of the particle size on the simulation results, which is very small in case of a dilute gas, is increasing with η. Comparisons between MD, MC and hybrid MD-MC simulation results are done, and comparisons between MD, MC, and hybrid MD-MC computational costs are outlined.
NASA Astrophysics Data System (ADS)
Stiff-Roberts, Adrienne; Atewologun, Ayomide
A semi-empirical method for investigating the performance of OPVs in resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE) films is explored. Emulsion-based RIR-MAPLE offers a unique experimental backdrop for investigating trends through simulation and gaining a better understanding of how different thin film characteristics impact OPV device performance. A novel multi-scale formulation of the Dynamic Monte Carlo (DMC) model is developed based on observable morphology features. Specifically, using confocal microscopy, we observe the presence of micro-scale regimes of pure materials and nano-scale regions of the composite blend. This enables us to assign weighted percentages to DMC implementations on two different scales: the microscale and nanoscale regions. In addition to this, we use input simulation parameters acquired by characterization of as-deposited films. The semi-empirical multi-scale model presented serves as a unique simulation opportunity for exploring different properties of RIR-MAPLE deposited OPVs, their effects on OPV performance and potential design routes for improving device efficiencies. This work was supported, in part, by the Office of Naval Research under Grant N00014-10-1-0481 and the NSF Triangle MRSEC on Soft Matter.
Duan, Xiaozheng; Zhang, Ran; Li, Yunqi; Yang, Yongbiao; Shi, Tongfei; An, Lijia; Huang, Qingrong
2014-09-01
We employ Monte Carlo simulations to investigate the interaction between an adsorbing linear flexible cationic polyelectrolyte and a ternary mixed fluid membrane containing neutral (phosphatidylcholine, PC), monovalent (phosphatidylserine, PS), and multivalent (phosphatidylinositol, PIP2) anionic lipids. We systematically explore the influences of polyelectrolyte chain length, polyelectrolyte charge density, polyelectrolyte total charge amount, and salt solution ionic strength on the static and dynamic properties of different anionic lipid species. Our results show that the multivalent PIP2 lipids dominate the polyelectrolyte-membrane interaction and competitively inhibit polyelectrolyte-PS binding. When the total charge amount of the polyelectrolyte is less than that of the local oppositely charged PIP2 lipids, the polyelectrolyte can drag the bound multivalent lipids to diffuse on the membrane, but cannot interact with the PS lipids. Under this condition, the diffusion behaviors of the polyelectrolyte closely follow the prediction of the Rouse model, and the polyelectrolyte chain properties determine the adsorption amount, concentration gradients, and hierarchical mobility of the bound PIP2 lipids. However, when the total charge amount of the polyelectrolyte is larger than that of the local PIP2 lipids, the polyelectrolyte further binds the PS lipids around the polyelectrolyte-PIP2 complex to achieve local electrical neutrality. In this condition, parts of the polyelectrolyte desorb from the membrane and show faster mobility, and the bound PS presents much faster mobility than the segregated PIP2. This work provides an explanation for heterogeneity formation in different anionic lipids induced by polyelectrolyte adsorption.
Subtle Monte Carlo Updates in Dense Molecular Systems.
Bottaro, Sandro; Boomsma, Wouter; E Johansson, Kristoffer; Andreetta, Christian; Hamelryck, Thomas; Ferkinghoff-Borg, Jesper
2012-02-14
Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions.
On the time scale associated with Monte Carlo simulations.
Bal, Kristof M; Neyts, Erik C
2014-11-28
Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
On the time scale associated with Monte Carlo simulations
Bal, Kristof M. Neyts, Erik C.
2014-11-28
Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
Properties of reactive oxygen species by quantum Monte Carlo
Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo
2014-07-07
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} − N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.
Properties of reactive oxygen species by quantum Monte Carlo.
Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo
2014-07-07
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.
Properties of reactive oxygen species by quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo
2014-07-01
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3 - N4, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.
NASA Astrophysics Data System (ADS)
Wang, Huiyuan; Mo, H. J.; Yang, Xiaohu; Jing, Y. P.; Lin, W. P.
2014-10-01
Simulating the evolution of the local universe is important for studying galaxies and the intergalactic medium in a way free of cosmic variance. Here we present a method to reconstruct the initial linear density field from an input nonlinear density field, employing the Hamiltonian Markov Chain Monte Carlo (HMC) algorithm combined with Particle-mesh (PM) dynamics. The HMC+PM method is applied to cosmological simulations, and the reconstructed linear density fields are then evolved to the present day with N-body simulations. These constrained simulations accurately reproduce both the amplitudes and phases of the input simulations at various z. Using a PM model with a grid cell size of 0.75 h -1 Mpc and 40 time steps in the HMC can recover more than half of the phase information down to a scale k ~ 0.85 h Mpc-1 at high z and to k ~ 3.4 h Mpc-1 at z = 0, which represents a significant improvement over similar reconstruction models in the literature, and indicates that our model can reconstruct the formation histories of cosmic structures over a large dynamical range. Adopting PM models with higher spatial and temporal resolutions yields even better reconstructions, suggesting that our method is limited more by the availability of computer resource than by principle. Dynamic models of structure evolution adopted in many earlier investigations can induce non-Gaussianity in the reconstructed linear density field, which in turn can cause large systematic deviations in the predicted halo mass function. Such deviations are greatly reduced or absent in our reconstruction.
Wang, Huiyuan; Mo, H. J.; Yang, Xiaohu; Lin, W. P.; Jing, Y. P.
2014-10-10
Simulating the evolution of the local universe is important for studying galaxies and the intergalactic medium in a way free of cosmic variance. Here we present a method to reconstruct the initial linear density field from an input nonlinear density field, employing the Hamiltonian Markov Chain Monte Carlo (HMC) algorithm combined with Particle-mesh (PM) dynamics. The HMC+PM method is applied to cosmological simulations, and the reconstructed linear density fields are then evolved to the present day with N-body simulations. These constrained simulations accurately reproduce both the amplitudes and phases of the input simulations at various z. Using a PM model with a grid cell size of 0.75 h {sup –1} Mpc and 40 time steps in the HMC can recover more than half of the phase information down to a scale k ∼ 0.85 h Mpc{sup –1} at high z and to k ∼ 3.4 h Mpc{sup –1} at z = 0, which represents a significant improvement over similar reconstruction models in the literature, and indicates that our model can reconstruct the formation histories of cosmic structures over a large dynamical range. Adopting PM models with higher spatial and temporal resolutions yields even better reconstructions, suggesting that our method is limited more by the availability of computer resource than by principle. Dynamic models of structure evolution adopted in many earlier investigations can induce non-Gaussianity in the reconstructed linear density field, which in turn can cause large systematic deviations in the predicted halo mass function. Such deviations are greatly reduced or absent in our reconstruction.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Recommender engine for continuous-time quantum Monte Carlo methods.
Huang, Li; Yang, Yi-Feng; Wang, Lei
2017-03-01
Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.
A radiating shock evaluated using Implicit Monte Carlo Diffusion
Cleveland, M.; Gentile, N.
2013-07-01
Implicit Monte Carlo [1] (IMC) has been shown to be very expensive when used to evaluate a radiation field in opaque media. Implicit Monte Carlo Diffusion (IMD) [2], which evaluates a spatial discretized diffusion equation using a Monte Carlo algorithm, can be used to reduce the cost of evaluating the radiation field in opaque media [2]. This work couples IMD to the hydrodynamics equations to evaluate opaque diffusive radiating shocks. The Lowrie semi-analytic diffusive radiating shock benchmark[a] is used to verify our implementation of the coupled system of equations. (authors)
Recommender engine for continuous-time quantum Monte Carlo methods
NASA Astrophysics Data System (ADS)
Huang, Li; Yang, Yi-feng; Wang, Lei
2017-03-01
Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.
A multigenerational Monte Carlo model of a comet coma
NASA Technical Reports Server (NTRS)
Ferro, Anthony J.
1990-01-01
A steady state multigenerational Monte Carlo model was developed to describe the distribution of a neutral coma species which was produced after several photodissociation steps. This distribution can be compared with either line profiles derived from long slit spectroscopic observations or narrow band imaging, and be used to determine the elemental abundances present in the comet coma. A Monte Carlo model was chosen due to limitations in standard forms of more analytic models, such as those of Haser and Festou. In contrast to the analytical models, the Monte Carlo method can be modified to include new physical parameters.
Monte Carlo Simulation of Surface Reactions
NASA Astrophysics Data System (ADS)
Brosilow, Benjamin J.
A Monte-Carlo study of the catalytic reaction of CO and O_2 over transition metal surfaces is presented, using generalizations of a model proposed by Ziff, Gulari and Barshad (ZGB). A new "constant -coverage" algorithm is described and applied to the model in order to elucidate the behavior near the model's first -order transition, and to draw an analogy between this transition and first-order phase transitions in equilibrium systems. The behavior of the model is then compared to the behavior of CO oxidation systems over Pt single-crystal catalysts. This comparison leads to the introduction of a new variation of the model in which one of the reacting species requires a large ensemble of vacant surface sites in order to adsorb. Further, it is shown that precursor adsorption and an effective Eley-Rideal mechanism must also be included in the model in order to obtain detailed agreement with experiment. Finally, variations of the model on finite and two component lattices are studied as models for low temperature CO oxidation over Noble Metal/Reducible Oxide and alloy catalysts.
Commensurabilities between ETNOs: a Monte Carlo survey
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, C.; de la Fuente Marcos, R.
2016-07-01
Many asteroids in the main and trans-Neptunian belts are trapped in mean motion resonances with Jupiter and Neptune, respectively. As a side effect, they experience accidental commensurabilities among themselves. These commensurabilities define characteristic patterns that can be used to trace the source of the observed resonant behaviour. Here, we explore systematically the existence of commensurabilities between the known ETNOs using their heliocentric and barycentric semimajor axes, their uncertainties, and Monte Carlo techniques. We find that the commensurability patterns present in the known ETNO population resemble those found in the main and trans-Neptunian belts. Although based on small number statistics, such patterns can only be properly explained if most, if not all, of the known ETNOs are subjected to the resonant gravitational perturbations of yet undetected trans-Plutonian planets. We show explicitly that some of the statistically significant commensurabilities are compatible with the Planet Nine hypothesis; in particular, a number of objects may be trapped in the 5:3 and 3:1 mean motion resonances with a putative Planet Nine with semimajor axis ˜700 au.
Finding Planet Nine: a Monte Carlo approach
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, C.; de la Fuente Marcos, R.
2016-06-01
Planet Nine is a hypothetical planet located well beyond Pluto that has been proposed in an attempt to explain the observed clustering in physical space of the perihelia of six extreme trans-Neptunian objects or ETNOs. The predicted approximate values of its orbital elements include a semimajor axis of 700 au, an eccentricity of 0.6, an inclination of 30°, and an argument of perihelion of 150°. Searching for this putative planet is already under way. Here, we use a Monte Carlo approach to create a synthetic population of Planet Nine orbits and study its visibility statistically in terms of various parameters and focusing on the aphelion configuration. Our analysis shows that, if Planet Nine exists and is at aphelion, it might be found projected against one out of the four specific areas in the sky. Each area is linked to a particular value of the longitude of the ascending node and two of them are compatible with an apsidal anti-alignment scenario. In addition and after studying the current statistics of ETNOs, a cautionary note on the robustness of the perihelia clustering is presented.
Monte Carlo simulations of Protein Adsorption
NASA Astrophysics Data System (ADS)
Sharma, Sumit; Kumar, Sanat K.; Belfort, Georges
2008-03-01
Amyloidogenic diseases, such as, Alzheimer's are caused by adsorption and aggregation of partially unfolded proteins. Adsorption of proteins is a concern in design of biomedical devices, such as dialysis membranes. Protein adsorption is often accompanied by conformational rearrangements in protein molecules. Such conformational rearrangements are thought to affect many properties of adsorbed protein molecules such as their adhesion strength to the surface, biological activity, and aggregation tendency. It has been experimentally shown that many naturally occurring proteins, upon adsorption to hydrophobic surfaces, undergo a helix to sheet or random coil secondary structural rearrangement. However, to better understand the equilibrium structural complexities of this phenomenon, we have performed Monte Carlo (MC) simulations of adsorption of a four helix bundle, modeled as a lattice protein, and studied the adsorption behavior and equilibrium protein conformations at different temperatures and degrees of surface hydrophobicity. To study the free energy and entropic effects on adsorption, Canonical ensemble MC simulations have been combined with Weighted Histogram Analysis Method(WHAM). Conformational transitions of proteins on surfaces will be discussed as a function of surface hydrophobicity and compared to analogous bulk transitions.
Multideterminant Wave Functions in Quantum Monte Carlo.
Morales, Miguel A; McMinis, Jeremy; Clark, Bryan K; Kim, Jeongnim; Scuseria, Gustavo E
2012-07-10
Quantum Monte Carlo (QMC) methods have received considerable attention over past decades due to their great promise for providing a direct solution to the many-body Schrodinger equation in electronic systems. Thanks to their low scaling with the number of particles, QMC methods present a compelling competitive alternative for the accurate study of large molecular systems and solid state calculations. In spite of such promise, the method has not permeated the quantum chemistry community broadly, mainly because of the fixed-node error, which can be large and whose control is difficult. In this Perspective, we present a systematic application of large scale multideterminant expansions in QMC and report on its impressive performance with first row dimers and the 55 molecules of the G1 test set. We demonstrate the potential of this strategy for systematically reducing the fixed-node error in the wave function and for achieving chemical accuracy in energy predictions. When compared to traditional quantum chemistry methods like MP2, CCSD(T), and various DFT approximations, the QMC results show a marked improvement over all of them. In fact, only the explicitly correlated CCSD(T) method with a large basis set produces more accurate results. Further developments in trial wave functions and algorithmic improvements appear promising for rendering QMC as the benchmark standard in large electronic systems.
A continuation multilevel Monte Carlo algorithm
Collier, Nathan; Haji-Ali, Abdul-Lateef; Nobile, Fabio; von Schwerin, Erik; Tempone, Raúl
2014-09-05
Here, we propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error tolerance is satisfied. CMLMC assumes discretization hierarchies that are defined a priori for each level and are geometrically refined across levels. Moreover, the actual choice of computational work across levels is based on parametric models for the average cost per sample and the corresponding variance and weak error. These parameters are calibrated using Bayesian estimation, taking particular notice of the deepest levels of the discretization hierarchy, where only few realizations are available to produce the estimates. The resulting CMLMC estimator exhibits a non-trivial splitting between bias and statistical contributions. We also show the asymptotic normality of the statistical error in the MLMC estimator and justify in this way our error estimate that allows prescribing both required accuracy and confidence in the final result. Our numerical results substantiate the above results and illustrate the corresponding computational savings in examples that are described in terms of differential equations either driven by random measures or with random coefficients.
Monte Carlo simulation of chromatin stretching
NASA Astrophysics Data System (ADS)
Aumann, Frank; Lankas, Filip; Caudron, Maïwen; Langowski, Jörg
2006-04-01
We present Monte Carlo (MC) simulations of the stretching of a single 30nm chromatin fiber. The model approximates the DNA by a flexible polymer chain with Debye-Hückel electrostatics and uses a two-angle zigzag model for the geometry of the linker DNA connecting the nucleosomes. The latter are represented by flat disks interacting via an attractive Gay-Berne potential. Our results show that the stiffness of the chromatin fiber strongly depends on the linker DNA length. Furthermore, changing the twisting angle between nucleosomes from 90° to 130° increases the stiffness significantly. An increase in the opening angle from 22° to 34° leads to softer fibers for small linker lengths. We observe that fibers containing a linker histone at each nucleosome are stiffer compared to those without the linker histone. The simulated persistence lengths and elastic moduli agree with experimental data. Finally, we show that the chromatin fiber does not behave as an isotropic elastic rod, but its rigidity depends on the direction of deformation: Chromatin is much more resistant to stretching than to bending.
Monte Carlo Production Management at CMS
NASA Astrophysics Data System (ADS)
Boudoul, G.; Franzoni, G.; Norkus, A.; Pol, A.; Srimanobhas, P.; Vlimant, J.-R.
2015-12-01
The analysis of the LHC data at the Compact Muon Solenoid (CMS) experiment requires the production of a large number of simulated events. During the RunI of LHC (20102012), CMS has produced over 12 Billion simulated events, organized in approximately sixty different campaigns each emulating specific detector conditions and LHC running conditions (pile up). In order to aggregate the information needed for the configuration and prioritization of the events production, assure the book-keeping of all the processing requests placed by the physics analysis groups, and to interface with the CMS production infrastructure, the web- based service Monte Carlo Management (McM) has been developed and put in production in 2013. McM is based on recent server infrastructure technology (CherryPy + AngularJS) and relies on a CouchDB database back-end. This contribution covers the one and half year of operational experience managing samples of simulated events for CMS, the evolution of its functionalities and the extension of its capability to monitor the status and advancement of the events production.
Quantum Monte Carlo Study of Surface Energy
NASA Astrophysics Data System (ADS)
Hsing, Cheng-Rong; Wei, Ching-Ming
2012-02-01
The accuracy of Density Functional Theory (DFT) is based on the exchange-correlation approximation used and needs to be checked by highly accurate quantum many-body approaches. We have performed calculations of the surface energies using the state-of-the-art diffusion quantum Monte Carlo (QMC) method to examine the accuracy of LDA and GGA (PBE) functionals in the study of surface energy. The systems studied include NaCl(100), MgO(100), CaO(100), TiO2(110), Si(100)-(2x2), C(100)-(2x2), and Ge(100)-(2x2) surfaces. Our results indicate that (i) the surface energy by DMC is always larger than the surface energy by LDA; and (ii) the surface energy by LDA is always larger than the surface energy by GGA. For the surface energies of NaCl(100) and MgO(100), the DMC results reproduce the experimental measured values accurately. To conclude, when compared the surface energies obtained by DFT and DMC, the results predicted by DFT using either LDA or GGA functional are underestimated.
Quantum Monte Carlo studies of surface adsorptions
NASA Astrophysics Data System (ADS)
Wei, Ching-Ming; Hsing, Cheng-Rong
2012-02-01
Surface adsorption is the first step to the study of surface catalytic reaction. The most common used tool is the Density Functional Theory (DFT) based on exchange-correlation approximations and the accuracy usually has not been checked carefully by highly accurate quantum many-body approaches. We have performed calculations of the surface adsorptions using the state-of-the-art diffusion quantum Monte Carlo (QMC) method to examine the accuracy of LDA and GGA (PBE) functionals in the study of surface adsorptions. The systems examined include the H2O and OH adsorptions on various types of surfaces such as NaCl(100), MgO(100), TiO2(110), graphene, Si(100)-(2x2) and Al(100). By comparing GGA (PBE) results with DMC, our results indicate that (i) for the H2O adsorption, PBE predicts the correct adsorption energies; (ii) for the OH adsorption, PBE has predicted a large over-binding effect except on graphene and Si(100) surfaces. This fact indicates that one needs to be cautious when using DFT to study the surface adsorptions of OH free radical.
Applying polynomial filtering to mass preconditioned Hybrid Monte Carlo
NASA Astrophysics Data System (ADS)
Haar, Taylor; Kamleh, Waseem; Zanotti, James; Nakamura, Yoshifumi
2017-06-01
The use of mass preconditioning or Hasenbusch filtering in modern Hybrid Monte Carlo simulations is common. At light quark masses, multiple filters (three or more) are typically used to reduce the cost of generating dynamical gauge fields; however, the task of tuning a large number of Hasenbusch mass terms is non-trivial. The use of short polynomial approximations to the inverse has been shown to provide an effective UV filter for HMC simulations. In this work we investigate the application of polynomial filtering to the mass preconditioned Hybrid Monte Carlo algorithm as a means of introducing many time scales into the molecular dynamics integration with a simplified parameter tuning process. A generalized multi-scale integration scheme that permits arbitrary step-sizes and can be applied to Omelyan-style integrators is also introduced. We find that polynomial-filtered mass-preconditioning (PF-MP) performs as well as or better than standard mass preconditioning, with significantly less fine tuning required.
Silver, R.N.; Gubernatis, J.E.; Sivia, D.S. ); Jarrell, M. . Dept. of Physics)
1990-01-01
In this article we describe the results of a new method for calculating the dynamical properties of the Anderson model. QMC generates data about the Matsubara Green's functions in imaginary time. To obtain dynamical properties, one must analytically continue these data to real time. This is an extremely ill-posed inverse problem similar to the inversion of a Laplace transform from incomplete and noisy data. Our method is a general one, applicable to the calculation of dynamical properties from a wide variety of quantum simulations. We use Bayesian methods of statistical inference to determine the dynamical properties based on both the QMC data and any prior information we may have such as sum rules, symmetry, high frequency limits, etc. This provides a natural means of combining perturbation theory and numerical simulations in order to understand dynamical many-body problems. Specifically we use the well-established maximum entropy (ME) method for image reconstruction. We obtain the spectral density and transport coefficients over the entire range of model parameters accessible by QMC, with data having much larger statistical error than required by other proposed analytic continuation methods.
NASA Astrophysics Data System (ADS)
Yüksel, Yusuf
2015-03-01
We examine the dynamic phase transition properties of ferromagnetic uniaxial nanowires with tunable radius r in the presence of both oscillating and biased magnetic fields. Variation of the transition temperature as a function of amplitude h0 of the oscillating field has been analyzed in the absence of magnetic bias hb and at constant oscillation period P . We find that the transition temperature as a function of h0 exhibits an exponential decay behavior. We also investigate the magnetization dynamics in terms of magnetic hysteresis loops as functions of the parameters hb,h0 , and P . Our calculations are qualitatively in agreement with the recent experimental results obtained for uniaxial cobalt films in which it was concluded that the bias field hb is the conjugate field of the dynamic order parameter.
Quantum Monte Carlo: Faster, More Reliable, And More Accurate
NASA Astrophysics Data System (ADS)
Anderson, Amos Gerald
2010-06-01
The Schrodinger Equation has been available for about 83 years, but today, we still strain to apply it accurately to molecules of interest. The difficulty is not theoretical in nature, but practical, since we're held back by lack of sufficient computing power. Consequently, effort is applied to find acceptable approximations to facilitate real time solutions. In the meantime, computer technology has begun rapidly advancing and changing the way we think about efficient algorithms. For those who can reorganize their formulas to take advantage of these changes and thereby lift some approximations, incredible new opportunities await. Over the last decade, we've seen the emergence of a new kind of computer processor, the graphics card. Designed to accelerate computer games by optimizing quantity instead of quality in processor, they have become of sufficient quality to be useful to some scientists. In this thesis, we explore the first known use of a graphics card to computational chemistry by rewriting our Quantum Monte Carlo software into the requisite "data parallel" formalism. We find that notwithstanding precision considerations, we are able to speed up our software by about a factor of 6. The success of a Quantum Monte Carlo calculation depends on more than just processing power. It also requires the scientist to carefully design the trial wavefunction used to guide simulated electrons. We have studied the use of Generalized Valence Bond wavefunctions to simply, and yet effectively, captured the essential static correlation in atoms and molecules. Furthermore, we have developed significantly improved two particle correlation functions, designed with both flexibility and simplicity considerations, representing an effective and reliable way to add the necessary dynamic correlation. Lastly, we present our method for stabilizing the statistical nature of the calculation, by manipulating configuration weights, thus facilitating efficient and robust calculations. Our
Monte Carlo variance reduction approaches for non-Boltzmann tallies
Booth, T.E.
1992-12-01
Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed.
Combinatorial geometry domain decomposition strategies for Monte Carlo simulations
Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.
2013-07-01
Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)
Bayesian phylogeny analysis via stochastic approximation Monte Carlo.
Cheon, Sooyoung; Liang, Faming
2009-11-01
Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time.
OBJECT KINETIC MONTE CARLO SIMULATIONS OF CASCADE ANNEALING IN TUNGSTEN
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.
2014-03-31
The objective of this work is to study the annealing of primary cascade damage created by primary knock-on atoms (PKAs) of various energies, at various temperatures in bulk tungsten using the object kinetic Monte Carlo (OKMC) method.
Alternative implementations of Monte Carlo EM algorithms for likelihood inferences
García-Cortés, Louis Alberto; Sorensen, Daniel
2001-01-01
Two methods of computing Monte Carlo estimators of variance components using restricted maximum likelihood via the expectation-maximisation algorithm are reviewed. A third approach is suggested and the performance of the methods is compared using simulated data. PMID:11559486
Monte Carlo simulations: Hidden errors from ``good'' random number generators
NASA Astrophysics Data System (ADS)
Ferrenberg, Alan M.; Landau, D. P.; Wong, Y. Joanna
1992-12-01
The Wolff algorithm is now accepted as the best cluster-flipping Monte Carlo algorithm for beating ``critical slowing down.'' We show how this method can yield incorrect answers due to subtle correlations in ``high quality'' random number generators.
Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
NASA Astrophysics Data System (ADS)
Endres, Michael G.; Brower, Richard C.; Detmold, William; Orginos, Kostas; Pochinsky, Andrew V.
2015-12-01
We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.
Green's function Monte Carlo calculations of /sup 4/He
Carlson, J.A.
1988-01-01
Green's Function Monte Carlo methods have been developed to study the ground state properties of light nuclei. These methods are shown to reproduce results of Faddeev calculations for A = 3, and are then used to calculate ground state energies, one- and two-body distribution functions, and the D-state probability for the alpha particle. Results are compared to variational Monte Carlo calculations for several nuclear interaction models. 31 refs.
Successful combination of the stochastic linearization and Monte Carlo methods
NASA Technical Reports Server (NTRS)
Elishakoff, I.; Colombi, P.
1993-01-01
A combination of a stochastic linearization and Monte Carlo techniques is presented for the first time in literature. A system with separable nonlinear damping and nonlinear restoring force is considered. The proposed combination of the energy-wise linearization with the Monte Carlo method yields an error under 5 percent, which corresponds to the error reduction associated with the conventional stochastic linearization by a factor of 4.6.
de Finetti Priors using Markov chain Monte Carlo computations.
Bacallado, Sergio; Diaconis, Persi; Holmes, Susan
2015-07-01
Recent advances in Monte Carlo methods allow us to revisit work by de Finetti who suggested the use of approximate exchangeability in the analyses of contingency tables. This paper gives examples of computational implementations using Metropolis Hastings, Langevin and Hamiltonian Monte Carlo to compute posterior distributions for test statistics relevant for testing independence, reversible or three way models for discrete exponential families using polynomial priors and Gröbner bases.
de Finetti Priors using Markov chain Monte Carlo computations
Bacallado, Sergio; Diaconis, Persi; Holmes, Susan
2015-01-01
Recent advances in Monte Carlo methods allow us to revisit work by de Finetti who suggested the use of approximate exchangeability in the analyses of contingency tables. This paper gives examples of computational implementations using Metropolis Hastings, Langevin and Hamiltonian Monte Carlo to compute posterior distributions for test statistics relevant for testing independence, reversible or three way models for discrete exponential families using polynomial priors and Gröbner bases. PMID:26412947
CosmoPMC: Cosmology sampling with Population Monte Carlo
NASA Astrophysics Data System (ADS)
Kilbinger, Martin; Benabed, Karim; Cappé, Olivier; Coupon, Jean; Cardoso, Jean-François; Fort, Gersende; McCracken, Henry Joy; Prunet, Simon; Robert, Christian P.; Wraith, Darren
2012-12-01
CosmoPMC is a Monte-Carlo sampling method to explore the likelihood of various cosmological probes. The sampling engine is implemented with the package pmclib. It is called Population MonteCarlo (PMC), which is a novel technique to sample from the posterior. PMC is an adaptive importance sampling method which iteratively improves the proposal to approximate the posterior. This code has been introduced, tested and applied to various cosmology data sets.
Development of Monte Carlo Capability for Orion Parachute Simulations
NASA Technical Reports Server (NTRS)
Moore, James W.
2011-01-01
Parachute test programs employ Monte Carlo simulation techniques to plan testing and make critical decisions related to parachute loads, rate-of-descent, or other parameters. This paper describes the development and use of a MATLAB-based Monte Carlo tool for three parachute drop test simulations currently used by NASA. The Decelerator System Simulation (DSS) is a legacy 6 Degree-of-Freedom (DOF) simulation used to predict parachute loads and descent trajectories. The Decelerator System Simulation Application (DSSA) is a 6-DOF simulation that is well suited for modeling aircraft extraction and descent of pallet-like test vehicles. The Drop Test Vehicle Simulation (DTVSim) is a 2-DOF trajectory simulation that is convenient for quick turn-around analysis tasks. These three tools have significantly different software architectures and do not share common input files or output data structures. Separate Monte Carlo tools were initially developed for each simulation. A recently-developed simulation output structure enables the use of the more sophisticated DSSA Monte Carlo tool with any of the core-simulations. The task of configuring the inputs for the nominal simulation is left to the existing tools. Once the nominal simulation is configured, the Monte Carlo tool perturbs the input set according to dispersion rules created by the analyst. These rules define the statistical distribution and parameters to be applied to each simulation input. Individual dispersed parameters are combined to create a dispersed set of simulation inputs. The Monte Carlo tool repeatedly executes the core-simulation with the dispersed inputs and stores the results for analysis. The analyst may define conditions on one or more output parameters at which to collect data slices. The tool provides a versatile interface for reviewing output of large Monte Carlo data sets while preserving the capability for detailed examination of individual dispersed trajectories. The Monte Carlo tool described in
Monte Carlo next-event estimates from thermal collisions
Hendricks, J.S.; Prael, R.E.
1990-01-01
A new approximate method has been developed by Richard E. Prael to allow S({alpha},{beta}) thermal collision contributions to next-event estimators in Monte Carlo calculations. The new technique is generally applicable to next-event estimator contributions from any discrete probability distribution. The method has been incorporated into Version 4 of the production Monte Carlo neutron and photon radiation transport code MCNP. 9 refs.
Confidence and efficiency scaling in variational quantum Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Delyon, F.; Bernu, B.; Holzmann, Markus
2017-02-01
Based on the central limit theorem, we discuss the problem of evaluation of the statistical error of Monte Carlo calculations using a time-discretized diffusion process. We present a robust and practical method to determine the effective variance of general observables and show how to verify the equilibrium hypothesis by the Kolmogorov-Smirnov test. We then derive scaling laws of the efficiency illustrated by variational Monte Carlo calculations on the two-dimensional electron gas.
Study of the Transition Flow Regime using Monte Carlo Methods
NASA Technical Reports Server (NTRS)
Hassan, H. A.
1999-01-01
This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.
Shift: A Massively Parallel Monte Carlo Radiation Transport Package
Pandya, Tara M; Johnson, Seth R; Davidson, Gregory G; Evans, Thomas M; Hamilton, Steven P
2015-01-01
This paper discusses the massively-parallel Monte Carlo radiation transport package, Shift, developed at Oak Ridge National Laboratory. It reviews the capabilities, implementation, and parallel performance of this code package. Scaling results demonstrate very good strong and weak scaling behavior of the implemented algorithms. Benchmark results from various reactor problems show that Shift results compare well to other contemporary Monte Carlo codes and experimental results.
Event-chain Monte Carlo for classical continuous spin models
NASA Astrophysics Data System (ADS)
Michel, Manon; Mayer, Johannes; Krauth, Werner
2015-10-01
We apply the event-chain Monte Carlo algorithm to classical continuum spin models on a lattice and clarify the condition for its validity. In the two-dimensional XY model, it outperforms the local Monte Carlo algorithm by two orders of magnitude, although it remains slower than the Wolff cluster algorithm. In the three-dimensional XY spin glass model at low temperature, the event-chain algorithm is far superior to the other algorithms.
Monte Carlo methods and applications in nuclear physics
Carlson, J.
1990-01-01
Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.
The dynamical activation-relaxation technique (DART): an on-the-fly kinetic Monte-Carlo algorithm
NASA Astrophysics Data System (ADS)
El-Mellouhi, Fadwa; Cote, Michel; Lewis, Laurent J.; Mousseau, Normand
2008-03-01
We present DART, the dynamical activation-relaxation technique, that combines the activation-relaxation technique (ART nouveau) with a non-lattice KMC method that allows the on-the-fly identification of barriers and the full treatment of lattice deformations. Most KMC schemes rely on the use of a fixed list of events and barriers, which are drawn with the proper weight during the simulation. While this works well for a number of problems (such as metal-on-metal growth), it cannot be used for processes where the events may change with time. DART overcomes this limitation. ART nouveau has been used extensively for the study of activated mechanisms in different materials within both an empirical and an ab-initio description of the systems. In the DART implementation, KMC moves are based on a catalog of events constructed on-the-fly using ART. After each KMC move, this catalog is updated so as to take into account new environments that may appear. A topological description of the structure of the system at each moment allows the method to identify rapidly these new environments and to move forward efficiently. In this talk, we will describe the method and present the case of interstitial diffusion in Si. Our results are compared with previous molecular-dynamics and on-lattice KMC simulations.
DPEMC: A Monte Carlo for double diffraction
NASA Astrophysics Data System (ADS)
Boonekamp, M.; Kúcs, T.
2005-05-01
We extend the POMWIG Monte Carlo generator developed by B. Cox and J. Forshaw, to include new models of central production through inclusive and exclusive double Pomeron exchange in proton-proton collisions. Double photon exchange processes are described as well, both in proton-proton and heavy-ion collisions. In all contexts, various models have been implemented, allowing for comparisons and uncertainty evaluation and enabling detailed experimental simulations. Program summaryTitle of the program:DPEMC, version 2.4 Catalogue identifier: ADVF Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVF Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: any computer with the FORTRAN 77 compiler under the UNIX or Linux operating systems Operating system: UNIX; Linux Programming language used: FORTRAN 77 High speed storage required:<25 MB No. of lines in distributed program, including test data, etc.: 71 399 No. of bytes in distributed program, including test data, etc.: 639 950 Distribution format: tar.gz Nature of the physical problem: Proton diffraction at hadron colliders can manifest itself in many forms, and a variety of models exist that attempt to describe it [A. Bialas, P.V. Landshoff, Phys. Lett. B 256 (1991) 540; A. Bialas, W. Szeremeta, Phys. Lett. B 296 (1992) 191; A. Bialas, R.A. Janik, Z. Phys. C 62 (1994) 487; M. Boonekamp, R. Peschanski, C. Royon, Phys. Rev. Lett. 87 (2001) 251806; Nucl. Phys. B 669 (2003) 277; R. Enberg, G. Ingelman, A. Kissavos, N. Timneanu, Phys. Rev. Lett. 89 (2002) 081801; R. Enberg, G. Ingelman, L. Motyka, Phys. Lett. B 524 (2002) 273; R. Enberg, G. Ingelman, N. Timneanu, Phys. Rev. D 67 (2003) 011301; B. Cox, J. Forshaw, Comput. Phys. Comm. 144 (2002) 104; B. Cox, J. Forshaw, B. Heinemann, Phys. Lett. B 540 (2002) 26; V. Khoze, A. Martin, M. Ryskin, Phys. Lett. B 401 (1997) 330; Eur. Phys. J. C 14 (2000) 525; Eur. Phys. J. C 19 (2001) 477; Erratum, Eur. Phys. J. C 20 (2001) 599; Eur
Monte Carlo study of microdosimetric diamond detectors.
Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona
2015-09-21
Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy.
Monte Carlo simulation of large electron fields
Faddegon, Bruce A; Perl, Joseph; Asai, Makoto
2010-01-01
Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different “physics lists,” were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the 6 electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the buildup region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy. PMID:18296775
Monte Carlo study of microdosimetric diamond detectors
NASA Astrophysics Data System (ADS)
Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona
2015-09-01
Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy.
Monte Carlo implementation of polarized hadronization
NASA Astrophysics Data System (ADS)
Matevosyan, Hrayr H.; Kotzinian, Aram; Thomas, Anthony W.
2017-01-01
We study the polarized quark hadronization in a Monte Carlo (MC) framework based on the recent extension of the quark-jet framework, where a self-consistent treatment of the quark polarization transfer in a sequential hadronization picture has been presented. Here, we first adopt this approach for MC simulations of the hadronization process with a finite number of produced hadrons, expressing the relevant probabilities in terms of the eight leading twist quark-to-quark transverse-momentum-dependent (TMD) splitting functions (SFs) for elementary q →q'+h transition. We present explicit expressions for the unpolarized and Collins fragmentation functions (FFs) of unpolarized hadrons emitted at rank 2. Further, we demonstrate that all the current spectator-type model calculations of the leading twist quark-to-quark TMD SFs violate the positivity constraints, and we propose a quark model based ansatz for these input functions that circumvents the problem. We validate our MC framework by explicitly proving the absence of unphysical azimuthal modulations of the computed polarized FFs, and by precisely reproducing the earlier derived explicit results for rank-2 pions. Finally, we present the full results for pion unpolarized and Collins FFs, as well as the corresponding analyzing powers from high statistics MC simulations with a large number of produced hadrons for two different model input elementary SFs. The results for both sets of input functions exhibit the same general features of an opposite signed Collins function for favored and unfavored channels at large z and, at the same time, demonstrate the flexibility of the quark-jet framework by producing significantly different dependences of the results at mid to low z for the two model inputs.
Quantum Monte Carlo with directed loops.
Syljuåsen, Olav F; Sandvik, Anders W
2002-10-01
We introduce the concept of directed loops in stochastic series expansion and path-integral quantum Monte Carlo methods. Using the detailed balance rules for directed loops, we show that it is possible to smoothly connect generally applicable simulation schemes (in which it is necessary to include backtracking processes in the loop construction) to more restricted loop algorithms that can be constructed only for a limited range of Hamiltonians (where backtracking can be avoided). The "algorithmic discontinuities" between general and special points (or regions) in parameter space can hence be eliminated. As a specific example, we consider the anisotropic S=1/2 Heisenberg antiferromagnet in an external magnetic field. We show that directed-loop simulations are very efficient for the full range of magnetic fields (zero to the saturation point) and anisotropies. In particular, for weak fields and anisotropies, the autocorrelations are significantly reduced relative to those of previous approaches. The back-tracking probability vanishes continuously as the isotropic Heisenberg point is approached. For the XY model, we show that back tracking can be avoided for all fields extending up to the saturation field. The method is hence particularly efficient in this case. We use directed-loop simulations to study the magnetization process in the two-dimensional Heisenberg model at very low temperatures. For LxL lattices with L up to 64, we utilize the step structure in the magnetization curve to extract gaps between different spin sectors. Finite-size scaling of the gaps gives an accurate estimate of the transverse susceptibility in the thermodynamic limit: chi( perpendicular )=0.0659+/-0.0002.
Lattice Monte Carlo simulations of polymer melts
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping
2014-12-01
We use Monte Carlo simulations to study polymer melts consisting of fully flexible and moderately stiff chains in the bond fluctuation model at a volume fraction 0.5. In order to reduce the local density fluctuations, we test a pre-packing process for the preparation of the initial configurations of the polymer melts, before the excluded volume interaction is switched on completely. This process leads to a significantly faster decrease of the number of overlapping monomers on the lattice. This is useful for simulating very large systems, where the statistical properties of the model with a marginally incomplete elimination of excluded volume violations are the same as those of the model with strictly excluded volume. We find that the internal mean square end-to-end distance for moderately stiff chains in a melt can be very well described by a freely rotating chain model with a precise estimate of the bond-bond orientational correlation between two successive bond vectors in equilibrium. The plot of the probability distributions of the reduced end-to-end distance of chains of different stiffness also shows that the data collapse is excellent and described very well by the Gaussian distribution for ideal chains. However, while our results confirm the systematic deviations between Gaussian statistics for the chain structure factor Sc(q) [minimum in the Kratky-plot] found by Wittmer et al. [EPL 77, 56003 (2007)] for fully flexible chains in a melt, we show that for the available chain length these deviations are no longer visible, when the chain stiffness is included. The mean square bond length and the compressibility estimated from collective structure factors depend slightly on the stiffness of the chains.
kmos: A lattice kinetic Monte Carlo framework
NASA Astrophysics Data System (ADS)
Hoffmann, Max J.; Matera, Sebastian; Reuter, Karsten
2014-07-01
Kinetic Monte Carlo (kMC) simulations have emerged as a key tool for microkinetic modeling in heterogeneous catalysis and other materials applications. Systems, where site-specificity of all elementary reactions allows a mapping onto a lattice of discrete active sites, can be addressed within the particularly efficient lattice kMC approach. To this end we describe the versatile kmos software package, which offers a most user-friendly implementation, execution, and evaluation of lattice kMC models of arbitrary complexity in one- to three-dimensional lattice systems, involving multiple active sites in periodic or aperiodic arrangements, as well as site-resolved pairwise and higher-order lateral interactions. Conceptually, kmos achieves a maximum runtime performance which is essentially independent of lattice size by generating code for the efficiency-determining local update of available events that is optimized for a defined kMC model. For this model definition and the control of all runtime and evaluation aspects kmos offers a high-level application programming interface. Usage proceeds interactively, via scripts, or a graphical user interface, which visualizes the model geometry, the lattice occupations and rates of selected elementary reactions, while allowing on-the-fly changes of simulation parameters. We demonstrate the performance and scaling of kmos with the application to kMC models for surface catalytic processes, where for given operation conditions (temperature and partial pressures of all reactants) central simulation outcomes are catalytic activity and selectivities, surface composition, and mechanistic insight into the occurrence of individual elementary processes in the reaction network.
Monte-Carlo simulation of Callisto's exosphere
NASA Astrophysics Data System (ADS)
Vorburger, A.; Wurz, P.; Lammer, H.; Barabash, S.; Mousis, O.
2015-12-01
We model Callisto's exosphere based on its ice as well as non-ice surface via the use of a Monte-Carlo exosphere model. For the ice component we implement two putative compositions that have been computed from two possible extreme formation scenarios of the satellite. One composition represents the oxidizing state and is based on the assumption that the building blocks of Callisto were formed in the protosolar nebula and the other represents the reducing state of the gas, based on the assumption that the satellite accreted from solids condensed in the jovian sub-nebula. For the non-ice component we implemented the compositions of typical CI as well as L type chondrites. Both chondrite types have been suggested to represent Callisto's non-ice composition best. As release processes we consider surface sublimation, ion sputtering and photon-stimulated desorption. Particles are followed on their individual trajectories until they either escape Callisto's gravitational attraction, return to the surface, are ionized, or are fragmented. Our density profiles show that whereas the sublimated species dominate close to the surface on the sun-lit side, their density profiles (with the exception of H and H2) decrease much more rapidly than the sputtered particles. The Neutral gas and Ion Mass (NIM) spectrometer, which is part of the Particle Environment Package (PEP), will investigate Callisto's exosphere during the JUICE mission. Our simulations show that NIM will be able to detect sublimated and sputtered particles from both the ice and non-ice surface. NIM's measured chemical composition will allow us to distinguish between different formation scenarios.
Dosimetry applications in GATE Monte Carlo toolkit.
Papadimitroulas, Panagiotis
2017-02-21
Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Monceau, P.; Hsiao, P.-Y.
2003-02-01
We study the cluster size distributions generated by the Wolff algorithm in the framework of the Ising model on Sierpinski fractals with Hausdorff dimension Df between 1 and 2. We show that these distributions exhibit a scaling property involving the magnetic exponent yh associated with one of the eigen-direction of the renormalization flows. We suggest that a single cluster tends to invade the whole lattice as Df tends towards the lower critical dimension of the Ising model, namely 1. The autocorrelation times associated with the Wolff and Swendsen-Wang algorithms enable us to calculate dynamical exponents; the cluster algorithms are shown to be more efficient in reducing the critical slowing down when Df is lowered.
Lakkaraju, Sirish Kaushik; Raman, E Prabhu; Yu, Wenbo; MacKerell, Alexander D
2014-06-10
Solute sampling of explicit bulk-phase aqueous environments in grand canonical (GC) ensemble simulations suffer from poor convergence due to low insertion probabilities of the solutes. To address this, we developed an iterative procedure involving Grand Canonical-like Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Each iteration involves GCMC of both the solutes and water followed by MD, with the excess chemical potential (μex) of both the solute and the water oscillated to attain their target concentrations in the simulation system. By periodically varying the μex of the water and solutes over the GCMC-MD iterations, solute exchange probabilities and the spatial distributions of the solutes improved. The utility of the oscillating-μex GCMC-MD method is indicated by its ability to approximate the hydration free energy (HFE) of the individual solutes in aqueous solution as well as in dilute aqueous mixtures of multiple solutes. For seven organic solutes: benzene, propane, acetaldehyde, methanol, formamide, acetate, and methylammonium, the average μex of the solutes and the water converged close to their respective HFEs in both 1 M standard state and dilute aqueous mixture systems. The oscillating-μex GCMC methodology is also able to drive solute sampling in proteins in aqueous environments as shown using the occluded binding pocket of the T4 lysozyme L99A mutant as a model system. The approach was shown to satisfactorily reproduce the free energy of binding of benzene as well as sample the functional group requirements of the occluded pocket consistent with the crystal structures of known ligands bound to the L99A mutant as well as their relative binding affinities.
Shin, H-J; Song, J H; Jung, J-Y; Kwak, Y-K; Kay, C S; Kang, Y-N; Choi, B O; Jang, H S
2013-01-01
Objective: To evaluate the accuracy of pencil beam calculation (PBC) and Monte Carlo calculation (MCC) for dynamic arc therapy (DAT) in a cylindrically shaped homogenous phantom, by comparing the two plans with an ion chamber, a film and a three-dimensional (3D) volumetric dosemeter. Methods: For this study, an in-house phantom was constructed, and the PBC and MCC plans for DAT were performed using iPlan® RT (BrainLAB®, Heimstetten, Germany). The A16 micro ion chamber (Standard Imaging, Middleton, WI), Gafchromic® EBT2 film (International Specialty Products, Wayne, NJ) and ArcCHECK™ (Sun Nuclear, Melbourne, FL) were used for measurements. For comparison with each plan, two-dimensional (2D) and 3D gamma analyses were performed using 3%/3 mm and 2%/2 mm criteria. Results: The difference between the PBC and MCC plans using 2D and 3D gamma analyses was found to be 7.85% and 28.8%, respectively. The ion chamber and 2D dose distribution measurements did not exhibit this difference revealed by the comparison between the PBC and MCC plans. However, the 3D assessment showed a significant difference between the PBC and MCC (62.7% for PBC vs 93.4% for MCC, p = 0.034). Conclusion: Evaluation using a 3D volumetric dosemeter can be clinically useful for delivery quality assurance (QA), and the MCC should be used to achieve the most reliable dose calculation for DAT. Advances in knowledge: (1) The DAT plan calculated using the PBC has a limitation in the calculation methods, and a 3D volumetric dosemeter was found to be an adequate tool for delivery QA of DAT. (2) The MCC was superior to PBC in terms of the accuracy in dose calculation for DAT even in the homogenous condition. PMID:24234583
Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments
Pevey, Ronald E.
2005-09-15
Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL.
Perturbation Monte Carlo methods for tissue structure alterations.
Nguyen, Jennifer; Hayakawa, Carole K; Mourant, Judith R; Spanier, Jerome
2013-01-01
This paper describes an extension of the perturbation Monte Carlo method to model light transport when the phase function is arbitrarily perturbed. Current perturbation Monte Carlo methods allow perturbation of both the scattering and absorption coefficients, however, the phase function can not be varied. The more complex method we develop and test here is not limited in this way. We derive a rigorous perturbation Monte Carlo extension that can be applied to a large family of important biomedical light transport problems and demonstrate its greater computational efficiency compared with using conventional Monte Carlo simulations to produce forward transport problem solutions. The gains of the perturbation method occur because only a single baseline Monte Carlo simulation is needed to obtain forward solutions to other closely related problems whose input is described by perturbing one or more parameters from the input of the baseline problem. The new perturbation Monte Carlo methods are tested using tissue light scattering parameters relevant to epithelia where many tumors originate. The tissue model has parameters for the number density and average size of three classes of scatterers; whole nuclei, organelles such as lysosomes and mitochondria, and small particles such as ribosomes or large protein complexes. When these parameters or the wavelength is varied the scattering coefficient and the phase function vary. Perturbation calculations give accurate results over variations of ∼15-25% of the scattering parameters.
An improved method for treating Monte Carlo-diffusion interfaces
Densmore, J. D.
2004-01-01
Discrete Diffusion Monte Carlo (DDMC) has been suggested as a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. In this technique, Monte Carlo particles travel discrete steps between spatial cells according to a discretized diffusion equation. An important part of the DDMC method is the treatment of the interface between a transport region, where standard Monte Carlo is used, and a diffusive region, where DDMC is employed. Previously developed DDMC methods use the Marshak boundary condition at transport diffusion-interfaces, and thus produce incorrect results if the Monte Carlo-calculated angular flux incident on the interface surface is anisotropic. In this summary we present a new interface method based on the asymptotic diffusion-limit boundary condition, which is able to produce accurate solutions if the incident angular flux is anisotropic. We show that this new interface technique has a simple Monte Carlo interpretation, and can be used in conjunction with the existing DDMC method. With a set of numerical simulations, we demonstrate that this asymptotic interface method is much more accurate than the previously developed Marshak interface method.
Quantum Monte Carlo Endstation for Petascale Computing
David Ceperley
2011-03-02
CUDA GPU platform. We restructured the CPU algorithms to express additional parallelism, minimize GPU-CPU communication, and efficiently utilize the GPU memory hierarchy. Using mixed precision on GT200 GPUs and MPI for intercommunication and load balancing, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core Xeon CPUs alone, while reproducing the double-precision CPU results within statistical error. We developed an all-electron quantum Monte Carlo (QMC) method for solids that does not rely on pseudopotentials, and used it to construct a primary ultra-high-pressure calibration based on the equation of state of cubic boron nitride. We computed the static contribution to the free energy with the QMC method and obtained the phonon contribution from density functional theory, yielding a high-accuracy calibration up to 900 GPa usable directly in experiment. We computed the anharmonic Raman frequency shift with QMC simulations as a function of pressure and temperature, allowing optical pressure calibration. In contrast to present experimental approaches, small systematic errors in the theoretical EOS do not increase with pressure, and no extrapolation is needed. This all-electron method is applicable to first-row solids, providing a new reference for ab initio calculations of solids and benchmarks for pseudopotential accuracy. We compared experimental and theoretical results on the momentum distribution and the quasiparticle renormalization factor in sodium. From an x-ray Compton-profile measurement of the valence-electron momentum density, we derived its discontinuity at the Fermi wavevector finding an accurate measure of the renormalization factor that we compared with quantum-Monte-Carlo and G0W0 calculations performed both on crystalline sodium and on the homogeneous electron gas. Our calculated results are in good agreement with the experiment. We have been studying the heat of formation for various Kubas complexes of molecular
Continuous-time quantum Monte Carlo impurity solvers
NASA Astrophysics Data System (ADS)
Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias
2011-04-01
Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as
Monte Carlo simulation of quantum Zeno effect in the brain
NASA Astrophysics Data System (ADS)
Georgiev, Danko
2015-12-01
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.
Parallel implementation of a Monte Carlo molecular stimulation program
Carvalho; Gomes; Cordeiro
2000-05-01
Molecular simulation methods such as molecular dynamics and Monte Carlo are fundamental for the theoretical calculation of macroscopic and microscopic properties of chemical and biochemical systems. These methods often rely on heavy computations, and one sometimes feels the need to run them in powerful massively parallel machines. For moderate problem sizes, however, a not so powerful and less expensive solution based on a network of workstations may be quite satisfactory. In the present work, the strategy adopted in the development of a parallel version is outlined, using the message passing model, of a molecular simulation code to be used in a network of workstations. This parallel code is the adaptation of an older sequential code using the Metropolis Monte Carlo method. In this case, the message passing interface was used as the interprocess communications library, although the code could be easily adapted for other message passing systems such as the parallel virtual machine. For simple systems it is shown that speedups of 2 can be achieved for four processes with this cheap solution. For bigger and more complex simulated systems, even better speedups might be obtained, which indicates that the presented approach is appropriate for the efficient use of a network of workstations in parallel processing.
Monte Carlo dose verification for intensity-modulated arc therapy
NASA Astrophysics Data System (ADS)
Li, X. Allen; Ma, Lijun; Naqvi, Shahid; Shih, Rompin; Yu, Cedric
2001-09-01
Intensity-modulated arc therapy (IMAT), a technique which combines beam rotation and dynamic multileaf collimation, has been implemented in our clinic. Dosimetric errors can be created by the inability of the planning system to accurately account for the effects of tissue inhomogeneities and physical characteristics of the multileaf collimator (MLC). The objective of this study is to explore the use of Monte Carlo (MC) simulation for IMAT dose verification. The BEAM/DOSXYZ Monte Carlo system was implemented to perform dose verification for the IMAT treatment. The implementation includes the simulation of the linac head/MLC (Elekta SL20), the conversion of patient CT images and beam arrangement for 3D dose calculation, the calculation of gantry rotation and leaf motion by a series of static beams and the development of software to automate the entire MC process. The MC calculations were verified by measurements for conventional beam settings. The agreement was within 2%. The IMAT dose distributions generated by a commercial forward planning system (RenderPlan, Elekta) were compared with those calculated by the MC package. For the cases studied, discrepancies of over 10% were found between the MC and the RenderPlan dose calculations. These discrepancies were due in part to the inaccurate dose calculation of the RenderPlan system. The computation time for the IMAT MC calculation was in the range of 20-80 min on 15 Pentium-III computers. The MC method was also useful in verifying the beam apertures used in the IMAT treatments.
Bayesian Monte Carlo and Maximum Likelihood Approach for ...
Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood estimation (BMCML) to calibrate a lake oxygen recovery model. We first derive an analytical solution of the differential equation governing lake-averaged oxygen dynamics as a function of time-variable wind speed. Statistical inferences on model parameters and predictive uncertainty are then drawn by Bayesian conditioning of the analytical solution on observed daily wind speed and oxygen concentration data obtained from an earlier study during two recovery periods on a eutrophic lake in upper state New York. The model is calibrated using oxygen recovery data for one year and statistical inferences were validated using recovery data for another year. Compared with essentially two-step, regression and optimization approach, the BMCML results are more comprehensive and performed relatively better in predicting the observed temporal dissolved oxygen levels (DO) in the lake. BMCML also produced comparable calibration and validation results with those obtained using popular Markov Chain Monte Carlo technique (MCMC) and is computationally simpler and easier to implement than the MCMC. Next, using the calibrated model, we derive an optimal relationship between liquid film-transfer coefficien
Stochastic Kinetic Monte Carlo algorithms for long-range Hamiltonians
Mason, D R; Rudd, R E; Sutton, A P
2003-10-13
We present a higher order kinetic Monte Carlo methodology suitable to model the evolution of systems in which the transition rates are non- trivial to calculate or in which Monte Carlo moves are likely to be non- productive flicker events. The second order residence time algorithm first introduced by Athenes et al.[1] is rederived from the n-fold way algorithm of Bortz et al.[2] as a fully stochastic algorithm. The second order algorithm can be dynamically called when necessary to eliminate unproductive flickering between a metastable state and its neighbors. An algorithm combining elements of the first order and second order methods is shown to be more efficient, in terms of the number of rate calculations, than the first order or second order methods alone while remaining statistically identical. This efficiency is of prime importance when dealing with computationally expensive rate functions such as those arising from long- range Hamiltonians. Our algorithm has been developed for use when considering simulations of vacancy diffusion under the influence of elastic stress fields. We demonstrate the improved efficiency of the method over that of the n-fold way in simulations of vacancy diffusion in alloys. Our algorithm is seen to be an order of magnitude more efficient than the n-fold way in these simulations. We show that when magnesium is added to an Al-2at.%Cu alloy, this has the effect of trapping vacancies. When trapping occurs, we see that our algorithm performs thousands of events for each rate calculation performed.
Bayesian Monte Carlo and Maximum Likelihood Approach for ...
Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood estimation (BMCML) to calibrate a lake oxygen recovery model. We first derive an analytical solution of the differential equation governing lake-averaged oxygen dynamics as a function of time-variable wind speed. Statistical inferences on model parameters and predictive uncertainty are then drawn by Bayesian conditioning of the analytical solution on observed daily wind speed and oxygen concentration data obtained from an earlier study during two recovery periods on a eutrophic lake in upper state New York. The model is calibrated using oxygen recovery data for one year and statistical inferences were validated using recovery data for another year. Compared with essentially two-step, regression and optimization approach, the BMCML results are more comprehensive and performed relatively better in predicting the observed temporal dissolved oxygen levels (DO) in the lake. BMCML also produced comparable calibration and validation results with those obtained using popular Markov Chain Monte Carlo technique (MCMC) and is computationally simpler and easier to implement than the MCMC. Next, using the calibrated model, we derive an optimal relationship between liquid film-transfer coefficien
Lagged average forecasting, an alternative to Monte Carlo forecasting
NASA Technical Reports Server (NTRS)
Hoffman, R. N.; Kalnay, E.
1983-01-01
A 'lagged average forecast' (LAF) model is developed for stochastic dynamic weather forecasting and used for predictions in comparison with the results of a Monte Carlo forecast (MCF). The technique involves the calculation of sample statistics from an ensemble of forecasts, with each ensemble member being an ordinary dynamical forecast (ODF). Initial conditions at a time lagging the start of the forecast period are used, with varying amounts of time for the lags. Forcing by asymmetric Newtonian heating of the lower layer is used in a two-layer, f-plane, highly truncated spectral model in a test forecasting run. Both the LAF and MCF are found to be more accurate than the ODF due to ensemble averaging with the MCF and the LAF. When a regression filter is introduced, all models become more accurate, with the LAF model giving the best results. The possibility of generating monthly or seasonal forecasts with the LAF is discussed.
Energy-Driven Kinetic Monte Carlo Method and Its Application in Fullerene Coalescence.
Ding, Feng; Yakobson, Boris I
2014-09-04
Mimicking the conventional barrier-based kinetic Monte Carlo simulation, an energy-driven kinetic Monte Carlo (EDKMC) method was developed to study the structural transformation of carbon nanomaterials. The new method is many orders magnitude faster than standard molecular dynamics or Monte Marlo (MC) simulations and thus allows us to explore rare events within a reasonable computational time. As an example, the temperature dependence of fullerene coalescence was studied. The simulation, for the first time, revealed that short capped single-walled carbon nanotubes (SWNTs) appear as low-energy metastable structures during the structural evolution.
NASA Astrophysics Data System (ADS)
Ottosson, R. O.; Karlsson, A.; Behrens, C. F.
2010-08-01
The pencil beam dose calculation method is frequently used in modern radiation therapy treatment planning regardless of the fact that it is documented inaccurately for cases involving large density variations. The inaccuracies are larger for higher beam energies. As a result, low energy beams are conventionally used for lung treatments. The aim of this study was to analyze the advantages and disadvantages of dynamic IMRT treatment planning for high and low photon energy in order to assess if deviating from the conventional low energy approach could be favorable in some cases. Furthermore, the influence of motion on the dose distribution was investigated. Four non-small cell lung cancer cases were selected for this study. Inverse planning was conducted using Varian Eclipse. A total number of 31 dynamic IMRT plans, distributed amongst the four cases, were created ranging from PTV conformity weighted to normal tissue sparing weighted. All optimized treatment plans were calculated using three different calculation algorithms (PBC, AAA and MC). In order to study the influence of motion, two virtual lung phantoms were created. The idea was to mimic two different situations: one where the GTV is located centrally in the PTV and another where the GTV was close to the edge of the PTV. PBC is in poor agreement with MC and AAA for all cases and treatment plans. AAA overestimates the dose, compared to MC. This effect is more pronounced for 15 than 6 MV. AAA and MC both predict similar perturbations in dose distributions when moving the GTV to the edge of the PTV. PBC, however, predicts results contradicting those of AAA and MC. This study shows that PB-based dose calculation algorithms are clinically insufficient for patient geometries involving large density inhomogeneities. AAA is in much better agreement with MC, but even a small overestimation of the dose level by the algorithm might lead to a large part of the PTV being underdosed. It is advisable to use low energy as a
Chen, Yunjie; Roux, Benoît
2015-08-11
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
Brown, Forrest B.
2016-11-29
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations
Meaningful timescales from Monte Carlo simulations of particle systems with hard-core interactions
NASA Astrophysics Data System (ADS)
Costa, Liborio I.
2016-12-01
A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.
Meaningful timescales from Monte Carlo simulations of particle systems with hard-core interactions
Costa, Liborio I.
2016-12-01
A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.
Coherent Scattering Imaging Monte Carlo Simulation
NASA Astrophysics Data System (ADS)
Hassan, Laila Abdulgalil Rafik
Conventional mammography has poor contrast between healthy and cancerous tissues due to the small difference in attenuation properties. Coherent scatter potentially provides more information because interference of coherently scattered radiation depends on the average intermolecular spacing, and can be used to characterize tissue types. However, typical coherent scatter analysis techniques are not compatible with rapid low dose screening techniques. Coherent scatter slot scan imaging is a novel imaging technique which provides new information with higher contrast. In this work a simulation of coherent scatter was performed for slot scan imaging to assess its performance and provide system optimization. In coherent scatter imaging, the coherent scatter is exploited using a conventional slot scan mammography system with anti-scatter grids tilted at the characteristic angle of cancerous tissues. A Monte Carlo simulation was used to simulate the coherent scatter imaging. System optimization was performed across several parameters, including source voltage, tilt angle, grid distances, grid ratio, and shielding geometry. The contrast increased as the grid tilt angle increased beyond the characteristic angle for the modeled carcinoma. A grid tilt angle of 16 degrees yielded the highest contrast and signal to noise ratio (SNR). Also, contrast increased as the source voltage increased. Increasing grid ratio improved contrast at the expense of decreasing SNR. A grid ratio of 10:1 was sufficient to give a good contrast without reducing the intensity to a noise level. The optimal source to sample distance was determined to be such that the source should be located at the focal distance of the grid. A carcinoma lump of 0.5x0.5x0.5 cm3 in size was detectable which is reasonable considering the high noise due to the usage of relatively small number of incident photons for computational reasons. A further study is needed to study the effect of breast density and breast thickness
Radiative Transfer using the Monte Carlo Method
NASA Astrophysics Data System (ADS)
Carciofi, A. C.
2001-09-01
The radiation of stellar objects surrounded by an envelope can undergo significant reprocessing by the circumstellar material. To investigate the nature of the central object, and also of the envelope, it is necessary a theoretical tool capable of modeling, in a satisfactory way, the radiative transfer. In this work, we present a Monte Carlo code which treats the radiative transfer of the polarized light in several media, which is able to simulate several kinds of observation: polarimetry, espectropolarimetry, imaging, photome-try and spectroscopy. The code was developed aiming at three different applications. The first was the solution of the radiative transfer in electronic clouds. The second one was the study of the radiative transfer of resonant lines in stellar winds. The third one was the solution of the radiative transfer coupled to the radiative equilibrium in dusty environments. In this work, we show the application of the code to two situations: resonant line formation in spherical stellar winds and the radiative transfer in dusty circumstellar envelopes. In the study of the resonant line formation we examine the effects of the wind parameters (velocity law, optical depth, thermal velocity, etc.) on the observables. Among the results shown, we highlight new results for the envelope brightness and polarization profiles and for line maps, which simulate spectropolarimetric observations of different parts of the wind. The main application of the code was the study of the radiative transfer and radiative equilibrium in dusty circumstellar envelopes. We studied the effects of the dust grain size on the energy spectral distribution of spherical envelopes. We introduced the concept of approximate scaling, which reveals important symmetries on the infrared emission of envelopes with different grain sizes and their consequences to the spectral energy distribution. We showed that, in some cases, the spectral energy distribution of models with differently sized
Uncertainty Analyses for Localized Tallies in Monte Carlo Eigenvalue Calculations
Mervin, Brenden T.; Maldonado, G Ivan; Mosher, Scott W; Wagner, John C
2011-01-01
It is well known that statistical estimates obtained from Monte Carlo criticality simulations can be adversely affected by cycle-to-cycle correlations in the fission source. In addition there are several other more fundamental issues that may lead to errors in Monte Carlo results. These factors can have a significant impact on the calculated eigenvalue, localized tally means and their associated standard deviations. In fact, modern Monte Carlo computational tools may generate standard deviation estimates that are a factor of five or more lower than the true standard deviation for a particular tally due to the inter-cycle correlations in the fission source. The magnitude of this under-prediction can climb as high as one hundred when combined with an ill-converged fission source or poor sampling techniques. Since Monte Carlo methods are widely used in reactor analysis (as a benchmarking tool) and criticality safety applications, an in-depth understanding of the effects of these issues must be developed in order to support the practical use of Monte Carlo software packages. A rigorous statistical analysis of localized tally results in eigenvalue calculations is presented using the SCALE/KENO-VI and MCNP Monte Carlo codes. The purpose of this analysis is to investigate the under-prediction in the uncertainty and its sensitivity to problem characteristics and calculational parameters, and to provide a comparative study between the two codes with respect to this under-prediction. It is shown herein that adequate source convergence along with proper specification of Monte Carlo parameters can reduce the magnitude of under-prediction in the uncertainty to reasonable levels; below a factor of 2 when inter-cycle correlations in the fission source are not a significant factor. In addition, through the use of a modified sampling procedure, the effects of inter-cycle correlations on both the mean value and standard deviation estimates can be isolated.
The Monte Carlo code MCPTV--Monte Carlo dose calculation in radiation therapy with carbon ions.
Karg, Juergen; Speer, Stefan; Schmidt, Manfred; Mueller, Reinhold
2010-07-07
The Monte Carlo code MCPTV is presented. MCPTV is designed for dose calculation in treatment planning in radiation therapy with particles and especially carbon ions. MCPTV has a voxel-based concept and can perform a fast calculation of the dose distribution on patient CT data. Material and density information from CT are taken into account. Electromagnetic and nuclear interactions are implemented. Furthermore the algorithm gives information about the particle spectra and the energy deposition in each voxel. This can be used to calculate the relative biological effectiveness (RBE) for each voxel. Depth dose distributions are compared to experimental data giving good agreement. A clinical example is shown to demonstrate the capabilities of the MCPTV dose calculation.
A study of Monte Carlo radiative transfer through fractal clouds
Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P.
1996-04-01
An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.
Reactive Monte Carlo sampling with an ab initio potential
Leiding, Jeff; Coe, Joshua D.
2016-05-04
Here, we present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We also discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). Furthermore, we find that there are regions of state space formore » which RxMC sampling is much more efficient than AIMD due to the “rare-event” character of chemical reactions.« less
bhlight: General Relativistic Radiation Magnetohydrodynamics with Monte Carlo Transport
Ryan, Benjamin R; Dolence, Joshua C.; Gammie, Charles F.
2015-06-25
We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and tomore » a slowly accreting Kerr black hole in axisymmetry.« less
Synchronous parallel kinetic Monte Carlo Diffusion in Heterogeneous Systems
Martinez Saez, Enrique; Hetherly, Jeffery; Caro, Jose A
2010-12-06
A new hybrid Molecular Dynamics-kinetic Monte Carlo algorithm has been developed in order to study the basic mechanisms taking place in diffusion in concentrated alloys under the action of chemical and stress fields. Parallel implementation of the k-MC part based on a recently developed synchronous algorithm [1. Compo Phys. 227 (2008) 3804-3823] resorting on the introduction of a set of null events aiming at synchronizing the time for the different subdomains, added to the parallel efficiency of MD, provides the computer power required to evaluate jump rates 'on the flight', incorporating in this way the actual driving force emerging from chemical potential gradients, and the actual environment-dependent jump rates. The time gain has been analyzed and the parallel performance reported. The algorithm is tested on simple diffusion problems to verify its accuracy.
OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN TUNGSTEN
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.
2015-04-16
We used our recently developed lattice-based object kinetic Monte Carlo code; KSOME [1] to carryout simulations of radiation damage in bulk tungsten at temperatures of 300, and 2050 K for various dose rates. Displacement cascades generated from molecular dynamics (MD) simulations for PKA energies at 60, 75 and 100 keV provided residual point defect distributions. It was found that the number density of vacancies in the simulation box does not change with dose rate while the number density of vacancy clusters slightly decreases with dose rate indicating that bigger clusters are formed at larger dose rates. At 300 K, although the average vacancy cluster size increases slightly, the vast majority of vacancies exist as mono-vacancies. At 2050 K no accumulation of defects was observed during irradiation over a wide range of dose rates for all PKA energies studied in this work.
Monte Carlo simulation of the hysteresis phenomena on ferromagnetic nanotubes.
Salazar-Enríquez, C D; Restrepo, J; Restrepo-Parra, E
2012-06-01
In this work the hysteretic properties of single wall ferromagnetic nanotubes were studied. Hysteresis loops were computed on the basis of a classical Heisenberg model involving nearest neighbor interactions and using a Monte Carlo method implemented with a single spin movement Metropolis dynamics. Nanotubes with square and hexagonal unit cells were studied varying their diameter, temperature and magneto-crystalline anisotropy. Effects of the diameter were found stronger in the square unit cell magnetic nanotubes (SMNTs) than in the hexagonal unit cell magnetic nanotubes (HMNTs). The ferromagnetic behavior was observed in SMNTs at higher temperature than in HMNTs. Moreover in both cases, SMNTs and HMNTs, the magneto-crystalline anisotropy in the longitudinal direction showed a linear correspondence with the coercive field.
Monte Carlo study of Dirac semimetals phase diagram
NASA Astrophysics Data System (ADS)
Braguta, V. V.; Katsnelson, M. I.; Kotov, A. Yu.; Nikolaev, A. A.
2016-11-01
In this paper the phase diagram of Dirac semimetals is studied within a lattice Monte Carlo simulation. In particular, we concentrate on the dynamical chiral symmetry breaking which results in a semimetal-insulator transition. Using numerical simulation, we determine the values of the critical coupling constant of the semimetal-insulator transition for different values of the anisotropy of the Fermi velocity. This measurement allows us to draw a tentative phase diagram for Dirac semimetals. It turns out that within the Dirac model with Coulomb interaction both Na3Bi and Cd3As2 , known experimentally to be Dirac semimetals, would lie deep in the insulating region of the phase diagram. This result probably shows a decisive role of screening of the interelectron interaction in real materials, similar to the situation in graphene.
bhlight: General Relativistic Radiation Magnetohydrodynamics with Monte Carlo Transport
Ryan, Benjamin R; Dolence, Joshua C.; Gammie, Charles F.
2015-06-25
We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry.
bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT
Ryan, B. R.; Gammie, C. F.; Dolence, J. C.
2015-07-01
We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry.
Direct simulation Monte Carlo investigation of hydrodynamic instabilities in gases
NASA Astrophysics Data System (ADS)
Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; Plimpton, S. J.
2016-11-01
The Rayleigh-Taylor instability (RTI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, two-dimensional and three-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode-perturbed interfaces between two atmospheric-pressure monatomic gases. The DSMC simulations reproduce all qualitative features of the RTI and are in reasonable quantitative agreement with existing theoretical and empirical models in the linear, nonlinear, and self-similar regimes. At late times, the instability is seen to exhibit a self-similar behavior, in agreement with experimental observations. For the conditions simulated, diffusion can influence the initial instability growth significantly.
NOTE: Monte Carlo simulation of RapidArc radiotherapy delivery
NASA Astrophysics Data System (ADS)
Bush, K.; Townson, R.; Zavgorodni, S.
2008-10-01
RapidArc radiotherapy technology from Varian Medical Systems is one of the most complex delivery systems currently available, and achieves an entire intensity-modulated radiation therapy (IMRT) treatment in a single gantry rotation about the patient. Three dynamic parameters can be continuously varied to create IMRT dose distributions—the speed of rotation, beam shaping aperture and delivery dose rate. Modeling of RapidArc technology was incorporated within the existing Vancouver Island Monte Carlo (VIMC) system (Zavgorodni et al 2007 Radiother. Oncol. 84 S49, 2008 Proc. 16th Int. Conf. on Medical Physics). This process was named VIMC-Arc and has become an efficient framework for the verification of RapidArc treatment plans. VIMC-Arc is a fully automated system that constructs the Monte Carlo (MC) beam and patient models from a standard RapidArc DICOM dataset, simulates radiation transport, collects the resulting dose and converts the dose into DICOM format for import back into the treatment planning system (TPS). VIMC-Arc accommodates multiple arc IMRT deliveries and models gantry rotation as a series of segments with dynamic MLC motion within each segment. Several verification RapidArc plans were generated by the Eclipse TPS on a water-equivalent cylindrical phantom and re-calculated using VIMC-Arc. This includes one 'typical' RapidArc plan, one plan for dual arc treatment and one plan with 'avoidance' sectors. One RapidArc plan was also calculated on a DICOM patient CT dataset. Statistical uncertainty of MC simulations was kept within 1%. VIMC-Arc produced dose distributions that matched very closely to those calculated by the anisotropic analytical algorithm (AAA) that is used in Eclipse. All plans also demonstrated better than 1% agreement of the dose at the isocenter. This demonstrates the capabilities of our new MC system to model all dosimetric features required for RapidArc dose calculations.
Monte Carlo simulation of RapidArc radiotherapy delivery.
Bush, K; Townson, R; Zavgorodni, S
2008-10-07
RapidArc radiotherapy technology from Varian Medical Systems is one of the most complex delivery systems currently available, and achieves an entire intensity-modulated radiation therapy (IMRT) treatment in a single gantry rotation about the patient. Three dynamic parameters can be continuously varied to create IMRT dose distributions-the speed of rotation, beam shaping aperture and delivery dose rate. Modeling of RapidArc technology was incorporated within the existing Vancouver Island Monte Carlo (VIMC) system (Zavgorodni et al 2007 Radiother. Oncol. 84 S49, 2008 Proc. 16th Int. Conf. on Medical Physics). This process was named VIMC-Arc and has become an efficient framework for the verification of RapidArc treatment plans. VIMC-Arc is a fully automated system that constructs the Monte Carlo (MC) beam and patient models from a standard RapidArc DICOM dataset, simulates radiation transport, collects the resulting dose and converts the dose into DICOM format for import back into the treatment planning system (TPS). VIMC-Arc accommodates multiple arc IMRT deliveries and models gantry rotation as a series of segments with dynamic MLC motion within each segment. Several verification RapidArc plans were generated by the Eclipse TPS on a water-equivalent cylindrical phantom and re-calculated using VIMC-Arc. This includes one 'typical' RapidArc plan, one plan for dual arc treatment and one plan with 'avoidance' sectors. One RapidArc plan was also calculated on a DICOM patient CT dataset. Statistical uncertainty of MC simulations was kept within 1%. VIMC-Arc produced dose distributions that matched very closely to those calculated by the anisotropic analytical algorithm (AAA) that is used in Eclipse. All plans also demonstrated better than 1% agreement of the dose at the isocenter. This demonstrates the capabilities of our new MC system to model all dosimetric features required for RapidArc dose calculations.
Numerical integration of detector response functions via Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Kelly, K. J.; O'Donnell, J. M.; Gomez, J. A.; Taddeucci, T. N.; Devlin, M.; Haight, R. C.; White, M. C.; Mosby, S. M.; Neudecker, D.; Buckner, M. Q.; Wu, C. Y.; Lee, H. Y.
2017-09-01
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated in this way can be used to create Monte Carlo simulation output spectra a factor of ∼ 1000 × faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. This method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.
TOPICAL REVIEW: Monte Carlo modelling of external radiotherapy photon beams
NASA Astrophysics Data System (ADS)
Verhaegen, Frank; Seuntjens, Jan
2003-11-01
An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. An important component in the treatment planning process is the accurate calculation of dose distributions. The most accurate way to do this is by Monte Carlo calculation of particle transport, first in the geometry of the external or internal source followed by tracking the transport and energy deposition in the tissues of interest. Additionally, Monte Carlo simulations allow one to investigate the influence of source components on beams of a particular type and their contaminant particles. Since the mid 1990s, there has been an enormous increase in Monte Carlo studies dealing specifically with the subject of the present review, i.e., external photon beam Monte Carlo calculations, aided by the advent of new codes and fast computers. The foundations for this work were laid from the late 1970s until the early 1990s. In this paper we will review the progress made in this field over the last 25 years. The review will be focused mainly on Monte Carlo modelling of linear accelerator treatment heads but sections will also be devoted to kilovoltage x-ray units and 60Co teletherapy sources.
Noise properties of the EM algorithm: II. Monte Carlo simulations.
Wilson, D W; Tsui, B M; Barrett, H H
1994-05-01
In an earlier paper we derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative ML-EM algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependence of the variance and covariance of the reconstructed image noise on the source distribution, imaging system transfer function, and iteration number. In this paper a Monte Carlo approach was taken to study the noise properties of the ML-EM algorithm and to test the predictions of the theory. The study also served to evaluate the approximations used in the theory. Simulated data from phantoms were used in the Monte Carlo experiments. The ML-EM statistical properties were calculated from sample averages of a large number of images with different noise realizations. The agreement between the more exact form of the theoretical formulation and the Monte Carlo formulation was better than 10% in most cases examined, and for many situations the agreement was within the expected error of the Monte Carlo experiments. Results from the studies provide valuable information about the noise characteristics of ML-EM reconstructed images. Furthermore, the studies demonstrate the power of the theoretical and Monte Carlo approaches for investigating noise properties of statistical reconstruction algorithms.
Numerical integration of detector response functions via Monte Carlo simulations
Kelly, Keegan John; O'Donnell, John M.; Gomez, Jaime A.; ...
2017-06-13
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated inmore » this way can be used to create Monte Carlo simulation output spectra a factor of ~1000× faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. Here, this method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.« less
An unbiased Hessian representation for Monte Carlo PDFs.
Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Latorre, José Ignacio; Rojo, Juan
We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (MC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available together with (through LHAPDF6) a Hessian representations of the NNPDF3.0 set, and the MC-H PDF set.
Frequency domain optical tomography using a Monte Carlo perturbation method
NASA Astrophysics Data System (ADS)
Yamamoto, Toshihiro; Sakamoto, Hiroki
2016-04-01
A frequency domain Monte Carlo method is applied to near-infrared optical tomography, where an intensity-modulated light source with a given modulation frequency is used to reconstruct optical properties. The frequency domain reconstruction technique allows for better separation between the scattering and absorption properties of inclusions, even for ill-posed inverse problems, due to cross-talk between the scattering and absorption reconstructions. The frequency domain Monte Carlo calculation for light transport in an absorbing and scattering medium has thus far been analyzed mostly for the reconstruction of optical properties in simple layered tissues. This study applies a Monte Carlo calculation algorithm, which can handle complex-valued particle weights for solving a frequency domain transport equation, to optical tomography in two-dimensional heterogeneous tissues. The Jacobian matrix that is needed to reconstruct the optical properties is obtained by a first-order "differential operator" technique, which involves less variance than the conventional "correlated sampling" technique. The numerical examples in this paper indicate that the newly proposed Monte Carlo method provides reconstructed results for the scattering and absorption coefficients that compare favorably with the results obtained from conventional deterministic or Monte Carlo methods.
NASA Astrophysics Data System (ADS)
Okada, Kazuya; Satoh, Akira
2017-09-01
In the present study, we address a suspension composed ferromagnetic rod-like particles to elucidate a regime change in the aggregate structures and the magneto-rheological characteristics. Monte Carlo simulations have been employed for investigating the aggregate structures in thermodynamic equilibrium, and Brownian dynamics simulations for magneto-rheological features in a simple shear flow. The main results obtained here are summarized as follows. For the case of thermodynamic equilibrium, the rod-like particles aggregate to form thick chain-like clusters and the neighboring clusters incline in opposite directions. If the external magnetic field is increased, the thick chain-like clusters in the magnetic field direction grow thicker by adsorbing the neighboring clusters that incline in the opposite direction. Hence, a significant phase change in the particle aggregates is not induced by an increase in the magnetic field strength. For the case of a simple shear flow, even a weak shear flow induces a significant regime change from the thick chain-like clusters of thermodynamic equilibrium into wall-like aggregates composed of short raft-like clusters. A strong external magnetic field drastically changes these aggregates into wall-like aggregates composed of thick chain-like clusters rather than the short raft-like clusters. The internal structure of these aggregates is not strongly influenced by a shear flow, and the formation of the short raft-like clusters is maintained inside the aggregates. The main contribution to the net viscosity is the viscosity component due to magnetic particle-particle interaction forces in relation to the present volumetric fraction. Hence, a larger magnetic interaction strength and also a stronger external magnetic field give rise to a larger magneto-rheological effect. However, the dependence of the viscosity on these factors is governed in a complex manner by whether or not the wall-like aggregates are composed mainly of short raft
NASA Astrophysics Data System (ADS)
Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang
2015-01-01
This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance-rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are
Zhang, Jeff L; Conlin, Chris C; Carlston, Kristi; Xie, Luke; Kim, Daniel; Morrell, Glen; Morton, Kathryn; Lee, Vivian S
2016-07-01
Dynamic contrast-enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important for the minimization of the error propagation from the acquired signals to the estimated parameters, thus improving the precision of the parameters. Critical to the optimization of contrast-enhanced T1 -weighted protocols is the balance of the T1 -shortening effect across the range of gadolinium (Gd) contrast concentration in the tissue of interest. In this study, we demonstrate a Monte Carlo simulation approach for the optimization of DCE MRI, in which a saturation-recovery T1 -weighted gradient echo sequence is simulated and the impact of injected dose (D) and time delay (TD, for saturation recovery) is tested. The results show that high D and/or high TD cause saturation of the peak arterial signals and lead to an overestimation of renal plasma flow (RPF) and glomerular filtration rate (GFR). However, the use of low TD (e.g. 100 ms) and low D leads to similar errors in RPF and GFR, because of the Rician bias in the pre-contrast arterial signals. Our patient study including 22 human subjects compared TD values of 100 and 300 ms after the injection of 4 mL of Gd contrast for MR renography. At TD = 100 ms, we computed an RPF value of 157.2 ± 51.7 mL/min and a GFR of 33.3 ± 11.6 mL/min. These results were all significantly higher than the parameter estimates at TD = 300 ms: RPF = 143.4 ± 48.8 mL/min (p = 0.0006) and GFR = 30.2 ± 11.5 mL/min (p = 0.0015). In conclusion, appropriate optimization of the DCE MRI protocol using simulation can effectively improve the precision and, potentially, the accuracy of the measured parameters. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Zhang, Jeff L.; Conlin, Chris C.; Carlston, Kristi; Xie, Luke; Kim, Daniel; Morrell, Glen; Morton, Kathryn; Lee, Vivian S.
2016-01-01
Dynamic contrast-enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important for the minimization of the error propagation from the acquired signals to the estimated parameters, thus improving the precision of the parameters. Critical to the optimization of contrast-enhanced T1-weighted protocols is the balance of the T1-shortening effect across the range of gadolinium (Gd) contrast concentration in the tissue of interest. In this study, we demonstrate a Monte Carlo simulation approach for the optimization of DCE MRI, in which a saturation-recovery T1-weighted gradient echo sequence is simulated and the impact of injected dose (D) and time delay (TD, for saturation recovery) is tested. The results show that high D and/or high TD cause saturation of the peak arterial signals and lead to an overestimation of renal plasma flow (RPF) and glomerular filtration rate (GFR). However, the use of low TD (e.g. 100 ms) and low D leads to similar errors in RPF and GFR, because of the Rician bias in the pre-contrast arterial signals. Our patient study including 22 human subjects compared TD values of 100 and 300 ms after the injection of 4 mL of Gd contrast for MR renography. At TD = 100 ms, we computed an RPF value of 157.2 ± 51.7 mL/min and a GFR of 33.3 ± 11.6 mL/min. These results were all significantly higher than the parameter estimates at TD = 300 ms: RPF = 143.4 ± 48.8 mL/min (p = 0.0006) and GFR = 30.2 ± 11.5 mL/min (p = 0.0015). In conclusion, appropriate optimization of the DCE MRI protocol using simulation can effectively improve the precision and, potentially, the accuracy of the measured parameters. PMID:27200499
Schabel, Matthias C; Fluckiger, Jacob U; DiBella, Edward V R
2010-08-21
Widespread adoption of quantitative pharmacokinetic modeling methods in conjunction with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has led to increased recognition of the importance of obtaining accurate patient-specific arterial input function (AIF) measurements. Ideally, DCE-MRI studies use an AIF directly measured in an artery local to the tissue of interest, along with measured tissue concentration curves, to quantitatively determine pharmacokinetic parameters. However, the numerous technical and practical difficulties associated with AIF measurement have made the use of population-averaged AIF data a popular, if sub-optimal, alternative to AIF measurement. In this work, we present and characterize a new algorithm for determining the AIF solely from the measured tissue concentration curves. This Monte Carlo blind estimation (MCBE) algorithm estimates the AIF from the subsets of D concentration-time curves drawn from a larger pool of M candidate curves via nonlinear optimization, doing so for multiple (Q) subsets and statistically averaging these repeated estimates. The MCBE algorithm can be viewed as a generalization of previously published methods that employ clustering of concentration-time curves and only estimate the AIF once. Extensive computer simulations were performed over physiologically and experimentally realistic ranges of imaging and tissue parameters, and the impact of choosing different values of D and Q was investigated. We found the algorithm to be robust, computationally efficient and capable of accurately estimating the AIF even for relatively high noise levels, long sampling intervals and low diversity of tissue curves. With the incorporation of bootstrapping initialization, we further demonstrated the ability to blindly estimate AIFs that deviate substantially in shape from the population-averaged initial guess. Pharmacokinetic parameter estimates for K(trans), k(ep), v(p) and v(e) all showed relative biases and
Xu, Zuwei; Zhao, Haibo Zheng, Chuguang
2015-01-15
This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are
Monte Carlo Calculations of Polarized Microwave Radiation Emerging from Cloud Structures
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Roberti, Laura
1998-01-01
The last decade has seen tremendous growth in cloud dynamical and microphysical models that are able to simulate storms and storm systems with very high spatial resolution, typically of the order of a few kilometers. The fairly realistic distributions of cloud and hydrometeor properties that these models generate has in turn led to a renewed interest in the three-dimensional microwave radiative transfer modeling needed to understand the effect of cloud and rainfall inhomogeneities upon microwave observations. Monte Carlo methods, and particularly backwards Monte Carlo methods have shown themselves to be very desirable due to the quick convergence of the solutions. Unfortunately, backwards Monte Carlo methods are not well suited to treat polarized radiation. This study reviews the existing Monte Carlo methods and presents a new polarized Monte Carlo radiative transfer code. The code is based on a forward scheme but uses aliasing techniques to keep the computational requirements equivalent to the backwards solution. Radiative transfer computations have been performed using a microphysical-dynamical cloud model and the results are presented together with the algorithm description.
Monte Carlo Simulations for Mine Detection
Toor, A.; Marchetti, A.A.
2000-03-14
the system worked extremely well on all classes of anti-tank mines, the Russian hardware components were inferior to those that are commercially available in the United States, i.e. the NaI(Tl) crystals had significantly higher background levels and poorer resolution than their U.S. counterparts, the electronics appeared to be decades old and the photomultiplier tubes were noisy and lacked gain stabilization circuitry. During the evaluation of this technology, the question that came to mind was: could state-of-the-art sensors and electronics and improved software algorithms lead to a neutron based system that could reliably detect much smaller buried mines; namely antipersonnel mines containing 30-40 grams of high explosive? Our goal in this study was to conduct Monte Carlo simulations to gain better understanding of both phases of the mine detection system and to develop an understanding for the system's overall capabilities and limitations. In addition, we examined possible extensions of this technology to see whether or not state-of-the-art improvements could lead to a reliable anti-personnel mine detection system.
Monte Carlo dose calculations in advanced radiotherapy
NASA Astrophysics Data System (ADS)
Bush, Karl Kenneth
The remarkable accuracy of Monte Carlo (MC) dose calculation algorithms has led to the widely accepted view that these methods should and will play a central role in the radiotherapy treatment verification and planning of the future. The advantages of using MC clinically are particularly evident for radiation fields passing through inhomogeneities, such as lung and air cavities, and for small fields, including those used in today's advanced intensity modulated radiotherapy techniques. Many investigators have reported significant dosimetric differences between MC and conventional dose calculations in such complex situations, and have demonstrated experimentally the unmatched ability of MC calculations in modeling charged particle disequilibrium. The advantages of using MC dose calculations do come at a cost. The nature of MC dose calculations require a highly detailed, in-depth representation of the physical system (accelerator head geometry/composition, anatomical patient geometry/composition and particle interaction physics) to allow accurate modeling of external beam radiation therapy treatments. To perform such simulations is computationally demanding and has only recently become feasible within mainstream radiotherapy practices. In addition, the output of the accelerator head simulation can be highly sensitive to inaccuracies within a model that may not be known with sufficient detail. The goal of this dissertation is to both improve and advance the implementation of MC dose calculations in modern external beam radiotherapy. To begin, a novel method is proposed to fine-tune the output of an accelerator model to better represent the measured output. In this method an intensity distribution of the electron beam incident on the model is inferred by employing a simulated annealing algorithm. The method allows an investigation of arbitrary electron beam intensity distributions and is not restricted to the commonly assumed Gaussian intensity. In a second component of
Benchmarking of Proton Transport in Super Monte Carlo Simulation Program
NASA Astrophysics Data System (ADS)
Wang, Yongfeng; Li, Gui; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Wu, Yican
2014-06-01
The Monte Carlo (MC) method has been traditionally applied in nuclear design and analysis due to its capability of dealing with complicated geometries and multi-dimensional physics problems as well as obtaining accurate results. The Super Monte Carlo Simulation Program (SuperMC) is developed by FDS Team in China for fusion, fission, and other nuclear applications. The simulations of radiation transport, isotope burn-up, material activation, radiation dose, and biology damage could be performed using SuperMC. Complicated geometries and the whole physical process of various types of particles in broad energy scale can be well handled. Bi-directional automatic conversion between general CAD models and full-formed input files of SuperMC is supported by MCAM, which is a CAD/image-based automatic modeling program for neutronics and radiation transport simulation. Mixed visualization of dynamical 3D dataset and geometry model is supported by RVIS, which is a nuclear radiation virtual simulation and assessment system. Continuous-energy cross section data from hybrid evaluated nuclear data library HENDL are utilized to support simulation. Neutronic fixed source and critical design parameters calculates for reactors of complex geometry and material distribution based on the transport of neutron and photon have been achieved in our former version of SuperMC. Recently, the proton transport has also been intergrated in SuperMC in the energy region up to 10 GeV. The physical processes considered for proton transport include electromagnetic processes and hadronic processes. The electromagnetic processes include ionization, multiple scattering, bremsstrahlung, and pair production processes. Public evaluated data from HENDL are used in some electromagnetic processes. In hadronic physics, the Bertini intra-nuclear cascade model with exitons, preequilibrium model, nucleus explosion model, fission model, and evaporation model are incorporated to treat the intermediate energy nuclear
A practical Monte Carlo MU verification tool for IMRT quality assurance.
Fan, J; Li, J; Chen, L; Stathakis, S; Luo, W; Du Plessis, F; Xiong, W; Yang, J; Ma, C-M
2006-05-21
Quality assurance (QA) for intensity-modulated radiation therapy (IMRT) treatment planning and beam delivery, using ionization chamber measurements and film dosimetry in a phantom, is time consuming. The Monte Carlo method is the most accurate method for radiotherapy dose calculation. However, a major drawback of Monte Carlo dose calculation as currently implemented is its slow speed. The goal of this work is to bring the efficiency of Monte Carlo into a practical range by developing a fast Monte Carlo monitor unit (MU) verification tool for IMRT. A special estimator for dose at a point called the point detector has been used in this research. The point detector uses the next event estimation (NEE) method to calculate the photon energy fluence at a point of interest and then converts it to collision kerma by the mass energy absorption coefficient assuming the presence of transient charged particle equilibrium. The MU verification tool has been validated by comparing the calculation results with measurements. It can be used for both patient dose verification and phantom QA calculation. The dynamic leaf-sequence log file is used to rebuild the actual MLC leaf sequence in order to predict the dose actually received by the patient. Dose calculations for 20 patient plans have been performed using the point detector method. Results were compared with direct Monte Carlo simulations using EGS4/MCSIM, which is a well-benchmarked Monte Carlo code. The results between the point detector and MCSIM agreed to within 2%. A factor of 20 speedup can be achieved with the point detector method compared with direct Monte Carlo simulations.
A practical Monte Carlo MU verification tool for IMRT quality assurance
NASA Astrophysics Data System (ADS)
Fan, J.; Li, J.; Chen, L.; Stathakis, S.; Luo, W.; Du Plessis, F.; Xiong, W.; Yang, J.; Ma, C.-M.
2006-05-01
Quality assurance (QA) for intensity-modulated radiation therapy (IMRT) treatment planning and beam delivery, using ionization chamber measurements and film dosimetry in a phantom, is time consuming. The Monte Carlo method is the most accurate method for radiotherapy dose calculation. However, a major drawback of Monte Carlo dose calculation as currently implemented is its slow speed. The goal of this work is to bring the efficiency of Monte Carlo into a practical range by developing a fast Monte Carlo monitor unit (MU) verification tool for IMRT. A special estimator for dose at a point called the point detector has been used in this research. The point detector uses the next event estimation (NEE) method to calculate the photon energy fluence at a point of interest and then converts it to collision kerma by the mass energy absorption coefficient assuming the presence of transient charged particle equilibrium. The MU verification tool has been validated by comparing the calculation results with measurements. It can be used for both patient dose verification and phantom QA calculation. The dynamic leaf-sequence log file is used to rebuild the actual MLC leaf sequence in order to predict the dose actually received by the patient. Dose calculations for 20 patient plans have been performed using the point detector method. Results were compared with direct Monte Carlo simulations using EGS4/MCSIM, which is a well-benchmarked Monte Carlo code. The results between the point detector and MCSIM agreed to within 2%. A factor of 20 speedup can be achieved with the point detector method compared with direct Monte Carlo simulations.
Photon beam description in PEREGRINE for Monte Carlo dose calculations
Cox, L. J., LLNL
1997-03-04
Goal of PEREGRINE is to provide capability for accurate, fast Monte Carlo calculation of radiation therapy dose distributions for routine clinical use and for research into efficacy of improved dose calculation. An accurate, efficient method of describing and sampling radiation sources is needed, and a simple, flexible solution is provided. The teletherapy source package for PEREGRINE, coupled with state-of-the-art Monte Carlo simulations of treatment heads, makes it possible to describe any teletherapy photon beam to the precision needed for highly accurate Monte Carlo dose calculations in complex clinical configurations that use standard patient modifiers such as collimator jaws, wedges, blocks, and/or multi-leaf collimators. Generic beam descriptions for a class of treatment machines can readily be adjusted to yield dose calculation to match specific clinical sites.
Monte Carlo tests of the ELIPGRID-PC algorithm
Davidson, J.R.
1995-04-01
The standard tool for calculating the probability of detecting pockets of contamination called hot spots has been the ELIPGRID computer code of Singer and Wickman. The ELIPGRID-PC program has recently made this algorithm available for an IBM{reg_sign} PC. However, no known independent validation of the ELIPGRID algorithm exists. This document describes a Monte Carlo simulation-based validation of a modified version of the ELIPGRID-PC code. The modified ELIPGRID-PC code is shown to match Monte Carlo-calculated hot-spot detection probabilities to within {plus_minus}0.5% for 319 out of 320 test cases. The one exception, a very thin elliptical hot spot located within a rectangular sampling grid, differed from the Monte Carlo-calculated probability by about 1%. These results provide confidence in the ability of the modified ELIPGRID-PC code to accurately predict hot-spot detection probabilities within an acceptable range of error.
BACKWARD AND FORWARD MONTE CARLO METHOD IN POLARIZED RADIATIVE TRANSFER
Yong, Huang; Guo-Dong, Shi; Ke-Yong, Zhu
2016-03-20
In general, the Stocks vector cannot be calculated in reverse in the vector radiative transfer. This paper presents a novel backward and forward Monte Carlo simulation strategy to study the vector radiative transfer in the participated medium. A backward Monte Carlo process is used to calculate the ray trajectory and the endpoint of the ray. The Stocks vector is carried out by a forward Monte Carlo process. A one-dimensional graded index semi-transparent medium was presented as the physical model and the thermal emission consideration of polarization was studied in the medium. The solution process to non-scattering, isotropic scattering, and the anisotropic scattering medium, respectively, is discussed. The influence of the optical thickness and albedo on the Stocks vector are studied. The results show that the U, V-components of the apparent Stocks vector are very small, but the Q-component of the apparent Stocks vector is relatively larger, which cannot be ignored.